generated from sraashis/easytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
147 lines (110 loc) · 4.76 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch.nn.functional as F
from easytorch.utils.tensorutils import safe_concat
from torch import nn
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, p=1, k=3):
super(ConvBlock, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size=k, padding=p),
nn.BatchNorm2d(out_channels, track_running_stats=False),
nn.ReLU(inplace=True)
]
self.encode = nn.Sequential(*layers)
def forward(self, x):
return self.encode(x)
class COVDNet(nn.Module):
def __init__(self, num_channels, reduce_by=1):
super(COVDNet, self).__init__()
self.A1_ = ConvBlock(num_channels, int(64 / reduce_by))
self.A2_ = ConvBlock(int(64 / reduce_by), int(128 / reduce_by))
self.A3_ = ConvBlock(int(128 / reduce_by), int(256 / reduce_by))
self.A_mid = ConvBlock(int(256 / reduce_by), int(512 / reduce_by))
self.A3_up = nn.ConvTranspose2d(int(512 / reduce_by), int(256 / reduce_by), kernel_size=2, stride=2)
self._A3 = ConvBlock(int(512 / reduce_by), int(256 / reduce_by))
self.A2_up = nn.ConvTranspose2d(int(256 / reduce_by), int(128 / reduce_by), kernel_size=2, stride=2)
self._A2 = ConvBlock(int(256 / reduce_by), int(128 / reduce_by))
self.A1_up = nn.ConvTranspose2d(int(128 / reduce_by), int(64 / reduce_by), kernel_size=2, stride=2)
self._A1 = ConvBlock(int(128 / reduce_by), int(64 / reduce_by))
self.enc1 = ConvBlock(int(64 / reduce_by), int(128 / reduce_by), p=0)
self.enc2 = ConvBlock(int(128 / reduce_by), int(256 / reduce_by), p=0)
self.enc3 = ConvBlock(int(256 / reduce_by), int(256 / reduce_by), p=0)
self.enc4 = ConvBlock(int(256 / reduce_by), int(512 / reduce_by), p=0)
self.enc5 = ConvBlock(int(512 / reduce_by), int(512 / reduce_by), p=0)
self.flat_size = int(512 / reduce_by) * 6 * 2
def forward(self, x):
a1_ = self.A1_(x)
a1_dwn = F.max_pool2d(a1_, kernel_size=2, stride=2)
a2_ = self.A2_(a1_dwn)
a2_dwn = F.max_pool2d(a2_, kernel_size=2, stride=2)
a3_ = self.A3_(a2_dwn)
a3_dwn = F.max_pool2d(a3_, kernel_size=2, stride=2)
a_mid = self.A_mid(a3_dwn)
a3_up = self.A3_up(a_mid)
_a3 = self._A3(safe_concat(a3_, a3_up))
a2_up = self.A2_up(_a3)
_a2 = self._A2(safe_concat(a2_, a2_up))
a1_up = self.A1_up(_a2)
_a1 = self._A1(safe_concat(a1_, a1_up))
_a1 = F.max_pool2d(_a1, kernel_size=2, stride=2)
_a1 = self.enc1(_a1)
_a1 = F.max_pool2d(_a1, kernel_size=2, stride=2)
_a1 = self.enc2(_a1)
_a1 = F.max_pool2d(_a1, kernel_size=2, stride=2)
_a1 = self.enc3(_a1)
_a1 = F.max_pool2d(_a1, kernel_size=2, stride=2)
_a1 = self.enc4(_a1)
_a1 = F.max_pool2d(_a1, kernel_size=2, stride=2)
_a1 = self.enc5(_a1)
_a1 = _a1.view(-1, self.flat_size)
return _a1
class MultiLabelModule(nn.Module):
def __init__(self, in_size):
super().__init__()
self.fc0m = nn.Linear(in_size, 512)
self.fc0_bn = nn.BatchNorm1d(512)
self.fc1m = nn.Linear(512, 256)
self.fc1_bn = nn.BatchNorm1d(256)
self.fc2m = nn.Linear(256, 64)
self.fc3m = nn.Linear(64, 6)
def forward(self, x):
x = F.relu(self.fc0_bn(self.fc0m(x)))
x = F.relu(self.fc1_bn(self.fc1m(x)))
x = F.relu(self.fc2m(x))
x = self.fc3m(x)
return x.view(x.shape[0], 2, -1)
class BinaryLabelModule(nn.Module):
def __init__(self, in_size):
super().__init__()
self.fc0m = nn.Linear(in_size, 512)
self.fc0_bn = nn.BatchNorm1d(512)
self.fc1m = nn.Linear(512, 256)
self.fc1_bn = nn.BatchNorm1d(256)
self.fc2m = nn.Linear(256, 64)
self.fc3m = nn.Linear(64, 2)
def forward(self, x):
x = F.relu(self.fc0_bn(self.fc0m(x)))
x = F.relu(self.fc1_bn(self.fc1m(x)))
x = F.relu(self.fc2m(x))
x = self.fc3m(x)
return x
class MultiLabel(nn.Module):
def __init__(self, in_ch, r=8):
super().__init__()
self.encoder = COVDNet(num_channels=in_ch, reduce_by=r)
self.multi = MultiLabelModule(self.encoder.flat_size)
def forward(self, x):
x = self.encoder(x)
return self.multi(x)
class Binary(nn.Module):
def __init__(self, in_ch, r=8):
super().__init__()
self.encoder = COVDNet(num_channels=in_ch, reduce_by=r)
self.cls = BinaryLabelModule(self.encoder.flat_size)
def forward(self, x):
x = self.encoder(x)
return self.cls(x)
def get_model(which, in_ch=2, r=4):
if which == 'multi':
return MultiLabel(in_ch, r)
elif which == 'binary':
return Binary(in_ch, r)