-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench_stub_with_underscore.py
executable file
·295 lines (249 loc) · 9.51 KB
/
bench_stub_with_underscore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python3
"""
Author : Xinyuan Chen <[email protected]>
Date : 2022-08-03
Purpose: EasyGraph & NetworkX side-by-side benchmarking
"""
from hr_tddschn import hr
from pathlib import Path
from tempfile import mkstemp
import sqlite3
from functools import partial
from utils_db import insert_bench_results
from config import (
eg_master_dir,
load_functions_name,
di_load_functions_name,
clustering_methods,
shortest_path_methods,
# connected_components_methods,
connected_components_methods_G,
connected_components_methods_G_node,
mst_methods,
other_methods,
new_methods,
method_groups,
dataset_names,
BENCH_CSV_DIR,
tool_name_mapping_for_DTForTools,
bench_results_db_path,
tool_name_mapping,
)
from utils import eg2nx, eg2ceg, nx2eg, get_first_node, eval_method, json2csv, tabulate_csv
from eg_bench_types import DTForTools
# if eg_master_dir.exists():
# import sys
# sys.path.insert(0, str(eg_master_dir))
import easygraph as eg
import networkx as nx
from dataset_loaders_sampled import load_stub_with_underscore
load_func_name = 'load_stub_with_underscore'
original_load_func_uses_networkx = hasattr(load_stub_with_underscore, 'load_func_for') and load_stub_with_underscore.load_func_for == 'nx' # type: ignore
sampled_graph = hasattr(load_stub_with_underscore, 'sampled') and load_stub_with_underscore.sampled # type: ignore
if original_load_func_uses_networkx or sampled_graph:
G_nx = load_stub_with_underscore()
G_eg = nx2eg(G_nx) # type: ignore
else:
G_eg = load_stub_with_underscore()
G_nx = eg2nx(G_eg)
G_ceg = eg2ceg(G_eg)
first_node_eg = get_first_node(G_eg)
first_node_nx = get_first_node(G_nx)
first_node_ceg = get_first_node(G_ceg)
import argparse
def get_args():
"""Get command-line arguments"""
parser = argparse.ArgumentParser(
description='EasyGraph & NetworkX side-by-side benchmarking',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# parser.add_argument(
# '-d',
# '--dataset',
# type=str,
# choices=dataset_names,
# nargs='+',
# )
parser.add_argument(
'-G', '--method-group', type=str, choices=method_groups, nargs='+'
)
parser.add_argument(
'-E', '--skip-easygraph', action='store_true', help='Skip benchmarking easygraph (python) method',
)
parser.add_argument(
'-C',
'--skip-cpp-easygraph',
'--skip-ceg',
action='store_true',
help='Skip benchmarking cpp_easygraph methods',
)
parser.add_argument(
'-N', '--skip-networkx', action='store_true', help='Skip benchmarking networkx method',
)
# parser.add_argument('-n', '--dry-run', action='store_true', help='Dry run')
parser.add_argument(
'-p', '--pass', type=int, help='Number of passes to run in the benchmark, uses Timer.autorange() if not set.'
)
# parser.add_argument(
# '-t', '--timeout', type=int, help='Timeout for benchmarking one method in seconds, 0 for no timeout', default=60
# )
parser.add_argument(
'--paper', action='store_true', help='Use this flag to generate the results for the paper'
)
parser.add_argument(
'-o', '--output-dir', type=Path, help='Output directory', default=BENCH_CSV_DIR,
)
parser.add_argument(
'-a', '--append-results', action='store_true', help='Append results to existing csv files. Overwrites by default.'
)
parser.add_argument(
'-S', '--no-save', action='store_true', help='Do not save results to csv files or the database.'
)
parser.add_argument(
'--graph-type', type=str, choices=['directed', 'undirected', 'all'], help='Only run bench if graph is of specified graph type', default='all',
)
parser.add_argument(
'--db-path',
metavar='PATH',
type=Path,
help='Path to the sqlite3 database',
default=bench_results_db_path,
)
parser.add_argument(
'--no-update-db', action='store_true', help='Do not update the sqlite3 database with the new results.'
)
return parser.parse_args()
def main():
args = get_args()
method_groups = args.method_group
flags = {}
flags |= {'skip_eg': args.skip_easygraph}
flags |= {'skip_ceg': args.skip_cpp_easygraph}
flags |= {'skip_networkx': args.skip_networkx}
flags |= {'skip_draw': True}
flags |= {'timeit_number': getattr(args, 'pass', None)}
# flags |= {'timeout': args.timeout if args.timeout > 0 else None}
result_dicts: list[dict] = []
bench_timestamps: list[DTForTools] = []
first_node_args = {
'call_method_args_eg': ['first_node_eg'],
'call_method_args_nx': ['first_node_nx'],
'call_method_args_ceg': ['first_node_ceg'],
}
if method_groups is None or 'clustering' in method_groups or args.paper:
# bench: clustering
for method_name in clustering_methods:
_, __ = eval_method(
load_func_name,
method_name,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
if method_groups is None or 'shortest-path' in method_groups or args.paper:
# bench: shortest path
# bench_shortest_path(cost_dict, g, load_func_name)
_, __ = eval_method(
load_func_name,
('Dijkstra', 'single_source_dijkstra_path'),
**first_node_args,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
if method_groups is None or 'connected-components' in method_groups or args.paper:
# bench: connected components
for method_name in connected_components_methods_G:
_, __ = eval_method(
load_func_name,
method_name,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
for method_name in connected_components_methods_G_node:
_, __ = eval_method(
load_func_name,
method_name,
**first_node_args,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
if method_groups is None or 'mst' in method_groups or args.paper:
# bench: mst
for method_name in mst_methods:
_, __ = eval_method(
load_func_name,
method_name,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
if not args.paper and (method_groups is None or 'other' in method_groups):
# bench: other
for method_name in other_methods:
_, __ = eval_method(
load_func_name,
method_name,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
if not args.paper and (method_groups is None or 'new' in method_groups):
# bench: other
for method_name in new_methods:
_, __ = eval_method(
load_func_name,
method_name,
**flags,
)
result_dicts.append(_)
bench_timestamps.append(__)
print()
from mergedeep import merge
result = merge(*result_dicts)
# print(f'{result_dicts=}')
# print(f'{result=}')
dataset_name = load_func_name.removeprefix("load_")
csv_file = f'{dataset_name}.csv'
csv_file_path = args.output_dir / csv_file
if args.no_save:
_, csv_file_path_s = mkstemp(suffix='.csv')
csv_file_path = Path(csv_file_path_s)
args.output_dir.mkdir(parents=True, exist_ok=True)
csv_file_path_s = str(csv_file_path)
json2csv(result, csv_file_path_s, append=args.append_results)
print(f'Result saved to {csv_file_path_s} .')
# print csv_file with tabulate
print(tabulate_csv(csv_file_path_s))
if args.no_save:
csv_file_path.unlink()
print(f'Removed temporary csv file at {csv_file_path_s} .')
if args.no_update_db:
return
with sqlite3.connect(args.db_path) as conn:
print(f'Writing new results to database at {args.db_path} .')
for i, (dataset_name, data) in enumerate(result.items()):
dt_for_tools = bench_timestamps[i]
# result is like
# {'stub': {'average_clustering': {'easygraph': 0.00047430999984499067,
# 'eg w/ C++ binding': 7.46910081943497e-05,
# 'networkx': 0.00028450800164137036},
# 'clustering': {'easygraph': 0.00010412100527901202,
# 'eg w/ C++ binding': 4.4621992856264114e-05,
# 'networkx': 0.00013218499952927232}}}
for method, tool_time_mapping in data.items():
for tool, avg_time in tool_time_mapping.items():
insert_bench_results(
conn,
dataset=dataset_name,
method=method,
tool=tool_name_mapping[tool] if tool in tool_name_mapping else tool,
average_time=avg_time,
timestamp=getattr(dt_for_tools, tool_name_mapping_for_DTForTools[tool]),
iteration_count=getattr(args, 'pass', None),
)
print(f'Finished writing new results to database at {args.db_path} .')
if __name__ == "__main__":
main()