-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathpollard-rho.cpp
106 lines (100 loc) · 2.26 KB
/
pollard-rho.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
typedef long long unsigned int llui;
typedef long long int lli;
typedef long double float64;
llui mul_mod(llui a, llui b, llui m){
llui y = (llui)((float64)a*(float64)b/m+(float64)1/2);
y = y * m;
llui x = a * b;
llui r = x - y;
if ( (lli)r < 0 ){
r = r + m; y = y - 1;
}
return r;
}
llui C,a,b;
llui gcd(){
llui c;
if(a>b){
c = a; a = b; b = c;
}
while(1){
if(a == 1LL) return 1LL;
if(a == 0 || a == b) return b;
c = a; a = b%a;
b = c;
}
}
llui f(llui a, llui b){
llui tmp;
tmp = mul_mod(a,a,b);
tmp+=C; tmp%=b;
return tmp;
}
llui pollard(llui n){
if(!(n&1)) return 2;
C=0;
llui iteracoes = 0;
while(iteracoes <= 1000){
llui x,y,d;
x = y = 2; d = 1;
while(d == 1){
x = f(x,n);
y = f(f(y,n),n);
llui m = (x>y)?(x-y):(y-x);
a = m; b = n; d = gcd();
}
if(d != n)
return d;
iteracoes++; C = rand();
}
return 1;
}
llui pot(llui a, llui b, llui c){
if(b == 0) return 1;
if(b == 1) return a%c;
llui resp = pot(a,b>>1,c);
resp = mul_mod(resp,resp,c);
if(b&1)
resp = mul_mod(resp,a,c);
return resp;
}
// Rabin-Miller primality testing algorithm
bool isPrime(llui n){
llui d = n-1;
llui s = 0;
if(n <=3 || n == 5) return true;
if(!(n&1)) return false;
while(!(d&1)){ s++; d>>=1; }
for(llui i = 0;i<32;i++){
llui a = rand();
a <<=32;
a+=rand();
a%=(n-3); a+=2;
llui x = pot(a,d,n);
if(x == 1 || x == n-1) continue;
for(llui j = 1;j<= s-1;j++){
x = mul_mod(x,x,n);
if(x == 1) return false;
if(x == n-1)break;
}
if(x != n-1) return false;
}
return true;
}
map<llui,int> factors;
// Precondition: factors is an empty map, n is a positive integer
// Postcondition: factors[p] is the exponent of p in prime factorization of n
void fact(llui n){
if(!isPrime(n)){
llui fac = pollard(n);
fact(n/fac); fact(fac);
}else{
map<llui,int>::iterator it;
it = factors.find(n);
if(it != factors.end()){
(*it).second++;
}else{
factors[n] = 1;
}
}
}