-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBatchLoader.lua
416 lines (362 loc) · 11.4 KB
/
BatchLoader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
--
-- Created by IntelliJ IDEA.
-- User: sidharth
-- Date: 3/10/16
-- Time: 11:02 PM
-- To change this template use File | Settings | File Templates.
--
local types = require 'pl.types'
local dir = require 'pl.dir'
local path = require 'pl.path'
local Threads = require 'threads'
local t = require 'transforms'
require 'image'
require 'torchzlib'
Threads.serialization('threads.sharedserialize')
local BatchLoader = {}
BatchLoader.__index = BatchLoader
-- Computed from random subset of ImageNet training images
local meanstd = {
mean = { 0.485, 0.456, 0.406 },
std = { 0.229, 0.224, 0.225 },
}
local pca = {
eigval = torch.Tensor{ 0.2175, 0.0188, 0.0045 },
eigvec = torch.Tensor{
{ -0.5675, 0.7192, 0.4009 },
{ -0.5808, -0.0045, -0.8140 },
{ -0.5836, -0.6948, 0.4203 },
},
}
function save_img(filename, img)
img = img:clone()
for i=1,3 do
img[i]:mul(meanstd.std[i])
img[i]:add(meanstd.mean[i])
end
image.save(filename, img)
end
function file_exists(name)
local f=io.open(name,"r")
if f~=nil then io.close(f) return true else return false end
end
function BatchLoader.create_loader(checkpoint, opt)
local self = {}
setmetatable(self, BatchLoader)
self.opt = opt
self.batch_size = self.opt.batch_size
self.batch_idx = {0,0,0}
self.batch_randperm = {nil, nil, nil}
self.total_load_time = {0,0,0}
self.files_per_batch = self.batch_size / self.opt.data_split_size
self.proddata_dir = path.join(self.opt.data_dir, self.opt.proddata_dir)
assert(self.batch_size % self.opt.data_split_size == 0,
'batch_size must be a multiple of data_split_size')
local data_dir = self.opt.data_dir
-- construct a tensor with all the data
if not path.exists(self.proddata_dir) then
dir.makepath(self.proddata_dir)
self:_preprocess_tensors()
end
self.metadata = torch.load(path.join(self.proddata_dir, 'metadata.t7'))
collectgarbage()
return self
end
function BatchLoader.create(checkpoint, opt)
if not opt.parallel_preprocessing then
return BatchLoader.create_loader(checkpoint, opt)
end
local manualSeed = opt.manual_seed
local loader = BatchLoader.create_loader(checkpoint, opt)
local function init()
require 'nn'
require 'cunn'
require 'cudnn'
require 'nngraph'
require 'pl'
torch.setnumthreads(1)
t = require 'transforms'
BatchLoaderInThread = require 'BatchLoader'
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
_G.loader = loader
end
local threads = Threads(opt.n_threads, init, main)
loader.threads = threads
return loader
end
function BatchLoader:inferred_opts()
return {}
end
function BatchLoader:reset_batch_pointer(split_idx, batch_idx)
batch_idx = batch_idx or 0
self.batch_idx[split_idx] = batch_idx
self.total_load_time[split_idx] = 0
end
function BatchLoader:preprocess(split)
-- Computed from random subset of ImageNet training images
local meanstd = {
mean = { 0.485, 0.456, 0.406 },
std = { 0.229, 0.224, 0.225 },
}
local pca = {
eigval = torch.Tensor{ 0.2175, 0.0188, 0.0045 },
eigvec = torch.Tensor{
{ -0.5675, 0.7192, 0.4009 },
{ -0.5808, -0.0045, -0.8140 },
{ -0.5836, -0.6948, 0.4203 },
},
}
if split == 1 then
return t.ComposePair{
t.RandomSizedCropPair(self.opt.xsize, self.opt.ysize),
t.ColorJitterPair({
brightness = 0.4,
contrast = 0.4,
saturation = 0.4,
}),
t.LightingPair(0.1, pca.eigval, pca.eigvec),
t.ColorNormalizePair(meanstd),
}
else
return t.ComposePair{
t.ScalePair(self.opt.ysize),
t.ColorNormalizePair(meanstd),
}
end
end
function BatchLoader:load_tensor(path)
if not self.opt.no_compress then
return torch.load(path):decompress()
end
return torch.load(path)
end
function BatchLoader:next_batch(split_idx, idx)
if self.load_timer == nil then
self.load_timer = torch.Timer()
self.total_load_time[split_idx] = 0
end
self.load_timer:reset()
local x_tensors = {}
local y_tensors = {}
for is=1, self.files_per_batch do
local x_path = path.join(self.proddata_dir, 'x_slice_' .. tostring(split_idx) ..
'_' .. tostring((idx-1) * self.files_per_batch + is) .. '.t7')
local y_path = path.join(self.proddata_dir, 'y_slice_' .. tostring(split_idx) ..
'_' .. tostring((idx-1) * self.files_per_batch + is) .. '.t7')
local x_tensor = BatchLoaderInThread.load_tensor(self, x_path):float():transpose(3, 4) / 255
local y_tensor = BatchLoaderInThread.load_tensor(self, y_path):float():transpose(3, 4) / 255
-- save_img('x.png', x_tensor[1])
-- save_img('y.png', y_tensor[1])
-- debugger.enter()
local x_preprocessed = torch.Tensor(x_tensor:size(1), x_tensor:size(2), self.opt.ysize, self.opt.xsize)
local y_preprocessed = torch.Tensor(x_tensor:size(1), x_tensor:size(2), self.opt.ysize, self.opt.xsize)
for i=1, x_tensor:size(1) do
local preprocessor = BatchLoaderInThread.preprocess(self, split_idx)
local x, y = preprocessor(x_tensor[i], y_tensor[i])
x_preprocessed[i]:copy(x)
y_preprocessed[i]:copy(y)
end
table.insert(x_tensors, x_preprocessed)
table.insert(y_tensors, y_preprocessed)
end
local x = torch.cat(x_tensors, 1)
local y = torch.cat(y_tensors, 1)
self.total_load_time[split_idx] = self.total_load_time[split_idx] + self.load_timer:time().real
return x, y, nil
end
function BatchLoader:run(split_idx, randperm)
if self.opt.parallel_preprocessing then
return self:run_parallel(split_idx, randperm)
else
BatchLoaderInThread = self
return self:run_sequential(split_idx, randperm)
end
end
function BatchLoader:run_parallel(split_idx, randperm)
local threads = self.threads
local n = 0
local x, y, d
self:reset_batch_pointer(split_idx)
if randperm then
print('Using random batch permutations')
self.batch_randperm[split_idx] = torch.randperm(self:batches(split_idx))
end
local function enqueue()
while threads:acceptsjob() do
self.batch_idx[split_idx] = self.batch_idx[split_idx] + 1
if self.batch_idx[split_idx] > self:batches(split_idx) then
return
end
local batch_idx = self.batch_idx[split_idx]
if randperm then
batch_idx = self.batch_randperm[split_idx][batch_idx]
end
threads:addjob(
function(split_idx, batch_idx)
return BatchLoaderInThread.next_batch(_G.loader, split_idx, batch_idx)
end,
function(_x, _y, _d)
x = _x
y = _y
d = _d
end,
split_idx,
batch_idx
)
end
end
return function()
enqueue()
if not threads:hasjob() then
return nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n + 1
return n, x, y, d
end
end
function BatchLoader:run_sequential(split_idx, randperm)
local n = 0
self:reset_batch_pointer(split_idx)
self.preprocessor = self:preprocess(split_idx)
if randperm and split_idx == 1 then
print('Using random batch permutations')
self.batch_randperm[split_idx] = torch.randperm(self.num_batches[split_idx])
end
return function()
n = n + 1
-- split_idx is integer: 1 = train, 2 = val, 3 = test
self.batch_idx[split_idx] = self.batch_idx[split_idx] + 1
if self.batch_idx[split_idx] > self:batches(split_idx) then
print(('Load time in Epoch: %.3f'):format(self.total_load_time[split_idx]))
self.total_load_time[split_idx] = 0
return nil
end
local idx = self.batch_idx[split_idx]
if randperm and split_idx == 1 then
idx = self.batch_randperm[split_idx][idx]
end
local x, y, d = self:next_batch(split_idx, idx)
if x == nil then
print('NEXT BATCH RETURNED NIL')
return nil
else
return n, x, y, d
end
end
end
function BatchLoader:batches(split_idx)
return self.metadata.file_count[split_idx]-1
-- if self.opt.num_batches ~= nil then
-- self.num_batches = self.opt.num_batches
-- end
--
-- self.num_batches = self.num_batches or {}
-- if self.num_batches[split_idx] == nil then
-- local proddata_files = dir.getfiles(self.proddata_dir, 'x_slice_' .. tostring(split_idx) .. '*')
-- self.num_batches[split_idx] = #proddata_files
-- end
-- return self.num_batches[split_idx]
end
-- Save groups of self.opt.data_split_size frames to disk, ignore last few frames.
function BatchLoader:_save_splits(remainder, frames, split_idx, prefix, mat_index)
if remainder ~= nil then
frames = torch.cat(remainder, frames, 1)
end
local num_frames = self.opt.data_split_size * math.floor(frames:size(1) / self.opt.data_split_size)
local save_subset = frames:sub(1, num_frames)
local remainder_frames = frames:sub(num_frames + 1, frames:size(1))
local file_num = self._file_num[split_idx]
if split_idx == 1 then
if self._perm[split_idx][mat_index] == nil then
print('Shuffling...')
local perm = torch.randperm(num_frames):long()
self._perm[split_idx][mat_index] = perm
save_subset = save_subset:index(1, perm)
print('Shuffled.')
else
print('Using previously gen perm')
local perm = self._perm[split_idx][mat_index]
save_subset = save_subset:index(1, perm)
end
end
local splits = math.floor(save_subset:size(1) / self.opt.data_split_size)
print('Converting mat file for split', tostring(split_idx), '...')
for ib=1, splits do
io.write(('\r[%3.2f][%10d/%d]'):format(ib / splits, ib, splits))
local start_idx = (ib-1) * self.opt.data_split_size + 1
local end_idx = ib * self.opt.data_split_size
local slice = save_subset:sub(start_idx, end_idx):clone()
if not self.opt.no_compress then
slice = torch.CompressedTensor(slice)
end
torch.save(path.join(self.proddata_dir, prefix .. '_slice_' .. tostring(split_idx) ..
'_' .. tostring(file_num) .. '.t7'), slice)
file_num = file_num + 1
end
self._file_num[split_idx] = file_num
print('')
return remainder_frames
end
function BatchLoader:_preprocess_tensors(out_tensorfile)
print('Processing tensors...')
require 'mattorch'
local filenames = dir.getfiles(self.opt.data_dir, 'train_left*')
local file_order = torch.randperm(#filenames)
local size_hash = {}
self._perm = {{}, {}}
self._file_num = {1, 1}
local remainder_frames = nil
print('Test files:', file_order:sub(self.opt.train_mats+1, #filenames))
for ix=1, #filenames do
local xfile = path.join(self.opt.data_dir, 'train_left' .. tostring(file_order[ix]) .. '.mat')
if not path.exists(xfile) then
size_hash[ix] = 0
print(xfile, 'Does not exist')
else
print('Loading x input', xfile)
local loaded = tablex.values(mattorch.load(xfile))[1]
local split_idx = ix <= self.opt.train_mats and 1 or 2
remainder_frames = self:_save_splits(remainder_frames, loaded, split_idx, 'x', ix)
size_hash[ix] = self._file_num[1] + self._file_num[2]
end
-- if ix == 1 then
-- break
-- end
end
collectgarbage()
self._file_num = {1, 1}
remainder_frames = nil
for iy=1, #filenames do
local yfile = path.join(self.opt.data_dir, 'train_right' .. tostring(file_order[iy]) .. '.mat')
if not path.exists(yfile) then
assert(size_hash[iy] == 0)
print(yfile, 'Does not exist')
else
print('Loading y input', yfile)
local loaded = tablex.values(mattorch.load(yfile))[1]
local split_idx = iy <= self.opt.train_mats and 1 or 2
remainder_frames = self:_save_splits(remainder_frames, loaded, split_idx, 'y', iy)
if size_hash[iy] ~= self._file_num[1] + self._file_num[2] then
debugger.enter()
end
end
-- if iy == 1 then
-- break
-- end
end
collectgarbage()
local metadata = {file_count=self._file_num}
torch.save(path.join(self.proddata_dir, 'metadata.t7'), metadata)
debugger.enter()
print "Initial loading done"
end
return BatchLoader