-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
29 lines (23 loc) · 1.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import warnings
import torch
from torch import optim
from torch.nn import functional as F
from net import SpatialTransformerNet # 定义模型结构
from visual import visualize_stn # 定义可视化代码
from dataset import get_loader # 定义数据集加载
from loop import Loop # 定义train和test代码段
from utils import random_seed # 设定随机种子
random_seed(0)
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SpatialTransformerNet().to(device) # 实例化模型
train_loader, test_loader = get_loader(batch_size=128, num_workers=0) # 获取数据集
optimizer = optim.SGD(model.parameters(), lr=0.01) # 设定优化器
if __name__ == "__main__":
epoch = 10
loop = Loop(model=model, train_loader=train_loader, test_loader=test_loader, loss_fn=F.nll_loss, optimizer=optimizer, device=device)
for epoch in range(1, epoch + 1):
loop.train(epoch)
loop.test(epoch)
visualize_stn(model=model, test_loader=test_loader, idx=epoch) # 可视化展示STN前后的图,结果保存在visual/文件夹下
loop.show() # 绘制Test Acc变化曲线,保存到result.jpg