-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatent_space_scores.py
39 lines (33 loc) · 1.14 KB
/
latent_space_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import warnings
import os
warnings.filterwarnings('ignore')
import beta_vae
import util_loss as ul
import scanpy as sc
import pandas as pd
import numpy as np
import random
def latent_space_scores(L,B,data):
Y = data.iloc[:,0]
obs_feat = list(set(Y))
dataframe = pd.DataFrame(columns = ["y","avg_z"])
for obs in obs_feat:
df = general_feat_scores(L,B,data,obs)
dataframe = pd.concat([dataframe,df])
return dataframe
def general_feat_scores(L,B,data,obs):
z_list = []
for batch in range(B):
#print(obs)
try:
sampled_data = data[data.iloc[:,0]==obs]
sampled_data = sampled_data.drop([sampled_data.columns[0]] , axis='columns')
sampled_data = sampled_data.sample(n=L, random_state=1+batch)
average_z = np.mean(sampled_data,axis=0)
except:
sampled_data = data[data.iloc[:,0]==obs]
sampled_data = sampled_data.drop([sampled_data.columns[0]] , axis='columns')
average_z = np.mean(sampled_data,axis=0)
z_list.append([list(average_z)])
df = pd.DataFrame(data={"y": obs, "avg_z": z_list})
return df