forked from jtr13/cc21fall2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgganimate_cheatsheat.Rmd
229 lines (195 loc) · 5.33 KB
/
gganimate_cheatsheat.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# GGanimate cheatsheet
Siyu Li
```{r}
library(ggplot2)
# remotes::install_github('thomasp85/gganimate')
# remotes::install_github('thomasp85/transformr')
library(gganimate)# must be installed from source
```
## PDF cheatsheet
Please click the link:
[gganimate_cheatsheet](https://github.com/lisiyu98/gganimate_cheatsheet/blob/main/gganimate_cheatsheat.pdf){target="_blank"}
## Introduction
gganimate extends the grammar of graphics as
implemented by ggplot2 to include the description of animation. It does this by providing a
range of new grammar classes that can be added
to the plot object in order to customise how it
should change with time.
## Installation
```
install.packages('devtools')
devtools::install_github('thomasp85/gganimate')
devtools::install_github('thomasp85/transformr')
```
NOTE: May also need install 'gifski' and 'av' package.
## Basic function
```
p <- ggplot()+
geom_point()+//or other kinds of graph
transition_states(states, transition_length,
state_length)+
view_follow(fixed_x,fixed_y)+
shadow_wake(wake_length,size,alpha)
enter_fade()+
exit_shrink()+
ease_aes(default=’linear’)
animate(p)
anim_save(filename,path)
```
• transition_∗():
defines how the data should be spread out
and how it relates to itself across time.
• view_∗():
defines how the positional scales should
change along the animation.
• shadow_∗():
defines how data from other points in time
should be presented in given point in time.
• enter_∗()/exit_∗():
defines how new data should appear and
how old data should disappear during the
course of the animation.
• ease_aes():
defines how different aesthetics should be
eased during transitions.
• animate():
render a gganimate object.
• anim_save():
save an animation to a file.
### Transition
#### transition_states
Transition between several distinct stages of the data
```{r waring=FALSE}
anim<-ggplot(iris, aes(Sepal.Width, Petal.Width)) +
geom_point() +
labs(title = "{closest_state}") +
transition_states(Species, transition_length = 3, state_length = 1)
animate(anim)
```
#### transition_filter
Transition between different filters
```{r warning=FALSE}
anim<-ggplot(iris,aes(Petal.Width,Petal.Length,
colour=Species))+
geom_point()+
transition_filter(
transition_length=2,filter_length = 1,
Setosa=Species=='setosa',
Long = Petal.Length>4,
Wide = Petal.Width>2)
animate(anim)
```
#### transition_layers
Build up plot layer by layer
```{r warning=FALSE}
ggplot(mtcars, aes(mpg, disp)) +
geom_point() +
geom_smooth(colour = 'grey', se = FALSE) +
geom_smooth(aes(colour = factor(gear))) +
transition_layers(layer_length = 1, transition_length = 2,
from_blank = FALSE, layer_order = c(3, 1, 2)) +
enter_fade() + enter_grow()
```
#### transition_reveal&transition_time
```{r warning=FALSE}
anim<-ggplot(airquality,aes(Day,Temp,group=
Month))+geom_line()+
geom_point(aes(group=seq_along(Day)),size
=3,color='red')+
transition_reveal(Day)
animate(anim)
```
```{r warning=FALSE}
anim<-ggplot(airquality,aes(Day,Temp))+
geom_point(aes(colour=factor(Month)))+
transition_time(Day)
animate(anim)
```
### Shadow
#### shadow_mark
Show original data as background
```{r}
anim <- ggplot(airquality,aes(Day,Temp,colour = factor(Month))) +
geom_point() +
transition_time(Day)
anim1<-anim+shadow_mark(colour='black',size = 0.75,past = TRUE, future = FALSE)
animate(anim1)
```
#### shadow_trail
A trail of evenly spaced old frames
```{r}
anim2 <- anim +
shadow_trail(distance=0.4,alpha = 0.3, shape = 2)
animate(anim2)
```
#### shadow_weak
Show preceding frames with gradual falloff
```{r}
anim3<-anim+shadow_wake(wake_length=0.1,size=2,alpha =FALSE,colour='grey92')
animate(anim3)
```
### View
#### view_follow
Let the view follow the data
```{r}
anim<-ggplot(iris,aes(Sepal.Length, Sepal.Width))+
geom_point()+labs(title = "closest_state")+
transition_states(Species,transition_length=4
,state_length=1)
anim1<-anim+view_follow(fixed_x=TRUE,
fixed_y=FALSE)
anim2<-anim+view_follow(fixed_x=c(4,NA),
fixed_y=c(2,NA))
```
```{r}
animate(anim1)
```
```{r}
animate(anim2)
```
#### view_step
Follow the data in steps.
NOTE: The use of view_step is relative to transition_states. If the transition doesn’t wrap, then the view shouldn’t either.
```{r}
anim<-ggplot(iris,aes(Petal.Length,Petal.Width))+
geom_point()+
transition_states(Species, transition_length=1)+
view_step(pause_length=2,step_length=1,
nsteps =3,pause_first=TRUE)
animate(anim)
```
### Animation
```
animate(plot, nframes, fps, height, width, duration, detail, renderer, device, ref_frame, start_pause,
end_pause, rewind,...)
anim_save(filename, animation=last_animation(), path=NULL, ...)
```
## Example
```{r}
ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_boxplot() +
transition_states(
gear,
transition_length = 2,
state_length = 1
) +
enter_fade() +
exit_shrink() +
ease_aes('sine-in-out')
```
```{r}
library(gapminder)
ggplot(gapminder, aes(gdpPercap, lifeExp, size =
pop, colour = country)) +
geom_point(alpha=0.7,show.legend=FALSE)+
scale_colour_manual(values=country_colors)+
scale_size(range = c(2, 12))+scale_x_log10()+
facet_wrap(~continent) +
labs(title='Year: frame_time', x='GDP per
capita', y='life expectancy') +
transition_time(year) +
ease_aes('linear')
```
## References
[official github](https://github.com/thomasp85/gganimate/){target="_blank"}
[official introduction pdf](https://cran.r-project.org/web/packages/gganimate/gganimate.pdf){target="_blank"}