forked from piddnad/DDColor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
117 lines (99 loc) · 4.26 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import cv2
import numpy as np
from subprocess import call
import torch
import torch.nn.functional as F
from cog import BasePredictor, Input, Path
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
# download the weights to "checkpoints"
from basicsr.archs.ddcolor_arch import DDColor
class ImageColorizationPipeline(object):
def __init__(self, model_path, input_size=256, model_size="large"):
self.input_size = input_size
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
if model_size == "tiny":
self.encoder_name = "convnext-t"
else:
self.encoder_name = "convnext-l"
self.decoder_type = "MultiScaleColorDecoder"
self.model = DDColor(
encoder_name=self.encoder_name,
decoder_name="MultiScaleColorDecoder",
input_size=[self.input_size, self.input_size],
num_output_channels=2,
last_norm="Spectral",
do_normalize=False,
num_queries=100,
num_scales=3,
dec_layers=9,
).to(self.device)
self.model.load_state_dict(
torch.load(model_path, map_location=torch.device("cpu"))["params"],
strict=False,
)
self.model.eval()
@torch.no_grad()
def process(self, img):
self.height, self.width = img.shape[:2]
img = (img / 255.0).astype(np.float32)
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1)
# resize rgb image -> lab -> get grey -> rgb
img = cv2.resize(img, (self.input_size, self.input_size))
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
img_gray_lab = np.concatenate(
(img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1
)
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)
tensor_gray_rgb = (
torch.from_numpy(img_gray_rgb.transpose((2, 0, 1)))
.float()
.unsqueeze(0)
.to(self.device)
)
output_ab = self.model(
tensor_gray_rgb
).cpu() # (1, 2, self.height, self.width)
# resize ab -> concat original l -> rgb
output_ab_resize = (
F.interpolate(output_ab, size=(self.height, self.width))[0]
.float()
.numpy()
.transpose(1, 2, 0)
)
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)
output_img = (output_bgr * 255.0).round().astype(np.uint8)
return output_img
self.colorizer = ImageColorizationPipeline(
model_path="checkpoints/ddcolor_modelscope.pth",
input_size=512,
model_size="large",
)
self.colorizer_tiny = ImageColorizationPipeline(
model_path="checkpoints/ddcolor_paper_tiny.pth",
input_size=512,
model_size="tiny",
)
def predict(
self,
image: Path = Input(description="Grayscale input image."),
model_size: str = Input(
description="Choose the model size.",
choices=["large", "tiny"],
default="large",
),
) -> Path:
"""Run a single prediction on the model"""
img = cv2.imread(str(image))
colorizer = self.colorizer_tiny if model_size == "tiny" else self.colorizer
image_out = colorizer.process(img)
out_path = "/tmp/out.png"
cv2.imwrite(out_path, image_out)
return Path(out_path)