-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransforms.lua
235 lines (201 loc) · 6.47 KB
/
transforms.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Image transforms for data augmentation and input normalization
--
require 'image'
local M = {}
function M.ComposePair(transforms)
return function(input1, input2)
for it, transform in ipairs(transforms) do
input1, input2 = transform(input1, input2)
end
return input1, input2
end
end
function M.ColorNormalizePair(meanstd)
return function(img1, img2)
img1 = img1:clone()
img2 = img2:clone()
for i=1,3 do
img1[i]:add(-meanstd.mean[i])
img1[i]:div(meanstd.std[i])
img2[i]:add(-meanstd.mean[i])
img2[i]:div(meanstd.std[i])
end
return img1, img2
end
end
-- Scales the smaller edge to size
function M.ScalePair(size, interpolation)
interpolation = interpolation or 'bicubic'
return function(input1, input2)
local w, h = input1:size(3), input1:size(2)
if (w <= h and w == size) or (h <= w and h == size) then
return input1, input2
end
if w < h then
return image.scale(input1, size, h/w * size, interpolation),
image.scale(input2, size, h/w * size, interpolation)
else
return image.scale(input1, w/h * size, size, interpolation),
image.scale(input2, w/h * size, size, interpolation)
end
end
end
-- Random crop with size 50%-100% and aspect ratio 3/4 - 4/3 (Inception-style)
function M.RandomSizedCropPair(xsize, ysize)
return function(input1, input2)
local attempt = 0
repeat
local area = input1:size(2) * input1:size(3)
local targetArea = torch.uniform(0.50, 1.0) * area
local aspectRatio = torch.uniform(2.2, 2.6)
local w = torch.round(math.sqrt(targetArea * aspectRatio))
local h = torch.round(math.sqrt(targetArea / aspectRatio))
if torch.uniform() < 0.5 then
w, h = h, w
end
if h <= input1:size(2) and w <= input1:size(3) then
local y1 = torch.random(0, input1:size(2) - h)
local x1 = torch.random(0, input1:size(3) - w)
local out1 = image.crop(input1, x1, y1, x1 + w, y1 + h)
local out2 = image.crop(input2, x1, y1, x1 + w, y1 + h)
assert(out1:size(2) == h and out1:size(3) == w, 'wrong crop size')
return image.scale(out1, xsize, ysize, 'bicubic'), image.scale(out2, xsize, ysize, 'bicubic')
end
attempt = attempt + 1
until attempt >= 10
-- fallback
print('Fallback')
return M.RandomCropPair(xsize, ysize)(input1, input2)
end
end
-- Random crop form larger image with optional zero padding
function M.RandomCropPair(xsize, ysize)
return function(input1, input2)
assert(input1:size(3) == input2:size(3) and input1:size(2) == input2:size(2), 'input size mismatch')
local w, h = input1:size(3), input1:size(2)
if w == xsize and h == ysize then
return input1, input2
end
local x1, y1 = torch.random(0, w - xsize), torch.random(0, h - ysize)
local out1 = image.crop(input1, x1, y1, x1 + xsize, y1 + ysize)
local out2 = image.crop(input2, x1, y1, x1 + xsize, y1 + ysize)
assert(out1:size(3) == xsize and out1:size(2) == ysize, 'wrong crop size')
assert(out2:size(3) == xsize and out2:size(2) == ysize, 'wrong crop size')
return out1, out2
end
end
-- Lighting noise (AlexNet-style PCA-based noise)
function M.LightingPair(alphastd, eigval, eigvec)
return function(input1, input2)
if alphastd == 0 then
return input1, input2
end
local alpha = torch.Tensor(3):normal(0, alphastd)
local rgb = eigvec:clone()
:cmul(alpha:view(1, 3):expand(3, 3))
:cmul(eigval:view(1, 3):expand(3, 3))
:sum(2)
:squeeze()
input1 = input1:clone()
input2 = input2:clone()
for i=1,3 do
input1[i]:add(rgb[i])
input2[i]:add(rgb[i])
end
return input1, input2
end
end
local function blend(img1, img2, alpha)
return img1:mul(alpha):add(1 - alpha, img2)
end
local function grayscale(dst, img)
dst:resizeAs(img)
dst[1]:zero()
dst[1]:add(0.299, img[1]):add(0.587, img[2]):add(0.114, img[3])
dst[2]:copy(dst[1])
dst[3]:copy(dst[1])
return dst
end
function M.SaturationPair(var)
local gs1
local gs2
return function(input1, input2)
gs1 = gs1 or input1.new()
gs2 = gs2 or input2.new()
grayscale(gs1, input1)
grayscale(gs2, input2)
local alpha = 1.0 + torch.uniform(-var, var)
blend(input1, gs1, alpha)
blend(input2, gs2, alpha)
return input1, input2
end
end
function M.BrightnessPair(var)
local gs1
local gs2
return function(input1, input2)
gs1 = gs1 or input1.new()
gs2 = gs2 or input2.new()
gs1:resizeAs(input1):zero()
gs2:resizeAs(input2):zero()
local alpha = 1.0 + torch.uniform(-var, var)
blend(input1, gs1, alpha)
blend(input2, gs2, alpha)
return input1, input2
end
end
function M.ContrastPair(var)
local gs1
local gs2
return function(input1, input2)
gs1 = gs1 or input1.new()
gs2 = gs2 or input2.new()
grayscale(gs1, input1)
grayscale(gs2, input2)
gs1:fill(gs1[1]:mean())
gs2:fill(gs2[1]:mean())
local alpha = 1.0 + torch.uniform(-var, var)
blend(input1, gs1, alpha)
blend(input2, gs2, alpha)
return input1, input2
end
end
function M.RandomOrderPair(ts)
return function(input1, input2)
local img1 = input1.img or input1
local img2 = input2.img or input2
local order = torch.randperm(#ts)
for i=1,#ts do
img1, img2 = ts[order[i]](img1, img2)
end
return input1, input2
end
end
function M.ColorJitterPair(opt)
local brightness = opt.brightness or 0
local contrast = opt.contrast or 0
local saturation = opt.saturation or 0
local ts = {}
if brightness ~= 0 then
table.insert(ts, M.BrightnessPair(brightness))
end
if contrast ~= 0 then
table.insert(ts, M.ContrastPair(contrast))
end
if saturation ~= 0 then
table.insert(ts, M.SaturationPair(saturation))
end
if #ts == 0 then
return function(input1, input2) return input1, input2 end
end
return M.RandomOrderPair(ts)
end
return M