forked from feixue94/imp-release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
298 lines (254 loc) · 11.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pnba -> trainer
@IDE PyCharm
@Author [email protected]
@Date 07/12/2021 15:05
=================================================='''
import datetime
import json
import os
import os.path as osp
import numpy as np
from pathlib import Path
from tensorboardX import SummaryWriter
from tqdm import tqdm
import torch.optim as optim
import shutil
import torch
from torch.autograd import Variable
from tools.common import save_args
from eval.eval_yfcc_full import evaluate_full
class Trainer:
def __init__(self, model, train_loader, eval_loader=None, args=None):
self.model = model
self.train_loader = train_loader
self.eval_loader = eval_loader
self.args = args
self.init_lr = self.args.lr
self.min_lr = self.args.min_lr
if self.args.optim == 'adam':
self.optimizer = optim.Adam([p for p in self.model.parameters() if p.requires_grad],
lr=self.init_lr)
elif self.args.optim == 'adamw':
self.optimizer = optim.AdamW([p for p in self.model.parameters() if p.requires_grad],
lr=self.init_lr)
self.num_epochs = self.args.epochs
if args.resume_path != 'None':
log_dir = args.resume_path.split('/')[-2]
resume_log = torch.load(osp.join(osp.join(args.save_root, args.resume_path)), map_location='cpu')
self.epoch = resume_log['epoch'] + 1
if 'iteration' in resume_log.keys():
self.iteration = resume_log['iteration']
else:
self.iteration = len(self.train_loader) * self.epoch
self.min_loss = resume_log['min_loss']
else:
self.iteration = 0
self.epoch = 0
self.min_loss = 1e10
now = datetime.datetime.now()
log_dir = now.strftime("%Y_%m_%d_%H_%M_%S")
log_dir = log_dir + '_' + self.args.network + '_L' + str(
self.args.layers) + '_' + str(self.args.feature) + '_B' + str(
self.args.batch_size) + '_K' + str(self.args.max_keypoints) + '_M' + str(
self.args.match_th) + '_' + self.args.ac_fn + '_' + self.args.norm_fn + '_' + self.args.optim
self.save_dir = osp.join(self.args.save_path, log_dir)
if not osp.exists(self.save_dir):
os.makedirs(self.save_dir, exist_ok=True)
print("save_dir: ", self.save_dir)
self.log_file = open(osp.join(self.save_dir, "log.txt"), "a+")
if self.args.local_rank == 0:
save_args(args=args, save_path=Path(self.save_dir, "args.txt"))
self.writer = SummaryWriter(self.save_dir)
self.tag = log_dir
self.do_eval = (self.args.do_eval > 0)
if self.do_eval:
self.eval_fun = self.eval_matching
def process_epoch(self):
self.model.train()
epoch_losses = []
epoch_acc_corr = []
epoch_acc_incorr = []
epoch_acc_corr_ratio = []
epoch_acc_incorr_ratio = []
epoch_matching_loss = []
n_invalid_its = 0
for bidx, pred in tqdm(enumerate(self.train_loader), total=len(self.train_loader)):
for k in pred:
if k.find('file_name') >= 0:
continue
if k != 'image0' and k != 'image1' and k != 'depth0' and k != 'depth1':
if type(pred[k]) == torch.Tensor:
pred[k] = Variable(pred[k].float().cuda())
else:
pred[k] = Variable(torch.stack(pred[k]).float().cuda())
if self.args.its_per_epoch >= 0 and bidx >= self.args.its_per_epoch:
break
data = self.model(pred)
for k, v in pred.items():
pred[k] = v
pred = {**pred, **data}
loss = pred['loss']
acc_corr = pred['acc_corr'][-1]
acc_incorr = pred['acc_incorr'][-1]
total_acc_corr = pred['total_acc_corr'][-1]
total_acc_incorr = pred['total_acc_incorr'][-1]
if 'matching_loss' in pred.keys():
matching_loss = pred['matching_loss']
else:
matching_loss = loss
if torch.numel(loss) > 1:
loss = torch.mean(loss)
if torch.isinf(loss) or torch.isnan(loss):
# self.optimizer.zero_grad()
print('Loss is INF/NAN')
self.optimizer.zero_grad()
del pred
torch.cuda.empty_cache()
# del data
n_invalid_its += 1
if n_invalid_its >= 10:
print('Exit because of INF/NAN in loss')
# exit(0)
torch.cuda.empty_cache()
return None
continue
matching_loss = torch.mean(matching_loss)
acc_corr = torch.mean(acc_corr)
acc_incorr = torch.mean(acc_incorr)
total_acc_corr = torch.mean(total_acc_corr)
total_acc_incorr = torch.mean(total_acc_incorr)
else:
if torch.isinf(loss) or torch.isnan(loss):
print('Loss is INF/NAN')
self.optimizer.zero_grad()
# del data
n_invalid_its += 1
if n_invalid_its >= 10:
print('Exit because of INF/NAN in loss')
continue
epoch_losses.append(loss.item())
epoch_matching_loss.append(matching_loss.item())
epoch_acc_corr.append(acc_corr.item())
epoch_acc_incorr.append(acc_incorr.item())
acc_corr_ratio = acc_corr.item() / (total_acc_corr.item() + 1)
acc_incorr_ratio = acc_incorr.item() / (total_acc_incorr.item() + 1)
epoch_acc_corr_ratio.append(acc_corr_ratio)
epoch_acc_incorr_ratio.append(acc_incorr_ratio)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.iteration += 1
lr = min(self.args.lr * self.args.decay_rate ** (self.iteration - self.args.decay_iter), self.args.lr)
if lr < self.min_lr:
lr = self.min_lr
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
if self.args.local_rank == 0 and bidx % self.args.log_intervals == 0:
matching_score = pred['matching_scores0'][-1]
print_text = 'Epoch [{:d}/{:d}], Step [{:d}/{:d}/{:d}], Loss [m{:.2f}/t{:.2f}], MS [{:.2f}], Acc [c{:.1f}/{:.1f}, n{:.1f}/{:.1f}]'.format(
self.epoch,
self.num_epochs, bidx,
len(self.train_loader),
self.iteration,
matching_loss.item(),
loss.item(),
torch.max(matching_score).item(),
np.mean(epoch_acc_corr),
np.mean(epoch_acc_corr_ratio),
np.mean(epoch_acc_incorr),
np.mean(epoch_acc_incorr_ratio),
)
print(print_text)
self.log_file.write(print_text + '\n')
info = {
'lr': lr,
'matching_loss': matching_loss.item(),
'loss': loss.item(),
'acc_corr': acc_corr.item(),
'acc_incorr': acc_incorr.item(),
'acc_corr_ratio': acc_corr_ratio,
'acc_incorr_ratio': acc_incorr_ratio,
}
for k, v in info.items():
self.writer.add_scalar(tag=k, scalar_value=v, global_step=self.iteration)
if self.args.local_rank == 0:
print_text = 'Epoch [{:d}/{:d}], AVG Loss [m{:.2f}/t{:.2f}], Acc [c{:.1f}/{:.1f}, n{:.1f}/{:.1f}]\n'.format(
self.epoch,
self.num_epochs,
np.mean(epoch_matching_loss),
np.mean(epoch_losses),
np.mean(epoch_acc_corr),
np.mean(epoch_acc_corr_ratio),
np.mean(epoch_acc_incorr),
np.mean(epoch_acc_incorr_ratio),
)
print(print_text)
self.log_file.write(print_text + '\n')
self.log_file.flush()
return np.mean(epoch_losses)
def eval_matching(self, epoch=0):
self.model.eval()
with open(self.args.eval_config, 'rt') as f:
opt = json.load(f)
opt['output_dir'] = osp.join(self.save_dir, 'vis_eval_epoch_{:02d}'.format(epoch))
opt['feature'] = self.args.feature
with torch.no_grad():
for dataset in ['scannet', 'yfcc']:
eval_out = evaluate_full(model=self.model, opt=opt, dataset=dataset, feat_type=self.args.feature)
for k, v in eval_out.items():
self.writer.add_scalar(tag=dataset + '_eval_' + k, scalar_value=v, global_step=self.iteration)
text = "Eval Epoch [{:d}] for {:s}".format(epoch, dataset)
for k in eval_out.keys():
text = text + " {:s} [{:.2f}]".format(k, eval_out[k])
self.log_file.write(text + "\n\n")
self.log_file.flush()
return eval_out['prec']
def train(self):
if self.args.local_rank == 0:
print('Start to train the model from epoch: {:d}'.format(self.epoch))
hist_values = []
min_value = self.min_loss
epoch = self.epoch
while epoch < self.num_epochs:
if self.args.with_dist > 0:
self.train_loader.sampler.set_epoch(epoch=epoch)
self.epoch = epoch
train_loss = self.process_epoch()
# return with loss INF/NAN
if train_loss is None:
continue
if self.args.local_rank == 0:
if self.do_eval and self.epoch % 5 == 0: # and self.epoch >= 50:
eval_ratio = self.eval_fun(epoch=self.epoch)
hist_values.append(eval_ratio) # higher better
else:
hist_values.append(-train_loss) # lower better
checkpoint_path = os.path.join(
self.save_dir,
'%s.%02d.pth' % (self.args.network, self.epoch)
)
checkpoint = {
'epoch': self.epoch,
'iteration': self.iteration,
'model': self.model.state_dict(),
'min_loss': min_value,
}
# for multi-gpu training
if len(self.args.gpu) > 1:
checkpoint['model'] = self.model.module.state_dict()
torch.save(checkpoint, checkpoint_path)
if hist_values[-1] < min_value:
min_value = hist_values[-1]
best_checkpoint_path = os.path.join(
self.save_dir,
'%s.best.pth' % (self.tag)
)
shutil.copy(checkpoint_path, best_checkpoint_path)
# important!!!
epoch += 1
# self.lr_scheduler.step()
self.train_loader.dataset.build_dataset(seed=self.epoch)
if self.args.local_rank == 0:
self.log_file.close()