diff --git a/src/Cat/Functor/Properties.lagda.md b/src/Cat/Functor/Properties.lagda.md index cf713cb17..1c12705fb 100644 --- a/src/Cat/Functor/Properties.lagda.md +++ b/src/Cat/Functor/Properties.lagda.md @@ -231,7 +231,7 @@ precomposition functor $(-) \circ F : [\cD,\cA] \to [\cC,\cA]$ is faithful for every precategory $\cA$. ```agda - eso→precompose-faithful + is-eso→precompose-is-faithful : ∀ {oa ℓa} {A : Precategory oa ℓa} → (F : Functor C D) → is-eso F @@ -250,7 +250,7 @@ $F$ doesn't miss out on any objects of $d$, but the actual proof involves some rather tedious calculations. ```agda - eso→precompose-faithful {A = A} F F-eso {G} {H} {α} {β} αL=βL = + is-eso→precompose-is-faithful {A = A} F F-eso {G} {H} {α} {β} αL=βL = ext λ d → ∥-∥-out! do (c , Fc≅d) ← F-eso d let module Fc≅d = D._≅_ Fc≅d diff --git a/src/Cat/Univalent/Rezk/Universal.lagda.md b/src/Cat/Univalent/Rezk/Universal.lagda.md index 5273fd0f2..ab9961119 100644 --- a/src/Cat/Univalent/Rezk/Universal.lagda.md +++ b/src/Cat/Univalent/Rezk/Universal.lagda.md @@ -71,7 +71,7 @@ category]], then $- \circ H$ is essentially surjective. By the principle of unique choice, it is an equivalence, and thus^[since both its domain and codomain are univalent] an isomorphism. -Luckily, we `already know`{.Agda ident=eso→precompose-faithful} that precomposition +Luckily, we `already know`{.Agda ident=is-eso→precompose-is-faithful} that precomposition with an eso functor extends to a faithful functor. Unfortunately, the remaining two steps are both _quite_ technical: that's because we're given some _mere_^[truncated] data, from the assumption that $H$ is a weak @@ -269,7 +269,7 @@ $- \circ H$ is faithful, and now we've shown it is full, it is fully faithful. res = full+faithful→ff (precompose H) full - (eso→precompose-faithful H H-eso) + (is-eso→precompose-is-faithful H H-eso) ``` ## Essential surjectivity diff --git a/src/HoTT.lagda.md b/src/HoTT.lagda.md index c03d709c7..76e6aa23e 100644 --- a/src/HoTT.lagda.md +++ b/src/HoTT.lagda.md @@ -1000,7 +1000,7 @@ _ = Displayed _ = Rezk-completion-is-category _ = weak-equiv→pre-equiv _ = weak-equiv→pre-iso -_ = eso→precompose-faithful +_ = is-eso→precompose-is-faithful _ = eso-full→pre-ff _ = Rezk-completion _ = complete-is-eso @@ -1009,7 +1009,7 @@ _ = complete ``` --> -* Lemma 9.9.1: `eso→precompose-faithful`{.Agda} +* Lemma 9.9.1: `is-eso→precompose-is-faithful`{.Agda} * Lemma 9.9.2: `eso-full→pre-ff`{.Agda} * Lemma 9.9.4: `weak-equiv→pre-equiv`{.Agda}, `weak-equiv→pre-iso`{.Agda} * Theorem 9.9.5: `Rezk-completion`{.Agda}, `Rezk-completion-is-category`{.Agda}, `complete`{.Agda}, `complete-is-ff`{.Agda}, `complete-is-eso`{.Agda}.