forked from aliang-rec/MBHT-KDD22
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunMemComp.py
98 lines (84 loc) · 3.91 KB
/
runMemComp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
from logging import getLogger
import os
from recbole.config import Config
from recbole.data import create_dataset
from recbole.data.utils import get_dataloader, create_samplers
#from recbole.model.sequential_recommender.mbht2 import MBHT
from recbole.utils import init_logger, init_seed, get_model, get_trainer, set_color
#from recbole.model.sequential_recommender.blorectrans import MBHT
#from recbole.model.sequential_recommender.mega import MBHT
from recbole.model.sequential_recommender.memcomp1 import MBHT
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', '-m', type=str, default='MBHT', help='Model for session-based rec.')
parser.add_argument('--dataset', '-d', type=str, default='tmall_beh', help='Benchmarks for session-based rec.')
parser.add_argument('--validation', action='store_true', help='Whether evaluating on validation set (split from train set), otherwise on test set.')
parser.add_argument('--valid_portion', type=float, default=0.1, help='ratio of validation set.')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=2048)
return parser.parse_known_args()[0]
if __name__ == '__main__':
args = get_args()
# configurations initialization
config_dict = {
'USER_ID_FIELD': 'session_id',
'load_col': None,
# 'neg_sampling': {'uniform':1},
'neg_sampling': None,
'benchmark_filename': ['train', 'test'],
'alias_of_item_id': ['item_id_list'],
'topk': [5, 10, 101],
'metrics': ['Recall', 'NDCG', 'MRR'],
'valid_metric': 'NDCG@10',
'eval_args':{
'mode':'full',
'order':'TO'
},
'gpu_id':args.gpu_id,
"MAX_ITEM_LIST_LENGTH":200,
"train_batch_size": 32 if args.dataset == "ijcai_beh" else 64,
"eval_batch_size":24 if args.dataset == "ijcai_beh" else 128,
"hyper_len":10 if args.dataset == "ijcai_beh" else 6,
"scales":[10, 4, 20],
"enable_hg":1,
"enable_ms":1,
"customized_eval":1,
"abaltion":""
}
if args.dataset == "retail_beh":
config_dict['scales'] = [5, 4, 20]
config_dict['hyper_len'] = 6
config = Config(model="MBHT", dataset=f'{args.dataset}', config_dict=config_dict)
# config['device']="cpu"
init_seed(config['seed'], config['reproducibility'])
# logger initialization
init_logger(config, log_root="log")
logger = getLogger()
logger.info(f"PID: {os.getpid()}")
logger.info(args)
logger.info(config)
# dataset filtering
dataset = create_dataset(config)
logger.info(dataset)
# dataset splitting
train_dataset, test_dataset = dataset.build()
train_sampler, test_sampler = create_samplers(config, dataset, [train_dataset, test_dataset])
if args.validation:
train_dataset.shuffle()
new_train_dataset, new_test_dataset = train_dataset.split_by_ratio([1 - args.valid_portion, args.valid_portion])
train_data = get_dataloader(config, 'train')(config, new_train_dataset, None, shuffle=True)
test_data = get_dataloader(config, 'test')(config, new_test_dataset, None, shuffle=False)
else:
train_data = get_dataloader(config, 'train')(config, train_dataset, train_sampler, shuffle=True)
test_data = get_dataloader(config, 'test')(config, test_dataset, test_sampler, shuffle=False)
# model loading and initialization
model = get_model(config['model'])(config, train_data.dataset).to(config['device'])
logger.info(model)
# trainer loading and initialization
trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model)
# model training and evaluation
test_score, test_result = trainer.fit(
train_data, test_data, saved=True, show_progress=config['show_progress']
)
logger.info(set_color('test result', 'yellow') + f': {test_result}')