-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
99 lines (71 loc) · 3.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from lume_model.keras import KerasModel
from tensorflow import keras
import numpy as np
# to lume-keras
class ScaleLayer(keras.layers.Layer):
trainable = False
def __init__(self, offset, scale, lower,upper, **kwargs):
super(ScaleLayer, self).__init__(**kwargs)
self.scale = scale
self.offset = offset
self.lower = lower
self.upper = upper
def call(self, inputs):
return self.lower+((inputs-self.offset)*(self.upper-self.lower)/self.scale)
# MUST OVERRIDE IN ORDER TO SAVE + LOAD W/KERAS
# STORE SALE, etc.
def get_config(self):
return {'scale': self.scale,'offset': self.offset,'lower': self.lower,'upper': self.upper}
# to lume-keras
class UnScaleLayer(keras.layers.Layer):
trainable = False
def __init__(self, offset, scale, lower,upper, **kwargs):
super(UnScaleLayer, self).__init__(**kwargs)
self.scale = scale
self.offset = offset
self.lower = lower
self.upper = upper
def call(self, inputs):
return (((inputs-self.lower)*self.scale)/(self.upper-self.lower)) + self.offset
# MUST OVERRIDE IN ORDER TO SAVE + LOAD W/KERAS
# STORE SALE, etc.
def get_config(self):
return {'scale': self.scale,'offset': self.offset,'lower': self.lower,'upper': self.upper}
# To lume-keras
class UnScaleImg(keras.layers.Layer):
trainable = False
def __init__(self, img_offset, img_scale, **kwargs):
super(UnScaleImg, self).__init__(**kwargs)
self.img_scale = img_scale
self.img_offset = img_offset
def call(self, inputs):
return (inputs+self.img_offset)*self.img_scale
# MUST OVERRIDE IN ORDER TO SAVE + LOAD W/KERAS
# STORE SALE, etc.
def get_config(self):
return {'img_scale': self.img_scale,'img_offset': self.img_offset}
class FormattedKerasModel(KerasModel):
def format_input(self, input_dictionary):
scalar_inputs = np.array([
input_dictionary['distgen:r_dist:sigma_xy:value'],
input_dictionary['distgen:t_dist:length:value'],
input_dictionary['distgen:total_charge:value'],
input_dictionary['SOL1:solenoid_field_scale'],
input_dictionary['CQ01:b1_gradient'],
input_dictionary['SQ01:b1_gradient'],
input_dictionary['L0A_phase:dtheta0_deg'],
input_dictionary['L0A_scale:voltage'],
input_dictionary['end_mean_z']
]).reshape((1,9))
model_input = [scalar_inputs]
return model_input
def parse_output(self, model_output):
parsed_output = {}
parsed_output["x:y"] = model_output[0][0].reshape((50,50))
# NTND array attributes MUST BE FLOAT 64!!!! np.float() should be moved to lume-epics
parsed_output["out_xmin"] = np.float64(model_output[1][0][0])
parsed_output["out_xmax"] = np.float64(model_output[1][0][1])
parsed_output["out_ymin"] = np.float64(model_output[1][0][2])
parsed_output["out_ymax"] = np.float64(model_output[1][0][3])
parsed_output.update(dict(zip(self.output_variables.keys(), model_output[2][0].T)))
return parsed_output