-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrobot.py
37 lines (32 loc) · 2.03 KB
/
robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import pygame
import math
class robot:
def __init__(self, init_x, init_y, init_phi, robot_l, robot_b, data):
self.x = init_x
self.y = init_y
self.phi = init_phi
self.l = robot_l # Robot length is 2*l
self.b = robot_b # Robot breadth is 2*b
self.X = np.array([self.x, self.y])
self.data = data
self.tip = [self.x + self.l * math.cos(self.phi), self.y + self.l * math.sin(self.phi)]
self.bottom = [self.x - self.l * math.cos(self.phi), self.y - self.l * math.sin(self.phi)]
self.bottom_l = [self.bottom[0] - self.b * math.sin(self.phi), self.bottom[1] + self.b * math.cos(self.phi)]
self.bottom_r = [self.bottom[0] + self.b * math.sin(self.phi), self.bottom[1] - self.b * math.cos(self.phi)]
def show(self):
pygame.draw.polygon(self.data["screen"], (255,0,0), [self.tip, self.bottom_l, self.bottom_r], 0)
def go_to_goal(self):
e = self.data["goalX"] - self.X # error in position
K = self.data["vmax"] * (1 - np.exp(- self.data["gtg_scaling"] * np.linalg.norm(e)**2)) / np.linalg.norm(e) # Scaling for velocity
v = np.linalg.norm(K * e) # Velocity decreases as bot gets closer to goal
phi_d = math.atan2(e[1], e[0]) # Desired heading
omega = self.data["K_p"]*math.atan2(math.sin(phi_d - self.phi), math.cos(phi_d - self.phi)) # Only P part of a PID controller to give omega as per desired heading
return [v, omega]
def avoid_obst(self, obstX):
e = obstX - self.X # error in position
K = self.data["vmax"] * (1 - np.exp(- self.data["ao_scaling"] * np.linalg.norm(e)**2)) / np.linalg.norm(e) # Scaling for velocity
v = np.linalg.norm(K * e) # Velocity decreases as bot gets closer to obstacle
phi_d = -math.atan2(e[1], e[0]) # Desired heading
omega = self.data["K_p"]*math.atan2(math.sin(phi_d - self.phi), math.cos(phi_d - self.phi)) # Only P part of a PID controller to give omega as per desired heading
return [v, omega]