-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathevaluate.py
172 lines (140 loc) · 7.09 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import logging
import time
import numpy as np
import torch.utils.data
from hardware.device import get_device
from inference.post_process import post_process_output
from utils.data import get_dataset
from utils.dataset_processing import evaluation, grasp
from utils.visualisation.plot import save_results
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate networks')
# Network
parser.add_argument('--network', metavar='N', type=str, nargs='+',
help='Path to saved networks to evaluate')
parser.add_argument('--input-size', type=int, default=224,
help='Input image size for the network')
# Dataset
parser.add_argument('--dataset', type=str,
help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,
help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1,
help='Use Depth image for evaluation (1/0)')
parser.add_argument('--use-rgb', type=int, default=1,
help='Use RGB image for evaluation (1/0)')
parser.add_argument('--augment', action='store_true',
help='Whether data augmentation should be applied')
parser.add_argument('--split', type=float, default=0.9,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-shuffle', action='store_true', default=False,
help='Shuffle the dataset')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--num-workers', type=int, default=8,
help='Dataset workers')
# Evaluation
parser.add_argument('--n-grasps', type=int, default=1,
help='Number of grasps to consider per image')
parser.add_argument('--iou-threshold', type=float, default=0.25,
help='Threshold for IOU matching')
parser.add_argument('--iou-eval', action='store_true',
help='Compute success based on IoU metric.')
parser.add_argument('--jacquard-output', action='store_true',
help='Jacquard-dataset style output')
# Misc.
parser.add_argument('--vis', action='store_true',
help='Visualise the network output')
parser.add_argument('--cpu', dest='force_cpu', action='store_true', default=False,
help='Force code to run in CPU mode')
parser.add_argument('--random-seed', type=int, default=123,
help='Random seed for numpy')
args = parser.parse_args()
if args.jacquard_output and args.dataset != 'jacquard':
raise ValueError('--jacquard-output can only be used with the --dataset jacquard option.')
if args.jacquard_output and args.augment:
raise ValueError('--jacquard-output can not be used with data augmentation.')
return args
if __name__ == '__main__':
args = parse_args()
# Get the compute device
device = get_device(args.force_cpu)
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
test_dataset = Dataset(args.dataset_path,
output_size=args.input_size,
ds_rotate=args.ds_rotate,
random_rotate=args.augment,
random_zoom=args.augment,
include_depth=args.use_depth,
include_rgb=args.use_rgb)
indices = list(range(test_dataset.length))
split = int(np.floor(args.split * test_dataset.length))
if args.ds_shuffle:
np.random.seed(args.random_seed)
np.random.shuffle(indices)
val_indices = indices[split:]
val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
logging.info('Validation size: {}'.format(len(val_indices)))
test_data = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
num_workers=args.num_workers,
sampler=val_sampler
)
logging.info('Done')
for network in args.network:
logging.info('\nEvaluating model {}'.format(network))
# Load Network
net = torch.load(network)
results = {'correct': 0, 'failed': 0}
if args.jacquard_output:
jo_fn = network + '_jacquard_output.txt'
with open(jo_fn, 'w') as f:
pass
start_time = time.time()
with torch.no_grad():
for idx, (x, y, didx, rot, zoom) in enumerate(test_data):
xc = x.to(device)
yc = [yi.to(device) for yi in y]
lossd = net.compute_loss(xc, yc)
q_img, ang_img, width_img = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
if args.iou_eval:
s = evaluation.calculate_iou_match(q_img, ang_img, test_data.dataset.get_gtbb(didx, rot, zoom),
no_grasps=args.n_grasps,
grasp_width=width_img,
threshold=args.iou_threshold
)
if s:
results['correct'] += 1
else:
results['failed'] += 1
if args.jacquard_output:
grasps = grasp.detect_grasps(q_img, ang_img, width_img=width_img, no_grasps=1)
with open(jo_fn, 'a') as f:
for g in grasps:
f.write(test_data.dataset.get_jname(didx) + '\n')
f.write(g.to_jacquard(scale=1024 / 300) + '\n')
if args.vis:
save_results(
rgb_img=test_data.dataset.get_rgb(didx, rot, zoom, normalise=False),
depth_img=test_data.dataset.get_depth(didx, rot, zoom),
grasp_q_img=q_img,
grasp_angle_img=ang_img,
no_grasps=args.n_grasps,
grasp_width_img=width_img
)
avg_time = (time.time() - start_time) / len(test_data)
logging.info('Average evaluation time per image: {}ms'.format(avg_time * 1000))
if args.iou_eval:
logging.info('IOU Results: %d/%d = %f' % (results['correct'],
results['correct'] + results['failed'],
results['correct'] / (results['correct'] + results['failed'])))
if args.jacquard_output:
logging.info('Jacquard output saved to {}'.format(jo_fn))
del net
torch.cuda.empty_cache()