-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProjet.py
190 lines (135 loc) · 5.87 KB
/
Projet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env
##------------------------------------------------------------------------------------
##----------------------------- Web_Analitics project --------------------------------
import numpy as np
import community
import pandas as pd
import itertools
import networkx as nx
import matplotlib.pyplot as plt
from pandas import read_excel
from toolz.itertoolz import last
##------------------ data1.gml -----------------------------
##1.1 Importation et Affichage des donnees
file="C:/Users/mamad/OneDrive/Documents/Data1/data1.gml"
G = nx.read_gml(file,label='id')
print(nx.info(G))
##Number of nodes: 40421
##Number of edges: 175692
##Average degree: 8.6931
##1.2 Calcul des Mesures de centralités et densité
print("__Degree centrality : ",nx.degree_centrality(G), "/n")
print("__Betweeness_centrality : ", nx.betweenness_centrality(G), "/n")
print("__Closeness_centrality : ", nx.closeness_centrality(G), "/n")
print("__Graph density : ", nx.density(G), "/n") #densite:0.0002150693980491644
##print(nx.average_shortest_path_length(G))
##Puisque le graphe n'est pas un graphe connecté, on a de longueur moyenne de chemin
##1.3 Détection des communautés
def community_detection(g,k=1):
comp = nx.algorithms.community.centrality.girvan_newman(g)
for communities in itertools.islice(comp, k):
community = tuple(sorted(c) for c in communities)
return community
##Déterminer la meilleur partition possible de G
##partition = community.best_partition(G, weight='weight')
##print(partition)
##------------------------ data2.gml ---------------------------------
##2.1 Importation et Affichage des donnees
file="C:/Users/mamad/OneDrive/Documents/Data2/data2.gml"
G = nx.read_gml(file,label='id')
print(nx.info(G))
##Number of nodes: 1589 (Avec Noeuds de degree>=1 :1461 soit 91.94% de noeuds)
##Number of edges: 2742
##Average degree: 3.4512
##2.2 Calcul des Mesures de centralités et densité
print("__Degree centrality : ",nx.degree_centrality(G), "/n")
print("__Betweeness_centrality : ", nx.betweenness_centrality(G), "/n")
print("__Closeness_centrality : ", nx.closeness_centrality(G), "/n")
print("__Graph density : ", nx.density(G), "/n") #densite:0.0021733168683312383
##2.3 Detection de community
def community_detection(g,k=1):
comp = nx.algorithms.community.centrality.girvan_newman(g)
for communities in itertools.islice(comp, k):
community = tuple(sorted(c) for c in communities)
return community
##2.4: Performence: lors du calcul, on s'arrete quand la performence cesse de croitre.
def community_detection_performance(g,k=1):
comp = nx.algorithms.community.centrality.girvan_newman(g)
for communities in itertools.islice(comp, k):
per = nx.algorithms.community.quality.performance(g,communities)
return per
##2.5 Analyse de chaque noeud et affichage du graphique
def analyse_node(g):
shortestPath=nx.shortest_path(g)
node_colors = ["red" if n in shortestPath else "green" for n in g.nodes()]
pos = nx.spring_layout(g)
nx.draw_networkx_nodes(g, pos=pos, node_color=node_colors)
nx.draw_networkx_edges(g, pos=pos)
##print(shortestPath)
return nx.draw(g)
##2.6: Degre de chaque noeud du graphe
def deg_node(g):
for s in g.degree():
print(s)
##2.7: Afficher tous les noeud de degre >= 1 (A faire pour une l'analyse)
##2.8: Degre intra des noeud associé à la même communauté
def intra_deg(g,k=1):
comp = nx.algorithms.community.centrality.girvan_newman(g)
#k = 1
for communities in itertools.islice(comp, k):
for community in communities:
graph = nx.Graph.subgraph(g, community)
degrees = list(graph.degree)
for i in range(len(community)):
print(degrees[i])
##2.9 Noeuds ayant le plus de connexions
def highest_intra_deg(g,k=1): ##Highest_Intra: equipe ayant joue le max de match
degrees = list(g.degree)
val=[]
for i in range(len(degrees)):
val+=[degrees[i][1]]
if degrees[i][1]==max(val):
print(degrees[i])
##2.10 Noeud le plus populaire
def most_popular_nod(g):
degrees = list(g.degree)
node = degrees[0]
for i in range(len(degrees)):
if degrees[i][1] > node[1]:
node = degrees[i]
return node
##2.11: les noeuds les plus populaires parmi tous les noeuds
def most_popnod_among(g):
#degre le plus eleve = equipe la plus populaire
degrees = list(g.degree)
val=[]
for i in range(len(degrees)):
val+=[degrees[i][1]]
if degrees[i][1]==max(val):
print(degrees[i])
if __name__=="__main__":
##--------- Analyse de la data1 ----------
print("hello")
print(community_detection(G,k=1)) ##detection des communautés
##--------- Analyse de la data2 ----------
##2.3 Detection de communauté
print(community_detection(G,k=1))
##Nous obtenons un total de 277 communautés (en enlevant tous les noeuds de deg 1)
##2.4 Performancce de l'algo de detection des communautés
for i in range(1,len(G)):
print(community_detection_performance(G,k=i))
if community_detection_performance(G,k=i)>community_detection_performance(G,k=i+1):
break
##2.5 Analyse de chaque noeud et affichage des résultats
print(analyse_node(G))
plt.show()
##2.6 Degre de chaque noeud du graphe
print(deg_node(G))
##2.8 Degre intra des noeud associé à la même communauté
print(intra_deg(G))
##2.9 Noeuds ayant le plus de connexions
print(highest_intra_deg(G,k=1))
##2.10 Noeud le plus populaire
print(most_popular_nod(G)) ##(33, 34)
##2.11 Noeuds les plus populaires
print(most_popnod_among(G))