-
Notifications
You must be signed in to change notification settings - Fork 267
/
Copy pathmain.py
57 lines (46 loc) · 2.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import models
import argparse
import tensorflow as tf
parser = argparse.ArgumentParser(description="Up-Scales an image using Image Super Resolution Model")
parser.add_argument("imgpath", type=str, nargs="+", help="Path to input image")
parser.add_argument("--model", type=str, default="distilled_rnsr", help="Use either image super resolution (sr), "
"expanded super resolution (esr), denoising auto encoder sr (dsr), "
"deep denoising sr (ddsr) or res net sr (rnsr)")
parser.add_argument("--scale", default=2, help='Scaling factor. Default = 2x')
parser.add_argument("--mode", default="patch", type=str, help='Mode of operation. Choices are "fast" or "patch"')
parser.add_argument("--save_intermediate", dest='save', default='True', type=str,
help="Whether to save bilinear upscaled image")
parser.add_argument("--suffix", default="scaled", type=str, help='Suffix of saved image')
parser.add_argument("--patch_size", type=int, default=8, help='Patch Size')
def strToBool(v):
return v.lower() in ("true", "yes", "t", "1")
args = parser.parse_args()
suffix = args.suffix
model_type = str(args.model).lower()
if not model_type in ["sr", "esr", "dsr", "ddsr", "rnsr", "distilled_rnsr"]:
raise ValueError('Model type must be either "sr", "esr", "dsr", '
'"ddsr", "rnsr" or "distilled_rnsr"')
mode = str(args.mode).lower()
assert mode in ['fast', 'patch'], 'Mode of operation must be either "fast" or "patch"'
scale_factor = int(args.scale)
save = strToBool(args.save)
patch_size = int(args.patch_size)
assert patch_size > 0, "Patch size must be a positive integer"
with tf.device('/CPU:0'):
path = args.imgpath
for p in path:
if model_type == "sr":
model = models.ImageSuperResolutionModel(scale_factor)
elif model_type == "esr":
model = models.ExpantionSuperResolution(scale_factor)
elif model_type == "dsr":
model = models.DenoisingAutoEncoderSR(scale_factor)
elif model_type == "ddsr":
model = models.DeepDenoiseSR(scale_factor)
elif model_type == "rnsr":
model = models.ResNetSR(scale_factor)
elif model_type == "distilled_rnsr":
model = models.DistilledResNetSR(scale_factor)
else:
model = models.DistilledResNetSR(scale_factor)
model.upscale(p, save_intermediate=save, mode=mode, patch_size=patch_size, suffix=suffix)