-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdarts_callbacks.py
74 lines (61 loc) · 2.98 KB
/
darts_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from fastai import *
from fastai.text import *
from collections import namedtuple
Genotype = namedtuple('Genotype', 'recurrent concat')
class Regu(LearnerCallback):
def __init__(self, learn:Learner, alpha=0, beta=1e-3):
super().__init__(learn)
self.alpha = alpha # L2 regularization on RNN activation
self.beta = beta # slowness regularization applied on RNN activiation
def on_loss_begin(self, last_output, **kwargs):
if self.learn.model.training:
self.raw, self.dropped = last_output[0], last_output[1]
return {'last_output': last_output[2]}
def on_backward_begin(self, last_loss, **kwargs):
if self.learn.model.training:
last_loss += self.alpha * self.dropped.pow(2).mean() # ar
last_loss += self.beta * (self.raw[:, 1:] - self.raw[:, :-1]).pow(2).mean() # tar
return {'last_loss': last_loss}
class HidInit(LearnerCallback):
def on_epoch_begin(self, **kwargs):
self.learn.model.hid = self.learn.model.init_hid(bs=self.learn.model.bs_train)
self.learn.model.hid_search = self.learn.model.init_hid(bs=self.learn.model.bs_train)
self.learn.model.hid_val = self.learn.model.init_hid(bs=self.learn.model.bs_val)
class GcCol(LearnerCallback):
def on_backward_end(self, **kwargs):
gc.collect()
class SaveModel(LearnerCallback):
_order = 50 # after everything
def __init__(self, learn:Learner, gap, name:str='bestmodel'):
super().__init__(learn)
self.name = name
self.gap = gap
def on_epoch_end(self, epoch:int, **kwargs:Any)->None:
if epoch % self.gap == 0:
try:
# save train_search
torch.save({'model': self.learn.model.state_dict(),
'opt':self.learn.opt.state_dict(),
'arch_p': self.learn.model.rnn.arch_p},
self.path/self.model_dir/f'{self.name}_{epoch}.pth')
except AttributeError:
# save train
torch.save({'model': self.learn.model.state_dict(),
'opt':self.learn.opt.state_dict()},
self.path/self.model_dir/f'{self.name}_{epoch}.pth')
print('Saved model at end of epoch', epoch)
class ResumeModel(LearnerCallback):
_order = 15 # after asgd_switch
def __init__(self, learn:Learner, name:str):
super().__init__(learn)
self.name = name
def on_train_begin(self, **kwargs:Any):
checkpoint = torch.load(self.path/self.model_dir/f'{self.name}.pth',
map_location=lambda storage, loc: storage)
self.learn.model.load_state_dict(checkpoint['model'])
self.learn.opt.load_state_dict(checkpoint['opt'])
try:
self.learn.model.rnn.arch_p = checkpoint['arch_p']
except:
pass
print(f'Resume from file {self.name}.pth')