forked from jtr13/cc21fall2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcc_plotly_cheatsheet.Rmd
366 lines (286 loc) · 11.8 KB
/
cc_plotly_cheatsheet.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Introduction to plotly
Moya Zhu and Yunshu Cai
```{r, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
library(plotly)
library(dplyr)
library(vcd)
```
## Introduction
This is a cheat sheet to help you find the proper visualization with your demostration purpose using plotly. The plots are interactive and documented with variable types. The package we will use is 'Plotly', 'dplyr'
### Prepare: Install & Load
```{r }
# After install
library(plotly)
```
### Comparision
#### Comparing over items -- Bar Charts
Bar charts are aimed to show the distribution of data points and to see how a specific group of values behave comparing against other groups.
**Vertical bar charts**
```{r}
fig <- plot_ly(
x = c("giraffes", "orangutans", "monkeys"),
y = c(20, 14, 23),
name = "SF Zoo",
type = "bar"
)
fig
```
**Horizontal bar charts**
```{r}
fig <- plot_ly(x = c(20, 14, 23), y = c('giraffes', 'orangutans', 'monkeys'), type = 'bar', orientation = 'h')
fig
```
**Customizing Individual Bar Widths** for pictorial representation of grouped data
```{r}
x= c(1, 2, 3, 5.5, 10)
y= c(10, 8, 6, 4, 2)
width = c(0.8, 0.8, 0.8, 3.5, 4)
data <- data.frame(x, y, width)
fig <- plot_ly(data)
fig <- fig %>% add_bars(
x= ~x,
y= ~y,
width = ~width
)
fig
```
**Customizing Individual Bar Colors** for focusing at a particular item and comparing to others
```{r}
x <- c('item A', 'item B', 'item C', 'item D', 'item E')
y <- c(5, 17, 20, 12, 15)
data <- data.frame(x, y)
fig <- plot_ly(data, x = ~x, y = ~y, type = 'bar',
marker = list(color = c('rgba(204,204,204,1)', 'rgba(204,204,204,1)',
'rgba(204,204,204,1)', 'rgba(199,77,120,0.8)',
'rgba(204,204,204,1)')))
fig <- fig %>% layout(title = "Least Used Features",
xaxis = list(title = ""),
yaxis = list(title = ""))
fig
```
**Customizing Individual Bar Base** for comparing groups having relatively opposite values (ex. income and expense, restocking and sales)
```{r}
fig <- plot_ly()
fig <- fig %>% add_bars(
x = c("2016", "2017", "2018"),
y = c(500,600,700),
base = c(-500,-600,-700),
marker = list(
color = 'lightpink'
),
name = 'expenses'
)
fig <- fig %>% add_bars(
x = c("2016", "2017", "2018"),
y = c(300,400,700),
base = 0,
marker = list(
color = 'lightblue'
),
name = 'revenue'
)
fig
```
#### Comparing over time -- Line Charts, Area Plots
Line charts are aimed to show the changes of data over either short or long periods of time, and to compare the trend of different groups of data.
Area charts are aimed to also indicate the total value or to compare differences among variables.
**Line chart with single variable**
```{r}
x <- c(1:100)
random_y <- rnorm(100, mean = 0)
data <- data.frame(x, random_y)
fig <- plot_ly(data, x = ~x, y = ~random_y, type = 'scatter', mode = 'lines')
fig
```
**(Styled) Line chart with more than one variables**
```{r}
month <- c('January', 'February', 'March', 'April', 'May', 'June', 'July',
'August', 'September', 'October', 'November', 'December')
high_2000 <- c(32.5, 37.6, 49.9, 53.0, 69.1, 75.4, 76.5, 76.6, 70.7, 60.6, 45.1, 29.3)
low_2000 <- c(13.8, 22.3, 32.5, 37.2, 49.9, 56.1, 57.7, 58.3, 51.2, 42.8, 31.6, 15.9)
high_2007 <- c(36.5, 26.6, 43.6, 52.3, 71.5, 81.4, 80.5, 82.2, 76.0, 67.3, 46.1, 35.0)
low_2007 <- c(23.6, 14.0, 27.0, 36.8, 47.6, 57.7, 58.9, 61.2, 53.3, 48.5, 31.0, 23.6)
high_2014 <- c(28.8, 28.5, 37.0, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9)
low_2014 <- c(12.7, 14.3, 18.6, 35.5, 49.9, 58.0, 60.0, 58.6, 51.7, 45.2, 32.2, 29.1)
data <- data.frame(month, high_2000, low_2000, high_2007, low_2007, high_2014, low_2014)
#The default order will be alphabetized unless specified as below:
data$month <- factor(data$month, levels = data[["month"]])
fig <- plot_ly(data, x = ~month, y = ~high_2014, name = 'High 2014', type = 'scatter', mode = 'lines',
line = list(color = 'rgb(205, 12, 24)', width = 4))
fig <- fig %>% add_trace(y = ~low_2014, name = 'Low 2014', line = list(color = 'rgb(22, 96, 167)', width = 4))
fig <- fig %>% add_trace(y = ~high_2007, name = 'High 2007', line = list(color = 'rgb(205, 12, 24)', width = 4, dash = 'dash'))
fig <- fig %>% add_trace(y = ~low_2007, name = 'Low 2007', line = list(color = 'rgb(22, 96, 167)', width = 4, dash = 'dash'))
fig <- fig %>% add_trace(y = ~high_2000, name = 'High 2000', line = list(color = 'rgb(205, 12, 24)', width = 4, dash = 'dot'))
fig <- fig %>% add_trace(y = ~low_2000, name = 'Low 2000', line = list(color = 'rgb(22, 96, 167)', width = 4, dash = 'dot'))
fig <- fig %>% layout(title = "Average High and Low Temperatures in New York",
xaxis = list(title = "Months"),
yaxis = list (title = "Temperature (degrees F)"))
fig
```
**Area chart with single variable**
```{r}
density <- density(diamonds$carat)
fig <- plot_ly(x = ~density$x, y = ~density$y, type = 'scatter', mode = 'lines', fill = 'tozeroy')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
yaxis = list(title = 'Density'))
fig
```
**(Custom colored) Area chart with more than one variables**
```{r}
diamonds1 <- diamonds[which(diamonds$cut == "Fair"),]
density1 <- density(diamonds1$carat)
diamonds2 <- diamonds[which(diamonds$cut == "Ideal"),]
density2 <- density(diamonds2$carat)
fig <- plot_ly(x = ~density1$x, y = ~density1$y, type = 'scatter', mode = 'lines', name = 'Fair cut', fill = 'tozeroy',
fillcolor = 'rgba(168, 216, 234, 0.5)',
line = list(width = 0.5))
fig <- fig %>% add_trace(x = ~density2$x, y = ~density2$y, name = 'Ideal cut', fill = 'tozeroy',
fillcolor = 'rgba(255, 212, 96, 0.5)')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
yaxis = list(title = 'Density'))
fig
```
**(Stacked) Area chart with more than one variables** is suitable for displaying part-to-whole relations by showing the constituent parts of a whole one over the other.
```{r}
data <- t(USPersonalExpenditure)
data <- data.frame("year"=rownames(data), data)
fig <- plot_ly(data, x = ~year, y = ~Food.and.Tobacco, name = 'Food and Tobacco', type = 'scatter', mode = 'none', stackgroup = 'one', fillcolor = '#F5FF8D')
fig <- fig %>% add_trace(y = ~Household.Operation, name = 'Household Operation', fillcolor = '#50CB86')
fig <- fig %>% add_trace(y = ~Medical.and.Health, name = 'Medical and Health', fillcolor = '#4C74C9')
fig <- fig %>% add_trace(y = ~Personal.Care, name = 'Personal Care', fillcolor = '#700961')
fig <- fig %>% add_trace(y = ~Private.Education, name = 'Private Education', fillcolor = '#312F44')
fig <- fig %>% layout(title = 'United States Personal Expenditures by Categories',
xaxis = list(title = "",
showgrid = FALSE),
yaxis = list(title = "Expenditures (in billions of dollars)",
showgrid = FALSE))
fig
```
### Distribution
**One coutinuous variable** histogram:
```{r}
fig <- plot_ly(data = iris, x = ~Sepal.Length,type="histogram")
fig
```
**One continuous variable** histogram with density line:
```{r}
dens<-density(iris$Sepal.Length)
fig <- plot_ly(data = iris,x = ~Sepal.Length,type="histogram", name = "Histogram")%>%
add_trace(x=dens$x,y=dens$y,mode = "lines",type='scatter', fill = "tozeroy", yaxis = "y2", name = "Density") %>%
layout(yaxis2 = list(overlaying = "y", side = "right"))
fig
```
**multi-continuous variable** histogram overlaid:
```{r}
fig <- plot_ly(data=iris,alpha = 0.6)
fig <- fig %>% add_histogram(x = ~Sepal.Length,name='sepal length')
fig <- fig %>% add_histogram(x = ~Petal.Length,name='petalvlength')
fig <- fig %>% add_histogram(x = ~Petal.Width,name='petal width')
fig <- fig %>% layout(barmode = "overlay")
fig
```
### Relationship
#### Between two continuous variables:
Scatter plot
```{r}
fig <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length)
fig
#with color:
fig_color <- plot_ly(data = iris, x = ~Sepal.Length, y = ~Petal.Length, color = ~Species)
fig_color
```
#### Multiple variables:
Bubble size scatter plot indicating relationship of 3 variables with text hover
```{r}
data <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv")
fig <- plot_ly(data, x = ~Women, y = ~Men, text = ~School, type = 'scatter', mode = 'markers',
marker = list(size = ~Gap, opacity = 0.5, color = 'rgb(255, 65, 54)'))
fig <- fig %>% layout(title = 'Gender Gap in Earnings per University',
xaxis = list(showgrid = FALSE),
yaxis = list(showgrid = FALSE))
fig
```
### Composition
#### Changing over time
**Cumulative values:**
Stacked area chart
```{r}
data <- t(USPersonalExpenditure)
data <- data.frame("year"=rownames(data), data)
fig <- plot_ly(data, x = ~year, y = ~Food.and.Tobacco, name = 'Food and Tobacco', type = 'scatter', mode = 'none', stackgroup = 'one', groupnorm = 'percent', fillcolor = '#F5FF8D')
fig <- fig %>% add_trace(y = ~Household.Operation, name = 'Household Operation', fillcolor = '#50CB86')
fig <- fig %>% add_trace(y = ~Medical.and.Health, name = 'Medical and Health', fillcolor = '#4C74C9')
fig <- fig %>% add_trace(y = ~Personal.Care, name = 'Personal Care', fillcolor = '#700961')
fig <- fig %>% add_trace(y = ~Private.Education, name = 'Private Education', fillcolor = '#312F44')
fig <- fig %>% layout(title = 'United States Personal Expenditures by Categories',
xaxis = list(title = "",
showgrid = FALSE),
yaxis = list(title = "Proportion from the Total Expenditures",
showgrid = FALSE,
ticksuffix = '%'))
fig
```
#### Static
**Single categorical variable:**
pie chart:
```{r}
fig <- plot_ly()
fig <- fig %>% add_pie(data = count(iris,Species), labels = ~Species, values = ~n,
name = "Species", domain = list(row = 0, column = 0))
fig
```
**Multi-categorical variables:**
Stacked bar plot:
```{r}
data(Arthritis)
uniq<-unique(Arthritis$Treatment)
Arthritis%>% group_by(Treatment) %>%arrange(Improved)%>%
plot_ly( x = ~Treatment, y = ~Improved,color = ~ Improved,type = 'bar')%>%
layout(yaxis = list(title = 'value'), barmode = 'stack')
```
**Hierarchical data:**
Multi-categorical:
Tree map displays hierarchical data as sets of nested rectangles. It represent branches of the dimension of the data.
```{r}
df1 = read.csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')
fig <- plot_ly(
type='treemap',
ids=df1$ids,
labels=df1$labels,
parents=df1$parents,
domain=list(column=0))
fig
```
**sequential data**
waterfall chart helps in understanding the cumulative effect of sequential values. It represent the accumulation or subtraction of total. It's a great representation for lots of the financial data.
```{r}
x= list("Sales", "Consulting", "Net revenue", "Purchases", "Other expenses", "Profit before tax")
measure= c("relative", "relative", "total", "relative", "relative", "total")
text= c("+60", "+80", "", "-40", "-20", "Total")
y= c(60, 80, 0, -40, -20, 0)
data = data.frame(x=factor(x,levels=x),measure,text,y)
fig <- plot_ly(
data, name = "20", type = "waterfall", measure = ~measure,
x = ~x, textposition = "outside", y= ~y, text =~text,
connector = list(line = list(color= "rgb(63, 63, 63)")))
fig <- fig %>%
layout(title = "Profit and loss statement 2018",
xaxis = list(title = ""),
yaxis = list(title = ""),
autosize = TRUE,
showlegend = TRUE)
fig
```
## References
https://plotly.com/r/bar-charts/
https://plotly.com/r/horizontal-bar-charts/
https://plotly.com/r/line-charts/
https://www.fusioncharts.com/blog/line-charts-vs-area-charts/
https://plotly.com/r/filled-area-plots/
https://plotly.com/r/treemaps/
https://plotly.com/python/waterfall-charts/
https://plotly.com/r/histograms/
https://www.qlik.com/blog/third-pillar-of-mapping-data-to-visualizations-usage