-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy patheval.py
122 lines (99 loc) · 4.23 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import glob
import os
import cv2
import pytorch_lightning as pl
import hydra
from omegaconf import OmegaConf
import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd
from torchmetrics import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
class Evaluator(nn.Module):
"""adapted from https://github.com/JanaldoChen/Anim-NeRF/blob/main/models/evaluator.py"""
def __init__(self):
super().__init__()
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type="alex")
self.psnr = PeakSignalNoiseRatio(data_range=1)
self.ssim = StructuralSimilarityIndexMeasure(data_range=1)
# custom_fwd: turn off mixed precision to avoid numerical instability during evaluation
@custom_fwd(cast_inputs=torch.float32)
def forward(self, rgb, rgb_gt):
# torchmetrics assumes NCHW format
rgb = rgb.permute(0, 3, 1, 2).clamp(max=1.0)
rgb_gt = rgb_gt.permute(0, 3, 1, 2)
return {
"psnr": self.psnr(rgb, rgb_gt),
"ssim": self.ssim(rgb, rgb_gt),
"lpips": self.lpips(rgb, rgb_gt),
}
@hydra.main(config_path="./confs", config_name="SNARF_NGP_refine")
def main(opt):
pl.seed_everything(opt.seed)
torch.set_printoptions(precision=6)
print(f"Switch to {os.getcwd()}")
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=f"checkpoints/refinement/",
filename="epoch={epoch:04d}-val_psnr={val/psnr:.1f}",
auto_insert_metric_name=False,
**opt.checkpoint
)
# refine test data
opt.dataset.opt.train.start = opt.dataset.opt.test.start
opt.dataset.opt.train.end = opt.dataset.opt.test.end
opt.dataset.opt.train.skip = opt.dataset.opt.test.skip
opt.dataset.opt.val.start = opt.dataset.opt.test.start
opt.dataset.opt.val.end = opt.dataset.opt.test.end
opt.dataset.opt.val.skip = opt.dataset.opt.test.skip
datamodule = hydra.utils.instantiate(opt.dataset, _recursive_=False)
# load checkpoint
model = hydra.utils.instantiate(opt.model, datamodule=datamodule, _recursive_=False)
state_dict = model.state_dict()
checkpoint = sorted(glob.glob("checkpoints/*.ckpt"))[-1]
for k, v in torch.load(checkpoint)["state_dict"].items():
if not k.startswith("SMPL_param"):
state_dict[k] = v
model.load_state_dict(state_dict)
# freeze all the parameters other than SMPL pose
for k, param in model.named_parameters():
if not k.startswith("SMPL_param"):
param.requires_grad = False
trainer = pl.Trainer(gpus=1,
accelerator="gpu",
callbacks=[checkpoint_callback],
num_sanity_val_steps=0, # disable sanity check
weights_summary=None,
logger=False,
enable_progress_bar=False,
**opt.train)
checkpoints = sorted(glob.glob("checkpoints/refinement/*.ckpt"))
if len(checkpoints) > 0 and opt.resume:
print("Resume from", checkpoints[-1])
trainer.fit(model, ckpt_path=checkpoints[-1])
else:
print("Saving configs.")
OmegaConf.save(opt, "config_refine.yaml")
trainer.fit(model)
trainer.test(model)[0]
imgs = [cv2.imread(fn) for fn in glob.glob("test/*.png")]
imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
imgs = [torch.tensor(img).cuda().float() / 255.0 for img in imgs]
evaluator = Evaluator()
evaluator = evaluator.cuda()
evaluator.eval()
H, W = imgs[0].shape[:2]
W //= 3
with torch.no_grad():
results = [evaluator(img[None, :, W:2*W], img[None, :, :W]) for img in imgs]
with open("results.txt", "w") as f:
psnr = torch.stack([r['psnr'] for r in results]).mean().item()
print(f"PSNR: {psnr:.2f}")
f.write(f"PSNR: {psnr:.2f}\n")
ssim = torch.stack([r['ssim'] for r in results]).mean().item()
print(f"SSIM: {ssim:.4f}")
f.write(f"SSIM: {ssim:.4f}\n")
lpips = torch.stack([r['lpips'] for r in results]).mean().item()
print(f"LPIPS: {lpips:.4f}")
f.write(f"LPIPS: {lpips:.4f}\n")
if __name__ == "__main__":
main()