-
Notifications
You must be signed in to change notification settings - Fork 187
/
Copy pathgeneralconv_ogb.py
139 lines (104 loc) · 4.8 KB
/
generalconv_ogb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
from ogb.utils.features import get_bond_feature_dims
from torch.nn import Parameter
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.inits import glorot, zeros
from torch_geometric.utils import add_remaining_self_loops
from torch_scatter import scatter_add
from graphgym.config import cfg
from graphgym.register import register_layer
full_bond_feature_dims = get_bond_feature_dims()
class BondEncoder(torch.nn.Module):
def __init__(self, emb_dim):
super(BondEncoder, self).__init__()
self.bond_embedding_list = torch.nn.ModuleList()
for i, dim in enumerate(full_bond_feature_dims):
emb = torch.nn.Embedding(dim, emb_dim)
torch.nn.init.xavier_uniform_(emb.weight.data)
self.bond_embedding_list.append(emb)
def forward(self, edge_feature):
bond_embedding = 0
for i in range(edge_feature.shape[1]):
bond_embedding += self.bond_embedding_list[i](edge_feature[:, i])
return bond_embedding
class GeneralOGBConvLayer(MessagePassing):
r"""General GNN layer, for OGB
"""
def __init__(self, in_channels, out_channels, improved=False, cached=False,
bias=True, **kwargs):
super(GeneralOGBConvLayer, self).__init__(aggr=cfg.gnn.agg, **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.bond_encoder = BondEncoder(emb_dim=out_channels)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1),), dtype=dtype,
device=edge_index.device)
fill_value = 1.0 if not improved else 2.0
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_feature, edge_weight=None):
""""""
x = torch.matmul(x, self.weight)
edge_feature = self.bond_encoder(edge_feature)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm,
edge_feature=edge_feature)
def message(self, x_j, norm, edge_feature):
return norm.view(-1, 1) * (
x_j + edge_feature) if norm is not None else (
x_j + edge_feature)
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
class GeneralOGBConv(nn.Module):
def __init__(self, dim_in, dim_out, bias=False, **kwargs):
super(GeneralOGBConv, self).__init__()
self.model = GeneralOGBConvLayer(dim_in, dim_out, bias=bias)
def forward(self, batch):
batch.node_feature = self.model(batch.node_feature, batch.edge_index,
batch.edge_feature)
return batch
register_layer('generalogbconv', GeneralOGBConv)