-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathpython.cc
410 lines (389 loc) · 14.8 KB
/
python.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <functional>
#include <memory>
#include <unordered_map>
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
#include "minhashcuda.h"
static char module_docstring[] =
"This module provides fast Weighted Minhash implementation which uses CUDA.";
static char minhash_cuda_init_docstring[] =
"Prepares Weighted Minhash internal state on GPU.";
static char minhash_cuda_retrieve_vars_docstring[] =
"Copies the random variables rs, ln_cs and betas from the generator to the host.";
static char minhash_cuda_assign_vars_docstring[] =
"Assigns random variables rs, ln_cs and betas to the generator. "
"Used for testing purposes since those variables are already set "
"in minhash_cuda_init().";
static char minhash_cuda_calc_docstring[] =
"Calculates Weighted Minhashes.";
static char minhash_cuda_fini_docstring[] =
"Disposes Weighted Minhash internal state on GPU.";
static PyObject *py_minhash_cuda_init(PyObject *self, PyObject *args, PyObject *kwargs);
static PyObject *py_minhash_cuda_retrieve_vars(PyObject *self, PyObject *args);
static PyObject *py_minhash_cuda_assign_vars(PyObject *self, PyObject *args);
static PyObject *py_minhash_cuda_calc(PyObject *self, PyObject *args, PyObject *kwargs);
static PyObject *py_minhash_cuda_fini(PyObject *self, PyObject *args);
static PyMethodDef module_functions[] = {
{"minhash_cuda_init", reinterpret_cast<PyCFunction>(py_minhash_cuda_init),
METH_VARARGS | METH_KEYWORDS, minhash_cuda_init_docstring},
{"minhash_cuda_retrieve_vars", reinterpret_cast<PyCFunction>(py_minhash_cuda_retrieve_vars),
METH_VARARGS, minhash_cuda_retrieve_vars_docstring},
{"minhash_cuda_assign_vars", reinterpret_cast<PyCFunction>(py_minhash_cuda_assign_vars),
METH_VARARGS, minhash_cuda_assign_vars_docstring},
{"minhash_cuda_calc", reinterpret_cast<PyCFunction>(py_minhash_cuda_calc),
METH_VARARGS | METH_KEYWORDS, minhash_cuda_calc_docstring},
{"minhash_cuda_fini", reinterpret_cast<PyCFunction>(py_minhash_cuda_fini),
METH_VARARGS, minhash_cuda_fini_docstring},
{NULL, NULL, 0, NULL}
};
extern "C" {
PyMODINIT_FUNC PyInit_libMHCUDA(void) {
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"libMHCUDA", /* m_name */
module_docstring, /* m_doc */
-1, /* m_size */
module_functions, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
PyObject *m = PyModule_Create(&moduledef);
if (m == NULL) {
PyErr_SetString(PyExc_RuntimeError, "PyModule_Create() failed");
return NULL;
}
// numpy
import_array();
return m;
}
}
template <typename O>
using pyobj_parent = std::unique_ptr<O, std::function<void(O*)>>;
template <typename O>
class _pyobj : public pyobj_parent<O> {
public:
_pyobj() : pyobj_parent<O>(
nullptr, [](O *p){ if (p) Py_DECREF(p); }) {}
explicit _pyobj(PyObject *ptr) : pyobj_parent<O>(
reinterpret_cast<O *>(ptr), [](O *p){ if(p) Py_DECREF(p); }) {}
void reset(PyObject *p) noexcept {
pyobj_parent<O>::reset(reinterpret_cast<O*>(p));
}
};
using pyobj = _pyobj<PyObject>;
using pyarray = _pyobj<PyArrayObject>;
static void set_cuda_malloc_error() {
PyErr_SetString(PyExc_MemoryError, "Failed to allocate memory on GPU");
}
static void set_cuda_device_error() {
PyErr_SetString(PyExc_ValueError, "No such CUDA device exists");
}
static void set_cuda_memcpy_error() {
PyErr_SetString(PyExc_RuntimeError, "cudaMemcpy failed");
}
static PyObject *py_minhash_cuda_init(PyObject *self, PyObject *args,
PyObject *kwargs) {
uint32_t dim, seed = static_cast<uint32_t>(time(NULL)), devices = 0;
uint16_t samples;
int deferred = false;
int verbosity = 0;
static const char *kwlist[] = {
"dim", "samples", "seed", "deferred", "devices", "verbosity", NULL
};
/* Parse the input tuple */
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "IH|IpIi", const_cast<char**>(kwlist), &dim, &samples,
&seed, &deferred, &devices, &verbosity)) {
return NULL;
}
MHCUDAResult result = mhcudaSuccess;
MinhashCudaGenerator *gen;
Py_BEGIN_ALLOW_THREADS
gen = mhcuda_init(dim, samples, seed, deferred, devices, verbosity, &result);
Py_END_ALLOW_THREADS
switch (result) {
case mhcudaInvalidArguments:
PyErr_SetString(PyExc_ValueError,
"Invalid arguments were passed to minhash_cuda_init");
return NULL;
case mhcudaNoSuchDevice:
set_cuda_device_error();
return NULL;
case mhcudaMemoryAllocationFailure:
set_cuda_malloc_error();
return NULL;
case mhcudaMemoryCopyError:
set_cuda_memcpy_error();
return NULL;
case mhcudaRuntimeError:
PyErr_SetString(PyExc_AssertionError, "minhash_cuda_init failure (bug?)");
return NULL;
case mhcudaSuccess:
return PyLong_FromUnsignedLongLong(reinterpret_cast<uintptr_t>(gen));
default:
PyErr_SetString(PyExc_AssertionError,
"Unknown error code returned from minhash_cuda_init");
return NULL;
}
}
static PyObject *py_minhash_cuda_retrieve_vars(PyObject *self, PyObject *args) {
uint64_t gen_ptr;
if (!PyArg_ParseTuple(args, "K", &gen_ptr)) {
return NULL;
}
MinhashCudaGenerator *gen =
reinterpret_cast<MinhashCudaGenerator *>(static_cast<uintptr_t>(gen_ptr));
if (gen == nullptr) {
PyErr_SetString(PyExc_ValueError, "MinHashCuda Generator pointer is null.");
return NULL;
}
auto params = mhcuda_get_parameters(gen);
npy_intp dims[] = {params.samples, params.dim, 0};
auto rs_obj = reinterpret_cast<PyArrayObject *>(PyArray_EMPTY(
2, dims, NPY_FLOAT32, false));
auto ln_cs_obj = reinterpret_cast<PyArrayObject *>(PyArray_EMPTY(
2, dims, NPY_FLOAT32, false));
auto betas_obj = reinterpret_cast<PyArrayObject *>(PyArray_EMPTY(
2, dims, NPY_FLOAT32, false));
auto rs = reinterpret_cast<float *>(PyArray_DATA(rs_obj));
auto ln_cs = reinterpret_cast<float *>(PyArray_DATA(ln_cs_obj));
auto betas = reinterpret_cast<float *>(PyArray_DATA(betas_obj));
int result;
Py_BEGIN_ALLOW_THREADS
result = mhcuda_retrieve_random_vars(gen, rs, ln_cs, betas);
Py_END_ALLOW_THREADS
switch (result) {
case mhcudaInvalidArguments:
PyErr_SetString(PyExc_ValueError,
"Invalid arguments were passed to minhash_cuda_retrieve_vars");
return NULL;
case mhcudaNoSuchDevice:
set_cuda_device_error();
return NULL;
case mhcudaMemoryAllocationFailure:
set_cuda_malloc_error();
return NULL;
case mhcudaMemoryCopyError:
set_cuda_memcpy_error();
return NULL;
case mhcudaRuntimeError:
PyErr_SetString(PyExc_AssertionError, "minhash_cuda_retrieve_vars failure (bug?)");
return NULL;
case mhcudaSuccess:
return Py_BuildValue("OOO", rs_obj, ln_cs_obj, betas_obj);
default:
PyErr_SetString(PyExc_AssertionError,
"Unknown error code returned from minhash_cuda_retrieve_vars");
return NULL;
}
}
static PyObject *py_minhash_cuda_assign_vars(PyObject *self, PyObject *args) {
PyObject *rs_obj, *ln_cs_obj, *betas_obj;
uint64_t gen_ptr;
if (!PyArg_ParseTuple(args, "KOOO", &gen_ptr, &rs_obj, &ln_cs_obj, &betas_obj)) {
return NULL;
}
MinhashCudaGenerator *gen =
reinterpret_cast<MinhashCudaGenerator*>(static_cast<uintptr_t>(gen_ptr));
if (gen == nullptr) {
PyErr_SetString(PyExc_ValueError, "MinHashCuda Generator pointer is null.");
return NULL;
}
auto params = mhcuda_get_parameters(gen);
int64_t const_size = params.dim * params.samples;
pyarray rs_arr(PyArray_FROM_OTF(rs_obj, NPY_FLOAT32, NPY_ARRAY_IN_ARRAY));
if (!rs_arr) {
PyErr_SetString(PyExc_ValueError, "Failed to convert rs to numpy array");
return NULL;
}
auto size = PyArray_SIZE(rs_arr.get());
if (size != const_size) {
PyErr_SetString(PyExc_ValueError, "rs.size must be equal to dim * samples");
return NULL;
}
const float *rs = reinterpret_cast<float *>(PyArray_DATA(rs_arr.get()));
pyarray ln_cs_arr(PyArray_FROM_OTF(ln_cs_obj, NPY_FLOAT32, NPY_ARRAY_IN_ARRAY));
if (!ln_cs_arr) {
PyErr_SetString(PyExc_ValueError, "Failed to convert ln_cs to numpy array");
return NULL;
}
size = PyArray_SIZE(ln_cs_arr.get());
if (size != const_size) {
PyErr_SetString(PyExc_ValueError, "ln_cs.size must be equal to dim * samples");
return NULL;
}
const float *ln_cs = reinterpret_cast<float *>(PyArray_DATA(ln_cs_arr.get()));
pyarray betas_arr(PyArray_FROM_OTF(betas_obj, NPY_FLOAT32, NPY_ARRAY_IN_ARRAY));
if (betas_arr == NULL) {
PyErr_SetString(PyExc_ValueError, "Failed to convert betas to numpy array");
return NULL;
}
size = PyArray_SIZE(betas_arr.get());
if (size != const_size) {
PyErr_SetString(PyExc_ValueError, "betas.size must be equal to dim * samples");
return NULL;
}
const float *betas = reinterpret_cast<float *>(PyArray_DATA(betas_arr.get()));
int result;
Py_BEGIN_ALLOW_THREADS
result = mhcuda_assign_random_vars(gen, rs, ln_cs, betas);
Py_END_ALLOW_THREADS
switch (result) {
case mhcudaInvalidArguments:
PyErr_SetString(PyExc_ValueError,
"Invalid arguments were passed to minhash_cuda_assign_vars");
return NULL;
case mhcudaNoSuchDevice:
set_cuda_device_error();
return NULL;
case mhcudaMemoryAllocationFailure:
set_cuda_malloc_error();
return NULL;
case mhcudaMemoryCopyError:
set_cuda_memcpy_error();
return NULL;
case mhcudaRuntimeError:
PyErr_SetString(PyExc_AssertionError, "minhash_cuda_assign_vars failure (bug?)");
return NULL;
case mhcudaSuccess:
Py_RETURN_NONE;
default:
PyErr_SetString(PyExc_AssertionError,
"Unknown error code returned from minhash_cuda_assign_vars");
return NULL;
}
}
static PyObject *py_minhash_cuda_calc(PyObject *self, PyObject *args,
PyObject *kwargs) {
PyObject *csr_matrix;
uint64_t gen_ptr;
uint32_t row_start = 0, row_finish = 0xFFFFFFFFu;
static const char *kwlist[] = {
"gen", "matrix", "row_start", "row_finish", NULL
};
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "KO|II", const_cast<char**>(kwlist),
&gen_ptr, &csr_matrix, &row_start, &row_finish)) {
return NULL;
}
MinhashCudaGenerator *gen =
reinterpret_cast<MinhashCudaGenerator*>(static_cast<uintptr_t>(gen_ptr));
if (gen == nullptr) {
PyErr_SetString(PyExc_ValueError, "MinHashCuda Generator pointer is null.");
return NULL;
}
PyObject *scipy = PyImport_ImportModule("scipy.sparse");
if (scipy == nullptr) {
PyErr_SetString(PyExc_ImportError, "Failed to import scipy.sparse.csr_matrix");
return NULL;
}
pyobj matrix_type(PyObject_GetAttrString(scipy, "csr_matrix"));
if (matrix_type == nullptr) {
PyErr_SetString(PyExc_ImportError, "Failed to import scipy.sparse.csr_matrix");
return NULL;
}
if (!PyObject_TypeCheck(csr_matrix, reinterpret_cast<PyTypeObject *>(matrix_type.get()))) {
PyErr_SetString(PyExc_TypeError,
"The second argument must be of type scipy.sparse.csr_matrix");
return NULL;
}
pyobj csr_data(PyObject_GetAttrString(csr_matrix, "data"));
pyarray weights_obj(PyArray_FROM_OTF(csr_data.get(), NPY_FLOAT32, NPY_ARRAY_IN_ARRAY));
if (!weights_obj) {
PyErr_SetString(PyExc_ValueError, "Failed to convert csr_matrix.data to numpy.array");
return NULL;
}
pyobj csr_indices(PyObject_GetAttrString(csr_matrix, "indices"));
pyarray cols_obj(PyArray_FROM_OTF(csr_indices.get(), NPY_UINT32, NPY_ARRAY_FORCECAST | NPY_ARRAY_IN_ARRAY));
if (!cols_obj) {
PyErr_SetString(PyExc_ValueError, "Failed to convert csr_matrix.indices to numpy.array");
return NULL;
}
pyobj csr_indptr(PyObject_GetAttrString(csr_matrix, "indptr"));
pyarray rows_obj(PyArray_FROM_OTF(csr_indptr.get(), NPY_UINT32, NPY_ARRAY_FORCECAST | NPY_ARRAY_IN_ARRAY));
if (!rows_obj) {
PyErr_SetString(PyExc_ValueError, "Failed to convert csr_matrix.indptr to numpy.array");
return NULL;
}
auto rows_dims = PyArray_DIMS(rows_obj.get());
auto weights = reinterpret_cast<float *>(PyArray_DATA(weights_obj.get()));
auto cols = reinterpret_cast<uint32_t *>(PyArray_DATA(cols_obj.get()));
auto rows = reinterpret_cast<uint32_t *>(PyArray_DATA(rows_obj.get()));
auto length = static_cast<uint32_t>(rows_dims[0]) - 1;
if (row_start >= length) {
PyErr_SetString(PyExc_ValueError,
"minhash_cuda_calc: row_start must be less than the "
"total number of rows in the input matrix.");
return NULL;
}
row_finish = std::min(row_finish, length);
if (row_finish <= row_start) {
PyErr_SetString(PyExc_ValueError,
"minhash_cuda_calc: row_finish must be greater than "
"row_start.");
return NULL;
}
length = row_finish - row_start;
std::unique_ptr<uint32_t[]> sliced_rows;
if (row_start > 0) {
uint32_t offset = rows[row_start];
weights += offset;
cols += offset;
sliced_rows.reset(new uint32_t[length + 1]);
#pragma omp simd
for (uint32_t i = row_start; i <= row_finish; i++) {
sliced_rows[i - row_start] = rows[i] - offset;
}
}
auto params = mhcuda_get_parameters(gen);
npy_intp hash_dims[] = {length, params.samples, 2, 0};
auto output_obj = reinterpret_cast<PyArrayObject *>(PyArray_EMPTY(
3, hash_dims, NPY_UINT32, false));
if (!output_obj) {
return NULL;
}
auto output = reinterpret_cast<uint32_t *>(PyArray_DATA(output_obj));
int result;
Py_BEGIN_ALLOW_THREADS
result = mhcuda_calc(gen, weights, cols,
sliced_rows? sliced_rows.get() : rows,
length, output);
Py_END_ALLOW_THREADS
switch (result) {
case mhcudaInvalidArguments:
PyErr_SetString(PyExc_ValueError,
"Invalid arguments were passed to minhash_cuda_calc");
return NULL;
case mhcudaNoSuchDevice:
set_cuda_device_error();
return NULL;
case mhcudaMemoryAllocationFailure:
set_cuda_malloc_error();
return NULL;
case mhcudaMemoryCopyError:
set_cuda_memcpy_error();
return NULL;
case mhcudaRuntimeError:
PyErr_SetString(PyExc_AssertionError, "minhash_cuda_calc failure (bug?)");
return NULL;
case mhcudaSuccess:
return reinterpret_cast<PyObject *>(output_obj);
default:
PyErr_SetString(PyExc_AssertionError,
"Unknown error code returned from minhash_cuda_calc");
return NULL;
}
}
static PyObject *py_minhash_cuda_fini(PyObject *self, PyObject *args) {
uint64_t gen_ptr;
if (!PyArg_ParseTuple(args, "K", &gen_ptr)) {
return NULL;
}
MinhashCudaGenerator *gen =
reinterpret_cast<MinhashCudaGenerator*>(static_cast<uintptr_t>(gen_ptr));
mhcuda_fini(gen);
Py_RETURN_NONE;
}