-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathanalyser.cpp
174 lines (173 loc) · 6.52 KB
/
analyser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// 2024-10-27
// At least some lines of input end with CRLF, so watch out for that. Other than
// that, there isn't anything tricky about the input format.
//
// I'm not sure if you can get AC from brute force; on the DMOJ version of this
// problem, the answer is always less than 5 million. The time limit on SPOJ is
// more strict so it was probably designed to prevent brute force.
//
// The basic idea is simple: a program might potentially spend a lot of time
// repetitively executing a cycle of instructions. We want to either detect such
// cycles as infinite or quickly skip forward to the part where the cycle is
// broken. Every time the cycle is repeated, it'll do the same thing unless one
// of the branch instructions that was previously taken is no longer taken or
// vice versa. We can calculate the number of cycles required for that to happen
// by computing how much each variable is incremented by during one complete
// cycle, and comparing it with the difference between the value that the
// variable would need to have to change the disposition of each branch
// instruction in the cycle and the value that the variable has the first time
// the branch instruction is executed. This tells us how many times we have to
// simulate the entire cycle until something changes. Note that the number of
// times we have to go through this whole procedure is at most twice the number
// of branch instructions in the program, since a branch instruction can only
// transition from not-taken to taken once and from taken to not-taken once.
#include <algorithm>
#include <ctype.h>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
enum Opcode {
ADD,
NOP,
GOTO,
COND,
END,
};
struct Instruction {
Opcode opcode;
int var; // variable to increment or test (0 = A, etc)
int value; // value to add or test against
int label; // instruction to go to next (0 based index)
};
struct State {
int pc; // current instruction
long long time; // # of instructions previously executed
int value[26]; // values of variables
};
bool advance(State& state, const vector<Instruction>& prog) {
++state.time;
const Instruction& inst = prog[state.pc];
if (inst.opcode == END) return false;
if (inst.opcode == NOP) {
++state.pc;
} else if (inst.opcode == ADD) {
++state.pc;
state.value[inst.var] += inst.value;
} else if (inst.opcode == GOTO) {
state.pc = inst.label;
} else {
if (state.value[inst.var] == inst.value) state.pc = inst.label;
else ++state.pc;
}
return true;
}
long long analyze(const vector<Instruction>& prog) {
const int N = prog.size();
State state{};
for (;;) {
// advance until an instruction repeats
State oldstate = state;
vector<char> vis(N);
while (!vis[state.pc]) {
vis[state.pc] = 1;
if (!advance(state, prog)) return state.time;
}
// rewind to the first instruction in the cycle
while (oldstate.pc != state.pc) advance(oldstate, prog);
state = oldstate;
// make a list of increments and conditional jumps per cycle
int incr[26]{};
vector<pair<Instruction, int>> conds;
int cycle_size = 0;
do {
if (prog[state.pc].opcode == ADD) {
incr[prog[state.pc].var] += prog[state.pc].value;
} else if (prog[state.pc].opcode == COND) {
conds.emplace_back(prog[state.pc],
state.value[prog[state.pc].var]);
}
advance(state, prog);
++cycle_size;
} while (state.pc != oldstate.pc);
state = oldstate;
// find the first conditional jump whose disposition will change
long long min_cycles = 1LL << 32;
for (int i = 0; i < conds.size(); i++) {
if (incr[conds[i].first.var] == 0 ||
conds[i].second > conds[i].first.value) continue;
if (conds[i].second == conds[i].first.value) {
// the next time this instruction is reached, the jump WILL NOT
// be taken
min_cycles = 1;
break;
}
if ((conds[i].first.value - conds[i].second) %
incr[conds[i].first.var] == 0) {
// after a number of cycles, the jump WILL be taken
const int cycles = (conds[i].first.value - conds[i].second) /
incr[conds[i].first.var];
min_cycles = min(min_cycles, (long long)cycles);
}
}
if (min_cycles == (1LL << 32)) return -1;
state.time += min_cycles * cycle_size;
for (int i = 0; i < 26; i++) {
state.value[i] += incr[i] * min_cycles;
}
// and repeat
}
}
int main() {
vector<pair<int, Instruction>> input;
for (;;) {
int label; cin >> label;
if (cin.eof()) break;
Instruction inst {};
string line; getline(cin, line);
// according to Jacob there is some issue with the format of some lines,
// so let's assume there are extra spaces
line.erase(0, 1);
if (line.back() == '\r') line.pop_back();
if (line == "END") {
inst.opcode = END;
} else if (line.back() == '?') {
inst.opcode = NOP;
} else if (line[1] == '+') {
inst.opcode = ADD;
inst.var = line[0] - 'A';
line.erase(0, 2);
inst.value = stoi(line);
} else if (line[0] == 'G') {
inst.opcode = GOTO;
line.erase(0, 3);
inst.label = stoi(line);
} else {
inst.opcode = COND;
inst.var = line[3] - 'A';
line.erase(0, 5);
inst.value = 0;
while (isdigit(line[0])) {
inst.value = 10 * inst.value + line[0] - '0';
line.erase(0, 1);
}
line.erase(0, 4);
inst.label = stoi(line);
}
input.emplace_back(label, inst);
}
sort(input.begin(), input.end(),
[](auto x, auto y) {
return x.first < y.first;
});
vector<Instruction> prog(input.size());
for (int i = 0; i < input.size(); i++) {
prog[i] = input[i].second;
if (input[i].second.opcode == GOTO || input[i].second.opcode == COND) {
int j = 0;
while (input[j].first != input[i].second.label) j++;
prog[i].label = j;
}
}
cout << analyze(prog) << '\n';
}