-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate_cell.py
70 lines (62 loc) · 2.61 KB
/
simulate_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import warnings
warnings.filterwarnings('ignore')
import scanpy as sc
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import glob, os
import matplotlib
import re
import beta_vae
def simulate_one_cell(path,data,cell,model,z_dim,feature):
variable_names = data.var_names
data_latent = model.to_latent(data.X)
latent_df = pd.DataFrame(data_latent)
latent_df[feature] = list(data.obs[feature])
try:
os.makedirs(path+"/gene_heatmaps/")
except OSError:
pass
x_dim = data.shape[1]
data_ast = latent_df[latent_df[feature]==cell]
cell_one = data_ast.iloc[[0],[0,1,2,3,4]]
for dim in range(z_dim):
increment_range = np.arange(min(data_latent[:,dim]),max(data_latent[:,dim]),0.01)
result_array = np.empty((0, x_dim))
for inc in increment_range:
cell_latent = cell_one
#print(cell_latent)
#print(cell_latent.shape)
cell_latent.iloc[:,dim] = inc
cell_recon = model.reconstruct(cell_latent)
result_array = np.append(result_array,cell_recon,axis=0)
result_adata = sc.AnnData(result_array, obs={"inc_vals":increment_range},var={"var_names":variable_names})
result_adata.write(path+"/gene_heatmaps/"+str(cell)+"_"+str(dim)+".h5ad")
def simulate_multiple_cell(path,data,model,z_dim,feature):
variable_names = data.var_names
data_latent = model.to_latent(data.X)
latent_df = pd.DataFrame(data_latent)
latent_df[feature] = list(data.obs[feature])
cells = list(set(data.obs[feature]))
try:
os.makedirs(path+"/gene_heatmaps/")
except OSError:
pass
x_dim = data.shape[1]
for cell in cells:
data_ast = latent_df[latent_df[feature]==cell]
cell_one = data_ast.iloc[[0],[0,1,2,3,4]]
for dim in range(z_dim):
increment_range = np.arange(min(data_latent[:,dim]),max(data_latent[:,dim]),0.01)
result_array = np.empty((0, x_dim))
for inc in increment_range:
cell_latent = cell_one
#print(cell_latent)
#print(cell_latent.shape)
cell_latent.iloc[:,dim] = inc
cell_recon = model.reconstruct(cell_latent)
result_array = np.append(result_array,cell_recon,axis=0)
result_adata = sc.AnnData(result_array, obs={"inc_vals":increment_range},var={"var_names":variable_names})
result_adata.write(path+"/gene_heatmaps/"+str(cell)+"_"+str(dim)+".h5ad")