forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrozen_linear_transpose.cpp
101 lines (83 loc) · 2.77 KB
/
frozen_linear_transpose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/frozen_linear_transpose.h>
#include <torch/csrc/jit/passes/utils/optimization_utils.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/transpose.h>
#endif
#include <iostream>
#include <utility>
namespace torch::jit {
namespace {
using Tensor = at::Tensor;
class TransposeFrozenLinear {
public:
TransposeFrozenLinear(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
bool run() {
// Can't delete nodes while also iterating over it
DepthFirstGraphNodeIterator graph_it(graph_);
for (auto next_node = graph_it.next(); next_node != nullptr;) {
Node* node = next_node;
next_node = graph_it.next();
if (is_constant_linear_op(node)) {
replace_linear_with_matmul(node);
}
}
return graph_modified_;
}
bool is_constant_linear_op(Node* node) {
if (node->kind() != aten::linear) {
return false;
}
// This also filters out out-variants of the linear op.
return !nonConstantParameters(node);
}
void replace_linear_with_matmul(Node* node) {
graph_modified_ = true;
Node* matmul = nullptr;
{
WithInsertPoint insert_guard(node);
auto weight = node->namedInput("weight");
Tensor weight_tensor = constant_as<Tensor>(weight).value();
Tensor weight_t_tensor = at::transpose(weight_tensor, 1, 0)
.clone(at::MemoryFormat::Contiguous);
Value* weight_t = graph_->insertConstant(std::move(weight_t_tensor));
matmul = graph_->create(aten::matmul, {node->inputs()[0], weight_t});
matmul->insertAfter(node);
}
// Handle a bias if there is any
WithInsertPoint insert_guard(matmul);
auto bias = node->namedInput("bias");
if (bias->type() == NoneType::get()) {
node->replaceAllUsesWith(matmul);
} else {
Value* bias_scale = graph_->insertConstant(1);
Node* bias_result =
graph_->create(aten::add, {matmul->output(), bias, bias_scale});
bias_result->insertAfter(matmul);
node->replaceAllUsesWith(bias_result);
}
node->destroy();
};
void handleBlockAndSubblocks(Block* block) {}
private:
std::shared_ptr<Graph> graph_;
bool graph_modified_ = false;
};
} // namespace
TORCH_API bool FrozenLinearTranspose(std::shared_ptr<Graph>& graph) {
TransposeFrozenLinear transposeWeight(graph);
GRAPH_DUMP("Before FrozenLinearTranspose", graph);
bool changed = transposeWeight.run();
if (changed) {
GRAPH_DUMP("After FrozenLinearTranspose", graph);
}
return changed;
}
} // namespace torch::jit