This repository has been archived by the owner on Mar 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdocument.tex
1005 lines (752 loc) · 24.9 KB
/
document.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[ a4paper, oneside]{amsart}
%\listfiles
\usepackage{lipsum}
\RequirePackage{amsmath}
\RequirePackage{bm}
\RequirePackage{amssymb}
\RequirePackage{upref}
\RequirePackage{amsthm}
\RequirePackage{enumerate}
%\RequirePackage{pb-diagram}
\RequirePackage{amsfonts}
\RequirePackage[mathscr]{eucal}
\RequirePackage{verbatim}
\RequirePackage{xr}
\def\@thm#1#2#3{%
\ifhmode\unskip\unskip\par\fi
\normalfont
\trivlist
\let\thmheadnl\relax
\let\thm@swap\@gobble
\let\thm@indent\indent % no indent
\thm@headfont{\scshape}% heading font bold
%\thm@notefont{\fontseries\mddefault\upshape}%
\thm@notefont{}%
\thm@headpunct{.}% add period after heading
\thm@headsep 5\p@ plus\p@ minus\p@\relax
\thm@preskip\topsep
\thm@postskip\thm@preskip
#1% style overrides
\@topsep \thm@preskip % used by thm head
\@topsepadd \thm@postskip % used by \@endparenv
\def\@tempa{#2}\ifx\@empty\@tempa
\def\@tempa{\@oparg{\@begintheorem{#3}{}}[]}%
\else
\refstepcounter{#2}%
\def\@tempa{\@oparg{\@begintheorem{#3}{\csname the#2\endcsname}}[]}%
\fi
\@tempa
}
%Redefined commands
%Greek Letters
\newcommand{\al}{\alpha}
\newcommand{\bet}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\de}{\delta }
\newcommand{\e}{\epsilon}
\newcommand{\ve}{\varepsilon}
\newcommand{\f}{\varphi}
\newcommand{\h}{\eta}
\newcommand{\io}{\iota}
\newcommand{\tht}{\theta}
\newcommand{\ka}{\kappa}
\newcommand{\lam}{\lambda}
\newcommand{\m}{\mu}
\newcommand{\n}{\nu}
\newcommand{\om}{\omega}
\newcommand{\p}{\pi}
\newcommand{\vt}{\vartheta}
\newcommand{\vr}{\varrho}
\newcommand{\s}{\sigma}
\newcommand{\x}{\xi}
\newcommand{\z}{\zeta}
\newcommand{\C}{\varGamma}
\newcommand{\D}{\varDelta}
\newcommand{\F}{\varPhi}
\newcommand{\Lam}{\varLambda}
\newcommand{\Om}{\varOmega}
\newcommand{\vPsi}{\varPsi}
\newcommand{\Si}{\varSigma}
%New Commands
\newcommand{\di}[1]{#1\nobreakdash-\hspace{0pt}dimensional}%\di n
\newcommand{\nbdd}{\nobreakdash--}
\newcommand{\nbd}{\nobreakdash-\hspace{0pt}}
\newcommand{\ce}[1]{$C^#1$\nbd{estimate}}
\newcommand{\ces}[1]{$C^#1$\nbd{estimates}}
\newcommand{\fm}[1]{F_{|_{M_#1}}}
\newcommand{\fmo}[1]{F_{|_{#1}}}%\fmo M
\newcommand{\fu}[3]{#1\hspace{0pt}_{|_{#2_#3}}}
\newcommand{\fv}[2]{#1\hspace{0pt}_{|_{#2}}}
\newcommand{\cchi}[1]{\chi\hspace{0pt}_{_{#1}}}
\newcommand{\so}{{\mc S_0}}
%\newcommand\sql[1][u]{\sqrt{1-|D#1|^2}}
\newcommand{\const}{\tup{const}}
\newcommand{\slim}[2]{\lim_{\substack{#1\ra #2\\#1\ne #2}}}
\newcommand{\pih}{\frac{\pi}{2}}
\newcommand{\msp[1]}[1]{\mspace{#1mu}}
\newcommand{\low}[1]{{\hbox{}_{#1}}}
%Special Symbols
\newcommand{\R}[1][n+1]{{\protect\mathbb R}^{#1}}
\newcommand{\Cc}{{\protect\mathbb C}}
\newcommand{\K}{{\protect\mathbb K}}
\newcommand{\N}{{\protect\mathbb N}}
\newcommand{\Q}{{\protect\mathbb Q}}
\newcommand{\Z}{{\protect\mathbb Z}}
\newcommand{\eR}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[3]\R[]}}
\newcommand{\eN}{\stackrel{\lower1ex \hbox{\rule{6.5pt}{0.5pt}}}{\msp[1]\N}}
\newcommand{\eO}{\stackrel{\lower1ex
\hbox{\rule{6pt}{0.5pt}}}{\msc O}}
%Special math symbols
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\Grad}{Grad}
\DeclareMathOperator*{\es}{ess\,sup}
\DeclareMathOperator{\graph}{graph}
\DeclareMathOperator{\sub}{sub}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\lc}{lc}
\DeclareMathOperator{\osc}{osc}
\DeclareMathOperator{\pr}{pr}
\DeclareMathOperator{\rec}{Re}
\DeclareMathOperator{\imc}{Im}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\Diff}{Diff}
\DeclareMathOperator{\rg}{rg}
\newcommand\im{\implies}
\newcommand\ra{\rightarrow}
\newcommand\xra{\xrightarrow}
\newcommand\rra{\rightrightarrows}
\newcommand\hra{\hookrightarrow}
\newcommand{\nea}{\nearrow}
\newcommand{\sea}{\searrow}
\newcommand{\ua}{\uparrow}
\newcommand{\da}{\downarrow}
\newcommand{\rha}{\rightharpoondown}
\newcommand{\wha}{\underset{w^*}\rightharpoondown}
%PDE commands
\newcommand\pa{\partial}
\newcommand\pde[2]{\frac {\partial#1}{\partial#2}}
\newcommand\pd[3]{\frac {\partial#1}{\partial#2^#3}} %e.g. \pd fxi
\newcommand\pdc[3]{\frac {\partial#1}{\partial#2_#3}} %contravariant
\newcommand\pdm[4]{\frac {\partial#1}{\partial#2_#3^#4}} %mixed
\newcommand\pdd[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2^
#3}\,\partial{#2^#4}}} %e.g. \pdd fxij, Abl. zweiter Ordnung
\newcommand\pddc[4]{\frac {{\partial\hskip0.15em}^2#1}{\partial {#2_
#3}\,\partial{#2_#4}}}
\newcommand\PD[3]{\frac {{\partial\hskip0.15em}^2#1}{\partial
#2\,\partial#3}} %e.g \PD fxy
\newcommand\df[2]{\frac {d#1}{d#2}}
\newcommand\sd{\vartriangle}
\newcommand\sq[1][u]{\sqrt{1+|D#1|^2}}
\newcommand\sql[1][u]{\sqrt{1-|D#1|^2}}
\newcommand{\un}{\infty}
\newcommand{\A}{\forall}
\newcommand{\E}{\exists}
%Set commands
\newcommand{\set}[2]{\{\,#1\colon #2\,\}}
\newcommand{\uu}{\cup}
\newcommand{\ii}{\cap}
\newcommand{\uuu}{\bigcup}
\newcommand{\iii}{\bigcap}
\newcommand{\uud}{ \stackrel{\lower 1ex \hbox {.}}{\uu}}
\newcommand{\uuud}[1]{ \stackrel{\lower 1ex \hbox {.}}{\uuu_{#1}}}
\newcommand\su{\subset}
\newcommand\Su{\Subset}
\newcommand\nsu{\nsubset}
\newcommand\eS{\emptyset}
\newcommand{\sminus}[1][28]{\raise 0.#1ex\hbox{$\scriptstyle\setminus$}}
\newcommand{\cpl}{\complement}
\newcommand\inn[1]{{\stackrel{\msp[9]\circ}{#1}}}
%Embellishments
\newcommand{\ol}{\overline}
\newcommand{\pri}[1]{#1^\prime}
\newcommand{\whn}[1]{\widehat{(#1_n)}}
\newcommand{\wh}{\widehat}
%Logical commands
\newcommand{\wed}{\wedge}
\newcommand{\eqv}{\Longleftrightarrow}
\newcommand{\lla}{\Longleftarrow}
\newcommand{\lra}{\Longrightarrow}
\newcommand{\bv}{\bigvee}
\newcommand{\bw}{\bigwedge}
\newcommand{\nim}{{\hskip2.2ex\not\hskip-1.5ex\im}}
\DeclareMathOperator*{\Au}{\A}
\DeclareMathOperator*{\Eu}{\E}
\newcommand\ti{\times }
%Norms
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\absb}[1]{\Bigl|#1\Bigr|}
\newcommand{\norm}[1]{\lVert#1\rVert}
\newcommand{\normb}[1]{\Big\lVert#1\Big\rVert}
\newcommand{\nnorm}[1]{| \mspace{-2mu} |\mspace{-2mu}|#1| \mspace{-2mu}
|\mspace{-2mu}|}
\newcommand{\spd}[2]{\protect\langle #1,#2\protect\rangle}
%Geometry
\newcommand\ch[3]{\varGamma_{#1#2}^#3}
\newcommand\cha[3]{{\bar\varGamma}_{#1#2}^#3}
\newcommand{\riem}[4]{R_{#1#2#3#4}}
\newcommand{\riema}[4]{{\bar R}_{#1#2#3#4}}
\newcommand{\cod}{h_{ij;k}-h_{ik;j}=\riema\al\bet\ga\de\n^\al x_i^\bet x_j^\ga x_k^\de}
\newcommand{\gau}[1][\s]{\riem ijkl=#1 \{h_{ik}h_{jl}-h_{il}h_{jk}\} + \riema
\al\bet\ga\de x_i^\al x_j^\bet x_k^\ga x_l^\de}
\newcommand{\ric}{\h_{i;jk}=\h_{i;kj}+\riem lijk\msp \h^l}
%Font commands
\newcommand{\tbf}{\textbf}
\newcommand{\tit}{\textit}
\newcommand{\tsl}{\textsl}
\newcommand{\tsc}{\textsc}
\newcommand{\trm}{\textrm}
\newcommand{\tup}{\textup}% text upright
\newcommand{\mbf}{\protect\mathbf}
\newcommand{\mitc}{\protect\mathit}
\newcommand{\mrm}{\protect\mathrm}
\newcommand{\bs}{\protect\boldsymbol}
\newcommand{\mc}{\protect\mathcal}
\newcommand{\msc}{\protect\mathscr}
%Miscellaneous
\providecommand{\bysame}{\makeboc[3em]{\hrulefill}\thinspace}
\newcommand{\la}{\label}
\newcommand{\ci}{\cite}
\newcommand{\bib}{\bibitem}
\newcommand{\cq}[1]{\glqq{#1}\grqq\,}
\newcommand{\cqr}{\glqq{$\lra$}\grqq\,}
\newcommand{\cql}{\glqq{$\lla$}\grqq\,}
\newcommand{\bt}{\begin{thm}}
\newcommand{\bl}{\begin{lem}}
\newcommand{\bc}{\begin{cor}}
\newcommand{\bd}{\begin{definition}}
\newcommand{\bpp}{\begin{prop}}
\newcommand{\br}{\begin{rem}}
\newcommand{\bn}{\begin{note}}
\newcommand{\be}{\begin{ex}}
\newcommand{\bes}{\begin{exs}}
\newcommand{\bb}{\begin{example}}
\newcommand{\bbs}{\begin{examples}}
\newcommand{\ba}{\begin{axiom}}
\newcommand{\et}{\end{thm}}
\newcommand{\el}{\end{lem}}
\newcommand{\ec}{\end{cor}}
\newcommand{\ed}{\end{definition}}
\newcommand{\epp}{\end{prop}}
\newcommand{\er}{\end{rem}}
\newcommand{\en}{\end{note}}
\newcommand{\ee}{\end{ex}}
\newcommand{\ees}{\end{exs}}
\newcommand{\eb}{\end{example}}
\newcommand{\ebs}{\end{examples}}
\newcommand{\ea}{\end{axiom}}
\newcommand{\bp}{\begin{proof}}
\newcommand{\ep}{\end{proof}}
\newcommand{\eps}{\renewcommand{\qed}{}\end{proof}}
\newcommand{\bal}{\begin{align}}
%\newcommand{\eal}{\end{align}}
\newcommand{\bi}[1][1.]{\begin{enumerate}[\upshape #1]}
\newcommand{\bia}[1][(1)]{\begin{enumerate}[\upshape #1]}
\newcommand{\bin}[1][1]{\begin{enumerate}[\upshape\bfseries #1]}
\newcommand{\bir}[1][(i)]{\begin{enumerate}[\upshape #1]}
\newcommand{\bic}[1][(i)]{\begin{enumerate}[\upshape\hspace{2\cma}#1]}
\newcommand{\bis}[2][1.]{\begin{enumerate}[\upshape\hspace{#2\parindent}#1]}
\newcommand{\ei}{\end{enumerate}}
% comma is raised when components are quotients
\newcommand\ndots{\raise 0.47ex \hbox {,}\hskip0.06em\cdots %
\raise 0.47ex \hbox {,}\hskip0.06em}
%Layout commands
\newcommand{\clearemptydoublepage}{\newpage{\pagestyle{empty}\cleardoublepage}}
\newcommand{\q}{\quad}
\newcommand{\qq}{\qquad}
\newcommand{\vs}[1][3]{\vskip#1pt}
\newcommand{\hs}[1][12]{\hskip#1pt}
\newcommand{\hp}{\hphantom}
\newcommand{\vp}{\vphantom}
\newcommand\cl{\centerline}
\newcommand\nl{\newline}
\newcommand\nd{\noindent}
\newcommand{\nt}{\notag}
% %my private skips; set to 0 to restore default
\newskip\Csmallskipamount
\Csmallskipamount=\smallskipamount
\newskip\Cmedskipamount
\Cmedskipamount=\medskipamount
\newskip\Cbigskipamount
\Cbigskipamount=\bigskipamount
\newcommand\cvs{\vspace\Csmallskipamount}
\newcommand\cvm{\vspace\Cmedskipamount}
\newcommand\cvb{\vspace\Cbigskipamount}
\newskip\csa
\csa=\smallskipamount
\newskip\cma
\cma=\medskipamount
\newskip\cba
\cba=\bigskipamount
\newdimen\spt
\spt=0.5pt
%%special roster macro
\newcommand\citem{\cvs\advance\itemno by
1{(\romannumeral\the\itemno})\hskip3pt}
\newcommand{\bitem}{\cvm\nd\advance\itemno by
1{\bf\the\itemno}\hspace{\cma}}
\newcommand\cendroster{\cvm\itemno=0}
%New counts
\newcount\itemno
\itemno=0
%Labels
\newcommand{\las}[1]{\label{S:#1}}
\newcommand{\lass}[1]{\label{SS:#1}}
\newcommand{\lae}[1]{\label{E:#1}}
\newcommand{\lat}[1]{\label{T:#1}}
\newcommand{\lal}[1]{\label{L:#1}}
\newcommand{\lad}[1]{\label{D:#1}}
\newcommand{\lac}[1]{\label{C:#1}}
\newcommand{\lan}[1]{\label{N:#1}}
\newcommand{\lap}[1]{\label{P:#1}}
\newcommand{\lar}[1]{\label{R:#1}}
\newcommand{\laa}[1]{\label{A:#1}}
%Referencing
\newcommand{\rs}[1]{Section~\ref{S:#1}}
\newcommand{\rss}[1]{Section~\ref{SS:#1}}
\newcommand{\rt}[1]{Theorem~\ref{T:#1}}
\newcommand{\rl}[1]{Lemma~\ref{L:#1}}
\newcommand{\rd}[1]{Definition~\ref{D:#1}}
\newcommand{\rc}[1]{Corollary~\ref{C:#1}}
\newcommand{\rn}[1]{Number~\ref{N:#1}}
\newcommand{\rp}[1]{Proposition~\ref{P:#1}}
\newcommand{\rr}[1]{Remark~\ref{R:#1}}
\newcommand{\raa}[1]{Axiom~\ref{A:#1}}
\newcommand{\re}[1]{\eqref{E:#1}}
%Index
\newcommand{\ind}[1]{#1\index{#1}}
\RequirePackage{upref}
\RequirePackage{amsthm}
%\usepackage{amsfonts}
%\usepackage{amsintx}
\RequirePackage{enumerate}%\begin{enumerate}[(i)]
%%\usepackage{showkeys}
\setlength{\textwidth}{4.7in}%JDG
\setlength{\textheight}{7.5in}
\theoremstyle{plain}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\theoremstyle{definition}
\newtheorem{rem}[thm]{Remark}
\newtheorem{definition}[thm]{Definition}
\newtheorem{example}[thm]{Example}
\newtheorem{ex}[thm]{Exercise}
\swapnumbers
\theoremstyle{remark}
\newtheorem{case}{Case}
\numberwithin{equation}{section}
%\renewcommand{\qed}{q.e.d.}
\usepackage{xr-hyper}
\usepackage{url}
\usepackage[hyperindex=true, pdfauthor= Claus\ Gerhardt, pdftitle= LM-Volume, bookmarks=true, extension= pdf, colorlinks=true, plainpages=false,hyperfootnotes=true, debug=false, pagebackref]{hyperref}
\newcommand{\anl}{\htmladdnormallink}
%\listfiles
\begin{document}
\lipsum[2-$paragraph]
%\larger[1]
\title{Estimates for the volume of a Lorentzian manifold}
% author one information
\author{Claus Gerhardt}
\address{Ruprecht-Karls-Universit\"at, Institut f\"ur Angewandte Mathematik,
Im Neuenheimer Feld 294, 69120 Heidelberg, Germany}
%\curraddr{}
\email{[email protected]}
\urladdr{\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/}}
%\thanks{}
% author two information
%\author{}
%\address{}
%\curraddr{}
%\email{}
%\thanks{}
%
\subjclass[2000]{35J60, 53C21, 53C44, 53C50, 58J05}
\keywords{Lorentzian manifold, volume estimates, cosmological spacetime, general relativity, constant mean curvature, CMC hypersurface}
\date{April 18, 2002}
%
% at present the "communicated by" line appears only in ERA and PROC
%\commby{}
%\dedicatory{}
\begin{abstract} We prove new estimates for the volume of a Lorentzian
mani\-fold and show especially that cosmological spacetimes with crushing
singularities have finite volume.
\end{abstract}
\maketitle
\thispagestyle{empty}
\setcounter{section}{-1}
\section{Introduction}
\cvb
Let $N$ be a $(n+1)$-dimensional Lorentzian manifold and suppose that $N$ can be
decomposed in the form
\begin{equation}\lae{0.1}
N=N_0\uu N_-\uu N_+,
\end{equation}
\cvm
\nd where $N_0$ has finite volume and $N_-$ resp. $N_+$ represent the critical
past resp. future Cauchy developments with not necessarily a priori bounded
volume. We assume that $N_+$ is the future Cauchy development of a Cauchy
hypersurface $M_1$, and $N_-$ the past Cauchy development of a hypersurface
$M_2$, or, more precisely, we assume the existence of a time function $x^0$,
such that
\begin{equation}
\begin{aligned}
N_+&={x^0}^{-1}([t_1,T_+)),&\qq M_1=\{x^0=t_1\}&,\\
N_-&={x^0}^{-1}((T_-,t_2]),&\qq M_2=\{x^0=t_2\}&,
\end{aligned}
\end{equation}
\cvm
\nd and that the Lorentz metric can be expressed as
\begin{equation}\lae{0.3}
d\bar s^2=e^{2\psi}\{-{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\},
\end{equation}
\cvm
\nd where $x=(x^i)$ are local coordinates for the space-like hypersurface $M_1$
if $N_+$ is considered resp. $M_2$ in case of $N_-$.
The coordinate system $(x^\al)_{0\le\al\le n}$ is supposed to be future
directed, i.e. the \tit{past} directed unit normal $(\nu^\al)$ of the level sets
\begin{equation}
M(t)=\{x^0=t\}
\end{equation}
\cvm
\nd is of the form
\begin{equation}\lae{0.5}
(\nu^\al)=-e^{-\psi}(1,0,\ldots,0).
\end{equation}
\cvm
If we assume the mean curvature of the slices $M(t)$ with respect to the past
directed normal---cf. \ci[Section 2]{cg8} for a more detailed explanation of our
conventions---is strictly bounded away from zero, then, the following volume
estimates can be proved
\bt\lat{0.1}
Suppose there exists a positive constant $\e_0$ such that
\begin{align}
H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\lae{0.6}\\
\intertext{and}
H(t)&\le-\e_0&\A\,T_-<t\le t_2&,\lae{0.7}
\end{align}
\cvm
\nd then
\begin{align}
\abs{N_+}&\le \frac1{\e_0}\abs{M(t_1)},\\
\intertext{and}
\abs{N_-}&\le \frac1{\e_0}\abs{M(t_2}.
\end{align}
These estimates also hold locally, i.e. if $E_i\su M(t_i)$, $i=1,2$, are measurable
subsets and $E_1^+,E_2^-$ the corresponding future resp. past directed
cylinders, then,
\begin{align}
\abs{E_1^+}&\le\frac1{\e_0}\abs{E_1},\lae{0.10}\\
\intertext{and}
\abs{E_2^-}&\le\frac1{\e_0}\abs{E_2}.
\end{align}
\et
\cvb
\section{Proof of \rt{0.1}}\las{1}
\cvb
In the following we shall only prove the estimate for $N_+$, since the other case
$N_-$ can easily be considered as a future development by reversing the time
direction.
\cvm
Let $x=x(\xi)$ be an embedding of a space-like hypersurface and $(\nu^\al)$ be
the past directed normal. Then, we have the Gau{\ss} formula
\begin{equation}
x^\al_{ij}=h_{ij}\nu^\al.
\end{equation}
\cvm
\nd where $(h_{ij})$ is the second fundamental form, and the Weingarten equation
\begin{equation}
\nu^\al_i=h^k_ix^\al_k.
\end{equation}
\cvm
We emphasize that covariant derivatives, indicated simply by indices, are
always \tit{full} tensors.
\cvm
The slices $M(t)$ can be viewed as special embeddings of the form
\begin{equation}
x(t)=(t,x^i),
\end{equation}
\cvm
\nd where $(x^i)$ are coordinates of the \tit{initial} slice $M(t_1)$. Hence, the
slices $M(t)$ can be considered as the solution of the evolution problem
\begin{equation}\lae{1.4}
\dot x=-e^\psi \nu, \qq t_1\le t<T_+,
\end{equation}
\cvm
\nd with initial hypersurface $M(t_1)$, in view of \re{0.5}.
\cvm From the equation \re{1.4} we can immediately derive evolution equations
for the geometric quantities $g_{ij}, h_{ij}, \nu$, and $H=g^{ij}h_{ij}$ of $M(t)$, cf.
e.g.
\ci[Section 4]{cg4}, where the corresponding evolution equations are derived in
Riemannian space.
\cvm
For our purpose, we are only interested in the evolution equation for the metric,
and we deduce
\begin{equation}
\dot g_{ij}=\spd{\dot x_i}{x_j}+\spd{x_i}{\dot x_j}=- 2e^\psi h_{ij},
\end{equation}
\cvm
\nd in view of the Weingarten equation.
\cvm
Let $g=\det(g_{ij})$, then,
\begin{equation}\lae{1.6}
\dot g= g g^{ij}\dot g_{ij}=-2e^\psi H g,
\end{equation}
\cvm
\nd and thus, the volume of $M(t), \abs{M(t)}$, evolves according to
\begin{equation}\lae{1.7}
\frac d{dt} \abs{M(t)}=\int_{M(t_1)}\frac d{dt}\sqrt g=-\int_{M(t)}e^\psi H,
\end{equation}
\cvm
\nd where we shall assume without loss of generality that $\abs{M(t_1}$ is finite,
otherwise, we replace $M(t_1)$ by an arbitrary measurable subset of $M(t_1)$
with finite volume.
\cvm
Now, let $T\in [t_1, T_+)$ be arbitrary and denote by $Q(t_1,T)$ the
cylinder
\begin{equation}\lae{1.8}
Q(t_1,T)=\set{(x^0,x)}{t_1\le x^0\le T},
\end{equation}
\cvm
\nd then,
\begin{equation}\lae{1.9}
\abs{Q(t_1,T)}=\int_{t_1}^T\int_Me^\psi,
\end{equation}
\cvm
\nd where we omit the volume elements, and where, $M=M(x^0)$.
\cvm
By assumption, the mean curvature $H$ of the slices is bounded from below by
$\e_0$, and we conclude further, with the help of \re{1.7},
\begin{equation}
\begin{aligned}
\abs{Q(t_1,T)}&\le\frac 1{\e_0} \int_{t_1}^T\int_Me^\psi H\\
&=\frac1{\e_0}\{\abs{M(t_1)}-\abs{M(T)}\}\\
&\le \frac1{\e_0}\abs{M(t_1)}.
\end{aligned}
\end{equation}
\cvm
Letting $T$ tend to $T_+$ gives the estimate for $\abs {N_+}$.
\cvm
To prove the estimate \re{0.10}, we simply replace $M(t_1)$ by $E_1$.
\cvb
If we relax the conditions \re{0.6} and \re{0.7} to include the case $\e_0=0$, a
volume estimate is still possible.
\cvm
\bt
If the assumptions of \rt{0.1} are valid with $\e_0=0$, and if in addition the
length of any future directed curve starting from $M(t_1)$ is bounded by a
constant $\ga_1$ and the length of any past directed curve starting from $M(t_2)$
is bounded by a constant $\ga_2$, then,
\begin{align}
\abs{N_+}&\le \ga_1\abs{M(t_1)}\\
\intertext{and}
\abs{N_-}&\le \ga_2\abs{M(t_2)}.
\end{align}
\et
\cvm
\bp
As before, we only consider the estimate for $N_+$.
\cvm
From \re{1.6} we infer that the volume element of the slices $M(t)$ is decreasing
in $t$, and hence,
\begin{equation}\lae{1.13}
\sqrt{g(t)}\le \sqrt{g(t_1)}\qq\A\,t_1\le t.
\end{equation}
\cvm
Furthermore, for fixed $x\in M(t_1)$ and $t>t_1$
\begin{equation}\lae{1.14}
\int_{t_1}^te^\psi\le \ga_1
\end{equation}
because the left-hand side is the length of the future directed curve
\begin{equation}
\ga(\tau)=(\tau,x)\qq t_1\le\tau\le t.
\end{equation}
\cvm
Let us now look at the cylinder $Q(t_1,T)$ as in \re{1.8} and \re{1.9}. We have
\begin{equation}
\begin{aligned}
\abs{Q(t_1,T)}&=\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t,x)}\le
\int_{t_1}^T\int_{M(t_1)}e^\psi\sqrt{g(t_1,x)}\\[\cma]
&\le \ga_1\int_{M(t_1)}\sqrt{g(t_1,x)}=\ga_1\abs{M(t_1)}
\end{aligned}
\end{equation}
by applying Fubini's theorem and the estimates \re{1.13} and \re{1.14}.
\ep
\cvb
\section{Cosmological spacetimes}\las{2}
\cvb
A cosmological spacetime is a globally hyperbolic Lorentzian manifold $N$ with
compact Cauchy hypersurface $\so$, that satisfies the timelike convergence
condition, i.e.
\begin{equation}
\bar R_{\al\bet}\nu^\al\nu^\bet\ge 0 \qq \A\,\spd\nu\nu=-1.
\end{equation}
\cvm
If there exist crushing singularities, see \ci{es} or \ci{cg1} for a definition, then,
we proved in
\ci{cg1} that
$N$ can be foliated by spacelike hypersurfaces $M(\tau)$ of constant mean
curvature $\tau$, $-\un<\tau<\un$,
\begin{equation}
N=\uuu_{0\ne\tau\in \R[]}M(\tau)\uu{\msc C}_0,
\end{equation}
\cvm
\nd where $\msc C_0$ consists either of a single maximal slice or of a whole
continuum of maximal slices in which case the metric is stationary in $\msc
C_0$. But in any case $\msc C_0$ is a compact subset of $N$.
\cvm
In the complement of $\msc C_0$ the mean curvature function $\tau$ is a regular
function with non-vanishing gradient that can be used as a new time function, cf.
\ci{cg6} for a simple proof.
\cvm
Thus, the Lorentz metric can be expressed in Gaussian coordinates $(x^\al)$ with
$x^0=\tau$ as in \re{0.3}. We choose arbitrary $\tau_2<0<\tau_1$ and de\-fine
\begin{equation}
\begin{aligned}
N_0&=\set{(\tau,x)}{\tau_2\le\tau \le \tau_1},\\
N_-&=\set{(\tau,x)}{-\un<\tau \le \tau_2},\\
N_+&=\set{(\tau,x)}{\tau_1\le \tau<\un}.
\end{aligned}
\end{equation}
\cvm
Then, $N_0$ is compact, and the volumes of $N_-, N_+$ can be estimated by
\begin{align}
\abs{N_+}&\le \frac1{\tau_1}\abs{M(\tau_1)},\\
\intertext{and}
\abs{N_-}&\le \frac1{\abs{\tau_2}}\abs{M(\tau_2)}.
\end{align}
\cvm
Hence, we have proved
\bt
A cosmological spacetime $N$ with crushing singularities has finite volume.
\et
\cvb
\br
Let $N$ be a spacetime with compact Cauchy hypersurface and suppose that a
subset
$N_-\su N$ is foliated by constant mean curvature slices $M(\tau)$ such that
\begin{equation}
N_-=\uuu_{0<\tau\le \tau_2}M(\tau)
\end{equation}
\cvm
\nd and suppose furthermore, that $x^0=\tau$ is a time function---which will be
the case if the timelike convergence condition is satisfied---so that the metric
can be represented in Gaussian coordinates $(x^\al)$ with $x^0=\tau$.
\cvm
Consider the cylinder $Q(\tau,\tau_2)=\{\tau\le x^0\le \tau_2\}$ for some
fixed $\tau$. Then,
\begin{equation}
\abs{Q(\tau,\tau_2)}=\int_\tau^{\tau_2}\int_Me^\psi=\int_\tau
^{\tau_2}H^{-1}\int_MH e^\psi,
\end{equation}
\cvm
\nd and we obtain in view of \re{1.7}
\begin{equation}
\tau^{-1}_2\{\abs {M(\tau)}-\abs{M(\tau_2)}\}\le\abs{Q(\tau,\tau_2)},
\end{equation}
\cvm
\nd and conclude further
\begin{equation}
\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}\le \tau_2\abs{N_-}+\abs{M(\tau_2)},
\end{equation}
\nd i.e.
\begin{equation}
\lim_{\tau\ra 0}\msp[2]\abs{M(\tau)}=\un\im \abs{N_-}=\un.
\end{equation}
\er
\cvb
\section{The Riemannian case}
\cvb
Suppose that $N$ is a Riemannian manifold that is decomposed as in \re{0.1} with
metric
\begin{equation}
d\bar s^2=e^{2\psi}\{{dx^0}^2+\s_{ij}(x^0,x)dx^idx^j\}.
\end{equation}
\cvm
The Gau{\ss} formula and the Weingarten equation for a hypersurface now have
the form
\begin{align}
x^\al_{ij}&=-h_{ij}\nu^\al,\\
\intertext{and}
\nu^\al_i&=h^k_ix^\al_k.
\end{align}
\cvm
As default normal vector---if such a choice is possible---we choose the outward
normal, which, in case of the coordinate slices $M(t)=\{x^0=t\}$ is given by
\begin{equation}
(\nu^\al)=e^{-\psi}(1,0,\ldots,0).
\end{equation}
\cvm
Thus, the coordinate slices are solutions of the evolution problem
\begin{equation}
\dot x=e^\psi \nu,
\end{equation}
\cvm
\nd and, therefore,
\begin{equation}
\dot g_{ij}=2e^\psi h_{ij},
\end{equation}
\cvm
\nd i.e. we have the opposite sign compared to the Lorentzian case leading to
\begin{equation}
\frac d{dt}\abs{M(t)}=\int_Me^\psi H.
\end{equation}
\cvm
The arguments in \rs{1} now yield
\bt
\tup{(i)} Suppose there exists a positive constant $\e_0$ such that the mean
curvature $H(t)$ of the slices $M(t)$ is estimated by
\begin{align}
H(t)&\ge \e_0&\A\,t_1\le t< T_+&,\\
\intertext{and}
H(t)&\le-\e_0&\A\,T_-<t\le t_2&,
\end{align}
\cvm
\nd then
\begin{align}
\abs{N_+}&\le \frac1{\e_0}\lim_{t\ra T_+}\abs{M(t)},\\
\intertext{and}
\abs{N_-}&\le \frac1{\e_0}\lim_{t\ra T_-}\abs{M(t}.
\end{align}
\cvm
\tup{(ii)} On the other hand, if the mean curvature $H$ is negative in $N_+$ and
positive in $N_-$, then, we obtain the same estimates as \rt{0.1}, namely,
\begin{align}
\abs{N_+}&\le \frac1{\e_0}\abs{M(t_1)},\\
\intertext{and}
\abs{N_-}&\le \frac1{\e_0}\abs{M(t_2)}.
\end{align}
\et
\cvb
\begin{thebibliography}{99}
\bib{es}
D. Eardley \& L. Smarr, \emph{Time functions in numerical relativity: marginally
bound dust collapse}, Phys. Rev. D \tbf{19} (1979) 2239\nbdd2259.
\bib{cg1}
C. Gerhardt, \emph{H-surfaces in Lorentzian manifolds}, Commun. Math. Phys.
\tbf{89} (1983) 523\nbdd{553}.
\bib{cg4}
\bysame, \emph{Hypersurfaces of prescribed Weingarten curvature}, Math. Z.
\tbf{224} (1997) 167\nbdd{194}.
\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/MZ224,97.pdf}
\bib{cg6}
\bysame, \emph{On the foliation of space-time by constant mean curvature
hypersurfaces}, preprint,
\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/Foliation.pdf}
\bib{cg8}
\bysame, \emph{Hypersurfaces of
prescribed curvature in Lorentzian manifolds}, Indiana Univ. Math. J. \tbf{49}
(2000) 1125\nbdd1153.
\url{http://www.math.uni-heidelberg.de/studinfo/gerhardt/GaussLorentz.pdf}]
\bib{HE}
S. W. Hawking \& G. F. R. Ellis, \emph{The large scale structure of space-time},
Cambridge University Press, Cambridge, 1973.
\end{thebibliography}
\end{document}