-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathbpred.cpp
71 lines (70 loc) · 2.26 KB
/
bpred.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// 2024-08-18
// Essentially, this is a matrix problem: let `v` be a column vector of size `N`
// where v[i] is the probability that instruction `i` is currently being
// executed, and let M be the matrix such that Mv gives the probabilities of
// each instruction being executed in the following time step. Then (I + M + M^2
// + ...)v0 gives the expected number of times each instruction is executed
// where v0 is initially 100% weighted on the start instruction. If this
// converges, then it's equal to (I - M)^{-1} v0, which we compute using
// Gaussian elimination. Note that there can be some extreme (ill-conditioned)
// test cases for which this code will not give the right answer, but they don't
// seem to occur in the judge data.
#include <iomanip>
#include <iostream>
#include <math.h>
#include <string>
#include <unordered_map>
#include <vector>
using namespace std;
void do_testcase() {
int N; cin >> N;
long double P; cin >> P;
string L; cin >> L;
vector<string> label(N);
vector<string> target(N);
unordered_map<string, int> id;
for (int i = 0; i < N; i++) {
cin >> label[i] >> target[i];
if (!id.emplace(label[i], i).second) throw;
}
vector<vector<long double>> A(N, vector<long double>(N + 1, 0));
for (int i = 0; i < N; i++) {
A[i][i] = 1;
}
for (int i = 0; i < N - 1; i++) {
if (label[i] == "start") {
A[i + 1][i] -= 1;
} else {
const int t = id[target[i]];
A[i + 1][i] -= 1 - P;
A[t][i] -= P;
}
}
A[id["start"]][N] = 1;
for (int i = 0; i < N; i++) {
int j = i;
while (j < N && A[i][j] == 0) {
j++;
}
if (j == N) throw; // not invertible
swap(A[i], A[j]);
long double x = A[i][i];
for (int j = 0; j <= N; j++) {
A[i][j] /= x;
}
for (int j = 0; j < N; j++) {
if (j == i) continue;
x = A[j][i];
for (int k = 0; k <= N; k++) {
A[j][k] -= x * A[i][k];
}
}
}
cout << "Expected number of times label " << L << " is executed is "
<< fixed << setprecision(5)
<< A[id[L]][N] << '\n';
}
int main() {
int T; cin >> T;
while (T--) do_testcase();
}