forked from feixue94/imp-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
142 lines (126 loc) · 6.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File imp-release -> train
@IDE PyCharm
@Author [email protected]
@Date 21/03/2023 21:45
=================================================='''
import argparse
import json
import os
import os.path as osp
import torch
import torch.utils.data as Data
from nets.gm import GM
from nets.adgm import AdaGMN
from nets.gms import DGNNS
from trainer import Trainer
from dataset.megadepth import Megadepth
from tools.common import torch_set_gpu
import torch.multiprocessing as mp
import torch.distributed as dist
torch.set_grad_enabled(True)
parser = argparse.ArgumentParser(description='IMP', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--eval', action='store_true', help='evaluation')
parser.add_argument('--max_keypoints', type=int, default=512, help='the maximum number of keypoints')
parser.add_argument('--keypoint_th', type=float, default=0.005, help='threshold of superpoint detector')
parser.add_argument('--sinkhorn_iterations', type=int, default=20,
help='the number of Sinkhorn iterations in Superglue')
parser.add_argument('--match_th', type=float, default=0.2, help='Superglue matching threshold')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--feature', choices={'sift', 'spp'}, default='spp', help='features used for training')
parser.add_argument("--gpu", type=int, nargs='+', default=[0], help='-1 for CPU')
parser.add_argument("--its_per_epoch", type=int, default=-1)
parser.add_argument("--log_intervals", type=int, default=50)
parser.add_argument("--workers", type=int, default=4)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--save_path', type=str, default='/scratches/flyer_3/fx221/exp/imp')
parser.add_argument('--base_path', type=str, default='/scratches/flyer_3/fx221/dataset/Megadepth')
parser.add_argument('--network', type=str, default='gm')
parser.add_argument('--config', type=str, required=True, help='config of specifications')
parser.add_argument('--eval_config', type=str, default=None, help='config of specifications')
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12358'
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def train_DDP(rank, world_size, model, args):
print('In train_DDP..., rank: ', rank)
torch.cuda.set_device(rank)
train_set = Megadepth(
scene_info_path=osp.join(args.base_path, 'scene_info'),
base_path=args.base_path,
scene_list_fn=args.scene_list_fn,
min_overlap_ratio=args.min_overlap_ratio,
max_overlap_ratio=args.max_overlap_ratio,
pairs_per_scene=args.pairs_per_scene,
image_size=args.image_size,
nfeatures=args.max_keypoints,
train=(args.train > 0),
inlier_th=args.inlier_th,
feature_type=args.feature,
pre_load_scene_info=(args.pre_load > 0),
extract_feature=False,
min_inliers=args.min_inliers,
max_inliers=args.max_inliers,
random_inliers=(args.random_inliers > 0),
matches={},
rank=rank,
)
device = torch.device(f'cuda:{rank}')
model.to(device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
setup(rank=rank, world_size=world_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=False, drop_last=True)
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=args.batch_size // world_size,
num_workers=args.workers // world_size,
pin_memory=False,
sampler=train_sampler)
args.local_rank = rank
trainer = Trainer(model=model, train_loader=train_loader, eval_loader=None, args=args)
trainer.train()
if __name__ == '__main__':
# torch.multiprocessing.set_start_method('spawn') # don't use for mega [keypoint, matches], cause oom
args = parser.parse_args()
with open(args.config, 'rt') as f:
t_args = argparse.Namespace()
t_args.__dict__.update(json.load(f))
args = parser.parse_args(namespace=t_args)
torch_set_gpu(gpus=args.gpu)
if args.local_rank == 0:
print(args)
config = {
'sinkhorn_iterations': args.sinkhorn_iterations,
'match_threshold': args.match_th,
'descriptor_dim': 256 if args.feature == 'spp' else 128,
'GNN_layers': ['self', 'cross'] * args.layers,
'n_layers': args.layers,
'ac_fn': args.ac_fn,
'norm_fn': args.norm_fn,
'with_sinkhorn': (args.with_sinkhorn > 0),
# for adaptive pooling
'n_min_tokens': args.n_min_tokens,
}
if args.network == 'gm':
model = GM(config)
elif args.network == 'dgnns':
model = DGNNS(config)
elif args.network == 'adagmn':
model = AdaGMN(config)
if args.local_rank == 0:
print('model: ', model)
# load pretrained weight
if args.weight_path != "None":
model.load_state_dict(torch.load(osp.join(args.save_root, args.weight_path), map_location='cpu')['model'],
strict=True)
print('Load weight from {:s}'.format(osp.join(args.save_root, args.weight_path)))
if args.resume_path != 'None':
model.load_state_dict(torch.load(osp.join(args.save_root, args.resume_path), map_location='cpu')['model'],
strict=True)
print('Load resume weight from {:s}'.format(osp.join(args.save_root, args.resume_path)))
mp.spawn(train_DDP, nprocs=len(args.gpu), args=(len(args.gpu), model, args), join=True)