-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOnsetDetectionThread.cpp
186 lines (161 loc) · 5.51 KB
/
OnsetDetectionThread.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include "OnsetDetectionThread.h"
// declare function variables here
float data_buffer_current[2 * FFT_SIZE];
float data_buffer_prev[2 * FFT_SIZE];
double detection_function[NUM_WINDOWS];
double detection_function_g[NUM_WINDOWS];
bool first_fft = true;
int counter = 0;
long down_sampled_time_stamp = 0;
std::vector<Cluster > clusters_max;
Agent* highest_score_agent = nullptr;
bool agents_start = false;
void onset_detection(std::deque<float> &samples) {
// copy the input samples to a local buffer, release lock, and alert input thread
for (int i = 0; i < FFT_SIZE; ++i) {
data_buffer_current[2 * i] = samples[i] * HAMMING[i];
data_buffer_current[2 * i + 1] = 0;
}
for (int i = 0; i < FFT_SIZE; i++)
{
fft->in[i].re = data_buffer_current[2*i];
fft->in[i].im = data_buffer_current[2*i+1];
}
gpu_fft_execute(fft); // call one or many times
for (int t = 0; t < FFT_SIZE; t++) {
data_buffer_current[t*2] = fft->out[t].re;
data_buffer_current[t*2+1] = fft->out[t].im;
}
if (first_fft) {
first_fft = false;
for (int i = 0; i < FFT_SIZE; ++i) {
data_buffer_prev[2*i] = data_buffer_current[2*i];
data_buffer_prev[2*i + 1] = data_buffer_current[2*i + 1];
}
return;
}
else {
double sum = 0;
double difference = 0;
// Only need half the fft since real valued signal is symmetric around the midpoint
for (int i = 0; i < FFT_SIZE; ++i) {
double mag_prev = sqrt(data_buffer_prev[2*i] * data_buffer_prev[2*i] + data_buffer_prev[2*i+1] * data_buffer_prev[2*i+1]);
double mag_cur = sqrt(data_buffer_current[2*i] * data_buffer_current[2*i] + data_buffer_current[2*i+1] * data_buffer_current[2*i+1]);
difference = mag_cur - mag_prev;
sum += (difference + abs(difference)) / 2;
}
//std::cout << "detection_function assignment: ";
detection_function[counter] = sum;
//std::cout << detection_function[counter] << "\n";
counter++; down_sampled_time_stamp++;
for (int i = 0; i < FFT_SIZE; ++i) {
data_buffer_prev[2*i] = data_buffer_current[2*i];
data_buffer_prev[2*i + 1] = data_buffer_current[2*i + 1];
}
// Check to see if have half second of data yet
if (counter == NUM_WINDOWS) {
// convert using mean and variance
std::deque<Onset> new_onsets;
double mean = 0;
double total_sum = 0;
for (int i = 0; i < NUM_WINDOWS; ++i) {
total_sum += detection_function[i];
}
mean = total_sum / NUM_WINDOWS;
double variance = 0;
double standard_deviation = 0;
for (int i = 0; i < NUM_WINDOWS; ++i) {
variance += ((detection_function[i] - mean) * (detection_function[i] - mean));
}
standard_deviation = sqrt(variance / NUM_WINDOWS);
// Normalize using zero mean and unit variance
for (int i = 0; i < NUM_WINDOWS; ++i) {
detection_function[i] = (detection_function[i] - mean) / standard_deviation;
}
//Calculate the g_function
detection_function_g[0]=0;
for (int i = 1; i < NUM_WINDOWS; ++i){
float max_g = alpha * detection_function_g[i-1] + (1 - alpha) * detection_function[i];
if(max_g > detection_function[i]){
detection_function_g[i] = max_g;
}
else{
detection_function_g[i] = detection_function[i];
}
}
// Peak picking algorithm
float window_mean = 0;
float window_temp[m*w+w+1];
float window_max = 0;
int check;
for(int n = w*m; n < NUM_WINDOWS-w; ++n){
bool check1 = true;
bool check2 = true;
bool check3 = true;
// first check
for (int k = n-w; k <= n+w; ++k) {
if (detection_function[n] < detection_function[k]) {
check1 = false;
break;
}
}
// second check
float temp = 0;
for (int k = n-w*m; k <= n+w; ++k) {
temp += detection_function[k];
}
temp = (temp / (m*w + w + 1)) + delta;
if (detection_function[n] < temp) {
check2 = false;
}
// third check
if (detection_function[n] < detection_function_g[n-1]) {
check3 = false;
}
if (check1 && check2 && check3) {
(detection_function[n] < 0) ? (detection_function[n] *= -1) : (detection_function[n] = detection_function[n]);
new_onsets.push_back(Onset((down_sampled_time_stamp - (NUM_WINDOWS - n) + 1), detection_function[n]));
}
}
// // Now shift the detection_function by 48 to the left
for (unsigned i = 0; i < 13; ++i) {
detection_function[i] = detection_function[i + 48];
}
counter = 13;
// Call Cllustering
//std::cout << "Start Clustering\n";
clustering_real_time(new_onsets);
// int tempo = 6000 / averageIOI;
// std::cout << "Estimated Tempo: " << tempo << '\n';
if (agents_start == true)
highest_score_agent = beat_tracking(new_onsets);
if (onsets.size() >= 20) {
new_clusters_tracking(clusters, clusters_max, highest_score_agent);
if (agents_start == false)
{
beat_tracking_initialisation(clusters_max, onsets, 2);
highest_score_agent = beat_tracking(new_onsets);
agents_start = true;
}
// for (int i = 0; i < clusters.size(); ++i) {
// //std::cout << "Cluster interval: " << clusters[i]->average_IOI << " Cluster score: " << clusters[i]->score << '\n';
// }
}
if (highest_score_agent != nullptr) {
int tempo = 6000 / highest_score_agent->interval;
while (tempo > 240) {
tempo = tempo / 2;
}
while (tempo < 30) {
tempo = tempo * 2;
}
//for (int k = 0; k < onsets.size(); k++) std::cout<<"onsets_location"<<onsets[k].time_stamp<<"\n";
std::cout << "Highest scoring agent indicates BPM: " << tempo << '\n';
}
else
std::cout << "No Agent found yet. Too early in song\n";
}
}
//std::cout << "Exiting onset\n";
return;
}