This repository has been archived by the owner on Dec 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathprepare_data.py
90 lines (68 loc) · 3.7 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
[1] Merge masks with different instruments into one binary mask
[2] Crop black borders from images and masks
"""
from pathlib import Path
from tqdm import tqdm
import cv2
import numpy as np
data_path = Path('data')
train_path = data_path / 'train'
cropped_train_path = data_path / 'cropped_train'
original_height, original_width = 1080, 1920
height, width = 1024, 1280
h_start, w_start = 28, 320
binary_factor = 255
parts_factor = 85
instrument_factor = 32
if __name__ == '__main__':
for instrument_index in range(1, 9):
instrument_folder = 'instrument_dataset_' + str(instrument_index)
(cropped_train_path / instrument_folder / 'images').mkdir(exist_ok=True, parents=True)
binary_mask_folder = (cropped_train_path / instrument_folder / 'binary_masks')
binary_mask_folder.mkdir(exist_ok=True, parents=True)
parts_mask_folder = (cropped_train_path / instrument_folder / 'parts_masks')
parts_mask_folder.mkdir(exist_ok=True, parents=True)
instrument_mask_folder = (cropped_train_path / instrument_folder / 'instruments_masks')
instrument_mask_folder.mkdir(exist_ok=True, parents=True)
mask_folders = list((train_path / instrument_folder / 'ground_truth').glob('*'))
# mask_folders = [x for x in mask_folders if 'Other' not in str(mask_folders)]
for file_name in tqdm(list((train_path / instrument_folder / 'left_frames').glob('*'))):
img = cv2.imread(str(file_name))
old_h, old_w, _ = img.shape
img = img[h_start: h_start + height, w_start: w_start + width]
cv2.imwrite(str(cropped_train_path / instrument_folder / 'images' / (file_name.stem + '.jpg')), img,
[cv2.IMWRITE_JPEG_QUALITY, 100])
mask_binary = np.zeros((old_h, old_w))
mask_parts = np.zeros((old_h, old_w))
mask_instruments = np.zeros((old_h, old_w))
for mask_folder in mask_folders:
mask = cv2.imread(str(mask_folder / file_name.name), 0)
if 'Bipolar_Forceps' in str(mask_folder):
mask_instruments[mask > 0] = 1
elif 'Prograsp_Forceps' in str(mask_folder):
mask_instruments[mask > 0] = 2
elif 'Large_Needle_Driver' in str(mask_folder):
mask_instruments[mask > 0] = 3
elif 'Vessel_Sealer' in str(mask_folder):
mask_instruments[mask > 0] = 4
elif 'Grasping_Retractor' in str(mask_folder):
mask_instruments[mask > 0] = 5
elif 'Monopolar_Curved_Scissors' in str(mask_folder):
mask_instruments[mask > 0] = 6
elif 'Other' in str(mask_folder):
mask_instruments[mask > 0] = 7
if 'Other' not in str(mask_folder):
mask_binary += mask
mask_parts[mask == 10] = 1 # Shaft
mask_parts[mask == 20] = 2 # Wrist
mask_parts[mask == 30] = 3 # Claspers
mask_binary = (mask_binary[h_start: h_start + height, w_start: w_start + width] > 0).astype(
np.uint8) * binary_factor
mask_parts = (mask_parts[h_start: h_start + height, w_start: w_start + width]).astype(
np.uint8) * parts_factor
mask_instruments = (mask_instruments[h_start: h_start + height, w_start: w_start + width]).astype(
np.uint8) * instrument_factor
cv2.imwrite(str(binary_mask_folder / file_name.name), mask_binary)
cv2.imwrite(str(parts_mask_folder / file_name.name), mask_parts)
cv2.imwrite(str(instrument_mask_folder / file_name.name), mask_instruments)