-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathidentity.py
35 lines (30 loc) · 1.2 KB
/
identity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import torch
import torch.nn as nn
from torch_geometric.utils import add_remaining_self_loops
from torch_scatter import scatter_add
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1),), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
# cpu version
def compute_identity(edge_index, n, k):
id, value = norm(edge_index, n)
adj_sparse = torch.sparse.FloatTensor(id, value, torch.Size([n, n]))
adj = adj_sparse.to_dense()
diag_all = [torch.diag(adj)]
adj_power = adj
for i in range(1, k):
adj_power = adj_power @ adj
diag_all.append(torch.diag(adj_power))
diag_all = torch.stack(diag_all, dim=1)
return diag_all