forked from opencv/opencv_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
356 lines (310 loc) · 16.1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from mp_handpose import MPHandPose
sys.path.append('../palm_detection_mediapipe')
from mp_palmdet import MPPalmDet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
parser.add_argument('--input', '-i', type=str,
help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2023feb.onnx',
help='Path to the model.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--conf_threshold', type=float, default=0.9,
help='Filter out hands of confidence < conf_threshold.')
parser.add_argument('--save', '-s', action='store_true',
help='Specify to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', action='store_true',
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, hands, print_result=False):
display_screen = image.copy()
display_3d = np.zeros((400, 400, 3), np.uint8)
cv.line(display_3d, (200, 0), (200, 400), (255, 255, 255), 2)
cv.line(display_3d, (0, 200), (400, 200), (255, 255, 255), 2)
cv.putText(display_3d, 'Main View', (0, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Top View', (200, 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Left View', (0, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
cv.putText(display_3d, 'Right View', (200, 212), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
is_draw = False # ensure only one hand is drawn
def draw_lines(image, landmarks, is_draw_point=True, thickness=2):
cv.line(image, landmarks[0], landmarks[1], (255, 255, 255), thickness)
cv.line(image, landmarks[1], landmarks[2], (255, 255, 255), thickness)
cv.line(image, landmarks[2], landmarks[3], (255, 255, 255), thickness)
cv.line(image, landmarks[3], landmarks[4], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[5], (255, 255, 255), thickness)
cv.line(image, landmarks[5], landmarks[6], (255, 255, 255), thickness)
cv.line(image, landmarks[6], landmarks[7], (255, 255, 255), thickness)
cv.line(image, landmarks[7], landmarks[8], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[9], (255, 255, 255), thickness)
cv.line(image, landmarks[9], landmarks[10], (255, 255, 255), thickness)
cv.line(image, landmarks[10], landmarks[11], (255, 255, 255), thickness)
cv.line(image, landmarks[11], landmarks[12], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[13], (255, 255, 255), thickness)
cv.line(image, landmarks[13], landmarks[14], (255, 255, 255), thickness)
cv.line(image, landmarks[14], landmarks[15], (255, 255, 255), thickness)
cv.line(image, landmarks[15], landmarks[16], (255, 255, 255), thickness)
cv.line(image, landmarks[0], landmarks[17], (255, 255, 255), thickness)
cv.line(image, landmarks[17], landmarks[18], (255, 255, 255), thickness)
cv.line(image, landmarks[18], landmarks[19], (255, 255, 255), thickness)
cv.line(image, landmarks[19], landmarks[20], (255, 255, 255), thickness)
if is_draw_point:
for p in landmarks:
cv.circle(image, p, thickness, (0, 0, 255), -1)
# used for gesture classification
gc = GestureClassification()
for idx, handpose in enumerate(hands):
conf = handpose[-1]
bbox = handpose[0:4].astype(np.int32)
handedness = handpose[-2]
if handedness <= 0.5:
handedness_text = 'Left'
else:
handedness_text = 'Right'
landmarks_screen = handpose[4:67].reshape(21, 3).astype(np.int32)
landmarks_word = handpose[67:130].reshape(21, 3)
gesture = gc.classify(landmarks_screen)
# Print results
if print_result:
print('-----------hand {}-----------'.format(idx + 1))
print('conf: {:.2f}'.format(conf))
print('handedness: {}'.format(handedness_text))
print('gesture: {}'.format(gesture))
print('hand box: {}'.format(bbox))
print('hand landmarks: ')
for l in landmarks_screen:
print('\t{}'.format(l))
print('hand world landmarks: ')
for l in landmarks_word:
print('\t{}'.format(l))
# draw box
cv.rectangle(display_screen, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
# draw handedness
cv.putText(display_screen, '{}'.format(handedness_text), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
# draw gesture
cv.putText(display_screen, '{}'.format(gesture), (bbox[0], bbox[1] + 30), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
# Draw line between each key points
landmarks_xy = landmarks_screen[:, 0:2]
draw_lines(display_screen, landmarks_xy, is_draw_point=False)
# z value is relative to WRIST
for p in landmarks_screen:
r = max(5 - p[2] // 5, 0)
r = min(r, 14)
cv.circle(display_screen, np.array([p[0], p[1]]), r, (0, 0, 255), -1)
if is_draw is False:
is_draw = True
# Main view
landmarks_xy = landmarks_word[:, [0, 1]]
landmarks_xy = (landmarks_xy * 1000 + 100).astype(np.int32)
draw_lines(display_3d, landmarks_xy, thickness=5)
# Top view
landmarks_xz = landmarks_word[:, [0, 2]]
landmarks_xz[:, 1] = -landmarks_xz[:, 1]
landmarks_xz = (landmarks_xz * 1000 + np.array([300, 100])).astype(np.int32)
draw_lines(display_3d, landmarks_xz, thickness=5)
# Left view
landmarks_yz = landmarks_word[:, [2, 1]]
landmarks_yz[:, 0] = -landmarks_yz[:, 0]
landmarks_yz = (landmarks_yz * 1000 + np.array([100, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_yz, thickness=5)
# Right view
landmarks_zy = landmarks_word[:, [2, 1]]
landmarks_zy = (landmarks_zy * 1000 + np.array([300, 300])).astype(np.int32)
draw_lines(display_3d, landmarks_zy, thickness=5)
return display_screen, display_3d
class GestureClassification:
def _vector_2_angle(self, v1, v2):
uv1 = v1 / np.linalg.norm(v1)
uv2 = v2 / np.linalg.norm(v2)
angle = np.degrees(np.arccos(np.dot(uv1, uv2)))
return angle
def _hand_angle(self, hand):
angle_list = []
# thumb
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[2][0], hand[0][1] - hand[2][1]]),
np.array([hand[3][0] - hand[4][0], hand[3][1] - hand[4][1]])
)
angle_list.append(angle_)
# index
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[6][0], hand[0][1] - hand[6][1]]),
np.array([hand[7][0] - hand[8][0], hand[7][1] - hand[8][1]])
)
angle_list.append(angle_)
# middle
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[10][0], hand[0][1] - hand[10][1]]),
np.array([hand[11][0] - hand[12][0], hand[11][1] - hand[12][1]])
)
angle_list.append(angle_)
# ring
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[14][0], hand[0][1] - hand[14][1]]),
np.array([hand[15][0] - hand[16][0], hand[15][1] - hand[16][1]])
)
angle_list.append(angle_)
# pink
angle_ = self._vector_2_angle(
np.array([hand[0][0] - hand[18][0], hand[0][1] - hand[18][1]]),
np.array([hand[19][0] - hand[20][0], hand[19][1] - hand[20][1]])
)
angle_list.append(angle_)
return angle_list
def _finger_status(self, lmList):
fingerList = []
originx, originy = lmList[0]
keypoint_list = [[5, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
for point in keypoint_list:
x1, y1 = lmList[point[0]]
x2, y2 = lmList[point[1]]
if np.hypot(x2 - originx, y2 - originy) > np.hypot(x1 - originx, y1 - originy):
fingerList.append(True)
else:
fingerList.append(False)
return fingerList
def _classify(self, hand):
thr_angle = 65.
thr_angle_thumb = 30.
thr_angle_s = 49.
gesture_str = "Undefined"
angle_list = self._hand_angle(hand)
thumbOpen, firstOpen, secondOpen, thirdOpen, fourthOpen = self._finger_status(hand)
# Number
if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
not firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Zero"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "One"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle) and \
not thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Two"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle) and \
not thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen:
gesture_str = "Three"
elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle) and \
firstOpen and secondOpen and thirdOpen and fourthOpen:
gesture_str = "Four"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and thirdOpen and fourthOpen:
gesture_str = "Five"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s) and \
thumbOpen and not firstOpen and not secondOpen and not thirdOpen and fourthOpen:
gesture_str = "Six"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] > thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and not secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Seven"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and (
angle_list[3] > thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and not thirdOpen and not fourthOpen:
gesture_str = "Eight"
elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle) and (angle_list[2] < thr_angle) and (
angle_list[3] < thr_angle) and (angle_list[4] > thr_angle_s) and \
thumbOpen and firstOpen and secondOpen and thirdOpen and not fourthOpen:
gesture_str = "Nine"
return gesture_str
def classify(self, landmarks):
hand = landmarks[:21, :2]
gesture = self._classify(hand)
return gesture
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# palm detector
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
nmsThreshold=0.3,
scoreThreshold=0.6,
backendId=backend_id,
targetId=target_id)
# handpose detector
handpose_detector = MPHandPose(modelPath=args.model,
confThreshold=args.conf_threshold,
backendId=backend_id,
targetId=target_id)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
# Palm detector inference
palms = palm_detector.infer(image)
hands = np.empty(shape=(0, 132))
# Estimate the pose of each hand
for palm in palms:
# Handpose detector inference
handpose = handpose_detector.infer(image, palm)
if handpose is not None:
hands = np.vstack((hands, handpose))
# Draw results on the input image
image, view_3d = visualize(image, hands, True)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
# Save results
if args.save:
cv.imwrite('result.jpg', image)
print('Results saved to result.jpg\n')
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.imshow('3D HandPose Demo', view_3d)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Palm detector inference
palms = palm_detector.infer(frame)
hands = np.empty(shape=(0, 132))
tm.start()
# Estimate the pose of each hand
for palm in palms:
# Handpose detector inference
handpose = handpose_detector.infer(frame, palm)
if handpose is not None:
hands = np.vstack((hands, handpose))
tm.stop()
# Draw results on the input image
frame, view_3d = visualize(frame, hands)
if len(palms) == 0:
print('No palm detected!')
else:
print('Palm detected!')
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
cv.imshow('MediaPipe Handpose Detection Demo', frame)
cv.imshow('3D HandPose Demo', view_3d)
tm.reset()