-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathpredict_video.py
250 lines (218 loc) · 10.8 KB
/
predict_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# USAGE
# $ python predict_video.py --conf conf/lplates_smallset.json
import argparse
import os
import re
import shutil
import sys
import time
import cv2
import imutils
import numpy as np
import tensorflow as tf
from imutils import paths
# import the necessary packages
from object_detection.utils import label_map_util
from base2designs.plates.plateFinder import PlateFinder
from base2designs.plates.plateHistory import PlateHistory
from base2designs.utils.conf import Conf
from base2designs.utils.folderControl import FolderControl
from base2designs.utils.videoWriter import VideoWriter
from base2designs.plates.predicter import Predicter
# construct the argument parser and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--conf", required=True, help="path to the json config file")
args = vars(ap.parse_args())
# Check if config file exists
if os.path.exists(args["conf"]) == False:
print("[ERROR]: --conf \"{}\" does not exist".format(args["conf"]))
sys.exit()
# Read the json config
conf = Conf(args["conf"])
reject_poor_quality_plates=conf["reject_poor_quality_plates"]=="true"
print("Detecting objects using model: {}, and {} stage(s) of prediction".format(conf["model"], conf["pred_stages"]))
print("reject_poor_quality_plates: {}".format(reject_poor_quality_plates))
# initialize the model
model = tf.Graph()
# create a context manager that makes this model the default one for
# execution
with model.as_default():
# initialize the graph definition
graphDef = tf.GraphDef()
# load the graph from disk
with tf.gfile.GFile(conf["model"], "rb") as f:
serializedGraph = f.read()
graphDef.ParseFromString(serializedGraph)
tf.import_graph_def(graphDef, name="")
# load the class labels from disk
labelMap = label_map_util.load_labelmap(conf["labels"])
categories = label_map_util.convert_label_map_to_categories(
labelMap, max_num_classes=conf["num_classes"],
use_display_name=True)
categoryIdx = label_map_util.create_category_index(categories)
# open the logFile, create if it does not exist, otherwise open in append mode
logFilePath = "{}/{}" .format(conf["output_image_path"], conf["log_file_name"])
if (os.path.isdir(conf["output_image_path"]) != True):
os.makedirs(conf["output_image_path"])
if os.path.exists(logFilePath) == False:
logFile = open(logFilePath, "w")
else:
logFile = open(logFilePath, "a")
# create a plateFinder and load the plate history utility
plateFinder = PlateFinder(conf["min_confidence"], categoryIdx,
rejectPlates=reject_poor_quality_plates, charIOUMax=conf["charIOUMax"])
folderController = FolderControl()
plateHistory = PlateHistory(conf["output_image_path"], logFile,
saveAnnotatedImage=conf["saveAnnotatedImage"] == "true")
quit = False
plateLogLatency = conf["plateLogLatency"]* conf["videoFrameRate"]
platesReadyForLog = False
myPaths = paths.list_files(conf["input_video_path"], validExts=(".h264", "mp4", "mov", "ts"))
# loop over all the detected video files
for videoPath in sorted(myPaths):
print("[INFO] reading video file {}...".format(videoPath))
start_time = time.time()
frameCount = 0
oldFrameCount = 0
validImages = 0
loggedPlateCount = 0
frameCntForPlateLog = 0
frameDecCnt = 1
m = re.search(r"([0-9]{4}[-_][0-9]{2}[-_][0-9]{2})", videoPath)
if m:
destFolderRootName = m.group(1) # assumes video stored in sub-directory
else:
destFolderRootName = "YYYY-MM-DD"
folderController.createDestFolders(destFolderRootName, conf["save_video_path"],
conf["output_image_path"], conf["output_video_path"])
# create a session to perform inference
with model.as_default():
with tf.Session(graph=model) as sess:
# initialize the points to the video files
stream = cv2.VideoCapture(videoPath)
videoWriter = None
# Prepare findFrameWithPlate for a new video sequence
plateLogFlag = False
firstPlateFound = False
# create a predicter, used to predict plates and chars
predicter = Predicter(model, sess, categoryIdx)
# loop over frames from the video file stream
while True:
# grab the next frame
#(grabbed, image) = stream.read()
# read the next frame from the video stream
grabbed = stream.grab() # grab frame but do not decode
# We have reached the end of the video clip. Save any residual plates to log
# Remove all the plate history
if not grabbed:
if platesReadyForLog == True:
plateDictBest = plateHistory.selectTheBestPlates()
# generate output files, ie cropped Images, full image and log file
plateHistory.writeToFile(plateDictBest, destFolderRootName, W, H, D)
loggedPlateCount += len(plateDictBest)
plateHistory.clearHistory()
firstPlateFound = False
# move video clip from input directory to saveVideoDir
outputPathSaveOriginalImage = conf["save_video_path"] + "/" + destFolderRootName + videoPath[videoPath.rfind("/") + 0:]
if (conf["move_video_file"] == "true"):
try:
# os.rename(videoPath, outputPathSaveOriginalImage) #does not work between two different file systems
shutil.move(videoPath, outputPathSaveOriginalImage)
except OSError as e:
print("OS error({0}): {1}".format(e.errno, e.strerror))
sys.exit(1)
break
# Decimate the frames
frameCount += 1
if firstPlateFound == True:
frameCntForPlateLog += 1
if frameCntForPlateLog > plateLogLatency:
plateLogFlag = True
frameCntForPlateLog = 0
if (frameDecCnt == 1):
# retrieve the already grabbed frame, and get the dimensions
grabbed, image = stream.retrieve()
(H, W, D) = image.shape[:3]
# if the video writer is None, initialize it
# initializing in the middle of the loop, because we don't know
# W, H, and D until the first video frame is read
if conf["saveAnnotatedVideo"] == "true":
if videoWriter is None:
# save annotated video to "output_video_path". Use the same file prefix, but change the suffix to mp4
outputPathVideo = conf["output_video_path"] + "/" + destFolderRootName + videoPath[
videoPath.rfind("/") + 0:]
outputPathVideo = outputPathVideo[0: outputPathVideo.rfind(".")] + ".mp4"
videoWriter = VideoWriter(outputPathVideo, W, H)
# create a copy of image
videoImage = image.copy()
# If prediction stages == 2, then perform prediction on full image, find the plates, crop the plates from the image,
# and then perform prediction on the plate images
if conf["pred_stages"] == 2:
# Perform inference on the full image, and then select only the plate boxes
boxes, scores, labels = predicter.predictPlates(image)
licensePlateFound, plateBoxes, plateScores = plateFinder.findPlatesOnly(boxes, scores, labels)
# loop over the plate boxes, find the chars inside the plate boxes,
# and then scrub the chars with 'processPlates', resulting in a list of final plateBoxes, char texts, char boxes, char scores and complete plate scores
plates = []
for plateBox in plateBoxes:
boxes, scores, labels = predicter.predictChars(image, plateBox, conf["min_confidence"])
chars = plateFinder.findCharsOnly(boxes, scores, labels, plateBox, image.shape[0], image.shape[1])
if len(chars) > 0:
plates.append(chars)
else:
plates.append(None)
plateBoxes, charTexts, charBoxes, charScores, plateAverageScores = plateFinder.processPlates(
plates, plateBoxes, plateScores)
if len(plateAverageScores) == 0:
licensePlateFound = False
else:
licensePlateFound = True
# If prediction stages == 1, then predict the plates and characters in one pass
elif conf["pred_stages"] == 1:
# Perform inference on the full image, and then find the plate text associated with each plate
boxes, scores, labels = predicter.predictPlates(image, preprocess=False)
licensePlateFound, plateBoxes, charTexts, charBoxes, charScores, plateAverageScores = plateFinder.findPlates(
boxes, scores, labels)
else:
print("[ERROR] --pred_stages {}. The number of prediction stages must be either 1 or 2".format(
conf["pred_stages"]))
quit()
# write annotated video if option is selected
if conf["saveAnnotatedVideo"] == "true":
# write the frame plus annotation to the video stream
videoWriter.writeFrame(videoImage, plateBoxes, charTexts, charBoxes, charScores)
# if license plates have been found, then predict the plate text, and add to the history
if licensePlateFound == True:
plateHistory.addPlatesToHistory(charTexts, charBoxes, plateBoxes, image, videoPath, frameCount, plateAverageScores)
validImages += 1
firstPlateFound = True
platesReadyForLog = True
# if sufficient time has passed since the last log, then
# get a dictionary of the best de-duplicated plates,
# and remove old plates from history, then save images and update the log
if plateLogFlag == True:
platesReadyForLog = False
plateLogFlag = False
plateDictBest = plateHistory.selectTheBestPlates()
# generate output files, ie cropped Images, full image and log file
plateHistory.writeToFile(plateDictBest, destFolderRootName, W, H, D)
plateHistory.removeOldPlatesFromHistory()
loggedPlateCount += len(plateDictBest)
if (frameDecCnt == conf["frameDecimationFactor"]):
frameDecCnt = 1
else:
frameDecCnt += 1
# close the video writer and release the stream
if conf["saveAnnotatedVideo"] == "true":
videoWriter.closeWriter()
stream.release()
# print some performance statistics
curTime = time.time()
processingTime = curTime - start_time
frameCountDelta = (frameCount - oldFrameCount) / conf["frameDecimationFactor"]
fps = frameCountDelta / processingTime
oldFrameCount = frameCount
print(
"[INFO] Processed {} frames in {:.2f} seconds. Frame rate: {:.2f} Hz".format(frameCountDelta, processingTime,
fps))
print("[INFO] validImages: {}, frameCount: {}, loggedPlateCount: {}".format(validImages, frameCount, loggedPlateCount))