-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverify.py
420 lines (341 loc) · 21.4 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# # Table 1 RingID Verification Experiments
#
# [![Python](https://img.shields.io/badge/Python-3.9%2B-blue)](https://www.python.org/)
# [![Jupyter](https://img.shields.io/badge/Jupyter-Notebook-orange)](https://jupyter.org/)
#
# This script contains the code to replicate the RingID experiments presented in Table 1 of our paper.
#
# 1. Radius configurations are defined in `utils.py`.
# 2. Additional configurations can be set using the argparser provided below. Modify the argparser parameters as needed to customize the experiments.
# 3. Run the cells in order to execute the experiments.
from tqdm import tqdm
from sklearn import metrics
import torch
import itertools
import matplotlib.pyplot as plt
import argparse
import os
from datetime import datetime
import pandas as pd
from collections import OrderedDict
from prettytable import PrettyTable
from inverse_stable_diffusion import InversableStableDiffusionPipeline
from diffusers import DPMSolverMultistepScheduler
import open_clip
from utils import *
from io_utils import *
def parse_args():
parser = argparse.ArgumentParser(description='multiple-key identification')
parser.add_argument('--run_name', default='test')
parser.add_argument('--model_id', default='stabilityai/stable-diffusion-2-1-base')
parser.add_argument('--reference_model', default='ViT-g-14')
parser.add_argument('--reference_model_pretrain', default='laion2b_s12b_b42k')
parser.add_argument('--online', action='store_true', default=False, help='True to check cache and download models if necessary. False to use cached models.')
group = parser.add_argument_group('hyperparameters')
parser.add_argument('--general_seed', type=int, default=42)
parser.add_argument('--watermark_seed', type=int, default=5)
parser.add_argument('--num_images', default=1, type=int)
parser.add_argument('--guidance_scale', default=7.5, type=float)
parser.add_argument('--num_inference_steps', default=50, type=int)
parser.add_argument('--test_num_inference_steps', default=None, type=int)
parser.add_argument('--image_length', default=512, type=int)
parser.add_argument('--ring_width', default=1, type=int)
parser.add_argument('--quantization_levels', default=2, type=int)
parser.add_argument('--ring_value_range', default=64, type=int)
parser.add_argument('--save_generated_imgs', type=int, default=1)
parser.add_argument('--save_root_dir', type=str, default='./runs')
group = parser.add_argument_group('trials parameters')
parser.add_argument('--gpu_id', default=0, type=int)
parser.add_argument('--trials', type=int, default=100, help='total number of trials to run')
parser.add_argument('--fix_gt', type=int, default=1, help='use watermark after discarding the imag part on space domain as gt.')
parser.add_argument('--time_shift', type=int, default=1, help='use time-shift')
parser.add_argument('--time_shift_factor', type=float, default=1.0, help='factor to scale the value after time-shift')
parser.add_argument('--assigned_keys', type=int, default=-1, help='number of assigned keys, -1 for all possible kyes')
parser.add_argument('--channel_min', type=int, default=1, help='only for heterogeous watermark, when match gt, take min among channels as the result')
args = parser.parse_args()
if args.test_num_inference_steps is None:
args.test_num_inference_steps = args.num_inference_steps
return args
def main():
args = parse_args()
device = f'cuda:{args.gpu_id}' if torch.cuda.is_available() else 'cpu'
timestr = datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
save_dir = os.path.join(args.save_root_dir, timestr + '_' + args.run_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=False)
if args.save_generated_imgs:
save_img_dir = os.path.join(save_dir, 'images', 'watermarked')
os.makedirs(save_img_dir, exist_ok=False)
save_nowatermark_img_dir = os.path.join(save_dir, 'images', 'no_watermark')
os.makedirs(save_nowatermark_img_dir, exist_ok=False)
# set random seed
set_random_seed(args.general_seed)
# load model
# model_id = 'stabilityai/stable-diffusion-2-1-base'
# reference_model = 'ViT-g-14'
if args.online:
pipeline_pretrain = args.model_id
reference_model_pretrain = args.reference_model_pretrain
dataset_id = 'Gustavosta/Stable-Diffusion-Prompts'
else:
# run locally
pipeline_pretrain = f'{os.path.expanduser("~")}/.cache/huggingface/diffusers/models--stabilityai--stable-diffusion-2-1-base/snapshots/1f758383196d38df1dfe523ddb1030f2bfab7741/'
reference_model_pretrain = f'{os.path.expanduser("~")}/.cache/huggingface/hub/models--laion--CLIP-ViT-g-14-laion2B-s12B-b42K/snapshots/4b0305adc6802b2632e11cbe6606a9bdd43d35c9/open_clip_pytorch_model.bin'
dataset_id = 'Gustavosta/stable-diffusion-prompts'
os.environ["HF_DATASETS_OFFLINE"] = "1"
model_dtype = torch.float16
scheduler = DPMSolverMultistepScheduler.from_pretrained(args.model_id, subfolder='scheduler', local_files_only=(not args.online))
pipe = InversableStableDiffusionPipeline.from_pretrained(
pipeline_pretrain,
scheduler=scheduler,
torch_dtype=model_dtype,
revision='fp16',
)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=True)
if args.reference_model is not None:
ref_model, _, ref_clip_preprocess = open_clip.create_model_and_transforms(
args.reference_model,
pretrained=reference_model_pretrain,
device=device
)
ref_tokenizer = open_clip.get_tokenizer(args.reference_model)
dataset, prompt_key = get_dataset(dataset_id)
tester_prompt = '' # assume at the detection time, the original prompt is unknown
text_embeddings = pipe.get_text_embedding(tester_prompt)
lp_distance_method = get_distance
# lp_magnitude_method = lp_magnitude_distance
eval_methods = [
{'Distance': 'L1', 'Metrics': '|a-b| ', 'func': lp_distance_method, 'kwargs': {'p': 1, 'mode': 'complex', 'channel_min': args.channel_min}},
# {'Distance': 'L1', 'Metrics': '|a.r-b.r| ', 'func': lp_distance_method, 'kwargs': {'p': 1, 'mode': 'real', 'channel_min': args.channel_min}},
# {'Distance': 'L1', 'Metrics': '|a.i-b.i| ', 'func': lp_distance_method, 'kwargs': {'p': 1, 'mode': 'imag', 'channel_min': args.channel_min}},
]
if args.channel_min: assert len(HETER_WATERMARK_CHANNEL) > 0
base_latents = pipe.get_random_latents()
original_latents_shape = base_latents.shape
base_latents = base_latents.to(torch.float64)
sing_channel_ring_watermark_mask = torch.tensor(
ring_mask(
size = original_latents_shape[-1],
r_out = RADIUS,
r_in = RADIUS_CUTOFF)
)
# get heterogeneous watermark mask
if len(HETER_WATERMARK_CHANNEL) > 0:
single_channel_heter_watermark_mask = torch.tensor(
ring_mask(
size = original_latents_shape[-1],
r_out = RADIUS,
r_in = RADIUS_CUTOFF) # TODO: change to whole mask
)
heter_watermark_region_mask = single_channel_heter_watermark_mask.unsqueeze(0).repeat(len(HETER_WATERMARK_CHANNEL), 1, 1).to(device)
watermark_region_mask = []
for channel_idx in WATERMARK_CHANNEL:
if channel_idx in RING_WATERMARK_CHANNEL:
watermark_region_mask.append(sing_channel_ring_watermark_mask)
else:
watermark_region_mask.append(single_channel_heter_watermark_mask)
watermark_region_mask = torch.stack(watermark_region_mask).to(device) # [C, 64, 64]
single_channel_num_slots = RADIUS - RADIUS_CUTOFF
key_value_list = [[list(combo) for combo in itertools.product(np.linspace(-args.ring_value_range, args.ring_value_range, args.quantization_levels).tolist(), repeat = len(RING_WATERMARK_CHANNEL))] for _ in range(single_channel_num_slots)]
key_value_combinations = list(itertools.product(*key_value_list))
# random select from all possible value combinations, then generate patterns for selected ones.
if args.assigned_keys > 0:
assert args.assigned_keys <= len(key_value_combinations)
key_value_combinations = random.sample(key_value_combinations, k=args.assigned_keys)
Fourier_watermark_pattern_list = [make_Fourier_ringid_pattern(device, list(combo), base_latents,
radius=RADIUS, radius_cutoff=RADIUS_CUTOFF,
ring_watermark_channel=RING_WATERMARK_CHANNEL,
heter_watermark_channel=HETER_WATERMARK_CHANNEL,
heter_watermark_region_mask=heter_watermark_region_mask if len(HETER_WATERMARK_CHANNEL)>0 else None)
for _, combo in enumerate(key_value_combinations)]
ring_capacity = len(Fourier_watermark_pattern_list)
if args.fix_gt:
Fourier_watermark_pattern_list = [fft(ifft(Fourier_watermark_pattern).real) for Fourier_watermark_pattern in Fourier_watermark_pattern_list]
if args.time_shift:
for Fourier_watermark_pattern in Fourier_watermark_pattern_list:
# Fourier_watermark_pattern[:, RING_WATERMARK_CHANNEL, ...] = fft(torch.fft.fftshift(ifft(Fourier_watermark_pattern[:, RING_WATERMARK_CHANNEL, ...]), dim = (-1, -2)) * args.time_shift_factor)
Fourier_watermark_pattern[:, RING_WATERMARK_CHANNEL, ...] = fft(torch.fft.fftshift(ifft(Fourier_watermark_pattern[:, RING_WATERMARK_CHANNEL, ...]), dim = (-1, -2)))
# Use a single ring pattern for verification
Fourier_watermark_pattern = Fourier_watermark_pattern_list[628] # [64, -64, 64, -64, 64...], select this ring pattern
print(f'[Info] Ring capacity = {ring_capacity}')
score_heads = ['CLIP No Watermark', 'CLIP Fourier Watermark']
quality_metrics = QualityResultsCollector(score_heads)
no_watermark_results_list = []
Fourier_watermark_results_list = []
for prompt_index in tqdm(range(args.trials)):
this_seed = args.general_seed + prompt_index
this_prompt = dataset[prompt_index][prompt_key]
set_random_seed(this_seed)
no_watermark_latents = pipe.get_random_latents()
Fourier_watermark_latents = generate_Fourier_watermark_latents(
device = device,
radius = RADIUS,
radius_cutoff = RADIUS_CUTOFF,
original_latents = no_watermark_latents,
watermark_pattern = Fourier_watermark_pattern,
watermark_channel = WATERMARK_CHANNEL,
watermark_region_mask = watermark_region_mask,
)
# batched inference
batched_latents = torch.cat([no_watermark_latents.to(model_dtype), Fourier_watermark_latents.to(model_dtype)], dim=0)
generated_images = pipe(
[this_prompt]*2,
num_images_per_prompt=args.num_images,
guidance_scale=args.guidance_scale,
num_inference_steps=args.num_inference_steps,
height=args.image_length,
width=args.image_length,
latents=batched_latents,
).images
no_watermark_image, Fourier_watermark_image = generated_images[0], generated_images[1]
no_watermark_clip, Fourier_watermark_clip = measure_similarity([no_watermark_image, Fourier_watermark_image], this_prompt, ref_model, ref_clip_preprocess, ref_tokenizer, device)
quality_metrics.collect('CLIP No Watermark', no_watermark_clip.item())
quality_metrics.collect('CLIP Fourier Watermark', Fourier_watermark_clip.item())
# save generated images
if args.save_generated_imgs:
Fourier_watermark_image.save(os.path.join(save_img_dir, f'Prompt_{prompt_index}.Fourier_watermark.ClipSim_{Fourier_watermark_clip.item():.4f}.jpg'))
no_watermark_image.save(os.path.join(save_nowatermark_img_dir, f'Prompt_{prompt_index}.Fourier_watermark.ClipSim_{Fourier_watermark_clip.item():.4f}.jpg'))
# Distort
distorted_image_list = [
[no_watermark_image, Fourier_watermark_image],
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, r_degree = 75),
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, jpeg_ratio = 25),
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, crop_scale = 0.75, crop_ratio = 0.75),
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, gaussian_blur_r = 8),
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, gaussian_std = 0.1),
image_distortion(no_watermark_image, Fourier_watermark_image, seed = this_seed, brightness_factor = 6),
]
# #### Batch mode
no_watermark_distorted_image_list = [pair[0] for pair in distorted_image_list]
no_watermark_image_distorted = torch.stack([transform_img(img) for img in no_watermark_distorted_image_list]).to(text_embeddings.dtype).to(device)
no_watermark_image_latents = pipe.get_image_latents(no_watermark_image_distorted, sample = False)
Fourier_watermark_distorted_image_list = [pair[1] for pair in distorted_image_list]
Fourier_watermark_image_distorted = torch.stack([transform_img(img) for img in Fourier_watermark_distorted_image_list]).to(text_embeddings.dtype).to(device)
Fourier_watermark_image_latents = pipe.get_image_latents(Fourier_watermark_image_distorted, sample = False) # [N, c, h, w]
no_watermark_reconstructed_latents = pipe.forward_diffusion(
latents=no_watermark_image_latents,
text_embeddings=torch.cat([text_embeddings] * len(no_watermark_image_latents)),
guidance_scale=1,
num_inference_steps=args.test_num_inference_steps,
)
Fourier_watermark_reconstructed_latents = pipe.forward_diffusion(
latents=Fourier_watermark_image_latents,
text_embeddings=torch.cat([text_embeddings] * len(Fourier_watermark_image_latents)),
guidance_scale=1,
num_inference_steps=args.test_num_inference_steps,
)
no_watermark_reconstructed_latents_fft = fft(no_watermark_reconstructed_latents)
Fourier_watermark_reconstructed_latents_fft = fft(Fourier_watermark_reconstructed_latents) # [N,c, h, w]
this_it_no_watermark_results_list = []
this_it_Fourier_watermark_results_list = []
for distortion_index in range(len(distorted_image_list)):
this_no_watermark_reconstructed_latents_fft = no_watermark_reconstructed_latents_fft[distortion_index][None, ...]
this_Fourier_watermark_reconstructed_latents_fft = Fourier_watermark_reconstructed_latents_fft[distortion_index][None, ...]
this_it_no_watermark_results_list.append([-eval_method['func'](Fourier_watermark_pattern, this_no_watermark_reconstructed_latents_fft, watermark_region_mask, channel = WATERMARK_CHANNEL, **eval_method['kwargs']) for eval_method in eval_methods])
this_it_Fourier_watermark_results_list.append([-eval_method['func'](Fourier_watermark_pattern, this_Fourier_watermark_reconstructed_latents_fft, watermark_region_mask, channel = WATERMARK_CHANNEL, **eval_method['kwargs']) for eval_method in eval_methods])
no_watermark_results_list.append(this_it_no_watermark_results_list)
Fourier_watermark_results_list.append(this_it_Fourier_watermark_results_list)
ablation_experiment_descriptions = [
'Clean',
'Rotation: 75°',
'JPEG Compression: quality = 25',
'Crop & Scale: 0.75, 0.75',
'Gaussian Blur: kernel size 8',
'Gaussian Noise: σ = 0.1',
'Brightness: Uniform([0, 6])'
]
ablation_experiment_descriptions_short = [
'Clean',
'Rot 75',
'JPEG 25',
'C&S 75',
'Blur 8',
'Noise 0.1',
'Birghtness [0, 6]'
]
def get_ablation_results(no_watermark_distance_list, Fourier_watermark_distance_list, plot_description = None):
no_watermark_distance_list = np.array(no_watermark_distance_list)
Fourier_watermark_distance_list = np.array(Fourier_watermark_distance_list)
ablation_results = []
for ablation_index in range(no_watermark_distance_list.shape[1]):
distances = no_watermark_distance_list[:, ablation_index].tolist() + Fourier_watermark_distance_list[:, ablation_index].tolist()
labels = [0] * len(no_watermark_distance_list) + [1] * len(Fourier_watermark_distance_list)
fpr, tpr, thresholds = metrics.roc_curve(labels, distances, pos_label=1)
auc = metrics.auc(fpr, tpr)
acc = np.max(1 - (fpr + (1 - tpr))/2)
low = tpr[np.where(fpr<.01)[0][-1]]
ablation_results.append({'fpr': fpr, 'tpr': tpr, 'thresholds': thresholds, 'auc': auc, 'acc': acc, 'low': low})
if plot_description is not None:
# Plot ROC curve
plt.figure(figsize=(8, 8))
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (AUC = {:.2f})'.format(auc))
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--', label='Random Guessing')
# Highlight specific points on the ROC curve
plt.scatter(fpr[np.argmax(acc)], tpr[np.argmax(acc)], marker='o', color='red', label='Max Accuracy')
plt.scatter(fpr[np.where(fpr < 0.01)[-1][-1]], tpr[np.where(fpr < 0.01)[-1][-1]], marker='x', color='green', label='FPR < 0.01')
# Set labels and title
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
#plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.title(f'ROC Curve ({plot_description}) -- ' + ablation_experiment_descriptions[ablation_index])
plt.legend(loc='lower right')
plt.grid(True)
plt.show()
plt.figure()
plt.hist(-no_watermark_distance_list[:, ablation_index], label = 'No watermark')
plt.hist(-Fourier_watermark_distance_list[:, ablation_index], label = 'Fourier watermark')
plt.title(f'Distance ({plot_description}) -- ' + ablation_experiment_descriptions[ablation_index])
plt.legend()
plt.show()
return ablation_results
def print_ablation_results(ablation_results, description):
print('━' * 60)
print(description)
print('━' * 60)
for ablation_index in range(len(ablation_results)):
this_result = ablation_results[ablation_index]
print(ablation_experiment_descriptions[ablation_index])
print(f"AUC = {this_result['auc']}, Accuracy = {this_result['acc']}, TPR @ 1% FPR = {this_result['low']}")
print('━' * 60)
print()
print()
print()
def print_ablation_results_AUC(ablation_results, description):
table = PrettyTable()
table.field_names = ['AUC'] + ablation_experiment_descriptions_short + ['Avg']
row = [description]
sum = 0
for ablation_index in range(len(ablation_results)):
this_result = ablation_results[ablation_index]
sum += this_result['auc']
row.append(f"{this_result['auc']:.4f}")
row.append(f"{sum / len(ablation_results):.4f}")
table.add_row(row)
print(table)
def print_ablation_results_TPR(ablation_results, description):
table = PrettyTable()
table.field_names = ['TPR @ 1% FPR'] + ablation_experiment_descriptions_short + ['Avg']
row = [description]
sum = 0
for ablation_index in range(len(ablation_results)):
this_result = ablation_results[ablation_index]
sum += this_result['low']
row.append(f"{this_result['low']:.4f}")
row.append(f"{sum / len(ablation_results):.4f}")
table.add_row(row)
print(table)
no_watermark_results_list_array = np.array(no_watermark_results_list)
Fourier_watermark_results_list_array = np.array(Fourier_watermark_results_list)
no_watermark_results_list_array.shape, Fourier_watermark_results_list_array.shape
ablation_results_list = [get_ablation_results(no_watermark_results_list_array[:, :, eval_method_index], Fourier_watermark_results_list_array[:, :, eval_method_index]) for eval_method_index in range(len(eval_methods))]
for eval_method_index in range(len(eval_methods)):
print_ablation_results(ablation_results_list[eval_method_index], description = f'{eval_methods[eval_method_index]["Distance"]} {eval_methods[eval_method_index]["Metrics"]}')
for eval_method_index in range(len(eval_methods)):
print_ablation_results_AUC(ablation_results_list[eval_method_index], description = f'{eval_methods[eval_method_index]["Distance"]} {eval_methods[eval_method_index]["Metrics"]}')
for eval_method_index in range(len(eval_methods)):
print_ablation_results_TPR(ablation_results_list[eval_method_index], description = f'{eval_methods[eval_method_index]["Distance"]} {eval_methods[eval_method_index]["Metrics"]}')
print()
quality_metrics.print_average()
if __name__ == '__main__':
main()