-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRotABG.f90
63 lines (52 loc) · 1.39 KB
/
RotABG.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Subroutine RotABG(A,B,G,iDeg,N,MaxAt,C0,C)
Implicit Real(8) (A-H,O-Z)
Real(8) C0(3,MaxAt),C(3,MaxAt),U(3,3)
Real(8) d/1.570796326794897d0/ ! Pi/2
!
! Subroutine RotABG rotates coordinates C0 by Euler angles A,B,G.
! (Radians if iDeg=0, Degrees if iDeg/=0)
!
If (iDeg==0) Then
x=1.d0
Else
x=0.01745329251994330d0 ! Conversion factor Deg->Rad: Pi/180
Endif
! Uncomment +-d for another [Olkhovsky] definition of RotMat
f=a*x !+d
t=b*x
p=g*x !-d
cf=DCos(f)
ct=DCos(t)
cp=DCos(p)
sf=DSin(f)
st=DSin(t)
sp=DSin(p)
! Definition by [Korn]: U=A3(alp)*A2(bet)*A3(gam)
! Matrix Z1*Y2*Z3 of active transformation in Wikipedia
U(1,1) = cf*ct*cp-sf*sp
U(1,2) = -cf*ct*sp-sf*cp
U(1,3) = cf*st
U(2,1) = sf*ct*cp+cf*sp
U(2,2) = -sf*ct*sp+cf*cp
U(2,3) = sf*st
U(3,1) = -st*cp
U(3,2) = st*sp
U(3,3) = ct
! For passive rotation, transpose the matrix (same rotation axis, same angles, but now the coordinate system rotates, rather than the vector)
! Transposed definition by [Olkhovsky],p.160, [Bukhgolz]: U=A3(alp)*A1(bet)*A3(gam)
! Matrix Z1*X2*Z3 of active transformation in Wikipedia
!U(1,1) = cp*cf-ct*sf*sp
!U(2,1) = cp*sf+ct*cf*sp
!U(3,1) = sp*st
!U(1,2) = -sp*cf-ct*sf*cp
!U(2,2) =-sp*sf+ct*cf*cp
!U(3,2) = cp*st
!U(1,3) = st*sf
!U(2,3) = -st*cf
!U(3,3) = ct
Do i=1,N
Do k=1,3
C(k,i)=U(k,1)*C0(1,i)+U(k,2)*C0(2,i)+U(k,3)*C0(3,i)
Enddo
Enddo
End