-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_nets.py
executable file
·90 lines (76 loc) · 3.85 KB
/
test_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
# /usr/bin/env/python3
'''
MobileNetV3 testing code.
Author: [email protected] .
'''
from MobileNetV3 import MobileNetV3, custom_objects
import tensorflow as tf
import numpy as np
import argparse
import os
def get_parser():
parser = argparse.ArgumentParser(description='parameters to test net')
parser.add_argument('--train_phase', type=bool, default=False, help='train phase, true or false!')
parser.add_argument('--model_type', type=str, default="large", help='model type, choice large or small!')
parser.add_argument('--input_shape', default=(224, 224, 3), help='the input size!')
parser.add_argument('--classes_number', type=int, help='class number depend on your training datasets!')
parser.add_argument('--weight_decay', default=0., help='L2 weight regularization.')
parser.add_argument('--test_batch_size', default=32, help='batch size of testing.')
parser.add_argument('--test_tfrecords_file_path', default='./data/test.tfrecords', type=str,
help='path to the testing datasets of tfrecords file path')
parser.add_argument('--pretrained_model', type=str, default='', help='Load a pretrained model before training starts.')
parser.add_argument('--dropout_rate', type=float, help='dropout rate', default=0.)
args = parser.parse_args()
return args
def batch_evaluation(pred, labels):
correct_prediction = tf.cast(tf.equal(tf.argmax(pred, 1), tf.cast(labels, tf.int64)), tf.float32)
return list(correct_prediction.numpy())
@tf.function
def test_parse_function(example_proto):
features = {'rgb_raw': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.int64)}
features = tf.io.parse_single_example(example_proto, features)
# You can do more image distortion here for training data
img = tf.image.decode_jpeg(features['rgb_raw'])
img = tf.reshape(img, (224, 224, 3))
h, w, c = img.shape
if h != 224 or w != 224 or c != 3:
assert 0, "Assert! Input image shape should be (224, 224, 3)!!!"
img = tf.cast(img, dtype=tf.float32)
img = tf.subtract(img, 127.5)
img = tf.multiply(img, 0.0078125)
label = tf.cast(features['label'], tf.int64)
return img, label
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
args = get_parser()
# fix cudnn error, if you use gpu device
for gpu in tf.config.experimental.list_physical_devices('GPU'):
tf.compat.v2.config.experimental.set_memory_growth(gpu, True)
# testing datasets pipe
test_tfrecords_f = os.path.join(args.test_tfrecords_file_path)
test_dataset = tf.data.TFRecordDataset(test_tfrecords_f)
test_dataset = test_dataset.map(test_parse_function)
test_dataset = test_dataset.batch(args.test_batch_size)
# load pretrained model or pretrained weights
_custom_objects = custom_objects
model = tf.keras.models.load_model(args.pretrained_model, custom_objects=_custom_objects)
# model = MobileNetV3(type=args.model_type, input_shape=args.input_shape, classes_number=args.classes_number,
# l2_reg=args.weight_decay, dropout_rate=args.dropout_rate, name="MobileNetV3")
# model.load_weights(args.pretrained_model)
tf.keras.backend.set_learning_phase(False)
total_predict = []
count = 0
for i, (images, labels) in enumerate(test_dataset):
logits = model(images, training=args.train_phase)
pred = tf.nn.softmax(logits)
batch_correct_prediction = batch_evaluation(pred, labels)
total_predict.extend(batch_correct_prediction)
count += len(labels)
if count % 100 == 0:
print(f'Successful to processed {count}')
print(f'Successful to processed {count}')
total_predict = np.asarray(total_predict)
Accuracy = tf.reduce_mean(total_predict)
print(f'test total images {count}, Accuracy is {Accuracy}!')