-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtoolbox.py
executable file
·271 lines (223 loc) · 9.03 KB
/
toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# a bunch of custom functions I written
# mostly for python 2.7, unless otherwise stated
# include this at the start of your Python script, with this file in the same dir:
# import toolbox as tb # my custom functions
def my_debugger(vars):
# starts interactive Python terminal at location in script
# call with tb.my_debugger(globals().copy()) anywhere in your script
# or call my_debugger(locals().copy()) from anywhere within this package or another function
import readline # optional, will allow Up/Down/History in the console
import code
# vars = globals().copy() # in python "global" variables are actually module-level
vars.update(locals())
shell = code.InteractiveConsole(vars)
shell.interact()
def mkdir_p(path, return_path=False):
# make a directory, and all parent dir's in the path
import sys
import os
import errno
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
if return_path:
return path
def initialize_file(string, output_file):
# write string to file
# !! THIS WILL OVERWRITE CONTENTS !!
with open(output_file, "w") as myfile:
myfile.write(string + '\n')
def append_string(string, output_file):
# append string to file
with open(output_file, "a") as myfile:
myfile.write(string + '\n')
def subprocess_cmd(command):
# run a terminal command with stdout piping enabled
import subprocess as sp
process = sp.Popen(command,stdout=sp.PIPE, shell=True)
proc_stdout = process.communicate()[0].strip()
print proc_stdout
def get_files(dir_path, ends_with = '', trunc = False):
# get the files in the dir that match the end pattern
# trunc : return just the file dirname + basename (truncate)
import sys
import os
file_list = []
for subdir, dirs, files in os.walk(dir_path):
for file in files:
if file.endswith(ends_with):
file_path = os.path.join(subdir,file)
if (trunc):
file_dir = os.path.basename(os.path.dirname(file_path))
file_base = os.path.basename(file_path)
file_path = os.path.join(file_dir,file_base)
file_list.append(file_path)
return file_list
def download_file(my_URL, my_outfile = ''):
# function to download a file from a URL
# !! This will overwrite the output file
# https://gist.github.com/hughdbrown/c145b8385a2afa6570e2
import urllib2
import urlparse
import os
URL_basename = os.path.basename(urlparse.urlsplit(my_URL).path)
# if no output file specified, save to URL filename in current dir
if my_outfile == '':
my_outfile = URL_basename
my_URL = urllib2.urlopen(my_URL)
with open(my_outfile, 'wb') as output:
while True:
data = my_URL.read(4096) # download in chunks
if data:
output.write(data)
else:
break
def py_unzip(zip_file, outdir = "."):
zip_ref = zipfile.ZipFile(zip_file, 'r')
zip_ref.extractall(outdir)
zip_ref.close()
def gz_unzip(gz_file, outdir = '', outfile = '', return_path = False):
import gzip
import os
# extract a .gz file
# !! This reads the entire file into memory !!
# make sure the input file is a .gz file
if not gz_file.lower().endswith('.gz'):
print "ERROR: File is not a .gz file; ", gz_file
return
# read in the contents
input_file = gzip.GzipFile(gz_file, 'rb')
file_contents = input_file.read()
input_file.close()
# set the output path
output_file_path = os.path.splitext(gz_file)[0]
# if an outdir was passed, save the output there instead
if outdir != '':
output_file_path = os.path.join(outdir, os.path.basename(output_file_path))
# if an output file was passed, use that instead
if outfile != '':
output_file_path = outfile
# write the contents
output_file = open(output_file_path, 'wb')
output_file.write(file_contents)
output_file.close()
# return the path if requested
if return_path:
if os.path.exists(output_file_path):
return output_file_path
def dict_from_tabular(inputfile, sep = ','):
import csv
lines_dict = {}
reader = csv.reader(open(inputfile, 'r'), delimiter=sep)
for key, value in reader:
lines_dict[key] = value
return lines_dict
def list_file_lines(file_path):
# return the list of entries in a file, one per line
# not blank lines, no trailing \n
with open(file_path, 'r') as f:
entries = [line.strip() for line in f if line.strip()]
return entries
def split_df_col2rows(dataframe, split_col, split_char, new_colname):
# # Splits a column into multiple rows
# dataframe : pandas dataframe to be processed
# split_col : chr string of the column name to be split
# split_char : chr to split the col on
# new_colname : new name for the
# ~~~~~~~~~~~~~~~~ #
import pandas as pd
import numpy as np
# make sure that the split_col is an 'object' type so we can split it
if split_col in dataframe.select_dtypes([np.object]).columns:
# save the split column as a separate object
tmp_col = dataframe[split_col].str.split(split_char).apply(pd.Series, 1).stack()
# drop the last index level
tmp_col.index = tmp_col.index.droplevel(-1)
# set the new col name
tmp_col.name = new_colname
# remove the original column from the df
del dataframe[split_col]
# join them into a new df
dataframe = dataframe.join(tmp_col)
else:
print """
WARNING: Trying to split column {} in dataframe, where column is not dtype 'object'
Column dtype is: {}
Column will not be split but column name {} will be changed to: {}
""".format(split_col, dataframe[split_col].dtype, split_col, new_colname)
# just change the column name and keep moving
dataframe.rename(columns={split_col: new_colname}, inplace=True)
# rest the indexes
dataframe = dataframe.reset_index(drop=True)
return dataframe
def split_df_col2cols(dataframe, split_col, split_char, new_colnames, delete_old = False):
# # Splits a column into multiple columns
# dataframe : pandas dataframe to be processed
# split_col : chr string of the column name to be split
# split_char : chr to split the col on
# new_colnames : list of new name for the columns
# delete_old : logical True / False, remove original column?
# ~~~~~~~~~~~~~~~~ #
import pandas as pd
import numpy as np
# pl.my_debugger(globals().copy())
# my_debugger(locals().copy())
# save the split column as a separate object
new_cols = dataframe[split_col].astype(np.object_).str.split(split_char).apply(pd.Series, 1)
# if all values were NaN, no split occured, only one col exists still
if len(new_cols.columns) < len(new_colnames):
# create the missing cols, fill with NaN
for i in range(len(new_cols.columns), len(new_colnames)):
new_cols[new_colnames[i]] = np.nan
# rename the cols
new_cols.columns = new_colnames
# remove the original column from the df
if delete_old is True:
del dataframe[split_col]
# merge with df
new_df = dataframe.join(new_cols)
return new_df
def conjunction(*conditions):
# apply multiple filtering conditions to a dataframe
import numpy as np
import functools
return functools.reduce(np.logical_and, conditions)
def table_multi_filter(dataframe, filter_criteria):
# filter a dataframe based on multiple criteria
# 'filter_criteria' = {'include': {'column_name': ['value1', 'value2']}, ... }
import pandas as pd
# my_debugger(locals().copy())
conditions_dfs = [] # empty list to hold conditional df's
for key, value in filter_criteria['include'].items():
for item in value:
includes_df = dataframe[key] == item
conditions_dfs.append(includes_df)
for key, value in filter_criteria['exclude'].items():
for item in value:
excludes_df = dataframe[key] != item
conditions_dfs.append(excludes_df)
for key, value in filter_criteria['less_than'].items():
less_thans_df = dataframe[key] < value
conditions_dfs.append(less_thans_df)
for key, value in filter_criteria['greater_than'].items():
greater_thans_df = dataframe[key] > value
conditions_dfs.append(greater_thans_df)
for key, value in filter_criteria['less_or_null'].items():
less_null_df = ( (dataframe[key] < value) | pd.isnull(dataframe[key]) )
conditions_dfs.append(less_null_df)
dataframe = dataframe[conjunction(*conditions_dfs)]
return dataframe
def write_json(object, output_file):
import json
with open(output_file,"w") as f:
json.dump(object, f, indent=4)
def load_json(input_file):
import json
with open(input_file,"r") as f:
my_item = json.load(f)
return my_item