forked from nipraxis/textbook
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathglm_intro.Rmd
795 lines (612 loc) · 23.9 KB
/
glm_intro.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
---
jupyter:
jupytext:
notebook_metadata_filter: all,-language_info
split_at_heading: true
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.11.5
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---
# Introduction to the general linear model
For more detail on the General Linear Model, see [The general linear model and
fMRI: Does love last
forever?](http://matthew.dynevor.org/_downloads/does_glm_love.pdf).
```{python}
# Import numerical and plotting libraries
import numpy as np
import numpy.linalg as npl
import matplotlib.pyplot as plt
# Only show 6 decimals when printing
np.set_printoptions(precision=6)
```
This page starts with the model for simple regression, that you have already see in the [regression page](on_regression.Rmd).
We then show how the simple regression gets expressed in a *design matrix*.
Once we have that, it’s easy to extend simple regression to multiple
regression. By adding some specially formed regressors, we can also express
group membership, and therefore do ANalysis Of VAriance (ANOVA). This last
step is where multiple regression becomes the General Linear Model (GLM).
## Simple regression
You have already seen this problem in the [regression
page](on_regression.Rmd).
Image we have measured scores for a “psychopathy” personality trait in 12
students. We also have some other information about these students. For
example, we measured how much sweat each student had on their palms, and we
call this a “clammy” score. We will look for a straight-line (linear)
relationship between the “clammy” score (our predictor or regressor or
covariate or independent variable) and the “psychopathy” score (our dependent
variable).
```{python}
# The values we are trying to predict.
psychopathy = np.array(
[11.416, 4.514, 12.204, 14.835,
8.416, 6.563, 17.343, 13.02,
15.19 , 11.902, 22.721, 22.324])
# The values we will predict with.
clammy = np.array(
[0.389, 0.2 , 0.241, 0.463,
4.585, 1.097, 1.642, 4.972,
7.957, 5.585, 5.527, 6.964])
# The number of values
n = len(clammy)
```
```{python}
plt.plot(clammy, psychopathy, '+')
plt.xlabel('Clamminess of handshake')
plt.ylabel('Psychopathy score')
```
You have already seen a preliminary guess we made at a straight line that links the `clammy` scores to the `psychopathy` scores. Our guess was:
```{python}
guessed_slope = 0.9
guessed_intercept = 10
```
We use this line to *predict* the `psychopathy` scores from the `clammy` scores.
What does our straight line relationship mean?
We are saying that the values of `psychopathy` can be partly predicted by
a straight line of formula `0.9 * clammy + 10`.
```{python}
predicted_psychopathy = guessed_slope * clammy + guessed_intercept
predicted_psychopathy
```
Here are the data and our predictions from the guessed line.
```{python}
# Plot the data and the predictions
plt.plot(clammy, psychopathy, '+', label='Actual data')
plt.plot(clammy, predicted_psychopathy, 'ro', label='Predictions')
plt.xlabel('Clamminess of handshake')
plt.ylabel('Psychopathy score')
plt.title('Clammy vs psychopathy with guessed line')
plt.legend()
```
Our next step is to write out this model more formally in mathematical
symbols.
$\newcommand{\yvec}{\vec{y}} \newcommand{\xvec}{\vec{x}} \newcommand{\evec}{\vec{\varepsilon}}$
To make this more general, let’s call our `psychopathy` data
$\yvec$ - a *vector* with 12 values, one for each student. A *vector* is just a sequence of values.
$y_1$ is the value for the first student (= 11.416) and $y_i$ is the value for
student $i$ where $i \in 1 .. 12$:
```{python tags=c("hide-input")}
# Ignore this cell - it is to give a better display to the mathematics.
# Import Symbolic mathematics routines.
from sympy import Eq, Matrix, IndexedBase, symbols, init_printing
from sympy.matrices import MatAdd, MatMul, MatrixSymbol
# Make equations print in definition order.
init_printing(order='none')
sy_y = symbols(r'\vec{y}')
sy_y_ind = IndexedBase("y")
vector_indices = range(1, n + 1)
sy_y_val = Matrix([sy_y_ind[i] for i in vector_indices])
Eq(sy_y, Eq(sy_y_val, Matrix(psychopathy)), evaluate=False)
```
Our `clammy` score is a *predictor*. Lets call the clammy scores $\xvec$.
$\xvec$ is another vector with 12 values. $x_1$ is the value for the first
student (= 0.389) and $x_i$ is the value for student $i$ where $i \in 1 ..
12$.
```{python tags=c("hide-input")}
# Ignore this cell - it is to give a better display to the mathematics.
sy_x = symbols(r'\vec{x}')
sy_x_ind = IndexedBase("x")
sy_x_val = Matrix([sy_x_ind[i] for i in vector_indices])
Eq(sy_x, Eq(sy_x_val, Matrix(clammy)), evaluate=False)
```
Our straight line model says:
$y_i \approx bx_i + c$
$\approx$ above means *approximately equal to*, $b$ is the slope and $c$ is
the intercept. For the guessed line above:
$y_i \approx 0.9 x_i + 10$
With the $\approx$, we are accepting that we will not succeed in explaining
our psychopathy values exactly. We can rephrase this by saying that each
observation is equal to the predicted value (from the formula above) plus some
error for each observation:
$y_i = bx_i + c + e_i$
## Simple regression in matrix form
It turns out it will be useful to rephrase the simple regression model
in *matrix form*. Let’s make the data and predictor and errors into
vectors.
We already the $y$ values in our $\yvec$ vector above, and the $x$ values in the $\xvec$ vector.
$\evec$ is the vector of as-yet-unknown errors $e_1, e_2, ... e_{12}$. The
values of the errors depend on the predicted values, and therefore, on our
slope $b$ and intercept $c$.
```{python tags=c("hide-input")}
# Ignore this cell.
sy_e = symbols(r'\vec{\varepsilon}')
sy_e_ind = IndexedBase("e")
sy_e_val = Matrix([sy_e_ind[i] for i in vector_indices])
Eq(sy_e, sy_e_val, evaluate=False)
```
Now we can rephrase our model as:
$$
\yvec = b \xvec + c + \evec
$$
```{python tags=c("hide-input")}
# Ignore this cell.
sy_b, sy_c = symbols('b, c')
sy_c_mat = MatrixSymbol('c', 12, 1)
rhs = MatAdd(MatMul(sy_b, sy_x_val), sy_c_mat, sy_e_val)
Eq(sy_y_val, rhs, evaluate=False)
```
Bear with with us for a little trick. We define $\vec{o}$ as a vector of ones,
like this:
```{python tags=c("hide-input")}
# Ignore this cell.
sy_o = symbols(r'\vec{o}')
sy_o_val = Matrix([1 for i in vector_indices])
Eq(sy_o, sy_o_val, evaluate=False)
```
Now we can rewrite the formula as:
$$
\yvec = b\xvec + c\vec{o} + \evec
$$
because $o_i = 1$ and so $co_i = c$.
```{python tags=c("hide-input")}
# Ignore this cell.
rhs = MatAdd(MatMul(sy_b, sy_x_val), MatMul(sy_c, sy_o_val), sy_e_val)
Eq(sy_y_val, rhs, evaluate=False)
```
This evaluates to the result we intend:
```{python tags=c("hide-input")}
# Ignore this cell.
Eq(sy_y_val, sy_c * sy_o_val + sy_b * sy_x_val + sy_e_val, evaluate=False)
```
$\newcommand{Xmat}{\boldsymbol X} \newcommand{\bvec}{\vec{\beta}}$
We can now rephrase the calculation in terms of matrix multiplication.
Call $\Xmat$ the matrix of two columns, where the first column is $\xvec$ and
the second column is the column of ones ($\vec{o}$ above). Call $\bvec$ the
column vector:
$$
\left[
\begin{array}{\bvec}
b \\
c \\
\end{array}
\right]
$$
This gives us exactly the same calculation as $\yvec = b \xvec + c + \evec$
above, but in terms of matrix multiplication:
```{python tags=c("hide-input")}
# Ignore this cell.
sy_beta_val = Matrix([[sy_b], [sy_c]])
sy_xmat_val = Matrix.hstack(sy_x_val, sy_o_val)
Eq(sy_y_val, MatAdd(MatMul(sy_xmat_val, sy_beta_val), sy_e_val), evaluate=False)
```
In symbols:
$$
\yvec = \Xmat \bvec + \evec
$$
Because of the way that matrix multiplication works, this again gives us the
intended result:
```{python tags=c("hide-input")}
# Ignore this cell.
Eq(sy_y_val, sy_xmat_val @ sy_beta_val + sy_e_val, evaluate=False)
```
We still haven’t found our best fitting line. But before we go further,
it might be obvious that we can easily add a new predictor here.
## Multiple regression
Let’s say we think that psychopathy increases with age. We add the
student’s age as another predictor:
```{python}
age = np.array(
[22.5, 25.3, 24.6, 21.4,
20.7, 23.3, 23.8, 21.7,
21.3, 25.2, 24.6, 21.8])
```
Now rename the `clammy` predictor vector from $\xvec$ to
$\xvec_1$. Of course $\xvec_1$ has 12 values $x_{1, 1}..x_{1,
12}$. Call the `age` predictor vector $\xvec_2$. Call the slope for
`clammy` $b_1$ (slope for $\xvec_1$). Call the slope for age
$b_2$ (slope for $\xvec_2$). Our model is:
$$
y_i = b_1 x_{1, i} + b_2 x_{2, i} + c + e_i
$$
```{python tags=c("hide-input")}
# Ignore this cell.
sy_b_1, sy_b_2 = symbols('b_1, b_2')
sy_x_1_ind = IndexedBase("x_1,")
sy_x_1_val = Matrix([sy_x_1_ind[i] for i in vector_indices])
sy_x_2_ind = IndexedBase("x_2,")
sy_x_2_val = Matrix([sy_x_2_ind[i] for i in vector_indices])
Eq(sy_y_val, MatAdd(MatMul(sy_b_1, sy_x_1_val), MatMul(sy_b_2, sy_x_2_val), sy_c_mat, sy_e_val), evaluate=False)
```
In this model $\Xmat$ has three columns ($\xvec_1$, $\xvec_2$ and ones), and
the $\bvec$ vector has three values $b_1, b_2, c$. This gives the same matrix
formulation, with our new $\Xmat$ and $\bvec$: $\yvec = \Xmat \bvec + \evec$.
This is a *linear* model because our model says that the data $y_i$ comes
from the *sum* of some components ($b_1 x_{1, i}, b_2 x_{2, i}, c, e_i$).
We can keep doing this by adding more and more regressors. In general, a linear
model with $p$ predictors looks like this:
$$
y_i = b_1 x_{1, i} + b_2 x_{2, i} + ... b_p x_{p, i} + e_i
$$
In the case of the models above, the final predictor $\xvec_p$ would be a
column of ones, to express the intercept in the model.
Any model of the form above can still be phrased in the matrix form:
$$
\yvec = \Xmat \bvec + \evec
$$
where:
```{python tags=c("hide-input")}
# Ignore this cell.
sy_xmat3_val = Matrix.hstack(sy_x_1_val, sy_x_2_val, sy_o_val)
sy_Xmat = symbols(r'\boldsymbol{X}')
Eq(sy_Xmat, sy_xmat3_val, evaluate=False)
```
and therefore:
```{python tags=c("hide-input")}
# Ignore this cell.
sy_beta2_val = Matrix([sy_b_1, sy_b_2, sy_c])
Eq(sy_y_val, MatAdd(MatMul(sy_xmat3_val, sy_beta2_val), sy_e_val), evaluate=False)
```
As we were hoping, this evaluates to:
```{python tags=c("hide-input")}
# Ignore this cell.
Eq(sy_y_val, sy_xmat3_val @ sy_beta2_val + sy_e_val, evaluate=False)
```
### Population, sample, estimate
$\newcommand{\bhat}{\hat{\bvec}} \newcommand{\yhat}{\hat{\yvec}}$
Our students and their psychopathy scores are a *sample* from the
population of all students’ psychopathy scores. The parameters
$\bvec$ are the parameters that fit the design $\Xmat$ to
the *population* scores. We only have a sample from this population, so
we cannot get the true population $\bvec$ vector, we can only
*estimate* $\bvec$ from our sample. We will write this sample
estimate as $\bhat$ to distinguish it from the true population
parameters $\bvec$.
## Solving the model with matrix algebra
The reason to formulate our problem with matrices is so we can use some
basic matrix algebra to estimate the “best” line.
Let’s assume that we want an estimate for the line parameters (intercept
and slope) that gives the smallest “distance” between the estimated
values (predicted from the line), and the actual values (the data).
We’ll define ‘distance’ as the squared difference of the predicted value from
the actual value. These are the squared error terms $e_1^2, e_2^2 ... e_{n}^2$,
where $n$ is the number of observations; 12 in our case.
As a reminder: our model is:
$$
\yvec = \Xmat \bvec + \evec
$$
Where $\yvec$ is the data vector $y_1, y_2, ... y_n$,
$\Xmat$ is the design matrix of shape $n, p$, $\bvec$
is the parameter vector, $b_1, b_2 ... b_p$, and $\evec$ is
the error vector giving errors for each observation
$\epsilon_1, \epsilon_2 ... \epsilon_n$.
Each column of $\Xmat$ is a regressor vector, so $\Xmat$ can
be thought of as the column concatenation of $p$ vectors
$\xvec_1, \xvec_2 ... \xvec_p$, where $\xvec_1$ is the first
regressor *vector*, and so on.
In our case, we want an estimate $\bhat$ for the vector
$\bvec$ such that the errors $\evec = \yvec - \Xmat \bhat$
have the smallest sum of squares $\sum_{i=1}^n{e_i^2}$.
$\sum_{i=1}^n{e_i^2}$ is called the *residual sum of squares*.
When we have our $\bhat$ estimate, then the prediction of the data
from the estimate is given by $\Xmat \bhat$.
We call this the predicted or estimated data, and write it as
$\yhat$. The errors are then given by $\yvec - \yhat$.
We might expect that, when we have found the right $\bhat$ then the errors
will have nothing in them that can still be explained by the design matrix
$\Xmat$. This is the same as saying that, when we have best prediction of the
data ($\yhat = \Xmat \bhat$), the design matrix $\Xmat$ should be orthogonal
to the remaining error ($\yvec - \yhat$). If the design is orthogonal to the
errors, then $\Xmat^T \evec$ should be a vector of zeros.
If that is the case then we can multiply
$\yvec = \Xmat \bhat + \evec$ through by $\Xmat^T$:
$$
\Xmat^T \yvec = \Xmat^T \Xmat \bhat + \Xmat^T \evec
$$
The last term now disappears because it is zero and:
$$
\Xmat^T \yvec = \Xmat^T \Xmat \bhat
$$
If $\Xmat^T \Xmat$ is invertible (has a matrix inverse
$(\Xmat^T \Xmat)^{-1}$) then there is a unique solution:
$$
\bhat = (\Xmat^T \Xmat)^{-1} \Xmat^T \yvec
$$
It turns out that, if $\Xmat^T \Xmat$ is not invertible, there are
an infinite number of solutions, and we have to choose one solution,
taking into account that the parameters $\bhat$ will depend on
which solution we chose. The *pseudoinverse* operator gives us one
particular solution. If $\bf{A}^+$ is the pseudoinverse of matrix
$\bf{A}$ then the general solution for $\bhat$, even when
$\Xmat^T \Xmat$ is not invertible, is:
$$
\bhat = \Xmat^+ \yvec
$$
Using this matrix algebra, what line do we estimate for `psychopathy`
and `clammy`?
```{python}
X = np.column_stack((clammy, np.ones(12)))
X
```
```{python}
# Use the pseudoinverse to get estimated B
B = npl.pinv(X) @ psychopathy
B
```
```{python}
# Plot the data
plt.plot(clammy, psychopathy, '+')
```
```{python}
best_slope = B[0]
best_intercept = B[1]
best_predictions = best_intercept + best_slope * clammy
```
```{python}
# Plot the new prediction
plt.plot(clammy, psychopathy, '+', label='Actual data')
plt.plot(clammy, best_predictions, 'ro', label='Best predictions')
plt.xlabel('Clamminess of handshake')
plt.ylabel('Psychopathy score')
plt.title('Clammy vs psychopathy with best line')
plt.legend();
```
Our claim was that this estimate for slope and intercept minimize the sum (and
therefore mean) of squared error:
```{python}
fitted = X @ B
errors = psychopathy - fitted
print(np.sum(errors ** 2))
```
Is this sum of squared errors smaller than our earlier guess of an intercept of
10 and a slope of 0.9?
```{python}
fitted = X @ [0.9, 10]
errors = psychopathy - fitted
print(np.sum(errors ** 2))
```
## Contrasts
$\newcommand{cvec}{\mathbf{c}}$ We can combine the values in the
$\bhat$ vector in different ways by using a *contrast* vector. A
contrast vector $\cvec$ is a vector of weights
$c_1, c_2 ... c_p$ for each value in the $\bhat$ vector.
Assume that all vectors we have defined up until now are column vectors. Then
a scalar value that is a linear combination of the $\bhat$ values can be
written:
$$
\cvec^T \bhat
$$
We now return to our original question, whether clamminess of handshake
predicts psychopathy score.
If clamminess does predict psychopathy, then we would expect the slope
of the best fit line between `clammy` and `psychopathy` would be
different from zero.
In our model, we have two predictors, the column of ones and `clammy`.
$p = 2$ and $\bhat$ is length 2. We could choose just the first of
the values in $\bhat$ with a contrast:
$$
\left[
\begin{array}{\cvec}
1 \\
0 \\
\end{array}
\right]
$$
$\cvec^T \bhat$ with this contrast gives our *estimate* of the
slope relating `clammy` to `psychopathy`. Now we might be interested
if our estimate is further from zero than expected by chance.
To test whether the estimate is different from zero, we can divide the estimate
by the variability of the estimate. This gives us an idea of how far the
estimate is from zero, in terms of the variability of the estimate. We won’t go
into the estimate of the variability here though, we’ll just assume it (the
formula is in the code below). The estimate divided by the variability of the
estimate gives us a t statistic.
With that introduction, here’s how to do the estimation and a t statistic given
the data $\yvec$, the design $\Xmat$, and a contrast vector
$\cvec$.
```{python}
# Get t distribution code from scipy library
from scipy.stats import t as t_dist
```
```{python}
def t_stat(y, X, c):
""" betas, t statistic and significance test given data, design matrix, contrast
This is Ordinary Least Square estimation; we assume the errors to have
independent and identical normal distributions around zero for each $i$ in
$\e_i$ (i.i.d).
"""
# Make sure y, X, c are all arrays
y = np.asarray(y)
X = np.asarray(X)
c = np.atleast_2d(c).T # As column vector
# Calculate the parameters - b hat
beta = npl.pinv(X) @ y
# The fitted values - y hat
fitted = X @ beta
# Residual error
errors = y - fitted
# Residual sum of squares
RSS = np.sum(errors**2, axis=0)
# Degrees of freedom is the number of observations n minus the number
# of independent regressors we have used. If all the regressor
# columns in X are independent then the (matrix rank of X) == p
# (where p the number of columns in X). If there is one column that
# can be expressed as a linear sum of the other columns then
# (matrix rank of X) will be p - 1 - and so on.
df = X.shape[0] - npl.matrix_rank(X)
# Mean residual sum of squares
MRSS = RSS / df
# calculate bottom half of t statistic
SE = np.sqrt(MRSS * c.T @ npl.pinv(X.T @ X) @ c)
t = c.T @ beta / SE
# Get p value for t value using cumulative density function
# (CDF) of the t distribution.
ltp = t_dist.cdf(t, df) # lower tail p
p = 1 - ltp # upper tail p
return beta, t, df, p
```
See [p values from cumulative distribution
functions](https://matthew-brett.github.io/teaching/on_cdfs.html) for
background on the probability values.
So, does `clammy` predict `psychopathy`? If it does not, then our
estimate of the slope will not be convincingly different from 0. The t
test divides our estimate of the slope by the error in the estimate;
large values mean that the slope is large compared to the error in the
estimate.
```{python}
X = np.column_stack((clammy, np.ones(12)))
Y = np.asarray(psychopathy)
B, t, df, p = t_stat(Y, X, [1, 0])
t, p
```
(dummy-coding)=
## Dummy coding and the general linear model
So far we have been doing *multiple regression*. That is, all the columns
(except the column of ones) are continuous vectors of numbers predicting our
outcome data `psychopathy`. These type of predictors are often called
*covariates*.
It turns out we can use this same framework to express the fact that different
observations come from different groups.
Expressing group membership in this way allows us to express *analysis
of variance* designs using this same notation.
To do this, we use columns of *dummy variables*.
Let’s say we get some new and interesting information. The first 4
students come from Berkeley, the second set of 4 come from Stanford, and
the last set of 4 come from MIT. Maybe the student’s college predicts if
they are a psychopath?
How do we express this information? Let’s forget about the clamminess
score for now and just use the school information. Our model might be
that we can best predict the psychopathy scores by approximating the
individual student psychopathy scores with a mean score for the relevant
school:
$$
y_i = \mu_{Berkeley} + e_i \space\mbox{if}\space 1 \le i \le 4 \\
y_i = \mu_{Stanford} + e_i \space\mbox{if}\space 5 \le i \le 8 \\
y_i = \mu_{MIT} + e_i \space\mbox{if}\space 9 \le i \le 12
$$
We can code this with predictors in our design using *indicator
variables*. The “Berkeley” indicator variable vector is 1 when the
student is from Berkeley and zero otherwise. Similarly for the other two
schools:
```{python}
berkeley_indicator = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
stanford_indicator = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
mit_indicator = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
X = np.column_stack((berkeley_indicator,
stanford_indicator,
mit_indicator))
X
```
These indicator columns are *dummy variables* where the values code for
the group membership.
Now the $\bvec$ vector will be:
$$
\left[
\begin{array}{\bvec}
\mu_{Berkeley} \\
\mu_{Stanford} \\
\mu_{MIT} \\
\end{array}
\right]
$$
When we estimate these using the least squares method, what estimates
will we get for $\bhat$?
```{python}
B = npl.pinv(X) @ psychopathy
B
```
```{python}
print('Berkeley mean:', np.mean(psychopathy[:4]))
print('Stanford mean:', np.mean(psychopathy[4:8]))
print('MIT mean:', np.mean(psychopathy[8:]))
```
It looks like the MIT students are a bit more psychopathic. Are they more
psychopathic than Berkeley and Stanford?
We can use a contrast to test whether the mean for the MIT students is greater
than the mean of (mean for Berkeley, mean for Stanford):
```{python}
B, t, df, p = t_stat(psychopathy, X, [-0.5, -0.5, 1])
t, p
```
Ah — yes — just as we suspected.
The model above expresses the effect of group membership. It is the
expression of a one-way analysis of variance (ANOVA) model using
$\yvec = \Xmat \bvec + \evec$.
## ANCOVA in the General Linear Model
Our formulation $\yvec = \Xmat \bvec + \evec$ makes it very easy
to add extra regressors to models with group membership. For example, we
can easily make a simple ANCOVA model (analysis of covariance).
ANCOVA is a specific term for the case where we have a model with both
group membership (ANOVA model) and one or more continuous covariates.
For example, we can add back our clamminess score to the mix. Does it
explain anything once we know which school the student is at?
```{python}
X = np.column_stack((berkeley_indicator,
stanford_indicator,
mit_indicator,
clammy))
X
```
We test the independent effect of the clamminess score with a contrast
on the clammy slope parameter:
```{python}
B, t, df, p = t_stat(psychopathy, X, [0, 0, 0, 1])
t, p
```
It looks like there’s not much independent effect of clamminess. The MIT
students seem to have clammy hands, and once we know that the student is
from MIT, the clammy score is not as useful.
## Displaying the design matrix as an image
We can show the design as an image, by scaling the values with columns.
We scale within columns because we care more about seeing variation
within the regressor than between regressors. For example, if we have a
regressor varying between 0 and 1, and another between 0 and 1000,
without scaling, the column with the larger numbers will swamp the
variation in the column with the smaller numbers.
```{python}
def scale_design_mtx(X):
"""utility to scale the design matrix for display
This scales the columns to their own range so we can see the variations
across the column for all the columns, regardless of the scaling of the
column.
"""
mi, ma = np.min(X, axis=0), np.max(X, axis=0)
# Vector that is True for columns where values are not
# all almost equal to each other
col_neq = (ma - mi) > 1.e-8
Xs = np.ones_like(X)
# Leave columns with same value throughout with 1s
# Scale other columns to min, max in column
mi = mi[col_neq]
ma = ma[col_neq]
Xs[:,col_neq] = (X[:,col_neq] - mi)/(ma - mi)
return Xs
```
Then we can display this scaled design with a title and some default
image display parameters:
```{python}
def show_design(X, design_title):
""" Show the design matrix nicely """
plt.imshow(scale_design_mtx(X),
interpolation='nearest',
cmap='gray') # Gray colormap
plt.title(design_title)
```
We can then see our ANCOVA design above at a glance:
```{python}
show_design(X, 'ANCOVA')
```