-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresidual.py
211 lines (166 loc) · 7.26 KB
/
residual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import matplotlib
matplotlib.use('AGG')
import tensorflow as tf
import numpy as np
from tflearn.datasets import cifar10
import matplotlib.pyplot as plt
def _init_conv(dims, name):
return tf.get_variable(name+'_conv', shape = dims,
initializer = tf.contrib.layers.xavier_initializer())
def _init_weight(dims, name):
return tf.get_variable(name+'_bias', shape = dims,
initializer = tf.contrib.layers.xavier_initializer())
def _conv2d_shrink(input, filter):
return tf.nn.conv2d(input, filter,
strides = [1, 2, 2, 1], padding='SAME')
def _conv2d(input, filter):
return tf.nn.conv2d(input, filter,
strides=[1, 1, 1, 1], padding='SAME')
def _res_block(input, dims, name, training):
input_dims = input.get_shape().as_list()
diff = input_dims[3] != dims[3]
with tf.variable_scope(name):
if diff:
res_1 = _conv2d_shrink(input, _init_conv(dims, "W1"))
else:
res_1 = _conv2d(input, _init_conv(dims, "W1"))
batch_1 = tf.nn.relu(tf.contrib.layers.batch_norm(res_1,
center = True, scale = True,
scope = "batch_norm_1", is_training = training))
dims[2] = dims[3] # Change the dimension after the first conv
W2 = _init_conv(dims, "W2")
# BN before non-linearlity
res_out = tf.contrib.layers.batch_norm(_conv2d(batch_1, W2),
center = True,
scale = True,
is_training = training,
scope = "batch_norm_2")
if diff:
shrink_pool = tf.nn.avg_pool(input, ksize=[1,2,2,1], strides=[1,2,2,1], padding = 'SAME')
padding = ((0, 0), (0, 0), (0, 0), (input_dims[3] / 2, input_dims[3] / 2))
shrink_input = tf.pad(shrink_pool, padding)
return tf.nn.relu(res_out + shrink_input)
return tf.nn.relu(res_out + input)
def next_batch(num):
(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()
# Center and stddev to 0
mean_img = np.mean(X_train, axis = 0)
stddev_img = np.std(X_train, axis = 0)
X_train = (X_train - mean_img) / stddev_img
X_test = (X_test - mean_img) / stddev_img
yield (X_test, Y_test)
i = 0
indexes = np.arange(len(X_train))
indexes = np.random.choice(indexes, size=len(X_train))
X_train = X_train[indexes]
Y_train = Y_train[indexes]
while True:
if i+num > len(X_train):
i = 0
indexes = np.arange(len(X_train))
indexes = np.random.choice(indexes, size=len(X_train))
X_train = X_train[indexes]
Y_train = Y_train[indexes]
i+=num
yield (X_train[i-num:i], Y_train[i-num:i])
if __name__ == '__main__':
N_HYPER = 3
assert N_HYPER > 1
x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
y_ = tf.placeholder(tf.int64, shape=[None])
training = tf.placeholder(tf.bool)
# Before magic
W_init = _init_weight([32, 32, 3, 16], "w_init")
init_out = tf.nn.relu(tf.contrib.layers.batch_norm(
_conv2d(x, W_init),
center = True, scale = True,
scope = "batch_norm_0",
is_training = training
))
# Residual block 1
res1 = _res_block(init_out, [3, 3, 16, 16],
"16_residual", training = training)
for blk in range(2*N_HYPER):
res1 = _res_block(res1, [3, 3, 16, 16],
"16_residual_%d" % (blk+1), training = training)
# Residual block 2
res2 = _res_block(res1, [3, 3, 16, 32],
"32_residual", training = training)
for blk in range(2*N_HYPER-1):
res2 = _res_block(res2, [3, 3, 32, 32],
"32_residual_%d" % (blk+1), training = training)
# Residual block 3
res3 = _res_block(res2, [3, 3, 32, 64],
"64_residual", training = training)
for blk in range(2*N_HYPER-1):
res3 = _res_block(res3, [3, 3, 64, 64],
"64_residual_%d" % (blk+1), training = training)
# FC
avg1 = tf.nn.avg_pool(res3, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')
avg1_reshape = tf.reshape(avg1, [-1, 4*4*64])
W_fc = _init_weight([4*4*64, 10], "W_fc1")
b_fc = _init_weight([10], "b_fc1")
fc1 = tf.matmul(avg1_reshape, W_fc) + b_fc
cross_entropy = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_, logits=fc1)
)
training_rate = tf.placeholder(tf.float32, shape=[])
train_step = tf.train.MomentumOptimizer(training_rate, 0.9).minimize(cross_entropy)
preds = tf.argmax(fc1, 1)
correct_prediction = tf.equal(tf.cast(preds, tf.int64), y_)
accuracy = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
MOD_PARAM = 100000
ITERATIONS = 10000000
BATCH_SIZE = 32
# Laptop tests only
# MOD_PARAM = 1
# ITERATIONS = 25
# BATCH_SIZE = 1
tr_accuracies = np.zeros(ITERATIONS / MOD_PARAM)
te_accuracies = np.zeros(ITERATIONS / MOD_PARAM)
batches = next_batch(BATCH_SIZE)
X_test, Y_test = batches.next()
print "Finished initialization"
try:
with sess.as_default():
for i in xrange(ITERATIONS):
batch_x, batch_y = batches.next()
if i % MOD_PARAM == 0:
train_accuracy = accuracy.eval(feed_dict = {
x: batch_x,
y_: batch_y,
training_rate: 0,
training: False
})
tr_accuracies[i / MOD_PARAM] = train_accuracy / BATCH_SIZE
total = 0
for n in xrange(0, len(Y_test), BATCH_SIZE):
test_accuracy = accuracy.eval(feed_dict = {
x: X_test[n:n+BATCH_SIZE],
y_: Y_test[n:n+BATCH_SIZE],
training_rate: 0,
training: False
})
total += test_accuracy
te_accuracies[i / MOD_PARAM] = total / len(Y_test)
print "Iteration: %d - Training Accuracy: %f - Test Accuracy: %f" % (i,
train_accuracy / BATCH_SIZE,
total / len(Y_test))
train_step.run(feed_dict={
x: batch_x,
y_: batch_y,
training_rate: 1e-5,
training: True
})
except KeyboardInterrupt:
tr_accuracies = tr_accuracies[tr_accuracies != 0]
te_accuracies = te_accuracies[te_accuracies != 0]
plt.plot(tr_accuracies, color = 'red', label='training')
plt.plot(te_accuracies, color = 'blue', label='test')
plt.title("Accuracy Over Iterations")
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
plt.legend(loc="best")
plt.savefig("progress.png", dpi=1000)