diff --git a/.github/workflows/conda-env.yml b/.github/workflows/conda-env.yml index f122d54..df2f507 100644 --- a/.github/workflows/conda-env.yml +++ b/.github/workflows/conda-env.yml @@ -10,18 +10,22 @@ jobs: conda: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v3 - - name: Set up Python 3.9 - uses: actions/setup-python@v3 - with: - python-version: 3.9 - - name: Add conda to system path - run: | - # $CONDA is an environment variable pointing to the root of the miniconda directory - echo $CONDA/bin >> $GITHUB_PATH - - name: Install dependencies - run: | - conda env update --file environment.yml --name base - - name: Install facetorch from conda-forge - run: | - conda install -c conda-forge facetorch + - uses: actions/checkout@v3 + + - name: Create condarc file + run: | + echo "solver: classic" > condarc + + - name: Set up Miniconda + uses: conda-incubator/setup-miniconda@v2 + with: + python-version: 3.9 + environment-file: environment.yml + channels: conda-forge, defaults + auto-activate-base: true + activate-environment: base + condarc-file: condarc + + - name: Install facetorch from conda-forge + run: | + conda install -c conda-forge facetorch diff --git a/.github/workflows/docker-push.yml b/.github/workflows/docker-push.yml index 75dd449..7188928 100644 --- a/.github/workflows/docker-push.yml +++ b/.github/workflows/docker-push.yml @@ -9,25 +9,37 @@ jobs: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 + - name: Set VERSION variable + run: echo "VERSION=$(cat ./version)" >> $GITHUB_ENV - name: Docker compose build facetorch run: docker compose build facetorch + - name: Tag image with version + run: docker tag tomasgajarsky/facetorch:latest tomasgajarsky/facetorch:${{ env.VERSION }} - name: Login to Docker hub env: DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }} DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }} run: docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD docker.io - - name: Docker compose push facetorch - run: docker compose push facetorch + - name: Push images + run: | + docker push tomasgajarsky/facetorch:latest + docker push tomasgajarsky/facetorch:${{ env.VERSION }} docker-push-gpu: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 + - name: Set VERSION variable + run: echo "VERSION=$(cat ./version)" >> $GITHUB_ENV - name: Docker compose build facetorch-gpu run: docker compose build facetorch-gpu-no-device + - name: Tag image with version + run: docker tag tomasgajarsky/facetorch-gpu:latest tomasgajarsky/facetorch-gpu:${{ env.VERSION }} - name: Login to Docker hub env: DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }} DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }} run: docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD docker.io - - name: Docker compose push facetorch-gpu - run: docker compose push facetorch-gpu-no-device \ No newline at end of file + - name: Push images + run: | + docker push tomasgajarsky/facetorch-gpu:latest + docker push tomasgajarsky/facetorch-gpu:${{ env.VERSION }} \ No newline at end of file diff --git a/.github/workflows/python-package.yml b/.github/workflows/python-package.yml index 3a6e03c..75d0069 100644 --- a/.github/workflows/python-package.yml +++ b/.github/workflows/python-package.yml @@ -13,7 +13,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.8", "3.9", "3.10"] + python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] steps: - uses: actions/checkout@v3 diff --git a/CHANGELOG.md b/CHANGELOG.md index 4f2cc53..a2aa7a5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,16 @@ # Change Log +## 0.5.1 + +Released on November 17, 2024. + +### Changed + +* UnversalReader to read PIL images as RGB +* UniversalReader to read numpy arrays to torch directly +* RetinaFace pre-normalization color space to RGB +* torch.cross torch.linalg.cross in 3D landmark drawer + ## 0.5.0 diff --git a/README.md b/README.md index 23b9e49..165923e 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,7 @@ [![PyPI - License](https://img.shields.io/pypi/l/facetorch)](https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/LICENSE) Code style: black -[Hugging Face Space demo app 🤗 ](https://huggingface.co/spaces/tomas-gajarsky/facetorch-app) +[Hugging Face Space demo app 🤗](https://huggingface.co/spaces/tomas-gajarsky/facetorch-app) [Google Colab notebook demo](https://colab.research.google.com/github/tomas-gajarsky/facetorch/blob/main/notebooks/facetorch_notebook_demo.ipynb) @@ -17,16 +17,21 @@ [Docker Hub](https://hub.docker.com/repository/docker/tomasgajarsky/facetorch) [(GPU)](https://hub.docker.com/repository/docker/tomasgajarsky/facetorch-gpu) -Facetorch is a Python library that can detect faces and analyze facial features using deep neural networks. The goal is to gather open sourced face analysis models from the community, optimize them for performance using TorchScript and combine them to create a face analysis tool that one can: -1. configure using [Hydra](https://hydra.cc/docs/intro/) (OmegaConf) -2. reproduce with [conda-lock](https://github.com/conda-incubator/conda-lock) and [Docker](https://docs.docker.com/get-docker/) -3. accelerate on CPU and GPU with [TorchScript](https://pytorch.org/docs/stable/jit.html) -4. extend by uploading a model file to Google Drive and adding a config yaml file to the repository +**Facetorch** is a Python library designed for facial detection and analysis, leveraging the power of deep neural networks. Its primary aim is to curate open-source face analysis models from the community, optimize them for high performance using TorchScript, and integrate them into a versatile face analysis toolkit. The library offers the following key features: + +1. **Customizable Configuration:** Easily configure your setup using [Hydra](https://hydra.cc/docs/intro/) and its powerful [OmegaConf](https://omegaconf.readthedocs.io/) capabilities. + +2. **Reproducible Environments:** Ensure reproducibility with tools like [conda-lock](https://github.com/conda-incubator/conda-lock) for dependency management and [Docker](https://docs.docker.com/get-docker/) for containerization. + +3. **Accelerated Performance:** Enjoy enhanced performance on both CPU and GPU with [TorchScript](https://pytorch.org/docs/stable/jit.html) optimization. + +4. **Simple Extensibility:** Extend the library by uploading your model file to Google Drive and adding a corresponding configuration YAML file to the repository. + +Facetorch provides an efficient, scalable, and user-friendly solution for facial analysis tasks, catering to developers and researchers looking for flexibility and performance. + +Please use this library responsibly and with caution. Adhere to the [European Commission's Ethics Guidelines for Trustworthy AI](https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html) to ensure ethical and fair usage. Keep in mind that the models may have limitations and potential biases, so it is crucial to evaluate their outputs critically and consider their impact. -Please, use the library responsibly with caution and follow the -[ethics guidelines for Trustworthy AI from European Commission](https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html). -The models are not perfect and may be biased. ## Install [PyPI](https://pypi.org/project/facetorch/) @@ -301,10 +306,36 @@ GPU: 1. Run profiling of the example script: ```python -m cProfile -o profiling/example.prof scripts/example.py``` 2. Open profiling file in the browser: ```snakeviz profiling/example.prof``` +## Research Highlights Leveraging facetorch + +### [Sharma et al. (2024)](https://aclanthology.org/2024.signlang-1.39.pdf) + +Sharma, Paritosh, Camille Challant, and Michael Filhol. "Facial Expressions for Sign Language Synthesis using FACSHuman and AZee." *Proceedings of the LREC-COLING 2024 11th Workshop on the Representation and Processing of Sign Languages*, pp. 354–360, 2024. + +### [Liang et al. (2023)](https://dl.acm.org/doi/abs/10.1145/3581783.3612854) + +Liang, Cong, Jiahe Wang, Haofan Zhang, Bing Tang, Junshan Huang, Shangfei Wang, and Xiaoping Chen. "Unifarn: Unified transformer for facial reaction generation." *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 9506–9510, 2023. + +### [Gue et al. (2023)](https://research.monash.edu/en/publications/facial-expression-recognition-as-markers-of-depression) + +Gue, Jia Xuan, Chun Yong Chong, and Mei Kuan Lim. "Facial Expression Recognition as markers of Depression." *2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)*, pp. 674–680, 2023. + + ## Acknowledgements -I want to thank the open source code community and the researchers who have published the models. This project would not be possible without their work. +I would like to thank the open-source community and the researchers who have shared their work and published models. This project would not have been possible without their contributions. + -![](https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/data/facetorch-logo-64.png "facetorch logo") +## Citing +If you use facetorch in your work, please make sure to appropriately credit the original authors of the models it employs. Additionally, you may consider citing the facetorch library itself. Below is an example citation for facetorch: -Logo was generated using [DeepAI Text To Image API](https://deepai.org/machine-learning-model/text2img) \ No newline at end of file +``` +@misc{facetorch, + author = {Gajarsky, Tomas}, + title = {Facetorch: A Python Library for Analyzing Faces Using PyTorch}, + year = {2024}, + publisher = {GitHub}, + journal = {GitHub Repository}, + howpublished = {\url{https://github.com/tomas-gajarsky/facetorch}} +} +``` diff --git a/conda-lock.yml b/conda-lock.yml index d8cc331..c935928 100644 --- a/conda-lock.yml +++ b/conda-lock.yml @@ -5,7 +5,7 @@ # available, unless you explicitly update the lock file. # # Install this environment as "YOURENV" with: -# conda-lock install -n YOURENV --file new.conda-lock.yml +# conda-lock install -n YOURENV new.conda-lock.yml # To update a single package to the latest version compatible with the version constraints in the source: # conda-lock lock --lockfile new.conda-lock.yml --update PACKAGE # To re-solve the entire environment, e.g. after changing a version constraint in the source file: @@ -13,7 +13,7 @@ version: 1 metadata: content_hash: - linux-64: 5ad884989a8a0f7345918559305173543c2fbcef136f2c97eab4d8e066b16def + linux-64: 63215cfc5f6c1c66496c1bb921f9cb76b58beb1fba46d7997a31facd6c5eb3af channels: - url: conda-forge used_env_vars: [] @@ -39,11 +39,11 @@ package: platform: linux-64 dependencies: _libgcc_mutex: '0.1' - llvm-openmp: '>=9.0.1' - url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_kmp_llvm.tar.bz2 + libgomp: '>=7.5.0' + url: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 hash: - md5: 562b26ba2e19059551a811e72ab7f793 - sha256: 84a66275da3a66e3f3e70e9d8f10496d807d01a9e4ec16cd2274cc5e28c478fc + md5: 73aaf86a425cc6e73fcf236a5a46396d + sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 category: main optional: false - name: antlr-python-runtime @@ -76,14 +76,15 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hb755f60_1.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libstdcxx: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py312h2ec8cdc_2.conda hash: - md5: cce9e7c3f1c307f2a5fb08a2922d6164 - sha256: 559093679e9fdb6061b7b80ca0f9a31fe6ffc213f1dae65bc5c82e2cd1a94107 + md5: b0b867af6fc74b2a0aa206da29c0f3cf + sha256: f2a59ccd20b4816dea9a2a5cb917eb69728271dbf1aeab4e1b7e609330a50b6f category: main optional: false - name: bzip2 @@ -91,46 +92,64 @@ package: manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda + url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda hash: - md5: 69b8b6202a07720f448be700e300ccf4 - sha256: 242c0c324507ee172c0e0dd2045814e746bb303d1eb78870d182ceb0abc726a8 + md5: 62ee74e96c5ebb0af99386de58cf9553 + sha256: 5ced96500d945fb286c9c838e54fa759aa04a7129c59800f0846b4335cee770d category: main optional: false - name: ca-certificates - version: 2024.2.2 + version: 2024.8.30 manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda hash: - md5: 2f4327a1cbe7f022401b236e915a5fef - sha256: 91d81bfecdbb142c15066df70cc952590ae8991670198f92c66b62019b251aeb + md5: c27d1c142233b5bc9ca570c6e2e0c244 + sha256: afee721baa6d988e27fef1832f68d6f32ac8cc99cdf6015732224c2841a09cea category: main optional: false - name: certifi - version: 2024.2.2 + version: 2024.8.30 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda + hash: + md5: 12f7d00853807b0531775e9be891cb11 + sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f + category: main + optional: false +- name: cffi + version: 1.17.1 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + libffi: '>=3.4,<4.0a0' + libgcc: '>=13' + pycparser: '' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda hash: - md5: 0876280e409658fc6f9e75d035960333 - sha256: f1faca020f988696e6b6ee47c82524c7806380b37cfdd1def32f92c326caca54 + md5: a861504bbea4161a9170b85d4d2be840 + sha256: cba6ea83c4b0b4f5b5dc59cb19830519b28f95d7ebef7c9c5cf1c14843621457 category: main optional: false - name: charset-normalizer - version: 3.3.2 + version: 3.4.0 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda hash: - md5: 7f4a9e3fcff3f6356ae99244a014da6a - sha256: 20cae47d31fdd58d99c4d2e65fbdcefa0b0de0c84e455ba9d6356a4bdbc4b5b9 + md5: a374efa97290b8799046df7c5ca17164 + sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 category: main optional: false - name: codetiming @@ -158,6 +177,19 @@ package: sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 category: main optional: false +- name: cpython + version: 3.12.7 + manager: conda + platform: linux-64 + dependencies: + python: 3.12.7.* + python_abi: '*' + url: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.7-py312hd8ed1ab_0.conda + hash: + md5: f0d1309310498284ab13c9fd73db4781 + sha256: 9bbd08c83cc9c3142755b96dc5f3e0f0370d7afdb773c8285359b31e7ce96f0a + category: main + optional: false - name: dataclasses version: '0.8' manager: conda @@ -171,15 +203,15 @@ package: category: main optional: false - name: filelock - version: 3.13.1 + version: 3.16.1 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.13.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda hash: - md5: 0c1729b74a8152fde6a38ba0a2ab9f45 - sha256: 4d742d91412d1f163e5399d2b50c5d479694ebcd309127abb549ca3977f89d2b + md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 category: main optional: false - name: freetype @@ -189,7 +221,7 @@ package: dependencies: libgcc-ng: '>=12' libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda hash: md5: 9ae35c3d96db2c94ce0cef86efdfa2cb @@ -197,19 +229,19 @@ package: category: main optional: false - name: fsspec - version: 2024.2.0 + version: 2024.10.0 manager: conda platform: linux-64 dependencies: python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.2.0-pyhca7485f_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda hash: - md5: fad86b90138cf5d82c6f5a2ed6e683d9 - sha256: 3f7e123dd82fe99450d1e0ffa389e8218ef8c9ee257c836e21b489548c039ae6 + md5: 816dbc4679a64e4417cd1385d661bb31 + sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 category: main optional: false - name: gdown - version: 5.1.0 + version: 5.2.0 manager: conda platform: linux-64 dependencies: @@ -218,10 +250,10 @@ package: python: '>=3.8' requests: '' tqdm: '' - url: https://conda.anaconda.org/conda-forge/noarch/gdown-5.1.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/gdown-5.2.0-pyhd8ed1ab_0.conda hash: - md5: 6f880647c0270648f710f334c60bc76c - sha256: 1ab1e5cf5c851f91abebfc6a6c094bc6e2afa3639e6586f6ff890acc8551a63d + md5: 29903392720ea0d6162b772ff97235c3 + sha256: 5a645ec883846558db8b6c3ea370602a7b2783e8c9d1c9b59f385a7f43f8f26c category: main optional: false - name: gmp @@ -231,40 +263,67 @@ package: dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-h59595ed_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda hash: - md5: 0e33ef437202db431aa5a928248cf2e8 - sha256: 2a50495b6bbbacb03107ea0b752d8358d4a40b572d124a8cade068c147f344f5 + md5: c94a5994ef49749880a8139cf9afcbe1 + sha256: 309cf4f04fec0c31b6771a5809a1909b4b3154a2208f52351e1ada006f4c750c category: main optional: false - name: gmpy2 - version: 2.1.2 + version: 2.1.5 manager: conda platform: linux-64 dependencies: - gmp: '>=6.2.1,<7.0a0' - libgcc-ng: '>=12' - mpc: '>=1.2.1,<2.0a0' - mpfr: '>=4.1.0,<5.0a0' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* - url: https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.2-py311h6a5fa03_1.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + gmp: '>=6.3.0,<7.0a0' + libgcc: '>=13' + mpc: '>=1.3.1,<2.0a0' + mpfr: '>=4.2.1,<5.0a0' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + url: https://conda.anaconda.org/conda-forge/linux-64/gmpy2-2.1.5-py312h7201bc8_2.conda hash: - md5: 3515bd4a3d92bbd3cc2d25aac335e34d - sha256: 20862200f4d07ba583ab6ae9b56d7de2462474240872100973711dfa20d562d7 + md5: af9faf103fb57241246416dc70b466f7 + sha256: 66665fbf074e9cc8975ba1a0c7d4fd378cea6efc7ba34f0da5a355a16dfb323a category: main optional: false - name: googleapis-common-protos - version: 1.62.0 + version: 1.66.0 manager: conda platform: linux-64 dependencies: - protobuf: '>=3.19.5,<5.0.0dev0,!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.62.0-pyhd8ed1ab_0.conda + protobuf: '>=3.20.2,<6.0.0.dev0,!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5' + python: '>=3.9' + url: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda + hash: + md5: 4861e30ff0cd566ea6fb4593e3b7c22a + sha256: d8d19575a827f2c62500949b9536efdd6b5406c9f546a73b6a87ac90b03a5875 + category: main + optional: false +- name: h2 + version: 4.1.0 + manager: conda + platform: linux-64 + dependencies: + hpack: '>=4.0,<5' + hyperframe: '>=6.0,<7' + python: '>=3.6.1' + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 + hash: + md5: b748fbf7060927a6e82df7cb5ee8f097 + sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a + category: main + optional: false +- name: hpack + version: 4.0.0 + manager: conda + platform: linux-64 + dependencies: + python: '' + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 hash: - md5: ca3d0c7ba3a15e943d9c715aba03ae62 - sha256: 70da3fc08a742022c666d9807f0caba60be1ddbf09b6642c168001bace18c724 + md5: 914d6646c4dbb1fd3ff539830a12fd71 + sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 category: main optional: false - name: hydra-core @@ -283,55 +342,54 @@ package: sha256: 35044b4bb1059c4ed7d8392b776e663a390ad7a2bb6f7e2f09ecd5e9b5d40b75 category: main optional: false -- name: icu - version: '73.2' +- name: hyperframe + version: 6.0.1 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda + python: '>=3.6' + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 hash: - md5: cc47e1facc155f91abd89b11e48e72ff - sha256: e12fd90ef6601da2875ebc432452590bc82a893041473bc1c13ef29001a73ea8 + md5: 9f765cbfab6870c8435b9eefecd7a1f4 + sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 category: main optional: false - name: idna - version: '3.6' + version: '3.10' manager: conda platform: linux-64 dependencies: python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.6-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda hash: - md5: 1a76f09108576397c41c0b0c5bd84134 - sha256: 6ee4c986d69ce61e60a20b2459b6f2027baeba153f0a64995fd3cb47c2cc7e07 + md5: 7ba2ede0e7c795ff95088daf0dc59753 + sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 category: main optional: false - name: importlib_resources - version: 6.1.1 + version: 6.4.5 manager: conda platform: linux-64 dependencies: python: '>=3.8' zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda hash: - md5: 3d5fa25cf42f3f32a12b2d874ace8574 - sha256: e584f9ae08fb2d242af0ce7e19e3cd2f85f362d8523119e08f99edb962db99ed + md5: c808991d29b9838fb4d96ce8267ec9ec + sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 category: main optional: false - name: jinja2 - version: 3.1.3 + version: 3.1.4 manager: conda platform: linux-64 dependencies: markupsafe: '>=2.0' python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.3-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda hash: - md5: e7d8df6509ba635247ff9aea31134262 - sha256: fd517b7dd3a61eca34f8a6f9f92f306397149cae1204fce72ac3d227107dafdc + md5: 7b86ecb7d3557821c649b3c31e3eb9f2 + sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d category: main optional: false - name: lcms2 @@ -341,7 +399,7 @@ package: dependencies: libgcc-ng: '>=12' libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.7.0a0' + libtiff: '>=4.6.0,<4.8.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda hash: md5: 51bb7010fc86f70eee639b4bb7a894f5 @@ -349,14 +407,15 @@ package: category: main optional: false - name: ld_impl_linux-64 - version: '2.40' + version: '2.43' manager: conda platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h41732ed_0.conda + dependencies: + __glibc: '>=2.17,<3.0.a0' + url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda hash: - md5: 7aca3059a1729aa76c597603f10b0dd3 - sha256: f6cc89d887555912d6c61b295d398cff9ec982a3417d38025c45d5dd9b9e79cd + md5: 048b02e3962f066da18efe3a21b77672 + sha256: 7c91cea91b13f4314d125d1bedb9d03a29ebbd5080ccdea70260363424646dbe category: main optional: false - name: lerc @@ -373,16 +432,17 @@ package: category: main optional: false - name: libabseil - version: '20230802.1' + version: '20240116.2' manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20230802.1-cxx17_h59595ed_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda hash: - md5: 2785ddf4cb0e7e743477991d64353947 - sha256: 8729021a93e67bb93b4e73ef0a132499db516accfea11561b667635bcd0507e7 + md5: c48fc56ec03229f294176923c3265c05 + sha256: 945396726cadae174a661ce006e3f74d71dbd719219faf7cc74696b267f7b0b5 category: main optional: false - name: libblas @@ -390,11 +450,11 @@ package: manager: conda platform: linux-64 dependencies: - libopenblas: '>=0.3.26,<1.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-21_linux64_openblas.conda + libopenblas: '>=0.3.28,<1.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda hash: - md5: 0ac9f44fc096772b0aa092119b00c3ca - sha256: ebd5c91f029f779fb88a1fcbd1e499559a9c258e3674ff58a2fbb4e375ae56d9 + md5: 8ea26d42ca88ec5258802715fe1ee10b + sha256: d6d12dc437d060f838820e9e61bf73baab651f91935ac594cf10beb9ef1b4450 category: main optional: false - name: libcblas @@ -403,34 +463,36 @@ package: platform: linux-64 dependencies: libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-21_linux64_openblas.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda hash: - md5: 4a3816d06451c4946e2db26b86472cb6 - sha256: 467bbfbfe1a1aeb8b1f9f6485eedd8ed1b6318941bf3702da72336ccf4dc25a6 + md5: 5dbd1b0fc0d01ec5e0e1fbe667281a11 + sha256: ab87b0477078837c91d9cda62a9faca18fba7c57cc77aa779ae24b3ac783b5dd category: main optional: false - name: libdeflate - version: '1.19' + version: '1.22' manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.22-hb9d3cd8_0.conda hash: - md5: 1635570038840ee3f9c71d22aa5b8b6d - sha256: 985ad27aa0ba7aad82afa88a8ede6a1aacb0aaca950d710f15d85360451e72fd + md5: b422943d5d772b7cc858b36ad2a92db5 + sha256: 780f0530a3adfc1497ba49d626931c6afc978c540e1abfde6ccd57128ded6ad6 category: main optional: false - name: libexpat - version: 2.5.0 + version: 2.6.4 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.5.0-hcb278e6_1.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda hash: - md5: 6305a3dd2752c76335295da4e581f2fd - sha256: 74c98a563777ae2ad71f1f74d458a8ab043cee4a513467c159ccf159d0e461f3 + md5: db833e03127376d461e1e13e76f09b6c + sha256: 56541b98447b58e52d824bd59d6382d609e11de1f8adf20b23143e353d2b8d26 category: main optional: false - name: libffi @@ -445,67 +507,65 @@ package: sha256: ab6e9856c21709b7b517e940ae7028ae0737546122f83c2aa5d692860c3b149e category: main optional: false -- name: libgcc-ng - version: 13.2.0 +- name: libgcc + version: 14.2.0 manager: conda platform: linux-64 dependencies: _libgcc_mutex: '0.1' _openmp_mutex: '>=4.5' - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h807b86a_5.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda hash: - md5: d4ff227c46917d3b4565302a2bbb276b - sha256: d32f78bfaac282cfe5205f46d558704ad737b8dbf71f9227788a5ca80facaba4 + md5: 3cb76c3f10d3bc7f1105b2fc9db984df + sha256: 53eb8a79365e58849e7b1a068d31f4f9e718dc938d6f2c03e960345739a03569 category: main optional: false -- name: libgfortran-ng - version: 13.2.0 +- name: libgcc-ng + version: 14.2.0 manager: conda platform: linux-64 dependencies: - libgfortran5: 13.2.0 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_5.conda + libgcc: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda hash: - md5: e73e9cfd1191783392131e6238bdb3e9 - sha256: 238c16c84124d58307376715839aa152bd4a1bf5a043052938ad6c3137d30245 + md5: e39480b9ca41323497b05492a63bc35b + sha256: 3a76969c80e9af8b6e7a55090088bc41da4cffcde9e2c71b17f44d37b7cb87f7 category: main optional: false -- name: libgfortran5 - version: 13.2.0 +- name: libgfortran + version: 14.2.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=13.2.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-ha4646dd_5.conda + libgfortran5: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda hash: - md5: 7a6bd7a12a4bd359e2afe6c0fa1acace - sha256: ba8d94e8493222ce155bb264d9de4200e41498a458e866fedf444de809bde8b6 + md5: f1fd30127802683586f768875127a987 + sha256: fc9e7f22a17faf74da904ebfc4d88699013d2992e55505e4aa0eb01770290977 category: main optional: false -- name: libhwloc - version: 2.9.3 +- name: libgfortran5 + version: 14.2.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libxml2: '>=2.11.5,<3.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.9.3-default_h554bfaf_1009.conda + libgcc: '>=14.2.0' + url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda hash: - md5: f36ddc11ca46958197a45effdd286e45 - sha256: 6950fee24766d03406e0f6f965262a5d98829c71eed8d1004f313892423b559b + md5: 9822b874ea29af082e5d36098d25427d + sha256: d149a37ca73611e425041f33b9d8dbed6e52ec506fe8cc1fc0ee054bddeb6d5d category: main optional: false -- name: libiconv - version: '1.17' +- name: libgomp + version: 14.2.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda + _libgcc_mutex: '0.1' + url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda hash: - md5: d66573916ffcf376178462f1b61c941e - sha256: 8ac2f6a9f186e76539439e50505d98581472fedb347a20e7d1f36429849f05c9 + md5: cc3573974587f12dda90d96e3e55a702 + sha256: 1911c29975ec99b6b906904040c855772ccb265a1c79d5d75c8ceec4ed89cd63 category: main optional: false - name: libjpeg-turbo @@ -526,10 +586,10 @@ package: platform: linux-64 dependencies: libblas: 3.9.0 - url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-21_linux64_openblas.conda + url: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda hash: - md5: 1a42f305615c3867684e049e85927531 - sha256: 64b5c35dce00dd6f9f53178b2fe87116282e00967970bd6551a5a42923806ded + md5: 4dc03a53fc69371a6158d0ed37214cd3 + sha256: 9d1ff017714edb2d84868f0f931a4a0e7c289a971062b2ac66cfc8145df7e20e category: main optional: false - name: libnsl @@ -545,89 +605,128 @@ package: category: main optional: false - name: libopenblas - version: 0.3.26 + version: 0.3.28 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libgfortran-ng: '' - libgfortran5: '>=12.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.26-pthreads_h413a1c8_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=14' + libgfortran: '' + libgfortran5: '>=14.2.0' + url: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda hash: - md5: 760ae35415f5ba8b15d09df5afe8b23a - sha256: b626954b5a1113dafec8df89fa8bf18ce9b4701464d9f084ddd7fc9fac404bbd + md5: 62857b389e42b36b686331bec0922050 + sha256: 99ba271d8a80a1af2723f2e124ffd91d850074c0389c067e6d96d72a2dbfeabe category: main optional: false - name: libpng - version: 1.6.42 + version: 1.6.44 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.42-h2797004_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda hash: - md5: d67729828dc6ff7ba44a61062ad79880 - sha256: 1a0c3a4b7fd1e101cb37dd6d2f8b5ec93409c8cae422f04470fe39a01ef59024 + md5: f4cc49d7aa68316213e4b12be35308d1 + sha256: e5b14f7a01c2db4362d8591f42f82f336ed48d5e4079e4d1f65d0c2a3637ea78 category: main optional: false - name: libprotobuf - version: 4.24.4 + version: 4.25.3 manager: conda platform: linux-64 dependencies: - libabseil: '>=20230802.1,<20230803.0a0' - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.24.4-hf27288f_0.conda + __glibc: '>=2.17,<3.0.a0' + libabseil: '>=20240116.2,<20240117.0a0' + libgcc: '>=13' + libstdcxx: '>=13' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-hd5b35b9_1.conda hash: - md5: 1a0287ab734591ad63603734f923016b - sha256: 3e0f6454190abb27edd2aeb724688ee440de133edb02cbb17d5609ba36aa8be0 + md5: 06def97690ef90781a91b786cb48a0a9 + sha256: 8b5e4e31ed93bf36fd14e9cf10cd3af78bb9184d0f1f87878b8d28c0374aa4dc category: main optional: false - name: libsqlite - version: 3.45.1 + version: 3.47.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.1-h2797004_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + hash: + md5: b6f02b52a174e612e89548f4663ce56a + sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 + category: main + optional: false +- name: libstdcxx + version: 14.2.0 + manager: conda + platform: linux-64 + dependencies: + libgcc: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda hash: - md5: fc4ccadfbf6d4784de88c41704792562 - sha256: 1b379d1c652b25d0540251d422ef767472e768fd36b77261045e97f9ba6d3faa + md5: 234a5554c53625688d51062645337328 + sha256: 4661af0eb9bdcbb5fb33e5d0023b001ad4be828fccdcc56500059d56f9869462 category: main optional: false - name: libstdcxx-ng - version: 13.2.0 + version: 14.2.0 manager: conda platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-h7e041cc_5.conda + dependencies: + libstdcxx: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda hash: - md5: f6f6600d18a4047b54f803cf708b868a - sha256: a56c5b11f1e73a86e120e6141a42d9e935a99a2098491ac9e15347a1476ce777 + md5: 8371ac6457591af2cf6159439c1fd051 + sha256: 25bb30b827d4f6d6f0522cc0579e431695503822f144043b93c50237017fffd8 category: main optional: false - name: libtiff - version: 4.6.0 + version: 4.7.0 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' lerc: '>=4.0.0,<5.0a0' - libdeflate: '>=1.19,<1.20.0a0' - libgcc-ng: '>=12' + libdeflate: '>=1.22,<1.23.0a0' + libgcc: '>=13' libjpeg-turbo: '>=3.0.0,<4.0a0' - libstdcxx-ng: '>=12' - libwebp-base: '>=1.3.2,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libstdcxx: '>=13' + libwebp-base: '>=1.4.0,<2.0a0' + libzlib: '>=1.3.1,<2.0a0' xz: '>=5.2.6,<6.0a0' - zstd: '>=1.5.5,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-ha9c0a0a_2.conda + zstd: '>=1.5.6,<1.6.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda + hash: + md5: 63872517c98aa305da58a757c443698e + sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 + category: main + optional: false +- name: libtorch + version: 2.3.1 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + _openmp_mutex: '>=4.5' + libabseil: '>=20240116.2,<20240117.0a0' + libcblas: '>=3.9.0,<4.0a0' + libgcc-ng: '>=12' + liblapack: '>=3.9.0,<4.0a0' + libprotobuf: '>=4.25.3,<4.25.4.0a0' + libstdcxx-ng: '>=12' + libuv: '>=1.48.0,<2.0a0' + sleef: '>=3.5.1,<4.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libtorch-2.3.1-cpu_generic_h970db74_0.conda hash: - md5: 55ed21669b2015f77c180feb1dd41930 - sha256: 45158f5fbee7ee3e257e6b9f51b9f1c919ed5518a94a9973fe7fa4764330473e + md5: ed9a1c4ac5fadbde537a8992d22c9bea + sha256: 945bf1e245566743d88934d52ba5fd50e4d30db80b44266b450491776e02200f category: main optional: false - name: libuuid @@ -643,42 +742,44 @@ package: category: main optional: false - name: libuv - version: 1.47.0 + version: 1.49.2 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.47.0-hd590300_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda hash: - md5: a7a94e1b751a9fe2be88f3934b3a0739 - sha256: 53bd8f6bebc85555c5dd648072693e37fcdf777f993e9a108c4a7badf2e8810c + md5: 070e3c9ddab77e38799d5c30b109c633 + sha256: a35cd81cd1a9add11024097da83cc06b0aae83186fe4124b77710876f37d8f31 category: main optional: false - name: libwebp-base - version: 1.3.2 + version: 1.4.0 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda hash: - md5: 30de3fd9b3b602f7473f30e684eeea8c - sha256: 68764a760fa81ef35dacb067fe8ace452bbb41476536a4a147a1051df29525f0 + md5: b26e8aa824079e1be0294e7152ca4559 + sha256: 49bc5f6b1e11cb2babf2a2a731d1a680a5e08a858280876a779dbda06c78c35f category: main optional: false - name: libxcb - version: '1.15' + version: 1.17.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' pthread-stubs: '' - xorg-libxau: '' + xorg-libxau: '>=1.0.11,<2.0a0' xorg-libxdmcp: '' - url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda hash: - md5: 33277193f5b92bad9fdd230eb700929c - sha256: a670902f0a3173a466c058d2ac22ca1dd0df0453d3a80e0212815c20a16b0485 + md5: 92ed62436b625154323d40d5f2f11dd7 + sha256: 666c0c431b23c6cec6e492840b176dde533d48b7e6fb8883f5071223433776aa category: main optional: false - name: libxcrypt @@ -693,73 +794,32 @@ package: sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c category: main optional: false -- name: libxml2 - version: 2.12.5 - manager: conda - platform: linux-64 - dependencies: - icu: '>=73.2,<74.0a0' - libgcc-ng: '>=12' - libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.5-h232c23b_0.conda - hash: - md5: c442ebfda7a475f5e78f1c8e45f1e919 - sha256: db9bf97e9e367985204331b58a059ebd5a4e0cb9e1c8754e9ecb23046b7b7bc1 - category: main - optional: false - name: libzlib - version: 1.2.13 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda - hash: - md5: f36c115f1ee199da648e0597ec2047ad - sha256: 370c7c5893b737596fd6ca0d9190c9715d89d888b8c88537ae1ef168c25e82e4 - category: main - optional: false -- name: llvm-openmp - version: 17.0.6 + version: 1.3.1 manager: conda platform: linux-64 dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - zstd: '>=1.5.5,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-17.0.6-h4dfa4b3_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda hash: - md5: c1665f9c1c9f6c93d8b4e492a6a39056 - sha256: 18a9db4cc139e72e8eac80a34f6536491fe318d3785bc2c35fac42cd00676376 + md5: edb0dca6bc32e4f4789199455a1dbeb8 + sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 category: main optional: false - name: markupsafe - version: 2.1.5 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py311h459d7ec_0.conda - hash: - md5: a322b4185121935c871d201ae00ac143 - sha256: 14912e557a6576e03f65991be89e9d289c6e301921b6ecfb4e7186ba974f453d - category: main - optional: false -- name: mkl - version: 2022.2.1 + version: 3.0.2 manager: conda platform: linux-64 dependencies: - _openmp_mutex: '>=4.5' - llvm-openmp: '>=15.0.6' - tbb: 2021.* - url: https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.2.1-h84fe81f_16997.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda hash: - md5: a7ce56d5757f5b57e7daabe703ade5bb - sha256: 5322750d5e96ff5d96b1457db5fb6b10300f2bc4030545e940e17b57c4e96d00 + md5: a755704ea0e2503f8c227d84829a8e81 + sha256: 15f14ab429c846aacd47fada0dc4f341d64491e097782830f0906d00cb7b48b6 category: main optional: false - name: mpc @@ -767,13 +827,14 @@ package: manager: conda platform: linux-64 dependencies: - gmp: '>=6.2.1,<7.0a0' - libgcc-ng: '>=12' - mpfr: '>=4.1.0,<5.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-hfe3b2da_0.conda + __glibc: '>=2.17,<3.0.a0' + gmp: '>=6.3.0,<7.0a0' + libgcc: '>=13' + mpfr: '>=4.2.1,<5.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/mpc-1.3.1-h24ddda3_1.conda hash: - md5: 289c71e83dc0daa7d4c81f04180778ca - sha256: 2f88965949ba7b4b21e7e5facd62285f7c6efdb17359d1b365c3bb4ecc968d29 + md5: aa14b9a5196a6d8dd364164b7ce56acf + sha256: 1bf794ddf2c8b3a3e14ae182577c624fa92dea975537accff4bc7e5fea085212 category: main optional: false - name: mpfr @@ -781,12 +842,13 @@ package: manager: conda platform: linux-64 dependencies: - gmp: '>=6.2.1,<7.0a0' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h9458935_0.conda + __glibc: '>=2.17,<3.0.a0' + gmp: '>=6.3.0,<7.0a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda hash: - md5: 4c28f3210b30250037a4a627eeee9e0f - sha256: 008230a53ff15cf61966476b44f7ba2c779826825b9ca639a0a2b44d8f7aa6cb + md5: 2eeb50cab6652538eee8fc0bc3340c81 + sha256: f25d2474dd557ca66c6231c8f5ace5af312efde1ba8290a6ea5e1732a4e669c0 category: main optional: false - name: mpmath @@ -802,45 +864,58 @@ package: category: main optional: false - name: ncurses - version: '6.4' + version: '6.5' manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda + url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda hash: - md5: 7dbaa197d7ba6032caf7ae7f32c1efa0 - sha256: 91cc03f14caf96243cead96c76fe91ab5925a695d892e83285461fb927dece5e + md5: 70caf8bb6cf39a0b6b7efc885f51c0fe + sha256: 6a1d5d8634c1a07913f1c525db6455918cbc589d745fac46d9d6e30340c8731a category: main optional: false - name: networkx - version: 3.2.1 + version: 3.4.2 manager: conda platform: linux-64 dependencies: - python: '>=3.9' - url: https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda + python: '' + url: https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda + hash: + md5: fd40bf7f7f4bc4b647dc8512053d9873 + sha256: 39625cd0c9747fa5c46a9a90683b8997d8b9649881b3dc88336b13b7bdd60117 + category: main + optional: false +- name: nomkl + version: '1.0' + manager: conda + platform: linux-64 + dependencies: {} + url: https://conda.anaconda.org/conda-forge/noarch/nomkl-1.0-h5ca1d4c_0.tar.bz2 hash: - md5: 425fce3b531bed6ec3c74fab3e5f0a1c - sha256: 7629aa4f9f8cdff45ea7a4701fe58dccce5bf2faa01c26eb44cbb27b7e15ca9d + md5: 9a66894dfd07c4510beb6b3f9672ccc0 + sha256: d38542a151a90417065c1a234866f97fd1ea82a81de75ecb725955ab78f88b4b category: main optional: false - name: numpy - version: 1.26.4 + version: 2.1.3 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libblas: '>=3.9.0,<4.0a0' libcblas: '>=3.9.0,<4.0a0' - libgcc-ng: '>=12' + libgcc: '>=13' liblapack: '>=3.9.0,<4.0a0' - libstdcxx-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* - url: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py311h64a7726_0.conda + libstdcxx: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + url: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda hash: - md5: a502d7aad449a1206efb366d6a12c52d - sha256: 3f4365e11b28e244c95ba8579942b0802761ba7bb31c026f50d1a9ea9c728149 + md5: dfdbc12e6d81889ba4c494a23f23eba8 + sha256: e4c14f71588a5627a6935d3e7d9ca78a8387229ec8ebc91616b0988ce57ba0dc category: main optional: false - name: omegaconf @@ -859,99 +934,102 @@ package: category: main optional: false - name: openjpeg - version: 2.5.0 + version: 2.5.2 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' - libpng: '>=1.6.39,<1.7.0a0' + libpng: '>=1.6.43,<1.7.0a0' libstdcxx-ng: '>=12' - libtiff: '>=4.6.0,<4.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-h488ebb8_3.conda + libtiff: '>=4.6.0,<4.8.0a0' + libzlib: '>=1.2.13,<2.0.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda hash: - md5: 128c25b7fe6a25286a48f3a6a9b5b6f3 - sha256: 9fe91b67289267de68fda485975bb48f0605ac503414dc663b50d8b5f29bc82a + md5: 7f2e286780f072ed750df46dc2631138 + sha256: 5600a0b82df042bd27d01e4e687187411561dfc11cc05143a08ce29b64bf2af2 category: main optional: false - name: openssl - version: 3.2.1 + version: 3.4.0 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' ca-certificates: '' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.1-hd590300_0.conda + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda hash: - md5: 51a753e64a3027bd7e23a189b1f6e91e - sha256: c02c12bdb898daacf7eb3d09859f93ea8f285fd1a6132ff6ff0493ab52c7fe57 + md5: 23cc74f77eb99315c0360ec3533147a9 + sha256: 814b9dff1847b132c676ee6cc1a8cb2d427320779b93e1b6d76552275c128705 category: main optional: false - name: packaging - version: '23.2' + version: '24.2' manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_0.conda hash: - md5: 79002079284aa895f883c6b7f3f88fd6 - sha256: 69b3ace6cca2dab9047b2c24926077d81d236bef45329d264b394001e3c3e52f + md5: c16469afe1ec91aaafcf4bea966c0465 + sha256: 0f8273bf66c2a5c1de72312a509deae07f163bb0ae8de8273c52e6fe945a0850 category: main optional: false - name: pillow - version: 10.2.0 + version: 11.0.0 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' freetype: '>=2.12.1,<3.0a0' lcms2: '>=2.16,<3.0a0' - libgcc-ng: '>=12' + libgcc: '>=13' libjpeg-turbo: '>=3.0.0,<4.0a0' - libtiff: '>=4.6.0,<4.7.0a0' - libwebp-base: '>=1.3.2,<2.0a0' - libxcb: '>=1.15,<1.16.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - openjpeg: '>=2.5.0,<3.0a0' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* + libtiff: '>=4.7.0,<4.8.0a0' + libwebp-base: '>=1.4.0,<2.0a0' + libxcb: '>=1.17.0,<2.0a0' + libzlib: '>=1.3.1,<2.0a0' + openjpeg: '>=2.5.2,<3.0a0' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* tk: '>=8.6.13,<8.7.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pillow-10.2.0-py311ha6c5da5_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda hash: - md5: a5ccd7f2271f28b7d2de0b02b64e3796 - sha256: 3cd4827d822c9888b672bfac9017e905348ac5bd2237a98b30a734ed6573b248 + md5: 385f46a4df6f97892503a841121a9acf + sha256: 13a464bea02c0df0199c20ef6bad24a6bc336aaf55bf8d6a133d0fe664463224 category: main optional: false - name: pip - version: '24.0' + version: 24.3.1 manager: conda platform: linux-64 dependencies: - python: '>=3.7' + python: '>=3.8,<3.13.0a0' setuptools: '' wheel: '' - url: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda hash: - md5: f586ac1e56c8638b64f9c8122a7b8a67 - sha256: b7c1c5d8f13e8cb491c4bd1d0d1896a4cf80fc47de01059ad77509112b664a4a + md5: 5dd546fe99b44fda83963d15f84263b7 + sha256: 499313e72e20225f84c2e9690bbaf5b952c8d7e0bf34b728278538f766b81628 category: main optional: false - name: protobuf - version: 4.24.4 + version: 4.25.3 manager: conda platform: linux-64 dependencies: - libabseil: '>=20230802.1,<20230803.0a0' - libgcc-ng: '>=12' - libprotobuf: '>=4.24.4,<4.24.5.0a0' - libstdcxx-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* + __glibc: '>=2.17,<3.0.a0' + libabseil: '>=20240116.2,<20240117.0a0' + libgcc: '>=13' + libprotobuf: '>=4.25.3,<4.25.4.0a0' + libstdcxx: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* setuptools: '' - url: https://conda.anaconda.org/conda-forge/linux-64/protobuf-4.24.4-py311h46cbc50_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/protobuf-4.25.3-py312h83439f5_1.conda hash: - md5: 83b241e2db8adb55d7ec110a913fea80 - sha256: 1f664f5fc370c28809024387e2f991003fcabf8b025c787c70dbc99a8fcb2088 + md5: 7bbcc35ebf7e3d8c59e472f1bf0e65fc + sha256: 30d212eca5e25d0b0260dd0fff18f917386bfe046e425d627847aaed642a0aa4 category: main optional: false - name: pthread-stubs @@ -959,11 +1037,24 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=7.5.0' - url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda + hash: + md5: b3c17d95b5a10c6e64a21fa17573e70e + sha256: 9c88f8c64590e9567c6c80823f0328e58d3b1efb0e1c539c0315ceca764e0973 + category: main + optional: false +- name: pycparser + version: '2.22' + manager: conda + platform: linux-64 + dependencies: + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda hash: - md5: 22dad4df6e8630e8dff2428f6f6a7036 - sha256: 67c84822f87b641d89df09758da498b2d4558d47b920fd1d3fe6d3a871e000ff + md5: 844d9eb3b43095b031874477f7d70088 + sha256: 406001ebf017688b1a1554b49127ca3a4ac4626ec0fd51dc75ffa4415b720b64 category: main optional: false - name: pysocks @@ -980,30 +1071,31 @@ package: category: main optional: false - name: python - version: 3.11.7 + version: 3.12.7 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' bzip2: '>=1.0.8,<2.0a0' ld_impl_linux-64: '>=2.36.1' - libexpat: '>=2.5.0,<3.0a0' + libexpat: '>=2.6.3,<3.0a0' libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' + libgcc: '>=13' libnsl: '>=2.0.1,<2.1.0a0' - libsqlite: '>=3.44.2,<4.0a0' + libsqlite: '>=3.46.1,<4.0a0' libuuid: '>=2.38.1,<3.0a0' libxcrypt: '>=4.4.36' - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.4,<7.0a0' - openssl: '>=3.2.0,<4.0a0' + libzlib: '>=1.3.1,<2.0a0' + ncurses: '>=6.5,<7.0a0' + openssl: '>=3.3.2,<4.0a0' readline: '>=8.2,<9.0a0' tk: '>=8.6.13,<8.7.0a0' tzdata: '' xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.7-hab00c5b_1_cpython.conda + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda hash: - md5: 27cf681282c11dba7b0b1fd266e8f289 - sha256: 8266801d3f21ae3018b997dcd05503b034016a3335aa3ab5b8c3f482af1e6580 + md5: 0515111a9cdf69f83278f7c197db9807 + sha256: 674be31ff152d9f0e0fe16959a45e3803a730fc4f54d87df6a9ac4e6a698c41d category: main optional: false - name: python-json-logger @@ -1019,18 +1111,18 @@ package: category: main optional: false - name: python_abi - version: '3.11' + version: '3.12' manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda + url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda hash: - md5: d786502c97404c94d7d58d258a445a65 - sha256: 0be3ac1bf852d64f553220c7e6457e9c047dfb7412da9d22fbaa67e60858b3cf + md5: 0424ae29b104430108f5218a66db7260 + sha256: d10e93d759931ffb6372b45d65ff34d95c6000c61a07e298d162a3bc2accebb0 category: main optional: false - name: pytorch - version: 2.1.0 + version: 2.3.1 manager: conda platform: linux-64 dependencies: @@ -1039,50 +1131,54 @@ package: filelock: '' fsspec: '' jinja2: '' + libabseil: '>=20240116.2,<20240117.0a0' libcblas: '>=3.9.0,<4.0a0' libgcc-ng: '>=12' - libprotobuf: '>=4.24.4,<4.24.5.0a0' + liblapack: '>=3.9.0,<4.0a0' + libprotobuf: '>=4.25.3,<4.25.4.0a0' libstdcxx-ng: '>=12' - libuv: '>=1.46.0,<2.0a0' - mkl: '>=2022.2.1,<2023.0a0' + libtorch: 2.3.1.* + libuv: '>=1.48.0,<2.0a0' networkx: '' - numpy: '>=1.23.5,<2.0a0' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* + nomkl: '' + numpy: '>=1.19,<3' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* sleef: '>=3.5.1,<4.0a0' sympy: '' typing_extensions: '' - url: https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.1.0-cpu_mkl_py311h0c8a311_100.conda + url: https://conda.anaconda.org/conda-forge/linux-64/pytorch-2.3.1-cpu_generic_py312h2f1fc2b_0.conda hash: - md5: 81dafdfca905f63e43094252048446b4 - sha256: 17da98806c1b87a2c81eaf59b6e781ced850733bb4ea90046da3aa1ba85138ec + md5: 9fe5c6acaa17a9d4d9dc656fa20a832a + sha256: db6ed4ff85005f35fc04f957a969bf6fcc849c850247a736ce7f78aeb402406a category: main optional: false - name: pytorch-cpu - version: 2.1.0 + version: 2.3.1 manager: conda platform: linux-64 dependencies: - pytorch: 2.1.0 - url: https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.1.0-cpu_mkl_py311ha33ad28_100.conda + pytorch: 2.3.1 + url: https://conda.anaconda.org/conda-forge/linux-64/pytorch-cpu-2.3.1-cpu_generic_py312hec17782_0.conda hash: - md5: 3c54dcbd0f2605c9234f4edc1565c8a1 - sha256: 7c5005eeff582c6e0f20897dfc8c303f45baaf3d51fbc69e601dee8fe7fa77eb + md5: 041c9b552e95d2abc6f0b6b2e607cd47 + sha256: 7ef70c9ff2793f8e4c27c243f6f6082be12dfb1a283e21fa62d8a7e34f6bfb02 category: main optional: false - name: pyyaml - version: 6.0.1 + version: 6.0.2 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py311h459d7ec_1.conda + url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda hash: - md5: 52719a74ad130de8fb5d047dc91f247a - sha256: 28729ef1ffa7f6f9dfd54345a47c7faac5d34296d66a2b9891fb147f4efe1348 + md5: 549e5930e768548a89c23f595dac5a95 + sha256: a60705971e958724168f2ebbb8ed4853067f1d3f7059843df3903e3092bbcffa category: main optional: false - name: readline @@ -1099,44 +1195,46 @@ package: category: main optional: false - name: requests - version: 2.31.0 + version: 2.32.3 manager: conda platform: linux-64 dependencies: certifi: '>=2017.4.17' charset-normalizer: '>=2,<4' idna: '>=2.5,<4' - python: '>=3.7' + python: '>=3.8' urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda hash: - md5: a30144e4156cdbb236f99ebb49828f8b - sha256: 9f629d6fd3c8ac5f2a198639fe7af87c4db2ac9235279164bfe0fcb49d8c4bad + md5: 5ede4753180c7a550a443c430dc8ab52 + sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc category: main optional: false - name: setuptools - version: 69.0.3 + version: 75.5.0 manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda + python: '>=3.9' + url: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda hash: - md5: 40695fdfd15a92121ed2922900d0308b - sha256: 0fe2a0473ad03dac6c7f5c42ef36a8e90673c88a0350dfefdea4b08d43803db2 + md5: ade63405adb52eeff89d506cd55908c0 + sha256: 54dcf5f09f74f69641e0063bc695b38340d0349fa8371b1f2ed0c45c5b2fd224 category: main optional: false - name: sleef - version: 3.5.1 + version: '3.7' manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' _openmp_mutex: '>=4.5' - libgcc-ng: '>=9.4.0' - url: https://conda.anaconda.org/conda-forge/linux-64/sleef-3.5.1-h9b69904_2.tar.bz2 + libgcc: '>=13' + libstdcxx: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda hash: - md5: 6e016cf4c525d04a7bd038cee53ad3fd - sha256: 77d644a16f682e6d01df63fe9d25315011393498b63cf08c0e548780e46b2170 + md5: 4792f3259c6fdc0b730563a85b211dc0 + sha256: 38ad951d30052522693d21b247105744c7c6fb7cefcf41edca36f0688322e76d category: main optional: false - name: soupsieve @@ -1152,32 +1250,19 @@ package: category: main optional: false - name: sympy - version: '1.12' + version: 1.13.3 manager: conda platform: linux-64 dependencies: __unix: '' + cpython: '' gmpy2: '>=2.0.8' mpmath: '>=0.19' python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/sympy-1.12-pypyh9d50eac_103.conda - hash: - md5: 2f7d6347d7acf6edf1ac7f2189f44c8f - sha256: 0025dd4e6411423903bf478d1b9fbff0cbbbe546f51c9375dfd6729ef2e1a1ac - category: main - optional: false -- name: tbb - version: 2021.11.0 - manager: conda - platform: linux-64 - dependencies: - libgcc-ng: '>=12' - libhwloc: '>=2.9.3,<2.9.4.0a0' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.11.0-h00ab1b0_1.conda + url: https://conda.anaconda.org/conda-forge/noarch/sympy-1.13.3-pyh2585a3b_104.conda hash: - md5: 4531d2927578e7e254ff3bcf6457518c - sha256: ded4de0d5a3eb7b47ed829f0ed0e3c61ccd428308bde52d8d22ced228038223b + md5: 68085d736d2b2f54498832b65059875d + sha256: 35b2620d109c8a01a301222b4f546690316b7ed61d5c0325ec4a317fa27ea8d7 category: main optional: false - name: tk @@ -1186,7 +1271,7 @@ package: platform: linux-64 dependencies: libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda hash: md5: d453b98d9c83e71da0741bb0ff4d76bc @@ -1194,87 +1279,90 @@ package: category: main optional: false - name: torchvision - version: 0.16.1 + version: 0.18.1 manager: conda platform: linux-64 dependencies: __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' libjpeg-turbo: '>=3.0.0,<4.0a0' - libpng: '>=1.6.39,<1.7.0a0' + libpng: '>=1.6.43,<1.7.0a0' libstdcxx-ng: '>=12' - numpy: '>=1.23.5,<2.0a0' + libtorch: '>=2.3.0,<2.4.0a0' + numpy: '>=1.19,<3' pillow: '>=5.3.0,!=8.3.0,!=8.3.1' - python: '>=3.11,<3.12.0a0' - python_abi: 3.11.* - pytorch: '>=2.1.0,<2.2.0a0' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + pytorch: '>=2.3.0,<2.4.0a0' requests: '' - url: https://conda.anaconda.org/conda-forge/linux-64/torchvision-0.16.1-cpu_py311h38ab453_2.conda + url: https://conda.anaconda.org/conda-forge/linux-64/torchvision-0.18.1-cpu_py312h2a46218_1.conda hash: - md5: 6796c9f44a0fe55fc064007dc3ac65ef - sha256: 2852110869387876c291a8c911b30336b7fec5c543cd58ddee4db1fc5555b3e0 + md5: ed6ed762dad4ff7965080448eef97e08 + sha256: bca4f11d9672013c72f33fe30c03bd162c51678375235e3ec6bd05c97a828414 category: main optional: false - name: tqdm - version: 4.66.2 + version: 4.67.0 manager: conda platform: linux-64 dependencies: colorama: '' python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.0-pyhd8ed1ab_0.conda hash: - md5: 2b8dfb969f984497f3f98409a9545776 - sha256: 416d1d9318f3267325ad7e2b8a575df20ff9031197b30c0222c3d3b023877260 + md5: 196a9e6ab4e036ceafa516ea036619b0 + sha256: fb25b18cec1ebae56e7d7ebbd3e504f063b61a0fac17b1ca798fcaf205bdc874 category: main optional: false - name: typing_extensions - version: 4.9.0 + version: 4.12.2 manager: conda platform: linux-64 dependencies: python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.9.0-pyha770c72_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda hash: - md5: a92a6440c3fe7052d63244f3aba2a4a7 - sha256: f3c5be8673bfd905c4665efcb27fa50192f24f84fa8eff2f19cba5d09753d905 + md5: ebe6952715e1d5eb567eeebf25250fa7 + sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb category: main optional: false - name: tzdata - version: 2024a + version: 2024b manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda hash: - md5: 161081fc7cec0bfda0d86d7cb595f8d8 - sha256: 7b2b69c54ec62a243eb6fba2391b5e443421608c3ae5dbff938ad33ca8db5122 + md5: 8ac3367aafb1cc0a068483c580af8015 + sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf category: main optional: false - name: urllib3 - version: 2.2.0 + version: 2.2.3 manager: conda platform: linux-64 dependencies: brotli-python: '>=1.0.9' + h2: '>=4,<5' pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.0-pyhd8ed1ab_0.conda + python: '>=3.8' + zstandard: '>=0.18.0' + url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda hash: - md5: 6a7e0694921f668a030d52f0c47baebd - sha256: 61a8a3bd36d235c349aedaf1aa6a79cce15d6fe89dca4bb593b596d0211513c6 + md5: 6b55867f385dd762ed99ea687af32a69 + sha256: b6bb34ce41cd93956ad6eeee275ed52390fb3788d6c75e753172ea7ac60b66e5 category: main optional: false - name: wheel - version: 0.42.0 + version: 0.45.0 manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.42.0-pyhd8ed1ab_0.conda + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda hash: - md5: 1cdea58981c5cbc17b51973bcaddcea7 - sha256: 80be0ccc815ce22f80c141013302839b0ed938a2edb50b846cf48d8a8c1cfa01 + md5: f9751d7c71df27b2d29f5cab3378982e + sha256: 8a51067f8e1a2cb0b5e89672dbcc0369e344a92e869c38b2946584aa09ab7088 category: main optional: false - name: xorg-libxau @@ -1282,23 +1370,25 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda hash: - md5: 2c80dc38fface310c9bd81b17037fee5 - sha256: 309751371d525ce50af7c87811b435c176915239fc9e132b99a25d5e1703f2d4 + md5: 77cbc488235ebbaab2b6e912d3934bae + sha256: 532a046fee0b3a402db867b6ec55c84ba4cdedb91d817147c8feeae9766be3d6 category: main optional: false - name: xorg-libxdmcp - version: 1.1.3 + version: 1.1.5 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda hash: - md5: be93aabceefa2fac576e971aef407908 - sha256: 4df7c5ee11b8686d3453e7f3f4aa20ceef441262b49860733066c52cfd0e4a77 + md5: 8035c64cb77ed555e3f150b7b3972480 + sha256: 6b250f3e59db07c2514057944a3ea2044d6a8cdde8a47b6497c254520fade1ee category: main optional: false - name: xz @@ -1326,28 +1416,45 @@ package: category: main optional: false - name: zipp - version: 3.17.0 + version: 3.21.0 manager: conda platform: linux-64 dependencies: python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda + hash: + md5: fee389bf8a4843bd7a2248ce11b7f188 + sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec + category: main + optional: false +- name: zstandard + version: 0.23.0 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + cffi: '>=1.11' + libgcc: '>=13' + python: '>=3.12,<3.13.0a0' + python_abi: 3.12.* + zstd: '>=1.5.6,<1.6.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda hash: - md5: 2e4d6bc0b14e10f895fc6791a7d9b26a - sha256: bced1423fdbf77bca0a735187d05d9b9812d2163f60ab426fc10f11f92ecbe26 + md5: 8b7069e9792ee4e5b4919a7a306d2e67 + sha256: b97015e146437283f2213ff0e95abdc8e2480150634d81fbae6b96ee09f5e50b category: main optional: false - name: zstd - version: 1.5.5 + version: 1.5.6 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.5-hfc55251_0.conda + libzlib: '>=1.2.13,<2.0.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda hash: - md5: 04b88013080254850d6c01ed54810589 - sha256: 607cbeb1a533be98ba96cf5cdf0ddbb101c78019f1fda063261871dad6248609 + md5: 4d056880988120e29d75bfff282e0f45 + sha256: c558b9cc01d9c1444031bd1ce4b9cff86f9085765f17627a6cd85fc623c8a02b category: main optional: false diff --git a/conf/analyzer/detector/retinaface.yaml b/conf/analyzer/detector/retinaface.yaml index 90b9a8f..bfb8e2f 100644 --- a/conf/analyzer/detector/retinaface.yaml +++ b/conf/analyzer/detector/retinaface.yaml @@ -18,7 +18,7 @@ preprocessor: _target_: torchvision.transforms.Compose transforms: - _target_: torchvision.transforms.Normalize - mean: [104., 117., 123.] # List[float] + mean: [123., 117., 104.] # List[float] std: [1., 1., 1.] # List[float] device: _target_: torch.device diff --git a/docker-compose.dev.yml b/docker-compose.dev.yml index 8725cd9..7f44dc4 100644 --- a/docker-compose.dev.yml +++ b/docker-compose.dev.yml @@ -1,4 +1,4 @@ -version: "3.3" +version: "3.8" services: facetorch-dev: @@ -11,13 +11,20 @@ services: entrypoint: [ "/bin/bash" ] facetorch-dev-gpu: + platform: linux/amd64 build: context: . dockerfile: ./docker/Dockerfile.dev.gpu volumes: - ./:/opt/facetorch shm_size: 8gb - runtime: nvidia + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: 1 + capabilities: [gpu] entrypoint: [ "/bin/bash" ] facetorch-tests: @@ -70,7 +77,13 @@ services: dockerfile: ./docker/Dockerfile.lock volumes: - ./:/opt/facetorch - runtime: nvidia + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: 1 + capabilities: [gpu] entrypoint: [ "conda-lock", diff --git a/docker-compose.yml b/docker-compose.yml index fc19641..23d2baa 100644 --- a/docker-compose.yml +++ b/docker-compose.yml @@ -1,4 +1,4 @@ -version: "3.3" +version: "3.8" services: facetorch: @@ -13,12 +13,19 @@ services: facetorch-gpu: image: tomasgajarsky/facetorch-gpu:latest + platform: linux/amd64 build: context: . dockerfile: ./docker/Dockerfile.gpu volumes: - ./:/opt/facetorch - runtime: nvidia + deploy: + resources: + reservations: + devices: + - driver: nvidia + count: 1 + capabilities: [gpu] entrypoint: [ "/bin/bash" ] facetorch-gpu-no-device: diff --git a/docker/Dockerfile.dev b/docker/Dockerfile.dev index 0a77fbd..639782a 100644 --- a/docker/Dockerfile.dev +++ b/docker/Dockerfile.dev @@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y \ # Install miniconda ENV CONDA_DIR /opt/conda -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_24.9.2-0-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda # Add conda to path diff --git a/docker/Dockerfile.dev.gpu b/docker/Dockerfile.dev.gpu index da4cf84..b4843df 100644 --- a/docker/Dockerfile.dev.gpu +++ b/docker/Dockerfile.dev.gpu @@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y \ # Install miniconda ENV CONDA_DIR /opt/conda -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_24.9.2-0-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda # Add conda to path @@ -42,7 +42,7 @@ RUN pip install --upgrade pip # Install facetorch package COPY facetorch . COPY environment.yml setup.py version README.md ./ -RUN pip install --no-dependencies -e . +RUN pip install --no-dependencies -e . # Install development dependencies COPY requirements.dev.txt . diff --git a/docker/Dockerfile.lock b/docker/Dockerfile.lock index 2d118bd..e6092a7 100644 --- a/docker/Dockerfile.lock +++ b/docker/Dockerfile.lock @@ -1,4 +1,4 @@ -FROM python:3.8.16-slim +FROM python:3.9.12-slim # Set working directory ENV WORKDIR=/opt/facetorch @@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y \ # Install miniconda ENV CONDA_DIR /opt/conda -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py38_22.11.1-1-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_24.9.2-0-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda # Add conda to path diff --git a/docker/Dockerfile.tests b/docker/Dockerfile.tests index 8ab10cc..8297bad 100644 --- a/docker/Dockerfile.tests +++ b/docker/Dockerfile.tests @@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y \ # Install miniconda ENV CONDA_DIR /opt/conda -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_24.9.2-0-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda # Add conda to path diff --git a/docs/doc-search.html b/docs/doc-search.html index 0f0cf80..ff3beb0 100644 --- a/docs/doc-search.html +++ b/docs/doc-search.html @@ -4,8 +4,8 @@ Search - - + + - + + + + + + - - + +
@@ -22,204 +25,6 @@

Module facetorch.analyzer.core

-
- -Expand source code - -
from typing import Optional, Union
-
-import torch
-import numpy as np
-from codetiming import Timer
-from PIL import Image
-from facetorch.analyzer.predictor.core import FacePredictor
-from facetorch.datastruct import ImageData, Response
-from facetorch.logger import LoggerJsonFile
-from importlib.metadata import version
-from hydra.utils import instantiate
-from omegaconf import OmegaConf
-
-logger = LoggerJsonFile().logger
-
-
-class FaceAnalyzer(object):
-    @Timer(
-        "FaceAnalyzer.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
-    )
-    def __init__(self, cfg: OmegaConf):
-        """FaceAnalyzer is the main class that reads images, runs face detection, tensor unification and facial feature prediction.
-        It also draws bounding boxes and facial landmarks over the image.
-
-        The following components are used:
-
-        1. Reader - reads the image and returns an ImageData object containing the image tensor.
-        2. Detector - wrapper around a neural network that detects faces.
-        3. Unifier - processor that unifies sizes of all faces and normalizes them between 0 and 1.
-        4. Predictor dict - dict of wrappers around neural networks trained to analyze facial features.
-        5. Utilizer dict - dict of utilizer processors that can for example extract 3D face landmarks or draw boxes over the image.
-
-        Args:
-            cfg (OmegaConf): Config object with image reader, face detector, unifier and predictor configurations.
-
-        Attributes:
-            cfg (OmegaConf): Config object with image reader, face detector, unifier and predictor configurations.
-            reader (BaseReader): Reader object that reads the image and returns an ImageData object containing the image tensor.
-            detector (FaceDetector): FaceDetector object that wraps a neural network that detects faces.
-            unifier (FaceUnifier): FaceUnifier object that unifies sizes of all faces and normalizes them between 0 and 1.
-            predictors (Dict[str, FacePredictor]): Dict of FacePredictor objects that predict facial features. Key is the name of the predictor.
-            utilizers (Dict[str, FaceUtilizer]): Dict of FaceUtilizer objects that can extract 3D face landmarks, draw boxes over the image, etc. Key is the name of the utilizer.
-            logger (logging.Logger): Logger object that logs messages to the console or to a file.
-
-        """
-        self.cfg = cfg
-        self.logger = instantiate(self.cfg.logger).logger
-
-        self.logger.info("Initializing FaceAnalyzer")
-        self.logger.debug("Config", extra=self.cfg.__dict__["_content"])
-
-        self.logger.info("Initializing BaseReader")
-        self.reader = instantiate(self.cfg.reader)
-
-        self.logger.info("Initializing FaceDetector")
-        self.detector = instantiate(self.cfg.detector)
-
-        self.logger.info("Initializing FaceUnifier")
-        if "unifier" in self.cfg:
-            self.unifier = instantiate(self.cfg.unifier)
-        else:
-            self.unifier = None
-
-        self.logger.info("Initializing FacePredictor objects")
-        self.predictors = {}
-        if "predictor" in self.cfg:
-            for predictor_name in self.cfg.predictor:
-                self.logger.info(f"Initializing FacePredictor {predictor_name}")
-                self.predictors[predictor_name] = instantiate(
-                    self.cfg.predictor[predictor_name]
-                )
-
-        self.utilizers = {}
-        if "utilizer" in self.cfg:
-            self.logger.info("Initializing BaseUtilizer objects")
-            for utilizer_name in self.cfg.utilizer:
-                self.logger.info(f"Initializing BaseUtilizer {utilizer_name}")
-                self.utilizers[utilizer_name] = instantiate(
-                    self.cfg.utilizer[utilizer_name]
-                )
-
-    @Timer("FaceAnalyzer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
-    def run(
-        self,
-        image_source: Optional[
-            Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]
-        ] = None,
-        path_image: Optional[str] = None,
-        batch_size: int = 8,
-        fix_img_size: bool = False,
-        return_img_data: bool = False,
-        include_tensors: bool = False,
-        path_output: Optional[str] = None,
-        tensor: Optional[torch.Tensor] = None,
-    ) -> Union[Response, ImageData]:
-        """Reads image, detects faces, unifies the detected faces, predicts facial features
-         and returns analyzed data.
-
-        Args:
-            image_source (Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]]): Input to be analyzed. If None, path_image or tensor must be provided. Default: None.
-            path_image (Optional[str]): Path to the image to be analyzed. If None, tensor must be provided. Default: None.
-            batch_size (int): Batch size for making predictions on the faces. Default is 8.
-            fix_img_size (bool): If True, resizes the image to the size specified in reader. Default is False.
-            return_img_data (bool): If True, returns all image data including tensors, otherwise only returns the faces. Default is False.
-            include_tensors (bool): If True, removes tensors from the returned data object. Default is False.
-            path_output (Optional[str]): Path where to save the image with detected faces. If None, the image is not saved. Default: None.
-            tensor (Optional[torch.Tensor]): Image tensor to be analyzed. If None, path_image must be provided. Default: None.
-
-        Returns:
-            Union[Response, ImageData]: If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
-
-        """
-
-        def _predict_batch(
-            data: ImageData, predictor: FacePredictor, predictor_name: str
-        ) -> ImageData:
-            n_faces = len(data.faces)
-
-            for face_indx_start in range(0, n_faces, batch_size):
-                face_indx_end = min(face_indx_start + batch_size, n_faces)
-
-                face_batch_tensor = torch.stack(
-                    [face.tensor for face in data.faces[face_indx_start:face_indx_end]]
-                )
-                preds = predictor.run(face_batch_tensor)
-                data.add_preds(preds, predictor_name, face_indx_start)
-
-            return data
-
-        self.logger.info("Running FaceAnalyzer")
-
-        if path_image is None and tensor is None and image_source is None:
-            raise ValueError("Either input, path_image or tensor must be provided.")
-
-        if image_source is not None:
-            self.logger.debug("Using image_source as input")
-            reader_input = image_source
-        elif path_image is not None:
-            self.logger.debug(
-                "Using path_image as input", extra={"path_image": path_image}
-            )
-            reader_input = path_image
-        else:
-            self.logger.debug("Using tensor as input")
-            reader_input = tensor
-
-        self.logger.info("Reading image", extra={"input": reader_input})
-        data = self.reader.run(reader_input, fix_img_size=fix_img_size)
-
-        path_output = None if path_output == "None" else path_output
-        data.path_output = path_output
-
-        try:
-            data.version = version("facetorch")
-        except Exception as e:
-            self.logger.warning("Could not get version number", extra={"error": e})
-
-        self.logger.info("Detecting faces")
-        data = self.detector.run(data)
-        n_faces = len(data.faces)
-        self.logger.info(f"Number of faces: {n_faces}")
-
-        if n_faces > 0 and self.unifier is not None:
-            self.logger.info("Unifying faces")
-            data = self.unifier.run(data)
-
-            self.logger.info("Predicting facial features")
-            for predictor_name, predictor in self.predictors.items():
-                self.logger.info(f"Running FacePredictor: {predictor_name}")
-                data = _predict_batch(data, predictor, predictor_name)
-
-            self.logger.info("Utilizing facial features")
-            for utilizer_name, utilizer in self.utilizers.items():
-                self.logger.info(f"Running BaseUtilizer: {utilizer_name}")
-                data = utilizer.run(data)
-        else:
-            if "save" in self.utilizers:
-                self.utilizers["save"].run(data)
-
-        if not include_tensors:
-            self.logger.debug(
-                "Removing tensors from response as include_tensors is False"
-            )
-            data.reset_tensors()
-
-        response = Response(faces=data.faces, version=data.version)
-
-        if return_img_data:
-            self.logger.debug("Returning image data object", extra=data.__dict__)
-            return data
-        else:
-            self.logger.debug("Returning response with faces", extra=response.__dict__)
-            return response
-
@@ -481,123 +286,6 @@

Returns

Union[Response, ImageData]
If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
-
- -Expand source code - -
@Timer("FaceAnalyzer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
-def run(
-    self,
-    image_source: Optional[
-        Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]
-    ] = None,
-    path_image: Optional[str] = None,
-    batch_size: int = 8,
-    fix_img_size: bool = False,
-    return_img_data: bool = False,
-    include_tensors: bool = False,
-    path_output: Optional[str] = None,
-    tensor: Optional[torch.Tensor] = None,
-) -> Union[Response, ImageData]:
-    """Reads image, detects faces, unifies the detected faces, predicts facial features
-     and returns analyzed data.
-
-    Args:
-        image_source (Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]]): Input to be analyzed. If None, path_image or tensor must be provided. Default: None.
-        path_image (Optional[str]): Path to the image to be analyzed. If None, tensor must be provided. Default: None.
-        batch_size (int): Batch size for making predictions on the faces. Default is 8.
-        fix_img_size (bool): If True, resizes the image to the size specified in reader. Default is False.
-        return_img_data (bool): If True, returns all image data including tensors, otherwise only returns the faces. Default is False.
-        include_tensors (bool): If True, removes tensors from the returned data object. Default is False.
-        path_output (Optional[str]): Path where to save the image with detected faces. If None, the image is not saved. Default: None.
-        tensor (Optional[torch.Tensor]): Image tensor to be analyzed. If None, path_image must be provided. Default: None.
-
-    Returns:
-        Union[Response, ImageData]: If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
-
-    """
-
-    def _predict_batch(
-        data: ImageData, predictor: FacePredictor, predictor_name: str
-    ) -> ImageData:
-        n_faces = len(data.faces)
-
-        for face_indx_start in range(0, n_faces, batch_size):
-            face_indx_end = min(face_indx_start + batch_size, n_faces)
-
-            face_batch_tensor = torch.stack(
-                [face.tensor for face in data.faces[face_indx_start:face_indx_end]]
-            )
-            preds = predictor.run(face_batch_tensor)
-            data.add_preds(preds, predictor_name, face_indx_start)
-
-        return data
-
-    self.logger.info("Running FaceAnalyzer")
-
-    if path_image is None and tensor is None and image_source is None:
-        raise ValueError("Either input, path_image or tensor must be provided.")
-
-    if image_source is not None:
-        self.logger.debug("Using image_source as input")
-        reader_input = image_source
-    elif path_image is not None:
-        self.logger.debug(
-            "Using path_image as input", extra={"path_image": path_image}
-        )
-        reader_input = path_image
-    else:
-        self.logger.debug("Using tensor as input")
-        reader_input = tensor
-
-    self.logger.info("Reading image", extra={"input": reader_input})
-    data = self.reader.run(reader_input, fix_img_size=fix_img_size)
-
-    path_output = None if path_output == "None" else path_output
-    data.path_output = path_output
-
-    try:
-        data.version = version("facetorch")
-    except Exception as e:
-        self.logger.warning("Could not get version number", extra={"error": e})
-
-    self.logger.info("Detecting faces")
-    data = self.detector.run(data)
-    n_faces = len(data.faces)
-    self.logger.info(f"Number of faces: {n_faces}")
-
-    if n_faces > 0 and self.unifier is not None:
-        self.logger.info("Unifying faces")
-        data = self.unifier.run(data)
-
-        self.logger.info("Predicting facial features")
-        for predictor_name, predictor in self.predictors.items():
-            self.logger.info(f"Running FacePredictor: {predictor_name}")
-            data = _predict_batch(data, predictor, predictor_name)
-
-        self.logger.info("Utilizing facial features")
-        for utilizer_name, utilizer in self.utilizers.items():
-            self.logger.info(f"Running BaseUtilizer: {utilizer_name}")
-            data = utilizer.run(data)
-    else:
-        if "save" in self.utilizers:
-            self.utilizers["save"].run(data)
-
-    if not include_tensors:
-        self.logger.debug(
-            "Removing tensors from response as include_tensors is False"
-        )
-        data.reset_tensors()
-
-    response = Response(faces=data.faces, version=data.version)
-
-    if return_img_data:
-        self.logger.debug("Returning image data object", extra=data.__dict__)
-        return data
-    else:
-        self.logger.debug("Returning response with faces", extra=response.__dict__)
-        return response
-
@@ -651,7 +339,6 @@

Returns

}).setContent('').open(); } -

Index

    @@ -675,7 +362,7 @@

    -

    Generated by pdoc 0.10.0.

    +

    Generated by pdoc 0.11.1.

    - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/detector/core.html b/docs/facetorch/analyzer/detector/core.html index 457ff6c..e2fca1a 100644 --- a/docs/facetorch/analyzer/detector/core.html +++ b/docs/facetorch/analyzer/detector/core.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.detector.core API documentation - - - - - - + + + + + + - - + +
    @@ -22,64 +25,6 @@

    Module facetorch.analyzer.detector.core

    -
    - -Expand source code - -
    import torch
    -from codetiming import Timer
    -from facetorch.base import BaseDownloader, BaseModel
    -from facetorch.datastruct import ImageData
    -from facetorch.logger import LoggerJsonFile
    -
    -from .post import BaseDetPostProcessor
    -from .pre import BaseDetPreProcessor
    -
    -logger = LoggerJsonFile().logger
    -
    -
    -class FaceDetector(BaseModel):
    -    @Timer(
    -        "FaceDetector.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
    -    )
    -    def __init__(
    -        self,
    -        downloader: BaseDownloader,
    -        device: torch.device,
    -        preprocessor: BaseDetPreProcessor,
    -        postprocessor: BaseDetPostProcessor,
    -        **kwargs
    -    ):
    -        """FaceDetector is a wrapper around a neural network model that is trained to detect faces.
    -
    -        Args:
    -            downloader (BaseDownloader): Downloader that downloads the model.
    -            device (torch.device): Torch device cpu or cuda for the model.
    -            preprocessor (BaseDetPreProcessor): Preprocessor that runs before the model.
    -            postprocessor (BaseDetPostProcessor): Postprocessor that runs after the model.
    -        """
    -        self.__dict__.update(kwargs)
    -        super().__init__(downloader, device)
    -
    -        self.preprocessor = preprocessor
    -        self.postprocessor = postprocessor
    -
    -    @Timer("FaceDetector.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    -    def run(self, data: ImageData) -> ImageData:
    -        """Detect all faces in the image.
    -
    -        Args:
    -            ImageData: ImageData object containing the image tensor with values between 0 - 255 and shape (batch_size, channels, height, width).
    -
    -        Returns:
    -            ImageData: Image data object with Detection tensors and detected Face objects.
    -        """
    -        data = self.preprocessor.run(data)
    -        logits = self.inference(data.tensor)
    -        data = self.postprocessor.run(data, logits)
    -
    -        return data
    -
    @@ -174,26 +119,6 @@

    Returns

    ImageData
    Image data object with Detection tensors and detected Face objects.
    -
    - -Expand source code - -
    @Timer("FaceDetector.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    -def run(self, data: ImageData) -> ImageData:
    -    """Detect all faces in the image.
    -
    -    Args:
    -        ImageData: ImageData object containing the image tensor with values between 0 - 255 and shape (batch_size, channels, height, width).
    -
    -    Returns:
    -        ImageData: Image data object with Detection tensors and detected Face objects.
    -    """
    -    data = self.preprocessor.run(data)
    -    logits = self.inference(data.tensor)
    -    data = self.postprocessor.run(data, logits)
    -
    -    return data
    -

    Inherited members

    @@ -256,7 +181,6 @@

    Inherited members

    }).setContent('').open(); } -

    Index

      @@ -280,7 +204,7 @@

      -

      Generated by pdoc 0.10.0.

      +

      Generated by pdoc 0.11.1.

      - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/detector/index.html b/docs/facetorch/analyzer/detector/index.html index c104158..2739119 100644 --- a/docs/facetorch/analyzer/detector/index.html +++ b/docs/facetorch/analyzer/detector/index.html @@ -2,18 +2,22 @@ - - + + + facetorch.analyzer.detector API documentation - - - - - - + + + + + + - - + +
      @@ -22,15 +26,6 @@

      Module facetorch.analyzer.detector

      -
      - -Expand source code - -
      from .core import FaceDetector
      -
      -
      -__all__ = ["FaceDetector"]
      -

      Sub-modules

      @@ -140,26 +135,6 @@

      Returns

      ImageData
      Image data object with Detection tensors and detected Face objects.
      -
      - -Expand source code - -
      @Timer("FaceDetector.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
      -def run(self, data: ImageData) -> ImageData:
      -    """Detect all faces in the image.
      -
      -    Args:
      -        ImageData: ImageData object containing the image tensor with values between 0 - 255 and shape (batch_size, channels, height, width).
      -
      -    Returns:
      -        ImageData: Image data object with Detection tensors and detected Face objects.
      -    """
      -    data = self.preprocessor.run(data)
      -    logits = self.inference(data.tensor)
      -    data = self.postprocessor.run(data, logits)
      -
      -    return data
      -

      Inherited members

      @@ -222,7 +197,6 @@

      Inherited members

      }).setContent('').open(); } -

      Index

        @@ -253,7 +227,7 @@

        -

        Generated by pdoc 0.10.0.

        +

        Generated by pdoc 0.11.1.

        - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/detector/post.html b/docs/facetorch/analyzer/detector/post.html index cb67c87..b77f9d5 100644 --- a/docs/facetorch/analyzer/detector/post.html +++ b/docs/facetorch/analyzer/detector/post.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.detector.post API documentation - - - - - - + + + + + + - - + +
        @@ -22,319 +25,6 @@

        Module facetorch.analyzer.detector.post

        -
        - -Expand source code - -
        from abc import abstractmethod
        -from itertools import product as product
        -from math import ceil
        -from typing import List, Tuple, Union
        -
        -import torch
        -from codetiming import Timer
        -from facetorch.base import BaseProcessor
        -from facetorch.datastruct import Detection, Dimensions, Face, ImageData, Location
        -from facetorch.logger import LoggerJsonFile
        -from facetorch.utils import rgb2bgr
        -from torchvision import transforms
        -
        -logger = LoggerJsonFile().logger
        -
        -
        -class BaseDetPostProcessor(BaseProcessor):
        -    @Timer(
        -        "BaseDetPostProcessor.__init__",
        -        "{name}: {milliseconds:.2f} ms",
        -        logger=logger.debug,
        -    )
        -    def __init__(
        -        self,
        -        transform: transforms.Compose,
        -        device: torch.device,
        -        optimize_transform: bool,
        -    ):
        -        """Base class for detector post processors.
        -
        -        All detector post processors should subclass it.
        -        All subclass should overwrite:
        -
        -        - Methods:``run``, used for running the processing
        -
        -        Args:
        -            device (torch.device): Torch device cpu or cuda.
        -            transform (transforms.Compose): Transform compose object to be applied to the image.
        -            optimize_transform (bool): Whether to optimize the transform.
        -
        -        """
        -        super().__init__(transform, device, optimize_transform)
        -
        -    @abstractmethod
        -    def run(
        -        self, data: ImageData, logits: Union[torch.Tensor, Tuple[torch.Tensor]]
        -    ) -> ImageData:
        -        """Abstract method that runs the detector post processing functionality
        -        and returns the data object.
        -
        -        Args:
        -            data (ImageData): ImageData object containing the image tensor.
        -            logits (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the detector model.
        -
        -        Returns:
        -            ImageData: Image data object with Detection tensors and detected Face objects.
        -
        -
        -        """
        -
        -
        -class PriorBox:
        -    """
        -    PriorBox class for generating prior boxes.
        -
        -    Args:
        -        min_sizes (List[List[int]]): List of list of minimum sizes for each feature map.
        -        steps (List[int]): List of steps for each feature map.
        -        clip (bool): Whether to clip the prior boxes to the image boundaries.
        -    """
        -
        -    def __init__(self, min_sizes: List[List[int]], steps: List[int], clip: bool):
        -        self.min_sizes = [list(min_size) for min_size in min_sizes]
        -        self.steps = list(steps)
        -        self.clip = clip
        -
        -    def forward(self, dims: Dimensions) -> torch.Tensor:
        -        """Generate prior boxes for each feature map.
        -
        -        Args:
        -            dims (Dimensions): Dimensions of the image.
        -
        -        Returns:
        -            torch.Tensor: Tensor of prior boxes.
        -        """
        -        feature_maps = [
        -            [ceil(dims.height / step), ceil(dims.width / step)] for step in self.steps
        -        ]
        -        anchors = []
        -        for k, f in enumerate(feature_maps):
        -            min_sizes = self.min_sizes[k]
        -            for i, j in product(range(f[0]), range(f[1])):
        -                for min_size in min_sizes:
        -                    s_kx = min_size / dims.width
        -                    s_ky = min_size / dims.height
        -                    dense_cx = [x * self.steps[k] / dims.width for x in [j + 0.5]]
        -                    dense_cy = [y * self.steps[k] / dims.height for y in [i + 0.5]]
        -                    for cy, cx in product(dense_cy, dense_cx):
        -                        anchors.append([cx, cy, s_kx, s_ky])
        -
        -        output = torch.Tensor(anchors)
        -        if self.clip:
        -            output.clamp_(min=0, max=1)
        -        return output
        -
        -
        -class PostRetFace(BaseDetPostProcessor):
        -    @Timer("PostRetFace.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
        -    def __init__(
        -        self,
        -        transform: transforms.Compose,
        -        device: torch.device,
        -        optimize_transform: bool,
        -        confidence_threshold: float,
        -        top_k: int,
        -        nms_threshold: float,
        -        keep_top_k: int,
        -        score_threshold: float,
        -        prior_box: PriorBox,
        -        variance: List[float],
        -        reverse_colors: bool = False,
        -        expand_box_ratio: float = 0.0,
        -    ):
        -        """Initialize the detector postprocessor. Modified from https://github.com/biubug6/Pytorch_Retinaface.
        -
        -        Args:
        -            transform (Compose): Composed Torch transform object.
        -            device (torch.device): Torch device cpu or cuda.
        -            optimize_transform (bool): Whether to optimize the transform.
        -            confidence_threshold (float): Confidence threshold for face detection.
        -            top_k (int): Top K faces to keep before NMS.
        -            nms_threshold (float): NMS threshold.
        -            keep_top_k (int): Keep top K faces after NMS.
        -            score_threshold (float): Score threshold for face detection.
        -            prior_box (PriorBox): PriorBox object.
        -            variance (List[float]): Prior box variance.
        -            reverse_colors (bool): Whether to reverse the colors of the image tensor from RGB to BGR or vice versa. If False, the colors remain unchanged. Default: False.
        -            expand_box_ratio (float): Expand the box by this ratio. Default: 0.0.
        -        """
        -        super().__init__(transform, device, optimize_transform)
        -        self.confidence_threshold = confidence_threshold
        -        self.top_k = top_k
        -        self.nms_threshold = nms_threshold
        -        self.keep_top_k = keep_top_k
        -        self.score_threshold = score_threshold
        -        self.prior_box = prior_box
        -        self.variance = list(variance)
        -        self.reverse_colors = reverse_colors
        -        self.expand_box_ratio = expand_box_ratio
        -
        -    @Timer("PostRetFace.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
        -    def run(
        -        self,
        -        data: ImageData,
        -        logits: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]],
        -    ) -> ImageData:
        -        """Run the detector postprocessor.
        -
        -        Args:
        -            data (ImageData): ImageData object containing the image tensor.
        -            logits (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the detector model.
        -
        -        Returns:
        -            ImageData: Image data object with detection tensors and detected Face objects.
        -        """
        -        data.det = Detection(loc=logits[0], conf=logits[1], landmarks=logits[2])
        -
        -        if self.reverse_colors:
        -            data.tensor = rgb2bgr(data.tensor)
        -
        -        data = self._process_dets(data)
        -        data = self._extract_faces(data)
        -        return data
        -
        -    def _process_dets(self, data: ImageData) -> ImageData:
        -        """Compute the detections and add them to the data detector.
        -
        -        Args:
        -            data (ImageData): Image data with with locations and confidences from detector.
        -
        -        Returns:
        -            ImageData: Image data object with detections.
        -        """
        -
        -        def _decode(
        -            _loc: torch.Tensor, _priors: torch.Tensor, variances: List[float]
        -        ) -> torch.Tensor:
        -            _boxes = torch.cat(
        -                (
        -                    _priors[:, :2] + _loc[:, :2] * variances[0] * _priors[:, 2:],
        -                    _priors[:, 2:] * torch.exp(_loc[:, 2:] * variances[1]),
        -                ),
        -                1,
        -            )
        -            _boxes[:, :2] -= _boxes[:, 2:] / 2
        -            _boxes[:, 2:] += _boxes[:, :2]
        -            return _boxes
        -
        -        def _extract_boxes(_loc: torch.Tensor) -> torch.Tensor:
        -            priors = self.prior_box.forward(data.dims)
        -            priors = priors.to(self.device)
        -            prior_data = priors.data
        -            _boxes = _decode(_loc.data.squeeze(0), prior_data, self.variance)
        -            img_scale = torch.Tensor([data.dims.width, data.dims.height]).repeat(2)
        -            _boxes = _boxes * img_scale.to(self.device)
        -            return _boxes
        -
        -        def _nms(dets: torch.Tensor, thresh: float) -> torch.Tensor:
        -            """Non-maximum suppression."""
        -            x1 = dets[:, 0]
        -            y1 = dets[:, 1]
        -            x2 = dets[:, 2]
        -            y2 = dets[:, 3]
        -
        -            areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        -            order = torch.arange(dets.shape[0], device=self.device)
        -
        -            zero_tensor = torch.tensor(0.0).to(self.device)
        -            keep = []
        -            while order.size()[0] > 0:
        -                i = order[0]
        -                keep.append(i)
        -                xx1 = torch.maximum(x1[i], x1[order[1:]])
        -                yy1 = torch.maximum(y1[i], y1[order[1:]])
        -                xx2 = torch.minimum(x2[i], x2[order[1:]])
        -                yy2 = torch.minimum(y2[i], y2[order[1:]])
        -
        -                w = torch.maximum(zero_tensor, xx2 - xx1 + 1)
        -                h = torch.maximum(zero_tensor, yy2 - yy1 + 1)
        -                inter = torch.multiply(w, h)
        -                ovr = inter / (areas[i] + areas[order[1:]] - inter)
        -
        -                inds = ovr <= thresh
        -                order = order[1:][inds]
        -
        -            if len(keep) > 0:
        -                keep = torch.stack(keep)
        -            else:
        -                keep = torch.tensor([])
        -
        -            return keep
        -
        -        def _extract_dets(_conf: torch.Tensor, _boxes: torch.Tensor) -> torch.Tensor:
        -            scores = _conf.squeeze(0).data[:, 1]
        -            # ignore low scores
        -            inds = scores > self.confidence_threshold
        -            _boxes = _boxes[inds]
        -            scores = scores[inds]
        -            # keep top-K before NMS
        -            order = torch.argsort(scores, descending=True)[: self.top_k]
        -            _boxes = _boxes[order]
        -            scores = scores[order]
        -            # do NMS
        -            _dets = torch.hstack((_boxes, scores.unsqueeze(1)))
        -            keep = _nms(_dets, self.nms_threshold)
        -
        -            if not keep.shape[0] == 0:
        -                _dets = _dets[keep, :]
        -                # keep top-K after NMS
        -                _dets = _dets[: self.keep_top_k, :]
        -                # keep dets with score > score_threshold
        -                _dets = _dets[_dets[:, 4] > self.score_threshold]
        -
        -            return _dets
        -
        -        data.det.boxes = _extract_boxes(data.det.loc)
        -        data.det.dets = _extract_dets(data.det.conf, data.det.boxes)
        -        return data
        -
        -    def _extract_faces(self, data: ImageData) -> ImageData:
        -        """Extracts the faces from the original image using the detections.
        -
        -        Args:
        -            data (ImageData): Image data with image tensor and detections.
        -
        -        Returns:
        -            ImageData: Image data object with extracted faces.
        -
        -        """
        -
        -        def _get_coordinates(_det: torch.Tensor) -> Location:
        -            _det = torch.round(_det).int()
        -            loc = Location(
        -                x1=int(_det[0]),
        -                y1=int(_det[1]),
        -                x2=int(_det[2]),
        -                y2=int(_det[3]),
        -            )
        -
        -            loc.expand(amount=self.expand_box_ratio)
        -            loc.form_square()
        -
        -            return loc
        -
        -        for indx, det in enumerate(data.det.dets):
        -            loc = _get_coordinates(det)
        -            face_tensor = data.tensor[0, :, loc.y1 : loc.y2, loc.x1 : loc.x2]
        -            dims = Dimensions(face_tensor.shape[-2], face_tensor.shape[-1])
        -            size_img = data.tensor.shape[-2] * data.tensor.shape[-1]
        -            size_ratio = (dims.height * dims.width) / size_img
        -
        -            if not any([dim == 0 for dim in face_tensor.shape]):
        -                face = Face(
        -                    indx=indx, loc=loc, tensor=face_tensor, dims=dims, ratio=size_ratio
        -                )
        -                data.faces.append(face)
        -
        -        return data
        -
        @@ -441,27 +131,6 @@

        Returns

        ImageData
        Image data object with Detection tensors and detected Face objects.
        -
        - -Expand source code - -
        @abstractmethod
        -def run(
        -    self, data: ImageData, logits: Union[torch.Tensor, Tuple[torch.Tensor]]
        -) -> ImageData:
        -    """Abstract method that runs the detector post processing functionality
        -    and returns the data object.
        -
        -    Args:
        -        data (ImageData): ImageData object containing the image tensor.
        -        logits (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the detector model.
        -
        -    Returns:
        -        ImageData: Image data object with Detection tensors and detected Face objects.
        -
        -
        -    """
        -

        Inherited members

        @@ -553,39 +222,6 @@

        Returns

        torch.Tensor
        Tensor of prior boxes.
        -
        - -Expand source code - -
        def forward(self, dims: Dimensions) -> torch.Tensor:
        -    """Generate prior boxes for each feature map.
        -
        -    Args:
        -        dims (Dimensions): Dimensions of the image.
        -
        -    Returns:
        -        torch.Tensor: Tensor of prior boxes.
        -    """
        -    feature_maps = [
        -        [ceil(dims.height / step), ceil(dims.width / step)] for step in self.steps
        -    ]
        -    anchors = []
        -    for k, f in enumerate(feature_maps):
        -        min_sizes = self.min_sizes[k]
        -        for i, j in product(range(f[0]), range(f[1])):
        -            for min_size in min_sizes:
        -                s_kx = min_size / dims.width
        -                s_ky = min_size / dims.height
        -                dense_cx = [x * self.steps[k] / dims.width for x in [j + 0.5]]
        -                dense_cy = [y * self.steps[k] / dims.height for y in [i + 0.5]]
        -                for cy, cx in product(dense_cy, dense_cx):
        -                    anchors.append([cx, cy, s_kx, s_ky])
        -
        -    output = torch.Tensor(anchors)
        -    if self.clip:
        -        output.clamp_(min=0, max=1)
        -    return output
        -
        @@ -853,34 +489,6 @@

        Returns

        ImageData
        Image data object with detection tensors and detected Face objects.
        -
        - -Expand source code - -
        @Timer("PostRetFace.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
        -def run(
        -    self,
        -    data: ImageData,
        -    logits: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]],
        -) -> ImageData:
        -    """Run the detector postprocessor.
        -
        -    Args:
        -        data (ImageData): ImageData object containing the image tensor.
        -        logits (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the detector model.
        -
        -    Returns:
        -        ImageData: Image data object with detection tensors and detected Face objects.
        -    """
        -    data.det = Detection(loc=logits[0], conf=logits[1], landmarks=logits[2])
        -
        -    if self.reverse_colors:
        -        data.tensor = rgb2bgr(data.tensor)
        -
        -    data = self._process_dets(data)
        -    data = self._extract_faces(data)
        -    return data
        -

        Inherited members

        @@ -942,7 +550,6 @@

        Inherited members

        }).setContent('').open(); } -

        Index

          @@ -978,7 +585,7 @@

          -

          Generated by pdoc 0.10.0.

          +

          Generated by pdoc 0.11.1.

          - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/detector/pre.html b/docs/facetorch/analyzer/detector/pre.html index 0e17f18..2db7ba4 100644 --- a/docs/facetorch/analyzer/detector/pre.html +++ b/docs/facetorch/analyzer/detector/pre.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.detector.pre API documentation - - - - - - + + + + + + - - + +
          @@ -22,111 +25,6 @@

          Module facetorch.analyzer.detector.pre

          -
          - -Expand source code - -
          from abc import abstractmethod
          -
          -import torch
          -from codetiming import Timer
          -from facetorch.base import BaseProcessor
          -from facetorch.datastruct import ImageData
          -from facetorch.logger import LoggerJsonFile
          -from facetorch.utils import rgb2bgr
          -from torchvision import transforms
          -
          -logger = LoggerJsonFile().logger
          -
          -
          -class BaseDetPreProcessor(BaseProcessor):
          -    @Timer(
          -        "BaseDetPreProcessor.__init__",
          -        "{name}: {milliseconds:.2f} ms",
          -        logger=logger.debug,
          -    )
          -    def __init__(
          -        self,
          -        transform: transforms.Compose,
          -        device: torch.device,
          -        optimize_transform: bool,
          -    ):
          -        """Base class for detector pre processors.
          -
          -        All detector pre processors should subclass it.
          -        All subclass should overwrite:
          -
          -        - Methods:``run``, used for running the processing
          -
          -        Args:
          -            device (torch.device): Torch device cpu or cuda.
          -            transform (transforms.Compose): Transform compose object to be applied to the image.
          -            optimize_transform (bool): Whether to optimize the transform.
          -
          -        """
          -        super().__init__(transform, device, optimize_transform)
          -
          -    @abstractmethod
          -    def run(self, data: ImageData) -> ImageData:
          -        """Abstract method that runs the detector pre processing functionality.
          -        Returns a batch of preprocessed face tensors.
          -
          -        Args:
          -            data (ImageData): ImageData object containing the image tensor.
          -
          -        Returns:
          -            ImageData: ImageData object containing the image tensor preprocessed for the detector.
          -
          -        """
          -
          -
          -class DetectorPreProcessor(BaseDetPreProcessor):
          -    @Timer(
          -        "DetectorPreProcessor.__init__",
          -        "{name}: {milliseconds:.2f} ms",
          -        logger=logger.debug,
          -    )
          -    def __init__(
          -        self,
          -        transform: transforms.Compose,
          -        device: torch.device,
          -        optimize_transform: bool,
          -        reverse_colors: bool,
          -    ):
          -        """Initialize the detector preprocessor.
          -
          -        Args:
          -            transform (Compose): Composed Torch transform object.
          -            device (torch.device): Torch device cpu or cuda.
          -            optimize_transform (bool): Whether to optimize the transform.
          -            reverse_colors (bool): Whether to reverse the colors of the image tensor from RGB to BGR or vice versa. If False, the colors remain unchanged.
          -
          -        """
          -        super().__init__(transform, device, optimize_transform)
          -        self.reverse_colors = reverse_colors
          -
          -    @Timer(
          -        "DetectorPreProcessor.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
          -    )
          -    def run(self, data: ImageData) -> ImageData:
          -        """Run the detector preprocessor on the image tensor in BGR format and return the transformed image tensor.
          -
          -        Args:
          -            data (ImageData): ImageData object containing the image tensor.
          -
          -        Returns:
          -            ImageData: ImageData object containing the preprocessed image tensor.
          -        """
          -        if data.tensor.device != self.device:
          -            data.tensor = data.tensor.to(self.device)
          -
          -        data.tensor = self.transform(data.tensor)
          -
          -        if self.reverse_colors:
          -            data.tensor = rgb2bgr(data.tensor)
          -
          -        return data
          -
          @@ -227,23 +125,6 @@

          Returns

          ImageData
          ImageData object containing the image tensor preprocessed for the detector.
          -
          - -Expand source code - -
          @abstractmethod
          -def run(self, data: ImageData) -> ImageData:
          -    """Abstract method that runs the detector pre processing functionality.
          -    Returns a batch of preprocessed face tensors.
          -
          -    Args:
          -        data (ImageData): ImageData object containing the image tensor.
          -
          -    Returns:
          -        ImageData: ImageData object containing the image tensor preprocessed for the detector.
          -
          -    """
          -

          Inherited members

          @@ -345,32 +226,6 @@

          Returns

          ImageData
          ImageData object containing the preprocessed image tensor.
          -
          - -Expand source code - -
          @Timer(
          -    "DetectorPreProcessor.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
          -)
          -def run(self, data: ImageData) -> ImageData:
          -    """Run the detector preprocessor on the image tensor in BGR format and return the transformed image tensor.
          -
          -    Args:
          -        data (ImageData): ImageData object containing the image tensor.
          -
          -    Returns:
          -        ImageData: ImageData object containing the preprocessed image tensor.
          -    """
          -    if data.tensor.device != self.device:
          -        data.tensor = data.tensor.to(self.device)
          -
          -    data.tensor = self.transform(data.tensor)
          -
          -    if self.reverse_colors:
          -        data.tensor = rgb2bgr(data.tensor)
          -
          -    return data
          -

          Inherited members

          @@ -432,7 +287,6 @@

          Inherited members

          }).setContent('').open(); } -

          Index

            @@ -462,7 +316,7 @@

            -

            Generated by pdoc 0.10.0.

            +

            Generated by pdoc 0.11.1.

            - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/index.html b/docs/facetorch/analyzer/index.html index 275ddc2..62128a8 100644 --- a/docs/facetorch/analyzer/index.html +++ b/docs/facetorch/analyzer/index.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer API documentation - - - - - - + + + + + + - - + +
            @@ -22,14 +25,6 @@

            Module facetorch.analyzer

            -
            - -Expand source code - -
            from .core import FaceAnalyzer
            -
            -__all__ = ["FaceAnalyzer"]
            -

            Sub-modules

            @@ -318,123 +313,6 @@

            Returns

            Union[Response, ImageData]
            If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
            -
            - -Expand source code - -
            @Timer("FaceAnalyzer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
            -def run(
            -    self,
            -    image_source: Optional[
            -        Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]
            -    ] = None,
            -    path_image: Optional[str] = None,
            -    batch_size: int = 8,
            -    fix_img_size: bool = False,
            -    return_img_data: bool = False,
            -    include_tensors: bool = False,
            -    path_output: Optional[str] = None,
            -    tensor: Optional[torch.Tensor] = None,
            -) -> Union[Response, ImageData]:
            -    """Reads image, detects faces, unifies the detected faces, predicts facial features
            -     and returns analyzed data.
            -
            -    Args:
            -        image_source (Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]]): Input to be analyzed. If None, path_image or tensor must be provided. Default: None.
            -        path_image (Optional[str]): Path to the image to be analyzed. If None, tensor must be provided. Default: None.
            -        batch_size (int): Batch size for making predictions on the faces. Default is 8.
            -        fix_img_size (bool): If True, resizes the image to the size specified in reader. Default is False.
            -        return_img_data (bool): If True, returns all image data including tensors, otherwise only returns the faces. Default is False.
            -        include_tensors (bool): If True, removes tensors from the returned data object. Default is False.
            -        path_output (Optional[str]): Path where to save the image with detected faces. If None, the image is not saved. Default: None.
            -        tensor (Optional[torch.Tensor]): Image tensor to be analyzed. If None, path_image must be provided. Default: None.
            -
            -    Returns:
            -        Union[Response, ImageData]: If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
            -
            -    """
            -
            -    def _predict_batch(
            -        data: ImageData, predictor: FacePredictor, predictor_name: str
            -    ) -> ImageData:
            -        n_faces = len(data.faces)
            -
            -        for face_indx_start in range(0, n_faces, batch_size):
            -            face_indx_end = min(face_indx_start + batch_size, n_faces)
            -
            -            face_batch_tensor = torch.stack(
            -                [face.tensor for face in data.faces[face_indx_start:face_indx_end]]
            -            )
            -            preds = predictor.run(face_batch_tensor)
            -            data.add_preds(preds, predictor_name, face_indx_start)
            -
            -        return data
            -
            -    self.logger.info("Running FaceAnalyzer")
            -
            -    if path_image is None and tensor is None and image_source is None:
            -        raise ValueError("Either input, path_image or tensor must be provided.")
            -
            -    if image_source is not None:
            -        self.logger.debug("Using image_source as input")
            -        reader_input = image_source
            -    elif path_image is not None:
            -        self.logger.debug(
            -            "Using path_image as input", extra={"path_image": path_image}
            -        )
            -        reader_input = path_image
            -    else:
            -        self.logger.debug("Using tensor as input")
            -        reader_input = tensor
            -
            -    self.logger.info("Reading image", extra={"input": reader_input})
            -    data = self.reader.run(reader_input, fix_img_size=fix_img_size)
            -
            -    path_output = None if path_output == "None" else path_output
            -    data.path_output = path_output
            -
            -    try:
            -        data.version = version("facetorch")
            -    except Exception as e:
            -        self.logger.warning("Could not get version number", extra={"error": e})
            -
            -    self.logger.info("Detecting faces")
            -    data = self.detector.run(data)
            -    n_faces = len(data.faces)
            -    self.logger.info(f"Number of faces: {n_faces}")
            -
            -    if n_faces > 0 and self.unifier is not None:
            -        self.logger.info("Unifying faces")
            -        data = self.unifier.run(data)
            -
            -        self.logger.info("Predicting facial features")
            -        for predictor_name, predictor in self.predictors.items():
            -            self.logger.info(f"Running FacePredictor: {predictor_name}")
            -            data = _predict_batch(data, predictor, predictor_name)
            -
            -        self.logger.info("Utilizing facial features")
            -        for utilizer_name, utilizer in self.utilizers.items():
            -            self.logger.info(f"Running BaseUtilizer: {utilizer_name}")
            -            data = utilizer.run(data)
            -    else:
            -        if "save" in self.utilizers:
            -            self.utilizers["save"].run(data)
            -
            -    if not include_tensors:
            -        self.logger.debug(
            -            "Removing tensors from response as include_tensors is False"
            -        )
            -        data.reset_tensors()
            -
            -    response = Response(faces=data.faces, version=data.version)
            -
            -    if return_img_data:
            -        self.logger.debug("Returning image data object", extra=data.__dict__)
            -        return data
            -    else:
            -        self.logger.debug("Returning response with faces", extra=response.__dict__)
            -        return response
            -
            @@ -488,7 +366,6 @@

            Returns

            }).setContent('').open(); } -

            Index

              @@ -522,7 +399,7 @@

              -

              Generated by pdoc 0.10.0.

              +

              Generated by pdoc 0.11.1.

              - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/predictor/core.html b/docs/facetorch/analyzer/predictor/core.html index 2e3c553..b51040a 100644 --- a/docs/facetorch/analyzer/predictor/core.html +++ b/docs/facetorch/analyzer/predictor/core.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.predictor.core API documentation - - - - - - + + + + + + - - + +
              @@ -22,66 +25,6 @@

              Module facetorch.analyzer.predictor.core

              -
              - -Expand source code - -
              from typing import List
              -
              -import torch
              -from codetiming import Timer
              -from facetorch.base import BaseDownloader, BaseModel
              -from facetorch.datastruct import Prediction
              -from facetorch.logger import LoggerJsonFile
              -
              -from .post import BasePredPostProcessor
              -from .pre import BasePredPreProcessor
              -
              -logger = LoggerJsonFile().logger
              -
              -
              -class FacePredictor(BaseModel):
              -    @Timer(
              -        "FacePredictor.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
              -    )
              -    def __init__(
              -        self,
              -        downloader: BaseDownloader,
              -        device: torch.device,
              -        preprocessor: BasePredPreProcessor,
              -        postprocessor: BasePredPostProcessor,
              -        **kwargs
              -    ):
              -        """FacePredictor is a wrapper around a neural network model that is trained to predict facial features.
              -
              -        Args:
              -            downloader (BaseDownloader): Downloader that downloads the model.
              -            device (torch.device): Torch device cpu or cuda for the model.
              -            preprocessor (BasePredPostProcessor): Preprocessor that runs before the model.
              -            postprocessor (BasePredPostProcessor): Postprocessor that runs after the model.
              -        """
              -        self.__dict__.update(kwargs)
              -        super().__init__(downloader, device)
              -
              -        self.preprocessor = preprocessor
              -        self.postprocessor = postprocessor
              -
              -    @Timer("FacePredictor.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
              -    def run(self, faces: torch.Tensor) -> List[Prediction]:
              -        """Predicts facial features.
              -
              -        Args:
              -            faces (torch.Tensor): Torch tensor containing a batch of faces with values between 0-1 and shape (batch_size, channels, height, width).
              -
              -        Returns:
              -            (List[Prediction]): List of Prediction data objects. One for each face in the batch.
              -        """
              -        faces = self.preprocessor.run(faces)
              -        preds = self.inference(faces)
              -        preds_list = self.postprocessor.run(preds)
              -
              -        return preds_list
              -
              @@ -173,26 +116,6 @@

              Args

              Returns

              (List[Prediction]): List of Prediction data objects. One for each face in the batch.

              -
              - -Expand source code - -
              @Timer("FacePredictor.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
              -def run(self, faces: torch.Tensor) -> List[Prediction]:
              -    """Predicts facial features.
              -
              -    Args:
              -        faces (torch.Tensor): Torch tensor containing a batch of faces with values between 0-1 and shape (batch_size, channels, height, width).
              -
              -    Returns:
              -        (List[Prediction]): List of Prediction data objects. One for each face in the batch.
              -    """
              -    faces = self.preprocessor.run(faces)
              -    preds = self.inference(faces)
              -    preds_list = self.postprocessor.run(preds)
              -
              -    return preds_list
              -

              Inherited members

              @@ -255,7 +178,6 @@

              Inherited members

              }).setContent('').open(); } -

              Index

                @@ -279,7 +201,7 @@

                -

                Generated by pdoc 0.10.0.

                +

                Generated by pdoc 0.11.1.

                - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/predictor/index.html b/docs/facetorch/analyzer/predictor/index.html index 9e958df..913af84 100644 --- a/docs/facetorch/analyzer/predictor/index.html +++ b/docs/facetorch/analyzer/predictor/index.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.predictor API documentation - - - - - - + + + + + + - - + +
                @@ -22,14 +25,6 @@

                Module facetorch.analyzer.predictor

                -
                - -Expand source code - -
                from .core import FacePredictor
                -
                -__all__ = ["FacePredictor"]
                -

                Sub-modules

                @@ -136,26 +131,6 @@

                Args

                Returns

                (List[Prediction]): List of Prediction data objects. One for each face in the batch.

                -
                - -Expand source code - -
                @Timer("FacePredictor.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                -def run(self, faces: torch.Tensor) -> List[Prediction]:
                -    """Predicts facial features.
                -
                -    Args:
                -        faces (torch.Tensor): Torch tensor containing a batch of faces with values between 0-1 and shape (batch_size, channels, height, width).
                -
                -    Returns:
                -        (List[Prediction]): List of Prediction data objects. One for each face in the batch.
                -    """
                -    faces = self.preprocessor.run(faces)
                -    preds = self.inference(faces)
                -    preds_list = self.postprocessor.run(preds)
                -
                -    return preds_list
                -

                Inherited members

                @@ -218,7 +193,6 @@

                Inherited members

                }).setContent('').open(); } -

                Index

                  @@ -249,7 +223,7 @@

                  -

                  Generated by pdoc 0.10.0.

                  +

                  Generated by pdoc 0.11.1.

                  - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/predictor/post.html b/docs/facetorch/analyzer/predictor/post.html index fc91e7a..6d7fbaa 100644 --- a/docs/facetorch/analyzer/predictor/post.html +++ b/docs/facetorch/analyzer/predictor/post.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.predictor.post API documentation - - - - - - + + + + + + - - + +
                  @@ -22,326 +25,6 @@

                  Module facetorch.analyzer.predictor.post

                  -
                  - -Expand source code - -
                  from abc import abstractmethod
                  -from typing import List, Optional, Tuple, Union
                  -
                  -import torch
                  -from codetiming import Timer
                  -from itertools import compress
                  -from facetorch.base import BaseProcessor
                  -from facetorch.datastruct import Prediction
                  -from facetorch.logger import LoggerJsonFile
                  -from torchvision import transforms
                  -
                  -logger = LoggerJsonFile().logger
                  -
                  -
                  -class BasePredPostProcessor(BaseProcessor):
                  -    @Timer(
                  -        "BasePredPostProcessor.__init__",
                  -        "{name}: {milliseconds:.2f} ms",
                  -        logger=logger.debug,
                  -    )
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -    ):
                  -        """Base class for predictor post processors.
                  -
                  -        All predictor post processors should subclass it.
                  -        All subclass should overwrite:
                  -
                  -        - Methods:``run``, used for running the processing
                  -
                  -        Args:
                  -            device (torch.device): Torch device cpu or cuda.
                  -            transform (transforms.Compose): Transform compose object to be applied to the image.
                  -            optimize_transform (bool): Whether to optimize the transform.
                  -            labels (List[str]): List of labels.
                  -
                  -        """
                  -        super().__init__(transform, device, optimize_transform)
                  -        self.labels = labels
                  -
                  -    def create_pred_list(
                  -        self, preds: torch.Tensor, indices: List[int]
                  -    ) -> List[Prediction]:
                  -        """Create a list of predictions.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Tensor of predictions, shape (batch, _).
                  -            indices (List[int]): List of label indices, one for each sample.
                  -
                  -        Returns:
                  -            List[Prediction]: List of predictions.
                  -
                  -        """
                  -        assert (
                  -            len(indices) == preds.shape[0]
                  -        ), "Predictions and indices must have the same length."
                  -
                  -        pred_labels = [self.labels[indx] for indx in indices]
                  -
                  -        pred_list = []
                  -        for i, label in enumerate(pred_labels):
                  -            pred = Prediction(label, preds[i])
                  -            pred_list.append(pred)
                  -        return pred_list
                  -
                  -    @abstractmethod
                  -    def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) -> List[Prediction]:
                  -        """Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.
                  -
                  -        Args:
                  -            preds (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the predictor model.
                  -
                  -        Returns:
                  -            List[Prediction]: List of predictions.
                  -
                  -        """
                  -
                  -
                  -class PostArgMax(BasePredPostProcessor):
                  -    @Timer("PostArgMax.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -        dim: int,
                  -    ):
                  -        """Initialize the predictor postprocessor that runs argmax on the prediction tensor and returns a list of prediction data structures.
                  -
                  -        Args:
                  -            transform (Compose): Composed Torch transform object.
                  -            device (torch.device): Torch device cpu or cuda.
                  -            optimize_transform (bool): Whether to optimize the transform using TorchScript.
                  -            labels (List[str]): List of labels.
                  -            dim (int): Axis along which to apply the argmax.
                  -        """
                  -        super().__init__(transform, device, optimize_transform, labels)
                  -        self.dim = dim
                  -
                  -    @Timer("PostArgMax.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -    def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Batch prediction tensor.
                  -
                  -        Returns:
                  -            List[Prediction]: List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
                  -        """
                  -        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
                  -        pred_list = self.create_pred_list(preds, indices)
                  -
                  -        return pred_list
                  -
                  -
                  -class PostSigmoidBinary(BasePredPostProcessor):
                  -    @Timer(
                  -        "PostSigmoidBinary.__init__",
                  -        "{name}: {milliseconds:.2f} ms",
                  -        logger=logger.debug,
                  -    )
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -        threshold: float = 0.5,
                  -    ):
                  -        """Initialize the predictor postprocessor that runs sigmoid on the prediction tensor and returns a list of prediction data structures.
                  -
                  -        Args:
                  -            transform (Compose): Composed Torch transform object.
                  -            device (torch.device): Torch device cpu or cuda.
                  -            optimize_transform (bool): Whether to optimize the transform using TorchScript.
                  -            labels (List[str]): List of labels.
                  -            threshold (float): Probability threshold for positive class.
                  -        """
                  -        super().__init__(transform, device, optimize_transform, labels)
                  -        self.threshold = threshold
                  -
                  -    @Timer(
                  -        "PostSigmoidBinary.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                  -    )
                  -    def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Batch prediction tensor.
                  -
                  -        Returns:
                  -            List[Prediction]: List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
                  -        """
                  -        preds = torch.sigmoid(preds.squeeze(1))
                  -        preds_thresh = preds.where(preds >= self.threshold, torch.zeros_like(preds))
                  -        indices = torch.round(preds_thresh)
                  -        indices = indices.cpu().numpy().astype(int).tolist()
                  -        pred_list = self.create_pred_list(preds, indices)
                  -
                  -        return pred_list
                  -
                  -
                  -class PostEmbedder(BasePredPostProcessor):
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -    ):
                  -        """Initialize the predictor postprocessor that extracts the embedding from the prediction tensor and returns a list of prediction data structures.
                  -
                  -        Args:
                  -            transform (Compose): Composed Torch transform object.
                  -            device (torch.device): Torch device cpu or cuda.
                  -            optimize_transform (bool): Whether to optimize the transform using TorchScript.
                  -            labels (List[str]): List of labels.
                  -        """
                  -        super().__init__(transform, device, optimize_transform, labels)
                  -
                  -    @Timer("PostEmbedder.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -    def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -        """Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Batch prediction tensor.
                  -
                  -        Returns:
                  -            List[Prediction]: List of prediction data structures containing the predicted embeddings.
                  -        """
                  -        if isinstance(preds, tuple):
                  -            preds = preds[0]
                  -
                  -        indices = [0] * preds.shape[0]
                  -        pred_list = self.create_pred_list(preds, indices)
                  -
                  -        return pred_list
                  -
                  -
                  -class PostMultiLabel(BasePredPostProcessor):
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -        dim: int,
                  -        threshold: float = 0.5,
                  -    ):
                  -        """Initialize the predictor postprocessor that extracts multiple labels from the confidence scores.
                  -
                  -        Args:
                  -            transform (Compose): Composed Torch transform object.
                  -            device (torch.device): Torch device cpu or cuda.
                  -            optimize_transform (bool): Whether to optimize the transform using TorchScript.
                  -            labels (List[str]): List of labels.
                  -            dim (int): Axis along which to apply the softmax.
                  -            threshold (float): Probability threshold for including a label. Only labels with a confidence score above the threshold are included. Defaults to 0.5.
                  -        """
                  -        super().__init__(transform, device, optimize_transform, labels)
                  -        self.dim = dim
                  -        self.threshold = threshold
                  -
                  -    @Timer("PostMultiLabel.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -    def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -        """Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Batch prediction tensor.
                  -
                  -        Returns:
                  -            List[Prediction]: List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
                  -        """
                  -        if isinstance(preds, tuple):
                  -            preds = preds[0]
                  -
                  -        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
                  -
                  -        pred_list = []
                  -        for i in range(preds.shape[0]):
                  -            preds_sample = preds[i]
                  -            label_filter = (preds_sample > self.threshold).cpu().numpy().tolist()
                  -            labels_true = list(compress(self.labels, label_filter))
                  -            pred = Prediction(
                  -                label=self.labels[indices[i]],
                  -                logits=preds_sample,
                  -                other={"multi": labels_true},
                  -            )
                  -            pred_list.append(pred)
                  -
                  -        return pred_list
                  -
                  -
                  -class PostLabelConfidencePairs(BasePredPostProcessor):
                  -    def __init__(
                  -        self,
                  -        transform: transforms.Compose,
                  -        device: torch.device,
                  -        optimize_transform: bool,
                  -        labels: List[str],
                  -        offsets: Optional[List[float]] = None,
                  -    ):
                  -        """Initialize the predictor postprocessor that zips the confidence scores with the labels.
                  -
                  -        Args:
                  -            transform (Compose): Composed Torch transform object.
                  -            device (torch.device): Torch device cpu or cuda.
                  -            optimize_transform (bool): Whether to optimize the transform using TorchScript.
                  -            labels (List[str]): List of labels.
                  -            offsets (Optional[List[float]], optional): List of offsets to add to the confidence scores. Defaults to None.
                  -        """
                  -        super().__init__(transform, device, optimize_transform, labels)
                  -
                  -        if offsets is None:
                  -            offsets = [0] * len(labels)
                  -        self.offsets = offsets
                  -
                  -    @Timer(
                  -        "PostLabelConfidencePairs.run",
                  -        "{name}: {milliseconds:.2f} ms",
                  -        logger=logger.debug,
                  -    )
                  -    def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -        """Extracts the confidence scores and puts them in other[label] predictions.
                  -
                  -        Args:
                  -            preds (torch.Tensor): Batch prediction tensor.
                  -
                  -        Returns:
                  -            List[Prediction]: List of prediction data structures containing the logits and label logit pairs.
                  -        """
                  -        if isinstance(preds, tuple):
                  -            preds = preds[0]
                  -
                  -        pred_list = []
                  -        for i in range(preds.shape[0]):
                  -            preds_sample = preds[i]
                  -            preds_sample_list = preds_sample.cpu().numpy().tolist()
                  -            other_labels = {
                  -                label: preds_sample_list[j] + self.offsets[j]
                  -                for j, label in enumerate(self.labels)
                  -            }
                  -            pred = Prediction(
                  -                label="other",
                  -                logits=preds_sample,
                  -                other=other_labels,
                  -            )
                  -            pred_list.append(pred)
                  -
                  -        return pred_list
                  -
                  @@ -476,35 +159,6 @@

                  Returns

                  List[Prediction]
                  List of predictions.
                  -
                  - -Expand source code - -
                  def create_pred_list(
                  -    self, preds: torch.Tensor, indices: List[int]
                  -) -> List[Prediction]:
                  -    """Create a list of predictions.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Tensor of predictions, shape (batch, _).
                  -        indices (List[int]): List of label indices, one for each sample.
                  -
                  -    Returns:
                  -        List[Prediction]: List of predictions.
                  -
                  -    """
                  -    assert (
                  -        len(indices) == preds.shape[0]
                  -    ), "Predictions and indices must have the same length."
                  -
                  -    pred_labels = [self.labels[indx] for indx in indices]
                  -
                  -    pred_list = []
                  -    for i, label in enumerate(pred_labels):
                  -        pred = Prediction(label, preds[i])
                  -        pred_list.append(pred)
                  -    return pred_list
                  -
                  def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) ‑> List[Prediction] @@ -521,22 +175,6 @@

                  Returns

                  List[Prediction]
                  List of predictions.
                  -
                  - -Expand source code - -
                  @abstractmethod
                  -def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) -> List[Prediction]:
                  -    """Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.
                  -
                  -    Args:
                  -        preds (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the predictor model.
                  -
                  -    Returns:
                  -        List[Prediction]: List of predictions.
                  -
                  -    """
                  -

                  Inherited members

                  @@ -630,25 +268,6 @@

                  Returns

                  List[Prediction]
                  List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
                  -
                  - -Expand source code - -
                  @Timer("PostArgMax.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -    """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Batch prediction tensor.
                  -
                  -    Returns:
                  -        List[Prediction]: List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
                  -    """
                  -    indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
                  -    pred_list = self.create_pred_list(preds, indices)
                  -
                  -    return pred_list
                  -

                  Inherited members

                  @@ -752,30 +371,6 @@

                  Returns

                  List[Prediction]
                  List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
                  -
                  - -Expand source code - -
                  @Timer(
                  -    "PostSigmoidBinary.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                  -)
                  -def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -    """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Batch prediction tensor.
                  -
                  -    Returns:
                  -        List[Prediction]: List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
                  -    """
                  -    preds = torch.sigmoid(preds.squeeze(1))
                  -    preds_thresh = preds.where(preds >= self.threshold, torch.zeros_like(preds))
                  -    indices = torch.round(preds_thresh)
                  -    indices = indices.cpu().numpy().astype(int).tolist()
                  -    pred_list = self.create_pred_list(preds, indices)
                  -
                  -    return pred_list
                  -

                  Inherited members

                  @@ -867,28 +462,6 @@

                  Returns

                  List[Prediction]
                  List of prediction data structures containing the predicted embeddings.
                  -
                  - -Expand source code - -
                  @Timer("PostEmbedder.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -    """Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Batch prediction tensor.
                  -
                  -    Returns:
                  -        List[Prediction]: List of prediction data structures containing the predicted embeddings.
                  -    """
                  -    if isinstance(preds, tuple):
                  -        preds = preds[0]
                  -
                  -    indices = [0] * preds.shape[0]
                  -    pred_list = self.create_pred_list(preds, indices)
                  -
                  -    return pred_list
                  -

                  Inherited members

                  @@ -1001,39 +574,6 @@

                  Returns

                  List[Prediction]
                  List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
                  -
                  - -Expand source code - -
                  @Timer("PostMultiLabel.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                  -def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -    """Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Batch prediction tensor.
                  -
                  -    Returns:
                  -        List[Prediction]: List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
                  -    """
                  -    if isinstance(preds, tuple):
                  -        preds = preds[0]
                  -
                  -    indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
                  -
                  -    pred_list = []
                  -    for i in range(preds.shape[0]):
                  -        preds_sample = preds[i]
                  -        label_filter = (preds_sample > self.threshold).cpu().numpy().tolist()
                  -        labels_true = list(compress(self.labels, label_filter))
                  -        pred = Prediction(
                  -            label=self.labels[indices[i]],
                  -            logits=preds_sample,
                  -            other={"multi": labels_true},
                  -        )
                  -        pred_list.append(pred)
                  -
                  -    return pred_list
                  -

                  Inherited members

                  @@ -1149,44 +689,6 @@

                  Returns

                  List[Prediction]
                  List of prediction data structures containing the logits and label logit pairs.
                  -
                  - -Expand source code - -
                  @Timer(
                  -    "PostLabelConfidencePairs.run",
                  -    "{name}: {milliseconds:.2f} ms",
                  -    logger=logger.debug,
                  -)
                  -def run(self, preds: torch.Tensor) -> List[Prediction]:
                  -    """Extracts the confidence scores and puts them in other[label] predictions.
                  -
                  -    Args:
                  -        preds (torch.Tensor): Batch prediction tensor.
                  -
                  -    Returns:
                  -        List[Prediction]: List of prediction data structures containing the logits and label logit pairs.
                  -    """
                  -    if isinstance(preds, tuple):
                  -        preds = preds[0]
                  -
                  -    pred_list = []
                  -    for i in range(preds.shape[0]):
                  -        preds_sample = preds[i]
                  -        preds_sample_list = preds_sample.cpu().numpy().tolist()
                  -        other_labels = {
                  -            label: preds_sample_list[j] + self.offsets[j]
                  -            for j, label in enumerate(self.labels)
                  -        }
                  -        pred = Prediction(
                  -            label="other",
                  -            logits=preds_sample,
                  -            other=other_labels,
                  -        )
                  -        pred_list.append(pred)
                  -
                  -    return pred_list
                  -

                  Inherited members

                  @@ -1249,7 +751,6 @@

                  Inherited members

                  }).setContent('').open(); } -

                  Index

                    @@ -1304,7 +805,7 @@

                    - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/predictor/pre.html b/docs/facetorch/analyzer/predictor/pre.html index f3e506d..2eaa960 100644 --- a/docs/facetorch/analyzer/predictor/pre.html +++ b/docs/facetorch/analyzer/predictor/pre.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.predictor.pre API documentation - - - - - - + + + + + + - - + +
                    @@ -22,103 +25,6 @@

                    Module facetorch.analyzer.predictor.pre

                    -
                    - -Expand source code - -
                    from abc import abstractmethod
                    -
                    -import torch
                    -from codetiming import Timer
                    -from facetorch.base import BaseProcessor
                    -from facetorch.logger import LoggerJsonFile
                    -from facetorch.utils import rgb2bgr
                    -from torchvision import transforms
                    -
                    -logger = LoggerJsonFile().logger
                    -
                    -
                    -class BasePredPreProcessor(BaseProcessor):
                    -    @Timer(
                    -        "BasePredPreProcessor.__init__",
                    -        "{name}: {milliseconds:.2f} ms",
                    -        logger=logger.debug,
                    -    )
                    -    def __init__(
                    -        self,
                    -        transform: transforms.Compose,
                    -        device: torch.device,
                    -        optimize_transform: bool,
                    -    ):
                    -        """Base class for predictor pre processors.
                    -
                    -        All predictor pre processors should subclass it.
                    -        All subclass should overwrite:
                    -
                    -        - Methods:``run``, used for running the processing
                    -
                    -        Args:
                    -            device (torch.device): Torch device cpu or cuda.
                    -            transform (transforms.Compose): Transform compose object to be applied to the  image.
                    -            optimize_transform (bool): Whether to optimize the transform.
                    -
                    -        """
                    -        super().__init__(transform, device, optimize_transform)
                    -
                    -    @abstractmethod
                    -    def run(self, faces: torch.Tensor) -> torch.Tensor:
                    -        """Abstract method that runs the predictor pre processing functionality and returns a batch of preprocessed face tensors.
                    -
                    -        Args:
                    -            faces (torch.Tensor): Batch of face tensors with shape (batch, channels, height, width).
                    -
                    -        Returns:
                    -            torch.Tensor: Batch of preprocessed face tensors with shape (batch, channels, height, width).
                    -
                    -        """
                    -
                    -
                    -class PredictorPreProcessor(BasePredPreProcessor):
                    -    def __init__(
                    -        self,
                    -        transform: transforms.Compose,
                    -        device: torch.device,
                    -        optimize_transform: bool,
                    -        reverse_colors: bool = False,
                    -    ):
                    -        """Torch transform based pre-processor that is applied to face tensors before they are passed to the predictor model.
                    -
                    -        Args:
                    -            transform (transforms.Compose): Composed Torch transform object.
                    -            device (torch.device): Torch device cpu or cuda.
                    -            optimize_transform (bool): Whether to optimize the transform.
                    -            reverse_colors (bool): Whether to reverse the colors of the image tensor
                    -        """
                    -        super().__init__(transform, device, optimize_transform)
                    -        self.reverse_colors = reverse_colors
                    -
                    -    @Timer(
                    -        "PredictorPreProcessor.run",
                    -        "{name}: {milliseconds:.2f} ms",
                    -        logger=logger.debug,
                    -    )
                    -    def run(self, faces: torch.Tensor) -> torch.Tensor:
                    -        """Runs the trasform on a batch of face tensors.
                    -
                    -        Args:
                    -            faces (torch.Tensor): Batch of face tensors.
                    -
                    -        Returns:
                    -            torch.Tensor: Batch of preprocessed face tensors.
                    -        """
                    -        if faces.device != self.device:
                    -            faces = faces.to(self.device)
                    -
                    -        faces = self.transform(faces)
                    -        if self.reverse_colors:
                    -            faces = rgb2bgr(faces)
                    -        return faces
                    -
                    @@ -218,22 +124,6 @@

                    Returns

                    torch.Tensor
                    Batch of preprocessed face tensors with shape (batch, channels, height, width).
                    -
                    - -Expand source code - -
                    @abstractmethod
                    -def run(self, faces: torch.Tensor) -> torch.Tensor:
                    -    """Abstract method that runs the predictor pre processing functionality and returns a batch of preprocessed face tensors.
                    -
                    -    Args:
                    -        faces (torch.Tensor): Batch of face tensors with shape (batch, channels, height, width).
                    -
                    -    Returns:
                    -        torch.Tensor: Batch of preprocessed face tensors with shape (batch, channels, height, width).
                    -
                    -    """
                    -

                    Inherited members

                    @@ -329,32 +219,6 @@

                    Returns

                    torch.Tensor
                    Batch of preprocessed face tensors.
                    -
                    - -Expand source code - -
                    @Timer(
                    -    "PredictorPreProcessor.run",
                    -    "{name}: {milliseconds:.2f} ms",
                    -    logger=logger.debug,
                    -)
                    -def run(self, faces: torch.Tensor) -> torch.Tensor:
                    -    """Runs the trasform on a batch of face tensors.
                    -
                    -    Args:
                    -        faces (torch.Tensor): Batch of face tensors.
                    -
                    -    Returns:
                    -        torch.Tensor: Batch of preprocessed face tensors.
                    -    """
                    -    if faces.device != self.device:
                    -        faces = faces.to(self.device)
                    -
                    -    faces = self.transform(faces)
                    -    if self.reverse_colors:
                    -        faces = rgb2bgr(faces)
                    -    return faces
                    -

                    Inherited members

                    @@ -416,7 +280,6 @@

                    Inherited members

                    }).setContent('').open(); } -

                    Index

                      @@ -446,7 +309,7 @@

                      - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/reader/core.html b/docs/facetorch/analyzer/reader/core.html index 549505f..197a44b 100644 --- a/docs/facetorch/analyzer/reader/core.html +++ b/docs/facetorch/analyzer/reader/core.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.reader.core API documentation - - - - - - + + + + + + - - + +
                      @@ -22,194 +25,6 @@

                      Module facetorch.analyzer.reader.core

                      -
                      - -Expand source code - -
                      import io
                      -import requests
                      -from PIL import Image
                      -import numpy as np
                      -import torch
                      -import torchvision
                      -from codetiming import Timer
                      -from typing import Union
                      -from facetorch.base import BaseReader
                      -from facetorch.datastruct import ImageData
                      -from facetorch.logger import LoggerJsonFile
                      -
                      -logger = LoggerJsonFile().logger
                      -
                      -
                      -class UniversalReader(BaseReader):
                      -    def __init__(
                      -        self,
                      -        transform: torchvision.transforms.Compose,
                      -        device: torch.device,
                      -        optimize_transform: bool,
                      -    ):
                      -        """UniversalReader can read images from a path, URL, tensor, numpy array, bytes or PIL Image and return an ImageData object containing the image tensor.
                      -
                      -        Args:
                      -            transform (torchvision.transforms.Compose): Transform compose object to be applied to the image, if fix_image_size is True.
                      -            device (torch.device): Torch device cpu or cuda object.
                      -            optimize_transform (bool): Whether to optimize the transforms that are: resizing the image to a fixed size.
                      -
                      -        """
                      -        super().__init__(transform, device, optimize_transform)
                      -
                      -    @Timer("UniversalReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -    def run(
                      -        self,
                      -        image_source: Union[str, torch.Tensor, np.ndarray, bytes, Image.Image],
                      -        fix_img_size: bool = False,
                      -    ) -> ImageData:
                      -        """Reads an image from a path, URL, tensor, numpy array, bytes or PIL Image and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -        Args:
                      -            image_source (Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]): Image source to be read.
                      -            fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -        Returns:
                      -            ImageData: ImageData object with image tensor and pil Image.
                      -        """
                      -        if isinstance(image_source, str):
                      -            if image_source.startswith("http"):
                      -                return self.read_image_from_url(image_source, fix_img_size)
                      -            else:
                      -                return self.read_image_from_path(image_source, fix_img_size)
                      -        elif isinstance(image_source, torch.Tensor):
                      -            return self.read_tensor(image_source, fix_img_size)
                      -        elif isinstance(image_source, np.ndarray):
                      -            return self.read_numpy_array(image_source, fix_img_size)
                      -        elif isinstance(image_source, bytes):
                      -            return self.read_image_from_bytes(image_source, fix_img_size)
                      -        elif isinstance(image_source, Image.Image):
                      -            return self.read_pil_image(image_source, fix_img_size)
                      -        else:
                      -            raise ValueError("Unsupported data type")
                      -
                      -    def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData:
                      -        return self.process_tensor(tensor, fix_img_size)
                      -
                      -    def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData:
                      -        tensor = torchvision.transforms.functional.to_tensor(pil_image)
                      -        return self.process_tensor(tensor, fix_img_size)
                      -
                      -    def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData:
                      -        pil_image = Image.fromarray(array, mode="RGB")
                      -        return self.read_pil_image(pil_image, fix_img_size)
                      -
                      -    def read_image_from_bytes(
                      -        self, image_bytes: bytes, fix_img_size: bool
                      -    ) -> ImageData:
                      -        pil_image = Image.open(io.BytesIO(image_bytes))
                      -        return self.read_pil_image(pil_image, fix_img_size)
                      -
                      -    def read_image_from_path(self, path_image: str, fix_img_size: bool) -> ImageData:
                      -        try:
                      -            image_tensor = torchvision.io.read_image(path_image)
                      -        except Exception as e:
                      -            logger.error(f"Failed to read image from path {path_image}: {e}")
                      -            raise ValueError(f"Could not read image from path {path_image}: {e}") from e
                      -
                      -        return self.process_tensor(image_tensor, fix_img_size)
                      -
                      -    def read_image_from_url(self, url: str, fix_img_size: bool) -> ImageData:
                      -        try:
                      -            response = requests.get(url, timeout=10)
                      -            response.raise_for_status()
                      -        except requests.RequestException as e:
                      -            logger.error(f"Failed to fetch image from URL {url}: {e}")
                      -            raise ValueError(f"Could not fetch image from URL {url}: {e}") from e
                      -
                      -        image_bytes = response.content
                      -        return self.read_image_from_bytes(image_bytes, fix_img_size)
                      -
                      -
                      -class ImageReader(BaseReader):
                      -    def __init__(
                      -        self,
                      -        transform: torchvision.transforms.Compose,
                      -        device: torch.device,
                      -        optimize_transform: bool,
                      -    ):
                      -        """ImageReader is a wrapper around a functionality for reading images by Torchvision.
                      -
                      -        Args:
                      -            transform (torchvision.transforms.Compose): Transform compose object to be applied to the image, if fix_image_size is True.
                      -            device (torch.device): Torch device cpu or cuda object.
                      -            optimize_transform (bool): Whether to optimize the transforms that are: resizing the image to a fixed size.
                      -
                      -        """
                      -        super().__init__(
                      -            transform,
                      -            device,
                      -            optimize_transform,
                      -        )
                      -
                      -    @Timer("ImageReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -    def run(self, path_image: str, fix_img_size: bool = False) -> ImageData:
                      -        """Reads an image from a path and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -        Args:
                      -            path_image (str): Path to the image.
                      -            fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -        Returns:
                      -            ImageData: ImageData object with image tensor and pil Image.
                      -        """
                      -        data = ImageData(path_input=path_image)
                      -        data.img = torchvision.io.read_image(
                      -            data.path_input, mode=torchvision.io.ImageReadMode.RGB
                      -        )
                      -        data.img = data.img.unsqueeze(0)
                      -        data.img = data.img.to(self.device)
                      -
                      -        if fix_img_size:
                      -            data.img = self.transform(data.img)
                      -
                      -        data.tensor = data.img.type(torch.float32)
                      -        data.img = data.img.squeeze(0).cpu()
                      -        data.set_dims()
                      -
                      -        return data
                      -
                      -
                      -class TensorReader(BaseReader):
                      -    def __init__(
                      -        self,
                      -        transform: torchvision.transforms.Compose,
                      -        device: torch.device,
                      -        optimize_transform: bool,
                      -    ):
                      -        """TensorReader is a wrapper around a functionality for reading tensors by Torchvision.
                      -
                      -        Args:
                      -            transform (torchvision.transforms.Compose): Transform compose object to be applied to the image, if fix_image_size is True.
                      -            device (torch.device): Torch device cpu or cuda object.
                      -            optimize_transform (bool): Whether to optimize the transforms that are: resizing the image to a fixed size.
                      -
                      -        """
                      -        super().__init__(
                      -            transform,
                      -            device,
                      -            optimize_transform,
                      -        )
                      -
                      -    @Timer("TensorReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -    def run(self, tensor: torch.Tensor, fix_img_size: bool = False) -> ImageData:
                      -        """Reads a tensor and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -        Args:
                      -            tensor (torch.Tensor): Tensor of a single image with RGB values between 0-255 and shape (channels, height, width).
                      -            fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -        Returns:
                      -            ImageData: ImageData object with image tensor and pil Image.
                      -        """
                      -        return self.process_tensor(tensor, fix_img_size)
                      -
                      @@ -291,12 +106,18 @@

                      Args

                      return self.process_tensor(tensor, fix_img_size) def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData: - tensor = torchvision.transforms.functional.to_tensor(pil_image) + if pil_image.mode != "RGB": + pil_image = pil_image.convert("RGB") + tensor = torchvision.transforms.functional.pil_to_tensor(pil_image) return self.process_tensor(tensor, fix_img_size) def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData: - pil_image = Image.fromarray(array, mode="RGB") - return self.read_pil_image(pil_image, fix_img_size) + image_tensor = torch.from_numpy(array).float() + if image_tensor.ndim == 3 and image_tensor.shape[2] == 3: + image_tensor = image_tensor.permute(2, 0, 1).contiguous() + else: + raise ValueError(f"Unsupported numpy array shape: {image_tensor.shape}") + return self.process_tensor(image_tensor, fix_img_size) def read_image_from_bytes( self, image_bytes: bytes, fix_img_size: bool @@ -348,138 +169,42 @@

                      Returns

                      ImageData
                      ImageData object with image tensor and pil Image.
                      -
                      - -Expand source code - -
                      @Timer("UniversalReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -def run(
                      -    self,
                      -    image_source: Union[str, torch.Tensor, np.ndarray, bytes, Image.Image],
                      -    fix_img_size: bool = False,
                      -) -> ImageData:
                      -    """Reads an image from a path, URL, tensor, numpy array, bytes or PIL Image and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -    Args:
                      -        image_source (Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]): Image source to be read.
                      -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -    Returns:
                      -        ImageData: ImageData object with image tensor and pil Image.
                      -    """
                      -    if isinstance(image_source, str):
                      -        if image_source.startswith("http"):
                      -            return self.read_image_from_url(image_source, fix_img_size)
                      -        else:
                      -            return self.read_image_from_path(image_source, fix_img_size)
                      -    elif isinstance(image_source, torch.Tensor):
                      -        return self.read_tensor(image_source, fix_img_size)
                      -    elif isinstance(image_source, np.ndarray):
                      -        return self.read_numpy_array(image_source, fix_img_size)
                      -    elif isinstance(image_source, bytes):
                      -        return self.read_image_from_bytes(image_source, fix_img_size)
                      -    elif isinstance(image_source, Image.Image):
                      -        return self.read_pil_image(image_source, fix_img_size)
                      -    else:
                      -        raise ValueError("Unsupported data type")
                      -
                      def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData:
                      -    return self.process_tensor(tensor, fix_img_size)
                      -
                      def read_pil_image(self, pil_image: PIL.Image.Image, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData:
                      -    tensor = torchvision.transforms.functional.to_tensor(pil_image)
                      -    return self.process_tensor(tensor, fix_img_size)
                      -
                      def read_numpy_array(self, array: numpy.ndarray, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData:
                      -    pil_image = Image.fromarray(array, mode="RGB")
                      -    return self.read_pil_image(pil_image, fix_img_size)
                      -
                      def read_image_from_bytes(self, image_bytes: bytes, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_image_from_bytes(
                      -    self, image_bytes: bytes, fix_img_size: bool
                      -) -> ImageData:
                      -    pil_image = Image.open(io.BytesIO(image_bytes))
                      -    return self.read_pil_image(pil_image, fix_img_size)
                      -
                      def read_image_from_path(self, path_image: str, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_image_from_path(self, path_image: str, fix_img_size: bool) -> ImageData:
                      -    try:
                      -        image_tensor = torchvision.io.read_image(path_image)
                      -    except Exception as e:
                      -        logger.error(f"Failed to read image from path {path_image}: {e}")
                      -        raise ValueError(f"Could not read image from path {path_image}: {e}") from e
                      -
                      -    return self.process_tensor(image_tensor, fix_img_size)
                      -
                      def read_image_from_url(self, url: str, fix_img_size: bool) ‑> ImageData
                      -
                      - -Expand source code - -
                      def read_image_from_url(self, url: str, fix_img_size: bool) -> ImageData:
                      -    try:
                      -        response = requests.get(url, timeout=10)
                      -        response.raise_for_status()
                      -    except requests.RequestException as e:
                      -        logger.error(f"Failed to fetch image from URL {url}: {e}")
                      -        raise ValueError(f"Could not fetch image from URL {url}: {e}") from e
                      -
                      -    image_bytes = response.content
                      -    return self.read_image_from_bytes(image_bytes, fix_img_size)
                      -

                      Inherited members

                      @@ -583,37 +308,6 @@

                      Returns

                      ImageData
                      ImageData object with image tensor and pil Image.
                      -
                      - -Expand source code - -
                      @Timer("ImageReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -def run(self, path_image: str, fix_img_size: bool = False) -> ImageData:
                      -    """Reads an image from a path and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -    Args:
                      -        path_image (str): Path to the image.
                      -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -    Returns:
                      -        ImageData: ImageData object with image tensor and pil Image.
                      -    """
                      -    data = ImageData(path_input=path_image)
                      -    data.img = torchvision.io.read_image(
                      -        data.path_input, mode=torchvision.io.ImageReadMode.RGB
                      -    )
                      -    data.img = data.img.unsqueeze(0)
                      -    data.img = data.img.to(self.device)
                      -
                      -    if fix_img_size:
                      -        data.img = self.transform(data.img)
                      -
                      -    data.tensor = data.img.type(torch.float32)
                      -    data.img = data.img.squeeze(0).cpu()
                      -    data.set_dims()
                      -
                      -    return data
                      -

                      Inherited members

                      @@ -703,23 +397,6 @@

                      Returns

                      ImageData
                      ImageData object with image tensor and pil Image.
                      -
                      - -Expand source code - -
                      @Timer("TensorReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                      -def run(self, tensor: torch.Tensor, fix_img_size: bool = False) -> ImageData:
                      -    """Reads a tensor and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                      -
                      -    Args:
                      -        tensor (torch.Tensor): Tensor of a single image with RGB values between 0-255 and shape (channels, height, width).
                      -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                      -
                      -    Returns:
                      -        ImageData: ImageData object with image tensor and pil Image.
                      -    """
                      -    return self.process_tensor(tensor, fix_img_size)
                      -

                      Inherited members

                      @@ -782,7 +459,6 @@

                      Inherited members

                      }).setContent('').open(); } -

                      Index

                        @@ -824,7 +500,7 @@

                        -

                        Generated by pdoc 0.10.0.

                        +

                        Generated by pdoc 0.11.1.

                        - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/reader/index.html b/docs/facetorch/analyzer/reader/index.html index 0fc2a3c..22f50b6 100644 --- a/docs/facetorch/analyzer/reader/index.html +++ b/docs/facetorch/analyzer/reader/index.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.reader API documentation - - - - - - + + + + + + - - + +
                        @@ -22,14 +25,6 @@

                        Module facetorch.analyzer.reader

                        -
                        - -Expand source code - -
                        from .core import ImageReader, TensorReader, UniversalReader
                        -
                        -__all__ = ["ImageReader", "TensorReader", "UniversalReader"]
                        -

                        Sub-modules

                        @@ -138,37 +133,6 @@

                        Returns

                        ImageData
                        ImageData object with image tensor and pil Image.
                        -
                        - -Expand source code - -
                        @Timer("ImageReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                        -def run(self, path_image: str, fix_img_size: bool = False) -> ImageData:
                        -    """Reads an image from a path and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                        -
                        -    Args:
                        -        path_image (str): Path to the image.
                        -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                        -
                        -    Returns:
                        -        ImageData: ImageData object with image tensor and pil Image.
                        -    """
                        -    data = ImageData(path_input=path_image)
                        -    data.img = torchvision.io.read_image(
                        -        data.path_input, mode=torchvision.io.ImageReadMode.RGB
                        -    )
                        -    data.img = data.img.unsqueeze(0)
                        -    data.img = data.img.to(self.device)
                        -
                        -    if fix_img_size:
                        -        data.img = self.transform(data.img)
                        -
                        -    data.tensor = data.img.type(torch.float32)
                        -    data.img = data.img.squeeze(0).cpu()
                        -    data.set_dims()
                        -
                        -    return data
                        -

                        Inherited members

                        @@ -258,23 +222,6 @@

                        Returns

                        ImageData
                        ImageData object with image tensor and pil Image.
                        -
                        - -Expand source code - -
                        @Timer("TensorReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                        -def run(self, tensor: torch.Tensor, fix_img_size: bool = False) -> ImageData:
                        -    """Reads a tensor and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                        -
                        -    Args:
                        -        tensor (torch.Tensor): Tensor of a single image with RGB values between 0-255 and shape (channels, height, width).
                        -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                        -
                        -    Returns:
                        -        ImageData: ImageData object with image tensor and pil Image.
                        -    """
                        -    return self.process_tensor(tensor, fix_img_size)
                        -

                        Inherited members

                        @@ -358,12 +305,18 @@

                        Args

                        return self.process_tensor(tensor, fix_img_size) def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData: - tensor = torchvision.transforms.functional.to_tensor(pil_image) + if pil_image.mode != "RGB": + pil_image = pil_image.convert("RGB") + tensor = torchvision.transforms.functional.pil_to_tensor(pil_image) return self.process_tensor(tensor, fix_img_size) def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData: - pil_image = Image.fromarray(array, mode="RGB") - return self.read_pil_image(pil_image, fix_img_size) + image_tensor = torch.from_numpy(array).float() + if image_tensor.ndim == 3 and image_tensor.shape[2] == 3: + image_tensor = image_tensor.permute(2, 0, 1).contiguous() + else: + raise ValueError(f"Unsupported numpy array shape: {image_tensor.shape}") + return self.process_tensor(image_tensor, fix_img_size) def read_image_from_bytes( self, image_bytes: bytes, fix_img_size: bool @@ -415,138 +368,42 @@

                        Returns

                        ImageData
                        ImageData object with image tensor and pil Image.
                        -
                        - -Expand source code - -
                        @Timer("UniversalReader.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                        -def run(
                        -    self,
                        -    image_source: Union[str, torch.Tensor, np.ndarray, bytes, Image.Image],
                        -    fix_img_size: bool = False,
                        -) -> ImageData:
                        -    """Reads an image from a path, URL, tensor, numpy array, bytes or PIL Image and returns a tensor of the image with values between 0-255 and shape (batch, channels, height, width). The order of color channels is RGB. PyTorch and Torchvision are used to read the image.
                        -
                        -    Args:
                        -        image_source (Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]): Image source to be read.
                        -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                        -
                        -    Returns:
                        -        ImageData: ImageData object with image tensor and pil Image.
                        -    """
                        -    if isinstance(image_source, str):
                        -        if image_source.startswith("http"):
                        -            return self.read_image_from_url(image_source, fix_img_size)
                        -        else:
                        -            return self.read_image_from_path(image_source, fix_img_size)
                        -    elif isinstance(image_source, torch.Tensor):
                        -        return self.read_tensor(image_source, fix_img_size)
                        -    elif isinstance(image_source, np.ndarray):
                        -        return self.read_numpy_array(image_source, fix_img_size)
                        -    elif isinstance(image_source, bytes):
                        -        return self.read_image_from_bytes(image_source, fix_img_size)
                        -    elif isinstance(image_source, Image.Image):
                        -        return self.read_pil_image(image_source, fix_img_size)
                        -    else:
                        -        raise ValueError("Unsupported data type")
                        -
                        def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData:
                        -    return self.process_tensor(tensor, fix_img_size)
                        -
                        def read_pil_image(self, pil_image: PIL.Image.Image, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData:
                        -    tensor = torchvision.transforms.functional.to_tensor(pil_image)
                        -    return self.process_tensor(tensor, fix_img_size)
                        -
                        def read_numpy_array(self, array: numpy.ndarray, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData:
                        -    pil_image = Image.fromarray(array, mode="RGB")
                        -    return self.read_pil_image(pil_image, fix_img_size)
                        -
                        def read_image_from_bytes(self, image_bytes: bytes, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_image_from_bytes(
                        -    self, image_bytes: bytes, fix_img_size: bool
                        -) -> ImageData:
                        -    pil_image = Image.open(io.BytesIO(image_bytes))
                        -    return self.read_pil_image(pil_image, fix_img_size)
                        -
                        def read_image_from_path(self, path_image: str, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_image_from_path(self, path_image: str, fix_img_size: bool) -> ImageData:
                        -    try:
                        -        image_tensor = torchvision.io.read_image(path_image)
                        -    except Exception as e:
                        -        logger.error(f"Failed to read image from path {path_image}: {e}")
                        -        raise ValueError(f"Could not read image from path {path_image}: {e}") from e
                        -
                        -    return self.process_tensor(image_tensor, fix_img_size)
                        -
                        def read_image_from_url(self, url: str, fix_img_size: bool) ‑> ImageData
                        -
                        - -Expand source code - -
                        def read_image_from_url(self, url: str, fix_img_size: bool) -> ImageData:
                        -    try:
                        -        response = requests.get(url, timeout=10)
                        -        response.raise_for_status()
                        -    except requests.RequestException as e:
                        -        logger.error(f"Failed to fetch image from URL {url}: {e}")
                        -        raise ValueError(f"Could not fetch image from URL {url}: {e}") from e
                        -
                        -    image_bytes = response.content
                        -    return self.read_image_from_bytes(image_bytes, fix_img_size)
                        -

                        Inherited members

                        @@ -609,7 +466,6 @@

                        Inherited members

                        }).setContent('').open(); } -

                        Index

                          @@ -656,7 +512,7 @@

                          -

                          Generated by pdoc 0.10.0.

                          +

                          Generated by pdoc 0.11.1.

                          - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/unifier/core.html b/docs/facetorch/analyzer/unifier/core.html index e2a938e..3419878 100644 --- a/docs/facetorch/analyzer/unifier/core.html +++ b/docs/facetorch/analyzer/unifier/core.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.unifier.core API documentation - - - - - - + + + + + + - - + +
                          @@ -22,51 +25,6 @@

                          Module facetorch.analyzer.unifier.core

                          -
                          - -Expand source code - -
                          import torch
                          -from codetiming import Timer
                          -from facetorch.base import BaseProcessor
                          -from facetorch.datastruct import ImageData
                          -from facetorch.logger import LoggerJsonFile
                          -from torchvision import transforms
                          -
                          -logger = LoggerJsonFile().logger
                          -
                          -
                          -class FaceUnifier(BaseProcessor):
                          -    def __init__(
                          -        self,
                          -        transform: transforms.Compose,
                          -        device: torch.device,
                          -        optimize_transform: bool,
                          -    ):
                          -        """FaceUnifier is a transform based processor that can unify sizes of all faces and normalize them between 0 and 1.
                          -
                          -        Args:
                          -            transform (Compose): Composed Torch transform object.
                          -            device (torch.device): Torch device cpu or cuda object.
                          -            optimize_transform (bool): Whether to optimize the transform.
                          -        """
                          -        super().__init__(transform, device, optimize_transform)
                          -
                          -    @Timer("FaceUnifier.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                          -    def run(self, data: ImageData) -> ImageData:
                          -        """Runs unifying transform on each face tensor one by one.
                          -
                          -        Args:
                          -            data (ImageData): ImageData object containing the face tensors.
                          -
                          -        Returns:
                          -            ImageData: ImageData object containing the unified face tensors normalized between 0 and 1.
                          -        """
                          -        for indx, face in enumerate(data.faces):
                          -            data.faces[indx].tensor = self.transform(face.tensor)
                          -
                          -        return data
                          -
                          @@ -148,25 +106,6 @@

                          Returns

                          ImageData
                          ImageData object containing the unified face tensors normalized between 0 and 1.
                          -
                          - -Expand source code - -
                          @Timer("FaceUnifier.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                          -def run(self, data: ImageData) -> ImageData:
                          -    """Runs unifying transform on each face tensor one by one.
                          -
                          -    Args:
                          -        data (ImageData): ImageData object containing the face tensors.
                          -
                          -    Returns:
                          -        ImageData: ImageData object containing the unified face tensors normalized between 0 and 1.
                          -    """
                          -    for indx, face in enumerate(data.faces):
                          -        data.faces[indx].tensor = self.transform(face.tensor)
                          -
                          -    return data
                          -

                          Inherited members

                          @@ -228,7 +167,6 @@

                          Inherited members

                          }).setContent('').open(); } -

                          Index

                            @@ -252,7 +190,7 @@

                            -

                            Generated by pdoc 0.10.0.

                            +

                            Generated by pdoc 0.11.1.

                            - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/unifier/index.html b/docs/facetorch/analyzer/unifier/index.html index da1e8a9..a1110fe 100644 --- a/docs/facetorch/analyzer/unifier/index.html +++ b/docs/facetorch/analyzer/unifier/index.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.unifier API documentation - - - - - - + + + + + + - - + +
                            @@ -22,15 +25,6 @@

                            Module facetorch.analyzer.unifier

                            -
                            - -Expand source code - -
                            from .core import FaceUnifier
                            -
                            -
                            -__all__ = ["FaceUnifier"]
                            -

                            Sub-modules

                            @@ -119,25 +113,6 @@

                            Returns

                            ImageData
                            ImageData object containing the unified face tensors normalized between 0 and 1.
                            -
                            - -Expand source code - -
                            @Timer("FaceUnifier.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                            -def run(self, data: ImageData) -> ImageData:
                            -    """Runs unifying transform on each face tensor one by one.
                            -
                            -    Args:
                            -        data (ImageData): ImageData object containing the face tensors.
                            -
                            -    Returns:
                            -        ImageData: ImageData object containing the unified face tensors normalized between 0 and 1.
                            -    """
                            -    for indx, face in enumerate(data.faces):
                            -        data.faces[indx].tensor = self.transform(face.tensor)
                            -
                            -    return data
                            -

                            Inherited members

                            @@ -199,7 +174,6 @@

                            Inherited members

                            }).setContent('').open(); } -

                            Index

                              @@ -228,7 +202,7 @@

                              -

                              Generated by pdoc 0.10.0.

                              +

                              Generated by pdoc 0.11.1.

                              - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/utilizer/align.html b/docs/facetorch/analyzer/utilizer/align.html index 5258d25..70e7ee6 100644 --- a/docs/facetorch/analyzer/utilizer/align.html +++ b/docs/facetorch/analyzer/utilizer/align.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.utilizer.align API documentation - - - - - - + + + + + + - - + +
                              @@ -22,355 +25,6 @@

                              Module facetorch.analyzer.utilizer.align

                              -
                              - -Expand source code - -
                              import os
                              -from typing import List, Tuple, Union
                              -import torch
                              -import numpy as np
                              -from codetiming import Timer
                              -from facetorch.base import BaseDownloader, BaseUtilizer
                              -from facetorch.datastruct import ImageData
                              -from facetorch.logger import LoggerJsonFile
                              -from torchvision import transforms
                              -
                              -logger = LoggerJsonFile().logger
                              -
                              -
                              -class Lmk3DMeshPose(BaseUtilizer):
                              -    def __init__(
                              -        self,
                              -        transform: transforms.Compose,
                              -        device: torch.device,
                              -        optimize_transform: bool,
                              -        downloader_meta: BaseDownloader,
                              -        image_size: int = 120,
                              -    ):
                              -        """Initializes the Lmk3DMeshPose class. This class is used to convert the face parameter vector to 3D landmarks, mesh and pose.
                              -
                              -        Args:
                              -            transform (Compose): Composed Torch transform object.
                              -            device (torch.device): Torch device cpu or cuda object.
                              -            optimize_transform (bool): Whether to optimize the transform.
                              -            downloader_meta (BaseDownloader): Downloader for metadata.
                              -            image_size (int): Standard size of the face image.
                              -
                              -        """
                              -        super().__init__(transform, device, optimize_transform)
                              -
                              -        self.downloader_meta = downloader_meta
                              -        self.image_size = image_size
                              -        if not os.path.exists(self.downloader_meta.path_local):
                              -            self.downloader_meta.run()
                              -
                              -        self.meta = torch.load(self.downloader_meta.path_local)
                              -
                              -        for key in self.meta.keys():
                              -            if isinstance(self.meta[key], torch.Tensor):
                              -                self.meta[key] = self.meta[key].to(self.device)
                              -
                              -        self.keypoints = self.meta["keypoints"]
                              -        # PCA basis for shape, expression, texture
                              -        self.w_shp = self.meta["w_shp"]
                              -        self.w_exp = self.meta["w_exp"]
                              -        # param_mean and param_std are used for re-whitening
                              -        self.param_mean = self.meta["param_mean"]
                              -        self.param_std = self.meta["param_std"]
                              -        # mean values
                              -        self.u_shp = self.meta["u_shp"]
                              -        self.u_exp = self.meta["u_exp"]
                              -
                              -        self.u = self.u_shp + self.u_exp
                              -        self.w = torch.cat((self.w_shp, self.w_exp), dim=1)
                              -        # base vector for landmarks
                              -        self.w_base = self.w[self.keypoints]
                              -        self.w_norm = torch.linalg.norm(self.w, dim=0)
                              -        self.w_base_norm = torch.linalg.norm(self.w_base, dim=0)
                              -        self.u_base = self.u[self.keypoints].reshape(-1, 1)
                              -        self.w_shp_base = self.w_shp[self.keypoints]
                              -        self.w_exp_base = self.w_exp[self.keypoints]
                              -        self.dim = self.w_shp.shape[0] // 3
                              -
                              -    @Timer("Lmk3DMeshPose.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                              -    def run(self, data: ImageData) -> ImageData:
                              -        """Runs the Lmk3DMeshPose class functionality - convert the face parameter vector to 3D landmarks, mesh and pose.
                              -
                              -        Adds the following attributes to the data object:
                              -
                              -        - landmark [[y, x, z], 68 (points)]
                              -        - mesh [[y, x, z], 53215 (points)]
                              -        - pose (Euler angles [yaw, pitch, roll] and translation [y, x, z])
                              -
                              -        Args:
                              -            data (ImageData): ImageData object containing most of the data including the predictions.
                              -
                              -        Returns:
                              -            ImageData: ImageData object containing lmk3d, mesh and pose.
                              -        """
                              -        for count, face in enumerate(data.faces):
                              -            assert "align" in face.preds.keys(), "align key not found in face.preds"
                              -            param = face.preds["align"].logits
                              -
                              -            roi_box = [face.loc.x1, face.loc.y1, face.loc.x2, face.loc.y2]
                              -
                              -            landmarks = self._compute_sparse_vert(param, roi_box, transform_space=True)
                              -            vertices = self._compute_dense_vert(param, roi_box, transform_space=True)
                              -            angles, translation = self._compute_pose(param, roi_box)
                              -
                              -            data.faces[count].preds["align"].other["lmk3d"] = landmarks
                              -            data.faces[count].preds["align"].other["mesh"] = vertices
                              -            data.faces[count].preds["align"].other["pose"] = dict(
                              -                angles=angles, translation=translation
                              -            )
                              -
                              -        return data
                              -
                              -    def _matrix2angle_corr(self, re: torch.Tensor) -> List[float]:
                              -        """Converts a rotation matrix to angles.
                              -
                              -        Args:
                              -            re (torch.Tensor): Rotation matrix.
                              -
                              -        Returns:
                              -            List[float]: List of angles.
                              -        """
                              -        pi = torch.tensor(np.pi).to(self.device)
                              -        if re[2, 0] != 1 and re[2, 0] != -1:
                              -            x = torch.asin(re[2, 0])
                              -            y = torch.atan2(
                              -                re[1, 2] / torch.cos(x),
                              -                re[2, 2] / torch.cos(x),
                              -            )
                              -            z = torch.atan2(
                              -                re[0, 1] / torch.cos(x),
                              -                re[0, 0] / torch.cos(x),
                              -            )
                              -
                              -        else:  # Gimbal lock
                              -            z = 0
                              -            if re[2, 0] == -1:
                              -                x = pi / 2
                              -                y = z + torch.atan2(re[0, 1], re[0, 2])
                              -            else:
                              -                x = -pi / 2
                              -                y = -z + torch.atan2(-re[0, 1], -re[0, 2])
                              -
                              -        rx, ry, rz = (
                              -            float((x * 180 / pi).item()),
                              -            float((y * 180 / pi).item()),
                              -            float((z * 180 / pi).item()),
                              -        )
                              -
                              -        return [rx, ry, rz]
                              -
                              -    def _parse_param(self, param: torch.Tensor):
                              -        """Parses the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -
                              -        Returns:
                              -            Tuple[torch.Tensor]
                              -        """
                              -        p_ = param[:12].reshape(3, 4)
                              -        pe = p_[:, :3]
                              -        offset = p_[:, -1].reshape(3, 1)
                              -        alpha_shp = param[12:52].reshape(40, 1)
                              -        alpha_exp = param[52:62].reshape(10, 1)
                              -        return pe, offset, alpha_shp, alpha_exp
                              -
                              -    def _param2vert(
                              -        self, param: torch.Tensor, dense: bool = False, transform_space: bool = True
                              -    ) -> torch.Tensor:
                              -        """Parses the parameter vector into a dense or sparse vertex representation.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -            dense (bool): Whether to return a dense or sparse vertex representation.
                              -            transform_space (bool): Whether to transform the vertex representation to the original space.
                              -
                              -        Returns:
                              -            torch.Tensor: Dense or sparse vertex representation.
                              -        """
                              -
                              -        def _reshape_fortran(_x, shape):
                              -            if len(_x.shape) > 0:
                              -                _x = _x.permute(*reversed(range(len(_x.shape))))
                              -            return _x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
                              -
                              -        if param.shape[0] == 62:
                              -            param_ = param * self.param_std[:62] + self.param_mean[:62]
                              -        else:
                              -            raise RuntimeError("length of params mismatch")
                              -
                              -        pe, offset, alpha_shp, alpha_exp = self._parse_param(param_)
                              -
                              -        if dense:
                              -            he = (
                              -                self.u + self.w_shp @ alpha_shp.float() + self.w_exp @ alpha_exp.float()
                              -            )
                              -            he = _reshape_fortran(he, (3, -1))
                              -            vertex = pe.float() @ he + offset
                              -            if transform_space:
                              -                # transform to image coordinate space
                              -                vertex[1, :] = self.image_size + 1 - vertex[1, :]
                              -
                              -        else:
                              -            he = (
                              -                self.u_base
                              -                + self.w_shp_base @ alpha_shp.float()
                              -                + self.w_exp_base @ alpha_exp.float()
                              -            )
                              -            he = _reshape_fortran(he, (3, -1))
                              -            vertex = pe.float() @ he + offset
                              -            if transform_space:
                              -                # transform to image coordinate space
                              -                vertex[1, :] = self.image_size + 1 - vertex[1, :]
                              -
                              -        return vertex
                              -
                              -    def _p2srt(
                              -        self, param: torch.Tensor
                              -    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
                              -        """Applies matrix norm to the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -
                              -        Returns:
                              -            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
                              -        """
                              -        t3d = param[:, 3]
                              -        r1 = param[0:1, :3]
                              -        r2 = param[1:2, :3]
                              -        se = (torch.linalg.norm(r1) + torch.linalg.norm(r2)) / 2.0
                              -        r1 = r1 / torch.linalg.norm(r1)
                              -        r2 = r2 / torch.linalg.norm(r2)
                              -        r3 = torch.cross(r1, r2)
                              -        re = torch.cat((r1, r2, r3), 0)
                              -        return se, re, t3d
                              -
                              -    def _parse_pose(
                              -        self, param: torch.Tensor
                              -    ) -> Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor]:
                              -        """Parses the parameter vector to pose data.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -
                              -        Returns:
                              -            Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor]: Pose data.
                              -        """
                              -        param = param * self.param_std[:62] + self.param_mean[:62]
                              -        param = param[:12].reshape(3, -1)  # camera matrix
                              -        _, rem, t3d = self._p2srt(param)
                              -        pe = torch.cat((rem, t3d.reshape(3, -1)), 1)  # without scale
                              -        pose = self._matrix2angle_corr(rem)  # yaw, pitch, roll
                              -        return pe, pose, t3d
                              -
                              -    def _compute_vertices(
                              -        self,
                              -        param: torch.Tensor,
                              -        roi_bbox: Tuple[int, int, int, int],
                              -        dense: bool,
                              -        transform_space: bool = True,
                              -    ) -> torch.Tensor:
                              -        """Predict the vertices of the face given the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -            roi_bbox (Tuple[int, int, int, int]): Bounding box of the face.
                              -            dense (bool): Whether to return a dense or sparse vertex representation.
                              -            transform_space (bool): Whether to transform the vertex representation to the original space.
                              -
                              -        Returns:
                              -            torch.Tensor: Dense or sparse vertex representation.
                              -        """
                              -        vertex = self._param2vert(param, dense=dense, transform_space=transform_space)
                              -        sx, sy, ex, ey = roi_bbox
                              -        scale_x = (ex - sx) / self.image_size
                              -        scale_y = (ey - sy) / self.image_size
                              -        vertex[0, :] = vertex[0, :] * scale_x + sx
                              -        vertex[1, :] = vertex[1, :] * scale_y + sy
                              -
                              -        s = (scale_x + scale_y) / 2
                              -        vertex[2, :] *= s
                              -
                              -        return vertex
                              -
                              -    def _compute_sparse_vert(
                              -        self,
                              -        param: torch.Tensor,
                              -        roi_box: Tuple[int, int, int, int],
                              -        transform_space: bool = False,
                              -    ) -> torch.Tensor:
                              -        """Predict the sparse vertex representation of the face given the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -            roi_box (Tuple[int, int, int, int]): Bounding box of the face.
                              -            transform_space (bool): Whether to transform the vertex representation to the original space.
                              -
                              -        Returns:
                              -            torch.Tensor: Sparse vertex representation.
                              -
                              -        """
                              -        vertex = self._compute_vertices(
                              -            param, roi_box, dense=False, transform_space=transform_space
                              -        )
                              -        return vertex
                              -
                              -    def _compute_dense_vert(
                              -        self,
                              -        param: torch.Tensor,
                              -        roi_box: Tuple[int, int, int, int],
                              -        transform_space: bool = False,
                              -    ) -> torch.Tensor:
                              -        """Predict the dense vertex representation of the face given the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -            roi_box (Tuple[int, int, int, int, int]): Bounding box of the face.
                              -            transform_space (bool): Whether to transform the vertex representation to the original space.
                              -
                              -        Returns:
                              -            torch.Tensor: Dense vertex representation.
                              -        """
                              -        vertex = self._compute_vertices(
                              -            param, roi_box, dense=True, transform_space=transform_space
                              -        )
                              -        return vertex
                              -
                              -    def _compute_pose(
                              -        self,
                              -        param: torch.Tensor,
                              -        roi_bbox: Tuple[int, int, int, int],
                              -        ret_mat: bool = False,
                              -    ) -> Union[torch.Tensor, Tuple[List[float], torch.Tensor]]:
                              -        """Predict the pose of the face given the parameter vector.
                              -
                              -        Args:
                              -            param (torch.Tensor): Parameter vector.
                              -            roi_bbox (Tuple[int, int, int, int, int]): Bounding box of the face.
                              -            ret_mat (bool): Whether to return the rotation matrix.
                              -
                              -        Returns:
                              -            Union[torch.Tensor]: Pose of the face.
                              -        """
                              -        pe, angles, t3d = self._parse_pose(param)
                              -
                              -        sx, sy, ex, ey = roi_bbox
                              -        scale_x = (ex - sx) / self.image_size
                              -        scale_y = (ey - sy) / self.image_size
                              -        t3d[0] = t3d[0] * scale_x + sx
                              -        t3d[1] = t3d[1] * scale_y + sy
                              -
                              -        if ret_mat:
                              -            return pe
                              -        return angles, t3d
                              -
                              @@ -613,7 +267,7 @@

                              Args

                              se = (torch.linalg.norm(r1) + torch.linalg.norm(r2)) / 2.0 r1 = r1 / torch.linalg.norm(r1) r2 = r2 / torch.linalg.norm(r2) - r3 = torch.cross(r1, r2) + r3 = torch.linalg.cross(r1, r2) re = torch.cat((r1, r2, r3), 0) return se, re, t3d @@ -764,44 +418,6 @@

                              Returns

                              ImageData
                              ImageData object containing lmk3d, mesh and pose.
                              -
                              - -Expand source code - -
                              @Timer("Lmk3DMeshPose.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                              -def run(self, data: ImageData) -> ImageData:
                              -    """Runs the Lmk3DMeshPose class functionality - convert the face parameter vector to 3D landmarks, mesh and pose.
                              -
                              -    Adds the following attributes to the data object:
                              -
                              -    - landmark [[y, x, z], 68 (points)]
                              -    - mesh [[y, x, z], 53215 (points)]
                              -    - pose (Euler angles [yaw, pitch, roll] and translation [y, x, z])
                              -
                              -    Args:
                              -        data (ImageData): ImageData object containing most of the data including the predictions.
                              -
                              -    Returns:
                              -        ImageData: ImageData object containing lmk3d, mesh and pose.
                              -    """
                              -    for count, face in enumerate(data.faces):
                              -        assert "align" in face.preds.keys(), "align key not found in face.preds"
                              -        param = face.preds["align"].logits
                              -
                              -        roi_box = [face.loc.x1, face.loc.y1, face.loc.x2, face.loc.y2]
                              -
                              -        landmarks = self._compute_sparse_vert(param, roi_box, transform_space=True)
                              -        vertices = self._compute_dense_vert(param, roi_box, transform_space=True)
                              -        angles, translation = self._compute_pose(param, roi_box)
                              -
                              -        data.faces[count].preds["align"].other["lmk3d"] = landmarks
                              -        data.faces[count].preds["align"].other["mesh"] = vertices
                              -        data.faces[count].preds["align"].other["pose"] = dict(
                              -            angles=angles, translation=translation
                              -        )
                              -
                              -    return data
                              -

                              Inherited members

                              @@ -863,7 +479,6 @@

                              Inherited members

                              }).setContent('').open(); } -

                              Index

                                @@ -887,7 +502,7 @@

                                -

                                Generated by pdoc 0.10.0.

                                +

                                Generated by pdoc 0.11.1.

                                - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/utilizer/draw.html b/docs/facetorch/analyzer/utilizer/draw.html index c83aac0..fbf0963 100644 --- a/docs/facetorch/analyzer/utilizer/draw.html +++ b/docs/facetorch/analyzer/utilizer/draw.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.utilizer.draw API documentation - - - - - - + + + + + + - - + +
                                @@ -22,129 +25,6 @@

                                Module facetorch.analyzer.utilizer.draw

                                -
                                - -Expand source code - -
                                import torch
                                -import torchvision
                                -from codetiming import Timer
                                -from facetorch.base import BaseUtilizer
                                -from facetorch.datastruct import ImageData
                                -from facetorch.logger import LoggerJsonFile
                                -from torchvision import transforms
                                -
                                -logger = LoggerJsonFile().logger
                                -
                                -
                                -class BoxDrawer(BaseUtilizer):
                                -    def __init__(
                                -        self,
                                -        transform: transforms.Compose,
                                -        device: torch.device,
                                -        optimize_transform: bool,
                                -        color: str,
                                -        line_width: int,
                                -    ):
                                -        """Initializes the BoxDrawer class. This class is used to draw the face boxes to the image tensor.
                                -
                                -        Args:
                                -            transform (Compose): Composed Torch transform object.
                                -            device (torch.device): Torch device cpu or cuda object.
                                -            optimize_transform (bool): Whether to optimize the transform.
                                -            color (str): Color of the boxes.
                                -            line_width (int): Line width of the boxes.
                                -
                                -        """
                                -        super().__init__(transform, device, optimize_transform)
                                -        self.color = color
                                -        self.line_width = line_width
                                -
                                -    @Timer("BoxDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                -    def run(self, data: ImageData) -> ImageData:
                                -        """Draws face boxes to the image tensor.
                                -
                                -        Args:
                                -            data (ImageData): ImageData object containing the image tensor and face locations.
                                -        Returns:
                                -            ImageData: ImageData object containing the image tensor with face boxes.
                                -        """
                                -        loc_tensor = data.aggregate_loc_tensor()
                                -        labels = [str(face.indx) for face in data.faces]
                                -        data.img = torchvision.utils.draw_bounding_boxes(
                                -            image=data.img,
                                -            boxes=loc_tensor,
                                -            labels=labels,
                                -            colors=self.color,
                                -            width=self.line_width,
                                -        )
                                -
                                -        return data
                                -
                                -
                                -class LandmarkDrawerTorch(BaseUtilizer):
                                -    def __init__(
                                -        self,
                                -        transform: transforms.Compose,
                                -        device: torch.device,
                                -        optimize_transform: bool,
                                -        width: int,
                                -        color: str,
                                -    ):
                                -        """Initializes the LandmarkDrawer class. This class is used to draw the 3D face landmarks to the image tensor.
                                -
                                -        Args:
                                -            transform (Compose): Composed Torch transform object.
                                -            device (torch.device): Torch device cpu or cuda object.
                                -            optimize_transform (bool): Whether to optimize the transform.
                                -            width (int): Marker keypoint width.
                                -            color (str): Marker color.
                                -
                                -        """
                                -        super().__init__(transform, device, optimize_transform)
                                -        self.width = width
                                -        self.color = color
                                -
                                -    @Timer("LandmarkDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                -    def run(self, data: ImageData) -> ImageData:
                                -        """Draws 3D face landmarks to the image tensor.
                                -
                                -        Args:
                                -            data (ImageData): ImageData object containing the image tensor and 3D face landmarks.
                                -        Returns:
                                -            ImageData: ImageData object containing the image tensor with 3D face landmarks.
                                -        """
                                -        data = self._draw_landmarks(data)
                                -
                                -        return data
                                -
                                -    def _draw_landmarks(self, data: ImageData) -> ImageData:
                                -        """Draws 3D face landmarks to the image tensor.
                                -
                                -        Args:
                                -            data (ImageData): ImageData object containing the image tensor, 3D face landmarks, and faces.
                                -
                                -        Returns:
                                -            (ImageData): ImageData object containing the image tensor with 3D face landmarks.
                                -        """
                                -
                                -        if len(data.faces) > 0:
                                -            pts = [face.preds["align"].other["lmk3d"].cpu() for face in data.faces]
                                -
                                -            img_in = data.img.clone()
                                -            pts = torch.stack(pts)
                                -            pts = torch.swapaxes(pts, 2, 1)
                                -
                                -            img_out = torchvision.utils.draw_keypoints(
                                -                img_in,
                                -                pts,
                                -                colors=self.color,
                                -                radius=self.width,
                                -            )
                                -            data.img = img_out
                                -
                                -        return data
                                -
                                @@ -244,31 +124,6 @@

                                Returns

                                ImageData
                                ImageData object containing the image tensor with face boxes.
                                -
                                - -Expand source code - -
                                @Timer("BoxDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                -def run(self, data: ImageData) -> ImageData:
                                -    """Draws face boxes to the image tensor.
                                -
                                -    Args:
                                -        data (ImageData): ImageData object containing the image tensor and face locations.
                                -    Returns:
                                -        ImageData: ImageData object containing the image tensor with face boxes.
                                -    """
                                -    loc_tensor = data.aggregate_loc_tensor()
                                -    labels = [str(face.indx) for face in data.faces]
                                -    data.img = torchvision.utils.draw_bounding_boxes(
                                -        image=data.img,
                                -        boxes=loc_tensor,
                                -        labels=labels,
                                -        colors=self.color,
                                -        width=self.line_width,
                                -    )
                                -
                                -    return data
                                -

                                Inherited members

                                @@ -388,23 +243,6 @@

                                Returns

                                ImageData
                                ImageData object containing the image tensor with 3D face landmarks.
                                -
                                - -Expand source code - -
                                @Timer("LandmarkDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                -def run(self, data: ImageData) -> ImageData:
                                -    """Draws 3D face landmarks to the image tensor.
                                -
                                -    Args:
                                -        data (ImageData): ImageData object containing the image tensor and 3D face landmarks.
                                -    Returns:
                                -        ImageData: ImageData object containing the image tensor with 3D face landmarks.
                                -    """
                                -    data = self._draw_landmarks(data)
                                -
                                -    return data
                                -

                                Inherited members

                                @@ -466,7 +304,6 @@

                                Inherited members

                                }).setContent('').open(); } -

                                Index

                                  @@ -496,7 +333,7 @@

                                  -

                                  Generated by pdoc 0.10.0.

                                  +

                                  Generated by pdoc 0.11.1.

                                  - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/utilizer/index.html b/docs/facetorch/analyzer/utilizer/index.html index e2f17cc..f2c21bc 100644 --- a/docs/facetorch/analyzer/utilizer/index.html +++ b/docs/facetorch/analyzer/utilizer/index.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.utilizer API documentation - - - - - - + + + + + + - - + +
                                  @@ -22,17 +25,6 @@

                                  Module facetorch.analyzer.utilizer

                                  -
                                  - -Expand source code - -
                                  from .align import Lmk3DMeshPose
                                  -from .draw import BoxDrawer, LandmarkDrawerTorch
                                  -from .save import ImageSaver
                                  -
                                  -
                                  -__all__ = ["Lmk3DMeshPose", "BoxDrawer", "LandmarkDrawerTorch", "ImageSaver"]
                                  -

                                  Sub-modules

                                  @@ -290,7 +282,7 @@

                                  Args

                                  se = (torch.linalg.norm(r1) + torch.linalg.norm(r2)) / 2.0 r1 = r1 / torch.linalg.norm(r1) r2 = r2 / torch.linalg.norm(r2) - r3 = torch.cross(r1, r2) + r3 = torch.linalg.cross(r1, r2) re = torch.cat((r1, r2, r3), 0) return se, re, t3d @@ -441,44 +433,6 @@

                                  Returns

                                  ImageData
                                  ImageData object containing lmk3d, mesh and pose.
                                  -
                                  - -Expand source code - -
                                  @Timer("Lmk3DMeshPose.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                  -def run(self, data: ImageData) -> ImageData:
                                  -    """Runs the Lmk3DMeshPose class functionality - convert the face parameter vector to 3D landmarks, mesh and pose.
                                  -
                                  -    Adds the following attributes to the data object:
                                  -
                                  -    - landmark [[y, x, z], 68 (points)]
                                  -    - mesh [[y, x, z], 53215 (points)]
                                  -    - pose (Euler angles [yaw, pitch, roll] and translation [y, x, z])
                                  -
                                  -    Args:
                                  -        data (ImageData): ImageData object containing most of the data including the predictions.
                                  -
                                  -    Returns:
                                  -        ImageData: ImageData object containing lmk3d, mesh and pose.
                                  -    """
                                  -    for count, face in enumerate(data.faces):
                                  -        assert "align" in face.preds.keys(), "align key not found in face.preds"
                                  -        param = face.preds["align"].logits
                                  -
                                  -        roi_box = [face.loc.x1, face.loc.y1, face.loc.x2, face.loc.y2]
                                  -
                                  -        landmarks = self._compute_sparse_vert(param, roi_box, transform_space=True)
                                  -        vertices = self._compute_dense_vert(param, roi_box, transform_space=True)
                                  -        angles, translation = self._compute_pose(param, roi_box)
                                  -
                                  -        data.faces[count].preds["align"].other["lmk3d"] = landmarks
                                  -        data.faces[count].preds["align"].other["mesh"] = vertices
                                  -        data.faces[count].preds["align"].other["pose"] = dict(
                                  -            angles=angles, translation=translation
                                  -        )
                                  -
                                  -    return data
                                  -

                                  Inherited members

                                  @@ -579,31 +533,6 @@

                                  Returns

                                  ImageData
                                  ImageData object containing the image tensor with face boxes.
                                  -
                                  - -Expand source code - -
                                  @Timer("BoxDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                  -def run(self, data: ImageData) -> ImageData:
                                  -    """Draws face boxes to the image tensor.
                                  -
                                  -    Args:
                                  -        data (ImageData): ImageData object containing the image tensor and face locations.
                                  -    Returns:
                                  -        ImageData: ImageData object containing the image tensor with face boxes.
                                  -    """
                                  -    loc_tensor = data.aggregate_loc_tensor()
                                  -    labels = [str(face.indx) for face in data.faces]
                                  -    data.img = torchvision.utils.draw_bounding_boxes(
                                  -        image=data.img,
                                  -        boxes=loc_tensor,
                                  -        labels=labels,
                                  -        colors=self.color,
                                  -        width=self.line_width,
                                  -    )
                                  -
                                  -    return data
                                  -

                                  Inherited members

                                  @@ -723,23 +652,6 @@

                                  Returns

                                  ImageData
                                  ImageData object containing the image tensor with 3D face landmarks.
                                  -
                                  - -Expand source code - -
                                  @Timer("LandmarkDrawer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                  -def run(self, data: ImageData) -> ImageData:
                                  -    """Draws 3D face landmarks to the image tensor.
                                  -
                                  -    Args:
                                  -        data (ImageData): ImageData object containing the image tensor and 3D face landmarks.
                                  -    Returns:
                                  -        ImageData: ImageData object containing the image tensor with 3D face landmarks.
                                  -    """
                                  -    data = self._draw_landmarks(data)
                                  -
                                  -    return data
                                  -

                                  Inherited members

                                  @@ -826,27 +738,6 @@

                                  Returns

                                  ImageData
                                  ImageData object containing the same data as the input.
                                  -
                                  - -Expand source code - -
                                  @Timer("ImageSaver.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                  -def run(self, data: ImageData) -> ImageData:
                                  -    """Saves the image tensor to an image file, if the path_output attribute of ImageData is not None.
                                  -
                                  -    Args:
                                  -        data (ImageData): ImageData object containing the img tensor.
                                  -
                                  -    Returns:
                                  -        ImageData: ImageData object containing the same data as the input.
                                  -    """
                                  -    if data.path_output is not None:
                                  -        os.makedirs(os.path.dirname(data.path_output), exist_ok=True)
                                  -        pil_image = torchvision.transforms.functional.to_pil_image(data.img)
                                  -        pil_image.save(data.path_output)
                                  -
                                  -    return data
                                  -

                                  Inherited members

                                  @@ -908,7 +799,6 @@

                                  Inherited members

                                  }).setContent('').open(); } -

                                  Index

                                    @@ -957,7 +847,7 @@

                                    -

                                    Generated by pdoc 0.10.0.

                                    +

                                    Generated by pdoc 0.11.1.

                                    - \ No newline at end of file + diff --git a/docs/facetorch/analyzer/utilizer/save.html b/docs/facetorch/analyzer/utilizer/save.html index d86fcaf..b415ca8 100644 --- a/docs/facetorch/analyzer/utilizer/save.html +++ b/docs/facetorch/analyzer/utilizer/save.html @@ -2,18 +2,21 @@ - - + + facetorch.analyzer.utilizer.save API documentation - - - - - - + + + + + + - - + +
                                    @@ -22,56 +25,6 @@

                                    Module facetorch.analyzer.utilizer.save

                                    -
                                    - -Expand source code - -
                                    import os
                                    -import torch
                                    -import torchvision
                                    -from codetiming import Timer
                                    -from facetorch.base import BaseUtilizer
                                    -from facetorch.datastruct import ImageData
                                    -from facetorch.logger import LoggerJsonFile
                                    -from torchvision import transforms
                                    -
                                    -logger = LoggerJsonFile().logger
                                    -
                                    -
                                    -class ImageSaver(BaseUtilizer):
                                    -    def __init__(
                                    -        self,
                                    -        transform: transforms.Compose,
                                    -        device: torch.device,
                                    -        optimize_transform: bool,
                                    -    ):
                                    -        """Initializes the ImageSaver class. This class is used to save the image tensor to an image file.
                                    -
                                    -        Args:
                                    -            transform (Compose): Composed Torch transform object.
                                    -            device (torch.device): Torch device cpu or cuda object.
                                    -            optimize_transform (bool): Whether to optimize the transform.
                                    -
                                    -        """
                                    -        super().__init__(transform, device, optimize_transform)
                                    -
                                    -    @Timer("ImageSaver.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                    -    def run(self, data: ImageData) -> ImageData:
                                    -        """Saves the image tensor to an image file, if the path_output attribute of ImageData is not None.
                                    -
                                    -        Args:
                                    -            data (ImageData): ImageData object containing the img tensor.
                                    -
                                    -        Returns:
                                    -            ImageData: ImageData object containing the same data as the input.
                                    -        """
                                    -        if data.path_output is not None:
                                    -            os.makedirs(os.path.dirname(data.path_output), exist_ok=True)
                                    -            pil_image = torchvision.transforms.functional.to_pil_image(data.img)
                                    -            pil_image.save(data.path_output)
                                    -
                                    -        return data
                                    -
                                    @@ -157,27 +110,6 @@

                                    Returns

                                    ImageData
                                    ImageData object containing the same data as the input.
                                    -
                                    - -Expand source code - -
                                    @Timer("ImageSaver.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                    -def run(self, data: ImageData) -> ImageData:
                                    -    """Saves the image tensor to an image file, if the path_output attribute of ImageData is not None.
                                    -
                                    -    Args:
                                    -        data (ImageData): ImageData object containing the img tensor.
                                    -
                                    -    Returns:
                                    -        ImageData: ImageData object containing the same data as the input.
                                    -    """
                                    -    if data.path_output is not None:
                                    -        os.makedirs(os.path.dirname(data.path_output), exist_ok=True)
                                    -        pil_image = torchvision.transforms.functional.to_pil_image(data.img)
                                    -        pil_image.save(data.path_output)
                                    -
                                    -    return data
                                    -

                                    Inherited members

                                    @@ -239,7 +171,6 @@

                                    Inherited members

                                    }).setContent('').open(); } -

                                    Index

                                      @@ -263,7 +194,7 @@

                                      -

                                      Generated by pdoc 0.10.0.

                                      +

                                      Generated by pdoc 0.11.1.

                                      - \ No newline at end of file + diff --git a/docs/facetorch/base.html b/docs/facetorch/base.html index 29cb236..90acaf0 100644 --- a/docs/facetorch/base.html +++ b/docs/facetorch/base.html @@ -2,18 +2,21 @@ - - + + facetorch.base API documentation - - - - - - + + + + + + - - + +
                                      @@ -22,270 +25,6 @@

                                      Module facetorch.base

                                      -
                                      - -Expand source code - -
                                      import os
                                      -import copy
                                      -from abc import ABCMeta, abstractmethod
                                      -from typing import Optional, Tuple, Union
                                      -
                                      -import torch
                                      -from codetiming import Timer
                                      -from torchvision import transforms
                                      -
                                      -from facetorch import utils
                                      -from facetorch.datastruct import ImageData
                                      -from facetorch.logger import LoggerJsonFile
                                      -from facetorch.transforms import script_transform
                                      -
                                      -logger = LoggerJsonFile().logger
                                      -
                                      -
                                      -class BaseProcessor(object, metaclass=ABCMeta):
                                      -    @Timer(
                                      -        "BaseProcessor.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                                      -    )
                                      -    def __init__(
                                      -        self,
                                      -        transform: Optional[transforms.Compose],
                                      -        device: torch.device,
                                      -        optimize_transform: bool,
                                      -    ):
                                      -        """Base class for processors.
                                      -
                                      -        All data pre and post processors should subclass it.
                                      -        All subclass should overwrite:
                                      -
                                      -        - Methods:``run``, used for running the processing functionality.
                                      -
                                      -        Args:
                                      -            device (torch.device): Torch device cpu or cuda.
                                      -            transform (transforms.Compose): Transform compose object to be applied to the image.
                                      -            optimize_transform (bool): Whether to optimize the transform.
                                      -
                                      -        """
                                      -        super().__init__()
                                      -        self.device = device
                                      -        self.transform = transform if transform != "None" else None
                                      -        self.optimize_transform = optimize_transform
                                      -
                                      -        if self.transform is not None:
                                      -            self.transform = utils.fix_transform_list_attr(self.transform)
                                      -
                                      -        if self.optimize_transform is True:
                                      -            self.optimize()
                                      -
                                      -    def optimize(self):
                                      -        """Optimizes the transform using torch.jit and deploys it to the device."""
                                      -        if self.transform is not None:
                                      -            self.transform = script_transform(self.transform)
                                      -            self.transform = self.transform.to(self.device)
                                      -
                                      -    @abstractmethod
                                      -    def run(self):
                                      -        """Abstract method that should implement a tensor processing functionality"""
                                      -
                                      -
                                      -class BaseReader(BaseProcessor):
                                      -    @Timer("BaseReader.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -    def __init__(
                                      -        self,
                                      -        transform: transforms.Compose,
                                      -        device: torch.device,
                                      -        optimize_transform: bool,
                                      -    ):
                                      -        """Base class for image reader.
                                      -
                                      -        All image readers should subclass it.
                                      -        All subclass should overwrite:
                                      -
                                      -        - Methods:``run``, used for running the reading process and return a tensor.
                                      -
                                      -        Args:
                                      -            transform (transforms.Compose): Transform to be applied to the image.
                                      -            device (torch.device): Torch device cpu or cuda.
                                      -            optimize_transform (bool): Whether to optimize the transforms that are resizing
                                      -            the image to a fixed size.
                                      -
                                      -        """
                                      -        super().__init__(transform, device, optimize_transform)
                                      -        self.device = device
                                      -        self.optimize_transform = optimize_transform
                                      -
                                      -    @abstractmethod
                                      -    def run(self, path: str) -> ImageData:
                                      -        """Abstract method that reads an image from a path and returns a data object containing
                                      -        a tensor of the image with
                                      -         shape (batch, channels, height, width).
                                      -
                                      -        Args:
                                      -            path (str): Path to the image.
                                      -
                                      -        Returns:
                                      -            ImageData: ImageData object with the image tensor.
                                      -        """
                                      -        pass
                                      -
                                      -    def process_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData:
                                      -        """Read a tensor and return a data object containing a tensor of the image with
                                      -        shape (batch, channels, height, width).
                                      -
                                      -        Args:
                                      -            tensor (torch.Tensor): Tensor of a single image with RGB values between 0-255 and shape (channels, height, width).
                                      -            fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                                      -        """
                                      -
                                      -        data = ImageData(path_input=None)
                                      -        data.tensor = copy.deepcopy(tensor)
                                      -
                                      -        if tensor.dim() == 3:
                                      -            data.tensor = data.tensor.unsqueeze(0)
                                      -
                                      -        data.tensor = data.tensor.to(self.device)
                                      -
                                      -        if fix_img_size:
                                      -            data.tensor = self.transform(data.tensor)
                                      -
                                      -        data.img = data.tensor.squeeze(0).cpu()
                                      -        data.tensor = data.tensor.type(torch.float32)
                                      -        data.set_dims()
                                      -
                                      -        return data
                                      -
                                      -
                                      -class BaseDownloader(object, metaclass=ABCMeta):
                                      -    @Timer(
                                      -        "BaseDownloader.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                                      -    )
                                      -    def __init__(
                                      -        self,
                                      -        file_id: str,
                                      -        path_local: str,
                                      -    ):
                                      -        """Base class for downloaders.
                                      -
                                      -        All downloaders should subclass it.
                                      -        All subclass should overwrite:
                                      -
                                      -        - Methods:``run``, supporting to run the download functionality.
                                      -
                                      -        Args:
                                      -            file_id (str): ID of the hosted file (e.g. Google Drive File ID).
                                      -            path_local (str): The file is downloaded to this local path.
                                      -
                                      -        """
                                      -        super().__init__()
                                      -        self.file_id = file_id
                                      -        self.path_local = path_local
                                      -
                                      -    @abstractmethod
                                      -    def run(self) -> None:
                                      -        """Abstract method that should implement the download functionality"""
                                      -
                                      -
                                      -class BaseModel(object, metaclass=ABCMeta):
                                      -    @Timer("BaseModel.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -    def __init__(self, downloader: BaseDownloader, device: torch.device):
                                      -        """Base class for torch models.
                                      -
                                      -        All detectors and predictors should subclass it.
                                      -        All subclass should overwrite:
                                      -
                                      -        - Methods:``run``, supporting to make detections and predictions with the model.
                                      -
                                      -        Args:
                                      -            downloader (BaseDownloader): Downloader for the model.
                                      -            device (torch.device): Torch device cpu or cuda.
                                      -
                                      -        Attributes:
                                      -            model (torch.jit.ScriptModule or torch.jit.TracedModule): Loaded TorchScript model.
                                      -
                                      -        """
                                      -        super().__init__()
                                      -        self.downloader = downloader
                                      -        self.path_local = self.downloader.path_local
                                      -        self.device = device
                                      -
                                      -        self.model = self.load_model()
                                      -
                                      -    @Timer("BaseModel.load_model", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -    def load_model(self) -> Union[torch.jit.ScriptModule, torch.jit.TracedModule]:
                                      -        """Loads the TorchScript model.
                                      -
                                      -        Returns:
                                      -            Union[torch.jit.ScriptModule, torch.jit.TracedModule]: Loaded TorchScript model.
                                      -        """
                                      -        if not os.path.exists(self.path_local):
                                      -            dir_local = os.path.dirname(self.path_local)
                                      -            os.makedirs(dir_local, exist_ok=True)
                                      -            self.downloader.run()
                                      -        model = torch.jit.load(self.path_local, map_location=self.device)
                                      -        model.eval()
                                      -
                                      -        return model
                                      -
                                      -    @Timer("BaseModel.inference", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -    def inference(
                                      -        self, tensor: torch.Tensor
                                      -    ) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
                                      -        """Inference the model with the given tensor.
                                      -
                                      -        Args:
                                      -            tensor (torch.Tensor): Input tensor for the model.
                                      -
                                      -        Returns:
                                      -            Union[torch.Tensor, Tuple[torch.Tensor]]: Output tensor or tuple of tensors.
                                      -        """
                                      -        with torch.no_grad():
                                      -            if tensor.device != self.device:
                                      -                tensor = tensor.to(self.device)
                                      -
                                      -            logits = self.model(tensor)
                                      -
                                      -        return logits
                                      -
                                      -    @abstractmethod
                                      -    def run(self):
                                      -        """Abstract method for making the predictions. Example pipeline:
                                      -
                                      -        - self.preprocessor.run
                                      -        - self.inference
                                      -        - self.postprocessor.run
                                      -
                                      -        """
                                      -
                                      -
                                      -class BaseUtilizer(BaseProcessor):
                                      -    def __init__(
                                      -        self,
                                      -        transform: transforms.Compose,
                                      -        device: torch.device,
                                      -        optimize_transform: bool,
                                      -    ):
                                      -        """BaseUtilizer is a processor that takes ImageData as input to do any kind of work that requires model predictions for example, drawing, summarizing, etc.
                                      -
                                      -        Args:
                                      -            transform (Compose): Composed Torch transform object.
                                      -            device (torch.device): Torch device cpu or cuda object.
                                      -            optimize_transform (bool): Whether to optimize the transform.
                                      -        """
                                      -        super().__init__(transform, device, optimize_transform)
                                      -
                                      -    @abstractmethod
                                      -    def run(self, data: ImageData) -> ImageData:
                                      -        """Runs utility function on the ImageData object.
                                      -
                                      -        Args:
                                      -            data (ImageData): ImageData object containing most of the data including the predictions.
                                      -
                                      -        Returns:
                                      -            ImageData: ImageData object containing the same data as input or modified object.
                                      -        """
                                      -
                                      -        return data
                                      -
                                      @@ -381,30 +120,12 @@

                                      Methods

                                      Optimizes the transform using torch.jit and deploys it to the device.

                                      -
                                      - -Expand source code - -
                                      def optimize(self):
                                      -    """Optimizes the transform using torch.jit and deploys it to the device."""
                                      -    if self.transform is not None:
                                      -        self.transform = script_transform(self.transform)
                                      -        self.transform = self.transform.to(self.device)
                                      -
                                      def run(self)

                                      Abstract method that should implement a tensor processing functionality

                                      -
                                      - -Expand source code - -
                                      @abstractmethod
                                      -def run(self):
                                      -    """Abstract method that should implement a tensor processing functionality"""
                                      -
                                      @@ -528,24 +249,6 @@

                                      Returns

                                      ImageData
                                      ImageData object with the image tensor.
                                      -
                                      - -Expand source code - -
                                      @abstractmethod
                                      -def run(self, path: str) -> ImageData:
                                      -    """Abstract method that reads an image from a path and returns a data object containing
                                      -    a tensor of the image with
                                      -     shape (batch, channels, height, width).
                                      -
                                      -    Args:
                                      -        path (str): Path to the image.
                                      -
                                      -    Returns:
                                      -        ImageData: ImageData object with the image tensor.
                                      -    """
                                      -    pass
                                      -
                                      def process_tensor(self, tensor: torch.Tensor, fix_img_size: bool) ‑> ImageData @@ -560,36 +263,6 @@

                                      Args

                                      fix_img_size : bool
                                      Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                                      -
                                      - -Expand source code - -
                                      def process_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData:
                                      -    """Read a tensor and return a data object containing a tensor of the image with
                                      -    shape (batch, channels, height, width).
                                      -
                                      -    Args:
                                      -        tensor (torch.Tensor): Tensor of a single image with RGB values between 0-255 and shape (channels, height, width).
                                      -        fix_img_size (bool): Whether to resize the image to a fixed size. If False, the size_portrait and size_landscape are ignored. Default is False.
                                      -    """
                                      -
                                      -    data = ImageData(path_input=None)
                                      -    data.tensor = copy.deepcopy(tensor)
                                      -
                                      -    if tensor.dim() == 3:
                                      -        data.tensor = data.tensor.unsqueeze(0)
                                      -
                                      -    data.tensor = data.tensor.to(self.device)
                                      -
                                      -    if fix_img_size:
                                      -        data.tensor = self.transform(data.tensor)
                                      -
                                      -    data.img = data.tensor.squeeze(0).cpu()
                                      -    data.tensor = data.tensor.type(torch.float32)
                                      -    data.set_dims()
                                      -
                                      -    return data
                                      -

                                      Inherited members

                                      @@ -663,14 +336,6 @@

                                      Methods

                                      Abstract method that should implement the download functionality

                                      -
                                      - -Expand source code - -
                                      @abstractmethod
                                      -def run(self) -> None:
                                      -    """Abstract method that should implement the download functionality"""
                                      -
                                      @@ -789,26 +454,6 @@

                                      Returns

                                      Union[torch.jit.ScriptModule, torch.jit.TracedModule]
                                      Loaded TorchScript model.
                                      -
                                      - -Expand source code - -
                                      @Timer("BaseModel.load_model", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -def load_model(self) -> Union[torch.jit.ScriptModule, torch.jit.TracedModule]:
                                      -    """Loads the TorchScript model.
                                      -
                                      -    Returns:
                                      -        Union[torch.jit.ScriptModule, torch.jit.TracedModule]: Loaded TorchScript model.
                                      -    """
                                      -    if not os.path.exists(self.path_local):
                                      -        dir_local = os.path.dirname(self.path_local)
                                      -        os.makedirs(dir_local, exist_ok=True)
                                      -        self.downloader.run()
                                      -    model = torch.jit.load(self.path_local, map_location=self.device)
                                      -    model.eval()
                                      -
                                      -    return model
                                      -
                                      def inference(self, tensor: torch.Tensor) ‑> Union[torch.Tensor, Tuple[torch.Tensor]] @@ -825,30 +470,6 @@

                                      Returns

                                      Union[torch.Tensor, Tuple[torch.Tensor]]
                                      Output tensor or tuple of tensors.
                                      -
                                      - -Expand source code - -
                                      @Timer("BaseModel.inference", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                      -def inference(
                                      -    self, tensor: torch.Tensor
                                      -) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
                                      -    """Inference the model with the given tensor.
                                      -
                                      -    Args:
                                      -        tensor (torch.Tensor): Input tensor for the model.
                                      -
                                      -    Returns:
                                      -        Union[torch.Tensor, Tuple[torch.Tensor]]: Output tensor or tuple of tensors.
                                      -    """
                                      -    with torch.no_grad():
                                      -        if tensor.device != self.device:
                                      -            tensor = tensor.to(self.device)
                                      -
                                      -        logits = self.model(tensor)
                                      -
                                      -    return logits
                                      -
                                      def run(self) @@ -860,20 +481,6 @@

                                      Returns

                                    • self.inference
                                    • self.postprocessor.run
                                    • -
                                      - -Expand source code - -
                                      @abstractmethod
                                      -def run(self):
                                      -    """Abstract method for making the predictions. Example pipeline:
                                      -
                                      -    - self.preprocessor.run
                                      -    - self.inference
                                      -    - self.postprocessor.run
                                      -
                                      -    """
                                      -
                                      @@ -953,23 +560,6 @@

                                      Returns

                                      ImageData
                                      ImageData object containing the same data as input or modified object.
                                      -
                                      - -Expand source code - -
                                      @abstractmethod
                                      -def run(self, data: ImageData) -> ImageData:
                                      -    """Runs utility function on the ImageData object.
                                      -
                                      -    Args:
                                      -        data (ImageData): ImageData object containing most of the data including the predictions.
                                      -
                                      -    Returns:
                                      -        ImageData: ImageData object containing the same data as input or modified object.
                                      -    """
                                      -
                                      -    return data
                                      -

                                      Inherited members

                                      @@ -1031,7 +621,6 @@

                                      Inherited members

                                      }).setContent('').open(); } -

                                      Index

                                        @@ -1083,7 +672,7 @@

                                        -

                                        Generated by pdoc 0.10.0.

                                        +

                                        Generated by pdoc 0.11.1.

                                        - \ No newline at end of file + diff --git a/docs/facetorch/datastruct.html b/docs/facetorch/datastruct.html index 197092a..0c5fa60 100644 --- a/docs/facetorch/datastruct.html +++ b/docs/facetorch/datastruct.html @@ -2,18 +2,21 @@ - - + + facetorch.datastruct API documentation - - - - - - + + + + + + - - + +
                                        @@ -22,268 +25,6 @@

                                        Module facetorch.datastruct

                                        -
                                        - -Expand source code - -
                                        from dataclasses import dataclass, field
                                        -from typing import Dict, List, Optional
                                        -
                                        -import torch
                                        -from codetiming import Timer
                                        -
                                        -from facetorch.logger import LoggerJsonFile
                                        -
                                        -logger = LoggerJsonFile().logger
                                        -
                                        -
                                        -@dataclass
                                        -class Dimensions:
                                        -    """Data class for image dimensions.
                                        -
                                        -    Attributes:
                                        -        height (int): Image height.
                                        -        width (int): Image width.
                                        -    """
                                        -
                                        -    height: int = field(default=0)
                                        -    width: int = field(default=0)
                                        -
                                        -
                                        -@dataclass
                                        -class Location:
                                        -    """Data class for face location.
                                        -
                                        -    Attributes:
                                        -        x1 (int): x1 coordinate
                                        -        x2 (int): x2 coordinate
                                        -        y1 (int): y1 coordinate
                                        -        y2 (int): y2 coordinate
                                        -    """
                                        -
                                        -    x1: int = field(default=0)
                                        -    x2: int = field(default=0)
                                        -    y1: int = field(default=0)
                                        -    y2: int = field(default=0)
                                        -
                                        -    def form_square(self) -> None:
                                        -        """Form a square from the location.
                                        -
                                        -        Returns:
                                        -            None
                                        -        """
                                        -        height = self.y2 - self.y1
                                        -        width = self.x2 - self.x1
                                        -
                                        -        if height > width:
                                        -            diff = height - width
                                        -            self.x1 = self.x1 - int(diff / 2)
                                        -            self.x2 = self.x2 + int(diff / 2)
                                        -        elif height < width:
                                        -            diff = width - height
                                        -            self.y1 = self.y1 - int(diff / 2)
                                        -            self.y2 = self.y2 + int(diff / 2)
                                        -        else:
                                        -            pass
                                        -
                                        -    def expand(self, amount: float) -> None:
                                        -        """Expand the location while keeping the center.
                                        -
                                        -        Args:
                                        -            amount (float): Amount to expand the location by in multiples of the original size.
                                        -
                                        -
                                        -        Returns:
                                        -            None
                                        -        """
                                        -        assert amount >= 0, "Amount must be greater than or equal to 0."
                                        -        # if amount != 0:
                                        -        #     self.x1 = self.x1 - amount
                                        -        #     self.y1 = self.y1 - amount
                                        -        #     self.x2 = self.x2 + amount
                                        -        #     self.y2 = self.y2 + amount
                                        -        if amount != 0.0:
                                        -            self.x1 = self.x1 - int((self.x2 - self.x1) / 2 * amount)
                                        -            self.y1 = self.y1 - int((self.y2 - self.y1) / 2 * amount)
                                        -            self.x2 = self.x2 + int((self.x2 - self.x1) / 2 * amount)
                                        -            self.y2 = self.y2 + int((self.y2 - self.y1) / 2 * amount)
                                        -
                                        -
                                        -@dataclass
                                        -class Prediction:
                                        -    """Data class for face prediction results and derivatives.
                                        -
                                        -    Attributes:
                                        -        label (str): Label of the face given by predictor.
                                        -        logits (torch.Tensor): Output of the predictor model for the face.
                                        -        other (Dict): Any other predictions and derivatives for the face.
                                        -    """
                                        -
                                        -    label: str = field(default_factory=str)
                                        -    logits: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    other: Dict = field(default_factory=dict)
                                        -
                                        -
                                        -@dataclass
                                        -class Detection:
                                        -    """Data class for detector output.
                                        -
                                        -    Attributes:
                                        -        loc (torch.Tensor): Locations of faces
                                        -        conf (torch.Tensor): Confidences of faces
                                        -        landmarks (torch.Tensor): Landmarks of faces
                                        -        boxes (torch.Tensor): Bounding boxes of faces
                                        -        dets (torch.Tensor): Detections of faces
                                        -
                                        -    """
                                        -
                                        -    loc: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    conf: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    landmarks: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    boxes: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    dets: torch.Tensor = field(default_factory=torch.Tensor)
                                        -
                                        -
                                        -@dataclass
                                        -class Face:
                                        -    """Data class for face attributes.
                                        -
                                        -    Attributes:
                                        -        indx (int): Index of the face.
                                        -        loc (Location): Location of the face in the image.
                                        -        dims (Dimensions): Dimensions of the face (height, width).
                                        -        tensor (torch.Tensor): Face tensor.
                                        -        ratio (float): Ratio of the face area to the image area.
                                        -        preds (Dict[str, Prediction]): Predictions of the face given by predictor set.
                                        -    """
                                        -
                                        -    indx: int = field(default_factory=int)
                                        -    loc: Location = field(default_factory=Location)
                                        -    dims: Dimensions = field(default_factory=Dimensions)
                                        -    tensor: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    ratio: float = field(default_factory=float)
                                        -    preds: Dict[str, Prediction] = field(default_factory=dict)
                                        -
                                        -
                                        -@dataclass
                                        -class ImageData:
                                        -    """The main data class used for passing data between the different facetorch modules.
                                        -
                                        -    Attributes:
                                        -        path_input (str): Path to the input image.
                                        -        path_output (str): Path to the output image where the resulting image is saved.
                                        -        img (torch.Tensor): Original image tensor used for drawing purposes.
                                        -        tensor (torch.Tensor): Processed image tensor.
                                        -        dims (Dimensions): Dimensions of the image (height, width).
                                        -        det (Detection): Detection data given by the detector.
                                        -        faces (List[Face]): List of faces in the image.
                                        -        version (str): Version of the facetorch library.
                                        -
                                        -    """
                                        -
                                        -    path_input: str = field(default_factory=str)
                                        -    path_output: Optional[str] = field(default_factory=str)
                                        -    img: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    tensor: torch.Tensor = field(default_factory=torch.Tensor)
                                        -    dims: Dimensions = field(default_factory=Dimensions)
                                        -    det: Detection = field(default_factory=Detection)
                                        -    faces: List[Face] = field(default_factory=list)
                                        -    version: str = field(default_factory=str)
                                        -
                                        -    def add_preds(
                                        -        self,
                                        -        preds_list: List[Prediction],
                                        -        predictor_name: str,
                                        -        face_offset: int = 0,
                                        -    ) -> None:
                                        -        """Adds a list of predictions to the data object.
                                        -
                                        -        Args:
                                        -            preds_list (List[Prediction]): List of predictions.
                                        -            predictor_name (str): Name of the predictor.
                                        -            face_offset (int): Offset of the face index where the predictions are added.
                                        -
                                        -        Returns:
                                        -            None
                                        -
                                        -        """
                                        -        j = 0
                                        -        for i in range(face_offset, face_offset + len(preds_list)):
                                        -            self.faces[i].preds[predictor_name] = preds_list[j]
                                        -            j += 1
                                        -
                                        -    def reset_img(self) -> None:
                                        -        """Reset the original image tensor to empty state."""
                                        -        self.img = torch.tensor([])
                                        -
                                        -    def reset_tensor(self) -> None:
                                        -        """Reset the processed image tensor to empty state."""
                                        -        self.tensor = torch.tensor([])
                                        -
                                        -    def reset_face_tensors(self) -> None:
                                        -        """Reset the face tensors to empty state."""
                                        -        for i in range(0, len(self.faces)):
                                        -            self.faces[i].tensor = torch.tensor([])
                                        -
                                        -    def reset_face_pred_tensors(self) -> None:
                                        -        """Reset the face prediction tensors to empty state."""
                                        -        for i in range(0, len(self.faces)):
                                        -            for key in self.faces[i].preds:
                                        -                self.faces[i].preds[key].logits = torch.tensor([])
                                        -                self.faces[i].preds[key].other = {}
                                        -
                                        -    def reset_det_tensors(self) -> None:
                                        -        """Reset the detection object to empty state."""
                                        -        self.det = Detection()
                                        -
                                        -    @Timer(
                                        -        "ImageData.reset_faces", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                                        -    )
                                        -    def reset_tensors(self) -> None:
                                        -        """Reset the tensors to empty state."""
                                        -        self.reset_img()
                                        -        self.reset_tensor()
                                        -        self.reset_face_tensors()
                                        -        self.reset_face_pred_tensors()
                                        -        self.reset_det_tensors()
                                        -
                                        -    def set_dims(self) -> None:
                                        -        """Set the dimensions attribute from the tensor attribute."""
                                        -        self.dims.height = self.tensor.shape[2]
                                        -        self.dims.width = self.tensor.shape[3]
                                        -
                                        -    def aggregate_loc_tensor(self) -> torch.Tensor:
                                        -        """Aggregates the location tensor from all faces.
                                        -
                                        -        Returns:
                                        -            torch.Tensor: Aggregated location tensor for drawing purposes.
                                        -        """
                                        -        loc_tensor = torch.zeros((len(self.faces), 4), dtype=torch.float32)
                                        -        for i in range(0, len(self.faces)):
                                        -            loc_tensor[i] = torch.tensor(
                                        -                [
                                        -                    self.faces[i].loc.x1,
                                        -                    self.faces[i].loc.y1,
                                        -                    self.faces[i].loc.x2,
                                        -                    self.faces[i].loc.y2,
                                        -                ]
                                        -            )
                                        -        return loc_tensor
                                        -
                                        -
                                        -@dataclass
                                        -class Response:
                                        -    """Data class for response data, which is a subset of ImageData.
                                        -
                                        -    Attributes:
                                        -        faces (List[Face]): List of faces in the image.
                                        -        version (str): Version of the facetorch library.
                                        -
                                        -    """
                                        -
                                        -    faces: List[Face] = field(default_factory=list)
                                        -    version: str = field(default_factory=str)
                                        -
                                        @@ -442,30 +183,6 @@

                                        Methods

                                        Form a square from the location.

                                        Returns

                                        None

                                        -
                                        - -Expand source code - -
                                        def form_square(self) -> None:
                                        -    """Form a square from the location.
                                        -
                                        -    Returns:
                                        -        None
                                        -    """
                                        -    height = self.y2 - self.y1
                                        -    width = self.x2 - self.x1
                                        -
                                        -    if height > width:
                                        -        diff = height - width
                                        -        self.x1 = self.x1 - int(diff / 2)
                                        -        self.x2 = self.x2 + int(diff / 2)
                                        -    elif height < width:
                                        -        diff = width - height
                                        -        self.y1 = self.y1 - int(diff / 2)
                                        -        self.y2 = self.y2 + int(diff / 2)
                                        -    else:
                                        -        pass
                                        -
                                        def expand(self, amount: float) ‑> None @@ -479,32 +196,6 @@

                                        Args

                                        Returns

                                        None

                                        -
                                        - -Expand source code - -
                                        def expand(self, amount: float) -> None:
                                        -    """Expand the location while keeping the center.
                                        -
                                        -    Args:
                                        -        amount (float): Amount to expand the location by in multiples of the original size.
                                        -
                                        -
                                        -    Returns:
                                        -        None
                                        -    """
                                        -    assert amount >= 0, "Amount must be greater than or equal to 0."
                                        -    # if amount != 0:
                                        -    #     self.x1 = self.x1 - amount
                                        -    #     self.y1 = self.y1 - amount
                                        -    #     self.x2 = self.x2 + amount
                                        -    #     self.y2 = self.y2 + amount
                                        -    if amount != 0.0:
                                        -        self.x1 = self.x1 - int((self.x2 - self.x1) / 2 * amount)
                                        -        self.y1 = self.y1 - int((self.y2 - self.y1) / 2 * amount)
                                        -        self.x2 = self.x2 + int((self.x2 - self.x1) / 2 * amount)
                                        -        self.y2 = self.y2 + int((self.y2 - self.y1) / 2 * amount)
                                        -
                                        @@ -883,142 +574,48 @@

                                        Args

                                        Returns

                                        None

                                        -
                                        - -Expand source code - -
                                        def add_preds(
                                        -    self,
                                        -    preds_list: List[Prediction],
                                        -    predictor_name: str,
                                        -    face_offset: int = 0,
                                        -) -> None:
                                        -    """Adds a list of predictions to the data object.
                                        -
                                        -    Args:
                                        -        preds_list (List[Prediction]): List of predictions.
                                        -        predictor_name (str): Name of the predictor.
                                        -        face_offset (int): Offset of the face index where the predictions are added.
                                        -
                                        -    Returns:
                                        -        None
                                        -
                                        -    """
                                        -    j = 0
                                        -    for i in range(face_offset, face_offset + len(preds_list)):
                                        -        self.faces[i].preds[predictor_name] = preds_list[j]
                                        -        j += 1
                                        -
                                        def reset_img(self) ‑> None

                                        Reset the original image tensor to empty state.

                                        -
                                        - -Expand source code - -
                                        def reset_img(self) -> None:
                                        -    """Reset the original image tensor to empty state."""
                                        -    self.img = torch.tensor([])
                                        -
                                        def reset_tensor(self) ‑> None

                                        Reset the processed image tensor to empty state.

                                        -
                                        - -Expand source code - -
                                        def reset_tensor(self) -> None:
                                        -    """Reset the processed image tensor to empty state."""
                                        -    self.tensor = torch.tensor([])
                                        -
                                        def reset_face_tensors(self) ‑> None

                                        Reset the face tensors to empty state.

                                        -
                                        - -Expand source code - -
                                        def reset_face_tensors(self) -> None:
                                        -    """Reset the face tensors to empty state."""
                                        -    for i in range(0, len(self.faces)):
                                        -        self.faces[i].tensor = torch.tensor([])
                                        -
                                        def reset_face_pred_tensors(self) ‑> None

                                        Reset the face prediction tensors to empty state.

                                        -
                                        - -Expand source code - -
                                        def reset_face_pred_tensors(self) -> None:
                                        -    """Reset the face prediction tensors to empty state."""
                                        -    for i in range(0, len(self.faces)):
                                        -        for key in self.faces[i].preds:
                                        -            self.faces[i].preds[key].logits = torch.tensor([])
                                        -            self.faces[i].preds[key].other = {}
                                        -
                                        def reset_det_tensors(self) ‑> None

                                        Reset the detection object to empty state.

                                        -
                                        - -Expand source code - -
                                        def reset_det_tensors(self) -> None:
                                        -    """Reset the detection object to empty state."""
                                        -    self.det = Detection()
                                        -
                                        def reset_tensors(self) ‑> None

                                        Reset the tensors to empty state.

                                        -
                                        - -Expand source code - -
                                        @Timer(
                                        -    "ImageData.reset_faces", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                                        -)
                                        -def reset_tensors(self) -> None:
                                        -    """Reset the tensors to empty state."""
                                        -    self.reset_img()
                                        -    self.reset_tensor()
                                        -    self.reset_face_tensors()
                                        -    self.reset_face_pred_tensors()
                                        -    self.reset_det_tensors()
                                        -
                                        def set_dims(self) ‑> None

                                        Set the dimensions attribute from the tensor attribute.

                                        -
                                        - -Expand source code - -
                                        def set_dims(self) -> None:
                                        -    """Set the dimensions attribute from the tensor attribute."""
                                        -    self.dims.height = self.tensor.shape[2]
                                        -    self.dims.width = self.tensor.shape[3]
                                        -
                                        def aggregate_loc_tensor(self) ‑> torch.Tensor @@ -1030,28 +627,6 @@

                                        Returns

                                        torch.Tensor
                                        Aggregated location tensor for drawing purposes.
                                        -
                                        - -Expand source code - -
                                        def aggregate_loc_tensor(self) -> torch.Tensor:
                                        -    """Aggregates the location tensor from all faces.
                                        -
                                        -    Returns:
                                        -        torch.Tensor: Aggregated location tensor for drawing purposes.
                                        -    """
                                        -    loc_tensor = torch.zeros((len(self.faces), 4), dtype=torch.float32)
                                        -    for i in range(0, len(self.faces)):
                                        -        loc_tensor[i] = torch.tensor(
                                        -            [
                                        -                self.faces[i].loc.x1,
                                        -                self.faces[i].loc.y1,
                                        -                self.faces[i].loc.x2,
                                        -                self.faces[i].loc.y2,
                                        -            ]
                                        -        )
                                        -    return loc_tensor
                                        -
                                        @@ -1147,7 +722,6 @@

                                        Class variables

                                        }).setContent('').open(); } -

                                        Index

                                          @@ -1241,7 +815,7 @@

                                          -

                                          Generated by pdoc 0.10.0.

                                          +

                                          Generated by pdoc 0.11.1.

                                          - \ No newline at end of file + diff --git a/docs/facetorch/downloader.html b/docs/facetorch/downloader.html index 9e8452b..031f616 100644 --- a/docs/facetorch/downloader.html +++ b/docs/facetorch/downloader.html @@ -2,18 +2,21 @@ - - + + facetorch.downloader API documentation - - - - - - + + + + + + - - + +
                                          @@ -22,37 +25,6 @@

                                          Module facetorch.downloader

                                          -
                                          - -Expand source code - -
                                          import os
                                          -import gdown
                                          -from codetiming import Timer
                                          -
                                          -from facetorch import base
                                          -from facetorch.logger import LoggerJsonFile
                                          -
                                          -logger = LoggerJsonFile().logger
                                          -
                                          -
                                          -class DownloaderGDrive(base.BaseDownloader):
                                          -    def __init__(self, file_id: str, path_local: str):
                                          -        """Downloader for Google Drive files.
                                          -
                                          -        Args:
                                          -            file_id (str): ID of the file hosted on Google Drive.
                                          -            path_local (str): The file is downloaded to this local path.
                                          -        """
                                          -        super().__init__(file_id, path_local)
                                          -
                                          -    @Timer("DownloaderGDrive.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                          -    def run(self):
                                          -        """Downloads a file from Google Drive."""
                                          -        os.makedirs(os.path.dirname(self.path_local), exist_ok=True)
                                          -        url = f"https://drive.google.com/uc?&id={self.file_id}&confirm=t"
                                          -        gdown.download(url, output=self.path_local, quiet=False)
                                          -
                                          @@ -108,17 +80,6 @@

                                          Methods

                                          Downloads a file from Google Drive.

                                          -
                                          - -Expand source code - -
                                          @Timer("DownloaderGDrive.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                          -def run(self):
                                          -    """Downloads a file from Google Drive."""
                                          -    os.makedirs(os.path.dirname(self.path_local), exist_ok=True)
                                          -    url = f"https://drive.google.com/uc?&id={self.file_id}&confirm=t"
                                          -    gdown.download(url, output=self.path_local, quiet=False)
                                          -
                                          @@ -172,7 +133,6 @@

                                          Methods

                                          }).setContent('').open(); } -

                                          Index

                                            @@ -196,7 +156,7 @@

                                            -

                                            Generated by pdoc 0.10.0.

                                            +

                                            Generated by pdoc 0.11.1.

                                            - \ No newline at end of file + diff --git a/docs/facetorch/index.html b/docs/facetorch/index.html index dadaf27..55b089d 100644 --- a/docs/facetorch/index.html +++ b/docs/facetorch/index.html @@ -1,625 +1,114 @@ - - - - - - facetorch API documentation - - - - - - - - - + + + + +facetorch API documentation + + + + + + + + + - -
                                            -
                                            -
                                            -

                                            Package facetorch

                                            -
                                            -
                                            -
                                            - - Expand source code - -
                                            from .analyzer.core import FaceAnalyzer
                                            -
                                            -__all__ = ["FaceAnalyzer"]
                                            -
                                            -
                                            -
                                            -

                                            Sub-modules

                                            -
                                            -
                                            facetorch.analyzer -
                                            -
                                            -
                                            -
                                            -
                                            facetorch.base
                                            -
                                            -
                                            -
                                            -
                                            facetorch.datastruct -
                                            -
                                            -
                                            -
                                            -
                                            facetorch.downloader -
                                            -
                                            -
                                            -
                                            -
                                            facetorch.logger -
                                            -
                                            -
                                            -
                                            -
                                            facetorch.transforms -
                                            -
                                            -
                                            -
                                            -
                                            facetorch.utils
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -

                                            Classes

                                            -
                                            -
                                            +
                                            +
                                            +
                                            +

                                            Package facetorch

                                            +
                                            +
                                            +
                                            +
                                            +

                                            Sub-modules

                                            +
                                            +
                                            facetorch.analyzer
                                            +
                                            +
                                            +
                                            +
                                            facetorch.base
                                            +
                                            +
                                            +
                                            +
                                            facetorch.datastruct
                                            +
                                            +
                                            +
                                            +
                                            facetorch.downloader
                                            +
                                            +
                                            +
                                            +
                                            facetorch.logger
                                            +
                                            +
                                            +
                                            +
                                            facetorch.transforms
                                            +
                                            +
                                            +
                                            +
                                            facetorch.utils
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +
                                            +

                                            Classes

                                            +
                                            +
                                            class FaceAnalyzer (cfg: omegaconf.omegaconf.OmegaConf)
                                            -
                                            -
                                            -

                                            FaceAnalyzer is the main class that reads images, runs face detection, tensor unification - and facial feature prediction. - It also draws bounding boxes and facial landmarks over the image.

                                            -

                                            The following components are used:

                                            -
                                              -
                                            1. Reader - reads the image and returns an ImageData object containing the image - tensor.
                                            2. -
                                            3. Detector - wrapper around a neural network that detects faces.
                                            4. -
                                            5. Unifier - processor that unifies sizes of all faces and normalizes them between 0 - and 1.
                                            6. -
                                            7. Predictor dict - dict of wrappers around neural networks trained to analyze facial - features.
                                            8. -
                                            9. Utilizer dict - dict of utilizer processors that can for example extract 3D face - landmarks or draw boxes over the image.
                                            10. -
                                            -

                                            Args

                                            -
                                            -
                                            cfg : OmegaConf
                                            -
                                            Config object with image reader, face detector, unifier and predictor - configurations.
                                            -
                                            -

                                            Attributes

                                            -
                                            -
                                            cfg : OmegaConf
                                            -
                                            Config object with image reader, face detector, unifier and predictor - configurations.
                                            -
                                            reader : BaseReader
                                            -
                                            Reader object that reads the image and returns an ImageData object containing the - image tensor.
                                            -
                                            detector : FaceDetector
                                            -
                                            FaceDetector object that wraps a neural network that detects faces.
                                            -
                                            unifier : FaceUnifier
                                            -
                                            FaceUnifier object that unifies sizes of all faces and normalizes them between 0 and - 1.
                                            -
                                            predictors - : Dict[str, FacePredictor]
                                            -
                                            Dict of FacePredictor objects that predict facial features. Key is the name of the - predictor.
                                            -
                                            utilizers : Dict[str, FaceUtilizer] -
                                            -
                                            Dict of FaceUtilizer objects that can extract 3D face landmarks, draw boxes over the - image, etc. Key is the name of the utilizer.
                                            -
                                            logger : logging.Logger
                                            -
                                            Logger object that logs messages to the console or to a file.
                                            -
                                            -
                                            -
                                            - - Expand source code - -
                                            class FaceAnalyzer(object):
                                            +
                                            +

                                            FaceAnalyzer is the main class that reads images, runs face detection, tensor unification and facial feature prediction. +It also draws bounding boxes and facial landmarks over the image.

                                            +

                                            The following components are used:

                                            +
                                              +
                                            1. Reader - reads the image and returns an ImageData object containing the image tensor.
                                            2. +
                                            3. Detector - wrapper around a neural network that detects faces.
                                            4. +
                                            5. Unifier - processor that unifies sizes of all faces and normalizes them between 0 and 1.
                                            6. +
                                            7. Predictor dict - dict of wrappers around neural networks trained to analyze facial features.
                                            8. +
                                            9. Utilizer dict - dict of utilizer processors that can for example extract 3D face landmarks or draw boxes over the image.
                                            10. +
                                            +

                                            Args

                                            +
                                            +
                                            cfg : OmegaConf
                                            +
                                            Config object with image reader, face detector, unifier and predictor configurations.
                                            +
                                            +

                                            Attributes

                                            +
                                            +
                                            cfg : OmegaConf
                                            +
                                            Config object with image reader, face detector, unifier and predictor configurations.
                                            +
                                            reader : BaseReader
                                            +
                                            Reader object that reads the image and returns an ImageData object containing the image tensor.
                                            +
                                            detector : FaceDetector
                                            +
                                            FaceDetector object that wraps a neural network that detects faces.
                                            +
                                            unifier : FaceUnifier
                                            +
                                            FaceUnifier object that unifies sizes of all faces and normalizes them between 0 and 1.
                                            +
                                            predictors : Dict[str, FacePredictor]
                                            +
                                            Dict of FacePredictor objects that predict facial features. Key is the name of the predictor.
                                            +
                                            utilizers : Dict[str, FaceUtilizer]
                                            +
                                            Dict of FaceUtilizer objects that can extract 3D face landmarks, draw boxes over the image, etc. Key is the name of the utilizer.
                                            +
                                            logger : logging.Logger
                                            +
                                            Logger object that logs messages to the console or to a file.
                                            +
                                            +
                                            + +Expand source code + +
                                            class FaceAnalyzer(object):
                                                 @Timer(
                                                     "FaceAnalyzer.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug
                                                 )
                                            @@ -796,280 +285,122 @@ 

                                            Attributes

                                            else: self.logger.debug("Returning response with faces", extra=response.__dict__) return response
                                            -
                                            -

                                            Methods

                                            -
                                            -
                                            +
                                            +

                                            Methods

                                            +
                                            +
                                            def run(self, image_source: Union[str, torch.Tensor, numpy.ndarray, bytes, PIL.Image.Image, ForwardRef(None)] = None, path_image: Optional[str] = None, batch_size: int = 8, fix_img_size: bool = False, return_img_data: bool = False, include_tensors: bool = False, path_output: Optional[str] = None, tensor: Optional[torch.Tensor] = None) ‑> Union[ResponseImageData]
                                            -
                                            -
                                            -

                                            Reads image, detects faces, unifies the detected faces, predicts facial features - and returns analyzed data.

                                            -

                                            Args

                                            -
                                            -
                                            image_source - : Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]] -
                                            -
                                            Input to be analyzed. If None, path_image or tensor must be provided. - Default: None.
                                            -
                                            path_image : Optional[str] -
                                            -
                                            Path to the image to be analyzed. If None, tensor must be provided. Default: - None.
                                            -
                                            batch_size : int
                                            -
                                            Batch size for making predictions on the faces. Default is 8.
                                            -
                                            fix_img_size : bool
                                            -
                                            If True, resizes the image to the size specified in reader. Default is - False.
                                            -
                                            return_img_data : bool
                                            -
                                            If True, returns all image data including tensors, otherwise only returns - the faces. Default is False.
                                            -
                                            include_tensors : bool
                                            -
                                            If True, removes tensors from the returned data object. Default is False. -
                                            -
                                            path_output : Optional[str] -
                                            -
                                            Path where to save the image with detected faces. If None, the image is not - saved. Default: None.
                                            -
                                            tensor - : Optional[torch.Tensor]
                                            -
                                            Image tensor to be analyzed. If None, path_image must be provided. Default: - None.
                                            -
                                            -

                                            Returns

                                            -
                                            -
                                            Union[Response, ImageData]
                                            -
                                            If return_img_data is False, returns a Response object containing the faces - and their facial features. If return_img_data is True, returns the entire - ImageData object.
                                            -
                                            -
                                            -
                                            - - Expand source code - -
                                            @Timer("FaceAnalyzer.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
                                            -def run(
                                            -    self,
                                            -    image_source: Optional[
                                            -        Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]
                                            -    ] = None,
                                            -    path_image: Optional[str] = None,
                                            -    batch_size: int = 8,
                                            -    fix_img_size: bool = False,
                                            -    return_img_data: bool = False,
                                            -    include_tensors: bool = False,
                                            -    path_output: Optional[str] = None,
                                            -    tensor: Optional[torch.Tensor] = None,
                                            -) -> Union[Response, ImageData]:
                                            -    """Reads image, detects faces, unifies the detected faces, predicts facial features
                                            -     and returns analyzed data.
                                            -
                                            -    Args:
                                            -        image_source (Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]]): Input to be analyzed. If None, path_image or tensor must be provided. Default: None.
                                            -        path_image (Optional[str]): Path to the image to be analyzed. If None, tensor must be provided. Default: None.
                                            -        batch_size (int): Batch size for making predictions on the faces. Default is 8.
                                            -        fix_img_size (bool): If True, resizes the image to the size specified in reader. Default is False.
                                            -        return_img_data (bool): If True, returns all image data including tensors, otherwise only returns the faces. Default is False.
                                            -        include_tensors (bool): If True, removes tensors from the returned data object. Default is False.
                                            -        path_output (Optional[str]): Path where to save the image with detected faces. If None, the image is not saved. Default: None.
                                            -        tensor (Optional[torch.Tensor]): Image tensor to be analyzed. If None, path_image must be provided. Default: None.
                                            -
                                            -    Returns:
                                            -        Union[Response, ImageData]: If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
                                            -
                                            -    """
                                            -
                                            -    def _predict_batch(
                                            -        data: ImageData, predictor: FacePredictor, predictor_name: str
                                            -    ) -> ImageData:
                                            -        n_faces = len(data.faces)
                                            -
                                            -        for face_indx_start in range(0, n_faces, batch_size):
                                            -            face_indx_end = min(face_indx_start + batch_size, n_faces)
                                            -
                                            -            face_batch_tensor = torch.stack(
                                            -                [face.tensor for face in data.faces[face_indx_start:face_indx_end]]
                                            -            )
                                            -            preds = predictor.run(face_batch_tensor)
                                            -            data.add_preds(preds, predictor_name, face_indx_start)
                                            -
                                            -        return data
                                            -
                                            -    self.logger.info("Running FaceAnalyzer")
                                            -
                                            -    if path_image is None and tensor is None and image_source is None:
                                            -        raise ValueError("Either input, path_image or tensor must be provided.")
                                            -
                                            -    if image_source is not None:
                                            -        self.logger.debug("Using image_source as input")
                                            -        reader_input = image_source
                                            -    elif path_image is not None:
                                            -        self.logger.debug(
                                            -            "Using path_image as input", extra={"path_image": path_image}
                                            -        )
                                            -        reader_input = path_image
                                            -    else:
                                            -        self.logger.debug("Using tensor as input")
                                            -        reader_input = tensor
                                            -
                                            -    self.logger.info("Reading image", extra={"input": reader_input})
                                            -    data = self.reader.run(reader_input, fix_img_size=fix_img_size)
                                            -
                                            -    path_output = None if path_output == "None" else path_output
                                            -    data.path_output = path_output
                                            -
                                            -    try:
                                            -        data.version = version("facetorch")
                                            -    except Exception as e:
                                            -        self.logger.warning("Could not get version number", extra={"error": e})
                                            -
                                            -    self.logger.info("Detecting faces")
                                            -    data = self.detector.run(data)
                                            -    n_faces = len(data.faces)
                                            -    self.logger.info(f"Number of faces: {n_faces}")
                                            -
                                            -    if n_faces > 0 and self.unifier is not None:
                                            -        self.logger.info("Unifying faces")
                                            -        data = self.unifier.run(data)
                                            -
                                            -        self.logger.info("Predicting facial features")
                                            -        for predictor_name, predictor in self.predictors.items():
                                            -            self.logger.info(f"Running FacePredictor: {predictor_name}")
                                            -            data = _predict_batch(data, predictor, predictor_name)
                                            -
                                            -        self.logger.info("Utilizing facial features")
                                            -        for utilizer_name, utilizer in self.utilizers.items():
                                            -            self.logger.info(f"Running BaseUtilizer: {utilizer_name}")
                                            -            data = utilizer.run(data)
                                            -    else:
                                            -        if "save" in self.utilizers:
                                            -            self.utilizers["save"].run(data)
                                            -
                                            -    if not include_tensors:
                                            -        self.logger.debug(
                                            -            "Removing tensors from response as include_tensors is False"
                                            -        )
                                            -        data.reset_tensors()
                                            -
                                            -    response = Response(faces=data.faces, version=data.version)
                                            -
                                            -    if return_img_data:
                                            -        self.logger.debug("Returning image data object", extra=data.__dict__)
                                            -        return data
                                            -    else:
                                            -        self.logger.debug("Returning response with faces", extra=response.__dict__)
                                            -        return response
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            -
                                            - -
                                            - +
                                            +

                                            Reads image, detects faces, unifies the detected faces, predicts facial features +and returns analyzed data.

                                            +

                                            Args

                                            +
                                            +
                                            image_source : Optional[Union[str, torch.Tensor, np.ndarray, bytes, Image.Image]]
                                            +
                                            Input to be analyzed. If None, path_image or tensor must be provided. Default: None.
                                            +
                                            path_image : Optional[str]
                                            +
                                            Path to the image to be analyzed. If None, tensor must be provided. Default: None.
                                            +
                                            batch_size : int
                                            +
                                            Batch size for making predictions on the faces. Default is 8.
                                            +
                                            fix_img_size : bool
                                            +
                                            If True, resizes the image to the size specified in reader. Default is False.
                                            +
                                            return_img_data : bool
                                            +
                                            If True, returns all image data including tensors, otherwise only returns the faces. Default is False.
                                            +
                                            include_tensors : bool
                                            +
                                            If True, removes tensors from the returned data object. Default is False.
                                            +
                                            path_output : Optional[str]
                                            +
                                            Path where to save the image with detected faces. If None, the image is not saved. Default: None.
                                            +
                                            tensor : Optional[torch.Tensor]
                                            +
                                            Image tensor to be analyzed. If None, path_image must be provided. Default: None.
                                            +
                                            +

                                            Returns

                                            +
                                            +
                                            Union[Response, ImageData]
                                            +
                                            If return_img_data is False, returns a Response object containing the faces and their facial features. If return_img_data is True, returns the entire ImageData object.
                                            +
                                            +
                                            +
                                            + + +
                                            +
                                            + +
                                            + - - \ No newline at end of file + diff --git a/docs/facetorch/logger.html b/docs/facetorch/logger.html index fd939e1..76fd34b 100644 --- a/docs/facetorch/logger.html +++ b/docs/facetorch/logger.html @@ -2,18 +2,21 @@ - - + + facetorch.logger API documentation - - - - - - + + + + + + - - + +
                                            @@ -22,64 +25,6 @@

                                            Module facetorch.logger

                                            -
                                            - -Expand source code - -
                                            import logging
                                            -import os
                                            -from typing import Optional
                                            -
                                            -from pythonjsonlogger import jsonlogger
                                            -
                                            -
                                            -class LoggerJsonFile:
                                            -    def __init__(
                                            -        self,
                                            -        name: str = "facetorch",
                                            -        level: int = logging.CRITICAL,
                                            -        path_file: Optional[str] = None,
                                            -        json_format: str = "%(asctime)s %(levelname)s %(message)s",
                                            -    ):
                                            -        """Logger in json format that writes to a file and console.
                                            -
                                            -        Args:
                                            -            name (str): Name of the logger.
                                            -            level (str): Level of the logger.
                                            -            path_file (str): Path to the log file.
                                            -            json_format (str): Format of the log record.
                                            -
                                            -        Attributes:
                                            -            logger (logging.Logger): Logger object.
                                            -
                                            -        """
                                            -        self.name = name
                                            -        self.level = level
                                            -        self.path_file = path_file
                                            -        self.json_format = json_format
                                            -
                                            -        self.logger = logging.getLogger(self.name)
                                            -        self.configure()
                                            -
                                            -    def configure(self):
                                            -        """Configures the logger."""
                                            -        if self.logger.level == 0 or self.level < self.logger.level:
                                            -            self.logger.setLevel(self.level)
                                            -
                                            -        if len(self.logger.handlers) == 0:
                                            -            json_handler = logging.StreamHandler()
                                            -            formatter = jsonlogger.JsonFormatter(fmt=self.json_format)
                                            -            json_handler.setFormatter(formatter)
                                            -            self.logger.addHandler(json_handler)
                                            -
                                            -            if self.path_file is not None:
                                            -                os.makedirs(os.path.dirname(self.path_file), exist_ok=True)
                                            -                path_file_handler = logging.FileHandler(self.path_file, mode="w")
                                            -                path_file_handler.setLevel(self.level)
                                            -                self.logger.addHandler(path_file_handler)
                                            -
                                            -        self.logger.propagate = False
                                            -
                                            @@ -170,29 +115,6 @@

                                            Methods

                                            Configures the logger.

                                            -
                                            - -Expand source code - -
                                            def configure(self):
                                            -    """Configures the logger."""
                                            -    if self.logger.level == 0 or self.level < self.logger.level:
                                            -        self.logger.setLevel(self.level)
                                            -
                                            -    if len(self.logger.handlers) == 0:
                                            -        json_handler = logging.StreamHandler()
                                            -        formatter = jsonlogger.JsonFormatter(fmt=self.json_format)
                                            -        json_handler.setFormatter(formatter)
                                            -        self.logger.addHandler(json_handler)
                                            -
                                            -        if self.path_file is not None:
                                            -            os.makedirs(os.path.dirname(self.path_file), exist_ok=True)
                                            -            path_file_handler = logging.FileHandler(self.path_file, mode="w")
                                            -            path_file_handler.setLevel(self.level)
                                            -            self.logger.addHandler(path_file_handler)
                                            -
                                            -    self.logger.propagate = False
                                            -
                                            @@ -246,7 +168,6 @@

                                            Methods

                                            }).setContent('').open(); } -

                                            Index

                                              @@ -270,7 +191,7 @@

                                              -

                                              Generated by pdoc 0.10.0.

                                              +

                                              Generated by pdoc 0.11.1.

                                              - \ No newline at end of file + diff --git a/docs/facetorch/transforms.html b/docs/facetorch/transforms.html index 8e553ca..930138a 100644 --- a/docs/facetorch/transforms.html +++ b/docs/facetorch/transforms.html @@ -2,18 +2,21 @@ - - + + facetorch.transforms API documentation - - - - - - + + + + + + - - + +
                                              @@ -22,76 +25,6 @@

                                              Module facetorch.transforms

                                              -
                                              - -Expand source code - -
                                              from typing import Union
                                              -
                                              -import torch
                                              -import torchvision
                                              -from torchvision import transforms
                                              -
                                              -
                                              -def script_transform(
                                              -    transform: transforms.Compose,
                                              -) -> Union[torch.jit.ScriptModule, torch.jit.ScriptFunction]:
                                              -    """Convert the composed transform to a TorchScript module.
                                              -
                                              -    Args:
                                              -        transform (transforms.Compose): Transform compose object to be scripted.
                                              -
                                              -    Returns:
                                              -        Union[torch.jit.ScriptModule, torch.jit.ScriptFunction]: Scripted transform.
                                              -    """
                                              -
                                              -    transform_seq = torch.nn.Sequential(*transform.transforms)
                                              -    transform_jit = torch.jit.script(transform_seq)
                                              -    return transform_jit
                                              -
                                              -
                                              -class SquarePad(torch.nn.Module):
                                              -    """SquarePad is a transform that pads the image to a square shape."""
                                              -
                                              -    def __init__(self) -> None:
                                              -        """It is initialized as a torch.nn.Module."""
                                              -        super().__init__()
                                              -
                                              -    def __call__(self, tensor: torch.Tensor) -> torch.Tensor:
                                              -        """Pads a tensor to a square.
                                              -
                                              -        Args:
                                              -            tensor (torch.Tensor): tensor to pad.
                                              -
                                              -        Returns:
                                              -            torch.Tensor: Padded tensor.
                                              -        """
                                              -        height, width = tensor.shape[-2:]
                                              -        img_size = [width, height]
                                              -
                                              -        max_wh = max(img_size)
                                              -        p_left, p_top = [(max_wh - s) // 2 for s in img_size]
                                              -        p_right, p_bottom = [
                                              -            max_wh - (s + pad) for s, pad in zip(img_size, [p_left, p_top])
                                              -        ]
                                              -        padding = (p_left, p_top, p_right, p_bottom)
                                              -        tensor_padded = torchvision.transforms.functional.pad(
                                              -            tensor, padding, 0, "constant"
                                              -        )
                                              -        return tensor_padded
                                              -
                                              -    def forward(self, tensor: torch.Tensor) -> torch.Tensor:
                                              -        """Pads a tensor to a square.
                                              -
                                              -        Args:
                                              -            tensor (torch.Tensor): tensor to pad.
                                              -
                                              -        Returns:
                                              -            torch.Tensor: Padded tensor.
                                              -
                                              -        """
                                              -        return self.__call__(tensor)
                                              -
                                              @@ -115,26 +48,6 @@

                                              Returns

                                              Union[torch.jit.ScriptModule, torch.jit.ScriptFunction]
                                              Scripted transform.
                                              -
                                              - -Expand source code - -
                                              def script_transform(
                                              -    transform: transforms.Compose,
                                              -) -> Union[torch.jit.ScriptModule, torch.jit.ScriptFunction]:
                                              -    """Convert the composed transform to a TorchScript module.
                                              -
                                              -    Args:
                                              -        transform (transforms.Compose): Transform compose object to be scripted.
                                              -
                                              -    Returns:
                                              -        Union[torch.jit.ScriptModule, torch.jit.ScriptFunction]: Scripted transform.
                                              -    """
                                              -
                                              -    transform_seq = torch.nn.Sequential(*transform.transforms)
                                              -    transform_jit = torch.jit.script(transform_seq)
                                              -    return transform_jit
                                              -

                                              @@ -214,22 +127,6 @@

                                              Returns

                                              torch.Tensor
                                              Padded tensor.
                                              -
                                              - -Expand source code - -
                                              def forward(self, tensor: torch.Tensor) -> torch.Tensor:
                                              -    """Pads a tensor to a square.
                                              -
                                              -    Args:
                                              -        tensor (torch.Tensor): tensor to pad.
                                              -
                                              -    Returns:
                                              -        torch.Tensor: Padded tensor.
                                              -
                                              -    """
                                              -    return self.__call__(tensor)
                                              -
                                              @@ -283,7 +180,6 @@

                                              Returns

                                              }).setContent('').open(); } -

                                              Index

                                                @@ -312,7 +208,7 @@

                                                -

                                                Generated by pdoc 0.10.0.

                                                +

                                                Generated by pdoc 0.11.1.

                                                - \ No newline at end of file + diff --git a/docs/facetorch/utils.html b/docs/facetorch/utils.html index cd575b9..a58ed87 100644 --- a/docs/facetorch/utils.html +++ b/docs/facetorch/utils.html @@ -2,18 +2,21 @@ - - + + facetorch.utils API documentation - - - - - - + + + + + + - - + +
                                                @@ -22,47 +25,6 @@

                                                Module facetorch.utils

                                                -
                                                - -Expand source code - -
                                                import omegaconf
                                                -import torch
                                                -import torchvision
                                                -
                                                -
                                                -def rgb2bgr(tensor: torch.Tensor) -> torch.Tensor:
                                                -    """Converts a batch of RGB tensors to BGR tensors or vice versa.
                                                -
                                                -    Args:
                                                -        tensor (torch.Tensor): Batch of RGB (or BGR) channeled tensors
                                                -        with shape (dim0, channels, dim2, dim3)
                                                -
                                                -    Returns:
                                                -        torch.Tensor: Batch of BGR (or RGB) tensors with shape (dim0, channels, dim2, dim3).
                                                -    """
                                                -    assert tensor.shape[1] == 3, "Tensor must have 3 channels."
                                                -    return tensor[:, [2, 1, 0]]
                                                -
                                                -
                                                -def fix_transform_list_attr(
                                                -    transform: torchvision.transforms.Compose,
                                                -) -> torchvision.transforms.Compose:
                                                -    """Fix the transform attributes by converting the listconfig to a list.
                                                -    This enables to optimize the transform using TorchScript.
                                                -
                                                -    Args:
                                                -        transform (torchvision.transforms.Compose): Transform to be fixed.
                                                -
                                                -    Returns:
                                                -        torchvision.transforms.Compose: Fixed transform.
                                                -    """
                                                -    for transform_x in transform.transforms:
                                                -        for key, value in transform_x.__dict__.items():
                                                -            if isinstance(value, omegaconf.listconfig.ListConfig):
                                                -                transform_x.__dict__[key] = list(value)
                                                -    return transform
                                                -
                                                @@ -87,23 +49,6 @@

                                                Returns

                                                torch.Tensor
                                                Batch of BGR (or RGB) tensors with shape (dim0, channels, dim2, dim3).
                                                -
                                                - -Expand source code - -
                                                def rgb2bgr(tensor: torch.Tensor) -> torch.Tensor:
                                                -    """Converts a batch of RGB tensors to BGR tensors or vice versa.
                                                -
                                                -    Args:
                                                -        tensor (torch.Tensor): Batch of RGB (or BGR) channeled tensors
                                                -        with shape (dim0, channels, dim2, dim3)
                                                -
                                                -    Returns:
                                                -        torch.Tensor: Batch of BGR (or RGB) tensors with shape (dim0, channels, dim2, dim3).
                                                -    """
                                                -    assert tensor.shape[1] == 3, "Tensor must have 3 channels."
                                                -    return tensor[:, [2, 1, 0]]
                                                -
                                                def fix_transform_list_attr(transform: torchvision.transforms.transforms.Compose) ‑> torchvision.transforms.transforms.Compose @@ -121,28 +66,6 @@

                                                Returns

                                                torchvision.transforms.Compose
                                                Fixed transform.
                                                -
                                                - -Expand source code - -
                                                def fix_transform_list_attr(
                                                -    transform: torchvision.transforms.Compose,
                                                -) -> torchvision.transforms.Compose:
                                                -    """Fix the transform attributes by converting the listconfig to a list.
                                                -    This enables to optimize the transform using TorchScript.
                                                -
                                                -    Args:
                                                -        transform (torchvision.transforms.Compose): Transform to be fixed.
                                                -
                                                -    Returns:
                                                -        torchvision.transforms.Compose: Fixed transform.
                                                -    """
                                                -    for transform_x in transform.transforms:
                                                -        for key, value in transform_x.__dict__.items():
                                                -            if isinstance(value, omegaconf.listconfig.ListConfig):
                                                -                transform_x.__dict__[key] = list(value)
                                                -    return transform
                                                -

                                                @@ -196,7 +119,6 @@

                                                Returns

                                                }).setContent('').open(); } -

                                                Index

                                                  @@ -216,7 +138,7 @@

                                                  Index

                                                  - \ No newline at end of file + diff --git a/environment.yml b/environment.yml index 1ea988f..5f3c814 100644 --- a/environment.yml +++ b/environment.yml @@ -10,7 +10,5 @@ dependencies: - numpy>=1.18.2 - pip>=20.0.2 - python-json-logger>=2.0.0 - - pytorch-cpu>=1.9.0 + - pytorch-cpu>=1.9.0, <2.4 - torchvision>=0.10.0 -platforms: - - linux-64 diff --git a/facetorch/analyzer/reader/core.py b/facetorch/analyzer/reader/core.py index 36b51ff..d988fa8 100644 --- a/facetorch/analyzer/reader/core.py +++ b/facetorch/analyzer/reader/core.py @@ -65,12 +65,18 @@ def read_tensor(self, tensor: torch.Tensor, fix_img_size: bool) -> ImageData: return self.process_tensor(tensor, fix_img_size) def read_pil_image(self, pil_image: Image.Image, fix_img_size: bool) -> ImageData: - tensor = torchvision.transforms.functional.to_tensor(pil_image) + if pil_image.mode != "RGB": + pil_image = pil_image.convert("RGB") + tensor = torchvision.transforms.functional.pil_to_tensor(pil_image) return self.process_tensor(tensor, fix_img_size) def read_numpy_array(self, array: np.ndarray, fix_img_size: bool) -> ImageData: - pil_image = Image.fromarray(array, mode="RGB") - return self.read_pil_image(pil_image, fix_img_size) + image_tensor = torch.from_numpy(array).float() + if image_tensor.ndim == 3 and image_tensor.shape[2] == 3: + image_tensor = image_tensor.permute(2, 0, 1).contiguous() + else: + raise ValueError(f"Unsupported numpy array shape: {image_tensor.shape}") + return self.process_tensor(image_tensor, fix_img_size) def read_image_from_bytes( self, image_bytes: bytes, fix_img_size: bool diff --git a/facetorch/analyzer/utilizer/align.py b/facetorch/analyzer/utilizer/align.py index 5e9e346..ea2d9cc 100644 --- a/facetorch/analyzer/utilizer/align.py +++ b/facetorch/analyzer/utilizer/align.py @@ -220,7 +220,7 @@ def _p2srt( se = (torch.linalg.norm(r1) + torch.linalg.norm(r2)) / 2.0 r1 = r1 / torch.linalg.norm(r1) r2 = r2 / torch.linalg.norm(r2) - r3 = torch.cross(r1, r2) + r3 = torch.linalg.cross(r1, r2) re = torch.cat((r1, r2, r3), 0) return se, re, t3d diff --git a/gpu.conda-lock.yml b/gpu.conda-lock.yml index a20269f..12cd242 100644 --- a/gpu.conda-lock.yml +++ b/gpu.conda-lock.yml @@ -5,7 +5,7 @@ # available, unless you explicitly update the lock file. # # Install this environment as "YOURENV" with: -# conda-lock install -n YOURENV --file new.gpu.conda-lock.yml +# conda-lock install -n YOURENV new.gpu.conda-lock.yml # To update a single package to the latest version compatible with the version constraints in the source: # conda-lock lock --lockfile new.gpu.conda-lock.yml --update PACKAGE # To re-solve the entire environment, e.g. after changing a version constraint in the source file: @@ -13,7 +13,7 @@ version: 1 metadata: content_hash: - linux-64: 8649404504aa9095e646d1e32e95c72e378a7c23b645582fd58eaf86d3ff30ac + linux-64: 6af49ccea25c9159d409133633209985d50155b29366ccbf1b1c65bbfa2cc084 channels: - url: conda-forge used_env_vars: [] @@ -89,14 +89,15 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libstdcxx: '>=13' python: '>=3.10,<3.11.0a0' python_abi: 3.10.* - url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hc6cd4ac_1.conda + url: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py310hf71b8c6_2.conda hash: - md5: 1f95722c94f00b69af69a066c7433714 - sha256: e22268d81905338570786921b3def88e55f9ed6d0ccdd17d9fbae31a02fbef69 + md5: bf502c169c71e3c6ac0d6175addfacc2 + sha256: 14f1e89d3888d560a553f40ac5ba83e4435a107552fa5b2b2029a7472554c1ef category: main optional: false - name: bzip2 @@ -104,62 +105,64 @@ package: manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda + url: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda hash: - md5: 69b8b6202a07720f448be700e300ccf4 - sha256: 242c0c324507ee172c0e0dd2045814e746bb303d1eb78870d182ceb0abc726a8 + md5: 62ee74e96c5ebb0af99386de58cf9553 + sha256: 5ced96500d945fb286c9c838e54fa759aa04a7129c59800f0846b4335cee770d category: main optional: false - name: ca-certificates - version: 2024.2.2 + version: 2024.8.30 manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.2.2-hbcca054_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda hash: - md5: 2f4327a1cbe7f022401b236e915a5fef - sha256: 91d81bfecdbb142c15066df70cc952590ae8991670198f92c66b62019b251aeb + md5: c27d1c142233b5bc9ca570c6e2e0c244 + sha256: afee721baa6d988e27fef1832f68d6f32ac8cc99cdf6015732224c2841a09cea category: main optional: false - name: certifi - version: 2024.2.2 + version: 2024.8.30 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.2.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda hash: - md5: 0876280e409658fc6f9e75d035960333 - sha256: f1faca020f988696e6b6ee47c82524c7806380b37cfdd1def32f92c326caca54 + md5: 12f7d00853807b0531775e9be891cb11 + sha256: 7020770df338c45ac6b560185956c32f0a5abf4b76179c037f115fc7d687819f category: main optional: false - name: cffi - version: 1.16.0 + version: 1.17.1 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' + libgcc: '>=13' pycparser: '' python: '>=3.10,<3.11.0a0' python_abi: 3.10.* - url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py310h2fee648_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py310h8deb56e_0.conda hash: - md5: 45846a970e71ac98fd327da5d40a0a2c - sha256: 007e7f69ab45553b7bf11f2c1b8d3f3a13fd42997266a0d57795f41c7d38df36 + md5: 1fc24a3196ad5ede2a68148be61894f4 + sha256: 1b389293670268ab80c3b8735bc61bc71366862953e000efbb82204d00e41b6c category: main optional: false - name: charset-normalizer - version: 3.3.2 + version: 3.4.0 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda hash: - md5: 7f4a9e3fcff3f6356ae99244a014da6a - sha256: 20cae47d31fdd58d99c4d2e65fbdcefa0b0de0c84e455ba9d6356a4bdbc4b5b9 + md5: a374efa97290b8799046df7c5ca17164 + sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 category: main optional: false - name: codetiming @@ -188,32 +191,32 @@ package: category: main optional: false - name: cuda-version - version: '11.8' + version: '11.2' manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.8-h70ddcb2_2.conda + url: https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.2-hb11dac2_3.conda hash: - md5: 601900ec9ff06f62f76a247148e52c04 - sha256: cb8a81465d5fa1b27e14981b7e1a9be4fc90945261a7459427e7bfb42129e26c + md5: 62cac0856c698032c9d1111581edabb5 + sha256: 6f73773b72270f9e9c9ab24c7f08e343076e07ee0976001fcd712bbb073396f8 category: main optional: false - name: cudatoolkit - version: 11.8.0 + version: 11.2.2 manager: conda platform: linux-64 dependencies: __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/cudatoolkit-11.8.0-h4ba93d1_13.conda + url: https://conda.anaconda.org/conda-forge/linux-64/cudatoolkit-11.2.2-hc23eb0c_13.conda hash: - md5: eb43f5f1f16e2fad2eba22219c3e499b - sha256: 1797bacaf5350f272413c7f50787c01aef0e8eb955df0f0db144b10be2819752 + md5: 8494b1c8dcc0ec01f2d4652a90cd01ef + sha256: c1f87f8b7c05abc56902ebe165fb8d6ca2302b866347097eba04e8728a91bd3f category: main optional: false - name: cudnn - version: 8.8.0.121 + version: 8.9.7.29 manager: conda platform: linux-64 dependencies: @@ -222,11 +225,11 @@ package: cudatoolkit: 11.* libgcc-ng: '>=12' libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/cudnn-8.8.0.121-hcdd5f01_4.conda + libzlib: '>=1.2.13,<2.0.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/cudnn-8.9.7.29-hbc23b4c_3.conda hash: - md5: d51a9b97e9ad89deae47bec4293ad0b6 - sha256: 3766ed675d40bf656a641c43dd354c06db48bb3c95465ab40cd62777579799a9 + md5: 4a2d5fab2871d95544de4e1752948d0f + sha256: c553234d447d9938556f067aba7a4686c8e5427e03e740e67199da3782cc420c category: main optional: false - name: dataclasses @@ -241,19 +244,6 @@ package: sha256: 63a83e62e0939bc1ab32de4ec736f6403084198c4639638b354a352113809c92 category: main optional: false -- name: expat - version: 2.5.0 - manager: conda - platform: linux-64 - dependencies: - libexpat: 2.5.0 - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/expat-2.5.0-hcb278e6_1.conda - hash: - md5: 8b9b5aca60558d02ddaa09d599e55920 - sha256: 36dfeb4375059b3bba75ce9b38c29c69fd257342a79e6cf20e9f25c1523f785f - category: main - optional: false - name: ffmpeg version: 4.4.2 manager: conda @@ -272,7 +262,7 @@ package: libva: '>=2.16.0,<3.0a0' libvpx: '>=1.11.0,<1.12.0a0' libxml2: '>=2.10.3,<3.0.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' openh264: '>=2.3.1,<2.3.2.0a0' svt-av1: '>=1.4.1,<1.4.2.0a0' x264: '>=1!164.3095,<1!165' @@ -284,15 +274,15 @@ package: category: main optional: false - name: filelock - version: 3.13.1 + version: 3.16.1 manager: conda platform: linux-64 dependencies: python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.13.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda hash: - md5: 0c1729b74a8152fde6a38ba0a2ab9f45 - sha256: 4d742d91412d1f163e5399d2b50c5d479694ebcd309127abb549ca3977f89d2b + md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 category: main optional: false - name: font-ttf-dejavu-sans-mono @@ -333,26 +323,27 @@ package: manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_1.conda + url: https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda hash: - md5: 6185f640c43843e5ad6fd1c5372c3f80 - sha256: 056c85b482d58faab5fd4670b6c1f5df0986314cca3bc831d458b22e4ef2c792 + md5: 49023d73832ef61042f6a237cb2687e7 + sha256: 2821ec1dc454bd8b9a31d0ed22a7ce22422c0aef163c59f49dfdf915d0f0ca14 category: main optional: false - name: fontconfig - version: 2.14.2 + version: 2.15.0 manager: conda platform: linux-64 dependencies: - expat: '>=2.5.0,<3.0a0' + __glibc: '>=2.17,<3.0.a0' freetype: '>=2.12.1,<3.0a0' - libgcc-ng: '>=12' - libuuid: '>=2.32.1,<3.0a0' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda + libexpat: '>=2.6.3,<3.0a0' + libgcc: '>=13' + libuuid: '>=2.38.1,<3.0a0' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda hash: - md5: 0f69b688f52ff6da70bccb7ff7001d1d - sha256: 155d534c9037347ea7439a2c6da7c24ffec8e5dd278889b4c57274a1d91e0a83 + md5: 8f5b0b297b59e1ac160ad4beec99dbee + sha256: 7093aa19d6df5ccb6ca50329ef8510c6acb6b0d8001191909397368b65b02113 category: main optional: false - name: fonts-conda-ecosystem @@ -389,7 +380,7 @@ package: dependencies: libgcc-ng: '>=12' libpng: '>=1.6.39,<1.7.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda hash: md5: 9ae35c3d96db2c94ce0cef86efdfa2cb @@ -397,7 +388,7 @@ package: category: main optional: false - name: gdown - version: 5.1.0 + version: 5.2.0 manager: conda platform: linux-64 dependencies: @@ -406,22 +397,42 @@ package: python: '>=3.8' requests: '' tqdm: '' - url: https://conda.anaconda.org/conda-forge/noarch/gdown-5.1.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/gdown-5.2.0-pyhd8ed1ab_0.conda hash: - md5: 6f880647c0270648f710f334c60bc76c - sha256: 1ab1e5cf5c851f91abebfc6a6c094bc6e2afa3639e6586f6ff890acc8551a63d + md5: 29903392720ea0d6162b772ff97235c3 + sha256: 5a645ec883846558db8b6c3ea370602a7b2783e8c9d1c9b59f385a7f43f8f26c category: main optional: false - name: gettext - version: 0.21.1 + version: 0.22.5 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + gettext-tools: 0.22.5 + libasprintf: 0.22.5 + libasprintf-devel: 0.22.5 + libgcc-ng: '>=12' + libgettextpo: 0.22.5 + libgettextpo-devel: 0.22.5 + libstdcxx-ng: '>=12' + url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda + hash: + md5: c7f243bbaea97cd6ea1edd693270100e + sha256: c3d9a453f523acbf2b3e1c82a42edfc7c7111b4686a2180ab48cb9b51a274218 + category: main + optional: false +- name: gettext-tools + version: 0.22.5 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.21.1-h27087fc_0.tar.bz2 + url: https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda hash: - md5: 14947d8770185e5153fdd04d4673ed37 - sha256: 4fcfedc44e4c9a053f0416f9fc6ab6ed50644fca3a761126dbd00d09db1f546a + md5: fcd2016d1d299f654f81021e27496818 + sha256: 0fd003953ce1ce9f4569458aab9ffaa397e3be2bc069250e2f05fd93b0ad2976 category: main optional: false - name: gmp @@ -431,10 +442,10 @@ package: dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-h59595ed_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda hash: - md5: 0e33ef437202db431aa5a928248cf2e8 - sha256: 2a50495b6bbbacb03107ea0b752d8358d4a40b572d124a8cade068c147f344f5 + md5: c94a5994ef49749880a8139cf9afcbe1 + sha256: 309cf4f04fec0c31b6771a5809a1909b4b3154a2208f52351e1ada006f4c750c category: main optional: false - name: gnutls @@ -455,16 +466,42 @@ package: category: main optional: false - name: googleapis-common-protos - version: 1.62.0 + version: 1.66.0 manager: conda platform: linux-64 dependencies: - protobuf: '>=3.19.5,<5.0.0dev0,!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.62.0-pyhd8ed1ab_0.conda + protobuf: '>=3.20.2,<6.0.0.dev0,!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5' + python: '>=3.9' + url: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda + hash: + md5: 4861e30ff0cd566ea6fb4593e3b7c22a + sha256: d8d19575a827f2c62500949b9536efdd6b5406c9f546a73b6a87ac90b03a5875 + category: main + optional: false +- name: h2 + version: 4.1.0 + manager: conda + platform: linux-64 + dependencies: + hpack: '>=4.0,<5' + hyperframe: '>=6.0,<7' + python: '>=3.6.1' + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 + hash: + md5: b748fbf7060927a6e82df7cb5ee8f097 + sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a + category: main + optional: false +- name: hpack + version: 4.0.0 + manager: conda + platform: linux-64 + dependencies: + python: '' + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 hash: - md5: ca3d0c7ba3a15e943d9c715aba03ae62 - sha256: 70da3fc08a742022c666d9807f0caba60be1ddbf09b6642c168001bace18c724 + md5: 914d6646c4dbb1fd3ff539830a12fd71 + sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 category: main optional: false - name: hydra-core @@ -483,42 +520,41 @@ package: sha256: 35044b4bb1059c4ed7d8392b776e663a390ad7a2bb6f7e2f09ecd5e9b5d40b75 category: main optional: false -- name: icu - version: '73.2' +- name: hyperframe + version: 6.0.1 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda + python: '>=3.6' + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 hash: - md5: cc47e1facc155f91abd89b11e48e72ff - sha256: e12fd90ef6601da2875ebc432452590bc82a893041473bc1c13ef29001a73ea8 + md5: 9f765cbfab6870c8435b9eefecd7a1f4 + sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 category: main optional: false - name: idna - version: '3.6' + version: '3.10' manager: conda platform: linux-64 dependencies: python: '>=3.6' - url: https://conda.anaconda.org/conda-forge/noarch/idna-3.6-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda hash: - md5: 1a76f09108576397c41c0b0c5bd84134 - sha256: 6ee4c986d69ce61e60a20b2459b6f2027baeba153f0a64995fd3cb47c2cc7e07 + md5: 7ba2ede0e7c795ff95088daf0dc59753 + sha256: 8c57fd68e6be5eecba4462e983aed7e85761a519aab80e834bbd7794d4b545b2 category: main optional: false - name: importlib_resources - version: 6.1.1 + version: 6.4.5 manager: conda platform: linux-64 dependencies: python: '>=3.8' zipp: '>=3.1.0' - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.1.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda hash: - md5: 3d5fa25cf42f3f32a12b2d874ace8574 - sha256: e584f9ae08fb2d242af0ce7e19e3cd2f85f362d8523119e08f99edb962db99ed + md5: c808991d29b9838fb4d96ce8267ec9ec + sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 category: main optional: false - name: jpeg @@ -560,14 +596,15 @@ package: category: main optional: false - name: ld_impl_linux-64 - version: '2.40' + version: '2.43' manager: conda platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-h41732ed_0.conda + dependencies: + __glibc: '>=2.17,<3.0.a0' + url: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda hash: - md5: 7aca3059a1729aa76c597603f10b0dd3 - sha256: f6cc89d887555912d6c61b295d398cff9ec982a3417d38025c45d5dd9b9e79cd + md5: 048b02e3962f066da18efe3a21b77672 + sha256: 7c91cea91b13f4314d125d1bedb9d03a29ebbd5080ccdea70260363424646dbe category: main optional: false - name: lerc @@ -583,6 +620,34 @@ package: sha256: cb55f36dcd898203927133280ae1dc643368af041a48bcf7c026acb7c47b0c12 category: main optional: false +- name: libasprintf + version: 0.22.5 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + libgcc-ng: '>=12' + libstdcxx-ng: '>=12' + url: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda + hash: + md5: 4fab9799da9571266d05ca5503330655 + sha256: 2da5c735811cbf38c7f7844ab457ff8b25046bbf5fe5ebd5dc1c2fafdf4fbe1c + category: main + optional: false +- name: libasprintf-devel + version: 0.22.5 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + libasprintf: 0.22.5 + libgcc-ng: '>=12' + url: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda + hash: + md5: 1091193789bb830127ed067a9e01ac57 + sha256: ccc7967e298ddf3124c8ad9741c7180dc6f778ae4135ec87978214f7b3c64dc2 + category: main + optional: false - name: libblas version: 3.9.0 manager: conda @@ -620,28 +685,30 @@ package: category: main optional: false - name: libdrm - version: 2.4.114 + version: 2.4.123 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libpciaccess: '>=0.17,<0.18.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.114-h166bdaf_0.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc-ng: '>=13' + libpciaccess: '>=0.18,<0.19.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda hash: - md5: efb58e80f5d0179a783c4e76c3df3b9c - sha256: 9316075084ad66f9f96d31836e83303a8199eec93c12d68661e41c44eed101e3 + md5: ee605e794bdc14e2b7f84c4faa0d8c2c + sha256: 5f274243fc7480b721a4ed6623c72d07b86a508a1363a85f0f16451ab655ace8 category: main optional: false - name: libexpat - version: 2.5.0 + version: 2.6.4 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.5.0-hcb278e6_1.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda hash: - md5: 6305a3dd2752c76335295da4e581f2fd - sha256: 74c98a563777ae2ad71f1f74d458a8ab043cee4a513467c159ccf159d0e461f3 + md5: db833e03127376d461e1e13e76f09b6c + sha256: 56541b98447b58e52d824bd59d6382d609e11de1f8adf20b23143e353d2b8d26 category: main optional: false - name: libffi @@ -656,31 +723,71 @@ package: sha256: ab6e9856c21709b7b517e940ae7028ae0737546122f83c2aa5d692860c3b149e category: main optional: false -- name: libgcc-ng - version: 13.2.0 +- name: libgcc + version: 14.2.0 manager: conda platform: linux-64 dependencies: _libgcc_mutex: '0.1' _openmp_mutex: '>=4.5' - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h807b86a_5.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda hash: - md5: d4ff227c46917d3b4565302a2bbb276b - sha256: d32f78bfaac282cfe5205f46d558704ad737b8dbf71f9227788a5ca80facaba4 + md5: 3cb76c3f10d3bc7f1105b2fc9db984df + sha256: 53eb8a79365e58849e7b1a068d31f4f9e718dc938d6f2c03e960345739a03569 + category: main + optional: false +- name: libgcc-ng + version: 14.2.0 + manager: conda + platform: linux-64 + dependencies: + libgcc: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda + hash: + md5: e39480b9ca41323497b05492a63bc35b + sha256: 3a76969c80e9af8b6e7a55090088bc41da4cffcde9e2c71b17f44d37b7cb87f7 + category: main + optional: false +- name: libgettextpo + version: 0.22.5 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + libgcc-ng: '>=12' + url: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda + hash: + md5: efab66b82ec976930b96d62a976de8e7 + sha256: 7f2d1f4d69973e2c3c3d2b6420d5eb989982baba97d63ab2d7a2b25a92d886b4 + category: main + optional: false +- name: libgettextpo-devel + version: 0.22.5 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + libgcc-ng: '>=12' + libgettextpo: 0.22.5 + url: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda + hash: + md5: 9aba7960731e6b4547b3a52f812ed801 + sha256: 0a66cdd46d1cd5201061252535cd91905b3222328a9294c1a5bcd32e85531545 category: main optional: false - name: libhwloc - version: 2.9.3 + version: 2.11.1 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' libstdcxx-ng: '>=12' - libxml2: '>=2.11.5,<3.0.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.9.3-default_h554bfaf_1009.conda + libxml2: '>=2.12.7,<3.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda hash: - md5: f36ddc11ca46958197a45effdd286e45 - sha256: 6950fee24766d03406e0f6f965262a5d98829c71eed8d1004f313892423b559b + md5: f54aeebefb5c5ff84eca4fb05ca8aa3a + sha256: 8473a300e10b79557ce0ac81602506b47146aff3df4cc3568147a7dd07f480a2 category: main optional: false - name: libiconv @@ -734,28 +841,29 @@ package: category: main optional: false - name: libpciaccess - version: '0.17' + version: '0.18' manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.17-h166bdaf_0.tar.bz2 + url: https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda hash: - md5: b7463391cf284065294e2941dd41ab95 - sha256: 9fe4aaf5629b4848d9407b9ed4da941ba7e5cebada63ee0becb9aa82259dc6e2 + md5: 48f4330bfcd959c3cfb704d424903c82 + sha256: c0a30ac74eba66ea76a4f0a39acc7833f5ed783a632ca3bb6665b2d81aabd2fb category: main optional: false - name: libpng - version: 1.6.42 + version: 1.6.44 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.42-h2797004_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda hash: - md5: d67729828dc6ff7ba44a61062ad79880 - sha256: 1a0c3a4b7fd1e101cb37dd6d2f8b5ec93409c8cae422f04470fe39a01ef59024 + md5: f4cc49d7aa68316213e4b12be35308d1 + sha256: e5b14f7a01c2db4362d8591f42f82f336ed48d5e4079e4d1f65d0c2a3637ea78 category: main optional: false - name: libprotobuf @@ -765,7 +873,7 @@ package: dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-3.20.3-h3eb15da_0.conda hash: md5: af581c55e6ff3a93af3ae710e091a80d @@ -773,27 +881,41 @@ package: category: main optional: false - name: libsqlite - version: 3.45.1 + version: 3.47.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.45.1-h2797004_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libzlib: '>=1.3.1,<2.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + hash: + md5: b6f02b52a174e612e89548f4663ce56a + sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 + category: main + optional: false +- name: libstdcxx + version: 14.2.0 + manager: conda + platform: linux-64 + dependencies: + libgcc: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda hash: - md5: fc4ccadfbf6d4784de88c41704792562 - sha256: 1b379d1c652b25d0540251d422ef767472e768fd36b77261045e97f9ba6d3faa + md5: 234a5554c53625688d51062645337328 + sha256: 4661af0eb9bdcbb5fb33e5d0023b001ad4be828fccdcc56500059d56f9869462 category: main optional: false - name: libstdcxx-ng - version: 13.2.0 + version: 14.2.0 manager: conda platform: linux-64 - dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-h7e041cc_5.conda + dependencies: + libstdcxx: 14.2.0 + url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda hash: - md5: f6f6600d18a4047b54f803cf708b868a - sha256: a56c5b11f1e73a86e120e6141a42d9e935a99a2098491ac9e15347a1476ce777 + md5: 8371ac6457591af2cf6159439c1fd051 + sha256: 25bb30b827d4f6d6f0522cc0579e431695503822f144043b93c50237017fffd8 category: main optional: false - name: libtasn1 @@ -819,7 +941,7 @@ package: libgcc-ng: '>=12' libstdcxx-ng: '>=12' libwebp-base: '>=1.2.4,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' xz: '>=5.2.6,<6.0a0' zstd: '>=1.5.2,<1.6.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.5.0-h6adf6a1_2.conda @@ -882,15 +1004,15 @@ package: category: main optional: false - name: libwebp-base - version: 1.3.2 + version: 1.4.0 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda hash: - md5: 30de3fd9b3b602f7473f30e684eeea8c - sha256: 68764a760fa81ef35dacb067fe8ace452bbb41476536a4a147a1051df29525f0 + md5: b26e8aa824079e1be0294e7152ca4559 + sha256: 49bc5f6b1e11cb2babf2a2a731d1a680a5e08a858280876a779dbda06c78c35f category: main optional: false - name: libxcb @@ -921,44 +1043,44 @@ package: category: main optional: false - name: libxml2 - version: 2.12.5 + version: 2.13.5 manager: conda platform: linux-64 dependencies: - icu: '>=73.2,<74.0a0' - libgcc-ng: '>=12' + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' libiconv: '>=1.17,<2.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.3.1,<2.0a0' xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.5-h232c23b_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda hash: - md5: c442ebfda7a475f5e78f1c8e45f1e919 - sha256: db9bf97e9e367985204331b58a059ebd5a4e0cb9e1c8754e9ecb23046b7b7bc1 + md5: fb16b85a5be1328ac1c44b098b74c570 + sha256: 7ab7fb45a0014981d35247cd5b09057fc8ed3c07378086a6c7ad552915928647 category: main optional: false - name: libzlib - version: 1.2.13 + version: 1.3.1 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.2.13-hd590300_5.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda hash: - md5: f36c115f1ee199da648e0597ec2047ad - sha256: 370c7c5893b737596fd6ca0d9190c9715d89d888b8c88537ae1ef168c25e82e4 + md5: edb0dca6bc32e4f4789199455a1dbeb8 + sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 category: main optional: false - name: llvm-openmp - version: 17.0.6 + version: 19.1.3 manager: conda platform: linux-64 dependencies: - libzlib: '>=1.2.13,<1.3.0a0' - zstd: '>=1.5.5,<1.6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-17.0.6-h4dfa4b3_0.conda + __glibc: '>=2.17,<3.0.a0' + url: https://conda.anaconda.org/conda-forge/linux-64/llvm-openmp-19.1.3-h024ca30_0.conda hash: - md5: c1665f9c1c9f6c93d8b4e492a6a39056 - sha256: 18a9db4cc139e72e8eac80a34f6536491fe318d3785bc2c35fac42cd00676376 + md5: d36687dc90337917a84a96a45111ad59 + sha256: aede34c8e218c539ccd4593e4a60b55293b9c3e8870df42f2e2d6ab9e7550927 category: main optional: false - name: magma @@ -985,38 +1107,42 @@ package: platform: linux-64 dependencies: _openmp_mutex: '>=4.5' - llvm-openmp: '>=15.0.6' + llvm-openmp: '>=18.1.8' tbb: 2021.* - url: https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.2.1-h84fe81f_16997.conda + url: https://conda.anaconda.org/conda-forge/linux-64/mkl-2022.2.1-h6508926_16999.tar.bz2 hash: - md5: a7ce56d5757f5b57e7daabe703ade5bb - sha256: 5322750d5e96ff5d96b1457db5fb6b10300f2bc4030545e940e17b57c4e96d00 + md5: 0bc81ce33d4d943c76b5145d8503fe21 + sha256: 50e4a5bad6228f73c57d94145c5f3c7faa1be605a7704a801fcc3106e7512798 category: main optional: false - name: nccl - version: 2.19.4.1 + version: 2.23.4.1 manager: conda platform: linux-64 dependencies: - cuda-version: '>=11.8,<12.0a0' + __glibc: '>=2.17,<3.0.a0' + cuda-version: '>=11.0,<12.0a0' + libgcc: '' libgcc-ng: '>=12' + libstdcxx: '' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/nccl-2.19.4.1-h6103f9b_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_2.conda hash: - md5: 2946f0e841f1f0be90c90bc67877d417 - sha256: bb8ae7c3004065f44798aaf75f5b25e5b6262437c6581d0814f60c0960e62359 + md5: a08604ac3f9c3dbd128bb24e089dee5f + sha256: d5376af5f95272c27ccf64144a87e97c0a21b12284ff4bdf12e6dd07d8bba2cc category: main optional: false - name: ncurses - version: '6.4' + version: '6.5' manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.4-h59595ed_2.conda + url: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda hash: - md5: 7dbaa197d7ba6032caf7ae7f32c1efa0 - sha256: 91cc03f14caf96243cead96c76fe91ab5925a695d892e83285461fb927dece5e + md5: 70caf8bb6cf39a0b6b7efc885f51c0fe + sha256: 6a1d5d8634c1a07913f1c525db6455918cbc589d745fac46d9d6e30340c8731a category: main optional: false - name: nettle @@ -1032,16 +1158,16 @@ package: category: main optional: false - name: ninja - version: 1.11.1 + version: 1.12.1 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/ninja-1.11.1-h924138e_0.conda + url: https://conda.anaconda.org/conda-forge/linux-64/ninja-1.12.1-h297d8ca_0.conda hash: - md5: 73a4953a2d9c115bdc10ff30a52f675f - sha256: b555247ac8859b4ff311e3d708a0640f1bfe9fae7125c485b444072474a84c41 + md5: 3aa1c7e292afeff25a0091ddd7c69b72 + sha256: 40f7b76b07067935f8a5886aab0164067b7aa71eb5ad20b7278618c0c2c98e06 category: main optional: false - name: numpy @@ -1099,7 +1225,7 @@ package: libpng: '>=1.6.39,<1.7.0a0' libstdcxx-ng: '>=12' libtiff: '>=4.5.0,<4.6.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.0-hfec8fc6_2.conda hash: md5: 5ce6a42505c6e9e6151c54c3ec8d68ea @@ -1107,16 +1233,17 @@ package: category: main optional: false - name: openssl - version: 3.2.1 + version: 3.4.0 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' ca-certificates: '' - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.2.1-hd590300_0.conda + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda hash: - md5: 51a753e64a3027bd7e23a189b1f6e91e - sha256: c02c12bdb898daacf7eb3d09859f93ea8f285fd1a6132ff6ff0493ab52c7fe57 + md5: 23cc74f77eb99315c0360ec3533147a9 + sha256: 814b9dff1847b132c676ee6cc1a8cb2d427320779b93e1b6d76552275c128705 category: main optional: false - name: p11-kit @@ -1134,15 +1261,15 @@ package: category: main optional: false - name: packaging - version: '23.2' + version: '24.2' manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/packaging-23.2-pyhd8ed1ab_0.conda + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_0.conda hash: - md5: 79002079284aa895f883c6b7f3f88fd6 - sha256: 69b3ace6cca2dab9047b2c24926077d81d236bef45329d264b394001e3c3e52f + md5: c16469afe1ec91aaafcf4bea966c0465 + sha256: 0f8273bf66c2a5c1de72312a509deae07f163bb0ae8de8273c52e6fe945a0850 category: main optional: false - name: pillow @@ -1157,7 +1284,7 @@ package: libtiff: '>=4.5.0,<4.6.0a0' libwebp-base: '>=1.2.4,<2.0a0' libxcb: '>=1.13,<1.14.0a0' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' openjpeg: '>=2.5.0,<3.0a0' python: '>=3.10,<3.11.0a0' python_abi: 3.10.* @@ -1169,17 +1296,17 @@ package: category: main optional: false - name: pip - version: '24.0' + version: 24.3.1 manager: conda platform: linux-64 dependencies: - python: '>=3.7' + python: '>=3.8,<3.13.0a0' setuptools: '' wheel: '' - url: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda hash: - md5: f586ac1e56c8638b64f9c8122a7b8a67 - sha256: b7c1c5d8f13e8cb491c4bd1d0d1896a4cf80fc47de01059ad77509112b664a4a + md5: 5dd546fe99b44fda83963d15f84263b7 + sha256: 499313e72e20225f84c2e9690bbaf5b952c8d7e0bf34b728278538f766b81628 category: main optional: false - name: protobuf @@ -1205,23 +1332,24 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=7.5.0' - url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda hash: - md5: 22dad4df6e8630e8dff2428f6f6a7036 - sha256: 67c84822f87b641d89df09758da498b2d4558d47b920fd1d3fe6d3a871e000ff + md5: b3c17d95b5a10c6e64a21fa17573e70e + sha256: 9c88f8c64590e9567c6c80823f0328e58d3b1efb0e1c539c0315ceca764e0973 category: main optional: false - name: pycparser - version: '2.21' + version: '2.22' manager: conda platform: linux-64 dependencies: - python: 2.7.*|>=3.4 - url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.21-pyhd8ed1ab_0.tar.bz2 + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda hash: - md5: 076becd9e05608f8dc72757d5f3a91ff - sha256: 74c63fd03f1f1ea2b54e8bc529fd1a600aaafb24027b738d0db87909ee3a33dc + md5: 844d9eb3b43095b031874477f7d70088 + sha256: 406001ebf017688b1a1554b49127ca3a4ac4626ec0fd51dc75ffa4415b720b64 category: main optional: false - name: pysocks @@ -1238,29 +1366,30 @@ package: category: main optional: false - name: python - version: 3.10.13 + version: 3.10.15 manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' bzip2: '>=1.0.8,<2.0a0' ld_impl_linux-64: '>=2.36.1' libffi: '>=3.4,<4.0a0' - libgcc-ng: '>=12' + libgcc: '>=13' libnsl: '>=2.0.1,<2.1.0a0' - libsqlite: '>=3.44.2,<4.0a0' + libsqlite: '>=3.46.1,<4.0a0' libuuid: '>=2.38.1,<3.0a0' libxcrypt: '>=4.4.36' - libzlib: '>=1.2.13,<1.3.0a0' - ncurses: '>=6.4,<7.0a0' - openssl: '>=3.2.0,<4.0a0' + libzlib: '>=1.3.1,<2.0a0' + ncurses: '>=6.5,<7.0a0' + openssl: '>=3.3.2,<4.0a0' readline: '>=8.2,<9.0a0' tk: '>=8.6.13,<8.7.0a0' tzdata: '' xz: '>=5.2.6,<6.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.13-hd12c33a_1_cpython.conda + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.10.15-h4a871b0_2_cpython.conda hash: - md5: ed38140af93f81319ebc472fbcf16cca - sha256: 4234c8e301737aa245d12c8fb44a4128005795e42883977c29cca3f34c71a1eb + md5: 98059097f62e97be9aed7ec904055825 + sha256: c1e5e93b887d8cd1aa31d24b9620cb7eb6645c08c97b15ffc844fd6c29051420 category: main optional: false - name: python-json-logger @@ -1280,10 +1409,10 @@ package: manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.10-4_cp310.conda + url: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.10-5_cp310.conda hash: - md5: 26322ec5d7712c3ded99dd656142b8ce - sha256: 456bec815bfc2b364763084d08b412fdc4c17eb9ccc66a36cb775fa7ac3cbaec + md5: 2921c34715e74b3587b4cff4d36844f9 + sha256: 074d2f0b31f0333b7e553042b17ea54714b74263f8adda9a68a4bd8c7e219971 category: main optional: false - name: pytorch @@ -1330,18 +1459,19 @@ package: category: main optional: false - name: pyyaml - version: 6.0.1 + version: 6.0.2 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' python: '>=3.10,<3.11.0a0' python_abi: 3.10.* yaml: '>=0.2.5,<0.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py310h2372a71_1.conda + url: https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py310ha75aee5_1.conda hash: - md5: bb010e368de4940771368bc3dc4c63e7 - sha256: aa78ccddb0a75fa722f0f0eb3537c73ee1219c9dd46cea99d6b9eebfdd780f3d + md5: 0d4c5c76ae5f5aac6f0be419963a19dd + sha256: bf6002aef0fd9753fa6de54e82307b2d7e67a1d701dba018869471426078d5d1 category: main optional: false - name: readline @@ -1358,31 +1488,31 @@ package: category: main optional: false - name: requests - version: 2.31.0 + version: 2.32.3 manager: conda platform: linux-64 dependencies: certifi: '>=2017.4.17' charset-normalizer: '>=2,<4' idna: '>=2.5,<4' - python: '>=3.7' + python: '>=3.8' urllib3: '>=1.21.1,<3' - url: https://conda.anaconda.org/conda-forge/noarch/requests-2.31.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda hash: - md5: a30144e4156cdbb236f99ebb49828f8b - sha256: 9f629d6fd3c8ac5f2a198639fe7af87c4db2ac9235279164bfe0fcb49d8c4bad + md5: 5ede4753180c7a550a443c430dc8ab52 + sha256: 5845ffe82a6fa4d437a2eae1e32a1ad308d7ad349f61e337c0a890fe04c513cc category: main optional: false - name: setuptools - version: 69.0.3 + version: 75.5.0 manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/setuptools-69.0.3-pyhd8ed1ab_0.conda + python: '>=3.9' + url: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.5.0-pyhff2d567_0.conda hash: - md5: 40695fdfd15a92121ed2922900d0308b - sha256: 0fe2a0473ad03dac6c7f5c42ef36a8e90673c88a0350dfefdea4b08d43803db2 + md5: ade63405adb52eeff89d506cd55908c0 + sha256: 54dcf5f09f74f69641e0063bc695b38340d0349fa8371b1f2ed0c45c5b2fd224 category: main optional: false - name: six @@ -1398,16 +1528,18 @@ package: category: main optional: false - name: sleef - version: 3.5.1 + version: '3.7' manager: conda platform: linux-64 dependencies: + __glibc: '>=2.17,<3.0.a0' _openmp_mutex: '>=4.5' - libgcc-ng: '>=9.4.0' - url: https://conda.anaconda.org/conda-forge/linux-64/sleef-3.5.1-h9b69904_2.tar.bz2 + libgcc: '>=13' + libstdcxx: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/sleef-3.7-h1b44611_2.conda hash: - md5: 6e016cf4c525d04a7bd038cee53ad3fd - sha256: 77d644a16f682e6d01df63fe9d25315011393498b63cf08c0e548780e46b2170 + md5: 4792f3259c6fdc0b730563a85b211dc0 + sha256: 38ad951d30052522693d21b247105744c7c6fb7cefcf41edca36f0688322e76d category: main optional: false - name: soupsieve @@ -1436,17 +1568,18 @@ package: category: main optional: false - name: tbb - version: 2021.11.0 + version: 2021.13.0 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - libhwloc: '>=2.9.3,<2.9.4.0a0' - libstdcxx-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.11.0-h00ab1b0_1.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + libhwloc: '>=2.11.1,<2.11.2.0a0' + libstdcxx: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda hash: - md5: 4531d2927578e7e254ff3bcf6457518c - sha256: ded4de0d5a3eb7b47ed829f0ed0e3c61ccd428308bde52d8d22ced228038223b + md5: ee6f7fd1e76061ef1fa307d41fa86a96 + sha256: 7d4d3ad608dc6ae5a7e0f431f784985398a18bcde2ba3ce19cc32f61e2defd98 category: main optional: false - name: tk @@ -1455,7 +1588,7 @@ package: platform: linux-64 dependencies: libgcc-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' + libzlib: '>=1.2.13,<2.0.0a0' url: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda hash: md5: d453b98d9c83e71da0741bb0ff4d76bc @@ -1488,65 +1621,67 @@ package: category: main optional: false - name: tqdm - version: 4.66.2 + version: 4.67.0 manager: conda platform: linux-64 dependencies: colorama: '' python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.2-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.0-pyhd8ed1ab_0.conda hash: - md5: 2b8dfb969f984497f3f98409a9545776 - sha256: 416d1d9318f3267325ad7e2b8a575df20ff9031197b30c0222c3d3b023877260 + md5: 196a9e6ab4e036ceafa516ea036619b0 + sha256: fb25b18cec1ebae56e7d7ebbd3e504f063b61a0fac17b1ca798fcaf205bdc874 category: main optional: false - name: typing_extensions - version: 4.9.0 + version: 4.12.2 manager: conda platform: linux-64 dependencies: python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.9.0-pyha770c72_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda hash: - md5: a92a6440c3fe7052d63244f3aba2a4a7 - sha256: f3c5be8673bfd905c4665efcb27fa50192f24f84fa8eff2f19cba5d09753d905 + md5: ebe6952715e1d5eb567eeebf25250fa7 + sha256: 0fce54f8ec3e59f5ef3bb7641863be4e1bf1279623e5af3d3fa726e8f7628ddb category: main optional: false - name: tzdata - version: 2024a + version: 2024b manager: conda platform: linux-64 dependencies: {} - url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda hash: - md5: 161081fc7cec0bfda0d86d7cb595f8d8 - sha256: 7b2b69c54ec62a243eb6fba2391b5e443421608c3ae5dbff938ad33ca8db5122 + md5: 8ac3367aafb1cc0a068483c580af8015 + sha256: 4fde5c3008bf5d2db82f2b50204464314cc3c91c1d953652f7bd01d9e52aefdf category: main optional: false - name: urllib3 - version: 2.2.0 + version: 2.2.3 manager: conda platform: linux-64 dependencies: brotli-python: '>=1.0.9' + h2: '>=4,<5' pysocks: '>=1.5.6,<2.0,!=1.5.7' - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.0-pyhd8ed1ab_0.conda + python: '>=3.8' + zstandard: '>=0.18.0' + url: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda hash: - md5: 6a7e0694921f668a030d52f0c47baebd - sha256: 61a8a3bd36d235c349aedaf1aa6a79cce15d6fe89dca4bb593b596d0211513c6 + md5: 6b55867f385dd762ed99ea687af32a69 + sha256: b6bb34ce41cd93956ad6eeee275ed52390fb3788d6c75e753172ea7ac60b66e5 category: main optional: false - name: wheel - version: 0.42.0 + version: 0.45.0 manager: conda platform: linux-64 dependencies: - python: '>=3.7' - url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.42.0-pyhd8ed1ab_0.conda + python: '>=3.8' + url: https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda hash: - md5: 1cdea58981c5cbc17b51973bcaddcea7 - sha256: 80be0ccc815ce22f80c141013302839b0ed938a2edb50b846cf48d8a8c1cfa01 + md5: f9751d7c71df27b2d29f5cab3378982e + sha256: 8a51067f8e1a2cb0b5e89672dbcc0369e344a92e869c38b2946584aa09ab7088 category: main optional: false - name: x264 @@ -1579,12 +1714,13 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=9.3.0' - xorg-xextproto: '' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + xorg-xextproto: '>=7.3.0,<8.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-hb9d3cd8_1003.conda hash: - md5: 65ad6e1eb4aed2b0611855aff05e04f6 - sha256: 5d2af1b40f82128221bace9466565eca87c97726bb80bbfcd03871813f3e1876 + md5: 19fe37721037acc0a1ed76b8cf937359 + sha256: 07268980b659a84a4bac64b475329348e9cf5fa4aee255fa94aa0407ae5b804c category: main optional: false - name: xorg-kbproto @@ -1592,11 +1728,12 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-hb9d3cd8_1003.conda hash: - md5: 4b230e8381279d76131116660f5a241a - sha256: e90b0a6a5d41776f11add74aa030f789faf4efd3875c31964d6f9cfa63a10dd1 + md5: e87bfacb110d85e1eb6099c9ed8e7236 + sha256: 849555ddf7fee334a5a6be9f159d2931c9d076ffb310a9e75b9124f789049d3e category: main optional: false - name: xorg-libx11 @@ -1620,23 +1757,25 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda hash: - md5: 2c80dc38fface310c9bd81b17037fee5 - sha256: 309751371d525ce50af7c87811b435c176915239fc9e132b99a25d5e1703f2d4 + md5: 77cbc488235ebbaab2b6e912d3934bae + sha256: 532a046fee0b3a402db867b6ec55c84ba4cdedb91d817147c8feeae9766be3d6 category: main optional: false - name: xorg-libxdmcp - version: 1.1.3 + version: 1.1.5 manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda hash: - md5: be93aabceefa2fac576e971aef407908 - sha256: 4df7c5ee11b8686d3453e7f3f4aa20ceef441262b49860733066c52cfd0e4a77 + md5: 8035c64cb77ed555e3f150b7b3972480 + sha256: 6b250f3e59db07c2514057944a3ea2044d6a8cdde8a47b6497c254520fade1ee category: main optional: false - name: xorg-libxext @@ -1672,11 +1811,12 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=12' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-hb9d3cd8_1004.conda hash: - md5: bce9f945da8ad2ae9b1d7165a64d0f87 - sha256: b8dda3b560e8a7830fe23be1c58cc41f407b2e20ae2f3b6901eb5842ba62b743 + md5: bc4cd53a083b6720d61a1519a1900878 + sha256: f302a3f6284ee9ad3b39e45251d7ed15167896564dc33e006077a896fd3458a6 category: main optional: false - name: xorg-xproto @@ -1684,11 +1824,12 @@ package: manager: conda platform: linux-64 dependencies: - libgcc-ng: '>=9.3.0' - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2 + __glibc: '>=2.17,<3.0.a0' + libgcc: '>=13' + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-hb9d3cd8_1008.conda hash: - md5: b4a4381d54784606820704f7b5f05a15 - sha256: f197bb742a17c78234c24605ad1fe2d88b1d25f332b75d73e5ba8cf8fbc2a10d + md5: a63f5b66876bb1ec734ab4bdc4d11e86 + sha256: ea02425c898d6694167952794e9a865e02e14e9c844efb067374f90b9ce8ce33 category: main optional: false - name: xz @@ -1716,28 +1857,45 @@ package: category: main optional: false - name: zipp - version: 3.17.0 + version: 3.21.0 manager: conda platform: linux-64 dependencies: python: '>=3.8' - url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.17.0-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda + hash: + md5: fee389bf8a4843bd7a2248ce11b7f188 + sha256: 232a30e4b0045c9de5e168dda0328dc0e28df9439cdecdfb97dd79c1c82c4cec + category: main + optional: false +- name: zstandard + version: 0.23.0 + manager: conda + platform: linux-64 + dependencies: + __glibc: '>=2.17,<3.0.a0' + cffi: '>=1.11' + libgcc: '>=13' + python: '>=3.10,<3.11.0a0' + python_abi: 3.10.* + zstd: '>=1.5.6,<1.6.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py310ha39cb0e_1.conda hash: - md5: 2e4d6bc0b14e10f895fc6791a7d9b26a - sha256: bced1423fdbf77bca0a735187d05d9b9812d2163f60ab426fc10f11f92ecbe26 + md5: f49de34fb99934bf49ab330b5caffd64 + sha256: fcd784735205d6c5f19dcb339f92d2eede9bc42a01ec2c384381ee1b6089d4f6 category: main optional: false - name: zstd - version: 1.5.5 + version: 1.5.6 manager: conda platform: linux-64 dependencies: libgcc-ng: '>=12' libstdcxx-ng: '>=12' - libzlib: '>=1.2.13,<1.3.0a0' - url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.5-hfc55251_0.conda + libzlib: '>=1.2.13,<2.0.0a0' + url: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda hash: - md5: 04b88013080254850d6c01ed54810589 - sha256: 607cbeb1a533be98ba96cf5cdf0ddbb101c78019f1fda063261871dad6248609 + md5: 4d056880988120e29d75bfff282e0f45 + sha256: c558b9cc01d9c1444031bd1ce4b9cff86f9085765f17627a6cd85fc623c8a02b category: main optional: false diff --git a/gpu.environment.yml b/gpu.environment.yml index dcdcf8e..accc8cc 100644 --- a/gpu.environment.yml +++ b/gpu.environment.yml @@ -4,6 +4,7 @@ channels: dependencies: - python>=3.8 - codetiming>=1.2.0 + - cudatoolkit=11.2.2 - googleapis-common-protos>=1.56.3 - gdown>=3.11.0 - hydra-core>=1.0.0 @@ -12,5 +13,3 @@ dependencies: - python-json-logger>=2.0.0 - pytorch-gpu>=1.9.0, <1.12 - torchvision>=0.10.0, <0.13.0 -platforms: - - linux-64 diff --git a/notebooks/facetorch_notebook_demo.ipynb b/notebooks/facetorch_notebook_demo.ipynb index 4fbf4c0..0a42bb7 100644 --- a/notebooks/facetorch_notebook_demo.ipynb +++ b/notebooks/facetorch_notebook_demo.ipynb @@ -1,1799 +1,1799 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "y-Fc6vowtvad" - }, - "source": [ - "\n", - "\"Open\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aY6hmi5helSy" - }, - "source": [ - "# Facetorch notebook demo\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d2Xm8wutei55" - }, - "source": [ - "## Check GPU availability" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "hw6shPzyfeR_", - "outputId": "1f6ddb63-6fb3-4b76-f98f-5351f8a990b4" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Thu Dec 14 17:52:56 2023 \n", - "+---------------------------------------------------------------------------------------+\n", - "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", - "|-----------------------------------------+----------------------+----------------------+\n", - "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", - "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", - "| | | MIG M. |\n", - "|=========================================+======================+======================|\n", - "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", - "| N/A 36C P8 9W / 70W | 0MiB / 15360MiB | 0% Default |\n", - "| | | N/A |\n", - "+-----------------------------------------+----------------------+----------------------+\n", - " \n", - "+---------------------------------------------------------------------------------------+\n", - "| Processes: |\n", - "| GPU GI CI PID Type Process name GPU Memory |\n", - "| ID ID Usage |\n", - "|=======================================================================================|\n", - "| No running processes found |\n", - "+---------------------------------------------------------------------------------------+\n" - ] - } - ], - "source": [ - "# Check GPU availability\n", - "!nvidia-smi\n", - "# Edit -> Notebook settings -> Hardware accelerator\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7A2_hD8oea-0" - }, - "source": [ - "## Add cell timer to the notebook" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "avdwTaKrdjVo", - "outputId": "bc2fa79d-a06f-4122-9560-eb134d595d59" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting ipython-autotime\n", - " Downloading ipython_autotime-0.3.2-py2.py3-none-any.whl (7.0 kB)\n", - "Requirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from ipython-autotime) (7.34.0)\n", - "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (67.7.2)\n", - "Collecting jedi>=0.16 (from ipython->ipython-autotime)\n", - " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (4.4.2)\n", - "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.7.5)\n", - "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (5.7.1)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (3.0.42)\n", - "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (2.16.1)\n", - "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.2.0)\n", - "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.1.6)\n", - "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (4.9.0)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->ipython-autotime) (0.8.3)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->ipython-autotime) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->ipython-autotime) (0.2.12)\n", - "Installing collected packages: jedi, ipython-autotime\n", - "Successfully installed ipython-autotime-0.3.2 jedi-0.19.1\n", - "time: 231 µs (started: 2023-12-14 17:53:09 +00:00)\n" - ] - } - ], - "source": [ - "!pip install ipython-autotime\n", - "%load_ext autotime" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IGfyklYg4KED" - }, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5IGzI2xfeWgq" - }, - "source": [ - "## Install dependencies" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ridAvO8CyTNa", - "outputId": "555db9ef-6783-4218-b45b-72bbac43961d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Python 3.10.12\n", - "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)\n", - "Collecting pip\n", - " Downloading pip-23.3.1-py3-none-any.whl (2.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hInstalling collected packages: pip\n", - " Attempting uninstall: pip\n", - " Found existing installation: pip 23.1.2\n", - " Uninstalling pip-23.1.2:\n", - " Successfully uninstalled pip-23.1.2\n", - "Successfully installed pip-23.3.1\n", - "Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu117\n", - "Collecting facetorch>=0.4.0\n", - " Downloading facetorch-0.4.0-py3-none-any.whl.metadata (19 kB)\n", - "Collecting torch==1.13.1+cu117\n", - " Downloading https://download.pytorch.org/whl/cu117/torch-1.13.1%2Bcu117-cp310-cp310-linux_x86_64.whl (1801.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 GB\u001b[0m \u001b[31m806.6 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting torchvision==0.14.1+cu117\n", - " Downloading https://download.pytorch.org/whl/cu117/torchvision-0.14.1%2Bcu117-cp310-cp310-linux_x86_64.whl (24.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.3/24.3 MB\u001b[0m \u001b[31m43.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting torchaudio==0.13.1\n", - " Downloading https://download.pytorch.org/whl/cu117/torchaudio-0.13.1%2Bcu117-cp310-cp310-linux_x86_64.whl (4.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.2/4.2 MB\u001b[0m \u001b[31m34.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch==1.13.1+cu117) (4.5.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (1.23.5)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (2.31.0)\n", - "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (9.4.0)\n", - "Collecting codetiming>=1.2.0 (from facetorch>=0.4.0)\n", - " Downloading codetiming-1.4.0-py3-none-any.whl (7.2 kB)\n", - "Requirement already satisfied: googleapis-common-protos>=1.56.3 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (1.62.0)\n", - "Requirement already satisfied: gdown>=3.11.0 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (4.6.6)\n", - "Collecting hydra-core>=1.0.0 (from facetorch>=0.4.0)\n", - " Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pip>=20.0.2 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (23.3.1)\n", - "Collecting python-json-logger>=2.0.0 (from facetorch>=0.4.0)\n", - " Downloading python_json_logger-2.0.7-py3-none-any.whl (8.1 kB)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (3.13.1)\n", - "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (1.16.0)\n", - "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (4.66.1)\n", - "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (4.11.2)\n", - "Requirement already satisfied: protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0.dev0,>=3.19.5 in /usr/local/lib/python3.10/dist-packages (from googleapis-common-protos>=1.56.3->facetorch>=0.4.0) (3.20.3)\n", - "Collecting omegaconf<2.4,>=2.2 (from hydra-core>=1.0.0->facetorch>=0.4.0)\n", - " Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting antlr4-python3-runtime==4.9.* (from hydra-core>=1.0.0->facetorch>=0.4.0)\n", - " Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hydra-core>=1.0.0->facetorch>=0.4.0) (23.2)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (2.0.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (2023.11.17)\n", - "Requirement already satisfied: PyYAML>=5.1.0 in /usr/local/lib/python3.10/dist-packages (from omegaconf<2.4,>=2.2->hydra-core>=1.0.0->facetorch>=0.4.0) (6.0.1)\n", - "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->gdown>=3.11.0->facetorch>=0.4.0) (2.5)\n", - "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from requests[socks]->gdown>=3.11.0->facetorch>=0.4.0) (1.7.1)\n", - "Downloading facetorch-0.4.0-py3-none-any.whl (37 kB)\n", - "Building wheels for collected packages: antlr4-python3-runtime\n", - " Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=d8fd385e10951669c85ddee3f220fbd408c1a21c99fd332c6c1cd4c160df37d8\n", - " Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\n", - "Successfully built antlr4-python3-runtime\n", - "Installing collected packages: antlr4-python3-runtime, torch, python-json-logger, omegaconf, codetiming, torchvision, torchaudio, hydra-core, facetorch\n", - " Attempting uninstall: torch\n", - " Found existing installation: torch 2.1.0+cu121\n", - " Uninstalling torch-2.1.0+cu121:\n", - " Successfully uninstalled torch-2.1.0+cu121\n", - " Attempting uninstall: torchvision\n", - " Found existing installation: torchvision 0.16.0+cu121\n", - " Uninstalling torchvision-0.16.0+cu121:\n", - " Successfully uninstalled torchvision-0.16.0+cu121\n", - " Attempting uninstall: torchaudio\n", - " Found existing installation: torchaudio 2.1.0+cu121\n", - " Uninstalling torchaudio-2.1.0+cu121:\n", - " Successfully uninstalled torchaudio-2.1.0+cu121\n", - "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", - "torchdata 0.7.0 requires torch==2.1.0, but you have torch 1.13.1+cu117 which is incompatible.\n", - "torchtext 0.16.0 requires torch==2.1.0, but you have torch 1.13.1+cu117 which is incompatible.\u001b[0m\u001b[31m\n", - "\u001b[0mSuccessfully installed antlr4-python3-runtime-4.9.3 codetiming-1.4.0 facetorch-0.4.0 hydra-core-1.3.2 omegaconf-2.3.0 python-json-logger-2.0.7 torch-1.13.1+cu117 torchaudio-0.13.1+cu117 torchvision-0.14.1+cu117\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0mfacetorch 0.4.0\n", - "time: 2min 48s (started: 2023-12-14 17:53:09 +00:00)\n" - ] - } - ], - "source": [ - "!python --version\n", - "!python -m pip install --upgrade pip\n", - "!python -m pip install \"facetorch>=0.5.0\" \"torch==1.13.1+cu117\" \"torchvision==0.14.1+cu117\" \"torchaudio==0.13.1\" --extra-index-url https://download.pytorch.org/whl/cu117\n", - "\n", - "!pip list | grep facetorch" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FUXdsQsRkU3P" - }, - "source": [ - "## Download config and image" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2POqMwL6kZc1", - "outputId": "18b8786f-4ea0-47bf-c05e-85e8aa1d1fe5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2023-12-14 17:55:58-- https://github.com/tomas-gajarsky/facetorch/blob/main/data/input/test.jpg?raw=true\n", - "Resolving github.com (github.com)... 192.30.255.113\n", - "Connecting to github.com (github.com)|192.30.255.113|:443... connected.\n", - "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://github.com/tomas-gajarsky/facetorch/raw/main/data/input/test.jpg [following]\n", - "--2023-12-14 17:55:58-- https://github.com/tomas-gajarsky/facetorch/raw/main/data/input/test.jpg\n", - "Reusing existing connection to github.com:443.\n", - "HTTP request sent, awaiting response... 302 Found\n", - "Location: https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/data/input/test.jpg [following]\n", - "--2023-12-14 17:55:58-- https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/data/input/test.jpg\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.108.133, ...\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 131281 (128K) [image/jpeg]\n", - "Saving to: ‘./test.jpg’\n", - "\n", - "./test.jpg 100%[===================>] 128.20K --.-KB/s in 0.02s \n", - "\n", - "2023-12-14 17:55:59 (6.61 MB/s) - ‘./test.jpg’ saved [131281/131281]\n", - "\n", - "--2023-12-14 17:55:59-- https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/conf/merged/gpu.merged.config.yaml\n", - "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.108.133, ...\n", - "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 14479 (14K) [text/plain]\n", - "Saving to: ‘./gpu.config.yml’\n", - "\n", - "./gpu.config.yml 100%[===================>] 14.14K --.-KB/s in 0s \n", - "\n", - "2023-12-14 17:55:59 (58.8 MB/s) - ‘./gpu.config.yml’ saved [14479/14479]\n", - "\n", - "time: 1.12 s (started: 2023-12-14 17:55:58 +00:00)\n" - ] - } - ], - "source": [ - "!wget -O ./test.jpg https://github.com/tomas-gajarsky/facetorch/blob/main/data/input/test.jpg?raw=true\n", - "!wget -O ./gpu.config.yml https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/conf/merged/gpu.merged.config.yaml" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "y-Fc6vowtvad" + }, + "source": [ + "\n", + "\"Open\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aY6hmi5helSy" + }, + "source": [ + "# Facetorch notebook demo\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d2Xm8wutei55" + }, + "source": [ + "## Check GPU availability" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "hw6shPzyfeR_", + "outputId": "1f6ddb63-6fb3-4b76-f98f-5351f8a990b4" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "Kd09Logze31A" - }, - "source": [ - "## Import packages" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Thu Dec 14 17:52:56 2023 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 36C P8 9W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ], + "source": [ + "# Check GPU availability\n", + "!nvidia-smi\n", + "# Edit -> Notebook settings -> Hardware accelerator\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7A2_hD8oea-0" + }, + "source": [ + "## Add cell timer to the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "avdwTaKrdjVo", + "outputId": "bc2fa79d-a06f-4122-9560-eb134d595d59" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ZBPJj36qr4wc", - "outputId": "f3f70008-1027-4a59-eba2-8252f2cc0141" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 1.61 s (started: 2023-12-14 17:55:59 +00:00)\n" - ] - } - ], - "source": [ - "from facetorch import FaceAnalyzer\n", - "from omegaconf import OmegaConf\n", - "from torch.nn.functional import cosine_similarity\n", - "from typing import Dict\n", - "import operator\n", - "import torchvision" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting ipython-autotime\n", + " Downloading ipython_autotime-0.3.2-py2.py3-none-any.whl (7.0 kB)\n", + "Requirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from ipython-autotime) (7.34.0)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (67.7.2)\n", + "Collecting jedi>=0.16 (from ipython->ipython-autotime)\n", + " Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (4.4.2)\n", + "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.7.5)\n", + "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (5.7.1)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (3.0.42)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (2.16.1)\n", + "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (0.1.6)\n", + "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->ipython-autotime) (4.9.0)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->ipython-autotime) (0.8.3)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->ipython-autotime) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->ipython-autotime) (0.2.12)\n", + "Installing collected packages: jedi, ipython-autotime\n", + "Successfully installed ipython-autotime-0.3.2 jedi-0.19.1\n", + "time: 231 µs (started: 2023-12-14 17:53:09 +00:00)\n" + ] + } + ], + "source": [ + "!pip install ipython-autotime\n", + "%load_ext autotime" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IGfyklYg4KED" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5IGzI2xfeWgq" + }, + "source": [ + "## Install dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ridAvO8CyTNa", + "outputId": "555db9ef-6783-4218-b45b-72bbac43961d" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "CZPc7PeOe8-0" - }, - "source": [ - "## Configure" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.10.12\n", + "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)\n", + "Collecting pip\n", + " Downloading pip-23.3.1-py3-none-any.whl (2.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: pip\n", + " Attempting uninstall: pip\n", + " Found existing installation: pip 23.1.2\n", + " Uninstalling pip-23.1.2:\n", + " Successfully uninstalled pip-23.1.2\n", + "Successfully installed pip-23.3.1\n", + "Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/cu117\n", + "Collecting facetorch>=0.4.0\n", + " Downloading facetorch-0.4.0-py3-none-any.whl.metadata (19 kB)\n", + "Collecting torch==1.13.1+cu117\n", + " Downloading https://download.pytorch.org/whl/cu117/torch-1.13.1%2Bcu117-cp310-cp310-linux_x86_64.whl (1801.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 GB\u001b[0m \u001b[31m806.6 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting torchvision==0.14.1+cu117\n", + " Downloading https://download.pytorch.org/whl/cu117/torchvision-0.14.1%2Bcu117-cp310-cp310-linux_x86_64.whl (24.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.3/24.3 MB\u001b[0m \u001b[31m43.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting torchaudio==0.13.1\n", + " Downloading https://download.pytorch.org/whl/cu117/torchaudio-0.13.1%2Bcu117-cp310-cp310-linux_x86_64.whl (4.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.2/4.2 MB\u001b[0m \u001b[31m34.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch==1.13.1+cu117) (4.5.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (1.23.5)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (2.31.0)\n", + "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision==0.14.1+cu117) (9.4.0)\n", + "Collecting codetiming>=1.2.0 (from facetorch>=0.4.0)\n", + " Downloading codetiming-1.4.0-py3-none-any.whl (7.2 kB)\n", + "Requirement already satisfied: googleapis-common-protos>=1.56.3 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (1.62.0)\n", + "Requirement already satisfied: gdown>=3.11.0 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (4.6.6)\n", + "Collecting hydra-core>=1.0.0 (from facetorch>=0.4.0)\n", + " Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pip>=20.0.2 in /usr/local/lib/python3.10/dist-packages (from facetorch>=0.4.0) (23.3.1)\n", + "Collecting python-json-logger>=2.0.0 (from facetorch>=0.4.0)\n", + " Downloading python_json_logger-2.0.7-py3-none-any.whl (8.1 kB)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (3.13.1)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (1.16.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (4.66.1)\n", + "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from gdown>=3.11.0->facetorch>=0.4.0) (4.11.2)\n", + "Requirement already satisfied: protobuf!=3.20.0,!=3.20.1,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0.dev0,>=3.19.5 in /usr/local/lib/python3.10/dist-packages (from googleapis-common-protos>=1.56.3->facetorch>=0.4.0) (3.20.3)\n", + "Collecting omegaconf<2.4,>=2.2 (from hydra-core>=1.0.0->facetorch>=0.4.0)\n", + " Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting antlr4-python3-runtime==4.9.* (from hydra-core>=1.0.0->facetorch>=0.4.0)\n", + " Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hydra-core>=1.0.0->facetorch>=0.4.0) (23.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision==0.14.1+cu117) (2023.11.17)\n", + "Requirement already satisfied: PyYAML>=5.1.0 in /usr/local/lib/python3.10/dist-packages (from omegaconf<2.4,>=2.2->hydra-core>=1.0.0->facetorch>=0.4.0) (6.0.1)\n", + "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->gdown>=3.11.0->facetorch>=0.4.0) (2.5)\n", + "Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.10/dist-packages (from requests[socks]->gdown>=3.11.0->facetorch>=0.4.0) (1.7.1)\n", + "Downloading facetorch-0.4.0-py3-none-any.whl (37 kB)\n", + "Building wheels for collected packages: antlr4-python3-runtime\n", + " Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144554 sha256=d8fd385e10951669c85ddee3f220fbd408c1a21c99fd332c6c1cd4c160df37d8\n", + " Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\n", + "Successfully built antlr4-python3-runtime\n", + "Installing collected packages: antlr4-python3-runtime, torch, python-json-logger, omegaconf, codetiming, torchvision, torchaudio, hydra-core, facetorch\n", + " Attempting uninstall: torch\n", + " Found existing installation: torch 2.1.0+cu121\n", + " Uninstalling torch-2.1.0+cu121:\n", + " Successfully uninstalled torch-2.1.0+cu121\n", + " Attempting uninstall: torchvision\n", + " Found existing installation: torchvision 0.16.0+cu121\n", + " Uninstalling torchvision-0.16.0+cu121:\n", + " Successfully uninstalled torchvision-0.16.0+cu121\n", + " Attempting uninstall: torchaudio\n", + " Found existing installation: torchaudio 2.1.0+cu121\n", + " Uninstalling torchaudio-2.1.0+cu121:\n", + " Successfully uninstalled torchaudio-2.1.0+cu121\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "torchdata 0.7.0 requires torch==2.1.0, but you have torch 1.13.1+cu117 which is incompatible.\n", + "torchtext 0.16.0 requires torch==2.1.0, but you have torch 1.13.1+cu117 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed antlr4-python3-runtime-4.9.3 codetiming-1.4.0 facetorch-0.4.0 hydra-core-1.3.2 omegaconf-2.3.0 python-json-logger-2.0.7 torch-1.13.1+cu117 torchaudio-0.13.1+cu117 torchvision-0.14.1+cu117\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mfacetorch 0.4.0\n", + "time: 2min 48s (started: 2023-12-14 17:53:09 +00:00)\n" + ] + } + ], + "source": [ + "!python --version\n", + "!python -m pip install --upgrade pip\n", + "!python -m pip install \"facetorch>=0.5.1\" \"torch==1.13.1+cu117\" \"torchvision==0.14.1+cu117\" \"torchaudio==0.13.1\" --extra-index-url https://download.pytorch.org/whl/cu117\n", + "\n", + "!pip list | grep facetorch" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FUXdsQsRkU3P" + }, + "source": [ + "## Download config and image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "2POqMwL6kZc1", + "outputId": "18b8786f-4ea0-47bf-c05e-85e8aa1d1fe5" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MPrpxwu7aeC2", - "outputId": "3632b0e4-192d-4590-e8fe-ac72c69ea3ef" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 161 ms (started: 2023-12-14 17:56:01 +00:00)\n" - ] - } - ], - "source": [ - "path_img_input=\"./test.jpg\"\n", - "path_img_output=\"/test_output.jpg\"\n", - "path_config=\"gpu.config.yml\"\n", - "\n", - "\n", - "cfg = OmegaConf.load(path_config)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-12-14 17:55:58-- https://github.com/tomas-gajarsky/facetorch/blob/main/data/input/test.jpg?raw=true\n", + "Resolving github.com (github.com)... 192.30.255.113\n", + "Connecting to github.com (github.com)|192.30.255.113|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://github.com/tomas-gajarsky/facetorch/raw/main/data/input/test.jpg [following]\n", + "--2023-12-14 17:55:58-- https://github.com/tomas-gajarsky/facetorch/raw/main/data/input/test.jpg\n", + "Reusing existing connection to github.com:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/data/input/test.jpg [following]\n", + "--2023-12-14 17:55:58-- https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/data/input/test.jpg\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.108.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 131281 (128K) [image/jpeg]\n", + "Saving to: ‘./test.jpg’\n", + "\n", + "./test.jpg 100%[===================>] 128.20K --.-KB/s in 0.02s \n", + "\n", + "2023-12-14 17:55:59 (6.61 MB/s) - ‘./test.jpg’ saved [131281/131281]\n", + "\n", + "--2023-12-14 17:55:59-- https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/conf/merged/gpu.merged.config.yaml\n", + "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.108.133, ...\n", + "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 14479 (14K) [text/plain]\n", + "Saving to: ‘./gpu.config.yml’\n", + "\n", + "./gpu.config.yml 100%[===================>] 14.14K --.-KB/s in 0s \n", + "\n", + "2023-12-14 17:55:59 (58.8 MB/s) - ‘./gpu.config.yml’ saved [14479/14479]\n", + "\n", + "time: 1.12 s (started: 2023-12-14 17:55:58 +00:00)\n" + ] + } + ], + "source": [ + "!wget -O ./test.jpg https://github.com/tomas-gajarsky/facetorch/blob/main/data/input/test.jpg?raw=true\n", + "!wget -O ./gpu.config.yml https://raw.githubusercontent.com/tomas-gajarsky/facetorch/main/conf/merged/gpu.merged.config.yaml" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kd09Logze31A" + }, + "source": [ + "## Import packages" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ZBPJj36qr4wc", + "outputId": "f3f70008-1027-4a59-eba2-8252f2cc0141" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "OP_dRHmaeMut" - }, - "source": [ - "## Startup" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 1.61 s (started: 2023-12-14 17:55:59 +00:00)\n" + ] + } + ], + "source": [ + "from facetorch import FaceAnalyzer\n", + "from omegaconf import OmegaConf\n", + "from torch.nn.functional import cosine_similarity\n", + "from typing import Dict\n", + "import operator\n", + "import torchvision" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CZPc7PeOe8-0" + }, + "source": [ + "## Configure" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "MPrpxwu7aeC2", + "outputId": "3632b0e4-192d-4590-e8fe-ac72c69ea3ef" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WTxaSgDxt9DS", - "outputId": "3cee269b-ec69-44c1-fe2f-54d820dbe3d2" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "{\"asctime\": \"2023-12-14 17:56:01,298\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceAnalyzer\"}\n", - "{\"asctime\": \"2023-12-14 17:56:01,299\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseReader\"}\n", - "{\"asctime\": \"2023-12-14 17:56:01,481\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceDetector\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1eMuOdGkiNCOUTiEbKKoPCHGCuDgiKeNC&confirm=t\n", - "To: /opt/facetorch/models/torchscript/detector/1/model.pt\n", - "100%|██████████| 110M/110M [00:02<00:00, 50.2MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:07,386\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceUnifier\"}\n", - "{\"asctime\": \"2023-12-14 17:56:07,424\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor objects\"}\n", - "{\"asctime\": \"2023-12-14 17:56:07,428\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor embed\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=19h3kqar1wlELAmM5hDyj9tlrUh8yjrCl&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/embed/1/model.pt\n", - "100%|██████████| 114M/114M [00:01<00:00, 57.2MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:10,674\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor verify\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1WI-mP_0mGW31OHfriPUsuFS_usYh_W8p&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/verify/2/model.pt\n", - "100%|██████████| 261M/261M [00:03<00:00, 67.0MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:16,991\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor fer\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1xoB5VYOd0XLjb-rQqqHWCkQvma4NytEd&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/fer/2/model.pt\n", - "100%|██████████| 31.7M/31.7M [00:00<00:00, 37.8MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:19,157\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor au\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1uoVX9suSA5JVWTms3hEtJKzwO-CUR_jV&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/au/1/model.pt\n", - "100%|██████████| 382M/382M [00:05<00:00, 73.8MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:25,875\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor va\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1Xl4ilNCU_DgKNhITrXb3UyQUUdm3VTKS&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/va/1/model.pt\n", - "100%|██████████| 19.8M/19.8M [00:00<00:00, 56.6MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:31,551\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor deepfake\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=1GjDTwQpvrkCjXOdiBy1oMkzm7nt-bXFg&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/deepfake/1/model.pt\n", - "100%|██████████| 268M/268M [00:03<00:00, 77.2MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:36,483\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor align\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=16gNFQdEH2nWvW3zTbdIAniKIbPAp6qBA&confirm=t\n", - "To: /opt/facetorch/models/torchscript/predictor/align/1/model.pt\n", - "100%|██████████| 49.6M/49.6M [00:00<00:00, 52.2MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:38,391\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer objects\"}\n", - "{\"asctime\": \"2023-12-14 17:56:38,397\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer align\"}\n", - "Downloading...\n", - "From: https://drive.google.com/uc?&id=11tdAcFuSXqCCf58g52WT1Rpa8KuQwe2o&confirm=t\n", - "To: /opt/facetorch/data/3dmm/meta.pt\n", - "100%|██████████| 33.2M/33.2M [00:01<00:00, 31.4MB/s]\n", - "{\"asctime\": \"2023-12-14 17:56:40,382\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer draw_boxes\"}\n", - "{\"asctime\": \"2023-12-14 17:56:40,390\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer draw_landmarks\"}\n", - "{\"asctime\": \"2023-12-14 17:56:40,395\", \"levelname\": \"INFO\", \"message\": \"Running FaceAnalyzer\"}\n", - "{\"asctime\": \"2023-12-14 17:56:40,401\", \"levelname\": \"INFO\", \"message\": \"Reading image\", \"path_image\": \"./test.jpg\"}\n", - "{\"asctime\": \"2023-12-14 17:56:40,611\", \"levelname\": \"INFO\", \"message\": \"Detecting faces\"}\n", - "{\"asctime\": \"2023-12-14 17:56:45,558\", \"levelname\": \"INFO\", \"message\": \"Number of faces: 4\"}\n", - "{\"asctime\": \"2023-12-14 17:56:45,559\", \"levelname\": \"INFO\", \"message\": \"Unifying faces\"}\n", - "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1194: UserWarning: operator() profile_node %383 : int = prim::profile_ivalue(%out_dtype.1)\n", - " does not have profile information (Triggered internally at ../torch/csrc/jit/codegen/cuda/graph_fuser.cpp:105.)\n", - " return forward_call(*input, **kwargs)\n", - "{\"asctime\": \"2023-12-14 17:56:45,661\", \"levelname\": \"INFO\", \"message\": \"Predicting facial features\"}\n", - "{\"asctime\": \"2023-12-14 17:56:45,663\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: embed\"}\n", - "{\"asctime\": \"2023-12-14 17:56:45,790\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: verify\"}\n", - "{\"asctime\": \"2023-12-14 17:56:48,460\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: fer\"}\n", - "{\"asctime\": \"2023-12-14 17:56:48,724\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: au\"}\n", - "{\"asctime\": \"2023-12-14 17:56:49,231\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: va\"}\n", - "{\"asctime\": \"2023-12-14 17:56:49,268\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: deepfake\"}\n", - "{\"asctime\": \"2023-12-14 17:56:49,916\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: align\"}\n", - "{\"asctime\": \"2023-12-14 17:56:50,158\", \"levelname\": \"INFO\", \"message\": \"Utilizing facial features\"}\n", - "{\"asctime\": \"2023-12-14 17:56:50,159\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: align\"}\n", - "{\"asctime\": \"2023-12-14 17:56:50,181\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_boxes\"}\n", - "{\"asctime\": \"2023-12-14 17:56:50,241\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_landmarks\"}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 49 s (started: 2023-12-14 17:56:01 +00:00)\n" - ] - } - ], - "source": [ - "# initialize\n", - "analyzer = FaceAnalyzer(cfg.analyzer)\n", - "\n", - "# warmup\n", - "response = analyzer.run(\n", - " path_image=path_img_input,\n", - " batch_size=cfg.batch_size,\n", - " fix_img_size=cfg.fix_img_size,\n", - " return_img_data=False,\n", - " include_tensors=True,\n", - " path_output=path_img_output,\n", - " )" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 161 ms (started: 2023-12-14 17:56:01 +00:00)\n" + ] + } + ], + "source": [ + "path_img_input=\"./test.jpg\"\n", + "path_img_output=\"/test_output.jpg\"\n", + "path_config=\"gpu.config.yml\"\n", + "\n", + "\n", + "cfg = OmegaConf.load(path_config)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OP_dRHmaeMut" + }, + "source": [ + "## Startup" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "WTxaSgDxt9DS", + "outputId": "3cee269b-ec69-44c1-fe2f-54d820dbe3d2" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "eAuOuEtIeJBy" - }, - "source": [ - "## Inference" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "{\"asctime\": \"2023-12-14 17:56:01,298\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceAnalyzer\"}\n", + "{\"asctime\": \"2023-12-14 17:56:01,299\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseReader\"}\n", + "{\"asctime\": \"2023-12-14 17:56:01,481\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceDetector\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1eMuOdGkiNCOUTiEbKKoPCHGCuDgiKeNC&confirm=t\n", + "To: /opt/facetorch/models/torchscript/detector/1/model.pt\n", + "100%|██████████| 110M/110M [00:02<00:00, 50.2MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:07,386\", \"levelname\": \"INFO\", \"message\": \"Initializing FaceUnifier\"}\n", + "{\"asctime\": \"2023-12-14 17:56:07,424\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor objects\"}\n", + "{\"asctime\": \"2023-12-14 17:56:07,428\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor embed\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=19h3kqar1wlELAmM5hDyj9tlrUh8yjrCl&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/embed/1/model.pt\n", + "100%|██████████| 114M/114M [00:01<00:00, 57.2MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:10,674\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor verify\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1WI-mP_0mGW31OHfriPUsuFS_usYh_W8p&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/verify/2/model.pt\n", + "100%|██████████| 261M/261M [00:03<00:00, 67.0MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:16,991\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor fer\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1xoB5VYOd0XLjb-rQqqHWCkQvma4NytEd&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/fer/2/model.pt\n", + "100%|██████████| 31.7M/31.7M [00:00<00:00, 37.8MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:19,157\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor au\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1uoVX9suSA5JVWTms3hEtJKzwO-CUR_jV&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/au/1/model.pt\n", + "100%|██████████| 382M/382M [00:05<00:00, 73.8MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:25,875\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor va\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1Xl4ilNCU_DgKNhITrXb3UyQUUdm3VTKS&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/va/1/model.pt\n", + "100%|██████████| 19.8M/19.8M [00:00<00:00, 56.6MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:31,551\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor deepfake\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=1GjDTwQpvrkCjXOdiBy1oMkzm7nt-bXFg&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/deepfake/1/model.pt\n", + "100%|██████████| 268M/268M [00:03<00:00, 77.2MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:36,483\", \"levelname\": \"INFO\", \"message\": \"Initializing FacePredictor align\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=16gNFQdEH2nWvW3zTbdIAniKIbPAp6qBA&confirm=t\n", + "To: /opt/facetorch/models/torchscript/predictor/align/1/model.pt\n", + "100%|██████████| 49.6M/49.6M [00:00<00:00, 52.2MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:38,391\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer objects\"}\n", + "{\"asctime\": \"2023-12-14 17:56:38,397\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer align\"}\n", + "Downloading...\n", + "From: https://drive.google.com/uc?&id=11tdAcFuSXqCCf58g52WT1Rpa8KuQwe2o&confirm=t\n", + "To: /opt/facetorch/data/3dmm/meta.pt\n", + "100%|██████████| 33.2M/33.2M [00:01<00:00, 31.4MB/s]\n", + "{\"asctime\": \"2023-12-14 17:56:40,382\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer draw_boxes\"}\n", + "{\"asctime\": \"2023-12-14 17:56:40,390\", \"levelname\": \"INFO\", \"message\": \"Initializing BaseUtilizer draw_landmarks\"}\n", + "{\"asctime\": \"2023-12-14 17:56:40,395\", \"levelname\": \"INFO\", \"message\": \"Running FaceAnalyzer\"}\n", + "{\"asctime\": \"2023-12-14 17:56:40,401\", \"levelname\": \"INFO\", \"message\": \"Reading image\", \"path_image\": \"./test.jpg\"}\n", + "{\"asctime\": \"2023-12-14 17:56:40,611\", \"levelname\": \"INFO\", \"message\": \"Detecting faces\"}\n", + "{\"asctime\": \"2023-12-14 17:56:45,558\", \"levelname\": \"INFO\", \"message\": \"Number of faces: 4\"}\n", + "{\"asctime\": \"2023-12-14 17:56:45,559\", \"levelname\": \"INFO\", \"message\": \"Unifying faces\"}\n", + "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py:1194: UserWarning: operator() profile_node %383 : int = prim::profile_ivalue(%out_dtype.1)\n", + " does not have profile information (Triggered internally at ../torch/csrc/jit/codegen/cuda/graph_fuser.cpp:105.)\n", + " return forward_call(*input, **kwargs)\n", + "{\"asctime\": \"2023-12-14 17:56:45,661\", \"levelname\": \"INFO\", \"message\": \"Predicting facial features\"}\n", + "{\"asctime\": \"2023-12-14 17:56:45,663\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: embed\"}\n", + "{\"asctime\": \"2023-12-14 17:56:45,790\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: verify\"}\n", + "{\"asctime\": \"2023-12-14 17:56:48,460\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: fer\"}\n", + "{\"asctime\": \"2023-12-14 17:56:48,724\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: au\"}\n", + "{\"asctime\": \"2023-12-14 17:56:49,231\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: va\"}\n", + "{\"asctime\": \"2023-12-14 17:56:49,268\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: deepfake\"}\n", + "{\"asctime\": \"2023-12-14 17:56:49,916\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: align\"}\n", + "{\"asctime\": \"2023-12-14 17:56:50,158\", \"levelname\": \"INFO\", \"message\": \"Utilizing facial features\"}\n", + "{\"asctime\": \"2023-12-14 17:56:50,159\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: align\"}\n", + "{\"asctime\": \"2023-12-14 17:56:50,181\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_boxes\"}\n", + "{\"asctime\": \"2023-12-14 17:56:50,241\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_landmarks\"}\n" + ] }, { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "aYw49BWFuPmE", - "outputId": "e50b20d8-36ca-4ff6-9c58-d419ba9a403a" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "{\"asctime\": \"2023-12-14 18:00:33,908\", \"levelname\": \"INFO\", \"message\": \"Running FaceAnalyzer\"}\n", - "{\"asctime\": \"2023-12-14 18:00:33,911\", \"levelname\": \"INFO\", \"message\": \"Reading image\", \"path_image\": \"./test.jpg\"}\n", - "{\"asctime\": \"2023-12-14 18:00:33,933\", \"levelname\": \"INFO\", \"message\": \"Detecting faces\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,126\", \"levelname\": \"INFO\", \"message\": \"Number of faces: 4\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,127\", \"levelname\": \"INFO\", \"message\": \"Unifying faces\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,131\", \"levelname\": \"INFO\", \"message\": \"Predicting facial features\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,133\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: embed\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,146\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: verify\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,171\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: fer\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,221\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: au\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,717\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: va\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,722\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: deepfake\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,824\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: align\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,842\", \"levelname\": \"INFO\", \"message\": \"Utilizing facial features\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,843\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: align\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,854\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_boxes\"}\n", - "{\"asctime\": \"2023-12-14 18:00:34,887\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_landmarks\"}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 990 ms (started: 2023-12-14 18:00:33 +00:00)\n" - ] - } - ], - "source": [ - "response = analyzer.run(\n", - " path_image=path_img_input,\n", - " batch_size=cfg.batch_size,\n", - " fix_img_size=cfg.fix_img_size,\n", - " return_img_data=cfg.return_img_data,\n", - " include_tensors=cfg.include_tensors,\n", - " path_output=path_img_output,\n", - " )" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 49 s (started: 2023-12-14 17:56:01 +00:00)\n" + ] + } + ], + "source": [ + "# initialize\n", + "analyzer = FaceAnalyzer(cfg.analyzer)\n", + "\n", + "# warmup\n", + "response = analyzer.run(\n", + " path_image=path_img_input,\n", + " batch_size=cfg.batch_size,\n", + " fix_img_size=cfg.fix_img_size,\n", + " return_img_data=False,\n", + " include_tensors=True,\n", + " path_output=path_img_output,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eAuOuEtIeJBy" + }, + "source": [ + "## Inference" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "aYw49BWFuPmE", + "outputId": "e50b20d8-36ca-4ff6-9c58-d419ba9a403a" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "_Cb8uZNHvFN4" - }, - "source": [ - "## Output image" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "{\"asctime\": \"2023-12-14 18:00:33,908\", \"levelname\": \"INFO\", \"message\": \"Running FaceAnalyzer\"}\n", + "{\"asctime\": \"2023-12-14 18:00:33,911\", \"levelname\": \"INFO\", \"message\": \"Reading image\", \"path_image\": \"./test.jpg\"}\n", + "{\"asctime\": \"2023-12-14 18:00:33,933\", \"levelname\": \"INFO\", \"message\": \"Detecting faces\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,126\", \"levelname\": \"INFO\", \"message\": \"Number of faces: 4\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,127\", \"levelname\": \"INFO\", \"message\": \"Unifying faces\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,131\", \"levelname\": \"INFO\", \"message\": \"Predicting facial features\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,133\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: embed\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,146\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: verify\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,171\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: fer\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,221\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: au\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,717\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: va\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,722\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: deepfake\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,824\", \"levelname\": \"INFO\", \"message\": \"Running FacePredictor: align\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,842\", \"levelname\": \"INFO\", \"message\": \"Utilizing facial features\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,843\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: align\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,854\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_boxes\"}\n", + "{\"asctime\": \"2023-12-14 18:00:34,887\", \"levelname\": \"INFO\", \"message\": \"Running BaseUtilizer: draw_landmarks\"}\n" + ] }, { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "h_pVKJNKvFqp", - "outputId": "6d8d5a35-5888-4c77-ae4a-b415dc102c47" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAQ4CAIAAABjcvvYAAEAAElEQVR4nOz9W5fkOI6oCwIgJZm5e9wyq2r3Zc/sPrPmzJqX8zxP8xfmT8yv3mudnrWn++zuuuQtwi9mkkjgPECiSMqksPDwiIzMwtfZUWYuk0RRvAAgCAAYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEY14L/3//P//v169fv3r473hyJKD9GgDFGAGjbloiYWURijCIS4+ia9nwaWai7uXv73R9evX4nTOhcFAaU+fKI2QV99kVERCT7mv+wgPMj5QVDCN77m5ubV69etV0HIkR0Op3+8pc/3//yl+5w+0//+N/effdf0LVCKBgBWJCB3cb1PoFUeBKJ9z89/PgzjKEVisOIAL5rA8fzOHRZlYYQRKRt2xjjMAwcg3OuaZqmaZg5hJA9ZvYiEBCWQlJWaTBXo76UndKyBER0ziEiIMYQYoxE5JzDrH6JELNbxzhuXpB5KSAiM6cLDue+bVvn3DiOAOCc06Mi4lDys/LKD4FhA5GYf40xjuNIRE3TcIjaBgAghKAF0Ns5t7xlZhG5fH1EgFS9KERTEQWRfEvNwTdN13XgmlHiVhXnlR9jZOapbhG99yLCzNp98l+OMTaILcEvP/3txx/+2o/j4e7193/6x7a9cSAgMcYowDGOzOH9h5//4z/+4+l0ev36j3/4059ubm7SUy912A9bdXga+uyRizZf9HpEjlGbyuPj4/uf/zIMY9M0f/jDH7v2KILn8+Cc+/mX9//+P/+Nhe/u7v7pn/7p7u6u6sv6yCIyDMOPP/74n//5nz/88MNff/jhCYNrGu89ERFRajnaL7SWYoxV28jrWW+kpzuEo1YUR45cPJqgj947alrnGxjHIYaI6J3r3r757n/9v/3zf/tf/pdXr14h+fZ449sDIDnnAJ3LKoOI9BEAwDnnGp+VBACWR/bUVOXMvnH+d+dcGgGq8XaHvDbiRksGAIKi0vJioKNxHNu2BYAQQn5Bl3X5ahgZ4zJuaCdavoaiV26NP9Wr1CpN49VODeRnVY1h6155i2Jm7SAXT4kjLxOO99Q4/SoAOIQ0SrEIiOgjC2LIBiJEzAvP29OIzqEXz4qhGA+LZ1lGL9CutBzKHqV6rqrSiuods/dVNVAsBvPifXHer0VE0sjGUB/Krk/pZ/q64RICU0ea773ZsIuzqnsVFLVY/mz5hgKh7ymE97/8tX96T8iCEAkjeAA8OAcyDUrjOOpU4r0nj+QRBB0DCsUoo8CI8DD0D2P8H08Q0cElqgZQVG82pKwfc+tQPrVVv/RZX657DW220eqCAJAmrPWh5SzYPERZ16ueZF0b2QhTDJX51+LiRNWQslUMbSr6LHV32Co5iIQQw3g+n/u+H4YhhBBjDCGwSJQAwE6AREgiCaMwsTiJrXDjHRHpA4rI+XzWkZYAm6bx3jOzI/LNNFkgyG0jdyq+ti0AnM/nx8fH0+mkld80zd3d3Zs3b25ubpvGp4qq6lBvpy1WcBmi9QMRhRCGMQgdfXe8ubnpDkffHdC1oucCYTZJlfImONiRkDc7bPXuiuGrfAs743zOZj/5zYEwNXwVYr7mrcdhHIdBhoDokBmd015+8ZVoEySitjloR+r7XjWW5YLh8si+z57StafFvDA6tKXJVZ9xLlsxtz3j4iqCdF3HzOM4SuTj8Xg6nQBAB4KXeILPIg2++eMn8l+GEHSg6IdeRzQdVkSkGhyY46TpEbVtq4I+QDnN78pzVw4H+88FQKl/IRKC6JzhnKsUFX0RInJ7e6tHnXNC+O9/+zOPoR9GvY7Wkv449EOqJSLKpUydZorqBUEQQRlCRGARYRbnXFKzEanzLSHqDIiIznsEj4ghhBBi3/evX79uu9Zvz8Qvjj6vGiy+2k3/ftA+oiLy/miAOE3Gk1Vifh8CINk0zQKAgPN/1ShatPmrC3nlq3+RFlKUsLD3wTMur30wjWx7AswsaC4//l0QQkRAYABhYSzsidtUY++Vw+/Oz648VP/sU+6byrl3r/0WcEUJn/fLT61DnMXCK88iR8Kkc3F+FkstfIsIqkUACaXQGUII4zjqcETO6XVwGkf+7nieyJHzO1JUsuZI28aDL0HTtr5pEKgBAmJhDiEIoXMOSt1XxRSV7ZrGa4NW4bvQkuk5wtOO8SPy5trIi6MLRNpLVftPr0bijsnkqkFfT9EnHcex8f50OqmOp8ssL/oozyEJ7vqAqngko07+y8Ph4EQ8sPdeh962ab33zJIPZyKignWM0Xl3OB67rptuUd66XEQqrLBV28hLcq12h0hIc/8iIgShpFyVF5yW0dSqTUTff/89ETHAh/7p6Xzu+z5pcals2lrS1JK/Sl3RVVKtIiIR3DqPMFWsWq2mwgreNEcUEYgCI3P0viH04yiN75yjvu+1eIj4NSUpXaK5fq41rkfbfGqTOw3buWUJJQJwjGlJ5MoRpBq+dlZUsOzLxVr0tk16bTT9VKp70bPEypxpDE8jm98svBZYH+H31NRFh2YGFBTZtTVn5GNvVRs7I+/eUkZ2qJoEHG6aq3dWVKqLpLH32SsqVz7XvilhazavDu1cZLL6zZ+vEQ90VgNmtR3HGFWAUfWDXN2XEYHIEQIxJLvbOI4hBJ2nvPeElMr8u+kL13P9+9rhd6ioqLn3VyyGIMYQAMj7JldUtNuoh1LTNGpY/SRd/6O3/vyLfD7ee5WqtXUmYRQRKxeA0uR/1cVVAu77HgCapoHZM+Hbsdult6D2XRWektqQvyMiQo7CwjEyMzrvG+8crTsyc9TW4p0/dF3btoioquDFW+u3zUPPaiiISEv/QkIChLSiUj4X5loHEb1586brOufdGeIv73+5v7+HeTpEIqfWJr0UERI1TdP4YmhSG7lTjS6VBOG2aQiQHBGScy55biHgwbUcYwh95J4Ib2/vHLWn0yCMDY08+ZkxAH819Vb19jQCfKW7/t2Q+xpV7m0VaUUFAECk0OkBl8UHBNF/V1eqFkh3Rp9KUbly0Nvt2ldRlzCXU6V4ois19dSjp5WrbTkVEZPvkC5wfWrhv02c9yDgCFCI4544nlOtcpSvcrPqr142Kb3n8kNQtrDtC1Zr70myzFwhLhVjR1Hbno6r2tiauHf0W7x+bSRTVK5UmBHAewfiVUVRkwfMvnBUqojC7Nw0GzoCIlSjs7Cojtc0Tdd1YRiTle0bEdK+Ji9iqvCg4w7I2iVRmAGRtDFlfiyqEqmiCQLCrGta80rb0iWwFJfKRrk/Ol7Vmd1sYZ0kfsQk+gOgCDNH2dn+8kJwjKB7JAA9Ol3kY5EQglv1Q0cOafIB01fofa0u1qJq4XebL0pMryXNH7h41BS/zHUGPYfmZUrMbIiV5/2KwnEreYTDPCKoiCDOVw+VxqP1IJV2tlRvKf9lsXtntmQ455xzYxjattUf6CKDjhTMrOaQ9TqGljbtbIkxzpYObcWT64cAMgOKaDmFY2WrKotULQovQ7zWT9ZX8+eKxDGcn06nUwjh0LTe+/lcEl1KFgSA8/l8Pp9FpG1b3cuhk4kwQznHZJ/VhuREOCmNRREvokvVRCJCtKglIgACMVsgUmfc9IxpaRsRY5zetd40jdfkHDfu8fHx9HSK6hsGMrVXhLbtEJAIAdE5QkoqB9zc3CKgLsXr9AuIiECAB+emLwC6xj6/SKLIKPx0ejj3D03jX79+c+huhyH25/Hp/oc05eAkturbx/xVpratX7PNM4i4ua0uWYz0x8y1xJl83q4cvnE21KWRbeuXaUhZSwDaYefWWJ+l87EKoHmpSmMw6LCxli2SCQZmbSEJqRdLAh+VgeaztMzVL/OvxaIBESKmp8jbPJYe8FsIQERJgrsgTL1QeL0iUQuFm9csG8D2b6ehplQwPvqzvBg7J3KummVDOcqFOTp188pCrzfFee4oS1VfJBWsVAOL31VPlt+qnInyZ9SjuO5fK18n1KFJz1IDitYaIrGIGkgEIgAgEOHkzYWIzrm0qDU/NYE2BwHUxgYorLutkBAk3b708MGySOWhTTln1TsudIG5m2y6+ObnlIt+1dUu7GzRga4sw1zp+ptY/J2yu8Wyr1UNzHs/jRU6ImWdHTao+vJm16sOzfNC6jLL8Jiflc+hAIjg/aSopI4AAEQuvTCcXvncWrxzHBEmaQEQ1A6lMsm0bp9GvPl2AqKLLalmcsrHmlrNPMJX1XN5xEizs4ggLfYXBJ3QWYDWk4VIOWJJ8dJ3ZHh9R0mygqy17IxLsiHAVPg0qWgVFAtz2XAv81VSJTJz6miTfiLTgkJ6gEqnl2sXfa6cwYFmDxPVqaBojsDMMbJA7fG/w06F7pSJHDVNw+cBBNQ6To6IUAilXETQNg2z3LB161Cuw1T7wi+elIqXPIMvtoCkc+JiMrmyBuojmHkC6GdVDHS5o6ou/RmtBpHU6vLN9NVIlN84CUDJPpHE5XneWsTEpAhVroD5qJFmXiKaBXL9DQgsllZmhm1/vGIfaVbzWh6c1xwq7VHLNIZxDAEAyFG+2SMfT59Op3EcEfFwODjvQwjTbjmoJv7l4+x8FRGxbds+LL5/1ahWVDUAza9S9RwirV4RrQNykyBIJGGSOHVsSqNHElPyEQoRD8fD92/evX31JoQQYqgaduPzFYaihPniQ942UKD1DaKaU3AyliTtagyOkCXoigoAtG3bNIRw7p8cTC1n3po5nY9S7h7GTN4Nc5iBubkVL72o3o2VUv372jDxUWRWDmHPMAo8z/frSUVmlVtrbl2qi9PJSj4oTqmuoEECQghd1+ViQT0Lli3k4oPgvGFUJYYrJzNYhbKoSrh85WVTynTN7NEKsUVFZhEGcZmAUxXj2rURrNpNfgWsBIv8rPJe2c9WDWx9QZg0ruVu2RQ97clZdLPsrVXFqIememloLTFOYtmqRi9TqTBb2o0WJPXcKtRKVQaeYyokL9wYI4AQYWDRPhqDAE1jBxLBPDUnw8Rc1RR5BJhcv5AcQZI31MyfNshtzl9Vu8ljd1RWwvyHVfUmsT4Xoy+dVfWvrVEfnKtfSzr3ojyQLALF77OxgrZfHiKO47i8lGwKyEebLQHmwgW3dZj8LzoyLH8ptm+VXwXUZUtXZVNJnHMAnG5PRCACMhmzCIQQ0uCTm7e6poVce0/z11yTmJkeEtXYqw1gfQjmyXIqZ1FPyymIhLPiAAggwixAQkSAWBhapbCtMAuWesFFcoEKswUDzLahfip5A/BqstI2t6PRptqcnhUJAEFQeHOy+btFp2IEQnym+/vxeEyfVRO75iy1tYcQplgTX8ujJQkf00wQCi1rq3mkFTxcGTsvDo7XkDyR9q+g973Y56/k2SXcAnVDHhISEiELz4FXeBzHcRjV7K27NZIJSqoRfFWqtShz8dY7V8gOgcg0s+6L2tVkCbOviCN68/o1z6te1S8r0/iWK3Mx6iGEMXrvfeObppn0UiRCIkTfoHfUtu0wNiIMk3DjNHxKiHEYhmEcW9f8ThxTMtshfEoTpTmi47NHctXG/eyYt//LdKMvPXGsFaSrztoo1JfeyVSNogKb8vez6zA9msgi937VHVrfJCIiLMIoxMi1HPz5rMfD/Fj+cdOJ65LwrYpKtd64o6hgeYVPf46a/RJunaXFTvPv1i+vL+Fe9Zb3TV3mxadvALWQgfd+36c3fyn7T5he8Y4Q9UWowswSXlNjmNlkv0T1+hTOdX+Owdl8Plv1ZFJU4O80jsEWznsHEDiOYYxB2mdVjkZEVT469ycu+jx8BZK5d7o1X9VMtTVrcJ4YI2Lh/fkMFVwFe7xkyV7/0nuvaxTPG7Z27FjPRnddEJIQShxTSONxHIdxYOau6w6HgyNiABXKsRbos1DFISDi8XgMIQzDANfFptwKJAqZ7Vm3i+w8SGV9SbsynHMxjJKZkfJ6yx38RIqvlW3JlUa43HxVjOyxbkI6RXrfIGII4Xw+j+PYdL8fSS1N/2mZ8cqzcofsZ3Q9nUSenp6898fjcacVpYnmK+xb2AkL+w1SjaLhujqsDM/GMxAQVkUFGBHgpVvmTiATKFZUive4c1aa5WdhbDnkcGd5Yd+17DJ5qXg3QMtO4XNijDc3N6fTCRHVtHrxXpUYs9PIq9ACW7/MrfufY5TZAicL2bQrZmsULYc+qV5KVeBFpvqKVHckgTSn7EhWOnGoy33lq/8iTK5fawMnQKWDg/pWIRHqWue8kPSNDv+LZUxbQ/r6ZcsbQ2BmIfTeOwIYn/PO1o7X15ylmRl0S8D16zCfT75YWYkgOwNHWr+Wec/J+ugnUXl97IyVyWyZCvCp94LVqPqMK6gtc7qKrgIgOURGjCKpWmPkMAYQdOQb31C+L0sEN0Yxzd9yOp2IqHL9qotRWqS2a0PmuQ+9czsj7Nq6lhRInVr1IiocL7/L23yVbiJLYFMd6g4HTdsSQtJRSTfmR5b5JozAk1uYc84xIAYNuBc+koDotwVmTkFwdbMkIo1Ro0siz7ivZkw6HA6IuB98L3U63HYseSme3UMvl+lz5g2djLCciATz1RthAVAHM0LC1YLKUqgoTEhu2q9V7oGRy6dAvkUBIferovqHf3dIxsfqAgGAESZ/EjXYfjT/y+y5lTznUivYNw3vf1Uqy0I1mBdfd6+fU7iIbf0Ipq2xOLuQbDqWlTRN0/e9pg2pNk9Wo0Glm22WY/7dNJ3OgSKqpcKkqOzr9qIR3dRb8oI4rH8VQVD/Q2T9kxDoLh3RvZQiwhu1lz1XMRwASlboWSBIcY3h8nN9Cpj+k/l5BADLqBAXmw3PWeC23myq22cLVPv4MYqjhnwbBYELp0l0CABRhzVhJxiEozALI7NvuxgiIjVtq0VsmiaUVkxtwcvX7GAlf5chNK59Tl15aJpGNxZHmJwL27YlamOUYTjH2LvGATj1CdQqLQp5XbXuCHDDMAhE55Ei6AYrRmGJwkDZvSonVJX7+r733nddpzng1L1Hhty6vLx+ZnZ1x14u2LatzBFvUiaBycNqtiUkcwIuQTzzKbFoh7kc2TSeyKlfWYzx5nAUkTgG3XA5uTKzCAjSpH+L1N6NubSM5BGxHzWtIXV+yQSX4lqqytH3I5ahpdSCG0KI47Q7Qq2MOvylytGzUlWkwND9OJyHXqMeCAI6EpF+HES4axuZ345urIwxeu/J+XxQISKfS2NZDGJZJThLM4oO7OkxPZD3/kEkgqB3rm2co+HcC1DjcBRxnoZT//j45FwD4G5uXhO1IOAAnfPgJqeFiy9Ph9GLy9DkHM5rMjInNEzPpe286zrmiCSI03/euSASwgAAzME5bBuPIByDI3WABf2XJarSqJVPBIeDOunGak7dVyZToXzbLSVEIlIrDwAAZ4M7OdLhS4AZ0B06iWPbdoehi2HsfItIQ4zUNd3d7WN/HmI4Dec7kDgM5BoAJHL5m6MyJWXXLcUAKQYEydqCc07d22DepL7xXMClSFBMAeWyZLKewm6c2bzjpAXGFAtr66y+77Xv0CoujawiAVz8rGsyqq4AQL5hKbWopmnGcUwNcl2eFAwjHzcumvG2zLqyuJJDZfuoZl8RXnbF8tKLBGEnmJUAXxOYpfTxRgRfbr+Y/x8xH75FHau1VYtwHF0WZzmN0oJADQJIhDDp79kUs+yiwXnj6HzPfOKRXJ4DyGMypzYPWRBnhctl5HxsqaY25zF/laUwmk/0xYu9Uk4lwkm9uiA5FdcQkTydDs+xMVAgZopg13bo8BRCEEFcJFRBAFL/donC4xi87wSFMYIwxBGYPJKA70PoDjdBMO2nWoxliCMPS+2oxDmLqJgNHFQ18qyeUHdPLjXg9AeRhYhcvnkyd6atZ4cLGxuUhijNehEkzr1DdIlm/iW5eblAAAQwU7Qpi7hYUdlMEYh8o9/JN+UwUjxyfhHvN0eAyPnCKeH8S317yylzIhR05FzahDmNq/kFQxgAUJwDcuQ8AsUxAkPjHAoyCiADBEAigtZBgwLjQC2ieAAQHnUCmnsz5DuAojCHSZ4hAKKGyBMROe0vuoHKE9EYAxBGECZkAiGYz0LZzrMXo0wXJuecn/syoWA/QHPwzrdEXpCA0HlijuPIh7bjOU9upcilkUeDn5U9MTcmTsu8efD91OOozPObX6GYH7m4OM7bUkTkI9s6JfuQmjLD9li+y4uvvuQLbasxCy/rO/lGwhcrBgpi1Ob+XPO8lHG0Evkrx8qPdZvU5vRf33rIzDCJ/YtUgm9qZJTtof/odbYkJJl9sj+nVVy0Kq1JnbASnpKvxVX3kk3/dSm4YP26aMVJJ0RmBsmCciwrUbP+A4jknPe+hZfmWfX/zB60c68riyGaaw0Rp33JUo5Sy88ANIwGzobPqesLIOg+H5g1PbfEJ8zf8os00W8f7URL833uRS7+Pe8YPMcDeEF23Myex5d505enolUIMNHGqoOaIMVpwkXZC7hfynCp9ZZaQCHqgqZL/aRH+A24zz0PERHO9jpXh/KZTtTcjoIACHMEDwQimF5abU6W0jKK8+rK9DV7dyvRfJHN5Ood8zvK3t7YmxUEARCQMTu0dVZ+we12UZVwp/CbF98tPK2sXUv1bpdKJYGLl3XeoUxh8uqQfdO++7TfQZdeEIFRXDkTYfokgBeF0flP+QLLZHdLdhNtacXKy9VdMM1f87g+xauro0vhktpLrQ/PngWu4co2WU2+XzWPyk6ioudB8zbQS8aVrweRi5M6EakOo3UVMm/YkMkev1xDxz51qGiaRq72/5PMxp8PoMnE9VG5pDJ455dKTvD7ftJSLy8Uy0E8R1N9tvhCGTu6SlJUknNa+suLzL5JJ5x9nC64sekegPxezBzjsqhaXVAvxTMpyG+8bgvQ9Vzpqvfi99rxeK5rI/ucVHpdq3mee6OjaaEj7tbmizTRb5+0/fGTdrbk4PbiWLKVVK/7pagEuG9Pkt575B3bB/pWV9wC6/LLHFFK5twuy8UXMThiygIjAJBJn6gBi+ZDuXpfmut3SvtVdhZ9fSZrBYDmYqoOpQbmnKujtBEhTAE+BQQA02pe3tQ1rG1+Yvpc5UzMD+WKCpc75qncs1fsKCgz6+XF2OkaDklbDQOIcG5qI1jUrB0taIeq2eSbUfc77JZEWxWjWDap9vlsHyr+WB7x3gNLCOG37hSczEPMvL8WrOtLmp35a8oAO1ST71dVVNbmis+8YJpiv9AseCVEROrwxILPMlFP6x7eM/M4jlR25qQYENGV9sMku68VleQK8tF9LNXokFZ1EJFDCtWK8LFlk+WC5SHJVsmfZ6TX7WsXTVk56vclc5CxlHnjpfpkLoqtDUgyL3pWujQzE0F6R+UFJSkqqlB579Wn8XTuP7/AOV9TtlvXzEYxyvaQufvOriOIKIgO4Dl7wDRasQ7jwry1QLxqor9PqnX5ZzzpzsCexo2kb392eQs+f2/bFwcvO6trE8+kQFaDJwqrzMwoHJlFdG/o9DMEWrwdL6ylzLbwynYvtFh8ETPvNASA7QhjVZF/l51ApoyfQg6JCIpMZUv+IudcFqxEXwkSzb6oUbdTT+vzuXmOMh+peqEgX1GB0nGr3GW+uShRudCvvI4vfq5AxOQCKEAMnKu4RRFLVW3rgsXFy1WZa1dUts+qikGutn5mZ8HWWSo6TpNvKXt47yXO6Xf2n+3bplRU9gxt7bx9I0UY+nKlulILqCZfLyKR48UF9MXePG+dh9S2JGn5tTPSvh/QTvHzMm79SlM6Rmaa1XT1g58ejFk96YjIORr7QSYYyU2D9E7pdhX3j4BAREDkEBGJOQpzBHGLhiqwOJhMd4BMbQC170qtOejpjoowvqkJUpZkR70JifQuS+IqEdHdLzCJ1ODcZb15dqe5UAPMnG0PwzQcr9v09c4YOOeUYGZ1f0ylklU07vRHzDypEFU/UR2g6Iqz2jDt5EmmphCCGmGoDNCRtnlPeZe9+puy3pcQkIinVlavw2jPSC7+6y4w30uYJTllOO9FJm0kZddBxBAYUVLDGMcxhHA8Huc8WcV98xrLV3rrsZ1oWQPWQlyUSucanjQrTtldOcSg+m+MLALJ+Tu9mrS0FYYRsz0G+bix0/uqlAI4ezzGGEMYtLDOO9LhaFbYUwtR8jsQEaEPOM3AU19gBJwGjXEcdfTzMl9qY4BKFk3EjefIe02q8DQobU7J1ZC9fK4d1j9d/q6WgKp+XekSuSS0NQJUj7CtZNaHtI/jHL94q8B5c1pfc+tZ1ldIRa0qrfy6fEMEmi3KgsW2nDTrTdfPzeRA2fJwvZmnLG3mEDJpCFMbEU5pGAWn+4EIoRBQA6LSMOULICjgsiTzGnMjHRJ3ObqfZgjKksAAzLYwBBnj+NGNTGvWs0f6VI4MELOdq3lKK40jnr6GUEVpm/yNJYsmLyIqTqdMwaWtjXT9laa4vZVwtlxj3lQzDXKwZGWZxlCY3fzzOQ6JkCavUhYA1lTP4JxzQDzve6YshTAA5Llo6okja0O1iTMfysqzqPxZfsjnmxIr49f2y0XMtAKUOemxXmT5WdXmkz/LeptHoWNAfvXCUyuNPNMjlGfVJcwPlcVYnrGsnPz1szBDsfoKeTz3sm7SeyRcAlRi6cCVj6JEtNTUZFnYDIe7yNKACKgyowhHjslkqTK3zlN5AfSmVFeOpBlTnQXS06Wiggi5+ZCewMw8/Ux9eSbnjsrbbVvXrSaRVG847xmuWvtFa3JxzUtNVCffSUxcb3NJv3BZ7ud8FmFmRAewHt023Rp5ZzTPPlf5d9YPJswyb+fAPK2MCM3tnub8g9qcFiP61t6Vize6cuBOL2lq2YCCwsLCmK0FIxbDtI7Cs0VQRCDGAKvWwJEFRAXZEILPQuxJtsqRzPn5gslyEeYkyTHHLY1xLcHkR3OPJqKpZa+l9mXiRETAraA0elba9Uu0DOLZnASyynxUrU5m0knxLPPsOL3EZHmNMeKsxam0ndWbpKpDgVkLmF6uajh6VlVR01A/laAWkNLD6htLJ3jvxjCknsWRQwiOaByDm/ff9n2ve5R1zBqGAbAWQFN7SHaR5DCWftY2Tb7sk08Pa9OdPqxO4fOTikx9jgDYe384HNUXsRpJ9Zq6iKyxpCCLtMiZyFJtNHeu8MnWQ+M4xhgfnx5ExHt/oMOkQGoyTmZm0es456bU0TNE5HHOagpzYwNkAZ2DkqUfZmmv6u48J5hS8j3iVSetzQ/zfCnzWujFlYTVEF20qPXvL5K3tmpSwY2Z8uIVLv7++llq65eYuaa43RD7xbhxtUmvar3pjlgmpKvvK7AEvcFMUMNNeWv6dXYon+dqSacsY/6z/PqUmaU0IAWIrh8yJDEL6+3IIkX1urmuBAo/mJStSM9J4vl0WjoLpz/ojCl7HtQ7b6+SNyT76+Y5Oyv6cxuQ3CNgfqGTFrEuEBGEMI32s2UtHSJ9ncwMk21rqg/RdHiTAMdAS6J0HXWLmQgFJKqYJwEiswAROQKXRmYd7mAuK5bxowrRDTY7bGFoKF/JXu/YsSxcZ0Cc5rFFUSk1lWz2SUMo7gYfq6ic0yCfHbb9O/IwObUnSKWZ5G5meQMQwtL9qZI30t9FJr+YVLB8ast/xixTeKbcYphqIP2+GlLmHgcwT0VEAMyRmWPed5I7Vl5UWFVv3mXzHyepg+fYGKllIqKGLdI/pgYPACy8FaGnqoTqfaWLIGL1OZ9iqnay1VQmVW5+O1/V9evzSUInzqJ5zq9dOoDFsD2J6V/0XmpiFxENTL7zy6ZptE2kUGAXf6aibPqajyn54Avq1ZrtgdmSlmR7BtfyTMsXRHly3CRJc+mb+xVgTlGGdMFqOaTPUhmqXwoict455zU9vaPJmMhzKr2L3kd5P09KSHq/1ZQgWVC1rVWvlPhVY9CFMehinSxLT+icOx6Pr1+/GseDc67ruiSFT2OK90kJyYOrIGLgJe5bWgvdYm5U8vDwgAht2zo3Bamb44nRTlwPFmYBVovpswYHdberKsf4KF9z19PnIwJJhJf60LZata+bFNdYNq9qAM10LI8cWCgSABD61NudFH4bVKwMFULw8FBEIV8GB4A8W3iMyxQgQN53zCQiXyJTcLXOWYkp+b12+lcyJ8E8pGicTI2ZuXVWdcEvNHSvqa0YmxpHvZl+R9vfuf61xbj6LMqCWecrdLq8sHylydyTC8efdC+d1NLskMefrHheZrkcwmI5aEcp+nsAEdWDhJkBUfIx5erR+qJAUi0ewLPcAdb8xhQV7RUpS2ASZ/mbkSF0vhEQrPbQfRnyWJw7A31SCZxzO8ZaRFgtl09IuUSjJoS1lgKlmHJxpU5RPT6lAsyTFeK80iKXUqx8UWJkNaONsXZd7bqORTQ6c6W2fT7aqr13jjwzALLI1MKTjqFLK1ju1E+6og4Q6fdazvSzp/4s2UpL/irzBxnHUbtYCCGE8fz08ziGtm277oDoHTUA2HVd27Zv3ryNMajEQLPP21QSWdI/afNIhrf8VVZqwEW1Sp8ohJE1GnWMbdtqXAFdzNmKiQm6z0fVTebnvaq/88ns2VSrHPnXb3A39tQvdIGlDE9cFb4wW9SHNptYHj41Hy0RIGRWobxXIjCEfvHUIszTJQ2ZwTPEELPwKi0uYVyZmTmm3AtBlv20aryd15UI6abtjl3XiYj3e3m1n8GOpqqR9NPXnbZR5QnVwYE/FkSuWor/5KI/l1wBEwCgYsrNS5Jvpq/k7+rRnqEGVDW/1/VirT3ivN5ImSJcKZZpEvwkRWVLasXdUA2F9fNZ+aAFZMc/8+8NfZXqMcHMJM/pKWuDVBJFmqbRv3w0lfyVPEdR+cg9PyMhzUfRh6c5bYX+MQlEX+6+HykVajaHae1YhHXlL3dc/BLEGDW3Q9/3amHa+iUzqwyq4t3WzyrrV37BepkPFuN9JbVfOWDh7HekfWYc6zTSSfDdusKXgIUdeiLCwJwlSQOAfhhw3lVZLyJlP7uyuLoCnPbFjuP49PR0OJwd8fk8EobIHGO4v78/n08AMI7DMPTC8nh6SheJMYYQ08rWadZGRDjEImlJP4zTgdUQfzqdcC45IiKhIxdiGIcBYQghdF3XdEfynfcRAYHIt+3NzY0uvk3rxdnyZowMgEQUgsZV4znmAZErB5y5ErEc9apXT4jM3I9DHMfYdYfDgQCcbmZ1qGKA/lvYmpmFhCWKCCOA0JzuhHGq/2TDXqS73D5dNeyUJ8TYpxqIvs0VFZzXOVgYhRFYUhjQJcRvsRaXR3TU/r+03tx1pHaLy5pNtqCCIjyG1PViDCkbPYLIeE6eKjEuRgcBGHjZqMZZbiIE5POQzqpWb57G0yw1p30yk5die/ju5u41yqum7dITvpRcX43hVTe/8iKSeZJo6uu+74moaZqdWa+6V90Oi4S7udjykeaaTW/byQ6KrI7ppHknwfQtcxeGyUyYbrG3HpKftVG86dmy7Id7ysPsDi8w+36lZpDvXllpI8l2fv3qTf4S8mlU9nwOX2A1uzLP7altRWC96U9aNzJlSpS5qi4uxK7/stOiJDuKu01q+dHng7PD60Vb8/OW7CCbuJN0J5d81Z6Bvzm05/7MYYhj712hZajvuf5LAKiZsNMGt2lAnhyd1CSMJP3whDj5w3Hp5C1uWy/aVnZ9buN3KAJxGAGg8V4AkGgYx04XsECDYEDTNAJARMMwMDMRMrNMe1SgXjMovGurI4Uef7F4AsiuC9T3EWQIHsQTap5tYUEmACB02v9zuSdkco/m0l4qg8vYHdln3eeTPHQVXZcAZAEIc9K3QuUQck3nps+AebQ3ruMmpdWqw+Ems11N6dimBZAwwjpfz1xRSSmqDlGyXzKDLo4RcYynx8ebQzcMg5rMdf2HAFWuLWVrTYQBnuqBJhOU09rRXNUhAkDbturRRLH0uNDlHUAgaI7dOIzj2LdN17lWEFAkorCEtu1SbUDZNhpHkMVNIlimh1C8ykxyEHToiHznG4f4008/vb9/eP9wAnB9H0h6EBmG4enx8eH+PoTx4cPhl59+aJv2IfPxCzEkk6QAvB+ekpdJ5MiRBQUEEeB0WpbOmQt1ReOfrkdHFKEwMrBrm5+H4fb9L2/fvP3u9Vts/ev2NTA3ziGibkQhdQFHFADXtDrgNuq5PfmpIwB69Nn1CXipRA65cAcgSOA8Na1v3x7ffAjv4xDAC0M8jyduY/PKd01D4EgIIjALIqt5QNUixiASI47YNY4O7fH7EDvvAWRgao6NPz30cXhCESTPQBEiSCTM09jV6QsSVbPnshMVbaPsBcUIMGcgVcmguhdsUK1Y7tj1t4Ys3Ha52beMXqlyeO9T2iIqN1AW6n15r8/XZ5KdZZ6gtoUbBg8IIYTzmSRgG6MLox8FBeKBZgNF7t+FAA2shDYEmJL18GIIQEDQ78zC6DFKDCHyKIhI4kKMYYwQg5cTcIzMURgJBWGMYQhBgnBAZuEYNfIFTMMys3DuPynzHQEABYfz4jDGkfPFnCFGAERxIBRCkBgOnbu9OxyOHTcnH/rRkXc+MpCgd4gxxjhSc9iuwvx9FYN0aXd387rmFNkyLzzMW0EQsR9zu1iqdwcIKBEA1GdVJX29TiW/8uwqrDaFqkUlk0rfD54jiCAyEXhGBhZABBZwIKK7MYdhUPlBixdDBBkj8eR7hxgRGCEiREJgT+QJSc2TMm9XmMa+5P1aenvJvN8IYcpwNx8AKVtv/iRIVPWiqXpZqHDVcknUwXKHcGWRpGwZjWHaoqk0zWZMrWQsXwujO2l/yF8Y2RgEVm2jbFJXjYc7iy21NpXLD6XXZeNbFGbG0ISmOQswS0DCMZzIdZPFiwUBHZIndB4RoXEQp+CiDABZrD+i/K3g5EFHRAiiPhAA1PijsB960RilAEyEDqb/kMXRklZBsF6JRURyCCoCZrUhixsF5HtJmVlARGNIAPhMMk9DqMozja8mxOUGMV5w1dPrh8Dp2afHTtXrsjiopTQepZxts2p7AdcvrY1ZSpxysSWp8fOv/+2DREAOyAERFhll68d/2QrBFAViNzjvms3VgNmnMJ/vU+O+8hbjOKpzju6fqQoMmcCXPmsPxI9FGV5TyVhbP8v1+2qMxjm2mIgIA02xAQhEgFn9rD5aoFzKnyaejz+EjGEE4BBCCOHDhw8fHh5ZnACJkKPoCGOMQ9+fT+cQg6dpA0tUNQlAJkUlpumwR04zxGyFnTSEKs9xXo6wYSNAkCZK5MghPA7Dw+k8hsDM3rk3r1616DCL41EIo4WVKFWJAEC1blZI7bFer2DmcezHcQzj0HqPx0MIYdoSygzMwqqgCIKAFgRx+sy6LTrq2ERAQA6RRKIwYzJaABSvbsoV/lLW5C/C86xfOTuOE9Whr+mplS9YfXT/0meiEyX3p/PTBwlnokFoQAoe2Ac3BxVajApqzeKphDhbHKYfIEArAUUwMqaFFmZgRgGHABwhxBiFGaNADBxj5MgPfBaRKBKYxzD04zByDBw5YgQ/2QJZxhBCGEVg1oXKMTv7MgyLwqzRXNLXs0QBJCEUhwKO5Hj0YbyV8Oru3R2K0GyFT+3/hWy3kIb81aHp2FeQE9JcBhp5jAEkraqVdvHdsqjvhKbhQ0JU3yhEQmJEIESa0tIsOu2yH7sW34s6KQT97ZBE5S9z64lu7K4ujhdOqik2me+uvWwdqt/vp1/hc365ddbOFqC96kgb3ifyeUIApmYzdxKZJ47nlDZt+5EpI+snXyRJTZO8jd+cb+317MSaf4k9KurtNFuQnHOqU/797D0lNYYgChGwbA11O+r+88B5T4KaMK9s5FUx/MrxehpTifKsjteXKjmYZbb2ibUegnP00hhGnANqXV9LublahPM4mDm6uFcYsJezJjlbNMgV01QkBpbd2OOfTUyLkyLjOD7c3z889cMQmZEaaRtPRFFYI1+levNZ/JNq5B1HWfw+AHFxgEbJUiVUZvhNRUXk5nBwQgPH8zCch34Yhv7pBGO8abvvXr0BgBQ2LT9RVpPlcih3pKlydHJ9ltpdQgh9f06qsqqaacGas3ALucSDiAJRYPKLQzfHjhNhjmUOyd8YlXJeGRSvvMjWOkwViu1lx6t98sA+XxrmOIa+P79/+vDX4f4nNzy9cnzj6eCg48wdqDLC0iKfkCM3ufYiAhxiAM7SMogwR2ZhgfPDmWMcmcfIQ4hDiBBZYhSR96dh1KUS4cBRdZkIwAKPIjJbFAVAslVckUZmV0eczfQqQd00hyVa2DIUACPeHDtAQPYoxGEYhhNg5C8frSQXENeDf5KxmC9nm3kpZI7mj1NC3ufkX8qZ5kgg0peQJR9ejYfTk9Iqm97OxLo355beBHn17uxsKZzbdsO3FRcpjdxbm4IqNWBnReXK9lbda6fAhdW1PKsK81WchcXFfy2TOrlp0/nObt59tOZ5zrem4WF/o+xMPS+xojIn2dDFXe9IZG8X9e8PJNRkT6IrKltOYmV/+PxRmeYIsE3TjOO4coa6zKpb4vqQm7x65vjUnzKZ6VpK0goq2TR9lXndXyeP89A3TUNEmt3iyjuWwUBo6yTtzOogV7niJOk2xijAHKVpWocUODwz7fnVeO8BmLwj57z3h+4A4H4Z7u/vH7jh7tAdDgckOjOPISCRcwREUGpZi2+KIGIzW4N0q8pG6qvK7LQ9mMcYyTnnAGMYh+H9+/fD6UwMd4fjq8NNmpxWE3NcGpUUN8iTc6lv83IW5PMNIJIIEKFzGMLY90OMwTmn+YJEHHNkjiARYUq4oH7YrJ/VfgKRJYgEQEYSRGaJlV/lb45qYl5r3R9lR72p9jfvhFT6TcMcQxgez+/vH36I7//2Kp5fH2/+uXn1ruk6Rzj7QuIUbH5SA9jRsntl2aIC6r8gk3OTKijTjCgsQ/SRpQ9xZHkah6dhHJiHyKPA2+5tEIrCUVi3tQuCIDBQaBohIpcyOQCRIw3iDqqoAABopMCpSADYtqlMuV+uAMTOASAKEWP/9PTTT3+5f/+Dwy++7SqZvWDVPlPrnaSFL2kMTjYO5fNHdkTUBCea8ZEAZZ7LsFwj0heY+yWWF8mKWF9/897Vz1L1Vqar4hLl9bbGinrlQbYP7Zz1rBWVnZFth52zdlZU4s5I+RXl1tRJn70dN1dTf+si987ahma1m8PyVOuNutYl6qg/J1ZDihB1Iw5kKUlSHXEWv1wEtnviZmvG0ihbNZx0RKayLb009yBK4bCihqYuivHRIlwq1bZAkNtxEXGyfhHxalyGrD3Nw7fuvwcsDR6URRYv+54kQ3yaA0TUVlSPgKk2YuTsx5KKioiVdTkJMUmjza1uKaV3XqRK9yVH6jDryVdW8/zZ019SIdOV036suYTVS8oWBH3hWzk7MaMGbs6uoIV3Wn681BiISAAiR0QMMYKAbzw5B85pt8h2hoEWKRsarhz2srESgRGBhRrftO3d3V3XHYTp9d39f7q//u3hp6fTMEYg7wKHwAwEDfmmaYaYksTpMJf6A8VBN/tpIcktmisP45AZijf9ClTAmn4lwsSA6mEfYowg8tAP75vu/v5ec1CqkTK94qlC/BLmhgiptF3NyQkICed9xyKiTuJzUHkEYUYiQN8PEuP4dHoQlpubIzOwgGMYw/ncU4tC5ERIV78QgYTUcsocx/B0Oj2BUNN4AEZCiBI5ALOK46mxOUeTu3BhQS92gmEGbAsc+/Nr1fswCzOfk/6e7nvx+pItgdbi0a6ssNV/tyymsDsRrqUKLCNU7pyVLpsrSLmQDZ+yUlRcPy88zOMmqM9kZIkh9lFOff++OfdE7tDe3h06dE3SRogw86HGMds2gC5XA7CnhmGyl8cYNB+CiIBgbGXqUwItIiGOAAEgCLxqbllQACIIowggEAIhILJvkoyvVY+UNJbF1OK8c9kYGPLXl9WgIIwSHDkCxCDD02PXuTg+DuegI3queOkKD80RgXRivfQqawtXUgPWGWzmc+tGki6rD7j5Kq81w1Pudl5OowKAuuGHCOPinqqCDaJzujqCsmR31QLPX0EzIS7zODOAI9UnwUnaYVL1rznDr/5bpWvcfMj8CGA+YnP1q9nrYS1f5RckwrxmqsTvlz/PM3KyJ+az2U587s1nXH+tniX7nH/lfADcPksFlNSialei3BZWTsv5z7zzEkM+NM3yiXrFCQCi4LQbfTp3+t/5f1YKXlnivD1gua7IcwTXlO1xqoFZDCOiYl/xFV1DWzjM24/JOcQyyHnmVSHq2ZblXIZswtqZAj5ajPQgaTSoTlrvCE1fPc47saZjeX9I+sa8OYyIkFBEaApOMP0es3Y1e8brzYpyFPPo7sMUc0ytV2D6LFm2QRHx3o/jqJ3Kz4mxObJIdb9cJbi+hvNiFC9Md+jo3x0RMwGK8z6O9RZbzJf5pmmI4uRIf2GmT5JKWfZiIJYlBlxxur5WKrPk5nLSNP0U7lKoO5HnHVou3Wy+bMqgV1DoKroKDgQAMcR8Q2cyqKc+kF15yQSUPs8Gquzpy26ydk1J+fiWFjvvQvFz9vdyioVUIYIYOIoIx+DAkXMwZzNBZF52sGEaiqZH2GtCm0adSSBwpJlJbm6o9cfvXn13c7jzf+l++uWXfhyehjOjoHcSQFDAgc8iWo5jEfPHAeUxf0BkzreJ+TJCnUclW4kr7DrC7LxAjBJTonqJk7uIiOjSWapenkMTtl0WbAcEiv0xWuXCQk4IEdVLZhqABHRLPHMMITpHIcSnp/sQh3E8AeAwAveMiDF2MYbz+ak53NAkE0+TY5pUQxjHeDqdPhwOtyJxDL1zXiDqviDdETF1sWkYmZSl9eDE8z7gNF5DOZrteFzkP0vDbLK8QtYl11fIdOOPKCprR5F63FgdvXjB/UNbz1g1bCmVq4+qN2nz2DVF2i9GdSx9dHP+UHWk5BjVr8o5GkO4Pz29P9z91HNz68PhVZyVf+dcynIrgANAtqehEAIHfydT/DkpTHWAQsiAjBiRIlIkjIiMhAAtuCkMFwIjoGopRERu2nulz1GEJ5YoEectMvPABdOeflrWfLBcYsbh1Djvwck4OqLD8agxJxrvp2VZmRO2i0Rh0FB5IppJCVdZrdbDsrbDtaKSDfLF+6laWrERvHznWI/YH2kP1cySPuh7UQvrbO+D+dH18WuraCZTqoEHBQQQJQozC5JO+g4c42VFZbppEvU2ZO7qrFwnqA6tQ/5c7mtlf3BIaaCt7RHbW9Vlfq0pMHT2XJc/A0CucyZV6qOULmfFFWn7uWCl304emHNQhOl6LFXlLB9Lg7r3Xnd164yXyoZT20MESausMNW/JH0EsdTnVooKLtrvJMKl3BJJZotzKsZ8IS79sRDZ5u3tuHLMy4W9dJ3M9p1NTFJaq2XpMlXC4rJhF9W+cygnE/PWOuxmO/l9ruz/iqAu5qB47xka6V94MS4tiXySe3HbtrpJI19nmGyxL1u+qrSe8lDxsO10U490WQmvvFeVCCw36O4IOhXaMx0SIo7DwBhBBKlBQO+ek2FgR5CarHxI3vum8Y7865tX3XfHN2++725v/vy3v/7w449//enHp6FHhiDsIjPL0TU02Wd1cp2nO5Hz8KD3qaSlysJTTXt5qtA0nAEAgozjQI44i6KZUk+O46hRcdT/EJb4j3wan9LtKtO4hldXf0WNuJAmFSTSXDEaMk4bKjM/PDycTo99f2bm0+lRT/TeT4G2nc8rFjPjXwij88J8Ph57hweERu7ANygSh7HXSA/qlLH17lLjoU+M8fD5pEVFuEJb+NSe8ndILrYiIogDcCgIQj3jh4H/c0CAduhe0Xf/JU7yTRF4Q4AieQGEycMgE2qFsHmFaXMI5Y1KohfWgKaoEaOIVbUAdCLEk5YiMQZhICTvBJCCJKMvC2eL8+IanOUsmZSKqXdSlCWcBmK27UtQaBTygB6izDrVJRARSfWm69tTLihf31NevH9VF7xyh1WMzCis4csJdlIz7UCZBlINsCnK0/oxq9mhVFTgmkPVW9qZbtLaSPqaDvH27ICy2IJ3RphaRN4xH2xT/BJxS9r96Hg4laGWo0tPMLjqXr8n5tBzRNtLl98spqi8PCIic0DGF09O/7wxPSXHpGk3ISX7t/+SjZazFMgA0NCmrJ8b4WhKATlnI7quX9GcCp3n1C46a6aQAFdeJITgm5aQwhiZkEQI0T23b29l6VZndEHNo+gRUAKDyM3heGhuBfHmcLw93iDi337+8TQOyMwYA4wjZuJHMRmL85MzAwA4Ao2TrI+Va1lV+2m6JQJpYZURedW0gDJwjL0GogEHBACn0+kvf/nLMAzn81mVFkxLhcDUFLNFZTfVn6WlbZkXVHDKMhn0akmZOfcnDPF8PqudKcaou4y0qEJOMpJAQEQioTs0AsPj4ykECgFDjMdjCzD2fT+qouIc7VgTiw24X1VXyTPc7a8n5H3ZdJUtdCGFiJqm6brDw3BPQiQE4qG9iTd4f/fu+N0/3P2Xfzl8/weZl01EssBZQlKGrs7eC3rXJgFSm8t8iHt+FJAl7Z8qOIwIICisBgsBJkFAIFRD4yjZ7rtsEz8ABF6cWET9j+Z7tX4JSBDy7UYI5BpwDQABMSBxcoLAWnR2jhCcE8TCJWSP3Pj1SYpK3r/2tg0864JXKioqhxMRIH2KdlZAjtIem0rWB+FnKCp03YpKdcFqZTU/K45FLJn8xLi9Y36Ksz97NDm6vLetKiHXytQnr6hUz7VTb1usTynWbGFbpfmdkmZG1J2uv6mn9vViJwDUY9cO6eyLl/l2+Hpl4xhjCIAChCGEBl440W+ybdSD1y5q+VYbNszGlXlS+YLCDVZOKdvvoRz1lhWV6wcRFelSIjCdpS46z+xASIEDIQGigG7mdt5533h4Vl3t2HhY1PMWHbmmaSGCd03TNK5tXodXEtmRiyEO4xje/yIALOgEbw/HdEUil2lQ7DtYljIcLTUv0HY3qfKpsPiC803ldTj9jwiNY+D4cH4aOQKi904iM/PT6fTn8c/n/nQ+9SIyhBGRpkUcYcAlrNbkUjIzFrmDEPQVzy9JZNqA7J1n5hDj5F3GkWM8dN0UR2l2Q2cR1zSiSe94Sh+kiSUJyOsiOY/9eQDpCI7OeYajQxnDlEGPkHLjd/Xukv6Tr859HSRzXITtqbQSEE1R2SLJZzHGGFhz9AIQACH52DRPrn3qbs93rx12y2lFRwGiNnl5MhdBU1gWh2cBgdx8QATAGvgaQVdkZv8RFEB0GvEuSuCAQgAEiI1bFOh89UYAkPKELtlikU7cGjoXhBDFO5kTyAUKgAiA1YJP7ew0earMfhmfoqik/nLVOav+hTubHp51wSvPIiLnicmD84gO9oJtCMCU9a8M6VtMx6sFEMyp5Pv8c3kWXDy0noS2Llh/1XKQOjEVxeBMRySiwrg2u/2LaPSyy7Wa2+kFagX3yndx/Svb/2WqLsFlWRJLT6PnWZAFN2TjKdu3dm7M07Lg6n1VF1yukPfFFxvIMZUiQeogOieb/pIC4IvhwZPv2j6EU99774Gla1sE4Bg9OZllgimRGiISOkcwhfgkABHmMYzDMHjXuqYJshm7A7cdDYutPeW8nJywqcwgKQjknIZy0kR+zKyuKcPQt4cGkIfxPIaeOZJzswGpaGqlq94zcd7p8i4zo27hQlF7cB5dguf5RlPzoMAUuQjAOWJm3WDTNA0zxjgF20UsUjUNqyQ7izk5+yMiqm+MmqtvDi0zxxhCmBYoOEZH5Hxhr/V+WpSYcybWpnGak3OFYTNGai6MiohzLmVanE3+AACRY0ofiYi+bfILCgDoRqhVnuf863qxRd09z+dz2qzinKvcmqttu8sEI+ihadpWGATAtR04YgkYRmq8AKVhz3svAiFEIhiG8XD7SlIOo8oUVMQSKIraeHKEfR+bpmvb28f39/cPD6/fvDncdHdy6I7+7btXbUtE3P4HPjw+vnn39tWr1xCCJ+d94xuv4zERkXNZAJppztAVA0eESL6tU8LPdQ0sGuRaWyzl8Ql4HD7c3//1h7+Npx6DjAOzcGzpcexPjx/u739hgWEYowCgi8KRQUTG2Gsn7XzTNo0jmrfnAUPebChfzcjntnEYtRrDOACAQwfgTr0AIJGTlK8TYWQBQCCP5FTA0mdjAIhhPAkiDmM4n368fzj/8POPf/zjH9++fRM+/NKfz03rh1HXVSDyoFsBJC7ThXeOfMPMMUQW8a0XmDJ4VlLFjv0vyhI6T/ez6h9B9iyI6S2sdXUR6bpO17KS311SV9K9dkTGHfNkdVYlSNGztpHsPObWz1IDTkvB+X3zr9Uj50Z0XoXxmH4pgG07nM+EHMJZOCBH4viq7fA84t2yZFmchSghU7MrSdXBPOFrQ86HLHUz08IDpCQtCICL3VzQgSMBAQYBdM5drCkE8ED5aINz8BhEHGOYLy4yp6vU63TNAVhiiJpAkQhcCzDEPpxf+Sl6igaAGYaBkJGQEIicug2n15FK4poiPV/xZrO47pWpgvKIL6KVJWrXi2HIXiUIFK9v61555t9lTwKLgDSaxo7FIQEuC+wgguiYOQTW7Q8xMDbi0JHzzMwhiggBNs6PPMYxOKSm7ThGoEm+Q0QgD9Tg9B/lMU6WJorgXJP3qHzGKppoWVFFaAGslr3yhI+VnFlMjnmf4mkWlDBvxZNZjPauiAyeuwyjKxI01kpt+jtisSBWFjj/vOViAGVonKo2CrVq3mmzdcH04OdhoHktSxed0yNTtZl8uSAKOgZpuhYeaRyDbpsfxrFRMU+ABAgIkRyAc+AcOUTPjjgGJMYQMYoIIbbkpqCUS8VoKEF0SIji2kYQQgjEAjGSABENYVwCpMyqBeY7TKB4ZGYWAY4gIBoKBFFTw6HG6OBIDDiEgA1HkfP57L33WSBjzEab6qWUGSDK91+947xrl3IZ87QttmmafE8szrEuJoGzdMfL280sOaqpJ1llPg3J/n15nmet+W2h0kbXdaqu7PjNX4mUDMOg1ajNbisM3GI7WVkscF7J+egrWEsVabNsjFk+snnHrV7w87X6RWH7mGFm5wc4b2GtwgUsOYQBAGAcx7ZtvfcPDw9d18Gz6Ptz17bOuUN3PDfnsz9RijfdeoxIhLc3N2/fvD4P59vbm+++++7N2ze3hxs/R87KJRVEZIb0eVrknb8+nB7SfatcGapd8Ez+fgNz27Y3x5thGEWgf7g/j8MYQwjDm9aLbwAgAgcAEV1G4QgyMrN6O4BoClyCSTATykLbS55gF5rtVMHVnJ3vnuQsTSQRkUsONuqqhswSI3MMPQ1ITx8+fAAAeLoHga7rvGtoyoaht6s3Iy41jHXD/tjrvUAl6pF7judtUkiu6Yxfjp189t8gxSTCOuDI9N5REIUAHMCmjW1iS/oCKLaBlYckX5lYWXKTUjSZZzA/a+Nh6udKLUFgmb8vrk/ksuUU0vtTeNm3rIPYJKaEcOUc8OItLTVeEVDPMSkHw0nSnWTZNFaoVQQXc/US5ifrDruF3ZuJdnabbDuolbs8cH1MskM4Pw9tl/LKyl6VcPOKn//6rh9tMC0NqmI2nybpn4+VaqcX1vcSAtHIMQTAqRteYwmfrBjZG3lR9Kop0Plkb0pdXxBiiLLTcmYqS9CVQuoU5ZOmDHV50ueVwLn56L+BPSrJS/t3nEEy2e1gyuz+AhtHctFTWIjIe0+k8TM2FZUkA1UOtekv8rFNiuv0oimnSijSnmAStZnZv4Ruljz793cUPC9HXnUFXcG7ubnJV5A+ia5rvfMhBBYGkLZtCXAYhhCCb1uP6L2/vbt98+bNEMPtMPzpT3969+6dV2fqLGxUegpEl3p+9e/t7W26b22kx0VprFaoiONR+E2M3nvnXeAYPoTh6fwwjIe3tyyCREE4MgThKKAOWCPHGAPN84SvUjlm4yNIZhzJwmsLSNrfiQIsy4qr4OSpgNOhYnGMlxhocmicTCkj48hhCLEfxhDC49NTN56Ox5tXr161bbuTWC1vUUjkyOVpNJ7RclwW0xYA4ModACWqzabtPc+4wotQzFif4mnzq5AsJjFGYEYoloYo41cs4ZVLT9VZ+Sj6Rb046hK+xAVx3rTGzHRdrrp6mHpWJ1pdEAWRhZHBO8dzuBoVOXTeZObNRF0AjgizPSqLHxQCXzcTrS9YFXL5vC0ium3Nc2f7itvW0MswtnuUJdxkZ0Xl+htdOYPnNrvagplF+K1a1G88z9YmSFhFEksw8xKTHTf11sotMI61d89FtHer6xPPsWSVWuCMm2lYfwOKCtGy0v1rl+VLkfZXAEDTNPzZg2+aulQqPbad/kW9y/bPgtml+6LRVF/Erg2mkEtTG53CNK1+Nr3Zz9bNdgq/U0J4lq6SZMS1cP9JFwEAVSCn7UMswzDEGDFGHV8bryZ/UA+6w/HQ+WYJBzSlo53ects2IpLrIWmbtWvr0SF95WxFpSqha5sDAiK2Xde2beO8Q3q4v48ch3EURAIXAUbmKBhZojALBHXqAyAKqJFY5wR1lC8xl/Ei43Ah385UjFyJLf1qmny3aJZtGkXumluYpY1hDJFHwL7v+8enp1sIOn/5sk1efEFa+aXNFCpnwisJgfNFxdY/M46chiJARDUBPOMin8/FvvzNkoYvtdq48pAG6lXHyV+9hMr1iko+LH/+KHrNvZTP3lGyhHjROH7hOgkRy7XNzy8GIiJhnIYdprYRnhbfUmxW7XS0nf9Ut/7oZ8LC9Wtn1/KVKyrV73b2VxS/K9vQC1xwGyx/unPSC6yolPe6RlFZ37SqmW9/BPt8knFz/bzeu2ssXvnOCwBwn15na9GrlNk2T/Te+16t77FOqa7mTp2ek9MwCBBhLtKICHNMsVA3PRorRMqA4rk/YlGQlZf2ZvUws8Y/JUKXvPoiM0cUFqALr+gLk5d8NnvPpSi1EW0ENKc9Kc8SnHMft94njxTmmLwuiVA4LKuc2WbcSmSvpNjSjLdYudbFmBZntG1tb9qr5F3JXLwqH3dVpnXD9LqEyQRSDaMfncF5ziCZPaCkR1vklUUaLgs/524RABFxU0Jojb0DaQJLy1/qWZsvXwCACANc1GGWCYzj1O3btjsej6Ef+nHQU4ZhcNPyl+jK6TCOqsNEJNCcI1lN5hajfDxKjzlmW5sIkXIpk1A2XL8QUK2Jbdse2rbx3hH96Pzj4wNjCCE4gMAyjIEFWZBBRCAMI0sUwACTgzipzyoic7Z/Kf2jpZpVAURkYWHRkQcRQxjm5RmcW990UJ3Y9GGnXOBT2CXwjQdAEXEueAYkVD/1oe8PHhBR/XRJo6DQHG6pbF2pGhFBsqoRKcIHE+aNrej1+V+IMM/Wl98Lt/241ocWe+08yqfRY+s6umUujQZbEnnVbNIi6vqaV5r/06F8YMkPySVfzTRo7Ac9SxfZiuyHc5ui9KaIRCCMUeeypJ8jIrkLigrOruHVxFEnTd22fTxvwsHMYxayGV1EADntz6Yy19aO8V6EVRebNoNlmaZE2DunDpaE+d7vC8+VjS3LtMKs+oYX4RCCq5bH8SNCwSRQQj6EFq89/8KMdLWZfwuekixP4TSiDh1OIx8sDrT5ZHGhbUy/dM656Cg55lf5GfNMzFgKzTtto/pZvpgje246Zfyu7EAuBFQXdFg5QeTfNnMLFkUqC18sPZUduPrl1vMTFAlSdhp2VQFFU5vfIJTxowEAYPE+wFVt64jqvW/myX3qhjDvONlvgBq/D6YpY0d4XQQtjUE+fSUVNtLeM6iGlEs1kLrr/CxIRAIYQswHinkkEXVpVDkSnUsVwMKQCUu5OIfz3oHpl/mevdJ8kL+v9BRzMep3vjP3JbzmclLDbPXjXNhNU6CIVDsoWAXmZB/NX/nHJplLH+uGsLhz1D6XdWuJMerOP0IimrZXRo6RI7IAChFdP298tO6uoVhSzHxecU4+lQ7BbKRkZipy8AmAOIeLB+2sM2ida4pGFdQmMXpOJ5yC/Cbnq3xi00m67KKgvWA9NOcW93po2J6kkyAFK4UzJSyfmn68bFCfJNLlEODG6jZdmgPSQJDXvFrypqUhonxLN0cGQLWgMzNgptzOuqLWXrogM2uR8nsxyxTJRqrqTV/A+wbmTQtN05Jz2g1jjOicviDnqOu6ruv6YRjHMYTQ+SZzMF7rtIV9KH2O+eJ++cIkyvpEJcZRW1Hjm8Z5j9SgawR/dv4cH0/nHiPHMYR+FCCZvQQwathVRCAEBpDJYA0gYVlidkj55hMSmCJ20JTQYBrYkIRiWsJPT+CcQ4AGcd4uiUS6bx8AgBDujg16j4ivQxgZ0DWILsYYQnD94+FwUL8vHRNAV8aQ8vyneXg0FoFsfTw10UqggdWwm6p0PZ5UGviVUot27XQ1yQwBuVxVnZUUlfT7/ILrG6V2DhdMRZcf5+KhNNqs7ZpVN68umGZfXKk31S/z511Lk1OXZ44hTIPYopCLiHCS3LdXR/UWLntflaKyM1VsVfXFW+RnyewXkfvc6vyLqzizk1RRJW4rGoAQARFF3caP8/yOJCLO+2kYxJxyU85cvOlVZiMbTUaclExw07h+sc2nRpJVBRRWjFIrzj0Odtb2LzZspfENOwKAyBEhMkIUIWo0yS/MI0wyAeClnKpaV86Rc7qhOoW9ypZ5EIiWZeQydPVee8gLXJ2Vb+2rlheKQEFEVI4AWxckzItUzLC8rRRh1VnyZ8nbPGIRRal65I11mGqMwu0RoKjP9fXza2afKXOdre5FRIR+HEd1c9B36ZwT5tluLKKx3zaaHiFNAcdk7xVDln6R88FwTvCaRPx6xMv71ywMIOKkI09PBKqoAKii4mSxM4sIqJeA9ibEYmpL9VCJqbDdYitFJX8LqeGp0EXks7OWmt+vqN+A69dvmspBQoe8ST24NDGvmYUoUi0lOfMkySO9bO/aEIJucoCLA+t8o8oiew21FPsCSlxB7qp4UTD6KESY7++qLAHTRM6MZSzXHenwkwqfX/AZhffedW179j7G+Pj4+ObdO7UgjBx11742njAGPO6U+Fr7XH4ohaLSFlU9mf6UBBpynfMt+Qbw1c3NT/c/fMD7MQZkJI+azA4ABLAjN4w9Id4ej13T6o4ajwSI2BSRnXL5o3F+cShWnWP+iiz5ofQZEQmX3Cmq0SHiOI4hDMP5obu5OR6P5HxgEHJEvu/7p6enpx/+fHd317ate9Z29lSHqThfLJLIR8h3qvhtvxSYNeq1lrJP3rDXh1KHXSsPn8+VF9xp2DmeiObsosDCw4BEat7Gq/a7/ppUI7Z6Fr14hX8OKtD3fe+c67oujC+8dSofly46qX4qyZIDItuj5qdckBaD2pS9fr5RYcjftfFtHnrWWRft7hcvuMOV/avSl+o1hOtuVykqW8XYv8JHly8UKhNn59d3zsUQYbZKXnPf3wS4zKh7O3iTGLNeRn4RLhqkPoopKl+Wakh1WR7D3PWLyl1KucUotS3IpI20GJIWWJhZw1bitl0wXfBKLbY6qyhheOEdZ/o483b/54wOIlBp/wmcF3O1rvJsep9X6okr0/Pt4JzvukPTPPV9f39//+rNm6nYuoPFex04xnF0tOkaul5UXa4PmzspU6R8WNuxUFBDh2tMRucPTXto2rd3d4eDO7p2CKMgRQEgn3a8Pzzen/szIr59/frV7Z0n53FSPFyTxRLVwGUwRTs5dN20NKiKinOp3YcxEKR1k2W0RcQAYT5C3vu2bRHxdDo9PNwPvb+5e3V3d9d2XT9yEHCuub+/Z5Hu3bvXr18fj0ev9qpPfVta/kxvytdhviY0JznVvlO5UOZo2G51WdwfH3Lyhl2ZD/IO+zzLwg5J+0qF3/rlldtqY7adC5gdkegi3DcfBkDJFRU3JzlNzn6/btkg8wigq9MsPuP6you0tL7vQ4iI0LatyDhs7+K9knwzfbEACEVI5qrwV26m3zmr6no73eF5IWR2tuBXpsDC/6Lc3XrlgJP/qLJ9XLkFvxaCs8+1Q0cmZlQlFCbRFA5fwP7yK6Kzqs5ZO500NxbzS0Q5qqhSe1+rqOivsng720ltFlBlGJm/zH8WUGfuTyj2b57S3iiiMexxSg0VYkxHk1gz9Zk9zbJQVHIk2yjCc07DeXvBpAqndIcXSRozrnwf9/miM2Iy53+Sxbe6wpZwkxsJ0jCXOklRA/Oddf/3lXVTXfAadOEY56RLSNQ0XqXJIYRxHJ33zjkWIURPhCBTMPK9e1xnn6vtZNNfcpV4hpOiAswE6Mh5pEPbCPcYJQi33YF8Q65Vw6EA/vlv/3l6fELEP7777t3bt4e2053KWHgigPPOZwsarNfXRUKalxHn/I00eYFNxvu0oDLyiMn1cbaNhX5AkePx9nA4docb3zbUiJDzrokxPj0+utu77nD0bYvkikrbfd2VE0TRK/fO+4Loy1qi6m0rKjRHvtbVuSt7fd6wq7M+v8Pu3/cZKyqw55mQyyIIyIyYAnZO58JeWNW90n76KZ9E3tIAAAiR5zgZIosp/7PKIatLyGyh/niVqEKbwus7euE0x9U2y89vb13Tih/OInEMCAyT1LKuhAIVeeYI66h/0WYD8wb6VGsw/6hakdxxSCvvpa48c5kKr+lilaPQi647C7Z7SsXOxFH9Pe9HW4c+cq/t4j3vje+ck0tBVQmRiHWbQ2lNhiQnTxkdBUFQcPKW002ac8RKhE0pWrOK5dU0ZUSYv9JndeXNDotlpNDinEtT2ySmvrTQ9zzdzztBB8giEiMCoKORoyOHjXcq9rEICENsqCHnSGAYRxLHiCgICKzuv2GI4QwoiPkqTRGTozQSQPE6yr5chL3KI5mUT1n43CVhC6eAzV3X9X0/jiPO+4p0Ke9aO3rtnFUdndd5BZiJXEOt4yGG8cyIbdshUIxMS5JA4MhRRQryiBiy4G5SJliomhozD3NgX935ReQInE5UQNNXjmOSNVXkTRkkHUyhWkUYda8OIKJDBOZN4WbdpnlOzVO68hcCuveeZ/tldXq+FiBxytsX+gEB2rbVehjHsWrKMVsnQUKQKaIliBzaTnduJKG2KtUU+JIc4pSJsmmaVFpmrpfEtYlGVn3TddQ6L4inoUefJcIqq6Zpmmnzg3PJRWl6zB2v9GFIg4pDur2764fh/vEBvfv5/Y/fue/v7l75CF3jXh27e+9jGIfHxxjCCFOwaSz3ugksye9w9nGftuIUvbIoVd4bKkt2O3tsAwCin8SWpm2kvRkfxjiO4/jm3Xd3r96OLJHFOdeP4TQ8QBgPTfvu7va/fP8dEgEheEKi1rWwRPBDTVOpBR40OdeycUWSHUQ1gQgCErUNCAIjEsLheMifS/1PmLnx3aG9ub15JUQRsD22IvHp8f708J6Hp/OZ//gP7+5ef+/bo0+7AwUEI2ejkgioa5mWkLPxSmtY05iKSOs79Wmfy505lG/PuFdOxjuyuA4aKa5DdXHJkhVq40y7xbauX21FY2bdyaPBuKtuDnNy2Gr+c85poqG8VOsofDsSTDWkxDGkBwEsaiDPE4rldKM/y13XZukEOEaOgaOm1Q0MMSKPFANxkxVK5hS304BWvofNL6tXfvnzrswaOerALgCB51ABhAgYhBEAHKEnyHZPY7nZIF126l9h1MuGEIZx5MjTMIWAAOM43ICmthPvvSZxBuamPealJSLN3tv3vb4+tdFqaPIwjM65rmnz+F2V/ahwUKzeflm/UFTOpt2tMpPndpYxT9s1CY/oyKMIDz1IACCghoUA2XtwRMDjoNs7W4pDACdIgA7QAzgRYBRquCXhKHF0LC1I611zc2Zm1IjroHPRcuvtlQfnMo2ubAE85cIEAEBHSXZCgZglj3Ku9AvAac83zCvV2ed8cqz6XbF9JRc/yG3qnFRuwc/fkG/aSuVdPm+3+UIpKIuYywDOez/n/q6GUNmecHUrbDLqAnmd6gQxMtPcU4gIgsQxeHKenAh7dF3bAkAIwfkGQbRREJIH8Yie0BGMGCKwxEgQnaDwVI0CIMQI4pwjQF13QwSHQAhH37a+cc6NLgbhPoZpSEdoms77FtEBEKLL6kpQOFtbUJu3CETVrSbnBTeFAfDeqxTkkBgwsKBmOUMKLABIzks5ceQBV3YiwhWpG+f9z3qvah97OTvkE0ExOGC+N7u0VfmiVS5nfNSMsuylS6P6lEj8Jfh8k8nXZVKSs6kyjQ9ZXaedBiGIiMt6YvW81ULnlYvpSTx99noll+Hn8kklXRxnC/zWRfLkkit/4pc0Pu5fKwlqiJOAndzk9s6aVzlw1kYkMnjBMgzDi7TPfBuo1q33/ng8qqgdY4hxBBDvXOub1vuBWTgws2u8xnqulrOrz6kG9Aabj7yd+kotEeu/wxwZaHLGIiQBRpUv1QMECQBBPCE1XgjBEyDuGGgQERCBcI6uVm8YLIpB06pLdQUdKGdXqNa7JiIwAuvEz6rjctN2zjdITkpBtn78nUpbCcG/DyrlIXWZZGb7Fcv2qeTj4XpInMNcTAaz+b/fhjfARR/PfVcImlKn61b88vzCNUlEWIA1/FfxK0QsY5HtVG911rUP9nl84tynr34KBqVF3DVOitqVNEEoQpyvQDIFeUpJ/jZXIT6hNjYGItnNPCuriy9zFuyMbFcNeqsCbg+Pe+Lt5hV2T8ltnOXU9ikk7RpmpVGyQHazIWOJ+YYAGuBR1/BBx43pNasvhEzBImfFBFUMnAt8sTmpgJEHnZD5zCuq4ltEsqiwL3LB6uV+i3tUKqtD/I1MHh9F9ROV4BFRMrNT9YILd8+r8w+5LDPm9W7oOdVWmdyTJPXhqXsXkbjKBZAYaU4uWY3LX9OVP0Usne3ck2nh+spBIgAMIVDjyHv87Hx/FVVVq9G6aZqnpyfvKa0UNU3Tdd3hcFAV93w+H92Npl6pXH0qT+4i/eW2IZ/jZuqryu6WXiWCLDs01PNKhOY/eu+994SaWhS0BKIhF7fbMmXJuapD6wkpeVFWf9cVOX3wpmtd44VAkAVEmIVFIgPL8W4K+bV+iURLbKe91bAyU9XmU/3WwHLjlrbz5FqWV/iX2IrwsuTj4W9LxfoSoC5XOpDtTW6wNGzAMog5zN0wNQaYO8h+ijN8ua2AH0Uqx4Sv+M4dua02VjkhX9kUr9yXBbUaszkWVeHRymJsHtqZ5XZKuJPQfWcZedeDtjb5Xxx7d+blpNuo+TXtqlr/Rl+l+qXAvGGYaNq4Ylwk2UxfyjBRvdxvVFEpHvV3tJ8JZisU1MNBLetvHdohLb29lF57cdPe5AZT+m7mt2vbVgugjmfFY35+ma5G5cg5uh+nFZX9lJc5Gnk9MqOwc04wMxO9RP1Wpmsi0qBVfd/HOIYQxnHsuk73iB8Oh9PpNIzjw8ODa/zxeIRdi35qA9P7Kr0st0pfdb3yM6TZArU2k2oxZadYFJXZfAsxsoQAQhqsyOO2I8F2cq7a8JZtpq/yBuj7DSE4513b+LaRyTdIgEWEgRmYNTYxzSHXixeBKMXYszftwVy98K0L7deyrupxHFV//s3pY/l4CL+9VfoXRvsp8EfCvqmi4kgIiUoHibQhSq0nMIuMHzNvV5P5F5wE6ot/xTee16outuaHLv4MdkWbct4slvqKC0L5mNuPXKyo1L8srpAfuLKE65tdBa5KdcUVq7H3yhYl83Y7Hfb7vk+fcV4YVAcQcpQOCQDzlJaUiL5548yvRkreqlX3It08b2A+t2KysOgC8sdug0sLw/Sm9Us9VGxmvQAR5Cw3XzpUb1+pYmisHgYRk88SIjIwucWDv1L1BKutSlXvyJ1n6keuzloWvRG98yMCaOQTEBbRC4gsQwzNW361SI3fTO0sy6XrV+EcpQQg6vwDWddN/Q2mmWkqZ+SYggIRFTXAzEQUQvC+iTHkBdFcNAnd4wGzDpCXU7Kwpzjvjki/TOSyjpReWGv3kvRQ+b3Wzk7p1ljOq3mz1LLA7GaNi8cCAEREWjK96KQg08VhzlogUtiqpBT250EQYcpS5ebEREKEsyvsSgQvJjNKqZTu7u7ev//5dDrhvNWqbdvj8fj09DSE8fHx8e71qxCC6gNl28hias3jhdZabpKoBJXKgo5ZKLnc07T0/IKUQU9HAkJiXJyGkYimsF5O0ykKIRJxjASLNpK3jXl+l7mMy6QuWejnKSjx0tKmx9GQTuM4qvf84eam7TomFAYRkMghhNPD4/np1Prm5uZGy0ZzNr3UhHIVfzUM1n7XSzHK31VzfXGJ7d3eF//+7F/mnXFXjqy9xvNfpv6yPms/iFCaq3bUm/W9ti6YXhN8bDFzXdLk3QGztYUjUzb+JNdIInJlZvdcld3X00qfsetfJuRPlPosz/mysjHw8jPuT9RpDBQRQRBhn9W51oaunaSOBlpXOGUERCSRwo8UZwdLzGTE9CrnqaEycJRVtVH4OrFvKd+nHLvVXqmdxrBdhzqxTrmAmTl/t6nGAFbhbtOwBIBAAJFFUEPqZXkyqzKVGUuKTIuF4Fv62rnCX5+5tMgUz5lXVL35JPvVTkYU2Ghe+xfcdtyqdhsVl9+J+FKqAbj1DRHyQalU24pilKXNB5x8WEtqW+rvKiwRosu6ZBpGhDU9CmsuFfXFw0xQqSJSc8oXrMa+uXkQuXxoWq9RU5bwcRNE0KFMpMpsQ0iBAwAyMzpfzra7l9zwl9k5MU03cKlL5n9Z9crNe+VfJ0Vl6ZyV8r7zLMszLWHdiWjl3bP1bKQbZi5VXPHK9pcRcZarkqIiIo6c81PKPMliYav4FIvYeQLFW7nikbPK1fZBAKTpcxDJO4gszDKJc8umsGxqxOo1rCdmmYxVF5ZK9ToqZqVpA+aJp3jZKatxGe84Xw/hOT2L9qU812Se6CoXGUMIjfOy8kqkef96ekYus2XtTDBpAaSqXhFpmia/Vz475ht/63EzU2/0bmnncS61aMCDxT2s8SjgeJqiZHooTWKTNcVqD5+kaCupLMtrAgBmSfmVNmpAaI4JmLYvPz093dzcqPn/5ubmw4cPIDCOQwhB90ZXpotcdnRzGvIQAou4YiaGvDFT4Wc4tc9ZLoEt8kEPAckRTuLL9GxIOMVCdE4IwREgOnLAktzc81WU1OX1fWkJ9VBSsBNZHSYpNo7jeD6fY4w3NzevXr2ixkfNZqmHQ3h6eOxP5zd3d3fHG609DfyQFHtBjHEzxdlFn4WLY/f2WZs/ezZbglq6+P58sH81ybK+VvNo/rVeOJ1T2sPHnvHKklD2LLpTNB1K1pP5Xnkximxuc0MQEYHFmJLGf02sUu8BzSWbnSAE5WveFOG2BvOkBujfmdn7RjJHpvy8/OqVQbma6fMHZxEO0TftZEHLctfS8kutiEWcQaI0csocmyEFDlmXZ3oQV/TQLeWkOlQ816phMLOf0oQXsvS+JgxFXNo0E4OwzD7AyMxU7hddar40SOloN9UMYBLOvHfD/IN9hXaVaXFbeciKRFw1y83r47brF1afi1a0eZbbueBO4fPXWutBub5YKfgbrbxEVYfle9k3iucqNmoXRtLCWwTmLanaC8Y5NKLugE8b92P0vkHRyZFRREiSpQxLFRfqsUhtn6qngO57yaMmMvM6tSJlCR+36iOdDgButvelQ8xM5JjZF3rK3phcp7Llesi6eNZ65MwfpFRUnNSxoy5Qx27Z/7XxmXjviqhf8sk+XVXLUL0izXD50VzpX0vtya2zmm5VpFCJrXLZTDe6ppxbhU83RUQqZqxaN7vyXi8i3n2UZz9zrkdVRa3VyOyQznDqVa+6ir5N3XGh3l9N0wgAAvZ9H0LQ35RSS10zSQ24bnPjM0FC7/y0bUmyFVq1EsQIQMKAiI1rNNtKslAsi+y7ltH8l+tDqmycTqfz+axKXdd1AecdigIAMA5jGIbWN13THg4HnX7ydTxmrjfl7Dzy3MumK8CedPIb4vrOrkG9lGqd8/p7VdrONWeFwCL13rlr7pUUJyT8jP79pZB5IYVntgbzrwkzqyj26xZjh53AM3kdVsSkpK1DC1zHNHohAZEquWnfXj3Oby2H1Trnjv5RbYXfK9X2NTZ/9hHB9Yp71Rfcu1d2VpYZszpt9SD5Wdf23ue9WSLSAGQ6fz3jCsYOO71yB1NUvizMnOWoKRr9lYlvKiNNCKN6rSSnwPyCKnKtd7mpc1damsjPUv+xpmnGcUy+ZOmQjrnP3p2PZaZF2fblr+51ZW3AS48jwzCkFRXnHLpPfuq07DM/RaGbFS+9tDqomKLqStd1ur1+GIa+73VR5Xg8Ho+HPvDpdLq7u6ussHBpd2OqSckW458nVu4wqVhqp5NZkWaJHBHBew+OxCESDcPo500sMGvd69ddlTBXVKpbzzumJr8vEbm5uWnbVqORqqIiAiGE+/v78/n8/d2bt2/fHI/HON+FZhdKEeHIAFdt/MUqK9Zvbf/GFpWot7NftlrKeL5M8Ik4R/mKyk7qmJy0cKFG9J2B6FeEM6ocsi/bYa8nxqgrLl9tQ/ynsnaYSeynK50V13qUvhJEXeNFINJPSVGp7nVlEkYoBesqGHreU3aCIeD2a1o75Wefdx7/uhWVWgPZNMNXtvadIpbX3zxrp2vsDEoXG4PinGNhAJCXnigN2O2VOzxTUZGsayMArFLYfDtI+flLGIUEZHIhWyLMIQAgSAy1u+ZyVukFtGcLKZdNVM5bz9Aye9/hylMwmX7X91JjtvoaXRx61h5l15MbnkVENhb61/faUVTKQy/c5tqm0XiTNDuaTo5AV98nlV8RidVR/YBQJALTB09dt2laohMAaJgvFaaPx+PN8ba/fxj6nkMAFmGGbAJbzwGpGHHb+3PvUbZtbZJ90FGHAEhIGN0894sIEjZNA4TiCB21NDnUauwgSlEgdyXd6jdra6WKoSyi2enR+WEM1By0fAgSh+Hx4WEchsPh8Pr1m7br+nGsjNZ6BbxOHkvleXGt71fnysfZ36NyDZWC+lFngHSvHdl0/6zpnRFevNOvlrYT5j0T2QC4M5g/+x648VWmXAM0ucDkh0TUK/XFivHSlI7cxTCS12E16KWVonnLdDpn51YaZ4MEdReCusg5IHV+x3ycKk+r19W3DhVfL3nxzV93injVikr9y42UoXjhvM17lYrK5i93SljvStlQVCqSULcu/N69yhtVdjGd+nXP9oU7znHAC2nvWxF/VR7IX903UrCJnV65gyeipm1Op1OIQR03dQYiIoHJWVNEWBhJPKKgQ5LIYdmlIgzMGAUjuyiRll1b6uSRFzL7GAEAHDEAcyzV9qKBMccpq9Qqh+CkH81XDSEyS9O0IYzed9536M4hSD+M/gBN1wDAGNgXHrSbIrgKMPkv15/VzjGEM/CIzkfwcYwtNiianF6KHJflmor3SwQkLE0mupE6eeTrWNy27TiOuiqioVdgNsLpO2qbQ7oTEfK8OuGci8y+bQMzAEQRXV1h5mEYjl3nXDOO0fuWWZxrdHWl7/tZyEZEFyMjOu+9voSgc/0UbH+qjygMAmEcc1VKyzk1qsyQmdqrogbaVA96VM/KN73Ui/t6iIhFeCXoeO/P5/PNzY3W53JWtlMojxxCRBznffe6WiPiwXkRj8Sy7EdE8DtpSGGOtQAAcWQAJHAS1fepzX62nIYO1acene+c75r26eHJYQhDDD5yK57o9nh3d3t6Op3Off/j3/52aNs3b94gc3KKGkM2ZwMAANGc/7Hh1JeRwNHStfN8Pm6WSBxR41suE7fhbAXhEFzbUNOgCDgahcM4RIAoLAA3bdcgCUnTda5pABEBHRAyChAgpLCnIiIMUV9HHlvCIeiSlA5nBIhIU74/TP7rCCI8jiGcTqeHx1MQOd69vnv3rmmaIUgQapzzwqf7Dw9/+/P48P547NpXh9g25zACoW9aQRxjmDszEmCYt1TlXXJaIsunWwGJjAB+2tNVic6fbA/ZGa/zlZ/UOy4Gs1Lre1prXQttU+F21cIdDWTngvnPKtkxH9mKAOVlWp2d0GllEuFdo2xRjuWCDbmGps0VMUYJgWMEEQJyRB6JdGyJ3GTdEssXySs//6xIxUYv5sW/fEcBk8jgCJwbxl4IhOPDwxOE6ID8q1tVGdT5pNIxijtnX/JpVFiE4zQ2EJ76viEXQ4hj5BDDGAiQAJnDWcYb76O4g7QtOogDEgh4Bo+42FzmVG6Y58xVtFbTIxcefaWzPue5UGt5tmgblXylEx8AeJ/nnwDBfF4upti08zDNINO1ARvfRj88PP4S4ollJABHDaJ3zo8hOOe8JjmNCEAgBEIoDtAzCGv+PiFgL8EFEZYAvhWgKBAjIyK6rMXmefHKV1ntv80LTxsWKIALyVKyY5u9st56l3cimLbqpgElSf95LrW0nS9dZetetD0AVtu8irPKpaJS4ipKXxzCrPCzwq/1TJmIxVWOuLx6iVxeb4xTigXnh35Q12vQFggohMCIiCToATyjF3QCLIGZmQNz1Bg6yyRMhNNOYQFm5xqcXfG9J+YQAjOHGEMIg4h6lIhzuutzJNKIi9l+m9m0APNoo+E0RcD7DggZSBgYInrshx4Io4wURqLb+b7FiJq/VtW501e3veh9USSeztoOyR2jvh8SQd20lQ6FsORA16Xv5X1tFaKCiDR1A80xCrMiArEAawDQfK3li1DOUnu/zNp23ie/TJEIEFPiUQYdaUn2QgGUrCWJi+aZ9Sn7qzFrkiMNzOlaq/uuncpgdu/JRKXN2VfTaOC8QpIfqubs5M57pTH1U1HxrnJ12wfnNzblLsULhz6JbWPSZkcRAI7x9evXukFlGIbHx8fD4XA4HNqm6douxCgiwzBo7C+UKeTCOgPGNRaLvA3UU9HmU03/Ljnz8oOy/EmyM9YPvG9py9r/ZkV5okFE5STnfNO2gCQwB2IRCeM4nE8cxq7xx9ub9nBE777QyuoXIgl/Kmfnm0OMFyBrXNWiymcuI3/09KEP6CgSjFHGGDhECOyFnH+mn9VadJgscXOfTg9YqlnC2kEFQVdRZ2FvtgwsizwX7wWZIel5Jf8VmEQVmcVyLfmuL6KgoAgKCbAGh3SASOgAkJJ4tzPdVIeu/OWLnFX9rJCjsn8xM9Cuh+ut63/CDPusQzvkhc+vs26InyQmXX9v3C/5cxdqac6p+tE9nEWJBICBXBXUQb60s+uOu/717FzhWkUFZwO/upXnhwQkZs611/l4PxMsnWU5fBEB91Mh9VL9jNRvstpXihtO+euzdPggoiuVsDzIY9M0Um6VAQC1nFXp8KoGsKNapMKvp7f13lldHYLSgPQiqMY1xRlcRez5aqyVh2vOEpHb29vz+fz4+KiJLFRCPRyONzc3QxjVJWwYhlRviOgyA1IupjAzbG+2GYbFjLGvGL8sla09965OawjalnhbK9atKeM4AsLheDwcDzjFkkaHKByG/vz48GEYhsPx+Obt21evXudmtt8EqTetl5SNL0o1LMN1+zTy0W/fStK2rRCEGEKMp/M5jqFFOh5ujofueQXeGpaf3anzpJnV2FXdK+2lWUsIv0tEREPjICKRE3I7Kwz533eWSqpfbn39fEWoVjl2L5L/vbKUX3NWfZHtQ6VkvakV1xry9llQLhQUO4KuzqP9a5GcTT6p83KMmFyivqLVoGrYz5undhbzr1VUVFTKP5RX5EUk+pJ8TUHqeohwifiB+IxVm0qETbL+/sOmsyb/pavzvqtplgi9bwojPyJkuYfzqahqADvl0p+pBiLbu73TkgvPMXmvLPyVqBHaOTeOY7XQ+TWp3uCVY4e+0Ddv3mgkYhF5eHi4u7vruu54PDyennSfvWaETJ5scCk8w5R159OjAnxpduxzOsguisq2Vnw6nU6nU4zx0HW3t7dd18nkbo+CwBLH/vz09BRCuHv16s2bt8e71yFeqy5+I8QYU4zvX7El/x0iUDSVKyee1LAn18pt9Ya860N4eHr66f37X+4/cAg33RFeASIdD89Rp9cNexkcngVRkUS4MMOvJixIo83fh6IiLCJAiEIkiMkjqw7wWjShzUGvojhUR/26bkUFNmM97ikqq9JfVYydm1W3vvLQjmdOeaj0UihcBotllmoi/lg5f3WSBEirOHI7RGaX7fz80oVMVHs1n3frHWHJIyICOucQMHBopZ1GHI4oLh+b1G9v7RSEs1TKmouj0nG3SlzXe3HSuvSaDAXLE7NNfhDjVFNpkUEdkCLHyFHmdHJrRfPK7We40XnTwalacPI5yX1vps9QRjFdXSR94jnhF85eBACgNZynJEvNMZnPsyssVbeeYGRe2RcR75xKQqk/pB8nI5mSPH2JqHT9wnw/omoy09aI7PFFpC1zXOZXriZU3PY34CykLFE5TGV1SDRtaFG2e86FvyNqDFPguVYRKQrPWTQRoAhcmAJZINYuTvPpU1WUzqC1s1+q4RSKTaN79X3/4cMHADje3LRdd3Nz0/f9OI5PT0/e++PxqFqZwFIMTRIDAHn9T0Vaqoik3HrBs94rq1Bv1fy6yHA4N/50fRHnnKq76fHzO+almioN63QuecNObQkQIUvmMAz96XTSFbOuO7RNQ5j2QWIMfRjOp8eHMA7O++PxpjncBIYo0MwXTD466dY0j/JrM8H1g++Vk0p1Qd4It5X+TnMs5nRuukL+ltOhnQKv1zbXZcNyf0VVIfkzViMMzYGP1mvCq6ljIWsM0/iZl3bpXnsev8l7RRvP5a5NREKOiGAKBVa7p25dnotsVOW4VN5CP6wlDJ4THAOAMDydh6d++PHn+//84W8f7j+cT6fXN7cwMjB4d5tilK9eUG0BX4pRipWEi9OIthxPLg2tGtqInEPUuUZ/DtP/Imrq5/zl5kN6NSDo12od/gJ7naiqxXxCnHKe6AhKdPkWOjxsXBBSRaHmZdb2fGEuX55xPUnPVSfAOskKEY3M4DJJffWI2YRFVb3lpdvTRvIXuyOy5AlhynLkGSSrDUCr9pT15bKE+U/rC669ry6WcLt11GlU8uiemRG21og2dEIAQN5UmCV5fOhjZV3Mkwvq4o5ANHn0afdxnoSjALDwWkyd3y+X+08XiUAAEDXZ7JKItgLm2+EsvK2t/+uuN0kOhGqRlDLH3VQyV+SXTK5liFikE73aBW+vHW7MFFBm762OMse8j+QPPsUJndyBwhIGhyMTLk9SDb5VoUCSdzsiLpvp12mbltKXY0SpBhSi3jTUzj/mUqpIJ6miouijTopKjByjXo+ZyXvgKl7WtZayrEh1HUgSSWGaayf52E81LiKAQFnnq0Jg5TUQwiSOJ6FE5gWKSlFJNVDNiCKAWKxaVGelE3nOHakuRumQiptS7kRMwkeone6W0l9MUTR3m7qql2k77ZBenZXP00XfQ4Q6dXrRgYlIxWVepYjZQkRAi6SKyhRNShCRgLIQW4WONI4jbkTwzPNdXrjXjP5g8YIT0aZ7PB7Vu2kYhtPp1Hadd/54PN7f3/d9//j4qClW1NCetoDTlKNKYO4jYQ6ku1YIY5l5oGwYRWOTZFudk6hOAyCRvmyiKY+1KhKVsq3DZRp5i1dZ9sFKMitqD1FDNejj930PRF3XHQ4HJGJh5zQGd4xj/3j/4f0vPwrzzd3d3avXTduNkZEacoTlzL98nEf1fND7KDvC2Y51eWc0zw9t9fG879TT0qrk1b12CixzFl0sh7nqstUVpByWkyyL9Vi5WaX6M5rDMK3le+fcfPrlws9tMml0lxUhJAJHgUgAmGuPplq2LdT4KiNbdn0qRq28f+Vjbz49h8iPT+fH8/nh8fH+4enx1L//5cP5caDowhiJwru3b733srIMVvW5FVuWso2qIoJEHCM6jzitFLFmKyYCmrwlVSol1EUCQlg8ZvO3n5pZdcf0mx3Hip0exWWPLEUCbRuomY1FdvpUflZVuuXL0sGxfuVpplvrY3M5GVlQMAUOizG4Brd2MOqNPppifGexpdYrtq9D2/kZaTuG0E6xdoavel7eDumZs5tPfHu0qYMrX/xYXaPolZUqlZYKVVQqxluczJGYTU1EFMeQ5qFJIM1lthhjiOoBgeBS4mw1y+n/TqFhReCSojKrKLX5ad99lLIpldB5XdzLkoBD1gJhnsfzLQOIWCj+ZU3tzBTVJLU1O6znkfzp8guqaSaPzJEOfdoeFVxZhY19uAyBeuVZaykhsdNunsfWrAOrwuvnj+5NT60thaCVSwtZuoqizdF7f+V++tQfpvIUDwLVnLMjtz2Dpm1YQJ8rxsIQOyWyveLVlJ35qvt67w+Hg+oYT6enw/Fwc3NzPB7V9UvjsyUvKZwHKZ5jwU2qe6NJneuVt4vFS9EUKhmLUz4cjsPQ615/jjEyq7REZcrgNakZ5ANlkk0v1lKFy7SUx8cnjNw2zfF4PB6PQi4I6OPHMXAI73/64en+4e7u+Oru9u7Vq6Y7InjnG+Bx6/pfkx3l5Etz5b2et8PqN413Lj3ksx9566wkx4/jOIzh8XT68PR0//B46vvTuX88nU+Pp8cP9+9/ftO5f+na9vXr1zq2/L3NuV+6pSVPFcw2wX8UIhIQ0cBPQgQ42USRkHBL4K/U9Wd0853k7ut7XXXBnZXNF7ngTgl3LvKsC147j25TdXNe/DDq0PPpl0SIXOq4H5tb0xVYpjgV32xuomfwIh326emJiLz3VZAneIaiUpnnjX2qvF1XnrWT/bAK/XnlBas00vkb7LrufD5r4GMqN52vC59E1Z07JzE3GS2Sq2URYq+0B1/5ILm2LOpNNyO1YxWmYlx58X2YmaVej8rvdfF9VT/Lx6bVqtRlmqY5Ho8xxr7vnx6ffOPbrnv9+nXf933f39/f630Ph8MYFs1EV8l4jn0o/eIIB6u14+ox0yrQOA753xMg/PTzj/f3DwDgfIO+9U0Hk8Fmr7ZzfbVSVGJpTivMdXlUa+YxxtPp1Pd9jPGmnbQU55y67GhtjGF8//7n+/sPTevfvn37+vWbw/EGyAkjkPtGFJXKseqrzVt19W6PS2tNNX19qW71rcGfnYz6oxWlofxO5/7h8fGX+/tf7j9oex6GIfbDh/PAIfzX+++/79991J76e+VL20NjjMzzJMUXHMAusigqAkhIQLIkESg20+dcOTvsUHXYK1c5rr/gToGujE5bX/BZekXugFMpDztjY7wu5esOUsYddSmT78q/S1dg3OQlWXgGNm1Dk0dS5E3vUVVUxM2N5jNL/u1QddjnzWWHw2GyM678UD5BUUnWoNUIUq6B1V9/HdYtRfNYreKzf7ECIEDpzwBX652pqrW7bq2pwdW6Sp5GujprGAYNPJ1cv6p75aZ6nDPc7dxWQ1E555qmSXvBpxrIyq5L4fMCRVzr0BdJisra2Fn9JS2nXHBW3AEvf0OAfhiQnD7XxXn04vsqrna9K1H2mZxru9b3zel86ofhh59+fPv2raoTfd8PQy/CRIiAgXUhRZPKMHMMIYxjYI7o/azdqcPCcv1yTMEYwzAMzrm2bU+np/zpdKFGFRXozw8PDwBAvnHt8XAD6JyjPfcGmWsA1xACbzbs/O3FGMdxHIZe0yu1h0N3ODjfRoHIuiWMhQPH8f6XX8ZhfPfm1Zs37w7HGyI/xhhZ/DezLLDTl7+oRblaY9y5V7XO+fewohJiSP3+eWaOaiBKa4WioX4ZmGUMcRjCqR9PT/3paRgGHoMwozD1Q2SGGEZglsgxRnLknJsdop85t6owzjAlH9PZaT6il1576P2ar7uSg1/84mr+IESehIK0JLLjZgMiKEIwZ3cUmloJIuwoKvDZeZN3TEvre11kZ7TZqVydzPK1g1RTexf87BWVK+UcmQq5fE2nTTkZZfpBLvittySUKypRhEVYuHpfyBJRBEBmPUXmusFxCCHEcQzjGAAo28CTz7eL3IIo6j2OkG/OIUHW8PoXn/fTUevw5nLfS/Hstp2jru+5jTsd8o6arj2ennqOAEDCKIwCKIzgF1Es8ACB27b1DSH5vu9T60CNtYDCEkMYXds9o7y5PbUWFiuH1Hy1DXLDFWjzapomxCAE5B06Uu8UHkYh3/pGRBjcVgkFto3cZTGyTikBAiGAI+d9oD5ERhAkcoiHrlPZbp2cpOgBhJil1/TTE6nOPbWAeRvDtB2CVjs1iZZ0b5W6WMklhaGUJQ3PmiklK5fuJYgxxtSXdQsWbJsdu26JrYmZuz8i5nUYoxaSvG+9B842DmmN4bzLKL84Z2mbiKh1XiOYJTez9Evnfd/3qqPrHpLlUJkXLz9rZAZAEQRGInJIKICRJUScq1fLpp1Ks3DqxS/aSNARzKkwK9QBXYuhF0lLTEMI8/4YzVjvX797R03z/pdfPpze/x//8e8i8vh0/+HDexEZzo/np/u2aR/7k8C0bDIF7Z3pY2Z2mlrNJKaUAyXA7EaMgPkVtDDLLyIIi3Nu/OsPHx77N69fv37z5uZ4RCJAOfXnGOMQRtd48nOiRkTNCAmESA4AdDaAyBCBHEHmyR0lH3zYOwcIMYzD0D89PZ2fHr33r17fHt7cMPoenIMmcgCI3sUPTz/89a9/vn8Y7t58/+YPf2hffQ9NB+Q9YhgHijRbLS7g53gPSdFdakCKDpUf8g62WlRRseVQrkqvhofW8AnpUMzyTsK203/6O807I7futZ5FltEmiySWG6SqC8LV9to4BkRsfTPZFIo96HkdQj5GeX+c+pcIInCEpDA3Tb2AuTwF5KZQBEQRGUMvIjfdQWNO6FrxVmlFBAmbppk2euUJi4XzfSn5TJS/fwGI5eqomw06IgJqugcEojHyEBjJMbif709//flDZCHXxvExnGM4xxjFtYc+SuzPjkPrEZGEWcKgpUIhosy8iJLvjYhzWqS+7wWlcU36GcTB+WYQYRZgdjAcPQ7QgGuAGiAEx+CioBeYk15iFN6cOLrjIX1WL5nll1mrqQyDrac0YqubRzpEWVpPQaBibzXD4i9aGGt3prbK2LF0ARHnkbxwL0E4AiI4gUbAi/hV8taFcTgLEoNHIYYIDWKDIwr4A1/qYlMx9F/n3JyyNi998bn4mlkMEfNko5UKV4xRO1pWFXIz32BQlbbYHDK9QkGY/08PlDkTy2IUKwo7Amx5qNikRI42RrPKI4sJojCrDS2bZ1GAxpGmwgLOoWm1rZIjlsjCwkub0Wd46s9xHB8eH0IcQhjHMRB6YXCuAQJglhCYI0/Jh1RfQQCPhAIMyCC0bE8XRGpnLwJGYecdIQxxOEJDAsjEEsIwMLOgYxBAiuARF8EJS8fyUpiQKKwba5xzAtE3rfeOo8QozDKO3DTu4A7CyzIDznbzKZRrabh05JLI6txmst08xHM5lgPO+WHzhNrpvSSoPI0xTb4A5TbgFwl2+W0socyoD/2lX2jQsC9R2Mv7GUUnjJnnLfvWd5pbrWSePAq5q95mNWfn8wFet9Finyqo8WdeDcpBqipeMcSUdSvzxpidJY76RrOZsWgjMv3XtW0Q0Sn2S3vpTLY6mPUl7xCxbdvj7fHcP7y//+n+/v7h4UHXNJqmabvON34II89OcbqBJF1wCEGHBTUwpZ6Ak3En1YDMz6xDSNJhJ/vSZNQVcq6RGAkpCASBwBxARo6Hpo1jz3OEBlWZ0o7/UDaHSm/fekmvbm9O56ehH1S1G8eRfNMdj8e7W0ECdALAAr5pQcanx58+/PLTw8MHwMPx9vbVmzdt17mmIe8R8XAA790YvqBXybdJvmJ5cT3wm0I3uK7tFJ94kSlA3ItY+3aoiihZABJEZI6RIYQQmNE1QH4Yxvv7x59+/qUfhzGEp9NT3/fMkRwhITMDwRhjCCyBwTsBlFJu3yK3XlVVh2p1yiTNtMCdev/UC9X+vH6wl1j02xmxn8fnJgtezHRQfrgAJhuOnjrtktbB9NcXgb4QF4MEfOnE3h+1s6RijMOok7Ka1ZapWQALRxKZtRIBEaRFgio1AcEYwziez+fz6al0RakWHiX7FwBonsSqNIM7O//lUrgp3LGjfQSEC29lSmO/pOZbS0TFV4FPkpq+Dr+rqPyqBRLRZ7sZvxjJJoovtL2nysBVXPBa4blQVfM8kdVy2/M6S+XX/pxLlOxMRbMf2gUbNjPrHv21QeJ5EBEuW3Toi/biai9HWlK7u7kNj4+/CA6Pp4cPH97f348c0TtHBI5uD0fJtrynFyGAo2CyFCKmcCiqmCxBPwQEJvlFdI0Ql2mY5kNAACGMmt5kkHga+4fz6bE/vTk93d3cYhhPp9PNzQ1AYcIhIiiN6/lbi7LVNSSGofFOpDmdTg8PDzHGrusOx9uuuwkQhTVY8kDUDEP/499++PDLLzzym7dv3r59++rVK3XVG4ZBdde+78n9xnI+fj55Ws8XsZh8UVRRadv2c3SMFF87jRIvWsZNJtPmjPcNRGZmiVHNuuM4Pj4+fnj//jzw4+l0f3//+PgIALq6NY5jjOE8jH0YA0fac7OtcXOs+ZdSA3LqDvus3ZL5iP0iJayWUL7xhm1cSe33se0H2Divw7s6macsfwjAYUxTm67eR2ZhBhacN10mC/L8NYZzH8fx/v7+w/19Pmz+1km7qdYjahE0hSUNIHR1GvEvze9HUUkimswR4r8FeA6c/1JjaPLeS8Lrp15BpEiglztm1C34WeWtUkB8vm5WlapY6c5cXyqZRuYguenDZxZjHMcIoO4K9IVT3eejSVqEBYDGN9+9ehO//yOyhBgeT6dhjJHjSQJG8K6ZFraZy7xXFMnNphqhrClO7iTTR0k2w/l7HRJnykcEKCQxqhMvj5F57B/782N/ujveHAT609l7r6N80zS6ECwiQIuGUPeI7QGROXAM/Wl4enoMY3DeN93RNa0AOvCMIhyBpe/HX3768acffoghvLp9/c//9M/d8SYNuMnDahgG+v1EW/m9IkTOe68rcs+7hC7rOedj7GU38eLLotJS3/fn83kYhu/fvGbR+L+aPmUSjwDx3D89Pj7c33/o+zORRvSGGMee4RzGPsSeuWXJQ0rtD8m0ijL/gtReRuUke+XsVjkrfj7Va/2iS2fGV0N2PSmW+UtARDjEsR/Op9P5dM7TkcdYui7r9k1VTsIIkzlvWhyKGs0zBo4BRYZhOD+dPn+n/reDupKtJSWoZCrgJFsiIlydRvyL4nPn5uR/nzzYkq4pLELTgrI+LUf9gWarWBbRqhvk36X8e2EqqkXkqySYnGTBAgBCTNstVIFJ7rCIReypFVvl3QMr5r1nKp9hFtJ30zDAwMCaeVMfZv8x0yrNpZ0qGiKWd0ZsyWjJJbuCyt9JudqJO7COW5qoDuW+arJt6kv1kz/OukVVp0/bLJI/Q1beyFOOZHWJTinqk4drpgwsCwpUBidNRsTIEZghy88DWdNa1e7lSsufEeYl1vQ4y9+zPKH1JURa779/9x04GmLoY4CHD+c4Csd+HB9PZ23a+u6m2kMAgCGOuviLiMiYx+bCMhRb2QMW7U5EsvYgHlhrOI4sABwjQD+Mw9PD451zJHh7e4tzAIaLb1zK3J0pq+MyB036k0CMD/cf7u8fGbDtDk137A4Hch7QCQsKi0gM4/n0+OH9j+enx+Px8O7t969fv5E0jjmnvk+6LYTLbrglYxVNVwSpNOsUFyGYEx3iRth4WLlW6shQtR+9V9qttL5I9eM0COxrzq70UN8q4Y6ct+6JVZmrQ1nnzX9ZFX4ZPFPHTHtXNPU3znmQtC8zc5HmtdgaMeXunEbFaS/sEht9ulEsEqyIFCPYXh3khS83h+QMw/D09PTTTz/99NNPIYTHd29fvX7bNE17OGihkkFtGM4hjDGOIYwivYDgENUdYIjxw+n8cB5u0TUOG+dFmKNmbIR83MpTTPCcKZhobWIAIkJBZtFMCSJCjrR+svWNeYOwpI+XqUazXUXlQoWmKWwpfHFGdUolO9SXyrpqnhUq/w0ApL7MU4BYFWZkOqxvBwlSs9RzZylIyGV9WcueWm/V/ktXmvIsTM9e+S8UQSzLBy6HkbJqCoG+CDeH5TaSqjou3gug2Gsuxc/KH5ah7fIULrGUbouLbA9TxRJKueupqF6VfBBFA+iNw3juh9P58f39/cP9eXK2BxCJPE4Tqkicg8EIs4h4Zgi6+hgBUUBCCGEMMQaW6LU7sDgAjxowAQkRSESiIGr/QULnHCaX6ksVJZAPtiIgMUYk9N4DCM4pWdWxOs2JOtylqWFnWJ5mSSStJYfTXDAHKAXnBBHjPDGl0HP5NZPXQ+rUkPZJbo8AeaGqDVb5mLBf+OLotu3CuyxdZaWoQCYKp7E1DQqT6AKIRABxvVkcoN6YVY0+mzpBeZUr1YV8xMTZ7D2/m2lndowR6kZVUBb2WjdMLEkjjkAttedvpQjnR9PUPokp24N+7uObrjBpGg7nwgDzpj6WxnQdJadcn7MRLtUhEW1749TTkp510cXiQtOf3eGq2kjNLD+ruuCOtARQNKnUJ3UwUhUlv2k2t01/EVQRf7lCmr85sifKojKjXllEqm3Q2T71daVNRZwrqi5GqoH0ZtOYldapBaE7Hm757t333wWC9v3x/vT4OPRw/xBHCCFEZkcOEXhxsZAQA5EjJCAUzTk17TbRCRwm4UQk7QLEtE1FQLDYWIwCI3J6hSIioBnlOMJATXPTHRCxbdv0aFPrWkm3cwmxkqQR51jYwqeH9+fHRw6jaw9d17XHI/kGnBP0HEZHTkL/cP/+w/ufTo8Ph6777s13b1+/67ourXanF6T2trzh5cPdFloS78rmVbzZ1PU+cqmqMefNG7O422mT8VoKLOWSwhCwc/crPWRwW4f5VPL54mLh09dkDstvKyIavztdIc2mhbZTXg7yFyGL26Een/qRSLW2Ihm4LZwXEqdgriFUL+X+/v6///f//q//+q8xxv/7v/y3//X/8f/8wx/+0LZtEOAhDMOg8frGcWAZkVgghBhEhDkQESP+599+oKaNgN+9eXNsD2/uXt0cDiiOqGEOy7JnqSzlQ7qAVLqKRrhiYYHJ6ODICYAnp5rKVIflPLVFng74Y1wWsuvW9TFpbD6reEO8JAPVC+bCTuWcNrcikXIv+aLUCfOc3F1FXEDM22eV3J1mc1Nd8q3cLGlWurCgJNUiVS7AVcEk8s8XJuL0GfNkvuXIk59YvcSiw24PAFj6/uVnhW3f+x17Sl6MSljiUilqmoa8n6zjwxjHsT+dHj7c//Lzz+fziXkaRUMcphGVWRWVtJ7pQuQYQ4xxnhFijGMIzHGIQ9c0h8Ph2HXH9uAawkkTQyDhad4DAZk3fRCsJaXiPeQyhTAwg4qmMDe2ZQhKRpnSfLDJPIROs7HOm4iIQDq1TuLWLKFVEr6isYguCqtEZQyGjYeEMrBYNlavrBhFE61qKrtcea/fj+vXDtP715e0OYb8+mAyKz5LPiiHy51Bf7IyXPRWvJJv3+Wd5mjo2gNjjLlO/q2Rq51byh4AgLA7tJFjK4e37966rj3c3vz0/pf7+3uKeB74SU7nx8en8ZweXDV2kThNuYTqr6UvHgUQZ+VsCR8tqrxQUq20hPMXAnDOU5ZbSeZHcIjHprm9ub27u+u6Tu9+0esmNRtc5e5M9TAMg3B4+PABmNuuPd7c+K4DIgBkQGCQCMhyPp9+/vGvv/zyU+P8H/7w/T/84R9v797GEIUWQ9EzXE2u7ymc7Qu6Rl35dXmREeDzSW//4lJ8TtM0mjan6zoiF+M37Y8RY/zw4cP//J//89/+7d+IqHP0j//0X//0pz81TcNjDCGeTqfT6TQMwzgOIYwxBhEOMXCMc53A/3G6f3x8+umnn28Px9e3d//Xf/rn//oP//Tm9q71PsQAs/RczWXV2/wW2uH12sjzWJuHvxIyeRONIYRxdLTEuqwKQ+XGnmQTrAalZKSb2dQr8hqtdJ6datixF+z8Et3msInbeoXg5nPxxs4TuFpRAYCUEzDGGIbh9HT65edf/vbXv/7lL395eHhIRr3Yn9OwnGxAHKOIxKHXv6fkyNMHiYBwe3vz7t07fP2m8w3Ab3VD47Syslpb2+drzl+ZfAGwXrLL+LtQVACmBXdWG8N23/u10Kx86peCiOFZbtlX7m6U2WHpedLbb4W0r1SdAIdh0FDC32w62FxRKeeewuQQESIyNP7m1avmcHDOOcCD8yT4vh8RaQo4yIyITdM0TeMctU4IUAcsLDaioHNutsuK9955B3OokmwzPTinniP6nQidR3LeUYqqRESIHskTvLq9++67716/ft11nc4okzBRTrGqOq5maLWmh2EYTqdTGM4OuGl9e3tzuLkR1wZxjI4ZBJjHcDqfPrz/+fHhniC+unv13Zu3r25f+baVQxvhs8JbVT1lZ27PFZVvU2/P+UZGAL17qrqdX+YOcvLN7D/cAhG999ryReTu7i5lXmLhcRweHx8fHx/P574fBo3Olx5fmxAAt41/f//h/fv3wvyqO/7w57/8+M9/+7/84z/94z/+Q3fbkiO4tEGxyFv3bQx0VRuL/MJK5k5y5C8NM4cYx2EccHDQp79XQnYeglmnJCJCQkLacbi4UlFZrVgWh2jD9StvclUJq19eCKufflbqFfkFuTSuF4fKz/nXKxUV7V9t2xKRMD+8f//zzz//+7//+//4H//jb3/72+l0mgxGLBQCzlH+Qab99DrgjGGQea1DncNh9g9AjwByc3Oju/O3Hv/bR0SYo65q7yTurKiWVnYSUXw+ta6+bYH6vSsqAoCTmiKTIfmlB7JJyEvVrUtgszfRph9BgY4UKp/JruvXXkGuM6elRcbPGda/kVlwByJS9S/tff+o/TgPCpi7xEr+Rr8MmAEbDkKICIiBWZMqN03bth2Ra5y/O9we2mP820/MGCM3TZtEpbZtW+8OXhxOlhXnyBGljVRN0yQfFiREpLThp/ENzM/uvfPez+0ZYwRHrmmaJCjoxQkROR6PN/OKSkPkkpto/sjJ1XCek5a6jzEOQ386nR4fn8b+9Ic3Xdd1x5sb17YRPLM60IOAcIz3D+/fv/8lxPj61eu3b981XScwxcxnWfIXPSvsRNFTdtqOlHzqjb4yq+f6dQqcGvxFl9EczYXSNM06Ke3z776aCa6J/3sNInJzc/Mv//IvTdOAyH/9h3988+pNjDwOIYqEKOdxPA3DEMYQhhhH5iASCRgdpuQriDTGEIYRQhwe+9PD6f0vH06PZ/L+v978AzA45xAg7VfJ8wtfKtP0iHUVI+eHvxBfVHnA2S1QK+7qe8n81Bq8NfmC7VbFlExEVKaAaYt2iDGM/Sm5SVVSe9M0aXDjeduVLqmM4yKZqd1gKRUuH3NTM5ZvsV7KkOJQJd+np6vWYR4fH8qfLfTjZtgrjDHzDJPsX+wzlWPaBzLD8XMVlRgDInbdwTkClodffv7pxx//f//7v/7rv/7r09OTemKrg98RafL1YhGYdrtNiy3CMDvpaxwwmD0IgBwiwbRNTgB0aJDJm1KfcC5MNhItL0lm3z9UTwOYeum6bUr5IR1/docpnGpEQyUhTNtWr71s2Qa+rKJyZYf1QkINUUPDMJBQhDjEoXOda50IRtHEfETOoXNAngHiPMkREQCKTCk2mTmEkK+TTW6eV1CYK0vXpx0f2PwRCYBmLUF97o/d4e5wHM6DDAECM0hwiOqWewXVslS5RFU8FxEhE5AnckQEqA1dBGXM+jkiYrYNNJQBJfJuiWWy8LwULsvqmObs6V+3pIysVKTIyxINIvqGAEAgioCoN5wj1u3XhI48ADBIXsJ5GJ0vKMUCrrYH3zaIGIbiXoXM3bbjOPopc2Xx+A51bxnov0Xz5c3xi7LUjZXHXFpLgTlU8TAMh8NhHMdyZC9aQ9o6JghRJAgLkHMEvpCNYpxsLbO3T9EYnCNe8iVV8jEDiP7LDGmLcFy8PhARgS69SkIE16j+4AE1rhF4J97TY9sdG9+8f//Lzx7P57OItG37+vXrV69fdV2HDG3XtU0jAIjQtq0In09n7xvftDKbe4nIe4/ajpFi0QCKuY2cx9lFV8ssyaGoabq20y1hUQAFVTuaR/95zmYQYSJqmg4RT09D0zaIMAxPT6fH0+khhKFt6e7ulbt9HcmdkFxwjXMtURgj9OcQxj//+d/uHz6EML569eb7P/7h9evXbdNwS+whsgCQmwPUhjGzILbFan7SZLDYKTEtbenMlzJjzFnb6pENswAe1d81blXXdVhun73YDi8qVFsCqIgMw5C/ha1T8kMaDUKHa9lI+Kho6sZ5U5kUYd+r7a3FYlkui8TGN4h4Pp+7ruNYlHB2yGURQZreAs07stIvHfnkVpfis0+3ytcey6cuE8YtUlHbNBIGdZwiQEL0hF7bMpJDl++kymsjyKYJOTdY3nQHfPddQ+4f/vinEMIfXr179+77w93tQ9+f+uH90/nn8/l9GB+FY+BwGsfzIOrzzoKIXvMeRkYWBIgA4rAn+PP9L6f////+w/Dw//L/2z/+4U9/vLnxSDFEQIgIjCAI5BZ1i+PIcfTee++d8zyyRInMBNgQeQJHIhiJgvOOp5ik5JxHREBRUc/teKizIICnKWJN6a9evOViHvEuZYKDqrsVUT2gmHy5EAjz68cgAIDgHDmQIoMaFVeY1uIcEiIGzfTIIhERHBHhtFVF2rZVEzszqEyB6LxvQASDCAjgIAgOEdAPEcM49PA4QEhS6//J3p81SZIkaWIgM4uIqpq5+RlXRuTVdXR1T3f17M5gABCBBju0tCDsEoH2cZ9AhD+1PwJL+7IPINCC5mEXwAyOmR30dHcdXZlVlZV33OHh7naoqogw74OoioqouVlYeLhHRmYXU1aUmaupqKgcLHx8zDyyE1vP2bvg8P/WukExCYdfvx1IYTSQYTKkOPJ4jPwVHpIDMXWviFJRLwXIZeZR6bN8Yac5PDM/jPJpBVwQEeeds84xc6njs1NFBQHEtnGJut6VES6l82Wtc84mXy3E0ei5hPPet/bs0dPnT58+ffrUtVZ555r4LrLyA7sZx46GgNX+0bpT9QUA2GNlKkO60MV0Mi2MQmEARhAATf0RjgLC4p0HUqUxYmsRRmAG8QAipAA1KQJyzgEBKYXYSzCIgsiETMAEDCAIocCLIaWBwHnhEGpd9BM2iARpzmDmYaIFwHpRCglI6QJQrBPnWAEiKUQK3GDdMKSDaOd7QPgGBggjjZE9JsXHfaYVq013aT3krfUeKCukPjxrhBj/gXtUMJWMotkJr814ljxn/TMCvE4g+E3SjTpAooT97tuS12nkVkK5LHwQx1aFkU2XEzxDNFff0Pym4bOEymjEKWltPHthR8DsLIEwc1mWVWH2qmpvb48wyCsqaESTyUREjCq01tLnCQl6b5J9C6siLz6dp9FJXECJigUQ/DlZSdogS3SfUqte8BIJABSlYvar1Wq5nFvXiqAxZVmZopygmQbIGgEqRZqInV0tzl6+fNHUywDqOzm5fXB4YozRxmhjUOnUwrG75ebaqW3b4Hd6pd/gCoQ57XhXVCnfwpjENdD7M8eqVOxGME9c6pVKMxSPFOYr9irYSWH4F4bP2Zhs4mlbhq7s6fj4GBENq8lkxgq91Kumni8W8+VqsaqXde2sc87F5OO9pDR6ErCIZeda785OheDT303Q82w6rbQBAdIK4BKuNRJnB7Bn0LKEEQQQbrgi1LtJWbq5TEbAwRZ2yZbqRAdB6VTf1jVndXsB84aL6KJLN6MA2C0pbhPNP/DMTm8Hadom/eHokBoaGOkVSvdlDTtPQuw6kB+AHvkW85vD4m3dbLoEUcvqexJ0Eidcy1Cb3nnn3WWKCnY6TNQWvHPxknPjS5A2yEKKvHO+tavT89VyWdd1sL9gbv2R5DNsJYyeyXEN0LhzuiZQBg0na2F4ydgColAwagUX7qgTkpyIYU1SyM55VZ9KCpG9aXEsGijXOfab06jNH7ii8p3TFhDq6FJ617XP+ijm4XrbxyRLcibLfh9oZP3alrk6vyuXA4ZLwVoQfnDTwcrRKB6SJB4dHRWFVkoVRbFYLJjZWhs4+HRihrMz6aFSSkWPSp+WGvoVuI4MHh4NPYChf8eo5IT68RFrt30E4sHsva3rerlc1HVLRJPJpCyqsiyV1qIqAAFhFM/ONewX85cvXj5+8fypgDk8PLx9+/bh4WGI3Q8GHsTsUMArQb+uhaL6dxOKCiRlvHa3FEiSGPqmY1Soz+YXLHkIGdNLuxFqRcNlBV6LokjvemsGkTFDy61Oo0jo+DkgTgGgqiqjtau9IHhmRBIE6x134EVYrVaubVOf2KXdUEpVVRVcE/P5xZdffXm4N7t/997k8JgUBQDCuuktCuLdvs7fK+RuRnoN8PoPiRQNiZVGyynu0/UZSQ2diOidny8WT1ar541lNYvhfIjJUhGANLI8rF4EkM43Eh/gvffODYU+dJe7pBeTux8SwHw+H/xmwj7zqAgkZdaw9/UjQl0vhpq/RBQvjTwqyZpHAOccdW8BnoW5Cz8hgXq5infF9wj+oNbbHIM0aMntahk7P9pfPsFisKRa1jiyBQBIKe+ctXZ/Mg08lvOsngAgOSdJL+Ub4p0gRCQkoMsLWO9IighihuItKduug9Li49d+rkmeUfCPisrNUjp/I4aY2UgGLf2SX745bck/+OYUpfbeL/l9stBxHsmtcKcdsUUfi60Fqf3NC01uoSB/B8GI2ZdFofVBSMlQFMV8Pm/bdj6fiwihrqqqqqpYBBN6YYv66h9xHiMaRyXcPOgAyXtycpaLyNCa9GCPAHbKe5yY8dh777rMkcIX8+dt2zKL0WVVTSfVXlVNEZTnDiwn3nl2zq3mFy9fvHi6WMwF+Ojk+Nat28fHJ1rrYJdnhlCWKE9UmnXkbTr+iqIIVvMADLt2GwEmALwdF1uU9dfRbtdOsVe9N29jN4Kiki7Om+vVjjRSikYce0sP424ipTx52zbLtr6o64v5YrWq67puW+usa5rGtW2Irg5pVDZ1A3rfr/f++enpN4++vXfr9qSs9qd73ROj5zLpQzQ6iEiuqATYvtAPOp/KFoq8i/p0DvFSjGqLvDFekh5iF6zj7P1yuXz+7Pm3F3MPJUon0o9QoZ2nRQAQusy5AAAQqjpgoo0E/TGkpWpsG1QJgT6UAjpY+3K57FUi8GPol4CIZxYWzz5H4/jgbRAcVynx3kd/QuqiCeCzRCnqFZW1+K7wXtBnxDY6K/ocy6oggKFhmUo+VHmJlW3bn0KmbefR+qUsoZdrCYlUZpMdPuc5pd4B7jIm7DSVGFVxpUaoi67Jaz7fCFFefPwmdJX4Wcfv0YMT/E7MDLnSGa2kSilRyrvwYwBB7mq+ee+9YiZjOgNtVprrZomTqkBhxsPARb8UhdW9lfJzdNdHR+ALAAqLeO5MF8S0pYZN75EPFUPzXZSpN+mKSyGJ2AeHBYGV86IBIwqiUvfQFJ6YKauZHEVZBe/oDe/8faloG49SERnZ9tIWQ7ru9PexY2nns4kTyfNOjMSq7C7EfBknfYgiOPQykwgTrQlqI7m6fyTS+sp5xfrgLunq2LQ0DJ0MgfJjLFn/ChGrLX1ZOhUD0EGwrz6JiCxKfKs0IaIxpqoqY8zLly+999baly9fTqdTZq6qKox5UGa01nWTOvfDQJJSCABqjQPEIqoROkFEwZKViXF5banuEoJzLSJ1cQjCtm3qurbWMfv54oKIiqKcTCZFUWqtEQmBFJF3ViE455tmsVicvzh9cvryhTHq6OjowYMPjC4JNaHumI10Di5S4zxdgya2Nnd4WSmSdK2ur/ZNIuylKyF9+uvS6MaRmyt8uPSoyM7pvLc7diYxKktEJ/UNRuU2LM4NTfQX1tWhUTey8c+byxWwrONr2JzLOXhY2JGjEAD3wJJwOGAsG5TigBCz0qibHxxUiLBBQvG48KTVavX85cVyVb+8OL9YrhZNe7ZcLhaLxXKxXC65J8ggcIE3+NiysDRNo5QCAWZZ1qunz58/fPL43u07e+UECaGvrp3iQqV3WIXXJ1IupBMkgpBJXCuizrvSeQKi6aHDxl2DpDOKNunHMM77Bj2wZ9c9h8llzA1LNzQqA2Vuw8RRQLIm9gx6C/j0AMK+uhEiCqIQCqAQgBPx7Jr27MWLbx4+tkzYlefpavf1OgtZ5+IIcFfbJ+wltNYN7gWQoD2Guxl8GkE/VBUUdNYNsCQZVI4OOiSxOFiI2uwcJ8wuHd80VCZUZ+8aTOaLgkM4GWDJtle2PKiPs0FA37g0uZCOz5IMfoD5Rh/VFhwh5dPnIgOwJwGN5Jn7ciaUy0rbaMy9kxAggHjUhuCl+OgB5hS5YWBg3b/duo17rjv1oJdMoBOPopVwWJnST30XvZ+Yn7gvrZZIDmlVGfA+xF8hEXUgswRGGp3tsdZKOgLrB8H2cyHdGqksuuXG9fMr3jVSyUZHRLwRETUM45od1TLyG2H3jERRccxMpHrUa4c49N7rsuwGd8sb70zpS8rG87CzA/f9zxQVEAEIxXqBZXuVknQvb3vaehelOw8ItEIgABBkbzfiU6XH2yhQr8AIJVcGbosYFnEQB1Nj7fqKIaJBUek14O7HqZU8LxSqVLqGWHLlJJ5q0jtwu0vJoTLsPAAAcM6FZLXxbIBee5H8vbKHZr6mbDhi25fclS2b8cnnvRfZoQJMXEJ5kj5MxRmANGXqSPBK74qdD7+J4PBhoQ6/jD/rBEGAWAuyr7OWFAjTWgOKa70Ap/AnIgoYsFj3JhSj6IqfArRta60j6sLsoNNGehbpxkGW0QYfFKTAaGKyS+nqVem0XuGwLAGNUSIs4rwXa+1qtaqbxjlHCFU1KQpTlZOimCIqZm+tVSSESNJ6a5eL+fOXL84vTlfNqjDF7du3b9+5sz87QNR9vrFhNjtBIBnP0It+xV5isEjGvKMUura+VDYZvdYmXeJpNGLZr1h7G+jSu9INtaknaQvpKt3yLBoQz+HG4dKQob/7axoVnfwsqSa8NoDDJgoHX+yeIELSsfy98i6n47n5XVLmABFg1lm/BXsdBbOQxiDSJ9s8b3N0SPeLXxF2MlNd10+ePf326fPnp2ePnz45u5g3ngGV87xsm2ZVQ2K5j0y122KdKMAAgNTBt7TWpNC2frFani/mq6Z23mkItQ4hr2I4yNlEBIBIKF5IhbEFpZRWGrAviC3dAAgIewH0AAwoWr0p5kIkY4+95SJKS5BcSrcGiQwnTh5ItHHbdFJcDxqJ6zxu4e5nwC4prJGem0TE7GkosAtEGFlfdxR1qrQIC7LUi9WLp8/myyZoyRKEjyTJkvPJSyZ5YoJOleKgor6PApiWl8UhDQ9KEssROzOM9kiBhthgjnQQgD6SQnLXc9IMCqhEXZXUDnCJGNUrCWsFVXNj3aiDyZVLjsvLb0sl3U68G0SBpPGMOeDYhpq2ltwehbEAD4zaGXY6aK9PSGQ+/b+9ggLQLXDseBn2ZUElvkhEHkLvxGMW9hxlsJQtxFfGnlWNXoFZwsYKZmilQvbNYRAkQWJjonu/WgRKKHpouds+w8bZou2MLg3utcR2HJ+Q3pXyRh0/vVaPR30KbnsI+bmF06N9Z2H/B0KevW9b7BgBqytBIddl1k0/CyLm643zlaY5SA5RG071k90fnSo2298L+rdbVxJ2vWszcV9EYl2X2JHe/VVdFMXJycne3t7Lly/Pzs6cZSJyzi0WC+/9ZDIJCgYiltUkbv/M778mVfdCTxeOknJS6dMArkvzqVUeEZx3q9WqrmtrbTA8F0VRluV0cqA7KkJPnPXWLYW99vX52dnT589evjxrnZvO9t977/3bd25Xe3tlMe0NqQBvcV5GpqAtmKs310x2f6kd+cYf6SYo6vDe+wC5fP78+ZdfffXrzz9frOrlauWYBZXSBZEW5lCCLWgmXVGIZMqisyUqMPGSF1419cX8Yr6Yt21LZRnsvoTox7XYhw3ILMyCLJ2MEcSFzoeQUyJIv/mwpCwF1kp2XC+NjgCjNTM755zrbDFv1Dh0uK/wmagTB8EzsEcW7K3s7MVGrXvIpRS+D1oahfx7iRqQDTdHPSIwuP4uAZXCFvLsL2M4A6SXcHzpEtk+u4RrbWYax5VWR+aTyXsuqVI0Urjk8rvgqms0t2MOoTKCUOiuSnI42K7U/B9poC0n0UgOVDlsL7UgjHOMXqEf2AUNd4zVe8+JF/sf2nmpSJExUVFJbdK705YsHCNCxKIoRMQ5t+PkRXGzo13nJxiAOmNVKGGWwnl3aSJIt7C2QEcko4J0a2bC+NWv1ZyKd22RHWPAQOz/Lp1f72H8+g7CvJVSZVlWVaW1rqrq5el5KKG4XC7n83nAfYVCK6gyt+pg8EMsdJbGN53oaPCNqktkI+uG5848CXJ6euq8bds2iA7GGCKaTqdVNS3NDFEhhlzSpBQ2Tb1czW2z4uXp+dnZYr4qTHl0fOf45N6t23erydSyKKVHc/F2aPeHbq3pdpVnbckKMOIbr/ugP9KVSUJCC8S2beu6fvLkyddff/348ePHz56e13Xj2AsrrQVVkHcBAAGqycRbmxSbG6i3WWbBY4HIKOf9ql7VdWOdLY1BQDQKCdkPKWNHJklxjlmQOSSZDe0rQswVFdVl2KfgUeE3jrDb/XR4c1o7ApwkPqtraB+AsSulEEY3PJW9Bx5yEFOe1VcnR9hIbRM7eFsQkwRsmMfIJ9gkhjGaPGO4svnS6K7Nr5leGsNnE0WC15JhbuhF8vfNtwQ3wabw721h4VcSMEdseTjXAEzQUtYOsj/S1Wh0fmX42c3C7VhRod6uM5IItz86/YKIPU5OOGTE2wCWeGvUWTZ6R62AdKVVbibOe3CHInhhYe5AhK8KidlE6aG1ZQyjR+W1IrbHi+N1tqP08mmstSxrgJPtj4YdhLzoXaU+f+3ufRvu2kzcV4EMFv2x11KGcMktY5MLFm9vnb9iuqTDrvRFS2QymZRlRaibprm4uGDmuq6bpsE+A/reYlGW1d7e3mRSIWJIa5jDoBC6hJ7hPxQB61znhwkRVn0ZI6QMtNPUq6ZtPTN7L8Kr5kIpDFmMisJobYhoMqmqcmpbAGEBFnHWinPt+cXp2dnL1WKOzflquVKmvHfn1sHxnen0cDLZ00VFDMLADN4LM5MiRRSPtBs9ZkYLeMsWGJnurva4HW8c/eyPuspr0tWHK+gEAOCFF6vlt48e/fqTT168eF43TU3kGBjAGFCGTFlMJjNTGAQ8e/60qVeO2XpPiHoQniIzSyzb4QKANgYEgroRf4MACsmudSqSF2ERFNfzbQ8gCER5+hDP3nsfoV+KCngzemtaCqwdAU3bBt9vxBv3P+zwbyPkUdBEtj0AAXpdBRGCcRdEwAt6nwoCPDgsEFRWi0anZuPEjklpkbVQ42xTLzCFYw0dG8W4jy5dM0eULqbrUtqiwwwNrPlMLhn6IWfw2qsFie5yDaYb+bQQRYjiipC2VKggRVFFFACluvSVEYg3TGXnaZJ+tUjyuN4LJaORTgKAQACkPyq7OqN9y10nB5H1ihQcQdBHqYSYlQ3j9FZoZJ5LD6WRqDbKnpryQA3MmqjQ2rUtCSpEdi7InpSolAhAwAQY/gUQIIYu4F4EPAAjChIYY1hE9xnBdz2nKS8Qs9vBnPlUiQTQOm88K61b8KINFpobz2QFvPeWqNTKsG83bdqshFEuImc4TpE0apOdK0j5soBasybwiEIkgHlhxBjI0WW54S40uQvs6dOoe+9NmgeWGQHipTTAXUSYpa4bAECk1PwVDifuyw5WVVUY5V2ITsF03NLiQVF8D3mKAn/vuyEiSKSNUYjYdBHYhAhK6QTUK6klQoDTwGWNaNu2KIpJWXrvQ/ZAoxQwpyeE9xY6kIA4Z9MAGMSsaGZKMQS8EyJTjDtkU+n7pai1jrlEAxmjQt4Vz0xaIaI4KwTaaJ+ddEjJHG0pRUBEbdt674uiKAoTNl4I6uAM1r8xDDBG1wXoAkLwUkp0VcQmGBBJFaYkQu/Ze8eMzCiCJye3mTkUkCrL5vT0dLlcaq2Zfds2s/0ZsFstLwhRaRWWolIa+4pOiBjwusJd3kkqaOg2CgB0WBIH4p10Rlt2zjVdAlY0pqiKPW1MWZbGFMYUVVV57+bzBbu2MgVp9N4vV0tr28Vi8fz507quUSnnprOTu3fu3Dk+vlVWFZHyyCItEtnA1xWQRhF22CWWwBDwOkxQ94XXEBYjNprZO3uDy3p2rJG2n1oKRsw3vRRry/g8Tgx6C18A462bHjZ5Uca4mqw8H2yUIyTbHaYwcYnSKM3RBmg4JDYL2FrbRPKimYVOXh8hDVXPMhzkw4uSJy1M2/fpEZgVBRkF/g7HnohnqzUiBbwiiiitjAgVxbRN4e45t5GQDbavphfeug8pcU6sE3l+fvbZF1/85vPPv3nxom08o1KmRC8EgrrQxZ6pJlSUQuRY9GS/YXZ12zqrCVGhIfJsnbPWshdEFexBwiKoCJUhTdqoSpvZbGaMCfEw4QW99xkmSKRfp0qRYqPKklvfAHpEAHRFIUYTSOlIFYUpjAEQZqY0f8BmrM+WCNRcQ85WOnvoizMCiKRqUpqOVhAwVmv140ihrMXEGkiq83IEOT8G3YUwzvgZhEXIsXgGJE3kvbcM7Ji9gNZGxHvvEEWpEGCDAIyAyCH4gEGEPTrb1PXKOYuEQipHMg1CdmoeFZH0NTEtpwiZVDJSILM41X44xtInStQR1i7l07dlhkb3bU2HlGzRwQosuVAhkD16CGyAoHINfVdEvYgdJlmGa8NN3RbOnjz0NokRBXHMIQ2Z9KG5ShutFKKqZvtlOSnKAgAlxXegVFUxKcrZbEoKrbUKyyD9dbINYidNICoirRURWueYtLWNdYJCGoMe7B2zA1BdoJcgIIFSKJpQiSgvSjQpVbvWOUGFzOy8IyBjoCgN9ik6RsOeloq21ooAkQ6nnmIVkmRY3zrvPRBpZcpJOZk5Fl0Q6pAoH0CRADhhkNyakOdHU4JRBpA8+kshNE0TMqe3bZtKsJQUyA58MrJ9pYooAkkf4t89OX/TtMFsMwzmmc0emeFtLv/8rhD2SRUQEYZ8GtsQR1d/Vv8h6te9Rr/trjDaOwx1RqPaZ+m9uV4R1YbXaDwV2rZbwkb6Jyek9Zua0KivvZB+hSQU/g3bT6mvut0TS8imlYZ8vokPOPY5bvKRZPyGlMlzGANvsP8aBFZRSrVte3R0NJ1OV6uV1vr8/Lxt28VivlqtWHzT1ERUFEVIYRySpbq27XTDJNoeguGHMpEofaN2tYhBh4GfloUpisKYoihmRNoY3WUT9o5EJkWhtRLwTeOWy+X5+fnFxcVisbDWGmOqanJweFJW1d7enjIFkgrGTBEGEMGhFrfkB+cVBnD9kvShh1duZEdKV/juy+N1ucellC7R13r0pZ+/N9SZMiX7LlvdqAgIWXGkOFlI5Kytm/ZiPn/x8uXFfMECqigQxFlmBK11WU4me3tFNQUi55z1XgABCEmFqtXUZ8tFBCIVYtAj3whqvwBpA1VR7O3tlWUZy7PuMHPBvOyhq6wNnWE63yqKlNY6Qr9kc63Cd5Beh69i5BG9ASzopRJhw5duh2AwXzcCyNpfYEj6lP0uUyF20wLWLiBfehEBOijAJSQIsmHLbhm2LVtbclh7xhBoUB/HAAfHl9+FYjcDDU1qn2XO0jOMsbX9ZwBOzMuCIMKAanZwdHx8PNk/CIWJZYxdF/au1Losy7IoegtRKuJx8nnwnkgy8sOvhwTTw2mZpr3ADgGRmVcEZWxO25kw66okh+P182jpg8FeS85M5d7d7xorKhG1HxD8r9fxd4lixroQoBNR8rxhj799imlwYnLeXSitfTaK9IiZnQLF1bC7ZC8Jmms7009NvGGco2ok8qbLJmQwi7p71KpfV4zbhWLGqkAGSQghsL/rQKlGG7n01UWgPxrf/D3Gk8tZAaY0nqRtW2vtdDoNNbOrqppMJovFAhFWq0XwoSFiVVUhgCcYM1pqIJa5GBk11cbB2Z9UHR4MICg/xhhjDJEhqoLJ03sPCNbVAg4R68afvVysVvV8Pl+tViGCZX9///DwcG9//+DwJKnPRpE5MjPpNy3juGWDSB+bKz32fVMjW4q37k5hB418GtsJR4Usd0s7MaJ0iY584Fvouyqg+R1SmNmYoRuStYFIdWtfnp49evzkyZNny7o2RaW0aZrWcauIjDGmMEVZmMKwgHPOOwd91VStDUGXZRUACElrIhhQCRyz6nmPrPam0+Pj4/39fVMYUqo3C7C8cTkAz55bAXQAAsiGyjcdtbdIkoOKd8SyYxfEAkSEJLE26xUsfW+Htm7yjZr22wT/pPxrdMJqNZhT87HFtHrEaNhdUpme8rwImQeYh2TNMe1BbFEXxXQ6vXfv3oMP3r995z2ldWjZWjs0goIi1MMpxyE6f6SEAoR+JGy8klK5d/dnjRWVFGazeyvvIBESIuGQlSgsYSaSd+TNuK9/chOjHa1BY4/BbndFK92mX6ZtRi0ikDFvKsEESTT4jmKdkNi9dEtc+0wys0Dv6LyOSQnxPEQUklxF1ZGIrkVRSScidbAihow+fZl5pQ4ODuItzHxycrK/v19V5WJxUTerMNqIGOJ2Qs9VkSXuk/QM4EFRSZ0tCDCdTuM7Bgk4aNfO8nSyJyyenYjz3C5XF227AuDlcnX6cmlbF3jf/v7+dDrd398/ODgoJxNSRvolF1+5ry56zWM4uhQVP9kaizVq4Qq6ShSMXks8Gj/3Ss7tdImut7nbo6/XevCOkuSp7YIlxXsvIK7188Xy2enpN98+Oj2/ULrQpUZSrfMTPfHB9MNirRVUgL0u2mMLQSuScFj1Gwc0wmBpGj4QgPC0mhwdHO5Np13KRwBm70AUXKP2+P2bUcnT6+9oRMYOfBGGdyi3F46z3cWpjZrAuu9lw6XNv3tFm8lf5dJrkvzb/w5HV1/rSQCgizL7UTLa1iW4D0UqScqylkB58AAYNRhhkTCFIOrJRktQlswtR6CBGkIWCXE6nd69e/fDDz+8c/fu8cntcA42TbNarRKgChMiWxtMe+DXa279kToKiIlXHo4jSuVe2Pnk0CJjcPyl5sM+1/ogLHYLQgKqCqBn3CwcvNedzrP52ZsuvQ4CYSwfRIpPFxHPYShRQuaAxOqw5TEiI5P6K7geYl/yB/vEt4lrLH0jTnK5dIoBjJL2XjIjvfiY5rnKOmBMama4xL+Gl5UXpHzcIsx7hHGPYmL/LqmpAhPXjeRFKogSo4TCbDRStEk6PqnlEvuCR/lT4numd4WfEXRI63HnU+SY9B6bEbxerIu/DIhX2EgbPOyds3d4f+i9W9QnroC1/YkYatB1MSHO2exirhbGezFJiB53fvBHxVvCV/GMiNba8L5FUSBiVVVFoVerveVqsVwugyoV+hDmJQC3QoY07D0kFDOi9EUftdJFVUKok6N1Ueh0soYtAFIvF95576z1TdMuz85fLFdz751tG2X2ifR0Ot3b25tMJlVVhXov/dSPB5z6Aljp2G+erIw4T6aUzkW2GBIY5LrysL5iL/06mrthy+cKUlwhuGYgyDnKtku56rCdfWU9jKtoC+8dXxqloMgi07Kth4hweW7A0YjiJZ8AINm5iAEVscXjtGkN9GsoLGNFcbjCW/FQUo029SO2EPdCmDUWaa2tm/bZ89P5cqW0Mdqg0sxSTbz3lnoWZ631giEyQSntrA1J+ZxrkR0N0G324oOlIeSPUlp1mqSwRjUpq9l0b1KWhOSZGcR3ZTcjnwTmbB2GFBnpthydC8zcAxFUlzaDBPxozQ+fRzslXzZy6S3r37MVm6ORRgt9+MwsyaEDmJ2Pgf93/Vlrr9vFiMGaTkQckgcAhxILlGzPyK4H6tZ291DvOTBMAXEBz4OAgCzCwhjXfncJIYxzkrk4Fb3yc6MPhejrrqSjwf2zOlxvNikxVCa0N5ybXSVvAADhJAIEAYwphHt4fAds60iRinf1ISUCACiotcZY54YCmqk7FpQx8S4B4eFZaEwxqHSJTgGASmWLjVQHhwGWtrUUa/AgAg3PShcHUsZkmAbIlTb68PDgvQf333/w/vHR8Wx/FuqoLpfLsLP6NdzF9YY0qiLrit9Q13L9EEmZzAbqZJtY64z74oTecXIpqUF5GVuWAfwC3g/SP/TDsd6HVBSRHCuaHkmCkqKOMJGdehGxP7l6eXLUydGjR8folvEZHRBpmzqwQhzQsd1euhT3lUpIcXriXPou85cIs/R92mSWHqngwuNR24VGOEtJKMZsxTI6RCTBn4LD4tsOJNqxI3E0QjJ76VgSMzMpDYlwmQ5aiszpu9q5s/JOYZC8IeGe8dUkC9bPhI9NOu6wzvrWYw/TKyLj1Ebphsx7uDH3wUi+TIElsfzLerhYuusgCUeOqkvygPGraX1JFgcklFxz4z4IePQuRBQ2Kb/CWr+FF8mowbi9tVbbB0p6eW6LWTBOSpyOAJSKXHzoRCJb60qF7Aip+sfMVTUpSjPdm6xWq8C167oO2R2cc+fn56HIfVEUUWkxxnTVHjFJ+0WIACYcFMnCDo71pmmYWaFaXjz23lvbOmeta2zbeO+0MdPJ7ODoTlFW0+k0PE73OSKBkEil6OqUq+bTsCvnkF5PXj8D0gbTB+3S4Cs7sX7ejJ57qfk2dmDd2RI3Y9hEOk9JsnkVZb0IUnt82dHq3XjbWCW4XLzv2MvG8ym9a+O4UQZz3zK8m64MjKgb5+546iUwCbApEgBKg6+2+qjivBCib23r/GJVkzb7h6UgOWbneDpTq8WFJgSArhKbUkEd0EQkrKqCmdumbuulrVdNXTvnEAXAkFZKKVJUFMVsNgOA+XzO3h7uTw9ms2lZxdzcnsBjJzfE4UpMZBJcdTGxbtilofdBOmdOSkkwA3X14/J1k41FisYZ7ZEtEzFWnTHb2MPPMEsemH6On8IrOO9SSSieKePnpqILEAj0ViGyzomEuKDsOAh8GBOCPodOnzZK2PugeDB7QIHA/BARVM+SqW3bUOYmqIA6O5hydEB2snVSWder0esjKuryhKW7siqnsZWgeFBg0YTps1LPA/SwCyLCXt3tbyKdWD9Hs6xJ9YV2KdbX7rqu1aYloPXGPHLUqx8AICxEZIwBBPZeWAiRlKI1PLZ3WSKT4fRBUGbohlZ6bza7fevW7bt3Dvb3q8KEBRCiwANr9d4L5AI3Yq499vZ5DHricAbF+OdgxN+WGicYIPrwdB4OfYHBFEix/fUjIz+2SMRzn5W779clj1aqsxkjIiH5BKKfWoJQkNfS1aaiNfQbjRkjjivslHg1lQhjb9a4xPhQWP8svT6mA8gsQNIvHdlXUni87xu9WiM/VHqbONdXSkhBNoV8QXAi0Y76mecyQnz94pWjLrVtS3kR9NdtcHRX2t2wwweX4ual2B/kFJTzkZz6VuZqTGGCYnapTbt3+107Tg9m4SuAoqgsQ77p1Wq1XC5DLQjn3PnLs6BmUF/hsSiKoEUUaijBpJQKrvOqqpZ1jTTY9pnZWhuUH0Kcn52q4KIhjUiTalpV0xA5c3jnjtI6aEHh1bpTB/FKtYi2Ueq4uNoifEcovgK9KqjsWugKeyP0L2niKs8tioL7yn242QTzHVLdtF7AlNVs/4ARW+ftqg4QzLIqu9A9BiSFSIFVAdFkMlEo3ntCEG/behmKRTK7oqAIOjHGTCaTgLBVNPnog/fu3r6zt7enEjtbYkbvKE5WYP1vcTCugcZ2zDW5J/LJ0ZmyowTSNE3AuGqtnL9KuCAhKqWLoqjKajqd0PQgFpOKwWaDCyD3LcdGqqoavVfSflbjLr2kjIYkdDBtsCz30gbjSYe5fJ8K9NCLcOmPKaHRz+LXwhjsPfmjTuLmHUq0Uc5ME0CFyQ05Xbz3bjMqddTD4WgD8DykBi6KYjqdzmaz/f39sipV79kIRrdNXbppEhGBrqrHWz2JMBvMd+QQHHUj04rDptpi6nslISKiwr6U1Bv19AdHQePEPiL8RhfE9jKRqaKSEvZ+hoARSi+9uUAw0l0HK8LOMbvbG9TjZM08tL+5kZQXj15ZKRX6JfB2ow+ZETGYdkI4e7y0ZW+GoYh3kdppvkaKivMO+9zHWuvpdGqttdZ67/f3Zs65uq47wC5AKMCCiMhDJbUA0BIRY4x1zoOP8mioMhneyGh1/8GxVsroUutKq7Iw06qaGVMgKTHBWSIxYXR3TBIimsvf5KrUweFE4va83vbfGkle4U78DbLfsYawW+D+aMOazWLKFnrdwrJvn7QuJtPZya3b09mBY3l5fmEZWVpEKSZFCOCzjr1gQHSFVaeVViRExOyqqgJ24p333jl2zlEfcFLX9XK5LMvy4ODg+PDgRx9/cP/O3dlsBoDMHMoIrDOrKCJzJ65d8yIfpXW5XhvlaK5H3ptoYAoxJFc4U7AHjDl39Z4rpabT6a3bt98TadBERSUK7jHvQvxLcBTHFlJFZSTrB0XlEl0FgRLdIL8LUxxAUN6iuWf0mrl6UwZDQLBZB2Dwuo40YpWUdC/9pWwVfLeYO6lLTwzQCzNhjXnvexfoJYropukTANRZyp8As9RaEymtAHEYok1dumliZoa+IPJb1BYwz8KS7q/vkNZT+cev2iX0OiOF/b/YL99gtH9HE4VhQFCtAw5vmFJPGV7mxbv2Z225OvLfxQuQcMn00psX1R41aIpSmEPy74DFvEJrW6T2yMtCsMSmRjCntUvxC2zBmVwvxXUST9/RpV3ugi2KSvpS4Q0JERCYptM96B2szllGDm4NYZhUU+982zYhL4r3bJ21beucb1crCsZhoLaxShEgXlzMi6LwyN1mQyjLYn9/TxFOp5NJVb5//9C2Tb2yq9p6b0GzMaosKwGUApi9c846T4RKqQBXQFTXLn1jgqQCuNxQ972guJ3XjabXTqPNsmPg/puYwCK1SeW+N5eJrzZM22+qJpUHOD5uWUAAq0mllF7WKyQ9KYiZrXOt87V11nGQ7pBICROG5DnkjDKKvPfOi7ZqUTfimRDEgWsbtraaze7eu/vh+w/u3jo8PjysypJbG8IVwkutRSl3J044mAEVQMwQEt8mDEaO79ptN6SJ8uG6N9EW80GmgIkEb1s8U3YUOrXRRNi2zjlmcUN0xCutU9LBgVgACKvp5Pjk5J5Szkx61E6HyCLqp5kiiKub+fgqhTH9BEpIbDi8JQzWtPS9JFi1Eo0obVBRkcEpe10CEa0f7EejwzdD/iS3YI79SycFAby1EUM4UqU8b1xFwhLFsdGV1NAWROdQcaFTVLirbxafEoZjhE2UGJskff3EvvNaa1OURVlVZQHeCg1er6SNrQugby5GD+y86NffFwDQi5fO69w5UBEAgUaYy9ehdGt3GZMFx1zv3TzytpwUOmyDoEa3tvXsEREErLW6qJI2gAERiIEQiD0TakUY0OwiVsBro6ytm3qptSmU9uCZOR2fHZMnjgZx2zmXVXxkdh5YCFAhMQqKVGW1VKpt2qaunfOqyLR2CFjDFJMNG50SaTRITC0QSBG1baORjDFtUPG9R2ZkNoEdsAh7EEmfxZSxAEix5jjytxL3pRvLVP5mAcn8FZvGKdi8YzTI+jL1SQke7P25zGyMGfJBpcDfPowkMNBgOFdKFUWhVOemS+NAAjVtG+4K/bGhQURANEoFVTlWvkuehbFLQuwTszHRMGix4CMRhdNrmC8G7AMouTfxxmD6mA1ZRGLWHOwStIsPpjvvTVfD8xJSSbqt0fBuKTBskkkJt4QE0+vpqrP5IhWLPamQ6lcASBVVlQE8cByjoFAB+xBBhoSACkkRhDMXfVjRZDSZfoMgIQmL51BZPssyaeuGvY+1QbkDQysiWrpVURqjwSjUxNNKnRzNQPxyufj8D58/eXZ6evqSBUHpDz78+B+/f3vRXChTABsURGW0NiAS4A1tawuT2QLXZZEhMpNUyKAg4ZBKh/AyT3c4rUeS9FZb4Eb2lS6h7TJW9jV/VIoaTzG+0VTcvXjC9BR2KVjFswDAGrY4eXSWaSMb0hQI2mcn79YYZ0kdRgtKeqaBiQkZEdklHBUpzUSV1gsbDZJGHVoLj84YbKnbtm2aJpSkTBfAthz6ecxerCuAAM55pVRYFVprYWWMIULnrJ4UcUUFTMbQCJEAuJ6tpSZkRWA0Hh/OmL0ATMzxXkHL5ZIFsDhgIuvdoq4te2dts1z5xoIIKSCFWpcHhzPv3PziQrS2QIv5eQnOIJSEBeJUq5PSvH/76OOP3r9959Z7JycIYn2LBILI4iVKJWSClSGz0SIiAHpnWw7l3tpm0TaNd6gMkUaU0tDEqELYeSdFYQCgXrXGGK02pifeohJcmsikO9p0tg1lNEfxEnPqHUzN8JLkQQEA7wQACXvnuiAC6HAUSnaaD/cKe7cilLJQ3oO1gIIohEIoKhxrSnFdt8xMZAAIgATIsifAgrRCdCROo5pOj+8ZOrnNupKhakearo10kYV5EKlOhwE0QADIfZXy8CEcISUNIxUNUp3+QCqeRJwVFcG0llr4fRz5WbWfdiMdbVTZ8KZTuYlFIUBVDWtj5BBQakgNPboUaix2l7z3g2kbU0VFkxaRUBMZFbbOdrqBxvVQuVi/vktaEEdghKZTKMDO27qVUpEuyoJF1Y0pK2qttVYXpWvbEGZMiAQYSqhSSAQK0tomjIgi0tTJP8GdB8zhl4QEiPEsFoSYnwOBCRAJHAMDKq3MRLdt66QVYEJUopBRMSpPW5Qg0sNx48UDoVKalGIQRg9AIsSimUGEJES66S7UszdcCNJQ+AERjTFB/DDapGM4EkTCYIcykYqGFFDYR74FatstLppREuqNlvFUgNxodX4V4WXj+E4A3SJhYhNPnKO7QnrGO3Y3aQZ6O8QWeeW1SHoY+ttXgqN7ff3RublusOlGAeh1zajd9tlareItkLU2gsbEOyEERGNMURQ3urhHdp0rlTB6xfKQTlTLbDUCWRK8vg/dL6wNIQFK6zH4Ss/2g+cq0UiD4RBNSY1tiGRSaq0ExDb14puvv/jq628u5rZuW9s6XZSqKL7+9uuf/OxnWheOrSYzCIgJe5HNGoLgq975j3QZbWFN0UIRsimoRKwcyyJ9zqvrYnRbKOpC1+Kf2UKjpsevtvk9S2NAJPRPa83T6bQsVqtV69jpGSM13qnVcrFarkSIKEBUlVZKUQgQJaJqOq3quqwW1jYK7Z7RB9PZQTU9nh2cHB/feu/ureOjw9ls6G1v3b70MB4RQlddDqNaEwQ8FBRKjNzXPLw3fX6tlzne5S4U6Qtfjt83tkBb4r4kWLhQFWiYSmKvSui1qajnd3pFIn9TSohKEAUSRQUFgRFQAH2GXk4dHWnJxJgfJVCK4YlHc1TSNg7HFqd92of879tc/ZsdriNHXN6LTMQaC2Cp0ytvfAiJFN6k+mIPdgqzUxQmSBqTyaRt21C8CxFJEW+QsVMZcvThVRR7nLozO/UK+n9FpFNSIUvN/LoUYUPdMSpBCr5+ttm2bTD0xLiGQLtLL6MzhWijPnJlReWHT5Kjq9MB3WY0DSqgCMq2PDav243Ip968wdd9NOc5uALFgJboRohOm5B8DLuQx20ZYFLihL5DXaUoCu6ZiWNv2VN35KgbBjVmk/td1VodrTFn/eA3E/A5sBP7oBoiJDVgmpEXk6maTqfLevny5cvHjx//7vPfX1xclGVJHowujC6tE/awmK+c49lsYp3fslf+AdYWvFEabeecs3Umws65kfhvR/wQZKjbdaPKA+QlKd+myWbM9xIf+OiVTVFw37GYH9wYs2rsSgqPaBumvjxU07a2rsV544lUd9J770PmvcBRp3vTW/sH79+99+D23dtHx/uz/Wp/b282K6tC1gI2hl69eyGiN31+pWWOr0Vn9t6nIKhNP0NAIiQF2kBB4KmICU4lyp0AkKtS2SZCZN/9RhCAkBOZu1CZ7wnSoJFkG26JbZAkBi944IfOjzwqeT79Hcdw1OCOl0alGzedemNusxuN7sq8K0TRV6y1DgoeEYXwy8Vi0TQNAGitXfO6j70eEhHvRSt6+5Le1agsy7DGYs1H6ataI+50ZI/ma8tL/1FR2UJbMCEb93JgC0CdovLmIYbRtNBFF73FdAURPyBrBX0oATtxEghurRXpVi0RbYBmbnvWa8VE3igppUARi3jvW9sqc4NFmkXY+5uV9nYhzCFSZVlCz03Gkpkx0BlKwbPz3omwCCHAbKKWy/nF2fKrb7798utv5qt6WXtQEwYlvq0mFZGybrVaNdPZrK4b27rW+cJsjJh/R9bDD4aCDSF+TWc24ESwx2embvqx089dpW7X1YiTkpTSo0PfAo0GaoQbz04HZgpwESIkApGqqkTEeaktCIe4bbdarc7PLxbn5818Kc4JeqUpQmGdcyHDXlmW0wkdHR998MEHP/7w41sHh1obJkAizqvljCTO756DrNHo/HrzA/GmKcWcbOmtZ++csO/WgYwFBIAeo7SuSnXwgZDUWHqrNwMicm8R57UdmgRUpCUKsh5eaoAII7/N+JXLOTvy29GWz9bh5kupIIHbNlQmfe3YpRGPuhQJErcb9La2kMqyu/rdaQgBUiJJydF3nKLZKK6ZKMXtWPV7d624q6c2jIskGXWTxRZ8ebkzcdxL7z1pgH4fxk5EYXdrftuNS3ZHkoRYuM9VrSiEKwZJS2C7j3zkQtnUjfWTPpickZCU8iDCrLp80ol+nwMoUxtyum0AAFxmFUhPI86S7XTp5kNXI+Ceu9yIl8A2Qs/zS+l7BTfIUNlHBsfxGCiccLQwy4MvJTq3mXnNYzy8LCWp/jEpoDYaduldN+tLOhGgsQ9PGC7Fz0QZc19rpzsGRMRaG7P8ktZIHaiTmQ2il+HFR6OBCETUmxMu55VxZ6Vzmu6R8etd0kbX+TjU20GIaQ/TEyg7AwiTH2dDk66oUNIheRdxzmoT0tp4Y0jAA/jJtGwWZ19/9YfHT549f3E+b1oHaD0gGQLdLM49i9FF09iyLD/44MOjw2OtC1SMoGI/IzfqU/pkrz+819a9PIoHyQBvu3lHYW0MR3+PLCIu2nRO1++6MmWPHncv/UMaR5eJraNejCSE0c/i+uxSZ/bMPHsvGpYTIgT5OVgZ0qgVgCy6r0PjyiXMVakOwX+peBGWIXYFH+FSwjwEdeu494mY+vaHV5Z8uWHKUi4XvxAAHBOLDnXvBJBIk4KSgfH5cnG+XF0sF2eL+cXFxXK5WCwWdlXbumZwwaMSywOEjYZlaQxopSbT6eHh4f5sHwAciA81bQERBnhS/loDziocSZG0RgYBBRyKNUu8I+NIcSWHbEh5ba5tw5sO20hcTptNf5bw0uEHl9ImANL6s7b8MiXs6uq6yHhj9jAiFBkdH9RfUnFM4xIO+16SRD1IWUquEG8WXj6W+etGgzBi0cNOVr2iktcGyOvD0MbaJiMetck1hLGu82VDlZ8OyQIba2PZLTmPGjfY9QHXLiVzO/KopJcyKJSMV1H6Xmn72V2YJZKivmbOIIHgwMEQh+gLka6+Z1/RMxTcQQo+tcvMNB2YJI5FBizJTLfJ8xkAYkKFwAllg1uJ8yITsfOXHGSYRnWOT5F4ZmFfdxISf2B3Nat/mw2vczassTQz+HpP0rNSREZlPbdQOqoakn0VR0GYSSlZk6SHhxGJxAESEUBE732QFYNelQaq4kiK3Ll/u5P0OCVmJh6MgkTEfaX2sNi2tD5ecBskztHGZ8+aCDyHcCLHwswBC4NpZd/RBF32rG6gkl/SWD0YeTYRIO6ojh2spwZPWACOKqIgjsWIOA7RWwprtvZ0icfDUilQSlmbuU6zgbrMRtKJ75ujM3WOP7lUG8Fu40H+y/h5zKiTS0N/EBH7xOvSpQ4cahiFHidDnb1LzGs8otGDY2uJkDdog5d2fr3BOAhh9w13bX50ZCK4ocRhyvWSBmV4O8qAs2Gu+hJdjESTqvRsX5w+/f3f/82L589PT8+toDIlIKGgt9a17V41tbZ1tlFK37373v333p9Mpt6DUgUCDScxxBUVtJd0zWfpZbayinTDQj7pGxWV12U+g1knafC1WnhDymXHTBvLRgez7bCunPStDQYOEYE+i+u6KDlya/QbUCQxUXWNpKJDEn856jwkHGA0Cb3/Nuwd2HqSjM0il1I4sOLjUjHd+yE4YMxFJRNeU35FyAjYsQAGFAEEJahJKaK2aVarVV3XdV2vVqvVasWtbZsGiIm7AQmt9SZJ7zU2TeOs9d57z1qpnm8LeI+Z2SVZvUk12HS+EECTZmFR4LETR/oDMXv9yI76oq47JX4c/X0kcY4klfW7utCLzRUk07wII155ZRdNANansLRgWdPKxLwy0YaFiCxMZAgEhaErBNkpbyiAIQKof6/YLACk9p0x+yUS6upwQr9e+9iFsXgQ8AYi26Jsgw883gLJrI1cGWnrare89qMcQqkUEVKqDJfUSGiRaLt0dmOY9bap3HCyw2YhDQBUkp44SIOxzHSQTrmv8xg6Lz1Yrut2z6a6B3b2aIJuvUjQAtcPoZGiEjuGQYXDKFNhAngPImt0mg3JPOPGXB+B2FWAjKElPUkNRtmgRf4QdbbR6IXB0UkWllFkejwCUjl/JE6sN7jlfNxycl4/9GsUVRNKKASFoXEb46jeEdo6iG8qi2yRgaiPRA95YAt1lXlZ50ffCcWibER0pXG6Hrp22ZGZWQbWkPHl3ilPW+vuRY4TuE9IHxQlti32xHV7zbtAWofcmq4otTEE6J8+e/Tpp588/uZrAABt0LN3TilTau29OGeJzNHRyd7e/vHJrdv37h3duuW9MENhFO9Wl+PaabtmcjWjyVujcffejaWR1mcMaXgv/dlYGH03iJk3KSqch4DkalvGsRFQWMSzd67uNJQ6lENZLBZ1XaNj733Y9LIWDInATeObnvzE6e9VmNb2il7pJejFtbe8ElIV5S08K+pC6d8Fuqi/kImuK2XfGxt8EhWOiDExNzOTzvIHpOtwi7KXWhbW0xNv6vyWChupohI6llwa/zgIhNsnOq3MM6LR0KWN6LwOQXopbbAD2CgVolNif7ao3zdBiEi4nlf6h0y9sie9vSkLUkrnK0Js1vfmDSgqXbbrIaUm9inPr/1Z105b0M8jjfYKrzM6kCAD0jC8Av/zagqxTcG20UPM3wZFg0Sg1OsNADs70jZSivHdHb557UB27z1gl4N1xNkjPGY7rDneG1YCS5dkE3vP2KV3jZbNlswYb5eoKLRzFgDKsnR+9fvffvr3f/+ruq4bJ8Gi5jwXShOKW829Y0I6vnP/Rz/5ye3bd45v3RYgL+ABCPG70lJgbXgvzZC4fukdoXEP9Ttx8qX1GbebfvLRfiudexUppVMGk9k7ckVlu4wbWLGzbrVaLVfLQG3biogi0oXWiKQBcABOO+d6rA4JO8/sOwfLNb/j7nQ13jvygW861DAv3fg2dRWfIL5uOnMJ9zGctJa2zjonCCSAAmSMJoUCJCAApFQ6anVdR8FayUZRJBXNgwMh/WX8jCPvqN4s9iQ7dCQ7mszBTule3uRR2T7FWxjsyB2UOTM3B72si0Dx3uEUfrtBU4iQZPFVAN9N1py3SZJXJR5lPE6J+nD8+Pt46ZqFHkk8vNxXjeW+CAOZtyhjjeB48U8bBUKAnT0q64ZMwYD7HQG3xq1lzCL5e9AuKJZ2upLcFrLFhUbeJtMflbYIynDYiCMd5mpk8jDrHXW5bfO1mcZF06I7vrOnXloPGKxzcbXjZrB1akEUEfae+rCcbV16uyafnUm0Vs43gGJt/eXXn//mN795+fLceY9Ks3MKqayqgpS31ih1/969++89eO+DH82Ojtq2ZWYvnkEFb7d1Xm8+LDcRXkfOxS3D+66OfEZ5D98JRSWtzzi2zuSUb9K30rk1Gj3WlCbHBQ6XKPV7QA755hhoAH1NRREWz9I0rml82/i2tSBYmJIYS6XYeVVghIQ3dc2+S3pLCOQtIaqAdMRtZ8qO7ygdc8O8EZQEs7ROV+O9O6o3qYf5lWzwekmYAwJygHH3OYK3EKKEUjz99/jvtts8c3CIhQelemc1nQB00C8NXQyQAABCUQ4J8UkpSqBfJilwN5La1Zpe0deThCJBhYVCLsMvN+ufI0UlvUsn4QuIQwATrikqEK0SCFsS726HnKSf069jvMEa4Dn92QD2cVb63wwthIS+vZwY/iL97tu+9CX+ALsEyj2IHIXSNYND2NDagpf+9nf91HkdimNOfa2t0aX4lfrcdOsnryYigR5BiBTQR8aYQqkA1+uCzDiLbWq9YwQhdCGXX4CqCy1XK5q4ShEZjYiWuZO5CTEHAIwY/baZyZNCZi+QTjQCgzj2QKiLwgEhMAiFXemcda4pJhPnGtD5VkkPy80cRzLlgbIfEgEBCqKyjBiqGHoAQmh97orV2STFzyMHCOVCduoI47y3iAB9qopmtQo6Q8RfDr9M4b4AaRpLGssKyWumMfciaT1BGg19j4YSEWOMAHiBgOpJymCBLobyuiEwFABQEQKI3zjLCBKrESGi825QxtJ0qduwU9l7SR/UGCtFxieSMj17AWYmQa2UJo0eFSrUut9L3V19FTMtIrGHGQPKMdkiggDBZmuZiTrgbDAkxAbTg4NIUZZjbaMvnpKlLCDjgneXfYZuYaOiLh5Okoqf2NfTZGZkBIqMAgvA1eJ0umeY3O8++/Rvf/GrZ89ezGa3kKGdn02qQistXkRgMpndvXPrJz/56a3bdxySKvS0MrZtrfPGlK6xRVH6piUowyv0B+zQQ8cJIxIIA26treu6nOzFiQ0+9WHx0MaFjWu1ViMFb2TkmOmujPwwWkaxz36RIb4lF2Gzsc6WaA4TV2EJhaqpNsuRmXVxlPkxm1kYXUrWXlrKNmd0mjIQCLu05KtopM73y5J3I1U/8hdTCCDMjnkcHYRCtrXe+6IoCMlvBqyPDMDxM2GXsqIoCmtthi4VyHlUxkMEQCCcYkJaOQcsDERKa0Sty6Ksqsl06pNadZBG/8owzZ3IE4OnAZTqhFwBJFKtl9q687b95vGz56dL8UVBe7OCKuW48sKe2XsQ1ISgNGgt5Nr2Yv7Sc6M0zOdnR8X0g9v3bx/dNkUlygBp7EvQe+vikHbul37Nq8JAIjOlAmjtPROB88YUCkmhdiKESIXGLr94919YN84zQFbjc2SQ2mIlGCXkzThzsvV8xIEQImC6zD1nFR/TJTp67LZEqKnM2ncDFaFAoTQjWQHnvYAAoWWvEFBR3Oax0nH/F83sEBgEBNADWoaVdSuPjrRjH5PIxLd2zglC611RlbODg6IoKLEhIgAk8oDuTOxxDFO9IhPNy2KzwyoZDa21TiYiHkuSH1IIQLhxlt3mE3YsaKcwM50x2Gz/pmthZx/dyOy4iTmMOpmj0TIpxbPxzjnvGMB7Fs/AopUCFEXEgMQgnpkZKHRZEIUA2HsUMVrpUa13pdGH0qCEpNKkASJA0ukgwJ6xxxl5XygkQOr2MQIpUAq1EqM623cfCJU+TCuMLyLiAULKovDv+HRItaKhAkx+MK0ndoJeOVRZ3OOI029MUDRSPzrZ9RKLVdaR1WoVtl4ItUp/f0UXRzQqr+uFsfK3yOb8LDdPiAjYZYwEiFMkYz53HSTDh1A9DwU6y8sWAXFHwjw71pZfxj1/E5bgMb7Wb7SSbnn0jtjlLRSX3PpTxhx2M7h21KU0jMqt+bKw/+/a1821z9e1GySjON5xuZ5YYLGaV1NjXfPk+cO/+8UvVnW9t3+IqE5fvJgZmE6nwY96eHT04x//+P333ycij9A6W1urlCpMOZlMtS7mFwtr293dKYjDYTOCCsiG0MProrjwbmJ/hTYjUPa1enW9PblR4rdVunEXGo4EkWCsZuHMspBYv2W4AxBCJElyDSVYZCRIISzW+/li8fL8/GwxZyERVspoo4GA2TEHycgQKoOFRs3WoqHV6qy1K61oWpb7e7PDw8ODg4PUuA4AaYXW0Zrfsm4EQSQTVhJfykax8rsqqXpDW3hoPxlQpRQZpbRWSqFSvmk33tWb1zubO0aQBqT2+tFdZVmVVTXd26uqajKZpOisoFgGGsGQCDem9irNRi+H4EakVvp5dFaqkcyduREzEXGThjDWWSj72SZFZdT5HWk0yKMBT7+Oikuum26zbSX9v5IbnnbsFXSL4w2ZmgzOz+8xvbmkN6IrKiphedFlocPSJ1LAy9IZvTVSRBwcnDunar6Rbmz2c+1I3QkU4XObNzb1SQxvAnY5Wm1+s6KypdhTHmtxlXkJCncnLnNWuzeAvNP2d2lQhEUgOiXdZn/FtdONzte1UEyBEjPkhL8TgNJ0dHT4zbef/+pXv57Pl4Io4ECCaRlevnw5mUz+4i/+4qc//WkosFPX9fPT0/PF0nkmotne/q1bd+7evR+ShJrXAYUGUyUiBt9d+nfpS3pRXuDsWigtcnrtglQEsgfmuaN8eLWT/juktHTj2w+hvpwklDnpAOuSZP0ai0QbrIYI4PuiGYKIxM77uq4vLi5OT0/PL1aojdFaaQIUYc/sWDwLt60nVQgBK1FGmb2qbi+alUWtTFFMJpPJZLI9Mmq05pnfdM1jjs1A+W5W16gbV8NC70jeeyesmLXW4P3VAtHSxTxiDkVhJpPJ3t7ebDYbKSougTaMw0rzkU8b1Jm/PQsOEbwcsjFqYeTKSBWVUaAs6aG3Wxocfc38t5sVlfVGNtEIxLXJbfJ9iYX+wdObS3ojurpHZZOln5Psk9+hohJyLhP2IN/viLLde6UtFFvY3aNyE/lMdhemt7CzEYL2Ct2I79XZ1N/4FUPdhiDXMjNsK/VzzTSar7f23N0pdCwt6tctA4TD/enFxdmvf/2bp09eECpBYiDvXVWVGnxZmB//+Ce37tw5m18s5ovzi/PlYnkxvzi/WKDSRARCDx68P53uF6YM6aF0sZOEgAjec4gIMsZYf4lp7YbMsSkAD67blRHajFVTNyTKGtPoTd/9Q5qT0o3wbriDOpuHsDADi/AAixNmn564KfIeBhSEAAj1igpA27arVdvlI27rlhvwnkErQaWQUES8sBOQ1bJGXVpTmcKjgG9X82axXM5npT45OTk5Odnb2yMiYcENCYJuYs2/Gx4VSP081xGMtuVZw1siviLl+SZKefiaZIZEVPSaZ4aLo42yvlZZCqx0a6d6xWjSBTeqNzsujy22xd0VFc8bk4+NFJUdWda4xMqGRGfdIX4ZveXA3X/g9OaS3og0c0wK3skisXXqSxaMCqows9aD7BJ1EuhAwj5DjGzoJUIfdNi1u6WTOy1lkSGTg7AIMwbLAVJMRCbxMIndGBvJdnnUNqK+xpOAOOdHYu+mbRn+Tn3m7LQkR8TRYU+bHt3PSPh5J0t1v08eO9Ie0xkU2TRd485nbDjn7emjscexEBEz5/nas6EIqkJY3+u28HgMxMa7ncAj7026UEc9TFl2aFMgqfPVjbxRMYVX7EmoG8pdB7hvnKXPVrzjKhptmXy+hnEQkTwzRodXvNyBuWnFyrBmYA0VlrUzhpVgHJBwe99bQMSyLNu2NUUh7P7w+WdfffWVs9wya0OgAgDGm6K49979k9u3Hj19/PDhIxEWgMV87r0HVArQWkuoHz16vFgsyuOqLEtrfRjtcIpv19yoT0KfdjJOccSIx93U/+Y1wNDZUo+F25KQX8zBh2vyXD6m+ROSlse3DI/Ay25Ya3w0+5tDYEaF2y4BS6S2pzgIGYdeW3pZ+xumaxwdlLgQsQcux+fmDW5jdNI77UesDDf0OMCQe0aXRCwgAiKLeOddOCQSuYeFY2gijtzI2NXNRUIS9NYKhrAu8uxb29Z1HZIKiDhh9mAB1KQsp2VJCMLee392fgGAFilEPNf1crlaKpRpVd67e/fWrVvT6bSrop28itaqtw5KhB+N4PiXnRQCQgqNuGU4mIlIK+VFKOdBWR65fNfIhnU92g5bpjJrIGfLW2hL8DTEsLRweqXisnPUk0iQTDqYnyQEfQYa6mLMJXlQlr4SEfu9jh2DhbCGfUTCQ6f6SsdJAaNEFF4kVXfdWhBFpHGp6IwN5A6Q9GvyOZhq00aGkeEsyc2WZIEeMkUly9C9dnAknd+cJTmDTGYqRyal5Oxl3aMShZZoOQqMJebvCZMe/FRhfXalgUKiOe7rYisV4MQh80fY19kZHSvIIWLIt9B9hbjNouzRuary1FZIhIHjdZPSNUbU1ZOO5r/49x4JNBip09Hol/EwDulAhZgaRKJRmsKcshtHAsxmkTu9a4sz/5Vi6qVfpa/3nX4IDxqYICKCAMcQZ8ThbOt/EOU5RJQ1VGVoKjCBTHbY1OP0/Tf/LBeCt/xMolzCwuK9ku4VIm6qZ+4pSx2N25tqKkQEAQaA4JzTeSaAUYfTz1EoDLwzuTTMyJpVYMy0obdFpXOMiJBDAkbcQTbIc5fqM90l2Phe1OfFoj7ZHPTYodSbPZKfMQEKrp9zUXKN6dHSgyHpxsY1NdodIgLZgTS8rySw78gHw1dOxiBm1L1sT25aRdjrSOtZbjLLaG4W6h66fmmsduf3pAvA+c1Ry5BPKw6PTKNowpmttW7bVmk6ffn4d7/79OLiAki3rRck8Q6ABUWXs9bbL7768uzs7GJ+sVrVZVm0rVWKCDURe+/3ZwfMPqBtjDHM4JwzxoTJDY6FTR3GXk313kflpFcnhndPV+wWvjmiqOdE/WQ0nnFhbG4jPwI2suVRr4Z6l4F1bm599KxMDdh0V7bUctNCVBUue7V0h8omVnyZLryxh3Fm43bbYUjzd+kLpUUw3m4UxfGhlBv2JbqDfCPMbDl9FUpu7kpOhr9TKAGLCggJvRcJgmwvsoT2q6qc7VXeM4poBXtG3TqcHcz2gKWu6/mivmjaVVszszZK2JVKHe2fvHd8eOvkeH9/P3QsnCnx5SM+UESAICoqzBxK0K3zxvAGwmi0qleBawgiKq19amdcg6ESvcakxM+jGh1b9/Llfx9xNu8yg1Qmf/fqbseykkaijazvGwIIMw9xZp3MIOABsNN7o24WmV6/PrsmsL8qIkSIDOxlhPFm4KAKAmI4boIQEjCrwy9zj0q6mH1SdG7koqHNCV596moQlzY4mpT0Em+GfqVYskvkvZ7WpKiN0C+VSw4jKSj9vGnZhGGUPJNNlGGcc8FbG0DFwYsVFkyni/ad6RQVQgAUFq21c67jvgkspVNMA0/uVUaMWgp2ikrkY51VK4kXo37FYkjuhOnx2ufmBugKh/baDhFFTjIe3pxGl/oxH+/cNWEpuzZcGukpmeUnu2uEtN9kTcAtR2D+dST+hSkOzb4jNRn+SN8ZRVvmdjN24LPDXWqcoF16G3bcZmH3pn/c0o3uoO1pU08oJ9vU6aX0rh2D6bdQPBGZ2bPfODTfB1ovdPP6bSAiWGuJqG3b09Pn8/l529ijkyPrLoRJUAC9gNRNvXy8irNpymLVNEVRaK0VKICu1MzR0bEpChgWnryWtPpKCvbsPqkayDbr0uUUHSmhDOsoVev3i65xYN8puvb3og3mROyz6sSv6X9aawbqpANERaqqqtls5lE5XaxWy2a10gT7RXHv6PD99+4pwIv5Aqn46vGzb1+8YEICKbU6PD764Nbxh3fu3Ll1ezKZAIBzTitNu9UO35EkcWptZ8tXozQ98WUq02tTGtexRYQdUXz0ujz35oSIRIgCiNAZzDdQqOvnvQ85/TJZfzP0S3jjoG1VVDaqAes+t+GrDKfDqKLAlga3SJxvrqiMQFzrga/xfAlKS6oKhuUXsMHxwyjWK8onzDeyNt58zV+NkvdikS1ZbL8zutpo/1FR+YdO66CLS2nLkSZ5QZ9od6Ek40IvHG9zKaa6yqZ9Hn4TFaFRC9fLceLrAAB7fueq/b0Ovbk4ggiI1DRNWZZts/zd7z6tm1opvVzUShvnHaMH8gIyn8+tdYg4mUzatg11yo0xdV0f7R8xd/FFt2/fKooiih1a69VqNZ1OiSioQ2/Y4Qjq21GsWSe+jjKs7whdh6b6LtLbfC+Ujdl4gqLCvZtVaVVV1f7+PpnSTCdnZ6bRuirM7ePDe0fHt/cPCqJ9XSo1MbokpS5s69gpo2/tlT+6d+/DO7cP9verqvJD9v/rJJGQQ0QIkRRdeyqPUXriK2/ASGn6pt2lwDfnAFsIEZGQBIi6VFGbyFrXNM1yuRSRpmk2xaiMj7M3VlRGR3ZdbzTqiR+Gd2SRTIMAx93YXGnxzRWV0dfU7BitmSPQFzM755qmiYrK0dFROH3WOcMQeHkD7B3zVBBvs5yxUqqHEclNKyoj88GOw7gl2dIW+iErKt/TFG84QjC9MW1fPthj7oMisWmxjbc6Z/wlUIcycq53gIZCVRhdoiAbk9LE+CLYqnPjgOCMiVwlbWH0Xm9CseciwvI9UFS2LByd8s3NPGXjkAVsrkLrbUmlde3FYjFfLt//8E8eP3kRSgtIQH6imMIgae99a50ALOvVRx99NJ8vtDbnFwujjNZmf//g9u07WhkI043knKuqKhTn3g792pGKomRm7511of4g5QbxV9O4DOv3mUYCwQ9GUbmm9xKArgwKIKEIgsQSIoIQsM5aWAQYkRH6LdFlMu1BaAgiBGIQS62nVQVKHRwd7pVlu5od7O0dzqazaqKYCWFS6OP9PetvOfGPX75c1SuNcmu2f7J/cDCbadXh6ddT2G1ijq8SE6I0HczPEgQqQsV4qUBz9RVyEwn34ufdxcoI4xyDBa5JbuyAQRgCLDf+zLZtUzer5ZK9t0WR1jbJKphs9qiMpMAdFBUctNH+e1QXBqhff8m7jRmZG7tR5dCbA6YFxt4b6bYY0iWKSuhL5k4PZs94pllrsX8vRASMEAxwzvV6Cltrm3rVWgsgihTzAfTp1EYelVBKFdYykvf930TS/9u9BW5AX+cD8soFl+YMB8gRjJf3QrKSCSGegQHUECXF0kdeJJVer5NG5oMdj8jt0t2mS9p6r7XWRYFNwwgiwND9pxKxUpECBGZPgsYUzCw9srnDcnYECkmc961VRYGYFVmXDfEPkK/s8cukYOhR9xODRGDoIYNQWP7OO6WVNoYBrPdN206YyWxL/jCSdDf9cntsgCLlAJh5Mpm09Sq9mu3zfDTCJUUKCuXX7Ac4lGBLk/Fll9q2CSdEURQYEPwg7B3E5X8ZrZomHIdqDdmC2OFBg/iYGQmS11dGs7Ve2OiiaZqqqnprB7etC28XWoAEagz5GBJR2ZfOxRwCpMhE8wmCCp50CXW3koJBI49NipUYgWtphCdOZeI+zxUkBf6UUiKAScAVAghg4I8iootChgJMmbS0DhUFgABYzflyV2tVumKUaY8y2FLa3sga5MbAU2D2tW2BpVQKAQS7gEARAUWdqGKInXfWeecI0CgVyr8hYcsekARVKAkn4IuJ0ZU8/erh84uVUPHV44damcbWznutlbOwN91vm8Y2FgBms5k2erVavXx+NpvNVhd1URxMp9P333//pz/90+PjY0hskbowAoCKBMDlIVWYUFgd8ZLuIYgBBZBu37KYsG9EpCwVi1WKmqadVHshEiGaMUbbPM3yFDAD3AdoFjqpnpZvqEzCkKyHnnNjcBr1IenZmXUDs6NqxA63WCtTlDCk26HUqZGbhQe+0Tgbd8FIJUur6UXeEkAsWm98VlYNNjc2k1KRRTjnwuaC10wqmOJIs/cao6svk74RAYBQFAICE4rWVAiZwQ5TIXgjLYnVBM77FhWaylp3n3np6mZaNFpZ9tV0qkDXbevYGc+NWI9UGlNpM9N4UJYXpT63DQId7VcKiQQUoibFAE5QaTPF9mRCcFjdMgfMs6Io9vemh7N9XRrS0NpaKQWAnrN01aRNx2REKCn10kkjiKhUlBtkqCHLtm0NFt651WolAkYVzESolQJNoBVqRQRBLSOlNCJ630aOE4Y9bAdZq2KU08bcUyOhMLuU1wCJWKmiKJxvN90kIXIaL0nbw8lxw9KJKyzgrXVta63tTPL5OR9zshNROGGDD8SzN6UG9sC+D8YOzBlZWOsyHg8sfWQ/ISIWROLa02dPy7KcTKdERIoCnM9znjYj6cemaBBYA3ENPwNipI6z9aEVUQlXwl2h57SMKQAAOD8OYfU9hbhBAAjoKemXASKpRPxSpPoU9uEIDPlWiYiyiHkZ+2Fyzpm+ZvatUEXkqczsheMSswVDOIjZs7M18ty11jkFXK+Wh4eH3vtQxJz6TCFaa3RuYrTYtjK6MaQ0Xlwstdai2FknStAgt16AFSpC0MEwERg4okI0ihSB9x7EAwIixezSI6ECe5doPHL6wcTWg/MgqICAADSRUlhoKhRlh34yUAhAIcyKg3pCHgDC1CM5ASVAgCRkRBCUQgWkRKnURReLAXVtJtHDhKPDbWySjl/X65ht+pxLRON9Gk+iEVw/5fNX86h8D4AQlym5726/R5xolIzvRs2fAX4jIgFvc2lE1BadLe3h9iiXG6BdnzX2dI9aef0+xzN7HRc0GsMtheRHlIvjb7pUo08cEYFArGcAD52yJYi+tUHbtG2LSIqoIGWtq1cNIWoiJLTiyBitSq0LIS/oRbitl/OLc1OUAti2LUtblMVUa+ecW7rlclWooiw0InonCFIVU9vYBa/eu/vgzr0PHjx4/7333gujd6OLpV4umB2S84RKg3iH4oG9bawy1Y5juK55vi5t59HvAu3Yq7jHpc+JdwWSPmjtu/XqhEQ+qkusE7sRDn7viR0CAZZEujDaOst2qmE2X579/g9lMSn2ptP3H9R146dkJkUhSE1DoFtFpAsuS08GBSpbQd2QZwiSKwtwcNQgEgqCq1sEnhhdzPYQsSgKY4zW6srZeF/ljB9zvuTf9Cpe2sy1bIcdKTwocZvfIEWuS13s+8bBZxYU6RfNroMgSTYqZy0RKVYoIKBEKLV+YQICSeN8RmfK5tyvhJL0q7vWfReVGPXS7guM7CWjc5/6SPSiKFI4gyKTPgoRUZC4ywyGQ4KTTIfkzaUAR5a7mMwpuDrj70ZnrvIcTJHivSOwjQpRGpgkRBmt2LT698iQKOkH7J7b1YIEQSQkAMGumDxEQIekuNDx4/rvCDDG+SBKbsvE8KDNTrOsl6M/IzCE7Jvhv96HdvmGfm36DmEFP2To1/eIRip4zppv9lwIhhDnXIwPSR58SfqjdeLet9a5Td5BQqDEf+Vzi1SmV+zYXsLBR+fouMHdWkwbJCLZjJHbkSLgIVi2qkqzSChtJoQs7D04a533qjAC4BFaYAFhgmBqDgY5Z227csxzrTWAY2hPbu0dzQ6ctdbatm2ZuaqqMA5VVTGzeNFaR+Ortbaqqp///Od/9md/vrd/Eqqg9K95g6YDpcgYg0QCrYgYo5SqVsuVMdWOT5UkB+6VF/abl3y9adpeUjBSkGACsFMpdbUlysxa6zCq3yGvCHlok0RxPSEAtoDACB6VEPJyaazf16p98vjsiy9e/O2vDOuacfaTPyl+9uP7/+yfPLYtaA1ESshojUVFe3u6miiltIdJ0+Jq6b1j65y13jnxjALMAr1xdzKZIKIxJqRPRUS47qCUa6HRdrjRlRzj1rqH3uRKwQRODESytZZxqGFCinDn5R9YsbUWe/88dsyVALP1lx6ye3t7aQvpaGd1IdO7BBRnpcXiJQFxSiQViRMLvXZjj0pImRWDQIKWUpZlqqiQ6hSVQa0JEaQ9xIZoKGbX50oD75O0NJgYCrp0z/2VMB1B0xKA3kknkDpoAAHQOpROUSHwjdbhkQJAiiJ48lqkKCIEQhCijXU3utfKHUcUMoAjsHjeqGe88zRS+W7agpDSHxWVd4JGCcWvBsm9GrVtG9ZfQLlc6r/bLlJEGEAshPKukXCeAB5HrDJHquxAMaKmg34lJ8fVdm96/NN1VFWPZ5tSigBBafCekdmDda71tm7bVV23zurSoFKF1kYZAgBC1duL9vf22bN3wI6VIqORpYHWPX34KPQ5ZlNZLpeIOJlMAm64ba0xejrdK8vywYMHf/mXf3F4eOi9zOdzrU1aQfINX3PLABQFIYp19XI1n8/PTk9f3rt3/87t9wozWTQbMdmjMQwfug5fKSYyMxnCGPryLtCOR3jQPIMxIgJCXpcCr0jzil6hkTcnJEIKlcJGEgx7ZUlQMwlo59xMF+Xq7PTf/mL+ySfHbn5sfamnT0/PH/5Pj9pff3pkqsM/eXBRKCgqTySFVqUpTFnqqihKRvKVR4XOts2qDiAtRg9eBFiYq6qK/Ef1eC2lFCD6XW0mb49G2+HaA1FGzworJIj46iY1N8ShOvTlUN2eWBhFFCpCwu0R9AlFj0rbtmVZBo20KAplNKKWDYrKFlzNqPPDZxgUFelOuV5RQRCVxMXniz4Fq2KeaTfgLLTWkdUPhpskVkYFiIEQey/QKypKBT0s7foosmWTRwWGvoMAYBIbgDlWjzwBB+BApwd24opInNZ1p8rViIgECQmIIIsRyWnUw8Sj8gqX3TtO6zbZt/ZojYgCEo3i3FPAbg5dlCRgto8dxFgErdezPUuwzUOHtwHmzQvxSpQ1Ipdckj6TtPSrE3trEAvrvDrhaKhHQ7/plziuENM9MWARu2wqOKT9jXDhtHEeMl4jAqbu/rQwovR1yvpVkioSfVP9AkofNJaQNhD7Ptaol0WijBsbwLW8sVHgiA8KR6wE/Ht/e2+xfPWCRhyy24chiV9TwPMYFCHjRpIeJhjfXFHBXO/K3uwyACX0bxAvMgvAUIOSkwJ24Q/xdkqO2JBEKm07fvKeAWRDmqlddw31dU6C2TvOmtL67GLBXpb16mIxf3F2enZxvmrq5XLVOnter8qq2t+b7U0mRwcH+7OZ0brQRisl4I02JMoUhohIfFGURVE8fvhouVh6GUqRwoCvw7Isz84uCjO5d+/Bn/zJxx99+KEpzGKxnO0dFEWXQVL1Zq5hBMbg9ey9IFnV2ZCOY0V66x4A+0ahrObnDx9++eWXn1/Ml08fPf0X/+L2YnWhqin3qhxuTl7RGz77kpeb0svni23tkqQX0rWXJ0xO7Ykgwv3hmlktIV/ko36P9uimbkA/vD1Wc1yWNrkr43KSgTw3PXf8rNxJO5RLuhYaCsn3yPvIN0il4znwljBs7DlgU4JQ1cs3AmiRSLFB56dOivnFt//rv3G//u2HhkSamv181ZDiY6OfPHz8y//Xf3v4859NPv7g4KOPqru3njer4nBGABWoShct6RU2RTVRitizba0gIBGzEwBUBMJBtIoMJHIbAoK+KMr6GEIfQTF6P+wtx6khoIPmAwd7ivSQqvCwMXPpCsuENZ9VGsRkBgHGJUSvdrjnp/lYDIr9350HjgTE0eeOK0IvS/YCen4CpDVJs8YVEYVi0gx9Gpeg3VAaH4X9X0P/g/0uCidEVJZlWZZAqFSRKSppoHm65XOgGfv0LMM0KZxnzrlC1KZQaxOvMCdaloAuNbssKzH16S6jlB/DyaA/8rSh4N8A6UBUCKKC8SHo/90YMAyPQ6RUAeMkvA1Vbu8T9vFS9lJBYEJAJNs6EaEu+ogx858MpRE6FStZyqGOUJBg2fOwKQSjCTI8qc+RIZLsHQBPocYOMwgIS48b7DuYqtb54g2u/ihrQfQ+9Z49uEwHiDsF069r2yKsXs+Z/BbIp9Wxc1VqC40s1yNGtAs4c8uDYmBk7PmmGzUigvSlkdRQy3n9sBkEx94nG2J/mVmFIVYKvfPeJXIbYlL4Jh3WLX3awvK2HoHDX9KzMEpsIQHAqB+jQzPvRt7jsUg0fO4zqAQAI4IAEkGvYKQF19P2vR/itkfrJleQuv7HyoPrYxKXe3o+ZWx6M5/H/iAUkTCNMsRfjgT6rJWA9YKkUngAdQzRnbnFJDCUTa1FASgqKnCJyB7u3PQlGxvhnRbYuBtJfZjYjX4lp8lxurlLBzz+cnN3Ny5tZhfFDu/96K7L77mkEQ5cwzkX8pyIyHw+XyyWL17O54vl0+fPnj1/frGYL5u6btu6rlvbYmlIqVJro83edHq4f3Aw2z86OJhMqlL7B/fuH86OyRSIuGwaZW1ZTOt6FRW/tEB40zQiUFu7Pzv8J//kn3z00UdFYdrWew+Tat85jvkJEMe+c+GNsn7UTEQkvGVybTQ48ZJMK3Nxdvrw2y8/+c2vnj59QmjsyvnGGTMBIuiqK4631CZBRyTTkUfqTVomdTTHWVRlrpttWdnMcYEFbeFyRWWNduKc0XaQyO6XU2pfDsdChDtSlll148JeZxqp4WYL299xww4SXSdXD3wjz5kxcEUEcMwd7wrji6R6669CatmCMfsk08Xqxd/8Cn77+bGwQrGlJk+8aJfNsm1AE8H5y2//9f8q/8bc+8mf/8X/+f+oP7pjmVms5ZacYY2ISEYTsC0MafJMIt6LEAKR8o2FJIF7OAtERFhIK9hQhZP6IB8iEAmfe86ZDF3KlBABgbQm8BJ14CBnjALFgnIUl0d6Ld2z47mDK1I2s/kGw6RiY5pAYguNVvL61/4vksmsCXUiS598ZbQziBQKiPVePHPIrtIZHzxnIQqYDFQ8oONBGbwTXsR533lzegk10qaIedgMcBAEUBBngzL0VForJdQcjK0DsAT70WhjBnYtfZnw9I9E4G2DXYVr1IgKw3ihdPqHdFoSAtJwLGbqLYR+dJdUugAUYZKuI01qnJpTV20NUMZC7ZDJ8Z2iElWXqDygAEOnFqTSDhGxeO49YIhhpJIOB6UIupejTh0FgUxRGWmWIxmFKEoOkvyxB8nltoZLZrmXD2V0JvVNCUvIMLF2wiY/ptcIskobT79yUhd7JC5uPVPyXiW6xpYj4IrQr7iTt4OCvkOKakkXMPm2iAgxaObMbzN/9rtKW7TOjKKKEm+TPu72Bnt385T3/2bfBRGDVhwQxmdnZ0+ePHn58mXd2qfz5bPnLx4/fbKoVyLCCNY7a63zvoAKAIQZRUCkVOZgf//o6Gg6rX7yo/fh+dOHT5+3tSXnxbV37x6u7EnLXpIXCzMVEtgbUz64e++f//P/9N69e2FC27ZlBmbxPktedLWZHSVpI8wAEslOl9Xi3Lnm8aNvHz/6dn//4OuvvrEHvFquisPJtU/DrqW4x+/89vjSD5Wi1B5BAW/CNxCgQOPZGnT29PTp33zS/P2nJ9arSjUVNZ6VcAViqXSFs22rpZmuGvu4Xj1r/uabxx/8Z//JwT/7y+Knf8IlzqEhkUJpcSwIRERak2cW6XwR1DkHo9qwrWPXeoRFiZyUIq3dlVBmW7XHHyYxMwqrLpT6Ki1EhUREmL3SKqopqcQGeeWQ0fLYqMOjqEINyqWI71O5oEAFZbxCakA8CkDrnEMHl81j6uQPRRhFZDqdzvam00JrrQoTvO9ZbEw5GbKVhKyh6QgML5IbbtK6HCpPKEyZVQhDVcemaV6+P6HIHgABAABJREFUPHv47Nw5a63FoK/3gCAWpoTSMUQEpB5ys3XrIXYQUSIawQ9FJCRXUISyLWX0YITG3i7svddak7oGjPfulC2hd+PoGcl7mxY5XFlRidb9d1aU9N5jSDz4dqubIaIi5bsket/TUi7XRpLLlVugxtEwH4AQXaWz7zTi9lroauWNrkZaa2utc265XJ6enl5cXFxcXDx9+vT52dmnjx7Xtm3b1oswghf2Ics+yXJ5oYgKZbRShNQCXyyXtbNaqUV7/uGHH3Arn//2s/npWWXoH//lny2b+xfLhcsBz1rrsiyLorhz5+7//uf/dH9/P0QGe+8nk4n3/uzszBhjqjLeNVobsGvAbAb92lLvr7XNs2ePfvvb31RV+f4HD+q6RShExFqnyxKuldIX2cIPR69M+McQwTelcAAFvHGw7UW+IVcI8xBEi0etqj/74vkv/m7xm9/dN4UHdkwTNdNzb8SIKK8BlC2L4vZ7d2xTf/X5V61dlI8f/fb/+d+c/PYPf/5/+78e/Ed/5QpgBO9aBEFCUKS08l6xMChCCeHCwST9ijP0JthgwABopUBr2Clia0x+c/qmHyp59goEAEkRilzB8BSnMrACWzemMNPptKqqoijSWMeRDy0d3jTOPkVkAbA2lN6VLpuJlDS4NYhocEY/vXj58vzs2bNn8/mc89Sd3Gf5474QZFVV9+7de/Devfdv3TKEWmnSJD3cqHvNnkfLGl4ot7tnVv/MCzFCzOLg3CUF1nJr26ZpDqq9lwu7XLK1lgiRtOoJBFMVhdL6ChKOm86NuU1R6bZpVFQyPs/iFQZlRm1hNkqpGEyPAggcVD6lrhjpdzV6m5HPO1JUFMMy29LDK52UMoDSoutneDYAAHfuqd5v1ufde3ujI8wgEhbasBlkW3XhNyMU7J4HvQ9HRN4RzfW7ohGT2mJCZhHqOXJwG0vIBoj4buypK9IWb+YVG4xmIRn+DVVC67o+v5i3tn3x4vTZ82fn52dPnj559PjJy4v5SxZVlFBUzrbO+1BEIwBCFFiFoUxKyGoIXgC9sLgvvn304uzCNbZd1kpELFpxy2blxQkQhP8BgIDRqiiryXT64x//9P0HD4Tx5cszpVRhjGMWkWoyddYDBGxk+JfTsdlxYEanL9veVoeMoLBL0NqdgC9fPBfnV03zy7/9xWSyjwiTqjo8OFjwNR8Po/Nmo9d+tB3+4fGGHMQW/hUAQN4WxBx+Q4zxJgFgAgFAReI89GOriEAkxMinecEFBbJDqo8wAEIhElQimtmwL5fePHnx/H/4a/+H359obnxbzqbiRa1kWisk1SpUmovGubouvT+4d8vvmSfP5nrOxdnS/t1vvt7f+7PbB+VHd93efgfBAFRIqBQqIocqxNIQQsjvRwSShRaMxgJznGQAfIRUyuMgvXzY1i6KYJezVEAwoOwVrd20E8PNDv0fkJay5eWZgRC6uBDs0zd1IoXssp+jZBYUlcl07+Tk5KMPP7z/3l1NOk1Hacwgm+VxKIBZnH1ueKbhDXrtUQAAhYwMATnZdCHc8be/ffLUe1fXq1XjVBLdFVFGXoQANOF0Wr137+6ffPjBBAE7hiaAaNLCSvlLQwDbCUAetCmSwZFCr/oepwoMYJ51WRlVqHJiNDBXVWlta63VhIqkLQpTGG1N6qvEtcylRCjcrdtxUazsS6jo2YU0iQSEH2MITAl7MWzkzZOfKPFIiMhj/Ahctutwx32Y3tJj0wMmMW5Q7KZojLl6zeavn+JeCDRKZ5f2UDOHXI1aKUNoPQgAdf/JCHMW2KNCJM9AqBShs+wdEBEIAQsKFgjkrG1rKhTpQgBQEAVJgGVIzTZaN1vkuS2pBlKIHvVl0a21wlyoQoAFCRSKouBXUYCKSDjVVUbra4sRbmOBM0PaC1vPoFFK0xLUzk+0Js/eW6WM9wGiqrP3AicATnh9PRpS0dMabTDBSqFoiFcZjQZutklnkV1559MX9t6lIle+bkZbSax14Yl9BixRShlT1Mtlyhey80xpSYJtUn+3MoX33jmvFJDSRIqZrfMgUhktIB58V7QrjQcYrY0UyZqCgnJWxN6WZVnXNSIaY3LveeZ8lC6SAVShrPeoNRF57wM+1QUcc48sv3xS1FCQLrxvrGLGeT3grEqgh1iRmtnHVSoAqCoRZu+ImZAUMjtHIIL49bPnF8vVk2fPWna/+/rLbx8/en5+aq2jomCL7AU8EyhDxBFALAi+ICICUggKEdmL985aRmposmo8CRtBZbi1q7/4yx999tu/J3LilFY0LXUIiwek2ton3z4+W9rHX397/+69yd4eklKmms72q709b1mR0U2xWtazWTndq5i9ooDTdl48qT6QLMmIfVmR0yFsCUEqLd7WnptVPXfescP33vvQW0WkrfN13ZbltGltUzeT2dGqaVVVLHxtncRwI5GMw4TAnrD1oLeAdt1I0zPkm0jlJ38WwAa6t58p3VnW4g83cpuC+q0nkqf/2BZvlu7maArtczRt7GGeaDjjxCotSguQyfqSchvcfNRnPSf2Idm/9LHvKEF5zaxdksQmC4IHbwQL0IUgMDjkRoEH8ITsa01KlUqZIDoKioB3IrL0dVlVrrUIUhYFgHjnFJLR1PiLAlrfuAlPTtSxbZujpZ0+eYjffN3++g/Pv300f/JUsV9ZIk0orVLmrD4jC6SQQJuSQBVUwWJ5LuTePzr4+PDg0ZMnT4tzgXb+yb/99//3r3/6X/wXJ//pf/Ks1ASlEWFAT9KQ0yAV6ZalRiBNCgEIFFM3DlH0ZRJERAJC7mvNkVKA2NUT9IQibB0zo2CXCkC8dFYLAESGbpkLoGICQREOUc8MrAlMQbVvlNon0iLIzA4dYbBjRCNRN50sApzE5mULYKsCvptynldpz1R63yfF7o6MDFOdnGWbsdYhfjLksAIBlmCDJwSw7JGZyACAtbY0hoWBMNQRRGEGISIEpbHogYYggkLIXjyz84A0VCTsLKQhABWRwddNw8KG0IM4Ycu+NLrUpTb85z/7+N7J7ZPZPrAwM2PHlbcoPTkHkI2XRIZsI3m14lEIpPL+/smxoR+9vDhduVaIRAiRCTSBkCZTlqgVakSUjz548PH99yYEyJwcmJl4sN75ofR6zvPyKNiNt6fRGD1bIxHY25ucHM6Wy4vJpPDeOc8OibXxSpVFOds/qKrKGFOWZciYH9vn4H1tLSoNSqHSDC0IeC8EqABVMNsJewFmIQVesFCFElcSFYCabQi0d4AsRFq/UvIPXI6IisKEjHYKNXtoHaNWQkoppYtCqwKF0imjkcdSI3vPKM57ZtZKhT4TILIPFUgFoBVRqCqjCq0IQVzuAk065iHDGaYiVvp5JIpHWN0YHLFVCxrJ9iFkMUo7m+66KvZgs/mAJAS4CgSrj0T33s16h/soehlFYAfz/JC1jHeyfLwmxb2PgUXJYPu7CkXE3pVd6tFRG8isVZ3fRFd4XJQmQ0CeMQb74DBr7Sa8fiiApZQKHKRuW+m5XdSwO+/K5tG4WpGK0Nt1Z+BNU+gh9YkyruT2jaa7II2gY++d87Y5Pb+YN+75i5enZ+dfP3r42Vdf1OycEGvjBdhLKsXGYUQBY4YEjtZ758KAkAC2BgFBC3j22vtKT+/duffLv/53EzMpDVVlCcKz/X3rxaH5+punn3/zmL49nYn98MF79+8/uHv33v5sZp1lb0VYK7N3UGkDrV36i5o0GK1EvAAD+rZhJAw5AC5PonD5mDrv27Pz55/94XcPHz40uvr5X7Y/+vjPEGSxWCwWSw5niAHHPJnuMTCNo9MvmaN0sb3lRXJd9G52XjOiAGNX5zn4T8NS9nA5UhYFtJAgtgpbQpBQCRoKD+ik9q0lUEppIl1oAmLrnGf0/kdUzZ+cMXOhtLOL1WKxPDtvlit27Uwa36z8agXLelK3ZWvtZy++hU/ccoXPX+xXk/1JFdVLQhVCo5xnhai8EJIXZpBCUVWUCsAg3L9/d//WwfnL83rhH//+s3//3/3Lf/GnP519/P6CiAEYtfLKeCXCjOKJo6W584m+aujCz8LvMckgMP5RanrHtIQgXJI2Afmy4pLv0IIJNLK8fid9kCT31GihbtcrohwWEhMHFhcsvye3jg/2Z6XRIAyeqW+NZZyJL6WtpopL+p3+36VUGqNETGGM0UEBuHQnCggSakU6JGd+V9ZJFBwAOtOSUkqrvirRBo9Kl9XjlSLWoCB1Qh0hcAr8C+6KLZJTfEC34VONLupv0Q3S/3Ib9if5ZfKHzsPg825D4mm5At3odos5D2Mu0E2/fKsgaaXUMLvX/f6RhQVdRY0vsQ8RwMKA72Ktj5RifrCY1vB1KUNk7jza2Gchey2KvpFwtPveC0R9RdtL7+pCJHrDeX4pqyzmvds0GhkKaGfplojCrohS6eu+8tUodC9WMRvlddmlGz3HERIQAMeeiGrXPnn8pG7bR2fzrx8+/P0Xnz8/feFBLIoQWu+sdaWabuqUMYgQQlaUFW6EGZQAMBKgJfAoXol33v/0Jx8T41RXpkAhZPHHh7eXbXv33t0Wyk+/PZ23Yn3Lk+pXnz/+1WcP79299eDendu3ju/eOjk+PDg6OvSyLEoS4DD7joNtCxGwrCqRTn3FnUH53ntE+fzzL3//uz/U9YrIfPLJJx9/9LOq0KenL168eOG916YskZxzd+/dZ77EgbnWYLfYoBf0A0v5foVLpR7LEe78OyRL2LtiBINHCUEo2Bo3+pcEUEABKgEQEhRBASUgCGrP2KZRLLNyr2R0F8vVy/P6xak9Xzz+4otnDx+JSKkNCIjzzWrlrCWAx81CIRoijUoTlUDEgAATRXrvAKBLTxcky5CH3XvvrPMMSinFJAoAwRgznU6BpG4bB4IIJwfHC2lA8WdffP3X/92//Of/1X95MZs0moAIRRdOOXZWCTOrNKPtDVDwikjnUQHw7hU3vMMUOX+aY/D7QlppNoKIVVXFOipKKRE+PjqezWaFLkS6AqDfSQ+DcqK11koj0cZSriKIFFKWybsZf4ud5GOMKYoixqhE23/8oXQJfK8t+kt1pVUuvxRjVHiLkeydpBsNso0GiGgV2vTLt6qojN7zenWVKHTyWrqtVIFhZngnixKmxHx59tubpqstxChcBveIbZpdfEFEqtdDPK/5DTs8WECt2I2jke6i3UcJ++xY8cPuL/smFKZ1qGK2W0mvjFBQGEU8MCA77x8/efLo0bfOu/li+buvvv3t738PhK33oJBZbGtR0950j8RENpoOuCA6ARHxzF7YSSi6ywJE6CtkQqfBGeAP7tz65//RP52V+k9//CdGKVWVzrV3b986my8Ojm4tWvnlbz6tlLctn61wWk4E3DfPzp6+vCgNHcz2Pnr//T/72U+Xi/bW8XFZFkVhUKH3rgt7JgpYj9f0AEjTLj/9za9/+9vftq3VuiLU5+fnWlPdLM/Ozs7Ozrz35UShNq31h4eHzMGEvHFlplsvLuBLs3W/4xT7Hzr/LlRiFQSLCoK3LqC/CQUgpJtGj3jpES5ITIBEHpBC1S8AFEFAYX5+uk+qvVj84fO/sy/O9dK2pxfLZ6fNYk5SC3tvHRMioFhHgHuhwPZkiqSMUgY7ZBW3zrW2qkploGlqEQmgkXCmeO/Ze2tbYgxHCCEJSagr39i60OVqPp8vVgbUXrFfFMXTxeOnf/238//wPzz4x//BaYkrTaJIiSJRKIwCJP4VSvObEWJWBeX7JBytESVpZOEGBKYbpSA6q764ewiaJyJmoZg59zudIGZhAfbcG/suH94QNWqM0QrF8Ts4CSGUJFVUopYyFkh6M+jI03L1RxNu8oAkHhX6jmf69Wl0HF/v1otRAEF03PLLzgs56k0Q6NOaEpF6+5zuj0JEjH8EpRR3BUuYRVSIhw6xrYAjYPeby98jZHRsEDFIPB2cUSvVWt+2bdiEmEQDbBl2HFd13HhJRJBQKcUuoDZRkSIgAI+bdbNoy79k7ntFE/oBT5rY2OHRHKbAolGqjSyaJfrTBdYcmDL6VdrB9ZcKe14nLtekeRER5xx0Ofri5g0W38G8gUlMwrolWPqgka4bCUpnLEduzQ0dfxx6EvOyM2ThCmlWEJbOTRdnrdeKOZms8IN03MaPjmEYaUEDWcshI0PABsVnee8NeucZhBfLxZNnz549f2ZZLhaLv/3FL5+8nDcewItnBCLPXiltTGHKiW+9yDAXcbSB0CF5752rvXeEMC0LhdK2K2QpPe+VePfWAXj/04/uvneyN52o++/fOTw4nDe+LIr9SfnRB+Z8vpDT0w+PK/PT90/nq1ZKAVzOF+fzi+XSrgBa1744P//syy//4uOP/uLP/tGD+/dlD4vCWAta4XQ2a2zrHQcorjEm1COLgxNxetiXaQsIQ+/8fH7+6W8/efHixf7sQJgsiyIH4JfLi7Ozs+VyWVWVs9YJMuC9e/dCCpfM+Z4XdEnPrfjhNR2bubUROzRCz5EgvZTelLWRc7a8Xva6z394F+bgqOwW1aUOw1DcNW7NtYftBC/ewtk2kSA4YWFWDAaJkJzzjCCaWttWClUy48x9eWykKRStsw07UKgUFsDaelg2uFpWjx//4e9/8+2XXynH2jE2vhAsAEuARlxRFqwIRbRSNCkKrafVpCxKG8q0CaMXx9a1bVvXilRpNKMPpoSmaZjZaBN4AilVliWLh8BblRRlUZZlcLWtmhUKlKoAB7a2dVs/mM2cok/+2//3T8zRrX/8s898LQY1iAZSDCiMzA4VUBg6oYD24WF7Qh/pi4hAiNiXTu9/IKHCY1d2VdanIORV7fyBSgEge69IiYBSShvBEAST8rSRkJqnyQkRCT1bTn+JW5jeKIALIGNEm1ZU3othJW9feFlWvTV/exg0UoTZrhlO25E+n14iIu4QtxjOMGIRYQAhJEj2URj2eMABYChFr7Xu+YBIhwEGBGBh70Rtfv2bpsCwnA95hAWwqwI3GtvAWIJ7QBHKBlA33LAmmQZFRCMp9vXKoxQR+hB0QiIKYknyMtA0TRQbpK+jAv2kh5UQIxUHMaP/lwQ7Ewv0JoEcWjaMRr8yOrhrj8EM9sHgSSOllNY0HD202Zg21BeKeZ/jq0lfDc87R0oFVsbMCpGTCnV4mUEwnrHpCSM5EHokBMpaqEW8K8pyo4V0qcks/HhLThqd/QK7Z3SehzWKl1AFYT00B9KX01JKSSsiHMRP6HlfUFRYhkp22w+2ncWCEa8cJMjYCBEprcE655yI9OEyu7W+VY0ZetufqSHZGYY85UKSj/XopSL0aB3rgjk3T2/kfKHkncokGLo0Tg0g1eggNVaBYA62HbOpDY9ON0kvrw/HLfZnm4xiMZO7Ebvyl/0MZiPwyrmKazgLy7lMzY79jKIns3hvo+klLfob1w919Yglbtrh6GIOOdH734fX3zTpnYU7vLZ3PjLE0aEQD7NRN9j7tl4R0XyxfPjk8bxeWeGvHz/6/KuvnpxfLB0DIntmpYRB61Ibg4htY0PB3WDAiLAWRPReGnbWtiQ8K4xGX0CtBY6MunVU/vzHHx8f7H/00QerZjWZVq5dAh54clTpw/3bJGKUzPYmFy+fH+8Vf/XTDx7c2i+n+8ZM5ssFC56enX/98PHDx0+F1PnF4sWTs1+8PHv09bf/9J/+Bz/72c8OD4/29g6tbReLtpxULC4MWxcYkNhQo5cjLKjAoIui8N5+/fUXnu10MtO6sq3zjov9gghXq+XZ2UsRMcbUdbNs2qPjW3fv3i2KAi8xaqUHTLqYOWqJsBZKuJVGO5H6NvNLkn3OpbZRg+mKSv6aa1n9rmEAFTds7H/aQlfniVnyXCuj3bZpy6/3d0cqKu2dk1VrG4da7+3tWZSFb02lpbWeM9EQwrIHZGuNJiLwbGnV6mVtHz59/tvPXn75dblcNBcX97QuyxIVyVRzd3R6FA3gtQIENFqVpjBKF1prBGcb6IqFYqmIFAmh0uR9a9nFFxORUM457JdqMmtt45wjhUwSkDxt2+pClUUhQrZpmqZd2RYANWrTgv3mq5f/+l99dGfv8GhyoUkMgQPjwQMKAmGsCyzU9afPNRLHvFPOCYLzkZLcEoiEKITAwJ3Ek08zdNKbAGilEKltW1IEIEqpwhARKVTgN9jLNuyTni2ryy6O7+u0rZ6ilHmpZrWJNq3kS392KUWJ03tPpFKTXKygDmt14TJur0h8Z3AVHC6JABJJUoU2KCpxIEREGxOKkcfOBFO+IhVqQzvvjS54M/rxpokUdaJdELhlzUIKAAJ9+hwwivx1507cneLiiYoK9Esr/iB8CIpK8LFky0M6ETyKYZ13pVsOQ+GNVFJHQpJgZKVEM8GuwGPf/MhLkyoqRFncGPOQWCjWnIVoMtiw2GN0TfwxJLujk0VZyFDMDWMSQWJ9E0mi4AmMklUMb7S+Z9MVMj7BEuzxJjBCKquPGh918gebyL/bddRbjt89Kooi1C0K8RJb5jL7/sZuqJEGrG9ycOJWj9s+lUK2nzqX0prbZPBm0Cgsx78G05feAJDWnErVdaHx70UGUe913yJQ3PyQcN6ehpGJik3Y1Ozcqm0/+/3vmBQY/eW33/zik0+en54pY5wokJB5EZEASSGSiEjvTQkDHhAIWuumaep6MTFmvzIaFXHz3tHhTz++/8G9W7eP9meTsjIFiuzt7728oL39WePsomk//PgnlpGKw+dPHn/04E7j273Dk/Ozs1u379y5e//ZixfYzu8/OH7+/HSPyp99+PMXZ3PU+mKx/OLzr7/48smz50/+x3/13y+Wi7/4R3/J/PjevXvMYMpSIEn01Isy68MbGZ+ING27Ws1Xq4W1tDctqCwQWyLy7J2vLy7OQ76XxbKu6/rw6HA6nQYz6I4TNNYrfigkwt5frqjsTlsq2Gx8Lsh8dTbVZjrV2pA4z3bpkBnZFJUWgzzMeH/cMgDW0O7rSdk0y2+fPPvd71/8/g/1w6fGtvtlWdcXhdIHs0l4Ha0VM4oXEcUxyY9AoU2hNQpA6xw4Lz5UlaYg92ssZhNEbDFLcZGaVDoDF6LWmhSioclkEuPNSlP4VoDBWr9crYqymCBiszipDppP//Z3/83q1v/p/8D7x41SoACFFJDvk3u/LhF15bKFeZv/azNh0L8pZJL8zgz5V+D/b7nB13x0ovn8kd4Biq6VdQaF/aV17Zd54+FOAaeMRECjjOrpAhhRfAACBIjYNULOtpD33rNX2rwJ7nckpVyhBcyDkLfY+zLt7h+IohJzyG4v6PMdUpqld0sPR4qWv1oZ4bzBtzYg0kchd2/RK+WxnuPVGoxfTeKVgnwjadppc8a6hNZaESknWdD5oKjAOA1LuHSJ2WlnSl1qI0WFKEmi3/umnXO+bVfn54+fPDo5Pn747Olf/82///rZ07P5wiMygJWAxkeFCnsWExlumPegEjvnmqZxzpH4Q5RZYd6/f++nP/r4wwd3p4aI3aQqCXHv9q3W+b2jw9l779dNfXd//9tHT548X+7NDr/6+ouXpy9++ctf3rl19Ozx46Zp0JQPPvz43sf/6Nf/7l81uJod3eblYlHX3rcHe9Vsejyrih//5CfWyfnZxS9/9b999vln/5f//D+bL14eHBwtFmflpIrv75wLCybYw6y1cTSiUioiTVPXdV2WpVF6Pl+0Le/P9g8ODr1rP/vss7Ztw8yycGHMg/sPlFJt2wLptcm8nEaT+27aO65EiDisq6s1cYXR0CLv68LPl26+ktoZwpVtWNPd+3fA8twBJEjLRFn19yaT+VcPv/jFrx7/4jfw4uU+4rFCZQjIndw9aZoGC5yZiW0tN5aYQZhFQE1C+uPwn2s9sgRslShmhZp0yPnuvbPeEZHROq0nmto+EGCxmDtvAUAbtVfNptOpMaZtW+8ckCIGJYCkUBsP4tmV5LE5nxp59rf/28nh0eFf/nx+fGuhCIAwwEgvzbm1w8jHGipbEvJupXDqCBHRbnvhJmh0tF15KW5q8Mqc+QoU/L1v7XF/pF2IckovCUs4CtflkICSiGbK9Cp1LkwiiLivjhQNC2C0ktOCjxxyP7+VYtbee/YcMjdcuZER8Odqjey4E7ckcb1+RYXTGRQYJUi89sdtIhER4N6HRp3/7V3iJG3bQg8q2P7L69UrRjvzRqckevS6hyYwsNc4lpK35zyrb6E1JPjjbEPu1nwPCMSosaTPkoRG7wVbQZK7EOajsWlAtFJIxN7b1jbL1cPHj46Oj7/89uHf/P2vvnn05KxeOmZRBIDMAkQaVECeC6IAeWbPgCJIQEgISCDivRF/9/bh3ePDnxxPPnjv9u3bd0X8bDo92N8rCjPbP2hdO/vgo4dPnp61brlYfPn5l8+fPX/29MXedLo32392fv702bN6cQEgdd3Mlysqpy/n/8utW7ekPj/an3zwwYdH+5NpVRVmtpRSWjc5PNa28d4pNfn5X/10tWz/7b/713/60599+OHHRVGVVdHXBOteWQSsdSKgVLJcA06GkJmds9Y55zgAIolQGw0IF4v548ePBNB7qZsWBPdms9t37nqWVd2UldqRD7zeKv3+UAcjfDN/4JZDJXD8kEdLBDwAoCiWifPu73//7PdfPP7ia6itOM8oMCmmt0+OP/yg/MmfQFGWZWlKo5USBGZmz9rxH/7lvz798uvTx48qkb2JmRBOSl1oJACjTKuYALltlUg5LTtfkYC1AeABAGDb1lmnkELwMjmvRGkUTSCIzrrF/KIwpjw49B1kVABEdeVnIVSiCqOFCEikjTZFobVubOO9b5vWO0+oTFGURK1dWWcnE71YLBYXp7cP7z/7n/+tOl9O/uN/VhwdOyVdrVSJ5UohpDYLSXC3T4lCJcAEICjQRX5Cl/C5/01v7JW+seFflE6gRxIEIiQUQRBM8+9CctNNUnYSXcdeuzkbXEzI2yVSS5D8fTLGCO8X6Mcz2LhC+oQOONf9h1tTEL9ViiIaAkBfEHRt9sPCDC8q3wutLHWYIGahF9irCutW2w7kfdlq7PQURAQaOTNHHpX09gTFhUiAoUAShVuG34XV0ztfriGrGrOE0nOoNmYkeyWlUgpcaX+NBKQtWtMWbqB7uGQI5tE+RFQ5N5qqseMsIaKk4B2AI6WQBIgEFQtRSEEZ1vmuL5n7gDarg5KmToMuCMyzs7aaGgFUShGaQldaWWZ2rvW+JVKb80qnfx9r2sNjc0wIIYXJUFpTWUhVuWXdLhuDQDLs+FE6Sp0HUaQPc2mkBHvX59TCHssIACE3QArb8Mldqey+vrYyQ376dxBDBhHbtjXGBPNh1z3qUFvdXX4wNow0H0o/94ivoABQ/0ciEhkDHOPqYBGBvvOA4hgAfKiMiahMB7eAfueEQYiZx4Iys5ZnfHjlaro3XOlTYDEASEgr1N+jFAYrnVKSF9MMWo1IZ5WJwW2wtjZMXkAwDSlw3diPjT1hCKB3GYsX17bLxcJZ++VXX89u3f/dtw9//ennf/j22dmytogeFSOCwH5RIZCEfYbkERpmRyBGT5kppAD2rq3P70zNj987/o//d//o3q2jFlCXk2pvz5TTew8+OL7z3nxZn9y687e/+vWnnzz+9W8++du/+7tnT5+2TdO2rXNea11WpQtFz3xghsKCXK8c88W3j8R7/WL5ycPz0mhjiumk2j/YPzo62q/Mz9/b82197/aJ3L51fn5eN+1i8eLxY7l96+7RZGpMRVo7L+wYFCEqo0tBVOABQoYkVgjO1mVp6qZ++vThw0cvCrMHQB4aMlj7+cHJR59/9cXZfNEKVvsH7JlKfO+Dj/dv3ZnXLZoSlAG/USRKWRQlBYJEhDYLUqMTK9txWTgy5pxt2Lyh9HR8Vi7DjHbwKFlc8oVDeiwFAsCwMR6TRYQx1HMcAUvzAyJCm6IyP7Rhk3S3ODxLECwJAmimwqMFp2dlvXx528vir3/9xf/4P6O1lXW2dSyiSPM5vvjq0Rf/07/bO94/ODo5Pjkup5OiKg+Oj/am06fPn33z5Vf81UO07gilNLpQZBRpYmMKo7VrpSgnAqAAQuLXpm2bphFnJ0Rh24MATkqoSu9dqOzkRCRIDEKePQMV5YRIWStsybYNkJvsGaOMUQBIzrJtPTM2DbO4Engm4rybmMLN6/P5RaEmRTFhclWpyko3NdjWnp61zqIyB3Ox/OIhr87cxaO9n//V7KMfz/Vs5dS0KBz4Gq13llh0By1Dj+i9IAB7Lx4EQBEp3R3TSgyj9+K8Y7Ee2KNIgQKIwb+CIkBABJqQCBkBBB1bQrVXmDPnUUBQoVIKq8LrQhOyY9eAJkUlgRJA8AiCxgy51Mc2YEpXcrZ6U1kkoMyGS6gh8RKnR0B2AjrHfSU4zEu+jih9VnCMDx0kCF7ZYBVu25ZZjFH1og7xgdZa6MS47hxBpdi5pAWKuWEC8wkptRmw9WIRlSkNojCWqvDgrbAHBhRkVyDMdAXOL1bN8f7doqwciEYEVA7IAyKL0gUAAWBRVN75bht1WsDmbN2bxagrAAEFgQkBxLZOCWkvCGitA88aqZFWRHvP4IVQa1UaXZAS75sd/dLXTs65UL5Tax3C/0FpAvTeg9Ko2QMKKTKFEJLRZDSLsPcaqdcCgFG0JqVQxHt2Il4kiEOekBSRIoK10sOutcaQUgrFB0bPzErroqhI601SpXPWKIUI7FlEkECQvTCyMHlQoEGXuipMhSAAHg2CYp9HMKYNFlqnwTkpoTLOs3NeAE1hTFEJkWcR9tpUAugHgXS4Vwfxxnf+2UwIVhg3/ihBawyAkX6g4iUPwuyBPQCEwqnReZUjR7pI1LDT2zFcKOnhpSP7JiT9ZkHoante+uCbp03PvVkzkcSykkHa3vbLa+jJ9Vp8o3b6SltyURTXaG/e1srmEZSrvv6Wu659cYRRuhRuN7JJrx/GEV12fnEBzJ/94Q+Hx8fPXrz8/RdfPjs9cwyBQwwWPgQQJgBkBAwMERhBiIxQQdQuT/cr/ed/8t7Pf/aTn/34w4nRRHD/wYPGusOTu9P9o+n+4e/+8MXff/r7L77+9he//PUfvn7oPEcJ1QkxAqNqPQiiFxFAFgz+DAYGRCAKoLvW+qZ1iM35YnV6sXzy/KzU9Oiz9u7JkdZPPrx/7/btE1Tz5fyiXl2sLopvVnDr1p3D41taa+tZurwOODJwCAgSsPjlcr5YLJrGal0QgXWWmY+Ojpj9o0ePrHNN0wpQURSrVXN4eLS3NyuK0vf5BNJZ2GQlinvhLUAl3+azrky7bDcJK1EQBUOFOF8vSmuff/KHR3/977W1xKxJlRPdWmcdi4hmmJJWdXv2zVenX3+ptS6Loqoqo43zrlnVd4oqeBoKo8rKGKOQQIStc23r4vKo6zq6iURE6d7OGRQW6HxxAqhRAREDOPbWWut82Gqtc4qLEJROSEWhy7LwXlzrnXPMwiIACBhcUt46KyICLADOu9n+rG1t29iyKL0T71trRZzMnUVj1Uqef/qpR/ro4AT2tBjTIrUS4pdJiyhGBG4RPQF4DmZrQUBgCugAYARi9IwiyIJeyDMzBbkHyAliny9GOEwBiYgTZFHIxFEiA0BFQOidUxiMTVGNjjAITNnXlpW5ZfVebWGHVB+7uKxHazJ9yqQqvXNNXTvnIv4HAbZU7HkVSXSqJMIeAoCwSDj8u3KmIp5XzZzYO0C2DkopjCFjOigiAnZWMhYg2BI6fcMkAAzohBtnvTCHTBvQrRMW36ecUxhOlGQc3nWKxnRECmlRgia/1Wu5ZRoQu0R6xP0+27UXQCHjQqYEBKdoeCaiRK/PNbhTZA1BdLWqj28u40VzQ4dFt1cp6PSDjVH57iikZmZgZhTavDbevJKOjHL14jVYOILlrHuFzRTS3kVL25s/92q0JZ/d7nfdKKUFBEdIm8wCkYf+Yx9bErKxFZPys88+m+zPXl5c/P4P3/z+s8/m9dLnPCTI8z0iXxA8MAAJaRRALYxu+fMfv/9P/vJn904O9vdnjeX7f/qXk73Zye1bzCKk/j///b/69LM//C//9v/39PnLVWuryV7T2qCirFarYCgNRhTnrCB6GYRC6A8FIjqc7YcsEcHp55zz3q9WKwDho4MFL4Tdp59/+/57tx/cPVHi67o5P1vOpjWTqWaHs/0JON8415sVx6eKInLOnZ6enp2daa37tOMdLZfLb7/9NqQFOz8/V0odHp/86Mc/KstSaxOEnleCLQNJn3CsMxddMR5gJxo/692jEbfZ1MVwOmoBJewJgKByfPH7r774H/7N9OziZG/qrW2db61zztZ13Xr2DgT4/GLOzMaYqSlnRWVAYe32jKmOZ9zWngARTaGMMVoTi/eeRZy1NioqYctEkTQa6ihPPkNKARJDF/cVfCzhN9Y6EMUsIVYlwMQAOsB6WOxEqIhC+rhg1lVKOWe999PptCh00zTWtm1b1/WyqduJxtp5VDhxNPEFf/X156v/7/5P/6z88IOL2yeWQATKYFcXACBG8IiEXYbMHj4kASsmyIzkRTwxkzgCJumr3ItlQlEghIIIxEJKiEWcaPGITMjimZwHjwCGREErDlUixucsdMfSw6PVm/5yfGm3xRYmLpwv25Wc0TGaWn8CC1oul6vVKtTLms1mZVm6xOtyXeSFGViYAZgUNqvaM0+ns+VFvXJ8sVi0wpPZrDIFUM+lAQJvZITvtrabgFjnm6Zxzgt02qGIhPrNpAR6rNR32Mkr0LCsA2iIeryEgL9S/dO+PUHZlj54UzeE0H/PhvAahCXsc3V2isqVGvmjonLNJL0VCEJRjs3KQ8b3c8znjot5zZj0el29tMGoqAhv08CDDO29D8aqqyUOenO6do/KtRPnBQTTR2+pVon9DzwzCz959sxU1Xwx//vffvLbLx+erxatsx5AFAIASYcSUByM2MDICIIEBrEQVAT3D6c/+fAnf/Xnf3pyND08OCiqqapm+3fuHxzfWq6W//V//f/427/75S8+/e2kmi7qVpnCEz57udjfq4Q5SHihL51rxTkg9JLlaILEO4E9RjGK3eHvj0/nWtHxwV5B5e++fvLZF19PS3Xn9q27t25fLJ43Trzg+x9+WFaVoCAIIOOacYmImtadn59fXFx472ezmdb6/Py8ruvlcnl2dhbUKgQI2IAf/ehH7917z1obNHkiaus2tha0r0vnLupgPf7kBvXb0bPe5hLdkda6tJE7oIDyCACMgsJ0vjz7xW+P5s3xZGq0cj3A3XlvLXnvSZHW/3/2/uxZkyS7D8TO4u4R8S13yT1r76rurgYa3WgAJECAAy6gjTgczbzqP5AeZDLT05hJ/8HI5k0mG5Ey04y2GWpEm6GJlGa4gQQJEQMQBAE0u4GubnRVZeWeN+/6LbG4+zl68Ij4Ir6b91ZWVtYCsI9VZ997Y/PwcD/r75zjJrnNnJtOJrnLGDA0PkQffKjq2hYGUBVEFb33ISCAtAttAHDrt1jCgzji4eKEXpFFADRBWpCziHDXcCCEKL5d0oSUTgBooUfdakckyvPcZZYIiqKomnpRrgDg6OhwPt/JMlvXNTHmuSPi6KGOvtCcFWzjZ7Vf3rt7cHR0df0zk+nPr40VBAUMhKlutCBK8rAiKoIAcNu2gRlJgBU5okYyQhKRBAlBAAiBgiAiYBvaJBFCoagSFFBIYvJAYVCJqGBRjAQN3BVAakG8g+8s44LyFy3LrdW7xdlGh54vmpEMSOg4yeU20mbhjcM+wYdqXZ4cHZ+eni4WCyJ65ZVX9vf3fV2/dHElIgICIqjia09R6rL88aMnEsOtN79ChlU1+f4Si0YFxNZQUaZPX8zzUw0eoAm+auooMUWGokiyEZPJgojPyub4shMNqn61P6YDCPBCvLy9CyEpPX/Dy15HJyJB/GK/9SelTy+JREXDpy101m7Y9lt2TQP6gO9Flw19qOkPkABnANpWMErsSc9f9RJpa4TadXRKWOtNRckOQSvyzNV1ETBMhxG4y2ZYe7ybqkIUUREmApXtSRi5wC8zTfopTHHqlAiRdL6LktGHI+xeetSRoI+hb3nBx1dhr5gS07kbtnM+bBJ8yTrpxVsLxugqSHTX9jfAYZPmXlFrgdHdgtSu4tNwHvqr+j+mv7MZPks3S/STLMLNXuB2Zno4VozSvxnR1joc3eEivXOo+GqbHNDNpaTdpFHC06PjdV2uq+rDOx9+eP/u4WIlgBEggEBKqm2fARmAgDSgkQURGLQgmrJ989bNX/vV71y9dvX6jZunq1KNufbGOzdvvfrbv/t7v/lf/zf/9o9/+OHd+4AYIpVevXIIiuyKqRUJEqN0ddv6F9F2/DL8Iv3PyX859G1rl2I6n89iCMt1zUy5zbJsWqPePa7uHty5tbu7KpuyCcJ0+/at6XSGiKohRi2yQvtulaAi6r2v67osS2NM+jm1fF4sFqenp2m0i9NllheTyeTtr3zFGFNH6UvDOZdd/M1HzuCt5fCxCwbGYD9E3MKZjFnKNmrlgqWil0IBNocu8mqfvx0M8MGXZDcOS2PDeEJo4ILZrl0lGqOoAjLnCs3Dp/Gjx2/kBWpY16UiOiZjMiICVSIm4jzLCmJCmkwKUVWJzlmPGkIMElOiI6iKxNQmtfOTsrXcO036SUjcyViELtth+Moi6jJOYYRk1SBi1xlNo0jywIpKXdfMxGx1EE1iZlAloqIoyIBqdKUlJomxaSrVWTHJm6ZJE2ubsA5o15GDWK9IYb04YzI7gNX3vj/dvzV79daZozVrY4wnICEFBEVB1haWA5JiI0hKxpAhNAoxCqmgCEoEUEVV1QARFEUFUFAlIoioB0BUwSgSxNe+LpfB16IiEkWjyY2Evk8RQMeW049JJej+PmLmSaBoWyt8c8KWRGjLDzyrwun5Gw4X3nm20y68Lr+l32hbN2x/VnBknp4u6tV6cXyyWq8nk8nx00ONsbAWNXjvmTmKeO8NAaKFZ5UnGigVm4RpBCRKrXiJCFGh7VELaBQNss34eLk8OT7Z3d8xzmJqW8OcbPTUMwcBgvdN00ynWRJSnz/6S1VF1UNYrJaN95JyQQHBkESU1FF0IPiQ0BjehPq+IOo/Soyx5z3D5QTnuFaqOtrXAuga4XyM9dWvzMRzsE173qy9VsKlVNXuqrb/Y0epvF6qS2yM0a6mpWorkpiZ2zIfKhtw3ceMCp4hoYag/U1kTFWRLnV+XTwHW5M5pEsy7IfMoR9Vm0U8Flj9U0RkOI6te5rhOIYWz8cCQ4dbd/PzQKfsOcnWOz9zHFs0PDqswHieCZ4fGLR45KT24ZZee+65oz+c/+6XDHJ40jjxSVWVmTFK6lz7zKvwYlgYbVp+jkwL7dT3oZ0wvOXmDrRRiXohnRyNRHxRCmP/c6foDEfemT6Dzd/P7cdSO/mDIl39A4lIEVGkH35Ca6TMSBGZZm581UZWjV5+nNBJZLs57Ldut34uLi4xJBws5oTSHYvGizbwtvYJm/1yieLbnpCGY5ABwDp3cnZ2eHxE1jx4/Oi9D3689k0AEFQhUEVtkahIRAzICsSkBoDRx3q3KG7k0++8/dU3b1y/uT/bv7r70z/7neimD56e/tEfv/e3/u//zY9/+INHjx6fNaDAAEAu96IKqG2/PBUJ2LdzRsTO1u13fVrnCf3Sp9b1WmMfrOitR1RhwqgYo1SAHlSBAIiV7j08qKrm6fHJqi7JmGsiRZ6LynQy7U1uBSXEuq6Ojo5OTk7qupbQeO/zPE9jeO211+7fv5+45HQ6Lav63XffvX37lRijYdNvn3ET6DEHOLcABr9etFLGn3+wShFHOXpblsnYaNkspGexqYtWKW6/ylhaP/O8/sOlDXKJoTJ0qHeypL/j4Md2KbYjRdAgEQALYVf7o4/umdXaM5iMonggQmRiRBWViBJTPZYZs68bqAkQfPBAqIbYWoOGUEhEhFWld20gGAA0hvrACAxsZu1SunWQ7omIIhJiJPZsbQoPUldIpq7rNG3EzJxa0IIxhrC1ZwCsc3Y6nQRtQgiGjXEEIHmezWaTum607WuieZ5575smsOM8dyyi5TpC04iNHBWqomzcol7/7h8WZ2f02j5fmVdo6tobQRMJgH0Q6SIqSESGjbPGOcvGgIkh+qYOvo6+keBBokoEaZOvEqMha8gwdI7Muiy1Fm2ak6cPFqdPXV6rGkRrTVY17aYe8zeAATy1n8ChaO8TSDYa/EBGdHdohWO7JsfrumfaW6sLBy3Dz2+H4VXjxP3BhlUIVeWbxhAXWW6Q2JjTo+N6Xe7uzB16YhARH0IEZdtlzD+rL80zZAS2c9P3aWsBXAoEpDFUZTkpJt/+1reEFKxRQjIMiCpC3Do2ESAE770nZglCn2N+Ws8lRERQj07OHh8cnK4WVWiaGKxhIALCCGqYEUFVY4hKQkjMJt1hW5h97vGWtCu1E8S9mgcDhRa6pUuIGwaMY/b1HM9q1eOUaN/iRttXbrEDg5ZEWwlHBNpCKkiIOYoAKDPHkJDz6QbMRAqStBMdVzV5pp3Q6brPEA1pqyluzIyLzmzPhwufJYNekFs3uUiN3Hrilop4/r0GLpKLDZWLhv4TejHCtpcWkbQdXl+AUrGdDSy6W22XLLUXpvP31E1/xk/7uI2iP2hI/EyONlSstk74WJjyMylZZd3UvUi4tRfGScEZanOpEEj/60vAcWLXQ1oVRAOoqNa+WSyXSvjk8OmP3v/x6eKsEQmpPgUlnouKkNQsgwQiiMAoGoMFuLkz/49+7ddene+zhq9982tUTL7/4w9PKrj35Onf+Tv/3UcffejXqxCCnezqhsMqgiTPHsFl661nUokNMfNkMgkhLJfLc5rzRv8WjaleIgAAct9GQgFz51Z1s1iu13VV1fWf/4Wff+3V27PZrCrXmZu0CwTBGLMuw8OHD4+Pj5nZcmaMKYrCWrtcLlMiUMrEBYXJZPLzP//zk8mk9qMPdM78eJkittfV5HNP33LOiUhS3HGrWve5EXb2/Avmw1y0NhAABcUyAFAM/tHh2ft3JozrZmmYXDaBZFYTI7rQUa3rWgVE6loENBIyG2I01hpDoS6T+BZJukhy4LfVe87r0InbDJu39pZMorKsOARr7ZaZ7X2IMCr6BABR2okKUTOXTSaTVRnaAlPMztnpdKoRrDXeRwCJ0edFBghHhydF5giILPkKyzoQkliKGoEQfUn37j9cHsry1fKVKwtLCmwjmmBYcVGvk49dETRZdsawM4aMVSMxxiZIbKpyXZVrlQASVFVqjykOg4B92a9kqPg6VN5EXJ8dVquD/WuZgTkDex+ec41u7eVPtFqeSb2m1duWL3DVJWcaNnu7u3fu3Dl48sQYs7OzMykKZq7rark+uXJ1f7FYhBDcpFAETLWoEV+sA7IgEAAJGIG68erjfG8+3ZlXoabJJAL6EACJ2VrbhlO+yJDEmM4Wi+V6VTdNSvyK2ubYisqXaJQdDWXl5f70PhLSwr4+9Zrd2D9Esl2e+MJl0w9DCVU+vwnFjVMHcRDw+fLQlqdbLq7G+RND5SUTtiVhiDBpfS9yk34TaldiePDrSx7weSW731dRXiThbEg66O1IRDGE3obeAm7FwSLtuU/b28Q3w6ue89Fd+Ig6b9+LcKlkKxKRjhOpVT8m5PhJqde0Yowq6usGEJ88PViv103T/NF7P3h08ISdLU/PPNhkJxEyiBCiMcZay0yRoSnXWZRbs/kbN679+Z/99hs3b8yn+d7Vq7NXv3bnwYMffnj///x/+b/de3SASGwzcUWj3ozyooVUBs7xCyk1UtyAu7qkecTRVPduLQAQhVpMW4UeEVQ0eARps4TJ1E2IoamPq6paA4p1f6EsV9NiyuQAtN1SqlVZLpfLEEKe58eHB/P5fL1eA0Ce5w8fPtzd3fXel2UJgn/hl3/l+vXrTdOQsTIefP/zS28IuyVHP09b5Tl7yKbhpeyyF+4FdlFnegQgheBYUPmsaR4+1dOVsQTGqhXrDCEhGSDKOCc2IYTluhSJp/U6z3NEtcY4IlGlKARRVToMf7JVQFKUmgAxYcxav10K5fXc5pLBq0qK1mZZBgCp9AKcc/6lXdnnsQSvIm1nWFX13gdtACTGaC0z58kaIiRrDSLM5pPgvZYNINTO1E1gIKtWhEqgiLKvVVysTu9U9x/+6GkMQM5ENkKkUPpTRUnVpST1oOIWrkboRCKISAgiQYIHDRojiFDkVFoglfsTAGSE1NTRaFPGDKw2FVEDYc+XpWEbGoZLSr6MaRhg+fTsT8ftgEN4LnGzddUlfDgZJzdv3gwhnJ6e1nW9s7NjjAmhuXXzFltaLBbWuSzLkruHmZFZP7nXaeNiUyCFaV6Y2aTy9eMnT+ZX5lFi7QMAFABZVqQzScdXfqE0nU4m5aQsS+eyug7SFQMSEfgik/yfTdhBW0UkXpo3iD00i+iFdYAhMSWMlijSFn9lpt7fdx6U3kpJohcrvfVihF1/ZyJCos+x/enz0jlT88LJ+RhDZQsu1zp4LoVS4nZN3vPZsH+Wqd8bKID4glZs6mOTOIVzrnc4fZ4RlZeiYA19nH1EqHNwjBz2w3frey8mYgRuIaaUwgmKm7ZUF40yRiHCFwjFnB/8+ZmXcd/JF3ZL9zQKtqoAUeMba91ydfD9H/7g3v0HNs+qxhuXVVVQREOIpICKioxEbMgaZQ9V2JtOfuHr7/7UW2++/tqrr33lrcn+TrDmo5Pyv/x//r//xT/7J9FX08wu1w1Z1yhTlikIQmzrNiooSA/kHc3GuFCw6AafmnTE5XLZftbxew0IvBABGUJCBRXUSBoZBEAbAFCwzkoMq7r+wQ9/lNnsL/+lX12u19YUjG2dldVqfXj0dLlcNE2dmjysVss8L7z3i8XizTffPDtd5JkJQd54/c2f+ulvRgUfojOuXyk4jqq/9D3Vv+2LRQI/DTVNk2wPa+0l7sZ+eB+r6l1CW3M4fs2E7RIOsTld5EzE5KZTVV+tSwJOhooorMvae8+IbI3N2OZZXVYqPmeHKhAlBK+V5PNcgLrKu6oqCpRgYJr6+RAqUqqtCgLEREjS7lDStlN9gtuQgpDhxocogpRA59w0frlcLRbLzBSKqkAIQMgILBJVAYmQY1VViIpGiShKjFWjEkP0zMjMxjgRICKJwEzz+ez46aGUpSKIRQGWKME3IYQ1E1oMsdSrM2kgrkqKETlT4CgkoKyniqm3E0jKvE7lVYkipdLwgioMakBBo2oAgMwUqR6bIkQRAYXU2JHAi1eNlsBmbG3uiOtljVop5pQRQipJ3Dr6e9Tw+ejoJq7yqTfOtnToHrbFeXCs3KUuW88jpJqmQYWrV68S4nQy9U2jqpbNrCislcePHz188KiYTvK6BgYvsfaeDc+GXbbG1A0MEWnT2jFlP6pwKvCAEENYrsuIMt3bAWJkRlFEKoqJyzIFHfDIrkxjlzcBbbDlc1Vos6JwLgdM3YFTBTyQNvufcZM10ev6L9Cv5ULSZ4mbZ57YwwuTDiAKl7OuXtNAoqED7fJnXXIwwcbbKGWXx9UiynCTl7Kl2wC2UU0cZHyBAg6U5ba7wOYvL/L5t0eOw0wculRd+mJoW/TQhfaI6YMv1OVWJhZg2WgIAMjMSiiqSkhkiDmAWsLWDUMIBEPvCgNADOIbhAkiC/RGJCJeaP4OOc6WXnhJTO28wmGMISKRSEQwsKd7tGKMkczABXIOlT64IQwPnstn3fwaQVLCBCaMvqoiND5kjJe81yWkXfoXE0WR2AyKFF1stFyicBBRXdc9Hn3jvFc1tk0V7bOfoXOXMm+6fQWN0MExiSn4zZCwUx/6bl/OOWZumkaiIpMCBImQCoMCxC6tCohENckPGrS/7HQsZDYtIlZBAFQByahIU3siMuwgbuIwXScjBDKtFEFE5rRXpfO2MjPjZqlrhxthZkCsfNP7IbBLsY0xNk2jTWOzvDMat9KohjM//jJbSUS4yaKx3cyrKgOoat00iGizLJIcn5wcPD36wY/f/9GdewEz76n2XJY+Q6MsHpoQGkc8n+wYympwxO4mrPdv7vzUO2+//ebrs/lscnM/THdW+fV/+Ov//G/+zb8JoMgT5qIOAY0JXi2CavCSWocDYKr+sAmRJ5wWEyMhIMbuK4OqsVnTNKroXF4URV3Xi8UCALIsU2jzsxM8JmUCJE45y1hUJIYQk3pJRCyMgOhJEKBSZbQYuSzDv/z976+j+Z/+9f9J8N7Hppi69XoJGFarp08PHzRNQJxOd/Km8WVTWpMR0sPHBwB4eHj0xhtv/tyf+4uT+TVFmxUZMg+bPCqPPsqFKVvQpjNpFAVgu81G208p6gZxiSFwf6PVPeP2oHqJO3CE1h1e1q/e1q884NtpqnVcRzjRqC5sFALIrQMADXHLoT56VhpGagSGMMyDBLvla+3DcMhgXINe11yeHN77kaUaDPhVWIdmnk1V1MeoIYQQfNMwROvYOkPIJqrN8hBC9CHhKwwzIlaVr6oqy7L0sYzhpmk0CBNHj95gbRGQDNicEEpfr/18d04+IJIyq8GIxsdQhkjEnBc+rBEJVH0UEYwhlmXlvQiYkCEQIjsLbIKBABCASMlwHU+txTqu55OZimfNi6xomrouK5tnbBBRe84ZJQLGnaszcnq6WEyAZlj4WhaL0jflZDK/unvVh9OT2GTTnWJV7+3vNgoRiQStqJDb+AeTndXOLqq2aizCoM9a6zVoW1APv3bXZwlh1i5oZmLisGQRdIXLZrPZZG86mQSJUQEZo0pCAWU8bCgc46C6KqoaAiBKg0rYPJCgAON+pTisNTLca4a6htmigkoZq6jEqFEQEBEkxhgCRClslqoVKwARKiMxxuh9CLkreqden7+bmDkWjgAlhMn+LmfZ08ePJ5PJdDo9ePw4NPH0rEbO6gjNupzv7zw8PCyq9Su3b8UgdeWbJiAyKCKwsy7JjtjUTBxTGSxFiLEs14uqnMzn1cnTILqWGAEUCY01NqtAnbKWwTqTZQUg1d6zU2tdxBBiPFmtn54tXDGduSKzlOwVEDAKHnyXBrhlkqEiX6Rx0vNVf5UO141MhGjUZaYgMRiRgZMrh1RJQRsVFqEACMpoLApCRC6rZjLgh1u4qkv0HAXe2D1pFfeq+4UNGxTAa4qipq4vEUXg6GyxaHyMrd7SNE1aAylYaq1FkNya3BpDYJiIUp2PCKBD3XC5WolIKhEJiAraeI9EjBhD6KwTBASXkbNkMUZUUNGYuj0WeT5Bl8uG+eNIa2VSZgAkEmWTZRkpoKgBEh8UDRpm59BmogGDMKMlc8mHlMF/2pXwl87NoECClLTXKBoFRNvNuZlewlE1FB20dIMR+6BB5s/2pxy2Yt/KWfIBk/iIouMm4HjBz3BJi9OtiEovEdPO78pIflIrrA3SD1oipd+SxfnlCHa+bNp4g4Zz+Hm6RV6Uhsr61rrZ0uOxazAcQrgcLNCn1my7Fl54kEP1DqBdVNjWeXwWveDEp7ZnvSmYxn9uYj4BbZX572+4ddogJxVijAH07Gz5gx++d+eju40PwFYUVRXJKIGqcEQml00yU+RN3Wjd5Jjl1v/Vv/irRVH8wp//xTridP9Ghe7/9Xf+23/8z/5FM7B1VVMKe3LitU6GTdfIwdTp4NCQtHOi96GkBJxIa4PPraLBzxFU23IGiAogiIgMmBze7VSLSG6zGOUPv/d9BPwP/8pf3JlmIrGJ9Z2P3r937x6ATKdTa91yWRpjmKGpPbNpmgYAX7n96s/93M/v7u0Z6wAxhED6EiBY51dy+yk/364nl2zYLwlR8hU1Tb1eafSI2tTeIeV5AbpxnCfjqihyEQm+yVyBkLJVWaAtXyatfwiNsUQMXaUNVU2LTlTZsLOExFlmsQzlspag5aqKBRgix2iNyck6LgJqGZrS+5xc3VQSJXMO0ASpkcg6JsaogRRYhZVIFBRQIiKggDGMKETGGALQGEIkVAFUJeSyrGOMWZYZY0S6SkEsk/m0EW2apq68D5EInHPMGIIHtuhounflSpaDcQVzJCRBKxhANqxtnJwruuF5W8W1kS50FhOZMVNEIsqLPMunYLPkRFcBTc6KtMA+/VL4JJQejIhA2Lr+EA0xIlfrMg2eiIQQmFL6u46pc1O2qEsmiipN8FVdh+DTiqrruiyr08XpvcePQ2iu3bi6M53dvHHz4ZNHhnm1XE33ClVNPVhS/lJyVxGhqErTAJoIsQ6xCqGpSonBN7VF8BIlBjTM1pgsd5NJPinYZlUdhm2HtOWoqqABtPZhVVWoqC6zSEZbW5PYpr2C5+pYvPTiYNqpvSoAoqnMTxvY0a5OgkKMoayrdVVG2U0dn18g7UMHkTjtzFsA0HEH5BGhautbQgECxKhY+mZZNWXTfI5RgmFEZgOPTvEdJMKOLW+HqQkBkdpK4ilA2LbE7U5nJErWnnYq94vqytiyBxzpoi9FDXvp1Lu2E1c/15l+Q9uGSkoD6J2CP6FPStgBxFUlRv3y5wANW3pdcqhXsltXrrkQu4qICbo2hHv9aaGk+sDg3Vs77UXBXee99T1z2jpNu6rQIYRVWT168vj9Ox+eLM5MlocuG5iYIgMEpsg2t0h27X1sVlfIvDGf/uov/sp8Pv/Zn/sFnu69euO1ReX/6//i//pf/e2/vbt3RULo05teigaS5idVfUif2zmXUOaM22cOZoD6FbUF5E1ukRR+ZWYfA4qCwu//4R985fbVn//Ot46PTh4fPLhz587x0TEAWWtBcbUqi6JwNjeGQoh5PolBvv3t77z9la8WRZHGk+qQDlOrX/iVt/6y+ZSfZS/I88O4aMN+WQgRFEQ0hpAi0aKCxC7LpNrkIbSaqDFpzeugREwfAE8qmoKmBotElOKQbcDT2tPVgtFmlJksn8xmmclWe4vyeEmgx82xAiAIiNSxUqB8b35tb5+yoq61Ol2G44WtYlxV9drH2ARLyGwwEgCgCIpAVBUQDwgqnFkDBDHGtJa8b4hSZxI9PTtlY4hovV4TUcLrMjORmc8KUVqvKt8s63rtmwhA3jdnZ6fF/ny2d33/6msUmzpEIYqIrGQigEueA4AufaLF3ABIrx8ipIdsIB20uWprRbJx/VUtchUhy7IsmzZcYIpXiCiCSoSe6X2OzFtjhARoRYYEnIwSQ4Qo6/XaB3/37t29/f3br73KhGlO2BgJ0kdU0oJJgGERAVJnLREVeR6IYVd25vOmaYrp5Dd/73eeHBzMZtP9W9cB8ez0bHW2uLp/5fretcw6yNV733TUlY8jUamrypg8aFxX9aKqVlUdranKkmNcL5dlU+fT6e5kVsxmLssjQlPXcHGeh6isq/J0sUglJRwZi8REjEgaEeHTZJE9P8kmIvUxtV6bplmcLard/VmewWUB4QspXhg2AR6jKnQTRYTYxlJIEUWgDmFZ1svK1/4lNHF/KURIvWdhyxdJXZoInGv4SMRdTvPL76c50EVVOqnxZaPnHNVlEZXPZFx/1qnXQbVr8PQlJ7m4pdfwUOJi6VdjjF6cxIZd+mlKNfk83uHlERHBGBUGqSszPm9P5S3iMSgoTe/5pn59PV9EbLz//nt//L0f/PHJ4oytQSYQkBAVlMkoa/ARgNjkoCRhtZvZn3n11i/+9Df2r+z88l/6y5WYyZVX/t4//ud/++/8t+/94I8tka9WxGYUKvnU1mP6vsm3XVVVGnye54gY6mr4oFFE5eL2lwAtUjuBd6MII6Ghpm7+0a//07Jav/PVN49OTnxUlxVN7euqEa+z6U6MYb0uVcG5fG93/5vf/JlvfvPbbIxzeVk3qdLApy/LBhdMWrtxPstekFt0yYb9kpCKAKG1Js9zJBLVPM8zMmE8VGtt39cvyzKJbeGQ5I9MAqitw05orU1LLlU2S2qqde7KKzc1iK9CFWMZg7l+rbi6f/T+R7aJxVmJKuCl8lWE2DRxIfXVDHf3dve/9rY2IR4tmkeHqwePmyOQikACqCpKYPAUyKTqwLHBCAgE6myOBERojFXVpvHJUE9gVI6CSAlY4n1w1lrnjDGcm8zloFxVnmmlBp3NYtTaxzLga7dedzv7OwiKrMYIIgsaQS9eOwRCAvj185YkM26gCwOigYEytlWsywd3kASjsta6LCOyvtf0k3+dIKGnIH5+IkyjICEiMyEiB9Gq8dVq1dTNarFoUv9HgNVqxdZE0CzLAFGlVVdU1XufzPjWqw2tMwXZGGKIoqqPHj16//33f/jBB6eLs92dHZu5G8sru/NZ5vjk6ZEjc+PmDe2q4aX1mexSY0hUy9DkbJugZVmu1+t10xBMQhRZLGbT2c7OzulqeXJ8omzbvMEoQBf0k0WIKmVT83IhIjGKBTLMjpmZNDSG0FjDxNZaHngGX7pMHQLnLuEnSaCvy/VqtcoYsxeyoMb3H2VN1AM8eYqK9ScFQMVUqoB8lHVdr1Z1HRTZgVbwJSCkjVm/pTy3dgh0ZsPwECLgufSVlzWkoaGil5Wh/6KoD4G2flhzoTPR9Fp1LyT6bY9IkCoxD6ZWRBTA0EXwA2TuMW2KfYbQx+2uMT4kwW1b2rKYRl7YcyAT2fQYwd5LnTZYV25fh7VqtypebzVnG48RLznUjaTPjQJVaJvQDoen0uc3bXMEHf44eEfAUdx/7IfeGgQMkCFJlvUkXQGiTgnQ/qrNYHD7hlvj7D/K+WobfW4udPlO/XP7c2gkbtNXBmYCwHCxT3oM69f+TUX0EuuhX9j9yHunxRBnlf6/e01NYeZ+XfUzoF0JiY6Vj1wmvXTspl1U+w8xbJoJCeuURpXKLvVhYupaud+9d/ff/uCPHzx94iW4zCliE3zd1GwMETCQRxZrwdqMkBt858a1b3/jnbe+8so77/70yVm5c+vN3/jtf/23/sv/x5ODp8V0ZjWKeBXtP56IDIuYbXfrG9AWa9MBAUDSGhGx7+rTVs6RmCY5hICAxKOsKhyElfrPgZjUKk2NFqJEZFKFqmkMYRnib/3uv2rAN9UiRlXAKCox1utqvjdHpKYpY9R33n7j537uF65cuSaioaoVOBVowg4i0r/IsDUTkapufaOPp+HgAcC8oIgZonW37j/6dZSZ+SzuQR9XqvUSuuzCi1ng+Crc3qQKzjkkUhEESK1IYogGWyMkbRkiSvGuLMti2BScTef0mU6A2GOc0oXWWkD0IfizU4uc22mxv6/X9vTaPs/nr7/xysEHd+lDlNXKr9YkYBVQpapXJ1FR+Oatt2MxxTems3dec2eL8o/ei+/fm648VXXNtaKA4UCYQhYiAQEgtWwDNcb2fKyXNcbYqvYhVG3+rheJGiMYK1EJiZzLi3yysxNCiCIYo6Ax3mXz6zdXJuPMiYKSQSBWYAGFbDS71BsmJKDQrViFJJ4TegZ7aTuwYtJnIiVGSG5dIAWUqKBIpGqxLVSAlHAjXQ4udOwiQVsuQaOobmPURwcv65vc8WcFyyZKRFAJEkNkQBQt16WIZC5rvJ/NZgdPn35w96Nbr96ezGa3bt0iZssuxpAitH3ycOKlUdt1EkMwnW4TQpjtzE2e63qtSAdHR1VV3b5x/Z0333DWrNfl6elp0zSqWtd1CKFpmmvXrq1WK1VtYlit100dgWyKATIigBJi8OH48DDEuKxKMM64nI2d7+wwEhjTix4kpI6pEmJTNcH7aKP3viaqVQnQEhtm9TUjMTEyZVmW5a6NISEz43D/bWdzDD7K8Hca2UutVQIAcaA5iLQlH1NIChNzFhQRFEFFVY0hNE1TVTVljrFnR6Aq2Ct7bf8o3R7TtqY3XgopOUZ7/KF0wlaVTFRs45shNk0IMSbXqY4K8aQJ2SSg9OoQEaW8DVUFVRon1m74l6p20AZVbTvLAoiIs467Yt/DBzEzm9bziGPqzmlLJKuQMcYHn/DPwYfh7CAiEXdDe0badn/PXpxtqTdEBIja1rlBJGpZQJtTO9iGI2Vm1L33EuoHkEgGOvblV11ydBjHO/8d+59Nb5ngwPxqVYouEUFbLGGnqQwmjrq6Cv0diVhaUwcgKdktv/wEwlwH5aGeE6qHHZRTumf3N0l2W13X3ntVGd1vbKnoxfk8Y0k8GhVuQvFbHBk3UiQVShIF7DvBbZkmo1+HIxzOXP9RL1JWOiOzZRbDdJFOd9/0kRx+O1XFcUG3fv0l/bFXW89rNtpt73ROFyvfjsuN3rj9pfUNB/HDE8e3f8aOBQAVGU7b1jrs3+Tc629dMrgzPPtWqiogZjBRMN5FvZN7MGDt9vDgNRB6u0UHhZuhW6WIeP/+/d/7N//mwZPHyugmEyCMqnVTN94XxgBAqDwSoAGEmAm+df3WL3/r3Z//zk+9/e7bdXRayT/+jX/xN/+L/+rJ8RkRBR8FIiqKSP8FdSvWd/G+HDIgHVMvCSBFnFRbywQx4V76NvDDBRY7MQbn1h6k1qjdxxFNKhNG0JX3Wst7f/Lj61d3fF02ZSlBCjcxxtW1997v7u7/7Le/8847Xy2KKbM1bImpCbFPLoftnjBDYYlbhcqeZzZwLOeMsRdO4sU0ZCm9jL+Atr0zGy59bjI/JY00ieFox8MbnnZ+8KJimOuqiiJIJBIFCE1KTWox3P2WMcYY0xbASByjL1yW6ljYzKWqDAkk1gMOa99ghb6OxM5Ue/nU7U1embxyk9nS7RuL21fL+0+aDx/o4UlWNYUg+VD7Vc0neu9w9tarjziUE7v/9le/8s13jr/7o8e/9V1zWt4oYtNUPobUD6tal00Vp3lhgJqqFhBjTF0Tsctzm/a4qKqSKgQvopGJ2LBqlOgbH/3ZKp8UWVbkRWGMret6uVx7H9HS9bfe2r/9Sgl1NOR9cM4JIApxBMHY2gVbacoAHcALtMup649Gib0oSmuidVkrpAxwYEq5FtBJVj+QSgqgoNJd2/NHEU1FWM5z/sF6GK2VrYMXHNu6n8YQ2RIq+Ko+XS4XZwvfNHmeHx4enpydAsDde/fuPXzwxtM3v/ru151z165fJ6IQkrcLvA+ph9LDhw+Xy+Xrb742n80Wi4VGmcx3zpqmqqrlclmW9d7eladHJyFI3QRrfVDwojvT2cGTJ9WjR4a5aZoQwmw2Y+bFYhFjrJv60dNH5bryla+a6COAczydETARr3yoyyqqxManQkMSIiEygRdBJYAWWs+dNY6AGIUFECCGEJBANYTASNYYBkCIAB4A1nXtKpdn+WRSgGUM8TxDSGQHuNutXblVULqPW/ZKQn9oE2AZGyoQWpRvqpISmVJZ5wEb3/rWz/rGYx1gcxRBDSX7RETSWyVNUlRJUVRFNAqqpuQZVRUJfpMtMmCJvQnR2YfElPK3WkMFuxzxYTfY9rBsfFtDtYG7XIpUgK/1HyC17jkEBBzeaqMeEzAzAwqJYQ5Jc2ujr6MvAkCidN7m7wcznu1t9Y+IFLDT5wm7eWovGYqb7pdWXRx3TR2JknM+suGh3nbYUke3izdfQGk5YeeHGqaobL3dlzGHov/MXRDg5Qjgn1CibS38M37W5Yfwi+iL99LpxbJxesVXROq6LsuSmb///e8/ePTwaHE6ne1kWdY0vimbvrBJYrOOjcSG63BlPv/Ou1979+2v3Xjl1WL/+g//+KO/9//9R7/+z37zbF0ymZR9H4EQBGlj2X7ScV5EIYS6rnnQez69lHNtH73eO9DLjBi2SwtsbtcBWmDgEEm/RpEQ9e6DB4B+f2dnOp1JEAzgRRaL5Suv3P7Lf+mv7u9fzfMiRgWNoARRLukOMTJoX2jt9TP5aUIZf1YJEUUUEeum0SRBGSwZMjQtshBCVVW9Fyl1XSSiEHyPjkiLJ6HC0jn936WrDE5Eucu8ekCMBMgoUVdnq/roLL9xzb3+yrV3Xtejs8W//dHD3/r90w/vz1Bns6szh6LmyQfvT9Wv9rI67JrZ3Fy7fvtXf3n6xlcff+8H5oP3i+iPF2dlXbksy/MpmGVT+8xNQNcMCX5me5s/2U4xcAwaQrJZQASEIQZBQh/jqqycXSet1xgzm01i1IAUDS59BTMLlokwQtsNVVDRcA/9Gip0CG3hr5aYRmFqLxsbhgi6elvJcQKAETSmO3YX4Zeq4osqRBGR5dniwf37CDCfzg4Pnh4eHgaJd+7c8SHs7e394L33gOnrX/96CCF32HtJjDFN0xwcHHz/+9//3ve+942ffvcv/sqvXL16NYo/PDpKGND79+8bYx0ZR7YuGwkRFE7PFgcnpw3ok6cH5emxM4aZd3d3J5PJ6enp8fHxbDY7ODw4PD3Ksnx5uqrq4COgczMyddWs1musqvVybYusKCbCZr1YOpc3VW1dvqwri1mWZUQ8cnYATLN8YpwDoqiAUQE0ihBIjNa63u0oPgIEY0QUAdE3DWLvxt2iCz/mM9lUWldVVTVN0+vNOsj5GZk6AKoaYgwheN9AniV/wUjLV9Vzju/hE4fK6MibDiC+s0zG6A9VTaXuFDBl+6soqmcQHtacOEe03fDx0zLqPmxxfvL7HBVp6zu3vrxkqCBiylGR8VWYDpxz93856dwS+vwG/CU1VGhQu4MuLq78E3oBGvv+IbwM+P4lzxp55QeI562v/NmN4XOgFFLYCpI8z1W9WwsRQwh37969c+fOkycHCiAIUcWH0AQvElP9GREw08Kh0Lp6c3fvW1976y/80s/dfuO122+99d4HH/7T//EP//4//A1ncJq5GGPQGIECGkW0EFM4vYdpfUoiooQrTUpkrz4i4jp4a22f9JzCGu1zR0C4zTpE1RhCz/d0XGDXIJZ1Y40+enI4zQvjHAKsV+vg4y/+0i995+e/M5nMrM3qujFsATBVo7kkmj1c/yOv3nNTx5q63oI/MVUG1HkfqK5raNcAWbbseDaZ11XVr8O0TtL51rTox1Q+LtUYzfN8Pp+XdZUypFO6UV3XROScy7LMObdztYBiEk0GQtWjk8XR0h4vpq/ervfym9ev3fpLV3fffP3kh+8/+aP3Hv74fVzVWW3mswxWJ7euv7Wq9OAHd/0rgd79urz7FcyNCRVX9dXXXy2buqqqWZ67Zfn4w4+iyAzbwj4AG80sGSohpIanoa/3lQo5KIJ1WV01q+V6tVql1VIUhXMOmHGSr6UWYyNE5VR1SVhBSJtBA1wiYrMp6gojN5MG3dQnwA6DiCk20h9CwJROo9rnyrd3QKAvh6kyyXINMfrQVLXGiApVWc6ywrHZ3d29//BBnudv3b4tCF5iUqzzou2fmJbH2dnZ8fHxe++9d+/evbfeeit1gAWAvZ2d5WJRrUtCzPN8tVzvT3dfu/nKar1crBeND0/Pzur7sr/eW5yexpOjV27d+sY3vsHMVVVVVbW3t0dETdPsXtmryrpq6qryq7IWMpFtIF6u1n6xODs9yyfFlRs30LqqOmTrjDHTPXLWGWs7DNGAFKbGzVxeuIIMG2uiSgwRCQ2blJSVeGxaYykVsKkNxdCXE9iSNXU5WAxj3XcoiPt6A6oaFapyY6goqIr2cpnHlQDSYLz3NWHt6iRTkvjuzUXp+hz0cM2hfN8q7LRZhwAeNnUR0vBaPIhEh5raTSgwMKsiBk8SGOWSpig4bPj43NicS6gFcQGdl/JDMZD22dBQIUqoS9qKSxNTl4P2+daOfCHaUtWQP78xX2YDDFGuz4WNGJ/QXbr54yVo+NHlHW1FJD8ZnWs8mcbwMjsVPZu62vDJF/aMUXzx9LnZ7pdEb7a/8pfenXAJ9e6fPkT7PFcxESIKgKqu1uvDw6N/+73vnS4WPoR8OlGFum4aH7zECMCExBw0RqlNDLsk33zztZ959523333HzGZ3Hx3+d3/vH/29f/L/Q+NibJq6dIyEJpVQV0jRZO1H+FLeOUaJQRDJmIRp1ijCUdbrVZ5nKQPVWpvcnN77EIIrJufnDXqOkcp2AnTQe4VWvDAweW2QzWK5MjOWOly9cu2dt7/6nV/4Tj7Jl8uVtdlkMlFJXrMEYrkExjnC9b3A2/e+wySL9MtSe+aLJwUQAg8yQY7eA4ASYqu1mKqqVCTLMutcU9cRwGQ5qErwLiNmNsalboyNagjRGAaXXd3d8d6DQpFlzKZu6nVVBlWwfLha7u3tudl8ta4WT49NPpvcvlXYKSpJbQ4Pl8up2/vG2ze+9mbxra9d+dEH9f0niwcPT6tTX5X1w8c4neF0Rg3GBjVze6++hq/ev/MnP9qb71y9+dYkePVxh3j3nbfvvvdDPHpiY3DGFEVGDKohgnrQWjQqBIEgCKICggniktzVXkRUBcp1JTGSYVGpmqZRpdnj4nGRTV9V55CMSopzKIBmzskQlYpbc9yKmCgifbqg4rDVT5Q41CqsYVWIUQQkJfCmv6NuaxsvQaF7IaqbOoRAgIZZRIjJWrtcr4P3p6enzHz16tUrV67kk2Jnd/fr33h3dz7f2dur1jV2FqP3/vvf//4ffvcPb968JSp7u7uG6OG9e+Ha9Xpd+rqZz+dXr1zJXLZqDqP3J8dHlW92r+ysq3JZr7wElXhlvjObzVZlubu76/KcjHn4+LEx5vj07O579xCpcMVqWdVeJvO8XK/LIKuyLE9OrHWTyaSuKvCBrEv1njNreTJBy4YZQVEFgbDVhNCwyaybTiYuy4wxIXofAyEZawAwRCHiEGNVL9frMuGXmLBgtcTGGGNNFydosWTGbFgbdtBcAECFpk1Vb5sTqqbFAwLgfVtVMp3cR0VUtSscD/2Shhgl+higrksVEYkiyUpPFnuIMeZZlgKhhg2kFsYdxUGUpsOKawrsNRpUQURFpWnqpvEtDCzKzBIl+BYxiUEgFEWNdCn3JqLUJjUVo9DnU0DPn9PviJTynvpr9aJLkrVP2OeBtkc21CXCngubpGgLQNsQcjSIiyUKdv8N/6Sf/bbdUh4+T5FnesAGAEiUFitP6GMIIADIxOnTwIBbpibhBKiABDRQ/zFqZGImCKExISODXZIfPad+0NsnzwyHjW+y+Tt1nQoTVcFnWVYHz9awMagQmyA+ogKIAG7wi6Opfz4V8xz6MwIAKCWZzJQzGzTEKhoHq4faxupBBXTcPe1iOrc4NleJKGJb6TXGCNC6tIfv1WWgBgBIIm3b0XLxK/OgCMMwSgugPADlp9ZgSKwAIYrpkqf7GOhg3kYOHuzSimKMNsuSE4WZEWkIqN2Kt2xugh0HTcMQSQu4LVM2CBRJlz3fltu6OICDOvB6DfKXECCKkmJaxl0kuXUMdyNsfSgiGqMQsTEsYdCscxBCUdWmLBsfFGFZVmfL9Yf3H/7wzv3T5ZqLnf1sti7XZ1VZq9QRTF6Qc4uyJok7sZ4Q/tIv/tyv/Hu//FPf/GYDVMyu/KN/8Pd//V/+nm9qkBgEgF1kBsTQeMNgXSYSo6SgfaBxyUszaNskKsM9xYPFK7FViRhACUWRbQYAUSF6iSIxxozYEmdFIVGqqjHGiHhENMZYm4lAbDwApOxSYwzRpuC1dP2aFUGAhgs9KopEAHd46pt6OZ/ceOO1W994651vvvvuSb2s6uCy4vRsYYzJ8zxJZ0IKA99d69AaUL/YmC8UdluQ66GPg5ESLB5kK+ltmznwiF+16OsWCHeu3PHmx3GxihFfwlE4KLnwW24WB8V/ZZSJdIkhNXwvBEwdYKuqMsYMq7SlfNn+zJEbXje8WFGX0OgUZk05I85vXy8PnxqkfDprmnq9WIgKG5vPZs65KkRPHAGEKIt1E5qzdblz/cbk5vXCFZG5bHyWFYuDB34pWAcNsDub7t28WVhcYFhEYbO7KmYyn01m051JAZmtGSrGQBQUDVjWfOlNYzLz1rv7r3+tWq7yxaJ4/EjWVXW6rJZrqNGsva7KvMgCYvzKO7Ni+vT4+LQMV/auTItJFSXuhVs3XrEHj0/v3Tt6+KSqZZ65bMLTK7OmXtSrZTj1UU3Z+PnuDsTgm7ou16hiXHbmvWOnIU5NHjRopMVavKzr4N9wDxpZzQuT3bq5FF/kcxQuyzrLC/SKncQVbNsryyZfpTdikkOux4Vt1gYBISsiJYdIlEiKhLQ5pf3wm++vfZcHBU0ozT5JF2CrIRvihWHJtPASl9wS9JdIWB8jIkYfnTEaBRHz2bTyzd6Nm6ZwKvKjH/0oc/bK3t7ObMYx+lV5XNbG5pTiVyKLxeLhk0e3Xn1ltVqtH6+vFNn0ldt7Ozv12UkIYVJMbt+8+ujeRzvzyS2J62qfnJTRr+uy9lWRF0b5yt6V+uS0rLUOeLKs1nX99OjwyZMnJ4uzKCFPMRGVye7+rstsXqyr+uHj+8vViphB47qupnZWZFZUYrmY8v4UhRjLdbmoj3f29jDPJ9YoAhAJgMkLLgrOc3Y2c8YJxxAY0RjSENDZKFTVDQa7XpwdH50qgMR4ZeKmRT6ZTlV4pBmnjh3dGiHlTedNRYgxxOh98CEG0dpHQMqyvBFZR0ggXu99lKjDqCAKE0M0TGgAJ2ynzLlUM0POKCKrYFXXEYNvyrOzsxiDYaP1MnPOFYXNiz4YmPhEo7FTs5UZ2GywijlkMUrTND5Eg8QIq3WJqs66FDxyjEwC6AUNkxFlr1GRWpaIDMhRwAcxxljn2Bk2ZBGMRKdWEWKn0Md6E7FJP6RFjkRBYlARBEIyRKRAiFmW5WxDjJBZg0YEkpEW0UaD0bF0Dn0FaIsApGQYAEsMANqFiYZrPgSPhJM8cy4L4wp7Q1NkFMBR1SAISgqGSBGRCa2B1NUyUlIIFTbRJCJSwOHttRWwSNz5RgY02ssx4iA3Zjh+0YAEnGoNjDOgBC5kDoZGCuHwtkM/S+vd6a+Ci0laROwnMp3Gcr0vSvC5RxZ08C92OMWkP38Gj9LNulLsgioKAAlmnej5QUFfEhrCb8aGyiYp/Dw1TZPWn7UWLrZIh39/KXHP3n3xciIG527/6W+hYyIAY62ChhgfHxx8dO/eyXIZRBAw+hijqqiCJneQqhCoYcwQru7Pvvq1d269/uobX/nK4+Plf/5//Ft/93/4p5UX7WNTSCnhsIUbSOjdrs80/l+AtuKljGistcwIkOW5r9sWBOnLpvSbLMuapknoHVXlrpWKbnTc4e23fMgIgAK6WFfLsvrLf/XXdFWXVQWYSni1cfZuamWb9f4ZJewSvVrPzhc9HgAgAbMsedc6heO6nO7t7F3frQ4OFyer1dmCYzMpJnluETWKFLnLZ/MgcV1WvpSGuDKKxuBsbnf37M58trPjptN5/c3D+4+e3HtwuFqzMZMs23nt5vTV6zfn85jtgsnJGc1MI7EUL6SI4JTzCgwaIgLmMkSVaK2F3V0zn15/7VZcr5vTVbNcn52crA0tHGYZIRtz48qrt27c9nFxdnr49HDhm5vXr2fG1tU6f+OGe/cr2Uf3j3/0fr08u5JPjg7P9m5ceePaK42Hs9NF+dGdB0dPd6czQfFoJ5NsZ3c/rNer08W8mNXrKvjAxipxFNGop4enN2fzs+/+KD463P/aV9Xm6xCz2QTIRl/3JkTqgCTQboOhJO2288Bu6Wnk+nwWwKAvUXkeerBxPL7QGhhUb4PnD+AjiohvmiBaluXh4SEYnu3tkOGzxdni9Cx1rX1w/74x5tHDh++88461tmmiIKgqEsUYCem111578ODB6clJWVXL5aooJlVVHR0dXb9+/d79B3XwGvzTw8PGB0Rar8vFekXMzmrm8r35rtu9UuR54+P9h3cfHjw5PD4qy1IJXeaK6fTK/v7+lWtsbe3DYrU+OTmpykpFTWaIGRBTiWRr7aOHD29cv+6buj4+FkRrzeL0JMZpiN7lmcsza511zlhrnLPOMJOoKCoSEgJScgagSYEUJkISEQVNvxomZ20Pr0qfjdsS7+1XGApWRm5CKnACIfoQAiAzhxBFkTbutgHjVAAAUeCuCyFS0oqJnGFrDCCJiIkxAR0BIEZBCDabGGONdcbaBP3tydCm5SsOkeGKihwggjGo2jQNREnVsVWEiJhSL01QgKiUGp7DOIvmwpV17r16Zew8bGdrOyQYTppUZkIi1JhmA4mAEJigr+qGiINiISPqAjIfO9rneZ1+xDG2ZhUARJGMslZVQ9JtD9qXQT5cRpdobv9OpH9gymRK2naUz7Oa9LDN3KdCsn0RNLJMCC1voihhECjYopSn0TfZuMRQ6cEzL2Vakt3fB3P4y7cre+dNCw4GZeLSN4eHT3/8/vt37t5dl+tsUiBR7ZvGN00IQsCMhhAlqMTcmd3Z/Fd+5Ve+/bPfefMrX7378Mm/+K3f+R/+wT9idizgm5h4UZoHAEj1kWKMoqkW3DOyAF/sVbZcD6lMUwoZOWOjb4vDJCGaEi5TXkFVVXmei0hd10mGfaztNHwWG3N4fPQH3/3Db3/tG0KouuluS4N+wCPt7c8upVnt1/yLVkl+qUMCmOW5QXblqnlyunr8+K13Xn/jna8+efBklXE4PAJn1NoAWsfYxPVS4s7u3v7tW2vCQMZKxPk87u3Za9eqPHvS1MWs2P3aV3d/+md2K9+UVRDB3ELhyowbkKmdKpCAKoIQGiIiEABSyOcGE/5JhNRoG/gGJHca1jg1Jt/Jr81zuSEEwfEJBxXd38klamNkFXj65i0CPFitrMTp/vShNKbYMbPs2ms38GRx8tHd6qksj5dX0YXpfPLWta+8+nrx0UdSrqvFWS7YrFf3Dk+v3b5ZeSWXR8GmCSyCIUgM0Ut09uzxWXZa8qo8C3767ld3X3lz0UBEjIy9a/ySpYzjhMMviXTpg/y9uvY8V7XR9RBSKuNkMnGTgjN7cnLy9ODgyv6Vvb291WrlnGPm9XqdEuR8UB8CALgsSxlNv/Vbv3X9+vVv/NQ3rs9mRZY13tdNc7o4O10siGlnvnN0dFzW1dlycbpYVE0jqjHGummCRGSTF/nxycnRyXFVVanTqI8REKx1USHLJ9PZLCquq8Xp2fLp4XFdN0ikACmNMNWpW61Wr776amtu5RNmG0FPzk7nOzuuyHf2dq+aqybjhIltmoZATW6JqC+nyGiQTYzRRDHGGDYtV1dIJRn6HK3kEAQAAMFxcvlw5tEi+4CIClj7KKKAbc060U4kfUwGIxKRYbbOpucicR+USDGZxHizLM+cy7Isz/Ot9UmGtyzt7hgCmcCxN73SDbUrt5UMs8yRiNZRWQj8iysOPaDjEhXlPBljDTNJhK4WCGFbsXioxvRZOjTI5icF3U5ReQnEzGTZOGetJWZpOyJJh9Ubndn//OVURC9pBvrvjKFCLRoqSnyRSqL/TtJwZccYm7gxTi6umg/OubT5vfeXSKmeQbRhkE892v5Bneb6pctO6xXKxNyDRBA9PT19/4MP7tz9aFWuyRqXZcxmXZV1CFFEUC1ZiyDeI8Sc7Xd+9tt/5a/8lbffeScC/c7v/cHf/fv//dlyGSmrfCTcVDBMnVxSlSTvfR+ZfTnBKwUg2TBdBMOUOUtE0qVpYldzMCGyVDUFWKbTaVmWScnom2k856hSS+6qqe/cu/vNr3/DOtc0oU/L7pGE0C6qL11/q5dO/f5qNYwvwZpXAMqsSKAqXNGsFPvkw4e+Cbff/op99WZ4egQhekVlIkADAMS6t4d7e5Nr18Q5ClHyzO7MJc81z65Mp2rsKWYawU5omuUWwKNqZpCUJGodSRLipQOQdyQaxYiKgoohFpXkkmfD+WSmUdBHChJCqL0PUSjP8nm+XlfESFk2meUoGkLIJi40/kxlMpurqs8bmU2z69em1/az45Pm6XEJaK9cOwvBEc2yvDo63gWQqn700b3Ds/WeK3Zvv7o+Odm7dWvV+KpujEqMEoMuKykXxzd28on4VbUExqyYcb7nQSK1QCwA4JR0BQDwjBzL4St/SdSPfll+In2o7UzCzMbO53NkOlku/vh7Pzw9O333zbfefPNNZg4hFEUhInmer1arPM9FsKqquq5dnhljvvq1rz58/Gi9Xr/33ntn167+/Hd+bm9vdx8AnX3y5KCqqzsP7p+dnt289dpeiJTnplwtylVZVWXdHJ+ezSbHTw786fFJWZb5pLDOmSxgXXvvRaqM+OTsrAlS+7Asq6Pjk7KqydgosaqqLMsS703/ZlmmqlVZWnbGuGq52p3vTGczBfB1c3jwlI5P92682k9Xql3fq7YMiOluUawxbNqKYQo6NFSSe6ibQrWGhubqcPoNEbIXkShqbDCGAdkYE0EqHzaZ6xfnWLbRgu7pxjpA6goIawixqioRRYAsL5y1Ls9tNjJUAGAIlN0qgwbETJtatym/X1WTaZpa92aZiVFiE/2nCxH0QucTuY+NYWJu2xUhtJYIYR/P78/UYTJ918VFPwNMjY4refZ2I+D27tt69JfQVrlkwBu3t3Y2ImJXpVq1tzu37jgIZ20/IClJKUb5wuZjb+wCPG+W9XD8unHkdPDNlLj88irhXtBsAFLSFBEroEqMYVSFY3xmy8pVz2V5XTzGUQOMhL/p1H3pyhBJ2/pqu+3DYPADDGI3J88wKsYu8yFPEQn94EcvomoN9/riFtcbNtprS3t3gH5tvYN9CHU4WhjcQVJqQfuhQ+hfufOmKxGqYpfu0ibrX2Iv9VO0PUttXuwzba1kCPQTu/2Ow2onqW4mAITgAVr1XVXLOq5Wq/c//OCDO3dOlwsgdMYBUwT1qkGiQCRiS+gYhcCH5pWrr7z95hvz+Twrpr/3+3/4j3/jNw9OFiabIBD5MAqYiLAxAJCqJ/Utcp7h0hn8gYBGTTSHU4+jVdRWOFFVACbKLDmDiBC1rXdEXYlGZrbGKmjK16yqqo9+MDEoSJTk997M4UicpYekoWhQOV3VP/7ow/uPH02nBRuGcaZHHGNq+4+7dY52Be9VL8xS28o2ObcMhnv2wh17jvcinhMh6bShtb5luV00wi2P4IiNjDtEXebKG+21tt5aGxHdsCnYYnQXDQkAJEZACTFGhOu3bi/86t6jp7XLbn3tneLWa160rP2qrthlk9kUrWPj1s7YV26LNUYhGtYsd9OJGGqCuDzHWh1ZUlw1DSJS5lLujyGGDFK/nZSU2tfdVVAfK0BCBgSWlNHnDBIZ4rJcMZIx1lrKVF1ovAoaY9BpBoQEqtFHgahIaF3mMouWohCRZHkTQ11XNstgNpvcuOXXdeOyxckpxji/fqMS8FVz+/Yb5uqNwyhrm+/vzu8fn169ejUeHnmJofFGUQUXlXcaj1drJG+CCX9yZ8XT7O2vwXy3caqADGhSez/ZtBKGi2d+9Cu1370VEKM6sxfqKGnbpqg4M8dPgJQe8kDp9xcOiylfqh71gyfEsiw/+uijg+OjP/nxj9iY5pVXmXkymdR1fXR0tLu7a61NnRlfefWN3d3dJ0+eVGX5+OnTJ08Pdnd3Dw4OTs8Wr966fXy6SAlvy7I+Xa588CeLpQA+PT5ll0/IHK3XPiixFQ3rqn56dNI0lQRR4spHrxCCxKgAZExmXb4qq5Oz1aqq68bXjQ+qFklRJYZUL8Ram+d5lmUxRuccIEqIp8cnTw6euCyb7e7u7O1McYbGSggSAgBkWcZMPnhSTc6mpBJgDwZBtMZmWYaIZKjIC+dc6j40NlTA8DD8poOlgoRqjDrnokARNQiKpv5dCF3rYWjL7EKfTdErgQCgKsZwqs1NREwG0KiKswzK3sZJMTPsENHlhbPOutzYjMbek+FqSIV5N+sHCTgmFECyRdtAsTF5nlkma0xqD80GMEaEYfm6Vk6nzBHOMmZDTNi3Ie7UinRar9+GEHS4cVQ36q0mVgCQGp1ZY4xhJowI6RuJJBvkopXc62bMzAqCCKrMnFzmaY9Ya5kIBi2kz9+wV7R6Va3lyKICqiFqa9wCYVeIclyaLLVdHt7wIvl13loYauPjYY1vMJQjsn2Twf0vZinnBWynXhkcAvU2fUZbgKlh049y/LANPBpg9A6IJLLxa144pq0RjrWKfgA6bpl3CQ0H2SvEyWxIEL502+fswflxz4JLwuyEyESxsxy2Brk5bdCfcavIwyXzNqxl1FsI6W59fVgAEAG+2KF8fs0NIf79HyVeuKR6TNFwJBtr/gKn2nZ9xnNjGAxveObIrJJhjfYB+iXGkJYlMxNh9K23Pl5af7lfNp2JPhbnCslfoojDuUg8vH/34edKHSR68AMNEHTeh+FcBZGDw6c/+vGfPD0+EhEgJmuCxBiDIkQABTWEmTMoUX11a3/nP/4P/v1vvPvWZDp9708++P/8w1//ox/+uA4aFEPwzKTdd4xJtBKJSNM0oy5RoGMN9twvI8NyY2bDeFkSKoCkPWWNyaxxTABABhvf2idJ2iVHqbXWOZcqtGpX5iH9nMyGizSYlOqWRK6CAoFhevDo0Yd3P7p168a1K3uSymXWdSqUrJsWVBf2m++NmX4BPPMdLzFUtgZ77tDw8OjmWzJsSCOrkIY3vITp994c7KXXM8+8hLZuOLT0hhrmJRxvKB0UQWJAQ3X0J6vlzu7ezv7N7JVb4tzDxaq48Wo233FFoSEoMec5WkvWEXNZMBCnCqCKVCMhMmekQJlRSrWwcoNMgKgopKCI4owAoHYliTo0OQIADrzLqohskvsAwGWThDuPACACJkthdmmE0STuYwxriAqS2BIJsEJEaUADseZFCJHJaOW50FWM+WQGPtRVtfPWpDlbPF6Xbmd+82e+1SxPZDbR/d1yWuS3bhwtThyoRFEAZWqQ1ix5DLvB0PFq+cc/8hGnX32nuLpXhZiK2BEzELYVJFMviYvWxqi/LPTZAEm4b44oXmSrpIXUd6qJF4uA8VWjX3uWy8xb22G812BLNzHGNLU/Wyw++uije/fuCWEIwVh78OTJK7duF0UxnU4RcWdnZ7VaAUBd11VVVb45OjpS0Dt37qyrcrVa1XW9XK3u3L+/WK3feeedGKUs1+vG101ti0m1rh4/eTrZmQfQ5aos68ZaS8ZFweW6DDGkMi0YRZM50oi11pnMZXlVVWXTlFVVp4QP5CCauv6FENbrdcrEc87t7++XZYnMZ0eLKBqa5uTkZLlc7u7uTIoiS9EGY7qeQuobT6iGuqr9uJFNTJTn+c6O1nWtoJPpJHOGBzSY0rF6M9jZqC0kO8tQkchmIWoIgQRMEOYO/kDtZ9LOVd8pvqAKzMZai4CEjGgUCJGsNargXJzNKEYhwqzIDTNbh8ZuDelyDE8aQ5/WkoQIEU0mOQEYBGjTERUgdgbGyFgRkdhWSWEmBgBiZto2VJJsapNJxurKZjFjJyp10zc8WQKIqKLSe7vOLe+xMgPpIwZsjUM0JoQ66TnGWCLuNWpVJTJbxVQ2K4EZEVPBHuj2dRpDH4tr3yX9TNh9QQ4X72UcP2t4iC4OjY4gfGmy+kNb9x85ni8axbYVMLzEDP3Nz29XpHgfdX0wnvOqn9DnSBdqfluUvCN9XOJytf6iJ0Hnern8oWOUpIh84pUzZCiXP6tfnD2fxS6k9pym6gZgSqSI4eOveAapap85k+BJiJjQJqvV6sGjh48PDsqmEsUUqw0iMUIQiaqCCf6qviqtyO1rV29fu/LNb37zyeHRP/uNf/7dP3qv8hqB2gCmBBh0HOq7d/cW3UslBQFETeBcy2QIuSuHNpzjVLOyNx62ZgYGy+Y5Fx4RZVlenpz86z/8N9/4xtdmk5w7G3uIDE7xtJf80p8jnfN+PZu2OfaXgBUrwhKjVTE+UBUiNZC72au3s9du+Wt7Z243FBPMMlCIhJENGINkgMhDBCLTdrIjAEQiRkJEtX2p3iQdBQCSE5IktrGDZEphG5hSQJQLxVlMNSYSpCqxBQBSIACB2Jo62tqL6e6IEK1GIEn+C0FgQsOaERgwqalbDDGzofE2c6aum7KcTbP6dAag177xbl1XV7/29o8/fJ+Zq/I0AwrRK0VWXCNNyVAdFvcfNIhMsHf1l1ghSERKHVtBECICAjA+AwD20j7fwIkgF1dH/CyImQkJnJMQJpOJtfbBk8cnJ6dZVWHtb9+6nWIUxpjVaiVdT/Hf/d3f3b2y/+TJkytXrxJRD5ECgOPTRVV7YOO9p/R3Nj6ECLgq17VIRGgaL4AhKqgQeERalUuANn864UkAkIgZuayaxvvGRx8kKACStqq9ElMLshVJLVBOTk5Wq9WNmzedy70PVZRQNzidXtu/sjObF9OJIlVlNZvNFovFdFI4w6TKXW5lr3EiiXVuMlEkLooCCR2Jc6bPCRx/vwvWfAv0SF2tiIx1giFKjLERXUVZl9UzufToHohEPdCJhl50a7PJhIxxSd5ByrUxBolhDMnBS9YUbsAIWZalkFG6IZIiKKsSPqft/EXS0CF1OSU5DwBEuCnR9hPq5rCHI5rkP+t9wM95l953/hND5ctJW5rfJbsmrQM5V0r4Ez1LBs3vVC7UOD+95Ot9BmnhXaKKJmdMyufugVjtUJ9bhe0DRM8b1ztHKXKd0nWcc8lKCSHUVfXR3Y/u3L17tliEGAUJEaJKjLEOEgQEWhOLkUII09y988Ybr9++rTH+9m//9v/4r3736PjEo1NAERBVEB1aYH1aZ+caf5mbFAEAJPkRk/BLIAQAwCiSGsOnMzt157xhubVsnsdQUQQBDRIj6Ef37//gT340zdzObJ7Umj50k1zCzH+Kk9G20govEnu9EZ5Iw5dChqfaNgbJAkOIdYge4YTjSuppbghBNCJbsg6MEeLkw8zEoCBy59TtsN+ACMZAsk66aSAFBGAFCgIpSR5BKXk3sStSNJiZ7eXXhUMVAAURWYEEAKFRUVRKkUdCQO4hzAJeQUkIBJRUQQMiWUaF3GTVat1EcEUuhppa0eZigBEmkyLUzXxndvrk8XQ2f/Nnfrq6//B0uW7KWjVgBAXjLR6XXjUoiDl+cvZepJuvm929vZ1ZNORBGhXFhEMFks+wTETakim3LcYIl8bAXy5lWRaq2hhz7dr1o8OjnacHi3K9s7OzWq/qpn769GliZXt7eyl7Ie3309PTf/V7/7qu669+/Wtny2UTQ4ihKAqTZU2UKvhHhweLszMFKIrCWluWpW8CKtVNExHIWROg8R5EUFRVax8AlABQgYkMUvI0VU1tNDbBNz74KKqASKCkSEneJgU+pdRXVZVsqgf37ytmQYSN2d/bn83nTx4/ns5mBLguS1NXTdMcHBxUs+mt61eNMwQJ+iVEqflH22zEOQfIiMiGbaisabnu8zuXkbqwAqlBFuAQJYRgFCZ1c3q26AGxF94BoU0dJ8SxQCSiJN3SaH30RAnasK1U6MVmdu9VTEKhix4QM0fxqEIiICrwiX2pnzPhuMTFJdT5UoGIP7nb9s8y4QYpE1XV6CC145NEVFrj+0trpeDgX4C2HxJcFnf6dI8baIK69ewvgi6Bi2xRX5HpEy2ArWcl+ljn/XOqX5dQG2ntn3jxHahrnd7XH8NP2EI0VQzCrhctuBdRfKOqJUrdSSjGEELTNIvFYrFa3b3/4PDoOKgCUhRlwDZSKVEABIQVCTF1R3n99a+8/ZU3reGP7t77jd/8l/cfPiI7Ey+CoiJpQw7nIr1+jLEVZi9hnw7BPwqgBMqoTGAZLIEhwZRciUoMQQUJIoAgtRfodqBAVQWEcbu/8iVDiCLr9TrPC2n8ez/60Z/75rcSDrdtKOlcapf7p8DtdimNETKXTc7w6OfJi1tu2hcu1baKLovO1VgDbGw9yeK1q5OvvGLfeQ1eue6mmQQDSkhIjEQgqApRFVXVikFEVAJFIBQCJAVSICRmxRYNl2xyRcCULwqaMs1TMpkQpXr6rQEymJnBygOjAF3aliqgKidrpAWdYl8pAtOdFQiEgVAigkaEqBoZlEkJSRFKnzzcvq7UkKIl0GI+CXVF1rMzsSGd5GGSvfvzP/fHVQOHJ8t1mYlYBURWjyVBo0GlNiUULvvgD/7Nq+/+9G7xVlSMKmQNaV/+7jP8zj0n7/wILxKWxBcaoohY5wSpqqoY41e/+lXO3MHx0Wuvv/bgwzuPnz4tikld16vVqlqX0/lsPp8XxeTk7AeL5SLPi5PTU7ZGozYh1FVVe+8B12XdBFktS0RkkxFj7WOMIj6GKAEVM6tKMaoEAY4KgVIpQgVskyiYkEKUpqlzBO9DuoHCxi+kiFHUWDLO5XlujCFmH4L3PsTo/Xpn78q1G9fn83nQuFouqvXqB+/9ceMjTH+0Lsuf+da3/spf/lVjLBMr9CXmU1V6RGxrSxtGIrbOEgbDZIwhThm5bb8dVNQL4QIpCAjMjAQK1Ha6UFIFZ7NnomPaiIkKdl0qKFnvZJAYFDtgVMuFUnK8YdYWj9SGOvvbXsrl09bToeeFOtuPBFQEIKiKYgtkRP1kOl2/dRLk8BnBpz6UOowW9RqdPlO3ac9K6aybv7VQzTRFCICKWwMVQI2ioiDQp510J186V5e88NgZ048N/tShC4b6YdLiTP/LMMdARCCKzTmGCKpmbCAm0JsxyVet3m/mxxijIaY2sS6heAEg4csv056H3q/2oDEtiPyilxk27E1ujxBCjAny6QOiZZYQrDVkSFB99KUvjex0Gwm3mOrwSeeg/BcSJrwgtDYfMitjABWQTHkE9BZNoBTnXNNUg+eqDhu3daZgn41NRHmep9wDa21bvmYcBEMEkZg6ZhjDqpoc6s65od62hQy2tjVbpWv92Tszxk5uTBwnGbiEFgC4Tb/r7NWEpBy+77iewjAuoTBqLriVYjXSaId/x44vdmDF2MWOkE36AknxkRBhEFfpz9+yrvv90E71sKUdExkLrZajIlEkiKTLE2Pp8isG4qEJnpkF1HtfFEUTfNl4MhYRFQkYBYKPenxydv/xycHpuqzEuMw69lFUldmG9RqizymzdmIUNTazmXv7nddvvXFrLeFv/u2/+707T1YRLQWNQVQw9XZymcvypvHee+dcjCoCxrgQpMPStJRcDCkAIiI0eBEEMNYOEmy47d+AmrKVFVRAEcQIWUPTwk4mhSEiVMuBkdBoMWFQKBtdlFUTtBaofRQlMrYqAxuDDCLS+BAkgmrbeWpYJWKw9RTAWqOKMUaUJMiyCESZ+9GH9w8eHhRkp9l0NpnXvmliWK4rNmydCyLJSIsxxhDT+6ZGLj3TSzpZ+vTOuWTt4DgXv3fGD8qAwpaD/hIeNU7uv1CF29qVNMKdXwxhivH8gJ9JY5N+K7qw+YV7rFPayxfk3qAqRY8AmnpGEQNQFI1Rg8YGm5ktyszIN78ur74pt28u9+eyu6PTgoKQqmICbzHxpoo4GdvOACoSmeGjo/R6A3aQUQWIANx9SkKQlPg1uKq/w5YSRkQIqdUQAEEEDaoxVR2NsXe2DE3rmK4iRAADCCG2oePU7BclgkaIaBmUGIyI1iKY5RZRWRswxfVryyjBuJ1v/+xDr0sy/sFHe8ZleTbLcssoZIBnxLBoGnzwwenq7EoG+PqrBMbVFJHWDgJFQ6yD4r9DxU7ihbVbLqlsMyyfkbKHQ90AgCHWi5k5jrMltZcOoMPPOs56gxAly7KqqhCRmKUrD6iIVd0YpNzYOtbW5cbaV197Y1FVR6cnZzFMVA7Pzq7MdifZFLyGJi5Ol48PDh+dHi1jEyJdn+bTyfTw7t2maYJEIVxWIRLXZa3EAHCwXMJyuZkrVFGJa98jhBXRS9RarbUKkOqnF4UNAMiMzIertbRSGQFANBIqKiKgIPsIZRPYQgB5cvjk5s2bSPT08GQ6nSBJVa58U56cnJwtzu5+8OOqqtm4R4eLnb39v/idX7ARYyPrKFVTk7OZMzYGo5HZaPQgPrcpSxoJRSgjRCCKAsSEhnqjOnZ8PsmsfvWmnI60u5LtwQjWUkSufJhMiqIoAMBa64Pf1FJCsAQsDQew1uaGQSUAqZ3W4DJQgna9qQACWAKAKCGmhvSQeuGq4IjDXNTpGofqtIigkkldvL0kY03URKSIRgkFAojXWPumYebEuqET6G1hNGuNMYkzEqAipOY0SYwIpI0vMUYQZeaoAD5Schp2CLd2DlN1ZOvYEDQcgqgCk0EkFZAo4hRRkTA5bQQFEYkJAZ2dMqJGn8x+HwKJ97HysQZnxJAixiiEzMTKRg2rtkHjfn91QV1AVQ0xfSLc9tQiGaNVCDFVPUVEQ9YpYNMEHjsdRioWjdSe4Y4dcJSNFyOJGxwCZHRUKmnbLhppXBcaTcME7BhixFaFY+ZRahN2BB/nxvtTQM9C/H1GTSeH2oee+/e57tDNuXbA/d5Q6fCgGxjS89AwxHH5VdppJJ/oi39JImlbeKGNcglgxlXDn2fAmgy8c3eDT7Jy+o+VVGTnXFL6Ewitruuqrmrf3H/4sKwbH0Uh1Shrx3f3f/W4u9MaYN3f9gfw6/+H+tfhHsCvAvzq8w7ms6fVF/v4/wT+c1CAw8vO+Ye3/08vtlyHW2PLvv2SrP8vlDBtC0kVuIg0ga2Uc2slinfZ1W99Y3b71eAyyjI1OQkj0ybkTDTcY1uxgpFOPJz55FFNPwOEOMod04HvSi79Rv15qbe7dlEXHNTE2rqBjgtZbvlXtb8tJpWrldvKrGzBCiiE2lcqO7df+cafzx7uX1lnyKt1LVCSRhX1gcGk4j0FEq5WZw8fzW9ep9xFgEAaEQSwaeoU/rbWPidnezF6scDI5ddglyh4Ho4xmRRNWaduiUVRHJ+eHJ8cP3ny5MN7d5nN17729ZzN3mQu3i+Wy4PDw+VqRZld1Y0aK2wOT8+WVY3WaozHx8fO5Y1vFbrkHOShsyZVre4i88Nh0KCoTBqkdEI5pSOL9r6y9BYCgCJaVfX1ydS67PT01IfY+EBEk+kMQBaLM2ZaLpePHz+eTCb37p62d8P82ltfmeTZnQ/e//Denf3rVzlzdfDz2dRcv5KxweARCYl98CmHnECdtdQWeUkAxKDd98IO79qFB7tpVxwapF31nhYkKRL6DioIWzhhTBOhAEhEbIgtGAvsVOOFaCUdeppGFZOfF7dIPIzmoYKIIAiqIDCyovHITOeU776WT6rcM2Yj3b9dOEUGLtrOD7JVv6q/uPurbkxBgPYzbBeZ3IRjcRB4Q0WEzmfYalyJByJ3jf7aYs+gzw7ffCyJSKqYiYhDxP/z3+ycurhdPPb8zv0caLsGQ68Wbydp/YQ+S8Jx47Ysa9uL9slt/aFLwE5DSiupr811SQS/jzZ8oiSlS1rzfJ40DiiN5mbkaHxuxFfCcSQ6V77puYi7huupDoyvm8SIkne/qqrj4+PDo6MP79xZrpbJHa6gMQr8ZMd9NqSqL6hxdVk0CWwdxqXG/9S7cj4dCWLSfgQxiIpEJUqdAkLV2OlksreTXbuiOztoHCu7yCAaHW3wEc89h0Nus+WvuQRN+tJ51NYwLjlzJD0NAyqSskFy1i9Xfl3z7uTK66/entvy6dPFk8PFYkneG2AW5RhRZWJZV/Xx3ceTr74bcwgGPIFnIQWJAoQJ0fqnLkc07aO+vsjwELMBqJN/LcuyJ0+efHj/7ne/+918Oo0gT548/tY3fjqs6xjCoydPJtNpsTOb7+2uP/xwsV6tVquUHPLKK6/UdV2WZd34GGLsoCJbwxi6ArcObQXh0zlJj+999tCljmzkcscf0vgnk8l6va6qqmmaGJobN27Udb1erwGgqqqiKLz3e/tzl+9c2d//7u//wQf3Prr38MGVG9f/w//4P/r6N959fHJanZ7eun5jUhTWWWJLltvCs0CokuBB2GLEBu3O/MXbYbPzunQvBAFQBO/j8yyk4SdTUMGRL3joyxOJA7UdoUM9YdI3xpdsYE7DGEKqWAUAAJTQOMmhoK1nQUAFII5qX7fMQbs6V5e8S7IlpItM0nOaT2NSUEJiY4wZFYm+ZDKxDee2mTjUliZAJGr7brbIJkHdGIz03A1YRFqDcysw8glearwxaVQ8c6Smfp42wnZEpY92/cRQ+Typ5ymJITZN07PRJJDS358/ETxZOH2/v0s2bR98f6aX6yLaOu2LUtouSVl7fq1iSCHGF1CktoaUPlyL0NNU5VikO3R4dPT+hx+cnJ2WZZ1arGDqteLcJ33WT+h56BNZ4EMaOlZxGzEIl6JB/4yTdmAKQRRAYINsmE2SqAUUxZUdP81pf28NQoaNEBIZQTQXmoyXbNHhzMtYjg6tx6Q7PvMqeBk86jlDamm1tJFVBCWjBpERLVMUdja6qjlbZjeuFHuuuHWtODw5ffQEVussinovTSMxnPr1TG1ztqrKUryXgiIhgBpVdm0gJZXo+JQv9TkTtoUuGBG990M1oypLACCipq6qqgKAjz766M033yRjIqgP4eDgAIOUq/XNW7fAMFpuNHqJjQ/rddk04eT0LC8mu7t7V69ev3P3LjKlIELv7Ouf1aPc+w3eHyKiVLwrKZIikpL9euulz/YeiuwUBarrusdOhxCuXLmyXC4Pnjw6PDxMYKTkOgSAyWRyZf9KWcvJ8eHv/KvfFpC9q1cdYiirf/M7/+r3fv/3fvEXf/HP/flfvH37Ngex1qhq67wHiqyEQEooo2AFAhiyG088wqBCNQwytrqkCMJIFLHNZnwmk1SErnQFRdHGh6YJjQ9NCGyMDmt49daIbme7j7AJFyDtYcxPRaJ2d0FN6ZsqKlE0SKx8qH2ofGj8KKDaW544hkQ+k9ICSImsL5KL1VqJwETG8KiYKAKoQILFbr1jygfumtpT17aeEOMm21fS//pPqZcWORjSxk5DwhfS4bfmbdy4b7Tmv0hDBQbOhqGchi3W3DkpcVOFKdUuIOnjqaqiQqptRgFuJxNdQpeIgbG6MNh7HdPRQZpNYovDTRjHuxFxlOgCo1007p/2vCKhY42ERLS1Zfv9k5h1P+D+h2cGN9LPSfPWQTkvkZi6dhARIpznM/2+7VdV14xve1tKWxpBRICo/3XLWwEAz9gwveepfbtNeyBNaYED2lrZz7Ughj0lQC5cAFuOcx3QFtvqW0r1R/vRDLWgZLC3hwZpE9i+YOtXU9Ugo+e2NdyJmAgZiahpmihS1/VqvX5y+PTBw4d103gfkvQSTViI0eLc/c+u3Sjcrgk//e5rf+Hf+6Vf/83f+e0/fD/ApKkW1lBft0AGZeBV28JiTdMkWZsMXedcXdebb0DU52mEEABaZBp0AdU+lTYqYCqeCIoQGTEz7Jy1BG/M9+ZFMS2KGHxVLp01V6/szyaTK7u7meO6rpH5bLEKoqJwcrZYLteny9VJjIv1el2VkYwSB9VV3ZR1bYzrASEtNxx8c4auKS2ADErTMMAexD/3sz/7V3/t11T1jTfeSIKHjcmc+/cf/i/6902fDFN3rfHmUm1Zswz687TfvG/X0z58tJTP5Z1ujgwPDG8IYxpvjRHi4BJuc17/7ovajdAC+Lwsq3eSacu6xncZD7hLRmuBW8QMxOwcuYysJesM03w6AcdiEJyjGFRRENWQAOMgw33rRTbbNUn4wYYdWiNJwdxcNeoTOqJtITL89WIRO5ZyI8/oliY3YN6qPXKmk+X920QiURSDSlzHClQ5s+Js7T1MCrBczHdCnq2eHkGIE8WTR499XS1qRQCNAYjYECAQqFHNRCV1GOxkXPr6fVfZi+iSho/P2Qvy3ERtm236bAjx6DskJSH9TG2JWxARQBQQiVEAF4vFcrWazWZf//rX37/zISK+cvu2NP7H778/y4rZZELWoKF8Pjt8/AiQJ9O5AofgmxDv3LvvHj9RAOvy1XrdM2YdB+JalToNFdvWGDD4au3EqsaNk1uHt+q7P/VkrY0hrFYrJDJESJRiO865qqoSTi91hHz8+DEzHx4e7exePTo8RBHVePz0YDrJf/0f/PePD57cuHnrN/7pPz87W/7UT/3U1avXptNJURREbIyZzopGJIHXjDHW2XJdElMMUVXn+Sz1QgZElISNYlUNMXpURkNEbQ0KVQk+eO99rJu6ruuksg+/mQAGAWYDaCOQAFU+Hi0WnGWipBO7adQDukkwUBKQHiKFW4xtuDI2nwIARhVfRLVPW0VAUlTVqBIleolV06ybpmya0oe08vrbj4RIl9zRJf2rJr/hmDcmg2HIAXthNBg3ppAdE7UF1Ikg/UiESEw22VOqSiBAybBkBEIgYzhKJCTR5LYUkTb5fhCx75XFdsxDVrmRjwCAEFOLZOzW7uaVW+0xtTYYTPYW/GS8SYdMD7ZSE5/B1nqVrwe665bdMspeGbMUHP64PckXjeoZrK3fh1uBUR2z8P6+nSRu6yOd278KoJ1z4rnqym0LmIuPDqem50SqGkOIMQJCUly89+3GE5FzVVCHk6PjDzbGaj6foaItTrqtFhXHlk83aTHGlHDY47v6j5SMKx00wuuXSG/k9GNipp5pbgGfeuXMGJPsGVXo/Q2D1xoyaFGFNBzY/hC6xQ2GU5Nai1PXrgRG0c8hRxjebjRt5/fG5tBYjg6/yjB/i4iGOVcYg17QnWO492Q7yxZ1NJB2/UtqX9DaA9qOpbcQBkD51KCqC4IBihjiWgQIj46O7t2/9+jJ49P10oMoqLWOiGKIPOhkn8gwEVMEuHH7tbNV/dH9R1UdG60dknSAwFZp2xRtI1WFLZHc899+ZgbWCHRgjLS6+mUDbSOaVLcEUIGBLKEzpjAuY9ybzQrrLJEwKfHuZHptPiemibPOsWUkZgl+uVxneW5xOsutY9WyMjxxTOvG16rGWgUIIRJzcg/3HvHhR5eNxAJA1P6TqQrDg8ePfQig2jtoSbYBvv3qSgC8sca52V/Dha2a+pO2jDjGeK5d6UUGMw4P9TxK297zo43zrDFu3TtduxXM2VD6aomN0HhIeBFrGxNt+ti0O+OZz+qFZTsYYmBCa9lYyjKT55g563Kw3BQ5AAiCNmKBU7cdZfQIFD8Ge926D0SGhTdG0VHp87m2h6gXC+OtPUDnZNmARvr3hRJwXFwEtm2YXt9VJEo4GSHkrBBtBIKd7dRRoomrpoFJVs9n69Uq+khAD5crkjjd352a2XHVRMuGmRScpiIW2iD0xWBkgA3Gy+PhQ/1gq+HjJYeem3qmCpctXkCE3qDqWVCr6BgK4utQHz49PHjyhAwXRVHVNXo/n80WJ6e+aSQvlAmtufvwPp9kZePJWmDrRYMCES9XlTFeREMMIcTRfnjW5Aw1vDSYvkovdo3Feha6ZcwMF1jf5iHUdUpNnE6nXTNHcM71Kl0KFgGAqhwfP016AhPt7e2Hqjx4+GB/f39qzeFy+f3vfvfmtWv78/nD48MY46QodnZ318tJ4CAgWZYBQJ7nCTQxmUzqqlqtSmdtKvsRYgQAY62IBB+QLVFK1UEFFZFUeSWGePD0+OTkpCzL/nP0rykAQiRECugFVuv66OjU2lyBfMPJ99w5+IaOAB4aIP0mxc6z1s4ADNaeDv7tlKX0Gykknh9FgkpUaYIv67oK4ju3VftFhv1nOv6HvdtLuzsPvmar6hOmjKWkOycztT9BuprdxhgmUmqreQ2sBCKyrf4E0ovjvhObMUZ8Q5RSnlLS6saDzNwbdf24EQd1nHvey8zQKSEiQkzblgpCaocAAFsd47bVgIvCXKojM0M2bwIDBtszH+qq0YyedYnHf9wn8kIaX3Z5n9A/TdRPWRIPTdMYNZ0StuHm8Xzc4Qui3hTsFus2xrHfJ5crHL22PTwtqS+DG4beZX7+8sG9cVvKfAlouMEukcSpAlL/q+t6ssI5Sz0F6BOmDs5l5H/60abMkxBCUzdTthKiqpar8vj4+ODwcLFYRJFesHnvtbMKhhs+NxiiroE+enL8u3/0Rz/68EExu4rRabiw82SrcZ7zBm3NAHXohc62vLhhbfLMKRAAKzCQI5O7bGo5MyZ3BkCcdb5eE2qeO8PUNNVsvreTzWvfhOCrcr0zy4uMp9Ex6/pxKLK8cNnh6ZnUtSJOi4mCWZbl0EbaHsYlBYuYThdnh8dHN65dT70LGImR5E95eeIvIfV2bIqalj60rgFjTVHY2QSNI+fAcM0IQKxAKqQIisqgCEJKz7fVtvbyuUjsp6XLfWEvQDSAbg+fgoiEDKCc9DVjICO0yjkAYShXkPkaTW1dad1yfVYKVjbbn+TTKUKgaBXyrPE+Mw5BI8WAySO18Wr1GsxLf6nPmeq6McygUVWKoiDDy3vLo8PD/atXPvzgAwkxxpjaqswym00m9548WjeNdXMfYipJEoKE0JhoRMQPQLwAn+CTS9fcSbuoey+mt5jqkHrxmsR66mGVVsWwpXJ/tyQgVJGIQAkFF8fH8/n8nTfffHpwcPb06WQ+Pzs4ePDhh6vjoxhjXuQxBufcK6+8yvMMAHZ2dh49foSI8/m8ruuqrq0x1mSTySRZL9B1c072BtosBhEVRCImUU0dvSTGjz56uF6v67o+P0nS5cIAYN3408VCAGofJkfHhPFCkAyOixYmUyGFK6D9V6GFn0H3lz5HRSH1YhrkqERJ0DJBEFVJlr+I4gt2+pEBPf+2adFDyV0SJcWACFNZZuqc4RsP/sZSSQL3uVNNXpiS9rsVA/zS0tYILxnwnzVDpZMWLUqq83yM2MQXPdKWeku894r1NOzCuaV0xjBy3ifTPzW5877pD51/08RJkzdreIg/eXWsz5me05DYnqgY+jk8/1I6CFi9zLEOhiEiEgKRizFAlPV6vVgs1uv1uq4EtAke0RGR956tMcy+aYbfJTPkvf74f/3oPXgEAPvv2aauCeESf2eq0tgDqYfzNvzKPd+E1kB69o5QBCLGtpuFoCgjOmuneTHLnXXsMht8UxS5ymxnZ1ZMikmeqSowBVRrrXM2yywRWMvWcgzhlRs3qqjZaq2EpmwWTfAKWZ77qNLV4OkX/2bAfCGbiiK1bx48fHjt6jXvAwO5LCNA/Ymh8rIpAdkTrBGJjHHojC0m7JwtJpTlaoywBcaYggiwSZNFbdsUfrZS+rlpuDXO+25egJLoSeCZPmqdhI5BSnV4FEFiDBIzYMPkrAMfrfWNhGjzNeCjp0ev7OzMbt5wAItHHz16enrz2z+dzaelKIQQUWqKgGrR9K7WXjNODU8/azXosyXVlD89n8+bulmV693d3dl8fv/Bg3v37+/v7r312uvW2dNHZyerxeHi9MHjR6YodOlFlIicc6kRZKt+xohmJNouYnTn3TppkadbDQ2VS1Iik13dR2BijHVdb+yErvQ/tKEdTUHsZKggIiNlxkKUel1mxpbLlSL4qvre7/2uD/611169efPm/Qf3z84Wf/2v/we7cjWKLA+Ovv/9708nk7woEPGP/uiPrly5cuPW7Z29vel02vtnY4yIRMbUhlfrsqprIko4tPa9BOqyhZzQpZp0Mq5OTk7Ozs4QAUkGmKuNO0nH+f1bPtMUCOoPbQmm4bOGv+bWEWIbyiDUtrELIoDDF+lv1n/TT6TQEzMpBNUoEiUSMkCbptIZKqPx9+GdXuZ+1vtTJIpgy4W+fLrcFm3tShk2hxgvxT9Thkr6IdmUfZ5AvwPhUm71aZ7cyt+2HZd2ETuE3o3wLNrKlBgeGnKN82y0p5Th0HO94VnnXhN78Ylj6Mvw5l9SOTeYnUtG2KsIiRiUBst9OMPW2iRRElhoZKpdPAGdP2gTq+7bbA1PGwYriAgRYlQVqJvm8PDo0ePHx8fH5Kx0zbOCRFLGTSJEN0jG9/+XDwDg6n+2d/ifnBz/b/3V/zQj1Ev8P+kmqb7n+UPDn4e0febghRExtclJADBCsIiZocIaY9hZK6HJnNHonLU+eKKCDYnqYnU2n86UYGd3Zq2ldgBiJ/OT02UIDdDMuRAOT5qydtZNM1c3pXQh/jSO/kXPNzPuy8VUIhnxwdPDKBFUJHqADBCfE2X6E7qcWjgGIgCYLMsS+MFYYl7WjXHOFnkCfaW+BKqiwl0JYlUg6dyppEBycfBuTFtqSowvWeJuBWn7XfBiAWXsDAYYiJh+fxEwgBIgAXrvq7IBMmhdEGVj2ThfRySa7uygs8KOc7z74w/4ycFuMX3ljdebGMBYjSqgAUAQzGCT9nyDup62n3JmPk/S8Ww7Z5u6Pjs5WVfr5Wr1wZ0Py6aybJi4abwx7tU33lgtVidni7KpAyNbJ6ICCEgRwDdNiELESkZBRt1hzmGGLyFRMdRiMZK7XUBTLePzZkonAlrEb2cYYIJjQavcRwJQIulAPj1OSQFICRCVqKrWV/Z3o69VQmzqxw9OGu8NAhE9un//wx//+Oj4CBHv/PhPblclsz08Orz/J++/+eabWtbL5XLGdnl4LEF9VTfzeXo6M6fAjsnyOJkcLxar1cqwsdZigiGJgqpGSAkY8oxSTimiQpAq63btORAUiHpVOAVANtcgd2V+kya2KdE7xGoi0RAO3rffUQAm7keCAKKAiASITIAooBEgRlDVy/swj8DrCNC1qB2pXs+t0CMxtE5wERFsURsExICcgkTQAc4AU9cWSO4+SFOEhIC9ztCOpSt1gL2GcUnbo3MbZ/hXVVXpPM7PRnd+uegivMwWNzMjHJsKIjmXee8BUBVCiFmWIaKIjqzBbkOmZizGSP/VmTkVyWjqxubeZoWxFhFD1z9187TBRPJYkRqOWLZzcfCZh7z3aVekLRdFCjcBAGaDiGVZaWpJoxhCKKazPhwxuvfo50sgJ+MRAbcbECWGRqRhQ5ZdQBGseo2rFypdzfKNlUhdw5N0qO0BoioxqgoibXrwjfhIO0+9d3wzM2M/gYikWMr56ETiaN0IW9d7D2NIbioAKIoieYmgM7EGg2ijzNCFEXpv4rbFLBdW4gqN3zgeEKHTuRU0uX/aSesSqLBNbhvO4Rh3EUMTQm6sAEYZZXoFAQBCpgT4HAHPiUK3MIhoYxYghuQVloQlS8PUpFAbUehGGGMQxOPjY+ecYdNEDQrA5tGTp+9/dPdkuWKXl74OgIQYfSMIrsgb71Pjqn4kdZDX//c3vQ+xa6qFiFFTBUwMQQBSvRHXR96a4BWBrQHC4IOAujwDgCb49EZpd1hriTmqKCgyNU1AJsOECkxkOoZAijGSYCpiGZghdzgv8EqOexPKyefkd6/MyrK8ujefFEVR5ICa53kT60k+R4DCWSWSEEDBWUNZzlWJTmZXZ+sqnKzKKewenJwtV+tGoCKzDiFGMZYFwEsABmQmwsaH3vZHRDVtTgWqArtQhqcnZ08fP765u5M7oxrF5VFGztRU1wDgGTla55fiZjFg+yDqSpE+87StO7Taab8sR9KiA6CmxUxtxI8GrRsuuOEgvjSqwwKookEQwCAMpX6CoW+uGieVDX9LPOG81aoApiiUCImBSI1VYzyRR1ImeyX3MUSivCiyPENi7fQ2kZh0FAVIXYE39xyVLUUcAGwAWv6cMthFLwj0yUixGGaQbzE9NMPZGIFmR3teNH0YQwwA9aiOEA/5Bg+TUkAhdSWLMcZoJ11uFWJyxic1l5krKdMhQnBEnLsY4rpeRY0Kkk0yy9QA4nT2xptvYFkfvH/36PhoOp3vv/mau3mTlOqqxswBkIuY7tMrKqoxDTv6YIi3ZOXwg/JgomKMQ4cHIqYusQAQfBinrIznYjAbflxBZLSiJPYLG7pYXNpEsSsvo+eMB2douSgFIzle1islrMrm2v611bI6luXVm7fLqO/ff1BGEeBQe6c2BG0wRAGRKKgC6oP3EokImQQRVKPEFlVhzQYSs4WmHqyNInM+au0bUYkKsZVZCISNKBG2OnTqcQltSioQ+DaKm9riKjNFBYhiyVhuLZ+m9L0IjiARVQ3meZaSWE6XK5cFXzfL9UpEsyyr1346m54cnj569Ci1ofyTH75vrCmK4sP3/6TIHULc250Vhf2DP/jDKOrmsyaEqDrdmccQvA9BxNfVq9eurSPsFbMJ2fTFkYiZJUYfghfVrshKMrF6WFRuDEoU8cYYhQDq55PJ/nRuDDddS0JNa4O5i6Aioengmopj17hzm0plRER9eoaCJQZViV3dqgHfaEIgBENoCES1iVoL1hGCQIiCCEFikOhjCBJTyMVHn3ZniDFgBFRQDapBY8r0TygGVCXA2Pikr4BCjNFlWYxReixXSgcFECVBVUIwCkbQGptnZK0AK6NADDFEjaBAzAYBDRGzAHgVIVw3tXSWUZIEFsEYKy6PCj4GiQ2GRmt1WSGx2aiO7TfDBLCpBZAMGoyqEJVUGFVQSGNmnMSQWZc5ZwwbYyAKABLyViLKCL4x6IeREpk2Z4IHUJBNr56eLBlQgChtC8+hD3VQDk7HHmQZVnKi7VJJFwnEzzii0rU4PRcz+MypV5T7eOvGw/XyaeOJ6y1qURCV53yYdulrn8Yl9tKnODUoTKpAcsw8D0zCOZeCPD0G6XmeteXm37zL+J2GmCVjTAwvNb3kYyzT1jncJnLDJv4ydMSm8jvT6VRVy9WalOumPlssnhwcVFUdRWInnZOQY2MAMXVMHxlaClevXlmv1z/8n98BgGv/uzm0F104Rh2kg28thh4s2+6BLv06efZ6dSRZXn1jLARiTX38kAmNYWsocyZ3JkPNnGFCZ41h6gqiUErmI0RVZSJgiKKY7NjIjskbYiV1qEjGFQBCEpaV35tODdfLSuvYRFAkUEyoiS0le0MCEAAZsWmauq69bwwTqYp34RMAj78w6pf6F8Afn4+IWYiJSJjRGGUDxiARGhOJgCwxA7N0FlK7crAHogNcmmPWO0QS/PUFwBifft5e7A7YwdB7V3q/uS68RIG0ra6SjDo2hlWsIGRxBjPS62ePD0KM125cn+/Ov/qtb0bAVVkV82lKQG57PL2QiHgpE/WcNxku7AvPOXd7VGEEjWG5XIQYbt269fDh47IsrbXXbtxYlOu7Dx5Uwds8L8tyXVV1XStSTSTQecR0JEeGfTxhqIk8izeOXhNUUjvILcOPMLnzk0u9f9lL2wFjVGFQABVQJOQBLCqhtZMsU9V1Wa7W6zRCJHN6tjhbLHd3d51z0/lO0zSGebFcfnjno+PTkxjj3/gbfyPN8+nh0e7+lZ29XTfbmcym+aS4eu1almXe+9VqVdf1/pUrV4xbLFez2SzF25P7r6qqqq7vPXla1XWqOfQsed0GIZhpZzp57datW1eu70yLaqCMprYn/elMXRnylHE+UEYND5SlhJhKXwEARHWAteuloQIEUUQ1CASxquqzdQVBQy1hKxPpwo/Q3qcX1b2m3snAC0m7MjPMjMSgoi1IqbPBiAgJCREI+ghyC05rjYyunjupavBBvI8+xhhMZgFBEWPUqAKghpEANdUmvmBY/cJuX66N1CAC+hCTnRl80FQHEkf6yTMppScl6nN3XxZdzhXPn/nMTfrZGioKm55Ksl2p9rOlXkXWrjptl9P22Q6ilViAyZJ8fkNFuhxoIjpfmux56KU3OEtiOBke3vvkkoePk3l1XWMbamN9bqxdL+x7tN4zKQVIe/TnFobtpbz185CO64nh+BAipkhU1dTi1WXZ6Wr5+ODJarUKEKNEBSDEFILs8ot8nudb+ULW2rGV8jGUQF/U9QEYHuqXVk9JHbw8/8cyAqCgIKJhyqwpXDYpiulkyhLyPA8hZFnGzM7ZxOCIkE0GMSTcPJCAKCbPdxRrnRNRYGQBK2RiXU1Xq9W6anamEzYGQOKqVlVE46FVYwkvZFMigsRlVS2XS1V11qExxll82WChz4L6KM35tJwvCZXrtbBBRGVjCrBsvvPrv/xFD+rPFP2Tb/09UjRig5g6BuvslZvX108OFLEOPkOd5BlbCyAdBAfiC5kcn75kyDa7uLj1xHBhP7/SE0NkJGYuy2q5XE6npKo3bt+qan/3yaOyLEMIi8WiKIosy5xzMUYBbOpGB1VnaBOVx2FQbqj+bilByU7of93KS7novbQrYUwDbfvZ89arQINMlUSTyQQAUmJhQgr0oacQm3TJ0dFRSkPd29v7lV/5lbJa371/twnNX/trf60oirIsF4vFtWvX3nrrrXxSFLtXluvV7du3r1y5Yq11zpVl6b3P8oJdvliurl+/nvq9pOcul8t1WdaKR8fHJycnHyMOnLt27dqtW7f2JvPd2YQMj3TlgWZF23kjG7w00cYxlj5bf1KQ2PsphpOvAIoEElgVNDjnkB2sm8ZXXp/PUDlHcs4cejZ1vr++5FdyFkgLzk+FCTj1Q4EuV23rnu2CZGYiYyzkmZBGxBhRqa/DITFGSKUXkGKMz9nYpRfrSemqBy34nt83sVXibJTd+qmFEg6KeQJAvDTJ9iKB+BkbKt2cIaKI8qd/6eem3k3Sq2j9D5/pc3s7RUQlynPuot6CTCvmxQyVrXX56fWepIb2yJBW9Ry3NThPvVn8iQYw9ErCxbZQYmJ9Y5wt5N7n5pbenurBz0nMNF1mfFApl4v3P/zg8dMDrzFKBJHeqyMieZ6nF/fez2az/j4i8rv/s+8CwNX/dPb0f7OA5zBXpKv/09fjHo6q3wLD5p6Xs2kCTM4gBDBEznKWuSJzRe5QKK2N1JnEWpeEPSI5Z0MtIsLGEKlGSREVMWzAmOiQLRrRumHmsDOvqkqinilgZiVmjXfgvRKIYtAoinAxz5YoSFxX1bpchxBerLLqF0XU1QXWQbnMLxVFEYFIRIJRvdfn6zb7E3p+StqJABSz6U7YX4YIhjEzr/z/2fvvqFuy7C4Q3HsfE3HdZ5/J917my0pTRqUqqSySSqZKGnkJxBKioVsYCQmBEEwDa4ZmDTPdq5mh1wJ6mmmQhBEMvqcRSIgFCGhAahpEUVJVyZXKV2a+zOfNZ6+JiHP23vPHiYgbcT/zvnyZWVUStVeul/e7N+LEiWP22fa3n3xibWtjtDbxwwE6I1EBAaWOGHmEB70KvHEVsP9E6i7sVVbZ/atjFkaAUFXO2EGWW2MOD6dlFScb61UIB4cHe/sHgprqQbGwdS4b5AI6m82hI6u1T6/PEe4pKj0Brh9q3j1HQiPqHet70WWIb1MC/GEShahwkkQ1icUdgR56wGJElHLNQwg+H2jTPUJ66umnnrz65Fu/9Es+/rGPP5nZGOPtO3d39/bf+KY3rq1vhBic8xubWxHp0qVLFy9e3NjYsNbGGPM8JyIyNijkeT4cZMNhPhrmoioso2E+XxTTKkTm+XyeMOJPWirGmPFkvLGxMTR+NBgO8rw7k91l2RuT1UVzfOMKIAZSmqJo0tmWHhUgA8oQIygZYwBdkPl0Hh6ZY2pHHVI90XmxnIIGJhQF00pKwXKUsnM64uWxy4YIpVajMUW218i+phbHRZRFDKgxFhRFxJxNUO3aH2uFihUArHsZjhHp1BBbsf++8uyW1XPtZEZ0yoHYV1T6MOHtZ+wExR5Lq9cTSQgsLJxKoKLWiBlnMq6vzPQpxTeO9L3uf8uPWqk3iY+NAl0DY3evOUOven/1BqTJom8ytbC9ZqVqTzOex1hPW9kRGiwmrVMk696mdcircEYnbPtG41dNq/CkFwHsTTp2bUOpq62iAp0c/VOUonZ7HE1obiMl0hxRU2iv/UaaXJruQLW2AcTWY6uqwMyuk6NylL3WlY/wqOezN/hth7tcqdVyl2/Y0PLidkal68uiqqrSuGV5Ng/zX/vkxz/+qU8ezGeKICk1U9Q6W4UaRiZ5q1asO61V48GfnHbfEck0wWfaus5ZBBocTOh4EdsXTN3OsmyFkzZ+PIBahkBVRUBrrTNGOcWaKSJaBGsoz1zmDUg98kSUfDhLPt6UWIXGi5KaT4uZIwOiswaRnHNliIgosZRYVbPoLAnb0jsWrkQNogA2Gfa9yWoZmagCoKhWZVWVVaiCAYQQFLsitQJIW7sTelY8aN3zx1J3Max8353/lQqq3aXYXZVtO+1btPxn5QmnMaVuCsEpPX9Iit1JnLQ/NIi1tdBY6MPafIFeFYopn8cgo9o8s8NsvL1xYXvjyuOPj9Yn0cCiKi247oJoGWOzCLvtrUbWdT73r8IlS0t7s2Y+K7uh53oA1GVgBp7sReiZw7WWAeqe61JXacpAgYgoy2I2zbLcAI7HI1Wdzubzorh9+/Z0UVYSUz00QCxCIOY8z13moSgh8rLxZkykqfXcFWag0Um0qVLQXs9yvO+le033gO7+VH9u9uzygFCtIciYyVphYVVRFU29AlTlYhk3WJ8kIqoaYywXc2E5f/7c9va5K1euXL5y+S1vectoNBqvr7306VtVGV739Ovf9a535YP8wc6DPM+eefoZVawkrm2sA4C1djAYpB4my1RgJjSIaFtPiAdn0Xu/OZ3ff7Bjre3qou2LpBFTAGtsng/yPJ8Mxrm3yssKsyucRusstWYNLRff6WytzhIxgETWdQU/Y0EiEKmgwRisOmOdtdYYAWly0nuFONMCazwnKiAIddJ/kg7TPKbouw4/7xQsb6YjnXGYLHYrtgLszXt3qbRtLl9cQVRTAhvHEGNwuWvFY0REJABFJEIQZeyvupaortK2Kkxqp5gSkWnrqqmuBjGuUNfz2a5tqDfyiXepastGQKEHlXKqfJhy5JIjqtuvFS/QiXVUsG/S7vCaU97xmF+x8R8lTI7UM2PMESG7/87HfU7tdVo+Ko4uH9ptIfEI6gQINSKUtKy5EWHPqDP2OH23G7XM2pFg63BIRIUlSFw7pCfJPe011FniSYStWVtf5j5W5UjUiLyU9mnXYrQyhq2SoKppYLoNJh8cNHpgKz33p6H3Qi3KAtbVXnuQcwlDMx0DqVet6tKp9ILdgeqcIoi4mj4LJ1C7w5vd2/mpf+WyEQStc+WxI0P27mq/SjMhTX269jJjKAFTMrPz/sVbn/r4Zz61c3hAhkQEqC4n740pQ7TGJLEeEa21CbegHeHzf24tLQZM46NcT0+DK1Kv4cYI4TKfpkxEDBnql5FKSgUiVlXVHd42cKEWUTS9hRnkeTkvEWtYeELwzg5zbwljqIbZBBG99ykHNxkCnHOqUlUBRIjIEHGjqCTRIdYrWWIMeT4ANexpPHAjbzaVAhCqTGfkEFhBUBHQIHQTfzsLst4jSS0qimI6m54/t01ExtpuqTdVEIF+dEaXpZwSkqoA2FWNutRh5b1M4mSxOfZZKyJmu/AQT1OWoL/BTi+Y2HlqX1HRE9lX/0G60mFI7AgB+/h4H/mtH0FDCbkkrbqEoeec095o9GI5VHo86qRo1RXbfavGn9jvY6m2ddLRw94Zm/ZdjezUNQafvBocGe2gevSs8tCLrQ8hxBiT9q6dPDppwnu++Ze/vXlTEFUwFDUEVDPItx67kEUerk3EIBgiS5yqfLe556ray6xYOYoeTu3wtudjOz4rZ1N3GlK6gT4sXhRWCnQqQFtTlYW6eCrMdQxVEugjX797PcaYj0fb29uf/MxzL924KaB1qrezqSuS4oBQrfc+z7AM7cFqyKCpX+TYfrasgxvnc3r9sinCCAnlcHkg1kuoXUXQOcfbQGhmRtHuYut1ABUMxsCsDIit9Ayq2BjstEkOSUdAmgklXFRVxZGcvb+zU8X44Pr1jXNbm7sXQPX1b3zThUuXrTGPXX48WalG43E2WoL/tqHaiXLXnJvKafUaJEAUQu99/aaG2hOzfVOiVE9drTXOWgRwzsGpeR0A0luL3Y2yajDC5WeFGtcCsMuitF5FqElGBUBFQrRIlkxUSEVkVVUabOpaNhfR5sRRwBabTDrQvSHERtROJ7muEHQRlhve3uShtNl4S/kNGkG6/aZLre7R/pSYfx1XRijChowxJhWiODbGxBiTGFf3NGkf0RgKG1ZRv0ZPmlnZ5mkjdO2zieWeNsMAotKWlj9SHn35cYVpJ2FGVAwaxF552dUN27lvVVHBEyyIX6BHo/pIaz+/fGox3VsYmVe1g2elI+JX/8e+5tMee4/2yqdQ18UPACynBaGdhXrGP4QEXdLQUmjTJuuu4945fo8klSPV0tq5f++Dv/jh23fvBo4DP1BE7qhtrbv/ZXn2pJPLBJ2zRFWdc2mdqK6iGzrnUr5mUmPabU7Uw4xFREKklAWElADrEwCzt2Y0yPPMo6olTA1SA8nfOaSJAAlt6hKm47wZN2sdhxBCWMxniEhkvIFR7tZGOWSmElTVcZ4VsZLAITIoEfWKorTvmwaBpQoKhYb5fL63u0dPPWWsdc7N5odnGcxHpnZ506kpVb/eiRBTFSog6uXLAhAhdASyNqpY+0V1tbFc1upK5yRa0RBWErRSXZ10WHYvO0VdWfkJzTLtrSs6AEDS1bmtudFNdVvBgTzzrmwVldpi2oYGdRlKR/qpvwFgFRUOykJAAz/0gxFCwKQRIaAx1nbVR0qQU69g1bXiiBwp4XUKraz5R3t8iLF9XnKS1IYtorXR5HDvoJLq/t17RBhiPJxOR+sTEK7rZgBAUlRSCXAVPgEa7qTOH0ui2ou17gA9t0UOHioUxQbrkpps2PYn4ywQMWhoniKaTPzqUmnx5lDrdjIyZ4P83IXz3/jN36Sqt2/ffv8H/tNXfMVXvPmLv3hj+/y58+en06kCbJ07V8O1xei9y7K8PaZXBcS+pRUh5XsLnhUzvEcKPeyZvtaiqEvHWX/cFTvFW/WIfabjhVm13KCCaN1c0tvpVAzfV4WWtrwjCwCxzohKAV2P1n499U19+d5PSEjLTfeob3AmavkAvRyU85W7zv6sVkQ8O/85xqOS6Dfw6fvZJGFuFZVW931Z1J5tn1sFshUaEnUZ8cpPLnmKm8p9r2k3Xjl1J0VTlmTnp+VzEVt7qR4PjVJTyg+JMe7u7n7g53/+xesvMajxVhLofFdq6Qg3Z+9w2tstNEcXdMja2k4sR+DwrbV5nrdBWa22c8RwgkSUFBUkskQIoASk4pwZj4bDPMMYzWod0iXfSJenaDARAURrbWunqvlxncilCJxZQ3lWjke80ByMAJQcomKYTmdVVFCDjqHnaEqcNPXBICEgx1BVZVmWIcR8RCmU7uxD+gikjSkUm7CN1/RxnytCqpOToX7TbnU2A3UphhrPNPnrmDnKqp+k3TgJVjvRish+VA7oZhi3mvApdyX1oP3TONsuthXrMofYlQB6to9+LchHU1SSrtJIn8vLju73pL1FiUKihgxYctYhxSpUVcWo1gyoL+0ZY6RhsI92KGCD+9cu47PctbLm4yMt+aqq+n4+TTCJzlrhOBwMoko2GOzP5tZan2doCEWhj2vf+uLOXlX8lIMDjyyAljd2b1zRdVeoHZaj05Gy+KBRZhCX9fiIXKuorHTPe+ece+tb3/rlX/7l1669OBqNLly4sLu7+4EP/Hw+HI0nk4sXLw6HwxBCWZaDwWBtba2qytaUDi9L3jijl7ZPuqqftK3VLo7j70Jtb1tVRU7qHdTvhAqgTWGXzxbHbWd29Uypp5sMGXzUzGdacleCI14OBWnlqNdU9ntZBotj7zr77dxUDU6mnEdSVDrFU1/BuPzGPLNPIa2j+xNsHGkNjKjQAK2nyx5tSLtIIETUjQ76bNKKfHDKT61ocrrn4dFohZvTKVi9ffPMsnvQKyCYfAftrzE0mDrYa0K1B2F30gZTBLImhnD3/r0bt25++rnPBOZ8NLREzMzaSRbSpUXhZYm5rVetFdpaJdZaW5ZlE2/Qu8tZ651fxLkwp6UKzTZvwYgBoOaXjX0n9ZZAUwmIofeZcxwrIsscsUlHaeMdkqGWkiWSqGpi+bgjFBokY80g884kCGNjvB8MMlPMydoJZRVPZkXYmy2MAoqSA1kebZA82emzIXLOkoIysSKSKctqHWk+X/jh4OxD+gi0MvK/URUVwhb3sl4Uy5+IFOGN/+AN6c9f/M2/lAJIVgK6UrIppLpyotIYAhCguy8RIJZl+6eIsHCMMYbIzA2sDtVhzZ21PZvNlhUbukaHxmlAhEpEgJDUBgBo4EBaq3n3vcKjApm01KorWscO0cplK0wsBQIhIRqjLFG0ICWESjiCmDYFohmtVL9Jlsr/oygqrcR89qW7ajI76429yzTE1lxjrE3lSByazPvZwdw7H8rd8frG7HDGITjnZrNFEBFrWus5AqqCAIKi6IkRSF2jEDb9PzZNbUX96IbcJCW8Nagn38WxZK3F43wjCkDWoCEBjcLJUy1QF+XDPnXPUULKvP+iN7+5rMqLFy888eQTv/Irv/Lcc89tbZ173TPrd+4/OHfxsSJEpTAaDf1gUMZI1hlroIXhTctD26WjywBorc82BMGTBTbs/Hv0ez3tzkZVqfd557U6s6Kd1qlzDDX9bzqLoCDt9MOqK+X4XmAbzNy56OVuldbS0X2ZZoQxuVQU6XRFpbcUtdMNBEULRIjpn3R1HQ+HRHCGCI7jntb54wzYxNBxlr4sltK96+w9FJFkZj0dk2mFbLd1beOJVUGVof4PGyA2bSJ0DXCj3AISGIsebYwxcrQmQ4QsywwZUJBGzo4x9tdJ773Iop4EgKNn0lbbW45GpiZouYbvVFVVWu9jzY9ODMXrBlCeToyKgCSESkLKpOC8zZyNTjRi039R6QaxSH9ee6bBdDjVsaFQB7bGCADCy1paK2de14pBgCqaIqMIEHrv2IsmjH096iRrpTErFoWe8N89jNv1d9S8lKyMSTpP9lcASDgnMdZ69lGxb6WRXg9NvSalqQS/HAHn2j6qSovpiQqdOAJQZu1C2dKyOG4n9BQAgZUNChhAxNp3DwAGSLEsxVgLoPNFUYTqhRev3b137/r16w/ms8znEiSgIiLHGtEyH2RoDBkriVuTAYTA0t26rUywYrBPKzkt5jTCnNrM88VsGqvKEhIZBIjMoGqdS3kkYTYjYYegCIokEkVEUVGFEIwxhOiIUjSCAQ1VYSe+nE3HxgyNuTAab2eZ4+idsZYyb4TZGSSUPMszTwhcFqX3mTfWGVObvupjW2zmi0UxyPP5bFbMF9aYzOVEFEKoYsyzAfn9olp4m11YGzg6j6LlfKYioSissQIahGMKBTMQQ1QWIOOsqUJpsmw3RMiGLzx//fErT54bTfYWSwSCJK2eZA2lhq1Rg7fR/pQig9L3iJgMoq03KV3ZSaw6gTpqsEIvb2QlGKM7y9RNe8ETLZ4r5nlnu4anXsnEfplYOFHGUACooUeQCIwDMqqoCjEE7iDRhKr64p96CwD80rf94tv++dvf/k/f9rHv/CgDC4AqA0BtIeSEdKcogKrFolTQ0WjAVajKBSGEsgRgAkzZoemNYgghRmZO2QsGLYhaa2tJEQEUiqJYLBaxDCCA1uR5RtZY58BgiNFluYoOh8PhaEjOCnNkk+qchhBFMM9z51yKk2xZn6a6RifMUKsb1A7Jzk/WGA4xhlg7l8i4rOaWBpdIIdxkZSyfoEpEFhwiCgsgVQR700MNVVwsrj522YBSSEDhqgCCwhUjojWGrO0ugKPRMl3q5d4oqAgC2KZK77I/K6deV6A3deZrur634jsh6gqgwADtCCkA7u/vGWNIUcoQOSrh+tbmtRdf3NjYMETOmMXhzA4HB/d2BtmwOlxs+FGcV8jIrErEYlo82bSdy2oOtcBIZA0RMXNRVciYkIurEEyWp9kCEW+zWM58lhflIs/yIFKFYMk561qoqzQ1qeItKaCoRSJnWyvhoiqhsYK3rvXEEKxdtfm2VBZhzkWMTGhrLNBmQqIoIZC2GAVorHHOGSQEGBn/of/wH7Worr7uyb3dPYn81FNPXbj0WASqYnjuxeefuPrEZDzOx/kiFMYYVDrYV2fN2iQvy5g5Q8oANUyVkpE6E6Q+3UQgsFYsEtkSOWOK+dw5p8yoiqqEmLIoXZYZMskSFasQQyBDdfHjepn0NoRITyGhxveC2nm+Js6GLQCRQWoDPnsNKgSNRIYMhhIik4IRxGhEiCUIACiLssQYJbJBsmQQwAs6RUJUQmnKuTCoMAMiM0+n0xhjggOGJoQ1pVIjGkSAVCqUrHOZd37gHc8LqapYxcgqQNbl1g/BeFJVaqIiVbXJULLOkrcSI4cAUUiBFARAESJSYUcjO1gfDKv5Ivc2spMYSMEQhFjVQ5hCPZN5ghlqQT2qMiJBAugBBBAFisx1uIICixCA8Q4AmIWgZzHpLteE5tpOpaouTTkn5yK5pdouXf0LADi2icqrUqVFQlEAMZAMJR1xvQeB01UzX+uCj/8ZkDbezGbLNZnJp5eBetQYg6XppVFkPyd0xkfHyF3sL+N66+2V9781AKwwypXGe/Jg38Zwyk+91vp/rsa1I7IwM8eUUmzNbDF/8fpLPs9EqQUYOfK+PdHh6Gn3UEoN0koBx2ZlJGcJEVmTcB8VAQmQO7aTVLysqei18rZaFIV3JpZBlQbeZ9Z6Q6qGKBn/knNJtBcprgggNa/HVo10zlnvuKy0SShshy451TPvFNAax8ZMclgfDzfWJjJbHBRlV7Wue4odgxkhIFTMZRUvbK2HEJijcY/oi18xc7Tb7dFaO/uzVhbwGa1nR5f9KyRsHBFJwkNltYgAyqim96SlzfiEHDwRQUjWb41ViFWIzN7lkbmczatiEYoClDlU89msLAqpA2MIEUKMZVEURTFfLKqqAgFVvXDhwmQyKcvy8PBwd3f3YH+/qqpiVnrnRuPx2sbGZH0yHI/RUGTOsnw82TBIhoxlZlWyxnkPhghxMBq1XLQVf9ObnzI4qt3t1Qcvibzc4P02utqvHsnwTpmH0tS7REQGCCJVVV26cOHgcLo9HnvjUBmaKm8nHQFnMZ1+FggBnLVtx5gFQA2RIQLRw8MDBfDDweF06vLs4OBga2Pj3r17MYRogEPcu7/DUWazeagC14Dj1NbzTq32gWuW1Lo3k5DkrK2BxUTLsrTGIuKzTz176crlTz/33PVbN6iptNjP/tduMG1irSmWr/eanZ0Cp5epEWmZ84obShPrRKU6Xby+HAliGe4VdxeLxe07d7bOn8sGg7e/8x3nLpz/iZ/8ycOifM9XfeV4NDq3vT2bzQ4ODojIez8cjqqKnRsXBWfOxhAsQXJ+IRlGA9j1cwAiAosCpwi6Y49R7K/o7ocVK8vRu5orceWbzm09Kwwr1LU7FVQ7DptUdh2ahG+SlDepD8uu6bpTanXobELWyTtp9Yl1EicQwGq8az2Y7UnXuIHaLgiAoGn4iKaV9Gien2O735ugV9Lg5wF9QVH5nFFXiz0CmnAirdTEeY369lA6Ca5nhVKmQ/vnCms7yZf1srqBTfzGo/Xw0WilemsRFiGGsiwDRxHZ3d27detWURRKSMaA1IVfTpd3H0FRkU6+SnsWSlNWrDX4Wee4ilDnvRlWFhGp65Cdpk5ziJRbQnTWjQfDPM+yzMQYrKVWVTt2EtPgG2MSrkBZliGExWJhGzy31taSeqiEw8HQmmjIi6CK3RpPHtuuwOwHjoWcYiyuzTZVVRVlMRgOp9MpODscnKlE5lHq7squYPrK1+pR6rb5yMkGr242DnaRUjUV6lUkEhXoZ4y2nW8/tDuOCEUkLXtg5RCqsqrKMsaY51otFvt7e/PpocSqKhd7u7sP7t3Z29vf3tpuU0pDDPPZ/ODgYH9/f76YhyjPPvvsOB/cuXHzU5/69N17d+fzuQJk1m1tnZuMx2tra5PxeDQcee/JWVXNsmyQ584YjjHEgIa8yRHRkhHQxWLRhSdJO6iBvjlxFqSTiLIy7K2+AT0/LMDDzDHdbSstFFWTb0bGZFkuErsVyLpHwEOm83NEqdB1clDEGBPehqpyDN57l3k3HASRF669YMlcvHDBZ9mL166ZYb6xsXH7/v1z2xci4sb2uRnC/PCwiqmqErRDtNSNj+iE7a8uoaWnmF0UdD6G8PXf8A3f/33fR0Q/9jf+xs6/3gWAoii0H+vSMqiuhz8xcDDd2LEepvAp/EE6PGRlj6980/XTDgZ5CGE+n9+8eXPv8GA8mSjCYDDYffBg48LFmy++NPTZP7tx85lnnrly5Yr33qytVbAIrDORmciF89uROUaxBgwSpvofbaXFxiccYwwhclOX7NG4EBw5zQ0+ip2oilHb7dBodbUJzSKhmJS3/kgZNZ9lanMozpgA9gU6nb6gqHzOqJttQobMyYV+u0SdADx4DUTwM9KqBeWEbqzwL7I9YJ8Vc+AjkHRQJld6dcYePjKtHDAxxqqqoshsPrt7987+/r4xJggbRO0ElpwyUETkrDv215OoK/RzUyy5tc5CI8haY4JUUMtACFwX1UqKyknLDhVy5zDK2nC8Ocy885nPnEMAQYMq2ioqR0UxZsYm5FKarB5mJqxBRVrTXT19SqMstxCNyYShKhcDZ86vTVS1Ksvb08VJI4DNkZDkYGNof39/88K5Rz4euruyRe9JY/uqHzl90PBHWZ+nYhA/CrXzwswKKgqigKqCgCLd9+96CVY+pORvZtYoZVGUi0KYJbKK7Ny6NT+cvvjii9ODPVI+PDi4e+fWbHoIqmF/yswJ2LcoirIs61FBvHLlytD7j3/k127fuRNCsEST4ZCZNfJ0b6+cz4rFYn9/d2N7a31z02deAfLBcLwI+WCYD3Igst5Za0soSoDIXEYJMYqI9z6J0W2OwSmsqNUoVngXAKQQsmN1koSusbSp98k24Vvp9rRl2DlWKYri/GQj1SHpGnk+T46AUwgVlEUiM8eyLGNViahaUy7KEMJgPDo4PAzKH/jgB599+mmfZQXNZovF/OBgd+9g/3BWyr0iRjPMYd8qoiiI1JC+KwN4rEclZZVYa2OIkiJgRLIs+x2/43d87/d8zzAfzOfzN7zpjf/2Z3+mzf9c7X/jTkmifM1Fra04dq9Z7pRT91084qRtP3cVlTa5JemfgaOAElHgeHBwkBSqwXAIotO9/Rc/8/y1zzy3vb393Cc/9b73ve/c+fMf/7WPvu7JJynLdh7sGMTp1ce3t7cR0RB6a8gY7hS+SeleMcaiqObFIq0+fAWIr6r9A/flt6EIlbAKqGiqjKmqKVIMUa0hq1qjbOGrbzN6dSmtDWroc92d3wi0qqjUeWOpJnGC+k7KNwCJ6HFssdXOoY5CQWCFtOWEpYmzF+nJrCuxsB0ehCtC5tk3TvfKFUgB7ICmQ13wMaWdycntn/Jg7Kv1iIq11KB13GzjnT/GDZrId0L8Woj89u+TfjrCrLvicueuRixuRqCH7JSsTvU1J1tkpVOIRutgTWotQwm9ob2M2uqNHbk8oU+213jKsEPQzHQ7TaraDF5bPUabkaz9ot0VSB2wlH4A0uqyae2g1lqJ3ZND2+juoxXyWrOZ9BtvZyFFBbThrdkgv333zoP7D9L4IKH0JRtmTsEGCMoi1tnk3KAUGH3EYtcaCFs5Js1qeuHWKdGaxNqLEYCMSYAzqpp26VKUQgRNOKcAsc3Or096hBTZpTlZCOX6aDx0ZpgPBj5jKQASBIqDVEHZ+7wpUZyqaggvl03ypaQR8N7HomzXSQuLREShqizZANEjoaVgTJllolqWi4Pc350uiMgAVLEiRUzhQQrSxHanxMZQhTzPDw/2z126mMp4tSOpqt0QxC56VXcF6rLwVm99UqfQQTPCK9ttZeH1tIfuyukm/66cYSds62Ms9HX38Gjz/bCNE3UYSZ4orSFlVhH82ndsFg4SmWTn7DTe3bPLD+n2qqokCocwn85CVcUQynlhiD75qx+5f+fu/Xt3hYPEOD88KItZlvn1tXVPwAwqwiF4gmw4MIastUhmYzxYTA8f3LmLHHNnVNX5DAFFdDAYiIAq7+/tPnhwX1Ctd8Za7/Mnnnh6Y2Nr69z2YDTMZEBEUFVlVS3KAqy3znXB69odmpZ0ekFCEmiiIztgSu1Ad/dm2rBp1xMuPZxVUbbXJEazcoZSUya1Vd0RERQaqCj2zoA2FQapV+liZZb7Li8AWBoFeHWJnvhnd0mtqAUnSeTYlNhKHlRnLKAxgLvTGcfoh95atNYEqKbTKYOqpQ/9yi8tymJ/eng4n+0dHpRVVYRwf2+vqOLOYnG4WBwWxbwqA6uxbr5Y2CacDJtBg1TJAZeLFpu4r/oDILFEEST89m//9m//9m9XgAiaDwcXLlwYDofT6bTNAGxvNE0KaGd8GlYcQ288Oqpp0mfgOAFJRNpvj5166CwhbaJ2Up6qpqOlqkTk3t27VVVZa10+cM7ffOl6Zv3rnrj6wmeee/GFa87ateFoEasb128WVbG7t/Pkk09ubm7meT4YDlRCBQIKiGStMcYAAgsXZbkoqsVinvZs6weAToShpRq7xVmbfH31NY1gcFQJJ9tZySdT990VMLCG5AZSbeK/VFW9c9RwHiKyxhoT2xawiYdsxzMpmYaMbdClV6cG26opkiwysKyIlUS4+nECYBq3PyGJqIJyZAA1pj4roQEKaY+Sdi21hg+sDV6xebtlrB20nFMTNkSNsrOyhJrWoMVCbJlA+0Ea0iYGVUETRwJ4GdCUetJRtDp/q0ulu5Xabh9dA90N2/2VO6UXemtDdTUDDDsCPTNrq+gzy5IzHsPnUnOpHCY23s5kt2168xAPeNtYrUe/TFqRD7hTTx069TekKYVrjNG6EtyjWaSw9wl7WSkJKIdTDfXjb+rFeq1Efq2EgVFHkugM1JE10G2hWTTNKXhURazXyimhI10ZTkTSzlyy1EZ0a4e64Vl1SlkIoeV9KQCgdYCkBquq4gYboFNjflk+sX69pgONNNAT9doDXkS6Ildf/AIR7pivVlbXUuTqDqiCUqObwXG1StM2qaoqLkIajWJR3L59uwpVM3rYNbUSUpQGTkCpWYQKAnU5yD41h7Fis7eNMe1VCmCIRBUbd0pvMXRirCNz8pcn/q9JjamxukA4pgJSDQJazXlVVSOPfLY2Gv+Nb/q51OrfuP7bkKzzlsCmec/zfDQarQxdC+tRF3VpXEbQEctanw8icoyEiALE6gwOvVssihJxa5AfDDJDFFWNNVIJJZ2KCBNujoiAKBljTFVVzvnaHhmWtk+pw0W6A7v8vLLI2wW58mt3szV8/CRtpLctu0x/JWhh5TzoSZwnR+R197X2Veh+sUJcua37MSmlUicEL68S0aVRo44uR2MMGMN9dCxV/cVv/fDbf/od7/7ffhMA/MI3/rw0RbVBeT6bg0goq8V8Xi6KxWx2sH+wc//Bpz7yq4vDKahwDMVihiCjQT4ZjgbeE4KSGKPOpbRfJEplJnR2cKAqa6OchWPkyEwqRIQWCQFJRRNGWAwcFkXqN1kziFX0ja4eYnCZVwCDiMYmDA9aWpS0PbOgQf0mS6ioUEsh2uG9rXTfjCGZBpYdGgNKopX8B+hH63V3fbtTkkJTMzdHzJISmYkISFP28OqKOUJthFRrNTjl2t5COeHsbd/uKLVSWtrvoai8c7du3iqLYmtrK7duURSLRTE7PMwGeZB4sDt76cYNn3nn/fPXXpju7F2/datijaA7+wcHxSISvfNd7x6urf2bf/0ze/v7o+Ewsa+qqhQg8x4RQwghRGxqFEJnawAAMw/9MEBYHM7f/WVf9q3f+q3b29toiFWA6MKFC+fOndvf32+nr93gzi4rhGIHpHjl9VsO1h21JGasXNk/U3pj3VWHuniGilCGChCTlJ1WQlkUlgywcBmQNRbVha3t7Y1Na5yqPP7YpcXh1A7d1uba9euHzz333I0bN97xjncMhqONjU0BdYNh5Kiq1jrbVrosw6KK80WRzut0Rnf73PJtJLLOUopPTmPVOJSYWaR3+qxw0YeSiAhgxbyoqrIoE8AmEibr9ngIWe6bXmHSPuoBRGz7ii34PaL33lhjrK0t783ktny83ezJztiesLjCo0WgATdHooSzzxwVgMhSB6urNeK0glAXTpAQGSFGjjFqbVJcKsBQHz2iCRdUgUWO8G9tW25x2E9SVJqXBVVgZgPmYQJ470G9P0++rTUZ9NStTlG4VlbsboGuSrPCwZIxIh0iLaB8avCzGvq10t3P5qM/a5QWnyAkof2VvyT2wxz5tPPmc0mqmsK+Cepci2RKh0agXzkp03JMRdyzLIMOT2Nm5miMrR3uLwfG7qTetdwqxti1Y6cva8sQqIFV63Irc5zSujHmcDYtyzIK7+7u5vlgZ3dXVQ1RDNLi1bTasqqKKNGykvGrvh3aZhM/7oM+qTaR7l0/Q6Jf/YEX04e3/ZUnSGF9NGm1FAD4vsd/4u/vfLf39nB/9vuv/uP05c+4/0uypKbDO8uy9nRf6VJbkjKFuECzvIkIVDPjgUWFM2MNRyd8cWNjXpaj3fn8cAoChky68thXTssmz/OkKne/XzGRnkJdL9ZvVGolOX058WzOOZstncAhBAD4+W/4QDpa0sHJzDEE4FguFrEKi/l8djiVyKGqXnjuuQ998BfibOatNURVMSfUzfXJeDLKnI8cXBN8Za1RrWVr5iisxGKIrDHe+YgxYFO4BzFKDRamKgRiEFN9IlG5e/v2zoOd559/3jo3Wptsnz+3ub29ff7caDympoRueq/aBFsvEpNiz4hoMBgkGTGloCSzbvdgbu2X3WM11TFsf1rZ2i0TODopqQ91U2SSqUVElfr+u7NRK5nJkdSIV51iU1tpPp8PBwNj7WI+r4oiz7L5bBaqipm995sbG2jdzv5elIO9g33vfRmq2/fu7t6+F2McjCYv3Ljx4OAgevuGN73xu777u69effJLvvSdP/6//oNf/JUP+yxLTDgZQRJzIzoxXwETTl2M57a2v+97vvfKlStAKHXMg25ub12+fPkTn/gEEbXSeaKjHKBVX7tfrqigXXjilZ/OSl3kNAUGhRTlRIQJgETrhGwSHTifGXuws/vcJz41n8/zweATv/axu/fvvvurftPTzzwTquKFay8NJ5PHLl2+/MQTG2RUBZAia1VVqmU6WAGgqqqyfBUKHnT0hUenMnIRYlFVLCIqiHU8AhGuj/OztNAqG4hIj5Qnc3bCGrM9GfceuY4KdmX6U6+sl9bZOfZrTS1joX6KrIj0ErDPTK26BR3TQNL8P6uKSlfDfujE/DqlWq0HTECErzzRVY8AxXy+UbvTahmUDHbclNAclkfFVmhML8ftvdoEKCKPcEgf28lUYyiEkPXB+KiJ+RbVrg2o3XXyMJ0zhJDn+Xg8vvfg/mKxiCGkuKa6hb6iUttFksm2KSP1qkgSN/7o/fTh3J+dYMdzpSJdNNH2vGdmiaE79B/9gZfaz7/0B1/6+r/zxvFguPKUzHuT2d935W+333xd+B9/LvtTrYU+9xn2PW/tc00Gi8UCEdv0laWiwpxbV5YLAcmyfJxlLGKcO7e2dvkSHlTXIqgDp3iiyZeZQ0iKijhaTnF3nB9KplOutBVJf4MRNgCUdASR+RRaGY2UzIOd0oFp+4eqAo7z6awoitnB4WI2mx5OP/2JT37i4x/nGAxoGSuNYTQcDIc5WSOqFVcAoEHrvQYqKnX6DSIBpvgJBKD0n9b/ISKIQB1IUMceG+PQECLNF9V8tggckzfTere+uXnh4sXN7a1nvvgtG1ubw+Ewz/NkvEgvpaohVCJSFEWe5639MoWwGq11vHaRLLURbUD9VZeORAWFnstajqCodyclKSppa2gkakIWFU/LnDlllqlT1fGUEN9XhbgtmsRsEYuiuH79+mAwePzxx621o9GodlI5OxyP4oO7zFwUxfPPP28AY1VeeOyiog8vvOgGw+3HLnz393zv46973XxRvecrv+rxK4//b//mX/3Tf/ZPb968OR6P04w457z3ZMyiLE7sUmRl+aEf+qGrV69CXfkHWYRUJ5PJ008//XM/93NVVa3Y/o9yAGnQUFhWwcHaP23HeL9SePSM1KpDAKAI3GD6GgGDlFSU9O9iNo9VGI1GxXwBopcvXXruM8/NZrODw/1f+9Vf/Zf/8qff+76vm0zGaO1gOMyzQRV5b39v85wpiqKqKlVtee9DE2zOSKv+k5ffpCIIAoNWwhwji7TncuntQxBU20Ya2yIRdeOoXwtqlBRK4PePZj8mMq2f5JSJWJ6Sp0Phf3apawFJu7LlNo+mqJRl2bLBtOmojeV7Bf1MEMunVP2B1QDqEyIifv0TAqSyjwgISAk7D1jFvGLQyORabf/0j7QCPgvUOlJns5moWmsODw9DCIPBQFWTMNHlNsy8KBbT2dQ5b5x1g+VSbCXslIfq8zNZU07vHSK1q1+96xR8xOTt1STTH/dSSac+hVVmg2w+X8QYDw4PqxBmi4WIWuvKGDqAwXX+jUCdXPHq+lJu/rF77ef7/83hpf9pq218tSyaKjTx9ypyyvIc5d7aI2yRDMLqlykVzTtHiIZsOgJTpUdVUK1jdMHWfDYxI+0MAoIhg6KCCobMZDyuhMtYDvPs8Yv59bt3ZlUZBBkUmuLEkI5ypHSCs4hIHOQDVUboSR4rQvbpRwK8smp6rwrpI0imZ6b2HVtZ9vjLUg0naM25PXduCspvJbk0XCGEEALEWFXVYj6fz2bXXnj+Ex/7+I2XXlIW712MVZY5JSBLWZap8Gw+997kWbaoFp2QYQFAa61z1hiDEQEghW9yjCJcJ9Co1LHsSbchJIIqVrFkFrBmxByrqiJDqDQ9LPb29m5cf8kPBh/95KeefeMbrly+kg8H49Eoz3NjbQoUcc6KagyBBgNDlHI1a/cLkgJQJyywJtEYo5qlltJWIVjZ4N0olJqaKhKElKLCjDFIJtmDFUEUWMHWV8GpKH2rs9x1F7+m69gYUxQFAGRZVpUlMw+y/OrjT3zsYx/z1l24cMFbt7+7v1gsLl99YjGbXX/hRY2shmIVnnvu+XPrmyHwjVv3DxbztXPnvvO3fdezb3iDEI3XJlyGx5+4+l2//b945g3P/uRP/OTzzz0HiCl4JoYYTi1/bAy95z3veee73pXlORkCojRpDJpZ+9hjjw0Gg6IoUt5gd9zgSC6oiPBKGkafpTSQcUfm91TqbvOu6VbrmCMATTXYe/wq985ZNxkNOVQ3Xry2mE3LxXzn/r0sz66/8MJssfjFD314Y2v7/GOXdnd3yyqev/iY9fl8UYYYIwsRMSACGkI1pHyaBns8cP0ROrKqH0XmscYiWSArqbYXkoIAgeKq42zZnyPxUe0YUgc8AJKa92rsgTrMrA3camb8xJE54XPKb6AmeiwFlWnz00pz2KeX2dnXirSToddGnXX17ZdL3vtWjITGoJb2lNVurAsoCysQGWdsbQhPXl3oR1xwBAQAYxAsqIJaayBqZJYYCzIOBawj513jsNQGWL/ztA5hp9QLHll8/Z+OFzjSoHV/6q3aTrx+WRSDYY2jjycbaFefdexF9VlS17dTYFZWjcaStVkgL1y1jSD2tHyNXfPMCsxrzxPdQwfqPnoFU6sb7qLCwkQEigholhkgLQuuvzQNkLyqJsx7bKvaqXITxGCMUeAEYIIAaCjV1Up9qKpKRBaLxf0HD4CkiMXF8xeAdDo7UOVhnpMKicQyWO+RkFkUsAgRrcuGw8FkopHbpGERbnMbEFET1m0bF96ZryoEaIy7K+E9Icb0Dae3Yi6rioiyPJdG61AAjpwQ0NEYa4wiSAtGWddAYGOMM76qs9cMEcUYq6pOrLTWGdD9g2p3f+/69Zd8llW7+0UZrbXWDSsolZkVWIVDtM4tprPJeFyWJQJaMmQRRJkZFcrF0jqYarGlNB7nnDVGU8ZXZwEQkTOWY2XNKksKgbPMZNlgPp9XZchHdaT+YrEwSMbZWJYxRitQBCaSQZ7bI2zN0mw+m/3R//AV/5+ven/65h8Wf/hwPlWIcK535bQK3xL+fPr889v/AwiIGuuHWoVQBRVUQRBSVQVCsmQcGZPyTKrAxnkGYRE/GmvkMlaM4nIXKslFt8vyTRc3fvn5a1wFsjmpxRSCj1IoE2QO8yi0fzgtq8X6ei4xdot4iqR57DAHXGUUKy/eGAh7I9IV9lYFUOhGqwN08ka6RYu7kSGqanopVb1YBdFjija0jcAJqNCnUacbKRzTpUKrIj2BC3syLQoDEFrU3Cy4CB34tZS12Gry7UGFRCKymB4e7O5+9CMf+eiv/epiNjUkhAAS89wgROcolMUUZJjlzhiLVoOYGtoXAQmoHmEDhALWIEJdQ5sQiVFBA7IiiHJK+DeWomiMgGitdwYIlPJhZr1hjiFGS2qJAEQW8/0bNz6+t/9J+tB4fXLp0uVLVy5vbG0KKAAOhkNrrPUORyONoSiKkEKImAfr6yGEIhY5ZZYMiCAoqShopRJDDUGO1lhTuzJUJEZul1taaV0wj8ZboqyIgFWQKlRAFowrQxmjgvfWObDGgEqIoSrzYd7yqBX/jOt7b+qqjkR6alVHXT2Le3+dtKBS7F/7XimCzhgzGo3KxfzBvfsCeu78+dl0MRtVa5PscH+BADKbze7em965+81f/bWf+NSnp4t5Phw/2NnZnz64uwj3Dg7/z9/7fV/9dV8PhgCoFAZH4Gjk1r/sK77ydU8/+1M/8ZP/+8/+7HR2OB6NmWNussOqMM5SAyiiqqPRaLFYCOjaxXPf+tt+qx0PAmnmbFmWyUZrjQFnn3322QsXLuzv76eoreV7JbcJIZJJHhhWYUhQVHXKVhKNEuBB0k6dJ2aRJcLbcqCkI3YaJGjnSCEKt8Zya0yXOSyNcyIGKR06omKtnYwH4/Hk8PBguoDt7W2bma3zGzduv7R3b+eJx6+un9u4fOHKF7/1S9a2t9fWt9e3tx/s7g2G8fqdW8PR6NKlSwoyHA1ZWFGtdyVXaABARqNBCMEYdM4wB2PQWkdgjTWchEMVY20QJkJRTUlTjRmolxSKzVmSdKyTROsU30WGQIVDNAIQOAZlcAFUhJXFG/CZd8ZYJERU0ZTBV3KMKkJorG2yPpqSnU2Bb+uctdYAOYVk3hKTAJQAEJOnVFUSZ082glhVzi0lIuiAdxFRTn5aHEgUYSBQBWTVIAIshKbG9wStPS2ICAYENUQQlRAlRGVhkTIEATXOoiiXIWpdBRsQk22CECSo9z7lXqYya1wxABgwDbAitD7m5j8lNHUSL6J3PhuOWICZRcF0kBJWohNPseL1Iuj6KJPLvGJRgxRFi/lCVb333Srt2ucvPQ9zFNFlSeVukH+t/jWlJx/Zo3JUUUzO+W6W52p5o88VtVJFsn69Fk/Q2vyonXlJdnrEvvp0Sic7l73iDjVUa72P5NXBbv7ZyXo8My8Wi3RIZFm2d7AbmMfDERnKssxaAwApdsJng/YuEYkco7BASg5ZBpiK1BA6R5+1Yuha6dXZ3XQnXZdwJ5xz2En4bhrvwZJ2Hz2fzQ6mh4eHh9PZvChKjjFtB24wv5KpAZseJmcxcO9FThrkrinlFPv3ClGDYSAiyVTcqrXJ/tM6JQwCIZKCqr75Lz/20R+8nVr4lv/fG/1YjQpr/P5/9ZYnLl/ZmKxd55tEtLm59Wc++Z1/6g0/ma78p/ZPfEv4c+2jf9OD/9v7N/+MMosIglqDzMoSOUYy2JoeV6Yj6fBoKI0XAFLSPDk4BG/IJyyHNCQKACrLrdXwPoSjc5tC/k7ymL8cA9UrpdZ68tl86EPpYV1RUVZmBpTOiuUQwRACIFESVSrmUFUcopQFAty9c+faC8/PplNCaSZFQIkQCcEgEmDa8CCqhNI/OMkYbA6VFeXcIEgj/ZQaQVFrrATEpMImYBNUBEZgBCHgLiqgBV0c7s8X83t38drzn86Hw/WNDZv50Wh84eJlVX3jm964tb01n83KEMpQkTV5lhVFgYjOWuccqNYmdhERsUgKKgiidfG8+jMSHy0Sd4J9rbMqlMigc0ZACasYjQoaY8g45xP00LEc40Sj20Om+FGop942qeea5D7CKDJbLNY2Nx/c37l97/50trh+/XrmM4MBRF7/9LOL6ezqE0/cvHN38/z5e7t786qcV/z13/BN3/Gd3ykAzthUJzdZl42zzrmnRk/9lu/4LZsbGz/zb3/m/t17KfRrFqv2cE9O+ASTwCLv+9qvfcOb3pg0qDR3nZGC4XC4ublJHSi/RF0vzYoO03WAYCc6HxFTSFWXx3bvWn7um0VWzORd5tBxB9QiuKRzUbgoCkQoywUA3Lp1c29vl4im08PBYBDKQMY+dfV17/2a9xYch+vrs6K8eftO5IgIoZjv7z4wzkaOApqyzvBhoURHl9RrJNWltaMKDJCA0RVUFBNeCDY+3lO6gX0CQkQ0yQbUdVc9KuHK/xPoCT6ktnetpx733PYU7lKKx6EOwupZ+6cNdBgiITFLVVacQMkArPfQGCwe2enxyqnHozAhhz08KfTVz1ExxiSDtT6swt1njbCD9Ho0e/izRisOENNDFu6JbjG+0k4iYjeQursbzr7uic4EaZdCusuy9N47Z4tQVvOp935jbZ2MUYCowircB85i5qqqkmlQpVbokpafut3q2f1N1R/DjsteX41kHm1gRptc8+Wz2kjlNIAdw4CKagihLEvmGEIoyyrdGLnGIqyNzUug5xrIpW28na9je9VGap4yd0/+pYvX/sid9Pn8n9uwzhJRWVfZy6nJCV4RblDBGDQIoIrCwPylP3w+s2ZrfW00yjc2MqMyHA6LRXF4eFDM5xI5yzJj7HQ6/cGfefeTTz5pLe1s78O4P4wcOUGcVJXEaIgG3lLup4t5cu8e1bistYCiAqLAEUTUe19y1KpyxgyyzGcZlkFayQ7hjOiAiCjCcCRcrf21p8O8JoaMmrSGA651Tj0OSu7zixBBQZg1BAXqWnmqKqAlbSqQpN0RQohVCNP59PDw2nPP37x+QzgOBo7SeYyAomjAknEJK4PIkSEkgw8J8k7Fn6UOraW6DhzW8lyqCEqIYFCRDAAohZMPY4MYYkzRVgg4m81u3b4NAJvb2y88/9JoNHr961+PCjdv3pzN52jN2toaTUhBvffOWIPIkWOMwKIsCjVkU7LCtsTMcASevgvuBJ2ijSs5VMZag2SkxjQNSg6Rkjp0DAtabQ1eew18JeMU2iAQlSi8dfH87ft3iyL+8sc/CkqDfHg4na5P1tbX862tzSHrnZdeuvr002zdnfsPihAY8Evf8fY/8Sf/ZJZlKdOIOWqjkVZFgYje2MuPP/5tv+U3T9bW/sVP//RL114Ejp2TvXZkpC128cLFd73rXXmeO+fm8/mRs0zX1tYuXbqUsjWOnRE4Es6wQt20Ae6UsTJ9fLwurRxS3i1T8FuptP6mq6hAA1RDBKAFc4yhBUROOlL6dV7Oh5PheDxkDmVV3vnMPeP8M0+97pOf/tR4Mtrc2pxM1oFoWsyLqtLhwFin+hBF5bNGdY4aszTrPMkuL0uqpj4lhw8lwK7XruuvAbXOutPNxCskLCJqrcUGeVWSJoCIDaZRewa9pv0/iY7ur46YeuJdr76iQkTS5BZ+DvW2LrWyiMiquPzZpBVrCvQtUq/uumlba7B98NhfT6czKirpstlsFkLwmUei6Wy2s7vrnEs10DPvlVbBCpNYoy2eHVDjeNCUmmKMsdYlaKxOz5Oldfl3+/GU4T07pWelUPuVd29COVrsv2X7VVXNZrPpdJoUthaemFkEpI3g79rbiCiFnDWdPbG37epNDPcUZez8n9toP6fDMgXuJZticmod9WY4IgI1KsBCKuPh0BFsrK2NRzlRdGSyLCOiwWC4ub5eFeV8Pt/d2dnb293Z2RkMBoYohgDP9nrynoP/Ln34F+EPg6pFMkTWIBI44+CI0g613INqARU4MhFZwhT/Zsnk1ufeE6CoCgI1ZqeznD1SF006cXj75s/XVlFJH0xdo/Pzgj2eTlpjczP0j/pQVUaMAQSiyBJj5BhIwSBNi+L6iy/dvnUbRL211KAV1f8CGiRrbOZc5rwz1hprDCH0jALtZ2yjkxWoKfDVzn5SAyjFSwAgktSpHIiqqEqqooopMreh2eHholhkeW6tK8oCiDbW15gZVUB4fW1tMhrvPtj55Mc+zqCPP/GEt84QAaK3ziCFKsQqaGRlSfa4EKOqsnDtdgVVSS4XyewSKi1lLPb9tMuwsO6wk7XOAClwUQAQWhLQKgauSustfo6q3J7UeGsTZWYBVUMc2Q3y93/gA5++9nw+GE8m60VRHJaFSvFEeWVtY3O4vv7v3/+fouru4eHO/oEbDH7v7/uerfPbs9nMu3xRFmhImlD+fDBARGUhZydra1/93q8ZDod/7+/+3bt375Ih7MR9JaA2EXn729/+5OteBw0yfhtLXA8UwHg8vnjxYkJm7/7UP24ewpZbNQNab/mpY74SoN61QLXnVx133Q1VFRWVxsNvrDUp7q61eSWKMTLL4fTgQ7/4oQf7e5P1jU+/8HxRVrfvPXjiicff+e53lbPpwXD33MXHCNQZS0DKIK/YKvpqUY1ak85JaFVP1DOLkUs1L1GKv6rrneDnSYDPGSkd2e3xfUajv4g0oOSINWgcEVEb+tsaW88OHv3q0rE8qg60Oxn/4JiCjz1fJDT2n2NaX26to9TmQ/cVuJU9fLofr33WyhdnXW0puB+aY6/JYViaPeAYttJtfCVW96xMHwmByJAxxkisAFaRpOsndTKJqQ69qan7rPqb5ZXYseuv+v3TMm2F+9bQ1ZpqEnVnrSNGSzPhtVGqU+OsHo2lwM0xWVJbhJO0qdCQz3NWOZgeDodDa4xYBwgSWQFijOQsM0NTkKsoi1TTPXOZNoDFrVFKhLvJS+18SZMHrJ0aCCKyMn216KCKgEjLMLZe9UZdajiqarxrhlGhmw/Qe3sFQBH23ocQVPnw4KAoir29vcPDw4RqlYLHFHp+2/T0BLeVWnbOpRpewoxE3bLobQfaxXNs3Bd1cGnamU3htgmGwXuPDbpLfSKCImCCFogxaIzGGq4qZHaWMkvjwWBgbWYMQm0mzLKsLIuyyEKVqj6bqixFZGdnx1o7m8//6ztf+T9/5c/BEfoW/8M/S39cY5gvZoQUo/gsT8HBqe4FABKRsw5TCRcBAFSRKtbR3qBqAC3ScDAk2oeYilqAoAiJMQ1WKYAh4rQakaG/wo2xesLO7loxEZG5x15OOh2wn8vRv0q0qZOIJzi124euzGNngfVIT+r9y+FL/QZP+gW7eaHJN44sKoDQV3BFUA2wShVDjCFGAFURiDyfze7evjOfzkbDocRAIJgQvBQlCgGrEWUBUQK0xjhj0r7o8itpkMEBEAwpMxkjCpjMYLVjoo4uxrqmELbpZwBqEYiQDBlUVMTWdiaAqM4aQ4gqWeaQMHBAUELIffbElSvj4bCK8bELF/PhIB8Nc+9jUY4nE2tMDAFEyqIgBQSQyDHGyFFYmDkmiRm0TrVFkq46imnkeipZWgeiip1VQYbIESlwhQQERGUIxMeWDz/pM5x0VqrCydm/q6uhzqcyZmUxY99I1PZcJArLvCy2LpzzeeayLIION9YO7y7u3b9DUpF3t/b2XZb78ejOrVs7BwcV8/d/3/e96c1vLsrSel9UpfWORaH2nIGwUDqPEAVhNB6/+S1f/BXvec9P/dRPsYgzJnHREAI29aPe9va3bW5sOO+Tqz+x3LSugurAZwi4ublpra3KqlagASG5djvv2J6/RJRkQGnTCWJMyntrvfLei0iM8aTBTRHx2Ji6RKTrkEzX1EVIeuxlaeFqDzts1NSkiaW3yzI7X8w+/rFfu379us2yW3fuzsvy6aeeLQ4P/8k//PHHLl26dPnKN3zLt+aj0SQfFDEiYFWGlJNez6DW7v3uvFtjANFaV9dGZAFr+kFuKwJO99R7yBpr36gFVdNmq4pIErRhyS1ROyYTREwWCGzyV9OQNu4UIiJsIkIJUUC7zs+qqqThJ53jvZ7xNENdwSmEmOYXQLGv0CaW1OX57SwTkcbAwq06ncY5OZCSIJqKqKR+1DOuyxlf2YPtU7pCQroL6vCBmouSs9goKtKUDDo6BSuT1ztuerZfxA50ijVLcFdm6a6HXgt44iGlK17oTmm1lSv7BR+bA7vxRUp9oJ1wrDUb5pg3N8ZIcwEzN1Hy3XtXmjr2CXWv+s888coVane+dN5fFVrJ/OiInNb4SfsNj5lLwLpIEIsCLot4dHuvkZfSTKM+NYup26dVmVUb5MSVNdce8KmmWfus9h1bYWjlrr5ovlQMQoi4tBjV71kv05otaAouSk8pikJBzcBZ56oQ9g8PBnmOOSBiLCvLXPrKZl5VTcLGFSmKIrHagFQVZcp3TGwXjuyf1N8kf9fv3iAYdllDS0ctl9rE3nQvoz4KOHS2SrvrFDoiEIAIl2WpqrPZrKpKFhaR+XxeFGUVAhGRsSvIPy21KRPYyBzOufJINFTf91I7SdNJ3F7TmR1Irv+05o0xhJiQBpKiEqoAjfkgSXj1AKo6Mk6UOebOTgb5OB9sTiaO0AKMJmMQttZOxmNUtdbOpjNVtdaOx0PnfVEU88XiYDZHot/+j9/orNve3v5L7/l33eEto0CMoSqtdZHFilRVleY9zUWWZd47Mg5F0UgKvhLQGEMaLgxKiKPB0BtbNgWzGEVVHFFCeATUVImMiExTpKUz+z2NcUXe0sYYvMIPVsyf3c91Fenjf1quK+xA33bXVdp0dBxPOYYDnEwnHwGn0ZH3OtJqugxAm7rsCEKIvWjVGo5IYxVSoQxINfjK8nBvf3p4KDF6Z8pQJVybGidH1UBKkVJlEZbkMNFOzbLOsdVsAcDIQsYCKAEiGQaFhMihiqCIBIigKb0teVoUgQkVUIhSFjNx5AjCKqjoLYIEVnCZd5kfu+FoMh4Ox49dfPJ1V5/kEFV4Y23dejeeTA7299fW160xVVHm3k9n81hWCECAoayKoogcIcWAQo2VhqQIBlCCLpPOj57itckM68Jb9YJHUMLA0QhQyrjlqMIOKcGg9WarswD6nvPTzsq+KHLidUTL6nUnttW8WrL7ooJB1MiL2Xw8npShKuNi7/Dg7oP7hDQL1Uu3b1+4dOX6/evXb98BY+xw8J6veM9XvPdrjLMKICpkDYOCWa5tVWAVQjTOAgBZm+X5m77oTZv/x+bN27dTaGue52VZJtPPk08++eTVJ9No53meCjclrpuOjxijQdra2hqPx7PZ7JSaG+1JRESRaz9GO7IrMkbLYOmYk6t9l+Vp3m1H6rq0zVz0ChZr2wfEXlGXNOaJ+SNiUS6QKIQwn89D5GwwOr+xuXvvbnF4oBqL0bhcm927efPS1Se9z8t54QYkjG2UfhJF0iJMY5WatdYysLM2rRQWBlgGKrenZWcxnL5Ylhe2L9iILoCIdSWk2vdIpgmi6MjnkhYtYuIr2HyuS/pQJ+gLm2q/dT91GYCXDnFYVVSaiyGl1C0pxtAoKkDNZkv3Yoe9d7NbVRUEpKrKoqzKilN9SUQAlEb9UFURbpK6l4pKK+91V1dr5DoqroACUVvXQUWEoFceIF18SpA5nKq0qPTqDUCHocUYWofE6jX9Q6p3EItKx5HOx1VbTvRZraPyBepSd6m1gnLLfbqXQWN9QUQ6m8Ou3XOJkSWLRCusn3QX9UNylZeYJG33UoMJaCWE0KbRA0BZlofz2eTCps+zUnU6n4VaajesIqGqymo4SoUFtCzLRVG0Asp8Np/PZiGE4XDovaezFb5Y2icedllXB+hKsWSS/6nRVR76yIYSHMdisZjNptbY2WyWlJYYgmLTmnRB9ZaurXai0wFDJxcxTHclGyH0kXYembAB02BmBPBEVVU4xLXhYJhnjtCCZtaMh8Ph0GtySXnvjM3ynOiwqqqqLEE1laGYLoqiqkKM5aI8nJV789WyBnvzxcAZJWfQIGLSRbGDPJhGIEZGEa2isjCzMcYheO9zkbIoM+ty74mMQmzDfuoUy4ZYWFjqenkdOmKBhpVfTVP+T0Qy50+68uzDC50Ne8a72r3ZePk/j6LC2sCtVQuHiMTIKYeeOZktyqLc39+fT2cIEKuA0Iv7yry31mbWeeuctSlTxRpbh0phbQqpuRbVBlGDKEgGCUEFhVUJQJIjBShhUyQ8CAJQQDQEgGVZqqZoEjGEhDamIDFK8OCqqqxSzOf7+3uC4DKfZ4PxcDv32c+//z89d+2FrXPbZO3ewf4Xv+WL3/LWt37m9qdd5g3gfDpbn6x552aLxexwulgskkXfe++9d84RkoqGWImq9a7nDjtD5qgCBI5cFQZwkuVEKhKMtYRUq2Gv/iQfT2kuztJnaO2SMd68fv3g8PBgNs2ce+zCxReu37j2/AsC+rqnnsqIblx/6TAyGDMti8nGpjfm+3/wB7PBUJLQ04QACi7BZ7URMVHBeschWO/e9o53vOFNb7px61ZRFMkdZ61dLBbOuccee+ziYxexw166TAARVTQf5RcuXNja2rpz507vgOvkbCRmQsuavyey3ySfpW7Iit/7iGDX9qd97lHx7oxz3H0cIjAn26IhMs75xy6cP3/+ws793cPDg4sXti9vn7t7/cZ/+Nl/93Xf/C1baDmwczrIBoflYWqEGsPfmZ79+UftdC9l99eM0vwhYArSMY2tIZ2tPfcCBwmhKooQg4ocQeh8OHUVgNXV9VmkFNqaaj0REceqK762S+hYp80rpC8oKp8zwo5Tr28ywa6Y0mVnImLPrKh0zfbUxOmdnke1sg26cqT06++0JpDkFUk2hhDC4WzKHl2eWebFbB5jzLIsyzJWkchlVSb5Q0CZWZpq1kWxCNO5RE6HfdejcvoB2b5OCmQ66WI8AUMMIJkT22IpZ5UBiHAwGMxmM+99CO5gd/fOnTu7u7tVGVhEERBSmpaslByRJqU+jXbCqDmLtTIFMZ5FKzsLSYMoTYgcK4hxvDaZDIcb4/F4MBAOs8MDjuWfeecvpOv/9Me+ZTgc5Fn+p9/1s+mb7//pt7hcbJYPBkMgW06nQgadmRfVu//647/w/dfTZX/8F77+9sWD7fWxQwREa81iNm+nqeNWoixzKcKdNSJiCpipYQ2QMudzn6XFn7SUo0AroQpFUaSF2oJHw8NSrbQ5XU7XZ85OKxv2jG1qU6oMa6CFzyNFJSWZCELXXt9ygBBCVVUp8nOxWJRFMT+chrLMnA9VYdEgcHKbpH+blBU0SM5ab50jowhBY+vnaW0iRGQADZJirc8jNGqPAmmDIlZjiQmo2BTvRSZGq1oH/LQCYjKoo5KIRGEVcNaSIQWwmc+yfDjIPvyhD33k135tZ2/X5VmI8V3vfvfmxuZzn/lMPhioyI2Xrk9G4+n+wWI2LxYLrkIy3Djv8zzPsiyBitbDVEebLOmMIlSMUVQBtAwlqzoF55xDos8uGEwyGSRN/pTFnEymydgcY9QqWIFyOs/IPnbu/P17O7vV4db21mKx2FssFiHevXYtH40Hk8mD/f0/8kf/2NaFiyHGWj+BujxbojR0Swg4BVQtCs5Hw4HPvvKrv+rDH/7w/fv3kylHRPI8r6rqPe95z+bGRhdZtmtFFpEs88aYtbW1xx577DOf+Qx0olC6wZ8rRrpTBioZ14bDujxu14/avFmvzbTT2wDdJv5nObnu5LS6LnU7hghZ7kU5Bk4duHv75t6DHWd9qEoT16995tMRMKq+/z/+xy/7qq8ZrG0wa1RNaH4t4zrLcz9vqZ3u1zoHAxGpdgIrAyPHOtijie9qpSnlSMI1tMYjGRlayXDF5PpZJkJSUmyiv9qetKJgkk9ei5H/gqLySgkVEGp04iakIsVj40Ol3lZIAgRrbMvCqmpplm6V6VME8WNbbg97RGwPklYjOvaulUfYlYSlToNVWZIxqsmxEIqyYBVBCDHuHRyeyzKyThBj5DJEFhBRjnVRFqy914rWqHAVg8wkzueDfDAajZKWQt30xPal2g/Y4D4dCYo79r3oSIxc95XbXSeqzpzJoB5CFNFU1RjR7B0e3H+wc3g4RWsTZCkqsYgKdxWVdlJav8rS13lqlAYBOGulU5ChpSSxPfeHbqY/z/25jdWIdYUmGqX9EkGVOYAoGTMwJsv85Qvn18ajzFDuSQKByf7i1/9C285/+0X/4odv/lc/cPHvtN/89W/9SPv59/2bd41HY4B5GeJ+NTuYLb7kRy8px8zhr44+ebC///qrV7c31szYOaIQGRHJkOJybVNjjooiqepFTD5yURVQAgPGd7BCawM/1VtMayRwsNZlWW59Rm61gttJa6ONJKxNp68G4F53w55dUenur1fYh1eRmgx4wD48ELIAoKhyiDGEWAVhjkUVFkXKTs6yjDkQiDA38MHAkUlRyAgzOmeQDJI1RkENNs9q5hhTdQAEQkixXVTXUtKG3aoB7BYNTZQYSO6MCCYFMGXSMkBUNSlkS1Qj1FXlEZDIe5tlfuf+g2svXX+wc99l2cb62pu+6IsuPX7l5s3r3nlD+Asf+Pn9vb0YYzlfFMUiz7Ktjc3Njc31tXVl0chchapTYJ6s4T6QCSCah1scUUWcdUakWJRG2OZZqgSpKnjmU+CVk4pgqj8W42mLuYkETmaCjbW1zLoXX3zxYD6bT+fntrdHk7UiVnsPdiqOgGCcY5XpfP6tv/k3f8373rd/eGi9s2ZVGklIce2Jlf5LFuvRaLSYL976JW+9evXq4cFBqpqV6I1f9Kb3vu99zntGwLRiGuNavb8AiqLgyFmWXb169SMf+cjBwUF6oohYpcQtpcnxlfaYPplSxFEbk3yiRtehZJPQGKXJVOk+olv1r1FE6qBChaW8m4QHAQVVAtzb38PawWgQozMyq6bFvFybjD/5qU+K6sbW+Tv3H9y6e8+67A1f/Jb1rXMsQpZBJPW7OSm0cWgpJk9WE5WUeO9rQ50zChABKPXi5Rc5heOmoPXrdp/0MjunDSQ+QipMD4AiAFBVpcQYOhFQtWjBYhBRBRHIEgiBNgVXoFctHY/EGS+Ho3kpEWE9TVHR9h9Yyp+68qRHpRaFNSljpsF81v4GeS3OL9vdG9SnqiyttQnzZ+X4FFXE9j8BWP6XNPyk5renL4g0la1a6r9O31DU65Xz2uCIr5ij+p+h236IIQhz2lqEAGQzT84yS+DIIjbdvupvPWWIT/zJqSBA2uiqRIoGAY2HbIDFjDr1N3rvpYCIKaSnqwxw42cQEdMUU6cGqzfB1bX29RXu2RHxlxGNAFAxG2PIEEAC4lre5YkQkIw92mAajLTfENH7pRBvlBbTwjib+QHD/iwEBi0AFqDz+7vCsHnxPI1G+7u7i93d8foGRX1wd8ecNxrZIlUa5xL2qvlsNneZH9tslOfD4TDLspVcRgTQyEmIjMwMgoaMQWYuOaSalaIqKZmrSbJHRFZNqI6tabY7Tv2JJUhZRQBkbGxGvh1AZmaVSGZeFoHZ2Rr5V1Xv37//0vXrv/rJT+wVBXsPRALMzBLLBIADTKloY9pCSXxJJ1MVGQ0JaBkqm3lrLc+mbadEojGGAJ0xnihHct7PVITqclTpZMoG7td+4IX2rvt/Yu/xv3Qh8xmqpiRmh0rKNTS7AoIYBeDoRSzSyNJFBxe3189vDwcDnzkzHOVlAWsbWyuL/Pnnn4fLx6///+/Xf/D3/PM3TzK7NnAUfYZeyETUksvdRVVevzNdxDc8+eTVx7ICZkTGOpdl3lqLAJEDqCrCfHqAACHwoihUKR9MNGosDvLBYL8sqeJz+WDi/Q7OVQAVFAlUkDIyREYplQw3brEI66NxFZelCUMorbXdU2ClvGxzBoDIihS4whu6J0TPDNFlRO0WPl1kWaGWP6QPBjo9XDHDaY9VntT6SiJKNx8G+/f103J6HCCXpgYAKShbu9w4VlhAI8eiKoJw1MAxgsSwmEeubGb3HuxUocgyq6iImGK6MyUCJJDMUu5sZsmSIggIb3rPEkOQwBpJGUHrAwVUNcsdQyyLogxVHeVtEBFB0HtvXRa5jmcn64wxRHaAgwQfNxgMjKGqCotisZjPy7JCMtZYT55VgoikmozSejYAAQAASURBVDwCxWLx6WufzLL86ddfHQyG6+vrW5vjanFQleX9/YN//28/c+vWndFotCgW9x48cIPs/LlzJjOB2Ho/mUyiCqlwDCS8NsiBqAphsb/fqsHWOmNMt5ZnWZbW2ra4UMrGlsgekURDUXljBt4bVY3KGkNVGue6Ekx30uVkYdp2K342LkQiQqKyV9+912RdMSZGQ2Sotzm6TxKRyNFZZ6092Cuq+fSFT39murdL1q2Phmtrk+miuH3//m4IVdT17e0wm1YcN9Y3vvJ971VHfpBx51BCBU25nYgpA02EqcmaqDhmo4EgoDdrW5vvfsc7P/WxjydUhiqGx68+8Uf+6H+9eX6bRcBSBAAQtGSEQJUQCVFZokY0JopceOyx6XwemFvYeIumPW6EAIk09UZB6cThNdYpwMFsWo8g1geHqnYzu6zppRgxK5IloCqwqiLZdgOGjndFmDWlKBABkrMOEqSkcNJ3mEUkqqqAc9YCURUiWnSDweF0KpYCKhrDIdx9cMcYO5/tXf/EL5e7t9/0pjf5wSCS2T53voxxsVi4LEPQlNZVMUucBzBIufXOW+OtsWQI6tSQk0ajL5Y8/EJVVUVjbFlOlYGAiEFYsILcm7Vs1MbUIRIZE2PkyITEXGGfs6UqOt57MuSdtcYQIYqCJndG7YwnIo1czOaZ88CiMcbIyuKMkdhj5q2QFmNlOBSLqagqUFFFMyvQHfiASoSEgWNVllUIhsg6m6qaoKpFghglVmiMWAI1XGIZNMvy3HuO0RiT1rzBplIYANBSH2wURFBCQKyqEhCNNYDIKqwikDRwZA1ZbslYVYPkAa2isAQQNehOnKO+A783XZ3JY0kCdZ3oYg1wQhJhBtDUdUoWpSaK4ahlnKUXP9kTONuilwgNRE59wa8Dj0rauqtGs9Nvea371KFWRweosRSTKVCTWHg2OsVa0774invh1aKeFedInv3xXQLgwMViIXMl7/LBwJbF4eH+wXQ6L8tFWfmqHDPnfjDMy2pRVGXAKAKYks4TJJMAFKGazme8tjEYrW1ubHrvEz9aee5J9hsB6LoYkxUzJRuoqvGuXQcr9jBzMgreUSm1Pr8AMuexk6IXY9zZ3Z3OZi+8eO1gOiuqAJRiJKSzYk96DgAAInJT2+S06AKtc/UI0ZDp1ZQ5OWK17rYxhmp3TdJSSEElAkcPknu/NsiubA8vbK5vb21mmfOZBeDNycgcCaT9f3/l+097F6KyqrI8O7e9feH8+Na9Bzv7u7kj9F5jdbC/u7c7ubA2yQZkjXFEBKgsIcakwkUN37n+11NTf+2577LW/c4LP5b+/NFP/g5JddVZbM3+kFLegulqC7VvjYwRVaRXfaP8Z0fYOOIaU2rfJgIqCtDA9bA0mZ0AgCk7ABDBEIGgQTRABgElgiCigkSNlQQiS84SogEJpGqgcZRp8zwE772oxFBVoRQRsoYMgSEismg5RhY2zufORAFW5iqyFqMstxaIyCKgCqkYVQNgCcsYBTSqtsd84khCoGqYo8QoMcwODz61u7O1tfXgwYNbt27tPThYFIv5bFpUZYhRCHb393ye2cxPF/N8OCBronCe54PBAAirGBaLReZ9sspzjJDqcHeoNa9AkxACAMnsQihVVaoxBpwaJA4WCGsv4is64qQDxVnP0ysjEUmCIyL6PLt1bW/nYH9elrkxo9FkVlXr62vT+TzPsoXGMsTFoiRv3/e1X/v0M8+kSjUuz6DqtdlKbCuRCSk8KQovyrJaFFvbW9772d6e8e4Nb3zjD/yBH3jLW9+qKZ5ely8mANg4fDRyQptJwWrOmC7cQXdotUNy6pivHKPYoDMBrJgZVu9qqTVN1gkAvOxU23TaYimsKy2q5HZIadiqYL0XVWPs2micZRlZyyLrmxsSQ1kUMVaqaq04Z2/deOlXf/kXb7z4/NXXvW7j4qVQlS7za5MRi4QqcgwcA2hSDMgQ1SK/LnuDivrq+VYUlFVjMjsCtDnWCVrvkZ9zbFgL9if2FG9D14IsoioMKe1NFeviaRXawtis4EpVhNkgqHCsJOm7hkwxm2IKiRQG4dbag6muZQuioGcVGPUEOVB7//Ze/VWcqZpwpRfLZcwcAWv7e/vby22+FYdSI78OFJUWpqktDfO57tGrTysSZ/fgwH7pxjPmqJyduF8jrKf7npBUhwDD4XBRFA92dyIoepuA6ouyLKvqMJYyPRzN1rbXN4c2Yynm8zkAFCQVxyCsqoogIjFECdGSGQ2Ga2tr6TWrqjr2oWd5EenUlY8dD+nKsjnjEDYmHEREQ4TGtqEnVVXt7+8fHh7+0q/+yt7BfptzUhRF6n971ynp+ck/pqpJvzo9sjNpR87a0PUMHNuspgAJMEDWGmdMYG61FFJBEYNic7cxGW1Nxtubo/X18Xg8tpZYwny+MMYURfixl77j9z/xT840UgD5cLx/cDAvwniYba9PnMO1kZktZixByJhYyOKgmu9jvuaNy50HBERKBvPM+m8d/MW2qR94+h91W/5Db/gH6cMP/tuvNinfACwhgTHasxABACSbrrAYd+S3L9AjUc802vuljl2MKeAhRmVOEjSahE9BFskjWXQW0SIRsCIgqTNoSA0KASMwKROgQBvfTCAIneqSxphYxVhWwoyIzhhrrXGWjLGghQSO6qypYohVhcY55wkJNZIxRMgcmGNVVSGUIpUIlzEyQKwjvpWbSg1CUDEuyuLg4EBV8zzf2tq6e/fu/v5+CCEE9t6XZWmt83kuhEVR3Lx5M8Y4sMP5bDYYDN7whjdcvnx5Pp/fvXs3gVBNDw7b1Ds4wlTbZIZuBoiIWEuEwAiCEEEkiHD0zmWE3aCgRyNrrXOuNcTEVxz1Tg3AHSKSIcwzOxzev/bSOZ/xfKFIZHB9tP7GZ8cfffH6/b09a+1wPH7Pe97jnKuEiSiE4OCsexabrOIQ4vkLF77sy7/8mWeeefr1z15+/MrjT15lESDMR8PpYtHG+RhAFWXmEIKE6IxV1bIsUyL+0t/e59f1oav1OjmlS3yk1GY6AohopbJz965l1HFDbe5KN/w73ShNOUtAhs5h3c0Q0BjTot3e3s7z/MGDB5cvX97Y2Lh982Y1n7cpKIeHh4iY53kI4dOf+jRev3n5yuNve/vbh6PB/vSQmYuiaJFFDZFzznUzr14LQmVg1hhAo6IAAAGTCCqfubbv2amNXxI5xU+2khzCUispKXRdyrLU2VTJ+hzRIEDte2kWZ4gxSmQKFSZgUhWD0E31084C0DMrKp+fJA3Etqo6Ndhgx62aU8/2jqm11i7860BRkSVo49IT9BuNtPdeK4pK+lCD8L7azGLVfXECiuvqXQjD4XDvYH86m5I6REwYUAeL2VxCNTsc7e2NrLeKJDpfLMRQJKiYo3DybsQYVWQ0Gq2Nx5nPsMl2TdFuj/w6eFymyqPF/bfqjTFGEeuoRoQY43Q6PTg8/MjHPvpgd8cYk9h6w86WdaMVTysyhZ0qNKd4VFocRiIy1kJcWtqMMd77d/6tN3zoez6Zvjn/59cgA9IUnAneOWtsDJFUEIBUjIpFdd4OM3dxY+3i1sbWxK9PxqPRAEFYzGQ8ds4gYgzxf7n/u/YPDhZF9cff/C+7Xfr2v3n+n33vve43f/W9/+l3/vMvqcqqigJanVsbbI78/sFeWcxAolXYnAwsRCvsCTNjggjHuJjNQ4iGHAwePh1/+f/079/1wlVRUVAkNIbgiNvHWGuMUZVTnGZfoDOSdkowNr7iJSHWOyTlT0tkEEkI9JjSSgwRkUdjCDNFC2QAwFsFdcYMvB3kNvfGkHAoKlbnPNRbFYCwzvAFAIQqhgQWZ8kYZ62xxrrMeWupXBwOnBErkSuNEYUJARiAqGR1ziFgDElLCSGEv/8ddW7V1/29Z5N0ICr/4XuupS+/7G9eVSAgREBCFJb7d+/NZjPr3GK+ACGJKRTERBHnMzI0m812dnYMXHv3u9711NNPq+onPvWp3Z2dqqqMMVmWrY0nCRPCOguEK/LuCr4tNI7WRYiIEIuyNKSQWcTAAoTWuVcusbUu+oemXpyREgZ6QoAsq3Dh8St3dnfdaHB/b9f5/LHLV/JsUFTsjTl37tzudFqU5dve9rYrV64g4vr6uiLoaSDJPdIGdsJ7jyP9krd96Tvf9a7RaFSGyniHROPhYG9/3/bZqQKASFJUuApCAQEW8+lsekAIJiVBAdS5Kd1ntchxp6ZKHPWoQFu6sRc+eryiok0kHnWKV67cpS0ely7ROKkDbKOqBkxRFADw9NNPj8fjvb09InrmmWf+w//x7yRUHEOKOh6Px6PRKIRQluV8XrzuwsXbN2/eu3J5NBqQinDkqmQRdBbRpUPZOfdap6ezxggcVRiIQRFVUIVEUU72IjwitZZfFdGTXYrYgeFJ3KJRW1WFpaoYCW1OxhswtdGmyXKMMVRV4BiH1lDtbe6vhg4eqcjLQBz9PKR2EaZK2WR69TNOEm5PoXZkUiMr1QaWrpZW3tK23khvK3azP3tgEYk/pGiZ2q/c/LOSDNKrmNY8+qigeUTKPNOLtlu9vbcul9PJnz5GeD2t7V4o90M70Di9ujcdYZ3Lz8fEXKXwFdX6RzK0os9APYx1yyvCmfb5assQk41g2UJnKqEz3XgyGAACVGXpvF9bW5tX5aKq1NBoNJqMx3d2H1QSqyj7+/vr2XCSDRCJVatYASGDCmgUrkJZFIUhM5msrY/XhlkmnWSSdtFzSghBk0KtRBUIWJawLH0/ibHWpmKCImK8g45xq5uj8lDdrLmLiGr90BhThiKE6LwDQ8x8/eaNnb3dKlTItFgsWKQ9OZbO3AaEV5uMgVaTaa9pT6kQQg83OaGCiiKAtP4WTQeuUEI0RnTWeue+6EcfD1WoUCusBlnmrauYnfODLCcAS4ZjSQgGlCRa1LU8v7i9fvHc5sWtjfPrg/FgkGV1wc18MLDWIsJ8tlCVkGfuSJLripaS6H/9tl/57f/krRxjVc7G+SQb+Em2xdVQJRqDgyzLPFpCVGEOHGVelnt7+1FVyMLasQttlT74fS8CQPankYiASA1BrCdXJeE7MRH1q5DXuuuSj0GKO9d2LrproxsG0CT5t7G2vXWiWue3IK6kNy9ZWWsH7bTZ+2vlBbXBV3BkdLktlTpZVd3NewofOpbBNi1Qd+1Z23qqV+OJ6+COhMGpvRLRzrkk/GsT/WUAEdFam+W5z2qtAwAMINWxsIrWKjCRIqnzzmc+hqCRVdWqU6hPcm1AMlRVVMqErFXXnrPWOu+9s84gVCJojEGKMRiC3DtRZI6VIKtGBFVdLOZlWYnIT/62T7T9/5nf9emv+btPR5H/2GgpAPCB733xLT9y0RjjrCNrqkXBwpnPZtOpRSLvY1pmCKEoYoz5cDAej9c3Nt7yxW8bjEe379zePzgoimI4HG5dOJ9KSq6trXFkY4x0dn37xPRNbEoHahM1FCBWVRHmRWatI8i9I0iFZwTJQodXt/Orqt1yICtro1mKirisPaXNxoBelEv3Nj2pwS6lmg+JiTHzznR/fza1+SBIMRhPJusba2vrB9P5rbt3XnzxJUQMIXzjN37j9va2WgJjAkcyREDaodRyEs2RljJ9u66yLPPWuSTEEtrMkzGKMC8L412IsVs4uc2FYOaqLI0zIlJMp8VsaoCdRSKrCioQq0h1bXhBQG1STYBWzlPon+HdigI9SaZbpEX61uUVkQARU/UQUEXqlRNoPQraZLe2jKvrkNGIxpj9/f33v//96+vrCTX7ox/9qDV0/vz52fSwKIrk3JvNZgAwmUzW1sc3r18zzi+mh8ViXhbz2eFuFSoikgiZ9y7LWkUlVTk0CZkAuyPwKFpEK2EmdwXHaBAQUkVfQFUkNTWEBmJdEkRVmkxorJm/NLuGO/VGCJd5eXgcuHqqDdAVdNP49sTCrjLf32sxRmARsgn2ECoRjiGEECK0SRpa54a1EhWAcOQGoL9WUVKbWAvM9WiuLIzuh2TMbfxvy8zkrtEzfaBl0e7jB7+mky3DvZixIyxlOX2NwEZNMbd6C6RKKd3juD8LPZG42aTQyGzUYGBYPCKltccYNchLeCTpvM9QMOkqqaX0TbpluVaOk3q7A8WdNGjoT1JfLVM8247oKiqphlE9ndo4/Or931vBZwSPO8VSjggd3QwbWIG6/9q7q6Mt9J+c6tO1X5EhEUlGpyPLF6FB1+0aPFYU9+5ULrdM+qmBn2p72F5DJwT6IwAZUtWU/n6wmAmjH+bjyWRtbc3N9+fFbGd/b300NsYEEARhEUMGDAlh5LhYLIqisMasjcaj4XCQ5UGjdKrAAkDSzq0xSHV1ZEQAJEuUBDCDwOUyMbU/tss/29a643Hse7WXNaItY1NIvigKASsxClFVlXt7e/fv35/OZzbLbt++nQ6O1TJPbRhxc2hps6tTKk5XZCGkyLGrqNQIGxwRsG9tUU715ptFXvNlIovKRJnzzljGKvdZ5n0oKmcplGBAHakzODTm4sbkyfPb5zY3tjfXzm+teWeNcaIaQ0BEZ50w5F6L4jAzNHTZP7j3u3/H+b+bHv9nf+Wb/5sv6TlYWlofjUJVxaqwZjLMPDmLuVMV68h5Z8hsbEwMWRFgkHmxmJaFsX5alP/dh77pv3/nv6rbf+m/DIvi//6Gf3zSHJX/bZH/GZ/GXJqtDczW2lSiFBte2S6AJARCCxDXFEaQI/gcvf3ZnDfNqujMwZL1ESJCP86wntNjClD0ZZ3jbMj1HkwoEY09pX9lN5JET+BDsNLhFYsJNg7M9nP7rO6uF4Uk7WFdW3XZCCElL6AxxojhELHxiGbeO2tZ+Od+z6fTxb/1bz0jxvzD3137/X7PT72BARigZK6qSlkMGtPU804FNMiQsVZVQwzMdeMAgAoWyAFZAVFmBQlRRaKCArECK7Aqix6G8I++oUau+7q/97qjB8ciVEejWy0SKgjzB7+/VmDe9WNXc+tENWqNJyugzjk3yEajUZ7niPjRj38sz/P0mQiV0GbeOTfI8yqEsiyzPMsMISEle1Lz2FbWTNyjho1CBAMSGRGdNQigLCpSaWWUOTemCQluOFVr7+gdASvqOgCIqDFLLTr9VDYF3bFxk3WWypkOxBijSi0wIOLh/mGxKA4PZ85nh4v5S7dvDw4Obuw8eOH6jQc7u9lo+NRTT129elVEVICDKIIwe+O1X8SjPTFNxxLaygNEhAZMg50NgAIqjTKQhI8U1dMKH6paluVsdlhwDFU5m+7PpvuWYJA5Q4aFY4h+mKfdRzFoqGJV1toRrlS76g1UN6mvO7aNQF9Twn05fhBTjcOGqFFFsA9KiwAt/KH0q6OqqnPOObe3tzefzx88eOCcGw6HiDjIsvOPbxSL+Xw+X1tbW1tbs9bu7+8XRWG921hfs849uH+bjN68c3tjc2NtYz0y+zzL88zlORIZYzFl7jenf1d1xdWMhbNSK++pKgh7Q55QEY0gkiJab8ik0QCsBSBJ+SK1ZE9ErQFFOtE3VNekr3Wco/GSaa8lNt5q/klW7M5XuwixFqqW4hyiEqGqhCpIrJLEDiJEZBLGNgIAWENUVxxWFKkrmCWltImUOcrHVyS9dlFhU4yhObyWjrgYI4DGKJlvW6j/037e5qqwdEqWzsM4QOp8enrS/ZrBQXwY9OXKi/cUFULbBHyJyK+D0K//zCnBT8UYq6qKMWb+UQrSrSyU7uKQRjmp/+xEIJzSoLV2Op/ng3xtbW13ejCvSqiqQZ5fvnTp/uKwnM0Ppof3pwfoTAxxbBERLTjnHRqKIouqTLUgM+cz572xoQM8bwxpUz7WWouARVGMRiNFmBeFNKenIBg4xk+yIno+MjX25nqPGEDns0Wo7t2/d+3G9Zu3b83nc5v5oioNee1Gmr6c9htGuHpXzYKJAMFYE0IYDAbOOegmWTbpocmc4byvqopDdGgMGWuMJSOILGAJLWhuaJzl5ybDJy9uP3Z+a3M83JwMhrk3xhiyMYr1pKoxMKEdZoNyfrA2HGVZPp3N//aL37W3f7CzdzCFvZPe6MnLj+3t7QKULsu8y4wICSNBPvB+mDvvrbUceFoudg+n93b2DhZlPjK7B3vX7937yr9zNTJvbmx8ePzc0Ns/Nv3mteEAFP77LzpRY1kh62ySm5XgdAzHREnBO2WptBJA6/U6Szfa40Q6WQdnvKulLn8/ZfOenXqnbxP+m6LzleOxtyg0wS61tNfrSIxBVYwxnlAQOMRUHUVVCZFD/Ln/aum++Knv+Uy35b/zWz/5vf/iS//8V/3H9Ocf/tfvRhDlOihfUvKsNSlpLXBUrePIUUGUOQRGVIhRuKiYQZWBFaJwFA2iqTrET3znEkH7Z37XC+/8sUsrL3gwn5oj1SrSfv/gD7zUfvPB3//iu3/sKqhCR8JU1aqsymonhFBWlc2G3vssyz7xez+VLvgvfum7Njc38+GAVRSBjLHeqapor8q7c66pvsBt+VdExKgWkKzzxmqUGKJDNNZ5NKGqwJgWeuSkTMLPFaHC2mCilcwOZ+NNf+PWzdnzzwcBNWZvb88aUxbFt33bt21sbGDfnLay5k9a591ViNgU/gRImEiqKghyxJBIRIqSSrYfHhw6DbEq79y++dK1FwyhNU5EQhXKorBumMqOpQTClG4FjcXzEQak9yIv53RIfgxrbYrRan9q10y7YLTx26vqzs7OeDxOvoKiKPI8jzGWi8Wv7DzY2FhPLV++fHk8Hs9ms3Pnzo1Go+u3rt+9d/f89pZKXB+P1ibjYjFnkY2NDee9s1Y7RuRXnbCGkKKBdeqVwEY0qgggpH7oKDtzAcHGwErduKNX2LelnVEkhsAsgGisIczIWnLeGIMIMcZkM0CABLneNuK9w5SaK3xKGoqqigJp6zk7kbpK+9GDo2uSO6WRniJ0ynWndkM7du10rDCzan2+PNpRdSx9QVH5fKfWWIKvoJJOHxKRe/bmxo/cVvWqv3/YKjdExpjxeLyxsVHtPJjP59a5zPsL65uzg8M7RbE7OxCDpGi8G1rvFJ1zaEzgWBTFolikRiyuFplKWkrr609RVSJC1jjnuoqKVKvmN20qUbzyqkhEGALPZrME0l3OY1GWN27fevHG9Vv37s7n83lRzA/20FDKu3kERaV9x6NctT6BiADQGpNw+n2WQTFfXoOY6jUYY0DBOzebqTKDiCVyxlqkAACilgwBZM5tTsaPXdi6dPH8hY3RyLvxIDMIRJBSo1XRkDM+IYlrnnnrTJ5lMcYx58xcVlVVxf/Hv//y/+dX/6eVDv/o9e+mDVobZg9me8PJ2mQwMswW0Bo0ubVDb501yqXMDxbT2w/u3d3ZXwTBeXEwn9/d2d8tuAi8M7/r6f4o95uj4cb62mgw+MEH73Nc/MX3rj7uKHnnk2LJKOHUuniqSxfr6VO2jKk487TiIxV8xH4EGsdlJdMVs1N3855deui7W2slqlbATr2x1VUI0XSCWKx1hhWxAgUistaiKEqCp6Mff+/PnN6fv/ktv9x+/uFv+IXf/9Pv4FCmuDtBsN45a9pXY2ZtKjwKQBRFVhCJzHMJDMoKUeB/+Y5fTdd/0999ujoS8r1f8bM/cv7TP1RHLX7RXzvvcmOMeffffuIXfm+tlnzV33oy2mPGo4607IB4ImLgWJSlMWYwGIBxVVW98AMvthf8+Nv+0fc/9/sODw/vHE6ZeW1tbTQaJWWmi/OeBOJkhJK24ieSAXGGMudy6xyCQc2tXR+OJ8OM5wv8XNeoPoUQ4MLm+cvnLt26eXd3/3D/cHpYlYcxkM/AGhvh/LnzX/M1XzMajaS/dJl7a777kx6pgNz+mTwZCX49lRNp/+ypQf0GrbGz8uBjH/vYrVu3etkXCj7zCawfiSSUsWHO+KhlWF+JJtkG83S/bOMtl1u4KRRrjBmNRhsbG9vb288995yIpKWFoEZ1sVjEGK218/n83r17eZ7fvXv3S7/0S9/+trfdv3+fVSbray9dv777YGe8Njl/8bz3PvPeOCdJHni19ZQ2etYY46xdH45yn5eCZDwrICgBO+BxNjg7ekSrpbwqwI/tYksWAQ1BhBHAWUvOGufAejQ2RdK0ZeeSDajbCCQmJgwn79mkyKR4MITT7GJJTmuNGv2fRKSOcjrdBtc/Rx5FsKxDIhtHeuvnEanD6uocrVdj3bwmikqKp3zNqgJ9flGNR9HGtjcuUD0t8O9lUNIrsAHzPtFxfCqdZpRVgI7EszTxn0wKEIWzPGcRa+3mxubBbLp7uD8PFRga5aO18drBbLaogs5nuXVljLnxSGSsRSRWqGIsyhIRhUVEKojdxZxU89gQiw4GA2YGQmNMqEptAzn7L9Xq99CPxnkZA5WcjwgAUFWBozifIVIZYsVx7+Dw2ksvvXTzphBUMe4dHJCzKGqwB3gItZv6IaR9Wu1Jh4hqRcXaHkNJJjfnnPeeMSYrTmQWUCTCmk0AKSAhKThD40G2MRqsjfLRIPMGjcXhKCdyAGgwlGVAxEE+jMyL+XwwyJUFALz3YyQAioFDjFXgP/8r3wxAosocnXNlDLxe5MORybNKx5PxZJTnhiUz1lh6L/9ZqAAq+Dfmh6bT6b3dnet37+5NFwxmFg4ODuazKs4rYMVKmL3hRVWU1XRRDPPMG9ry8Af+5Tv+6jd/uH3x/T91sPbnt9J8YYpmBrXWgKpBIwh6hgLe7UlwkiShbTzAw3bEsRN3utf72LvaP6UThQv9Dbvy+eztt5/bQyUdeLk/EW0pBUw0QLG9I2foszLyHJRjUAVjTCqHAgr/r0s/cpYudenB/uwn/8vaA/O9/+hNDhGsFVARjZwKRAABMAKKQgRQUJEQY6UaQFngxzv+k3/1u59791+9svKIIGqtfdNfv2qM2VjP8ZymV5PI7/l7T1NaSwYcoB5Rcuqw5p5DKQponuWqUlWV0jEr5EMf/vB4NFJVZ/3jjz/usswPBuSczTw0blFmLssyQQUQoBASGUU+3NvdWJtsjkZbk7VR7g0ocHRkQDQ51VU1OaVfIzv3yyLsf5gfHl594olFKP/dBz5QVgU5R6jTcjEaDAX1iSeeuPL442BS/LxiCi9UVJU63j4VaFs5pLR+AHYipZe1DxO/bZ3qsIoTpaqiSkTOuSzLHty89omPfvTGiy9ujMeHsxmkkCFE54w2SMSiktLU0ggT4qMpHI9mV67diSGEEFZ+KsqSELuiYa2rEIYQnHMJ8isBu5VlqSzDwQCVp9NpWZbPP//8jRs3hsPhpUuXvPd3797dPrd55fKl3f19Fc4zH0U2N9Zz77a2NgslMsQKbYmP9E6df18J1WkCSaidDHwmwEDGOVFBQAIFjqPcpeIbaU4FTwxHat1x6djshb42fyAAaC/4WxuRFbBZkY0ksFRURFWUWVi0NhA645wXMikzzFmTJgX7+gOCqrByZI4cg0HtiwYrwYQC2qB2nkzdvIZV0S5F6wJQHcO73BG9y17OiXY86TLzM01fqgGVRp45iNTx7UugcYAj5TvpjHKaPaW7UkNeqKimIIleJ9uaoWk9EAIRkigLWWNSeb4YOUaNDE6I7Cn73PqsbhlqgMtuP7pXUqcb/QCP3pRpJ0c8LfqEdMbCEiMhGiIVkYd4Ds5EERtuK2CIgCWqUGYjKVBnYhS7a5Q6Iy81lH/7Jkt5VOvcFGg9etrBXCeiNg4xxh5H68k9HT3eGJPcwSlW0lsHHYyF1hKgqgK9u1IEGjOzcAisIqPBkAAzwkHulXQairKIyHYwmGxOyge7u/O9eeUsM5ZbGJzbDFLMS0C68WDn9t7+0HqNGhUrlZxqYHtjLRkjMSozAVRlORgMilAhQMkR+xIDyzICmIhawwACcFiBe+4GaHZ/WsbkowJyFNWU2TovSkCbjQaIUBTltb3dG7dvXdt5cBDDoijm8wUaL6xEpNYECTHENpZXAaIC9LM/V8qxWTIBUFSVRYG1P2Xe5yEEZiFCVbTOM6shZ5AMUYK0D1X1/t/5K+n6N//wlclktDYeCoIYMERKQo5Gg3yhXMzLtYHfcHh5fXj13PrYA1o1k4HmA8q8CgorOps7Z4wzZDgoemPdJGHeWLJIARUd0mKxqKq4NyvIWOOcscZYS4aQCAwZggs0HAg7ULLG5e6ri/+hfamv5x/5K3e/44WX7r10Z3cWWY0PQmgHv/B9L6QLvvQvX6hAolQLVimkDMETxgwGI1ghAdUQTUSy4iwDl2ujLHNmsSjAZT4ft1eG0MYia4wCAC7rxU/2GccqO2iDCLop862opLw6ce0p0uZU9Kjz50rQ8MomhcbuhdA7jbq2utWunmK76hiD21PKABoy3SXaJQSwXQQkkdhhCFlVroEWzBHBGCoZInO1qBCOMc591d97EhH+/XdfS3+++Uce++gP3e5e0GopAPA3v+vjv/0fvjETyTNviESlZ8lWFWGNZcpwOChEgeAIE59KeOovjJ//Y3UF1Tf+6LbxOBrlk8lkmA8sgjSlygSRCTnGEKNEISZV/LK/8sQH/mDtZvmKv/NsIRUSVsIKysK1Pzm5NVgdICMdldu21jdijC/duPXkk6976qlnRqPRcDiMMa6vbUJT2fX+zr2iKMqi9NaOB8NYhBi5KuZhMdseZ7myr4r1YQbMYFBBNEYkU/MzhBp6AFRBUoWklojIdH10TRHSozKK93VyiKquGINP8iEoQst6EUBZSUHL4IH2DmfobOazx5+88sa9Z/fm08OqdJG3sgxEB8PR137jNxVVcOjBEAGoCEQBEEASEAlBoTa0L3vomg2rgIqky8FOMkAtOKfAG0BDFgCqWNV4xJGVRUIA0YHPgnVWqJgVxXQ+nU4BMXCUVB2YzCJWEqq0i1kk5UxjfU709khXcj/Fu6W9kx16QmPfR4eNeqaqKjEZodJ82RrPUGOMYoyIBGblWEuKCqqIguhsJfyZ5583RAjgyIACIlVFmQyn1mVlFRUo8mw2f/6ZZ5558aXr8+nBU0+97m3veMenPvWpofWTyUSjHt554CLYySjzG0VkqKxVsoAGFTGmpO5XaCvHTn5setOBJiWkBUJQRGQOFgnQACIjBK5KFlYgtI4QAFgwgfSwijHGZd44CwiZMd4gEQioqKTI1FRPCZhDVcymB8aiqlQxBo2VBgZOacZkDSECi0bWyBKjhMixCiqRDLscnUXnki4DAC7z7WBUITDXGXcEqsUBSKwrUjMjQJpZY12WZ8I8ny84BAJoEr3TWbOCwlLr70hgrI3MrBpFUu2pKkYRQSJhZ8goA3NlHKW8J0UFBdZe3mbXr3uK0891sDfaFCDnHBE1r5gaNABkjEs2l2IxR1BD6r2r7QZJdUQC6Qi3zEkET+FzogIKEmtEBNMxy9pVheyVqVna38p45MNnjeq0qxR6ob0evLqd0RQO2xF20wg+FFHv0Ya66zd4NB2re1C9rDhObaAkVHQxm4Fohib3PjP20vb5MoZfe+HTh3v7qk4QMp/lPgsxhsiLsjyYTRVh9+Dg4sZWlmVFqBZVlZFVAUUU0vbYC8yIyKqzxUJEnHM51paB5XLq+D2Ofa9HJU2AI6oqCnk+8NnQWjudz/b2D27evfeJz3zm4OCAiAIz19ojItaZ2dpkQL6yPtTUxIGQSOqVShLNOnTj/7rXfv7oH77xnr+/TkQJNkVYBJQQwRAqGEMI6J3NnbMExpAxhIbQGCWjUOP0IRoyVhSVyXinKCigCIhCxlhjrLHWWDG6vjZJtaLJ2tpa0UBqoDWWUDgKwNGiOM+9dP/FW/f/ye+5lf5839+6/L9/z83211/+wbtf9jcuVUCE5IgckgFk1Xm1alZUVFIwiJYMqFhDztm1tcnOzs6Tz75xZ3bYXokNoPvy3lcyMf850SlecVQlVUOUgQmEkUiIjDFgVjNevvpvPZFlzln7Tf/wDQeVxCCFLd/0w+c//oebKKwfvfCxP3S3e8usLCuOgaMlUpXIAk2EWkKTlIQrqhS5hklaeWjFAQRe/xfWnbPO2DzLJvlwkOcjN/TGMQqjjRAYuZKqUk1Sl5AAEIsiwrv+2hMu82WMBzzPs6wMYQm9lHrSGaXE9h/7C+du/7H76curP3J57Z2T0Wj02KXHr1y5MplMUn2n0Wjk3FJEuH//PiIapMx7731VlPPZjEM1GQ62tzZJtVjMcW2ShDYBOD25tct8Ho0RHRG4z9SIsxZED8uSiIZZTkhFWW364ZWt82995vWfeen6xoB3D/fR+dm8uHbt2vXr17fObeejofEuJSK6zMcqpEBfVcVTPEWqrVGv1k9aS2D/CGitzkQknJYnFkWxt7e3v7c3n82KRVGVlXG2RfRSgCoE0aXhQNvQ3Fcv4L6l3nw139RuAZAWjQM7/pP0b3qp9n2xAWtBVQIQVFSl2tsMAIAKseNkrqoqz3NmXl9fX1ufSLV48ODBL//iLz548MB7X8wXyZkTYzznL+N0Oi/j5vlhkx8rjWmUXn3Jrl7eujouCqKiABExskQRPsN0dMtTtvIDdsJfWlq6UwC0U0g6uXsat7ZYa4M1xnkgtt67xreJCsVs0eWWUpc+ZBGGssBUgAU0FaWxWZYPBt5lvb6e/EanB1+svDQsXYx1EUnUY6C1H0VYahppt8ZJFxJhjKEsMQ1aE5qIiFiW1bEgMrB0kqa/hTt2F9uNXX5Zodif56RNprI0OE6f6x6t0tESUWe8K13cFpZ5uaQdSNyzT7d2QOhUxAjEyBrZZgYMrvvJpXMXrt+6uc97e4spWquq3nsfw6IqE7J7VZb3s8H+1vYawKIsi6oM1tdIdoDM0TuHiAlcOFUnIKL19fUzLlF9xXmlisDNmhGFKBJ4pog7e3t37j+4du2F/f39urRlUbR2aGNMiI1l6xigp0ekGGOyW0gIncX8kJaNMclOwRyjz421KVknFZsbDPLBYGCbtBZrnbU2LSVQREvGOESKQdSSMaYKi+aYALKIXoVTUaeUA4RABKrGWrKNy5sAhLQD/rjSwwfT+U/9nqVm0tVSEn3g+2od5lt//BlkQcVAsgj85r/y2Ef/YG2GH/2Pm+lMIUPWWtXSOpcs1vu7+4aIpZfIsaKoxDMEhn2BTidVQVILag0RohgCQ2oJjwC05GhyoKHNfO7XFedlNZ3ODuf6lh89F4RZeM6zlVvKKpBBVgFJFQYs1OkxysyRQzKXqEIVVBUq4a/4q4+//w9cT7c/8z+vq7I1xhubuWxg3dpgNBkMPdlMyATYDQsWjjEmk7kwq0gS8ioEIYgKrFCUC7LWD/LZfCEqxzqLVuji/7SdVv6Upx/84Aff/OY3f9EXf8nGxkZRFETkvU9Olfb6+/fvr6+vT8YTAOQYjTEhBIlxNNpYX1+HMsb5XFWsoXRIKOIpIcWvvNLFimfvjMHrzGyQhsOhiByGPY/m3GTjxTs314ej17/u6clk/aVbt60x9/cPiPAnfuInfvqnf/o3ffmXf9V7v/rKk1c3NzfX1tZYhUNs5bC0Z0/qYcvnFQH7uPMrR0AS8QFJFBTZklHVsiy994PBYDQapUBZ7ohOzJzqhUuTGylNpYuzDuKZaeVog+bFERGhjphYEQqX7tDG6dqSiBhDUoc/pdiTpYQwGAy6z2Xm8Xi8u7t7cLC3MRnt7e0VRTGdTheLRZ7ng8FgMplkg8GLL744GK8/duVqKnUKMHnVB+EsJCICGJkDQBVCjKENrH1NRdY29EtEhMU0trgU2VuWZb08RMr5vFVUpEkrFxGROPAejKJFBDDeZ3me5bnPc++9hOOBTI5SV21+5e+10s7LkiSlLTyqvQzh7jVElBTdhFCa1GwAMAa9c+2yTIl5y9v6LsruT6seld8w1NTl+TzVUuDI1J6xk9IB4Hu0Xdo1wyAinK3QUMsKk7gcheeLBbNUwsZZNaQIly8+FkTnL92clkVVVUiUZVlUrmIsiiLGMC0WO4f7gbkMFacAttpBRKKa8NIjx+l0du/+vXt3704mk7WN9RUz4Smv3P/pkQyKWteAYwVR5BgXZXn77p0bN2/v7OykQIJUK6B1bbWZ06+uolJjEGOdHpceoQ9jUklRqUIVqlD7ZIgA/v/s/XnYbWlWFwiutd5h733O+YY7x5xTJGRCklACCgIKArbaVQ6FWnaLWlp2WWWLVimlKN12dfUjouKIilMztCCKIMijaIkgKMkomSSZSZJkZkRkRNy4cYdvONMe3vdda/Uf7z772+fc+315MzIySctcTzw3znfOHt9xDb/1W2qtRUm+KKqqzFbKIDkgS2iIjHMFADJ3xhBZStydGSoI5EASxxhVVLkHI0pOEcluThUQ5BRV1TmXCVt/wv7Zz1/9b/nx/uIvfMUv4XMP2QI/8Ds/+Lu++1OSKPpyXXerdXP45/fEeVaADVcCEVprObTW2r29PWY+ODg8nc+dPcu7GHaaj6T5PykfRhQEQY2hAoCJEhEbYoNid+cdsmISj2bfFcYVjQtLopk3TYqtpDq2Tde+4a9PP/jHenPlV3zjpcaGjIszRCKQi4/k2ybmxCw9EygkBhYJKUbhT/trlxh6TDIgTl3lnJv4svTekY2RRbnTTkAakqTMKcO/kmwQOArQIosq5+sbUpX1apmYq6LUh1UqIC8Ri8XiXe9618t3jq5evfra1772Mz7jM4jo5ORknHVQlqWINHW9ms/3JtMrl69UVRVaKIoCAGbTacssImjNJhnjomVtvFS+slVohy7pIa+Bm1yO3tNvDBaujUEN3bp7Z52Sm1a2KbrjyEpNW4vID//wD/3gD//bgyuX3/SmN33e533emz/90y4dHGbaklw+8rwNcVwacgezoNt1xlQVB+gmUopREltr9/f3U4pXrlw5ODiom6aLW2FfIoJNfsKQAbLRJV5lReL+rQ03JB8ZrA4jnTI/Sc9FtkmEGGyzHpyjkmMSiKC0BYkcI/qstTmT/vDwkAwuTo4A9Pbt25nyIfNDXLlyZf/S4ZrD3v6+qsYUPyL8xasrqppjFFEkxZgR6Pjq7bbnCW6mg/Yo3J5sbRgY+U9lSV27U9kzp20QUTWZYSaPQ/LeObdR3Ake0lAZtK/7URWvTHYiMw+pfOYVaBhytFVkaVebzckFuqkM5r1nZmtdUUzO4lw55Df8u50NMYbo7+aoDLOCiDLC6IHxpmHvz6N/eM9hfeldv9uvf18Oydadz22dixpx56ctMOjGx2BgUxgIEWGT4DG80fjy90MIHnyv+3pliCr22X6bWC1vveaHDds98K44rrlDhjIHqI4K3eR/6T6CoAtEVfM/qGdVVnQ7N/f+lu8nDMi8rY8XxyHGyXw62ZuhIXJ2erB/NcXb82V7ktq2JUTnXCEFEOWMmGVTH52cJOY6dFm36IkjVH1ZsLCo1m17sjg9Oj1ZNnUxrVj4TEsZEio3/yNCGbXq1nAd+QKHDJ/Nn7IJ6g5VMnqFnKxtm9oXhTXuZL5YrOrjk9Nnnnv29p2jLkURads2Tz8A6HOEVDm7SDd3h6FW3TbpE94/bDap0vkJxgdv4vtGVRVUREIIAzFOPvM1f+Xqh/54DzX5Vd/6JqZc7lCHEbh5SIOo3ntnbebnGK7vnFcGMtYah2jIWkTjlFTQEKRYaIppk5kE0m+QoFJ4p4AiIqBIYAwIKkt2UGpeo4uiyEbRj/qv6bquabqXq+Orew9RhX4jpGoIo9Bi3dYdC5ICKsKmirQSUWIG1Zwjm2KcHczq9drvn+Wo5NbaQtufv+Hq1maz++O49847a3cp2969zr3x9lq/M4e38D7nX2Nn7znvdqhbS8p9Fzn7TBc8MAGKFtYY0YQYkaIqEVhv//Lya/9E8efyUV/8za/ti2mJAsvEG2ucqyaVtS2nhsMquJWxnQlv+qsWgVC1A2YVIUygBMAsm5SQM6VkUB+7lIN8HIUZVPui8oREZVERmh/9vX3xli/8tk8RYRH5yf/u2fzNm7/xWnZMjDRfFLPJ3FbNE9yQcc7FtiM8qyEL4wUTETc87yISUxTud8aU0t27d40xTz/9tPd+sVx2bTufz+FKf8O9vb3FYpFinB+fmOuPXL9m9vf3W2tydMI5Z6Z9epZuemdbNe8X/wf6rfTc0bx12NidtzNsHnI3EdWYYqYvE9XFct6puknlQVehvXn37rJp5utVMZ1oxxWRqiaWx5964nM/71d96Zd92Wte85pyUhFgTnbv45+jO8cUrbVIyIljipw4N6/zTkR0Uy8jpdR1bd55aUN7hAioiKQImMu1eefVmje84Q3r9Xrd1PPFQg0tV0vVjIAlFB1Hg3HTSorjIM9FqsIOoH7803nn0KgyoDFGB+eU6mCfDEeOnWLDOBTVcZV11ZFRp1AUxXQ6vXz5ctM0t27dWiwWe3t7+/v7iePx4pQ5Xb582VobQlDVoihOTk6arjWzqu5eft0bDwpfPPCxH0J0XErmghVlp1zYVrsxCICIpBhjijltnaXfx2VTDmusCdDIxoBNndyNxq8y1FDPhKKbJh0UYM1PvWnezGgE2kcJ4kZ6Ql6RylnaJEJba3NVTeccGWd8ARsbfngqzs50Fuidng/VjqpKiIETbFM+5shnSoybdGLE3U1ua3/ZvqVsl7DTkdB4CSFEwGFYGrtVoXV4u5QScz9cc/Q4N3IIYRNpkQ3GQY2hjA3LfyKSqqTEIszCIQQVQUQ7djRuerHPZckF7+AMLn82xGhE60mjqmF5iIjmQXb/TrmzVj7YINtJONud9LtHjn86uzSOEZyAMPC9bsjdRs98rgWyLReZUiNDBTd2OBljePSaO4NjSwm40KAdk+1Y03PnD4MDzqbiWdrTw5jIOZ6RKUdpu0be8MDjdxz9iXXsjuvV3ZNjQPRlUVbl/t5+YV1MPJvtBWZVZVVWceoEAQAix9PV4l5VGWcjpyScS7rGGK1xihQ4xZTm6+V8vYqc0Bq0VhBFtyubDgsx5qK/Z688DNetpfE+Q2WwUgZ7e+MmYUGNKQFRaJq7R0cnp4tbd+7cevnlLqRyb1Y3jY6AczmulVLqqzputvxxyH7LULn/IQbbRgQeBMsm6pOe8l7FwoYMERMRigLR5/+jt9y4dj2EUFfrVb1EQ5AxzdbkUpUWjTGkqs557MEjiMOYMSayqDHonCoKkDHWFkYZVMV5J6D5BTkl3OybIuJQM9EGgqASAhXOihIzxyTZLZoXoFyeDBE5BStdQelrf+IL/tznv+3Djk8A+Ee/4/2//bs/9eh0ced43iUR51QRCATAgGZm7RijQzDGOueQUDYw7p1hvOWPOH+abw+brQ7Z1vp2nbnjs7b6edtQOU8L3O368QW2jYpX5tQdryGKup3pMH54gIfTq5QAFbwxBtWoJkNdtrhRrXN/4O2/5T3vercVERRGDMrr0AIKBwEABkBES8aJ8WQr48kTUCGsiVk5MkgCjaIIKswEaskYJNGN50ezeaIRVBCUMNfezDXFM/dOjPyzf+iZ4YF/7Pf90uN/48rNP3o0fPPer7p75evLo6/p67dc+foSEYzpsR0GyZCxZACAWI3z3YafA0cuib7jsK9GJyLWWKXej8jMyHz58uXXvva1zzzzDCIul8tnn30Wvrh/hpOTk+eff15ZJmVZlkWWqvCTySQ7jMuyxLwpowqAouiDslT6pe++DI2zA7aYGxAetPliT2iyRVFz3gDYko37b71er9drAa1X65DCzRdfVGFUiCGmlEKSELioqqtXr375b/g/femXf9kTr3nKOte27XRvhpsGzDKeEbksAyqebRnWhhD2DvaNNXpG3H+mwMC2/qGqQy0/UZlMJqryxBNP+LJY1/WiXv3Ce9+7XC7jRqsZ1C8AoDOA1kOZbTtMABcUzRz30RjKBSNTfHidQRccNrsd25IAovZFwc8uvzFUuq7b39+/dOlSvpf3/g1veMPVq1edt5f2Jrdv3w4htG1rrV2tVhkbtnzxhceffp0tpyHEcH+64UcgD7Wk7IzJreVRFan3rzELEllruetgs4eODZW8uZtNW+38utnBJIPMezLVDdtvr4VvHkc3/u5sqKTQDYYKMw86AAFW3lmi7JjLl+o/Gyt0FssSUdkAj7PXHDbqqG7vKTtjY3h+IhJm3ICZtfeZ5rx51W0H6P1OjQdKfpfBVN48quQFfdRzveLEfDbMxoZAfs4MikPEAfSVGzYb2yIcYyoKT8ZwYiJ0zjvvrDUiTITM0nVdCCEza+fc/S088djmexhN95PyyytjW/aCUXj/WbBZ9XTkTDzvyJ3P2eWUQyhtDCfLedN1lw4OLh9eMqylr4z12b0dYhTWYUyh0LppTleLqqqU0FgbY1ytVs26nvq95WpJRF3XrdZrZi7KMmXzw1D2E2zGJD7kbnGBDMN7vC8CgCIUVem8P5mfnswXJ6eLW3fu3rl3T0CryaTdhBY2sY7eoTX2x3xEHfHKpA8iEwFkCiLOkZYdSHcOu8UYrYGdvQERyRjnPRliZoVcwZkUILMaqYBkaljZFHsRydH3gaGF+pioKCiokIozZJ1T0LpNA0dN1hp/TffnAQD24R/c+a259/70O76sEfxrn/2DH/Z9G9Zb907nTatQWOMV8Tzeb2utIaOqzjt0W5S7n8R9veqiIIDqDBGIQQMAnXd1im0Mzrmnn376fe/9ReEIAgG15dh0vJbOpPoHfm9fEvG3fM9nJZXE8O++sg9xfO4/fKOJkZNVSUkFmLONW1hbOZeRkAqgICFvZUk61ZxbT7kgtLUbY1qP5/OdZ767Wu58M1gp+fO1b5ghqAGyZIwxpXXeOmXJzpLwoJzU8yQHB5xzn/KmN3/hF37hO9/5zps3b77lLW954YUXbt++PRz29re/va7rSweHr3vNa6bTaVEURFS4XAU811RB/IQfvaoaU4oxFkVRXbvWdZ2SOXrh+Zdeurle15Cj9yKauChKY8yf+BN/4gt/zRetmho2OmLusvGCPF5Is7MjpdQ0zXK5bNvWGLNarS533SOPPTIcljFjWa2MMboRr1HWXCWTXhYlxI6Zp9Ppk1XpvL91987Lt2+3bRtDyFnPw6bwcVOEBvsEHwA5O5MdZ8fDS9u2y+Xy5ZdfXq1WMcZP//RPPzg4eMMb3nB4uP8L73rn6elp0zTee1VpmmY+n4cQBOHa9etgepfTR58BdbFc8F5E2BedvFA1zY0zDlw8jAzet51R96AbABHlYaYbtutM4IWScppmdpMNrkwiVOFhCxaVQeUiBRHJbggVUdKH9QtsP/zw5NrT7vSf6AITeee1RnWZBqPufmVmR3XcdvdviYh477PrJRs2Zw8JjKQK0rZdXdcAkJkGzcZFlO2cobRUfqoHGypZvbiPv/uT8oklqppNYdyugfVhzxrr1pLOTSy+P90/j1FQvDQ7QEQWQUPz+dwgWYECDSVOmgazW0ZliYio47Bcr6tykQhEtevCfD5fr9flwVRVU0p5Dc347Jzbt1qtLk32Ms/mq7VQDrHLbOVnt4pzzlnXxXDn7t1bt19eLNf3jk9funW7DaEoS5V0796RK4qiKMYNmCfS2FD5WOvEo1VYQxdijNkk2A2IIahKipEhrztbPw7wWeYEUIJSDxcVSJtwowqfaQ0ZJK19uNw5JymeGYwKCEAAhKgAk7LETfIcM3/mna8Z7vsHn/6+P/3yF9WBWdqE+D//3G/8q5/1ry5+39PQLduGs1eJKINfHrj+ZjBA14WqmOyssPcbcp+Uj1aUc8KuNUYAwbs9mgYDWoN3ZVn4y1ev3Lp1s+3qrq27rhWBF79ma4j+86/4udf9lYNn//iZOfEzv+f9n/ZNjxICIrCAxCSGvLWlN9PCTSZVjhMCaN00dV23Mc2X65Sncp6WMaaU3vdVxw985MK6ABc5hktXWBBnjPfekS2MJUQFYU0i8pA+kuypzXnz0+n02rVr73nPe971rncdHh7O5/OXX355Z6qq6nQ6LcvS+6J3QFpDGnOAiERfjeq1H1ux1lKJnFLTNG3drFP3zPMv/ORP/1QdYyPSKSxC2wqzhdisf8WbP/stb3nLcrUqJxVYkz2vQJhSPFPN71uvAKCvK79cLhaL9Xo9n8/fSDg2VIgwV23PK/P4CmQow2NyAoZRVpX1er1ariKn93/g/cfHx13XxZhkZKjgLsXzx7Ajhi2JNhn85xkqr2wpY+amae7cuRNCyNXuP/jBD56enl65cim267quU0p5NynLsm3b9Xr9hk95o7O2nM2MMU3TfHRBlQ8v4/fajaiAKhkSubiO47ar/SPTiIYGv+DIoih0Y8zk+EBPS0Mmtmm4Am5QZDtZBsPN8kcBHTZZFTEfBYnr2T49+vjwF8FNspOOs6SyVrnNaz/WdlLsslUz2GbDkbmMTzZUBjVpMFSyEXJ6enpycpJjJvmGsMFqdV3XNI2qVlWVyRJ3DRXYWFSfOBEVxTMyAN18A/BhC0peHGEc/nsV1JfxE34EZ71SFMfZFUYGLuLDhhrGcZiLe/n+iEo/LhEv7x/MJpOqrKbV5Hh+opH3qsl+Ua1WNSOKwVxMTrtW+CxObY0JKS3rWp1hkcBp3TZNDKJgi6Jum0VTK1FRVaoqiPPlYraYP37tBkq/iiFuI3BgU5BupzUvbNmsbWd0aQ7RQgZTMrx0++WX79xe1/Wt23eOT+eK6JwDxPlyWVZVjkfm5WmIe4oIbbgNXt2JM7yabt4Ic/gDkQCBwFqrAKv1ioiKSblqlgOmgwBVNSVOxJvxuYmJARAZa6xBwwJAMNyEe3bmPqKSs3lykjwAgmbfLhpjNQUAzTXbmtB2MZC3viqd9zHlJBkA0BR39zYh55wvvF2sll29/LPv/c2TsgJDX/PUd97fAl/4HW94/vbLihZAMFcAVKWMW8r/QG+E5bZKMUqSQpKmc/Gin5RXUYjIALGoJ5o5IwYtERpPAFevXn3hhQ8BIBpihJtf8wCHyL3Vaueb+Xp186v7uMenfeNlBEWLhbGFN1XpvPNkKHGKAQ0qKMeUIiCIiKj3jox53/945777AAC87m8+avbMo3/3yi/9ob5+/K/69jf/1Fe+d3xMZZ0z6owtvPfOG0BgZU2ApKgZNAcw4sM9+7cfYEd/sre7Jt8wAQBRffvPvePypUvL5eLS/v573/1uYe7aZtSAUBbu9a950iEe7E0nk9JZ64lWq1NEQwCEhJDt84/VGH5lQeoxbLppmq5pY4zzxeLu0b0f/Mkfe+HO7cTSpCTGdKwNJ0YwxhqLe3t7IlI6x8KaFImsNSmmMTQeEc0oydAYI6IxpTaGmNLNF2/+xI+/7fTk9Df8pt/45k//tOGwrKYhYl6fw8jVOqzMROS8084w69Wr1wTgPe997/t+8X2n83kIoe5acIVuirCh6phV7FWI5p8vCuMG2NDkjxokf3Ox9o252vB9vhxFIEQRqes6e23e//73W2uPjo7KqpgWtuu6y5cvHx4eFkWRY1aZx/nll28/+bqJtUZBNmOwL456Ma/DK5Bzt07dcP4RIp3d9wHxAuzhEjkUCRsNAUYTVu8jJ+6bW3LyytZVcZMSlu8fY+zBHQDO2txlnBJrstTnlg9dBpt9x9kRO4XIULN7AHWMzngFMo6owOiz5qoD+a0/7MAdR0iGiAoiypb6nVH4anKgV5XgrMHHL1BVk5x8gvdVJnXWo2po2+V8fuvmzbZt+u4iYE5nyDGi2WzGHK21ImIBxwR5CkjGemINKanCUFgwHz0cSWQzAEMVU8o8VM45EOlG5ckwdz/k1dYY4bNsKd1ORDmvdJBiVoeGz1uI7fNyPfOmkqIgGASjogKggt6VhurELXMHUOaqj1kDyw+8W3z1vLEz6pOsROY0DMxO5exYJoQcuoctU3V0lS084hhePK4FuXNWil0+MwN4+tNFdDPPz4oejhpnTIg5juGqKiKIsKpsYiZnvTzm+98BrxPItKycsU6xUDyZz5k5gl569Dov1zaEHIAPoQOR0jkC0E4kYsdp2baUbBcSML9UL587vldeu1JFc3txeme12rfFVVvFlNYhzmM8CLFpuxtXr65Wq2xR5H9zCd4UovS1ikG1r+vEKqxKMH4RR0Qxxq7rUkqIxjkXQ8qsMItVnafQ8cnJMx96YbFazZfLyCkJsigYW3chxMjKCmCsz20bc5EyQGN9LrSGm6Un8/92XWeNwVHiEI1CH4joXGGM6bMkidw2WinWbTHZV+OWoMuuodJ7UOccJPRo6rp23jHzfL1iwr29vdJ6ds4Z23VtvW6m1YSj1JwAySLOvJt5B5wIIXJKkbt1V4qxhTUeMQbmlEvZ90+bkrCElJRV0ZLD1IaUEhmnLDFIs04Z7ZGEGxDcqygKtHy5cLMJYU58TMkiQTd+LaicdqGbVJODqwfrdZ3q+d353WvXr3/dC1/xZ578nvGRv+Y73/CLN28d142CQzKs0Yi6nCa78S8kNBi7qTWP7l1qThePveap+XplHfLICZ0LeDNz9s1kKtXB3fXwIIELkPsWzy/CSFtryI7xjxsGvx1n3kO6A3fS+eA+z8LZn1uUNNs6xpgfcvgHALaX5THbEgBYIQBAUAEGUEzgEa6gOZzt3VnXs8ODRw8OP4Cuiakyk73Z9CZsVXjMcuXwYAlb0Y/BSgGAX/iq48/6xke5ATMxFqwFa8gqgAApmS7JsukMOlFIkimGUc7ZRwDg2T9y68u/6zN+8He+a/jmp77yvb/2O978o7+7t1Xe/E2PTKbFnkeDhIaQIITYpsiiTCKIFXkWiZl0CBSoH2SK2IYogEd/4mS4+N2vPrn2V4kR3N70+dsvYAh3X/jQflk60tidGSqxXX/uZ33GdYeHhmYsnsRqfX2yH4MnNMhoAQlJURQNoOD2C+7odg7NsGXT2D8NEPlcfiE838lzHrsMKhS+bNY1soa2ZeYUZVk3t46P//1P/eQv3bwJziJZIW27lJJmRw4kQGOO5qdBeOasAKBBQQjCgMDDE2Yaws2sRAXpUkAIZGg6rRQNmD2qPvTCLz2+fz1Th+R/DVlC3UxtNcbgcAURFt6EeVWNO7h2o22bO7/0gf/49p+/c/dEVZjBkk8COVRIm2SDs+Y1Z20jI9c4QK8A9K092Fojcs6eNma7y3R0QUQ01uU+Y9CUaUPQoM31PRFyBRMFswGJ0SanYnCBa8egqpI4K2nW9KqNAhEVRZGjIin1GmEIgTk2S9nf31OFxWJZFMFayywhxJT4pZduTvdme3uz2cHBpb3KonYhTPZmzOI/ak/rjuh2wGprHKoCwqYee36h/l9lsWRaFmWxQAbJGUuAHJMtHAEYRABkUAFlVAZNoEk5w7iR2ZKxDjFJSgpdBAPOe+8sxwgqREjCyklBWQFRITH2TsMeTQCqQdPwxFv+SgWIZz6arViHgkeQxJo4o+m37KJRZktGgDInZmVmFSAEFEAEb31ZlFnfUFEyoCCKYp0jsikBEBlDWzTeI1BJr5mQ2dzlTD8UUQBFMqMlgHIqTOKkIkVRphBDiBnzJqJdF2NkVUCByWRSVFWIIYSUmVSz9aicVvPTO3du37v98vHdO6t176tCBUvY628ixtm2Wb98m5PwZDI5d3+9b6g8/E+vvjwQaqd4wUNc7PvQkR9+fNir7DG5+Fr3xyse5siP4O7nnLXz/YBE/IhihSoCYArvD/f2265b1/XJ/LTruqh6eOWqnJyu6rUxpvA+CqsqAVgkJRP6EsqcPQgd8zp066b21XS+XB7P59NLV4msKgNQEm1CaLs2CWfWUREBYQBIwiRnE7sn6Ngof4hbceS+PvHG2RZZIqc2dNlmyAGW1Wp1587d+XLZhZgNdhQRSMIsIjCUIn+QDLvRxY6RIWL5MDlgGQOSZ3cepgJg8nw2xjuHRBvKr5c/5x+/BToCRFZBRATMpDGcUuQknMD2EHAePD6y+U8VBBAUSPJ+iL3XSfLOwCKSpK6b2HWF88rShbDs2vXpoqsb5111+WA2mTp0ElJYNsX+xFoCY5GFhX+6/Jpf2X59fqlvv/v7njcvdJKA2ZeFP9hnlZOTk5Oje1H4zxz9WhJdzBeny6YB+0xzvG5bzmB9Qsq+ZYSRRwwVIZfnJgWDYIgK70VlbPXlvWGo8Tz4uj7RQsf/aclOqw1UlQRYWgKVSVkox9mkBIB4ToGj5/7ogzFaZ3dBQITQheBsCOFv/Lofy9///n/zuUiESJNJ0SUOCJ2wMF9EUwZg7K75t2yWb/k7N5KwEpazcjabVRpBNKYYYgyp58jMs0RZR9ygZ5bfxauzpGRUkdAgcAoCqiOb4an9wyfKatJ0Uy3suqb1as/TZdEjQIcbn5Pm5UcfWLjtAnnFTtqHEWEREWBRkXVdM+jx/PTn3v3zN2+/DEQAlDCXuoFcMz2fhYgsnDhlPvpxG45n4s6sFFBFQAvoSEFSDFcvX3LO7h/M4OEEN1qYiBDhvcW8a7s7d+780I/86Iu3bvXeaIWBU422E4s/RjLuoOzZGT+wnim+o1PwDEmhI06X3v89prvFbfB2klz+ayBiyucqQAwxY71ijN77lJK19pFHHqnbZjKpJpPJ/v5eVZYcAxF675HIAYHwxzLC9GBR3FLadpXAEa7h/qVgG0m2iSH0mbrZ3gVDqAiYzdaNuygfyQBK2juRNyCEzHVDm13lwc+8remd/anAmzjGxUNtsHJzdKLtLsDgndECbkNPPoLVYHtY7uJUdYM0SynFbO6REvTfsgiLNqGDhgKnxIk3lGL5cieL49sv37p9+/ad27fr9XrsQMuLhQqqYgyJuQEiNIRgLjZUPikfQ9nJADlvoO64Wh9SLjhr5yfnvYgMOeIPuTTnw4wx09nsisqqXp/MT5fLZWRh7613+/v7bQhEVHjfhYCAzlgEZFXMkCQRVOliWNXr0/ncKRyfnhydnlyf7IuqoAJhSHG5Xq3qdYwx33FotFxVzY6IZlVVVHJTmm0feTZUhsNCCNm5PtBDZcbG27fvNCwKZIwBFUCUnCTKCRDHtc92EJk5SwRGC8p5Mux/H9aLn8vAKykRjpcKRHTeq+o7//tnhy//4+969+d+11uJKMWYMw6ZU0op/0kpysSzniFYuY87CeU0vm0qqoEqPoXIzLHrUohd6GIMbds263q1Xt1bnpZkp0VhfYGAmgQNI4Mh1sTWO2utsggLAryN/njXdSGkE229dZqYY9LE0/29oiwP9vZZuIlhfnxcr9aTsprtX14k+IWbt5IIbCo0PEzoIxskIQZfVjvfD64sGeXIfjJx5VWR8XhGxMIXCliW5Y/99zfzl1/6D5/+km97/b/7fc+cf41zxJAihhhDCH/nN/z08PW3/Pqf+a//6acY06taOeafOTx+xTe/9u1/4LkHXuxktdh9ckt7+4fe+5iSILBK0zSkmT6LIPOCayaWwBhT7yt5aEEA6KJTtGSJKHLC7fKCv/INT4dnX0S0azO/eulwdjg7+aXnn/60N++70iIYlKxVIShBf2O9z0p8oOhO3tqrrXLnOgmYJKS0Xq9P69X7Pvj+X/zA+5vQUeHEEDBn2L4gao45IBgEZs4A2h0l87zJmF1UDBokcUrL5VIB3v7On7vyyPUr16895NMi5BUkA1rIWndvee9f/+t//fzzzw/Mv5jNYhDczor+KBvqAhl30I6Ta1z2ZEdkRIlGI8luuPFhO4ZQ13X5pZxz3vtNbeV2v6pyzLlt26ZpiGg6nZ6entZN/fgbXnN4cBC7MJ1OMzLKWku6DT75hJFhm/iwmwULDwo3aO+KICIlA2bD3rm5SFaQUATsJqijPRyzh3uBsvDgu9jRo8ZYs3FEBRWSsOYQKJkLpqiOkkNesfHMLIPxcsFFdtaNnZjq0GiqCiJ5ESAiX3g0JAaFUAkTahtD5JRb2RA550QkhTCfz4+Pj09OTlarVU5QGS6ehrwslZCiAJA1ZK1L8ZOGyi+b7KyAFxgq4yMfcpDunrV18d2fNqCv3cD0BZJV85SYCKfT6bXr1xfr1e3btxfL5WmMs719XxS+LCbC0DQhBASwxiBQSpwrNwkzqmZDZbFaEvOqrkOMbQxdCnljiymtm3pd15ETEQkoS0+akYSJ2ZgdQyXX9DBK2LW7ZbzypGJmQAoxLlertm1D1zVte3p6evfuXVGwziNZFk5dy6Ci2qUoKrmMw7jRxm1II3zXxRGV8Ur6YVt4Q5y1dSQR5eDA/afkzWaTJd+XpkJEiIEnVjaJe6zK+V9QAoXRtjcQL2ZDpatjijG0bdd1OZN1fnra1S2DFIWf+PLSdG822/PTqtibGGMosPVOmA0ab32ixJBAlARJkBSNYmEcsEDiiS+uHBwm4dI5Ub1SFK959LHYdvP54rTulHvc0dBiHzYAwsxd15F39XpdTbbqqAz5qbjJsh2AGfAxdjz/5yDjfiHAggx599VXv3E44Id+zwd+83d9+m/77re0qftXv+v9F1zqdd907dn/8W7+/Hnf/ikt1XhO9BERiUxT1wIIqs5aFeGUqqr6wu98s6oqijD/5Fd+MB//lr/7yFLXb/pbV3/x/96XHvrsb37cGOS2rZtGEUQ1ME9RmDWJsGoO1PVJWoLMPHZy3z9oDv/i/umf7G2h/a+fQQGogF2ylFc/FVAy6PAs3PfUwcFL7/9AnK/Z+cXVSzdmkzvvfvfNttv/lb9KQAkVVQAVVUlACASRHs6NvbsWvdrBgbzCAAszhxje/4EP/Nx7fp6cvXJp/2ixREVWzcnCAEawR24DYl8jT4VwjCrZ3nq25yRaSim0TTM/PeUQPvTsM8fHx2/9zLceXr38kE+LiIQk2Cc61039Y29727ve8+4UUxJW0T5DGCkTsm7qPGzZEq+6PHAj/rAi29zNOoJ+jdW+XcNPWEZsvF3Xqar3PqvX2UrJ+Nj9/X0AaJqGjLl7+/YvvPvdjz72mDHWGD+d7qNC7AIZY+HjDKz58DLeXvHCHXYoU5MNFRQdTgcCTSkxZ+R2ph3Pw8BsqgWAgmygXwD5kB14zuhe59EuKyRm6KHgFzXmkOaRHcofQYuMH+P8J7zvsDPh+yIqZ4YKS4iBmdFQ5MTCTQhd23JM1tFQSbzwfjad9uzbIl3XZRLzjGQZX1z07D9WEIAQk4YIRHZnxI8F8eyxdlonRw/PyiqNZKcpRo+iO4vlFmz6/AYch9R2EgrPPUn7OiqDUjIWHeUJnEshlHFg55VR2Lnb5hccjYZ+0CP0WToj0ussF3hzVTVrUb2HfvQU2wbHeReA4RkG5Vg3dOCwKX6UZScIsPV5q5oNbBVA6o8TUTLG7O/vPfrooyGE5c2XFsvFoq739vZyYXIRCV3HMeXCPYVzCTRwQkRFDSnOV8v5agkpxRRzCKVuGue9sVYA6qZZt826aaaTiQgLgYDGGGNKKSU32SNjmFlAM3lh5vrmzRq0cUUYRMgVmhRUrVvM57dfvr1ar+umruu67VpOPJlMwTnrfEwx1KsuhCgsOYFMZVc/uK8gxhBXGewWY4xs+Kby7jJ0elazzjL/Nl+OLt/vW845Mpg3FcMiLGVZ3q9bc2YlUmVma20ukteJhBCMSmKOTDmKkpSBKAmzqqNecd9wnG9CujGmlMK6k8R122SandVqVdd1WVWXDg6mRakhWsWrly/Prlxye5PAKdYtiqqwMAoTokW0vyL8fwAACvgh/ipLcVqU06IkNEYgNR0i+qq03jVdB4SFc5Oi7JLWbZpUFWYn50jGFGc5qTETMTvvMrl+YM5+8aFlvPcxpmG1IDIAZ6SKO0UPtouOPaxsp5dsryjnbz/jNUG3eR6JaDzPaMtY/TDYwnP+fNizzjXbHmqbAwA1wt6UO982q0XhfTErftM/ffoHfscH8pdv/VtXGPA9G8vh9X/7CoF82t97ZFJV06oK0KlGBYubthoLM6cUYtcYUzhryRAgTqbVdDqNMYYuBhEg/Lx/9DTknf6KySP8C/7x5SrnQUwRsF9si7Kw1iKgxjbG1HZt04WYIaeioMoKRHSWzIgKmyKPPRGdAiIe/IW93Gu5jgOokqhB3AxVtNbKCPrllCuRLoaOuZ2fLl++bVb1rfe9/81v/Ux/sD9vm7IsQCRj4jesIefqs2Nnk26HLC7ouvuGzfiK44tv/Z3vAQh37t75wLPPvHjrpTtHR/tXLx3PT53xIrBuOoMZawVlWbJK6BICLBaLrD/o8LibNPfxzQatI6+PsWtj16Wmbhfzn3/7f5yWrqqcblfpHtKo+umDfT76Zkyrza4fQz/7znf82I+/rWkbJIrChCgIlIMQ2Oe+Dt70s+1u7JwC0FGttvtbdKxvwAhiPV4RVHn7tLHf7dyWN5vLyib7eWioaXEWScYN2Wtuatic1esVAM5aY4wH13VdiF3uhbIsl8slABRFsX948LrXvDax/PzPvbNp2mvXHyl8denwMk0mhrIfaXiqjwNGbks7BTjTbwZTDUZeLehz73G4Am6Geraxc3xJVZFoU4MEEIFFQbXvOO3jlyK5iBENpgmN1KOczp17b5h9w8OPI6g6DnMpMDNsSOpUKAdxoR/Ju0ZsfqS8U5/NdIThjYZhkDXPfGb/8Bt/z3jE7rbn2ZdnLT82VPKRw4xwxiKiqHBIddusmrpLsW3aLnSFs/n4aVFevXzFeV9UZWi7RiRH7ZqmGRy7w9vxZqomFVFkUFYVlbpptw0VxBEFge482fjIjGI022RHG9VqZ95urqZbXqjtimPbKMydma/n00Gfl4aBZ6XB4QGGSl96Bi40VGDHKjj3qLMfVXu/EQ433aoij2PA3w70a7xM6ybznjeVyB/4yvdVIt569rxWDgDW8bo/vteAiyWisyW9v8auw0t1s3CLAGHWFEWViA4ODm7cuLGsm6M7t+fz+XK13N/br6rKWTubzgiwqWtFNNa2HB0nJmbVyGlVrxf12gEE5jZ0i/VquVrtHexb78iarmvXTb2s174sErMxpKJN24YQRGRiy6LqNVdfWszBadUYI0BvkaaURLoQQp4bgLAMYblancyP5/NF6LrErCrG2CBsVbrYNV3XhdClmO0fYGURpK2tYzw2BiMkd1autNgP+42VOO7owc4f/Hb4oKhuHgbOWTKkqt45QmFk730I4fO/49N/4ne/Jx/5qX//NVylYSEzhlBMrmrPzMZQG7rSQUwpCIeU0CCDZurEHmw+CjjUdb1er5um0SaFNiyWi3snxzHGyWRy45FHDi8dTsoqLVanR/Pp/qWD2d7+pUvRk3IES9Alp4jOgzXeTD/l6E8Nr/Olk2/8N/JVKBrqJgkX1mESV3iHZIHQ+hQDEVokS0Y4FGU5KGaDjN2cuMn5ARDvHCiczuezg31JXJYlbGA+mXdhkzVIRGfTRlXvsyxeiaGyOw/vM2KH3t8+Cu8/ZvzT2cL7cGoAXrCWvbKzdlbibdfguRdkBt7ltt+fTfbKqtib1G3zFd/z5iTKCnxFQ+Ir37IXOXXIZmatMZDd28KQonBCQjSOiP5v//Kz//7/+Wfz1X73v/jMBS+E2SESiTVqiIw1B9PJbDZb12tSVd6UKFBJIUYIefwY1f3p1BlTWJdpNqwx3nkEYOFlo8E4QiSyIXISTayRUyJVQKGhVVRUMPfRFrjjbPXuV1RRBsnBXmdt27QHk8m4TdfrtXBiVZukvXPkk8ZVvXjxpceuXtLYQmVVhdTkdO3tXXRXhhW+12NGDqmLhsZFo2Z8ry0VRkQtmcVqsW6apuv2Dvf3Dg9cWWqz3i8qY1y7rpd1zarGEXeBQbP2lF0eIrqpwLcptb5tVg2THRGaetnWy2ZxUiH+7M+9Iy1Xe9NZt17H2DoYpalsLJW8VkjP95OpAhEATudzRPy+7/u+7/jOf3R6Ot+bzRRAOSkhALAqgA5sY2e64ACjGhkSva4zZMlv+Zh2VY7hOjsmx30l28/r2e1tebN9b69jAAAxbRGd5QbcBPAVc3liEUTMVkqGGOBmRc2UspPJJJfUnE6n9bo+Pj6xzjpjF6fzFz70wiOPPDabzUBEt0aXfkxtlfsMlTNNBuks4XAgocrnEBHCoMcCENCIRiW/YwyBkFgZ+nCBCrAZ+XYRSTZmKrP2A6w3agazBUQER76nrWV/bE5v2QSQbaEz7X80jLbn2lnl+M1TDY62/puBCnmM18jqeL6DN/27DxcfN+j4AXf+HH8ewimqGjh0oVvW67ppFuvVfLVcrFerep04eWesdRbp6uGlyWQSQvDed11X1727cwinDH0HSECgKqwqigzEKgoG0cT0oDoqO6/6QKFNtbssr2yD/M9cvB9zam3ljdCGzeMVN+ywOA5DfFh2X5XOIiLIBCubCvfe+ytXrgSRU5A6hFVdA2BKaTqZTKrKEREAJ0mgAtoag4zKIAgdp1W9rsiEFLsQ1nW9WK18VVpryRppZFmv67bZ44SI2cLuUjxdzEH1sJiaXLQUgZlZJTsAMguNbErOhxDrep2VbxY5bZuma9frdV3Xuskt4UzFa91yXdd1nVTQkDILguTVjs5guXmGndcyOWyyKUzbb3vjmrX3y/2dIqoppR7HlVMtmYn5zPdD9Oa/81TktG4b2AcYuJIpJ55sMuVVVaTtUushRJ84xZQiMwFEjlLXls6yzHNRsNwynFJ7Up8eH7ddt3ewf+n69cNLl65cv1ZVlSZOiqe371lr9/f2prNpa8Co17LCJKv5MoCoyP1ryKSsJKb96axuW2I1GVsj8F/6vw4AUME/X/4PpAAszCkJS84j3pgow7LzwJbf25vloFnbtkdHZwXIy7IcDH65LxHrAoX74QW31JRXYX6Np/9/cqsrqnDo/shPfunf/Lwfyt/81u/+lCuHB5en+wJciPoEkaUNsYnBGWOqUgmj4Wo6tcasV+v1eh1Wa4mxMsYheufy9PmD/+pzWIRRuxQQ0fuiQmJREAYEAhROKXYgbAxwE40xlfPGGOhzuJlTUub5yYkldNY6YydlNakqjAlVY0pJI0fRxCBKAKiIoJkW/IJXzk6gYRc/6zKEqJySACGAhKAl0Rufeu3PwIv599u37xbFdNVGVZJVF5oFL9tYmBff974rTz02vTRNwqiCgEYomewEexVG7EcvItIrH21Dho7nc+Ps6WqhCm95+lPXy3p9MpcueUL0ZR1j7+xBBYBbt259yps+law5z37SDWuWiHCKi5OTpl5f29v/qR/9sR//wR869CUmvnvzpXa1mly+esET5sgMiDCqMHvvf/iHf/i7vuu7lstVURSJmYh8UcQRkfEQgtjR2OC+af6QS8eOH+RjijPtui2ORSLy3uf0LZC8FYY+vXOUzWKMyaq3tbZt24EZbL1cPvfMM088+dRqtTqYzRiIAE6Ojq9fv+6dh4sqmvwyyUPnqIxFe2riPHkll87pr6Bb1qAOMTsFUdFRjko2VGArdHZ2/XM+v/IXPU82W/9m9L6qXTQYCMysInXbrdfru8dHx4vTk9Xy3snx8elJJykPtsI5b13XddZaQmrbNtbt6fHJ3bt3l8vlQG50NjsIAIwAKWavsCjgQKa3a6jgOI52vgzw7h245Cfl4SU+iOU9izEmx/KyavsKUIm4iaIMJpA+gB/5lYsxRkBVVZizZ8UYM5vNrgLc6NpFXccYV/W6aZrYBd1jS6YqSraZCBlcCrAJ3qaU1uv11LhWuy6G5Xp1upjPDvaosNY7UVkul5n93W7KTocQTk5ODOKq2q8mE+cc5OCJcKblSSnFyIMAQObX7rouxBBSXK1WTdPksqk5szM3Ua6UElIEwgH4l91ehs64JC9ImsdNRmMOmDjvs5acOYthO/3xgiVVpDe6EKknw2TmmGijbRPsmjeDnpT/nwMlzMxIKZeGRUAiVgkxesQQI4fkwKaUchZKCGG5XB4dHa3XaxCVVbx29erTN65PptNyNvFFkfN2XOFxf3b18UeaGDpOpmlpUngy1hhDyAc9nMZ5t/NS1lgCLHzRdZ0kzmxd/9Xe3x4O+C17f+c7179PRFJiyejh+xJGz2t5a6117uTkZP/KlaZpYOMHWK1WVVUNqbGyAWr3nXufj+CBF79YLihV9spksKwGPOF/KoIKBjB24fjo3pd8xxNtioWx6kWTaEpKypxUWVWcNWQrBcrb/6yaOeNENClGgdAlCzCZTB2R9y7rW5ISgwzJV2VZsHNN04YQsjGLiKpARBNXgRpOHLrYphoAjLVFUZSzSeFsWRgU1iTKjABRGAAkcUxp3a6YIXIKzCzAAjGTH/NFwXfRUZXAnbgoUYaPqkgBSkp7I3zOnZfuHCDuH146OV7oIrRdTTEEtenu3W65KK/MgrIlQlYAAaCPiPXrYypEpKJN07zw/AvgzNHJ8aJea2Efe/yx1z/+pLfF1cNLL925c/vkpBFpmRf1etm0GVr54osvhhB9uYsPHGTYEJumWS0X7ap+/Nr1X3jPe/7p/+87JkJX9vePT05O7ty989KtK0+99rzpcWaoqHCU0Lbf8Q+//fu+7/vWq9UA+r9/tg5u4/udeq9smu/wT35Mp/P9qkK+o4joqEbC7ntZgwLDJpXVj7Ztj49PHn3i0ec/9KEnnnzyxRdvLpbrtomvec3rQJSZjaVPtIUJX5mhsqGw63cH5/rIDFFOwcqNpaogG4evAqripso8AQjKQIm/OzZ2AIoDvOJjEIQa12g2r3b3DM4+VWWWFONqvT46Onrpzsv35qen9aoJHVqjiLFrQrAZYeKNlRAP9vZT0y1OT46PjnJBekQEPRuxCCBoBsrRszcCgB1DBRAHNQjhgm7eCkKNB8QrbvetmokIMPAw5norW2W2Nt38yruBEHLO1Nndx1d+ZdJT5SqcAQEuCNLft+ptPR/RUDH9ldmBQ6BwbKsMBvFHv1YiIvZOhYzppcyT7Z177NFHuxCNwt07d+vVeh5TCGF/NptWEyKDwobJUKaZ1awlNF3XxpCUQ+KGw7pruhTtxBOSiK7brk0xCVu0OUgQOS3q2hK1XZc4OefyiNecrIKYE8lFRFLKbjNVTSm1Xdd27fFqKQDeOhBFBGdd9qmAoRAjETnvY0qZJj93q2wjhB7YKflIg2SIYAPryjm+CJDjKeOtgjJGYAAJwtb8UREWUQQkRAFRZREV1o3DBgmxr33YD7OhZ/u9VlVANZPQEyEZss5ah5BHBXCSkJiV26bdFHs+PT09jTFVVbU/27t+4/Kkmuwd7FfTiSsLtAYMWuuMd1+IfwleBwDwgzcvP0JKtTVkCjQWyc7KwJwpnm995rc/+s6vzG/03ie/kY/mEjpESCk2YbvAykik99nk9qChxR4cDdzsD8w829sLwuvVev/yZRiBj2KMQ4nc+wf/qzIdXsWrDRcZVIr/tGwVAI2cVsuls5aVnSVCAGXm6MrCiEdhzIa4ABljjDVITiHUTdd1kROBGhAydFCVBOCJrDG52huACrNwQgTvHBN3rYIyghFOoWtzILFwhabo0JRVhTTJdHdkjFGRlAIlQqU8VxUAQVCZJUEyQEpg1SggEZAikAATGYgxZMgHbGo3DZM2l8F6gNaLYLzJef2YceeqNNJbDvYOT97//iv7+6SG29gtW4cJPToB6QKIAKmxLic6ggJ+wowEFF2v6/f90vvJ0Lprl8uldXh4+fLVS5cevXFjv9rb35u99nWve9+zz73v2WeXx0ccY+ldHSIiHh0d5aopeccc0y4PWUCAxDGu1+vjo+PXPXpttVh857d8Szefv/F1T6e6KxCWy9N3v/1nP+1XfV42IHt9YXQR3eBqQPTk5OgHvv9ffN/3/TNQ9YX1ZJu2AcTAiZl7xA4ggiJLtmEGr96ZYnL+ND/Dbe2sUHq2cShcxHH/qsiOdp7/zLpEJsVGxPu5WMhQ/6BEXQgAMJlMJrPZ4cE+sHjv1+u1PT29ev3GlWtXFbRu6hs3HonysS1UvyV49q/u9PLmgD4HhTDvrTRu9S0h2FFuN/GHIRyKWRfOh2k2R1RVUalH7ymoCHDPiSUASIqEINo/oPbZLbhtmYD2j5+/ytTIw9gfHvUVh0KyT4R7DNtZedBXZdgN4z8312q9ns/nd+7evXnz5qKtmVBQUxvXdV2WLnLiEEVEQlqezi/tH3CIy5OTrm2SqHeOCFNK2hOLKShI79MxAipIuVAdIAiA3QpFichGxyXqeR0AKFdoHb+sQeTEAOC9J0BUIESDxhrLY3QygipkHKRzPqP7+nttz3TRPrX+rBBk9rgrgFL/7WZbGDqW9exe9yPzdocnkbXWO5eCQgQUY63LTODaF+7WCxxW48fFUZ8NK9QmCAgZ1BhFfTkR77rQbjLjt8k6xlbMNut3FBYEJUwqhDQuJoWj0rQ71AJjs2gwTmiTEbjzClvnjd5y/GeMcTjhzA2DSIhdG5GQjLHWSV+SExNL5YprgubqDd/FAuCk9Mu6nnfLFuIM4hNXr3adzlyZINZtw2yQLCAuIptlCwaIimWKH1qclKvLT+xNrvhJS+6oa5+/d3zjxiNTcrlMUxfTWnU+X+zPTmcH+857QnKGvLXr0DVt08VIQQHUIPnShxQzRGGxXq5WK1GZVpNpUZFCCF3HEY1pgRPIsl73MUgiYFVVi+iNB8DSF9mVy8ygitqXzbLWoCFJUYW9dftFUZbl6XKBqJNJJVEksCNn0c6qGTPX9XpaVlVVMXPlfVfXylJMC0UY6+5CqN4EVD+pUl0DQJC0f7AXm8CKxhVJWJCSQDmdLVbrlPmJNux+pnAJpJNkrF3HUBS+Drxc1LFlZypthSyt2yCC65Pl4nR+enqajbSrh48eHh5euXx5Np1ZS9PJNDKTs9W0QmMybfSvPv6a4Tm/fP9vfe/7f//ElyRa+WJSVVpZX3oBeOPiz+Zjnn3D34wxxW7dtqdIMcS6C3VKjDSrqi0eYQAQzInLNrbioYxigNVYsmRUNHBUUYOU8TyiqXSOUkcEZVGErjvcPzyt22bZwMZd6wx2bQ2SiqJIHBExBC3L0to+lJS9LUOK0YPmCACAgRH7xfZM4nS2Z+9c4r7slRF65PzE/R4oL5rZp3RUMEG2rrhzs/Ou97Cyo2rnJSub3Duhpy0/kZ79LQjiq5svvUTkuK1nRakpGqOcYtusK4MVixgSVEa0QJaMJ2vQdF3oUlyHljmmFKrSXJnuHVSls8Si1pi/9qVvy7f4yn/25on3iCgIq6YpvbWmSqLWWkFsQ7LeC9KVWZkdoiJirTHWbbSNtFfOBnR5jtN2XWe92Zvuh6YLieuubWIMAiqaOWsV1SuqQhLhTAwlJMzKOXSpiz+zzo938Bf2hp3IW+slhSQsmpCSaFlNFscnQ8stF3NB27VMhT2FBl23D3YmBFKEtcwigVWofMMdqgowCeKo/shOzoOxNKDV73Mqb+VXjDt9VBzmvtg+9GkYImKMyRg8Zk4x3Ts6vXnrpSCwivGDzz3b1qurVy5fUfOor6qZVytCvHdpeqO5clSfvHTyMnpo2waMFZF3vOMdy/mi9EVRls47YOWQsCzaFJIIeWetXS+W7apenS4fu/rIS8996Jv++l9/7hff98jhpdTUbb0snKl8+YGf+5lf+sX3vPHNb+HQGeeZGQwl1MDJmIyTo1Cvf/G9v/Dd3/WPf+on3hab5rHHbtSNtm2onGWWNsVNBoAhawlJsFVUJZWcVg0ACGDRZJ/v0FAgCIIIZDdZc4O+qaqSS9rruD0RwICaTe8hQOCzupC543CD9uTRRpxTu4c/Q2Q8Iy3EbT1qm6OMBYWNMCIW1hCRda53g6pWZbFcLovCd6mbzaY5/m4L573f29u7fOnS4aVLqvzIo48DYTGpPvVNn/7Io09EYbJWAYDOvMu6Uc/6P9NIWTqzIj+M3M94vMEIgAAqgAiKaErMAkjWACQWUDGOOHBCVofGG2cIYnA6QUgb8xBBQQUVQAVUMGMHRMQXRWqDtSaDMhRAYiKyiMaSA6MqCBpEA6ik5izvF0SHujuqUCChAqjKprzMYCdFEgQxAkbBE6py5CCIZCg1LYA66wiMzSmmzERkjRnP6zwq+oSi7cnL0kNvVDXEmAgMomAm9My2en9klHTeDsFypviJbG0Bqpgzuo0xSVOunqyC8/ni5aO7zz7/3Mt3bwdmVRDm7LR2xoTIROR8GUSPV6t12x4tFgSonEJoiTCmZJEcGTUUQaJwAlm1ARQVhsxu7akCdyMq2zL2zuqrkohyYY3G86o6GtrCaYwaUTcmyUckeTpQX9F2rNy/govlK56n/398w/T8cIVZHlIUd/ezsWS/RXZZJekrjeQE/tL5aVldPjiMnNAYMaQNMWjbNXfu3vG+qKaTSVnNpoGsa2NsQ4iRg2ODKKyiEITrrk0peWudsQzQhtA0bSoqm4sxiYSU2pTqrmlil1KygALAoJn8QlXJGqPAoCml1Wp1997d23dur9ZrJLp86apHQ4CQ2NsCrefYcUxdSprOuMYJMl/AA+LIwzjMeBNAMEikQIAZ0VSWZVJJKZIaBCRASyZHV0DBkFFRQ5vKxzk+uT2MBFQRgZCAaMOFkJgVMLMMZ8+MqKD2UTJR0VEAzVgLRKyihAKIZFQVBAzZrukEEH3RNO3zL77QNq219sajj1y9dnU2nfnCF0VhnZvOZsbZlCJCj0HaXsR6+W3XvyV/+Ma3fXHouqs3rr7+6Td8UfHXhgNe98E/8s5Lfy52bdd1sQtd13VdF/oi3+mfn/7h33LYo7/+5fIPHWsNCEkkxkiA5oJBCND7GVBzVrRGTintzWaL5Wo4bL1eT6dTAMj1zqbTaRd5yCnMeiq+eqjIV10G3eXjH1cZIucfURgWAetV3azbwlmN7MkWxhXOl9Z6MiiYSBOAMQ7ISFJIKUlaLldt6roYENUYUzjrvXPGOEIA/Wu//ieH63/7f/3e3/8v3goAjLpfVEk1cp/1zm1AssaqBVNZh0aGYHKOYOfG9Ghw4/Py1htrSusUwACmNmTSHILMHjL2m412nI3nHxRQcbBSAGD+p5aHf3EfeoVVAMQQWUvMknmJxm0VFiurhIAhpZA6Ei4KOyncyWo5XyyvG+cdhhh75/FWtdMHyAYCh7ng6Uc/YHptYRPNzHHplFLowmK5fOmlW88+++ztk7ureokAj9145Mr+4euffKqpm/1Db5y5def28eLk3vFRG7sowpIEUDQsFoubN29ev34dVHsntGpKyTlHCJHT/OSkXq25CYez2enR0bd/27e842d++o1PvmZaFARcFa6alG1olscn7/jp//jUa99QTSYxRlO4yMyJDSFG6VZN1zQ/+eNv+47v+Pbnn/mgJbi0d5Ca0M5XpvCIQETJGAACMoqUe7wP3GlPu7TlQRwrH+enrwzh3/zhfoLjB65o3vseC5Dhyq82ol5EnHNt2+7v7z/66KMnJyfr9dp7P5lMrl97POOiJ5PJdDrtqWMBFovFZ332Z16+fLUNoWnbg4OD6Ww6mc6Komja1hdmrLSd64R9+Ce8r2EEUAAVVAWEYNiARh7v4Y5bt9w24AbDcGRmni+bjQBFIXNsg6oCAwipwQFkMa43osCjtsCeZqi/FWKvG1Hv71cQUVTpHSC6MSu2XucVd3+uO/QRVoaFof12lvoh1kQbngBmDiF0oZsvl4t6tQ5dx5FVxjfNbjUiImNENKaULVbmhICqSICkmBRRICEmxZQp8DaOf8WtsNJFhopsOAQ+ol3qk/LLJTtQ+4/esMxla7NsjV0AGkocCiuAsTanueeR4pybzWZqyU+raja9d3J8ND9p64a6MK2kLEtn7bSakGWt65ASaApdZ9VwSgoSY1ytVjHEoii897KU9Xq9mC+uVhNbFoCYp0rTNIvVatXUB5OZt45EWKUPc6sCIQByCOumPjk9PZ3P13WNRNPZjBMHEGuMc9YAxBhEJVOajk3XvNMMsN02nDXv2Ho3ZJQEiUjPtijnHAWTWyMrScaYXPQXNgkzhff54tpblduGyiYglp8h+9tijBZt9qyQNb/4B/sKete+4ZKICCfdpKkQUVmWiBhjdMZkGGHOWplOJ6lr1+t1t1zdOzrutNu/sn94cLi3v1dNKz/xzjtXeOc8zSoWRlcQKwEa7DG75w2Yr/qCH/n3zf9856WbLzzzHLx566duXbddG0PqQmxiakKMiduu8yEh4ved/GHSoCDJSGY1CCnWXZcRIBcsPYikCkhUVRVsrI7JZFI37XgYN00zmUyGlkHsx8lAsD44ZV4Fd8yrLThCbIoIfRxrVI4rmT5ky6CChPjyCze5C1U5k6SVdVNX7BXV1PvKGiLhBMqUiBRN4pSEY5K0SScDQO9tVZZlWRbOGwTg3SGQZ4SqkGqJdlKWZG2I0oaIxhZlOSmqSXGWVZbt/MHp4DfEGJrLuiFZXzCzMBMRyaYwxU4NgbGVkItbQ49M2BHZEOipKqpaY8Sa0HaAIKC2OKNRSct64isU9cYyB1FtOa04PHrtyUeefCKppKRgqecm/nA9kFFM1tpXa9ce+n3gWBeRtm3bpnvp1q3nXvjQ0clJG7qqqp588rHpdHqwv++MmU6n165dZ6CfePs7nrt58/mbN7sQ0PmqmCybDhRWq9Xb3/72N73pTbkfAUBFLCKwdimcnp7W6xWJHExm3Lbf9g/+/o/+8L994voVS7w/8altWOKknCnY2MV3/+TP/IrP/JxP+YxPSyDWGItYeE+s83vH9168/V3/5Dv/5b/4FyJskYyAdlKv24KcIBpDalBBA4kiCWS/G1gyCjI05njYX7D07QC5cUT+ccFZY8kdhxvs/SvtsXMlM7Xm8inT6bRt27qunXNlWVhr67rOhsre3t5TTz2VUjo+Pj48PFwsl9O9g4ODg739gzt37wqaJ8rKFd4ayymdgdx3oiGvKM9+x9MKo6xLFRxywF6ZFfTwQkSUa83nasgikP2LIltB9ZH0QSMdrnBWh0ARDCICWgALalAlB16YRS7Uvz+OMm75ncg5jMolD3G/tm3X6/XdxenJernu2qjMpIpnVL7eWCLy1lpjyJI1xpJRFgWJUQ0oAeSglDIklQjCgMJnxsnOFPgwhgqMxsqr0SCvRDJoMstHlCP1n5uM18pXZaXbuch4DCARqLIwg7JKiKnp2qZrYwh13UVOXYqRE4rOqomqkqG2rk1KIcTl6Zy8N0jOgnPOWwcOQoiKwiKAGmPKBHb7vvTei0hdN8vVMsYrUBYAIMwhhLbrls26bpsmZScoMHPilCMqMSVE7GI4mc/v3Lt7upgDkS8L550hL5EVFIzpYlw2zTqEFFgSF644Qyeq5lh5TuRtQz1uilHaDyoSoGRwrHPOGNN0QUV94WPTV/zI1Cu0qR/cdZ2x1mSIQqai3l4dxrudtTazZKSUnLPZYvnZ/8s7h4PvfvXJk3+r0k0tlEFHISJmLpxVEWOMSgRVRLLWxlW8c3S8rpsbN65NptPZbOZcX+HKGnIGrcWYQkxpWk2sQVRwZCQmUH3HlW/4L46++oFj5qRevuFT39Q09c73d49P2rZt13Xouvnp4t7JEZEpp3tVjESEhBm/D9pn5sQUuxiA6MPueQqKiGVRhBAP9/eTKqiWZQmbYhXW2kxm7b3PTQeQPZfSq6MjKYri4tt9/GWIjvYMy+bjtwDSqJIpPPSq0tbN888958laIF9W3uDf+6/6sfrXf+Y3guSECwwCURQA0VhCODjYb0Jbd61I8t6XZVl476wnEMVdWyDvl0m4qirVPt5orZkYG0VVNKa0jokQDGUa9ezkNIaMJfLmzPwlImsdGcMphRCIKNcvzwbt2H0gALrhAFSFXMRQHuS8HDb1IbZp0SCFlFISnuyfMeoagcIXHDpHKEqKtrSu9P7Ga5/0B7M6BvKFQA9aJwW5sAe893nuxxg/+qD68CLj0qgZLdk09Z17d+/eu8ecZtPZa1775Ke+8fWV81915W8CAESADwEAwOefe+Vvgr/9Tf/+b5/781g+F+Bz4SbcOufn9/+zD/xb+MA5P74V4K0PdZOPm+Ro2/0yppfFDbT+VZTcccaYuq6feeaZzA82n89D6NarBXPKBS4QMaX0xBNP3Lhx45nnnnXBL5bLJLxYra5df/Sxp16TVEJKgOaCJOFXNuy2kLAKACoC0udZilK2/D/muihRn/qZ+TE2m72AyDi3JTsf82dU8JbGDXI29XIKL6DJudEAmR5QEyvpxRr4x0223NC70K9xPToaVoB1U6+6pk4hoOCmskVeCVHBmpx6aDJsBPJKqsqio8qAigoKGlUTKGeY7UjGy5fd/WUDMxh8CTiS4UARRczuzLOX6n9H3LYws6sSAHSbKn1LxjBZAgI8M5BC0j6HA4FQB2A3guaUSugNeoWR4ydnDI9NwzywEBHwjA16p8zvRb7b7YY6/8CzxT32MW3deGq34eX3JYcgEkBfKhU2/TS0b77OrpIyusZOVbgt2onR5xyUHOAclszwedzLCiCjpWPHzhZVMqSEIYSmC6t6dTI/rZtGVU9PFpKTzVQVEQx6Y29cuoKHl9bL5cnJSdd1FlCQVNQiOWsladBOVYhyCXgJIbRts1+UzjlrTds263XddZ3OpgONSYxx2dTzen1duESAnG6umqEqISVrTBvC8enJcr0yzlVlQdaAYteGFFNKLNhESW3ouhRjYmUw3njnhIWI0JCqkDEWibQvjwUAuXY7AGR1ijkCgjHGkXHGlUWRWVNytggihhByRkQmpM7ZKczsnGu6logwV1ahB7Dc5n/HxjkisTygPG2METcsNzLieesXGswFHzSm2DSNM9h13WKxKMqyLEqN3K0bNzNqpWtaVPDGJQ4leqemVLLW5YHMCBE1cfqR6Z8VFWD5dd3XjR/jt1z5B5AAtum+vvXlr/xQ/XIXYlzW7bpdLpd1U1dV1XZd13XeewgCKN67LsWQoii0ITShIztVBRqRxxOSkGQQKwBYa6SLxvdlpaWv14jT6QzmZy1zcHCwWCxms1l2cCrmDSar4Nm9dVYBdjRrRM9wL7g1izaOz1yh5SFzZAd1v+9cOJuJu2rl9kgYx3x2VqmtUgwX3XxntTnnoPt8E+dFmXa+3Eqx67qjo6NJWSqLq4pv/a0/P/z0xz73X/3Fn/j1BrHypWVpkzCBeGAFEBbUpmsRyXtXFgUZk1JyBo2xf+ZtX/J1X/Dv8kX+h//9syP0ND3obGJtYuhCCiwhctMFFjFIl4vCkSl84QtflEVRFGgxsqaYfGF1s90JS+BOVUMIXQwxhChn8VIiBNkUdsQNGB9BBETy5qqquv910wH9tffnp5tVX0UECJTZVaUxRj0wga/O2K7YUiIoqkK6ziatrN935eH+4Rs/49P8pb06tQSQQvTG4oB836oFt9WzuUbQA2MpFxgtO7+Mz31gZD6l1IZAzgZOl65eKSblpUuXDBn78Qz2/R9CiqLQvACp5mD7sOxvLzawNX+HBWFT8HK0pJzJzszNm4gxpm3buqkPDw7zPuWcq6qyLMuqqjLlIxEVRfHcc88dXrrUdO3do3uzsFdOJk+99jWXrlwuJ1XTtTFy4VwOdZLZUj1QIcXO2qzHI9w3wHYku0ISMyudZUpsFFoRAVZLoDLol5ulMuuEGbIHgETWWTIGCa21998UN7cTkXxDZiZEhcxgmitWYdYesS/pSQAkrNlVkL2Q46rN/VzTLX9avsNmgem1OlUwQISAAiAqzCrK0POe9xqsnj3h9gV12AXGxHF5QxwUxWG57mFasLUO7DTIYH6o6lZVx8FQ6dsLBi0i29LMXNf1uq6bGBiB8aySZn5Ik+GtidHY7F3t42MqLMwKps84UgJQBEZgwB27fCf7zm7tiJs75eWJNjVV7l+qVAXPUN1nGNY8gvLhuiE50J4QJacw7I6eza3HGnffxtlnlpQQUalPOBMdyvoqMhNuFlMBML2hoqrZUBl36iYa04cUNz/t8j88+Pngw8224QIAGWZjrYUNOgD6wQfjph+Xhx82RdlgMMeKy5m6qbq9JGy1206Z3vuea/Qmm7iqbqB9A2R/ZHduDfMdOzsyW3Is3HTdcr2aLxf3jo9DCMaaGGOGYLEIEhpnjXOF99Z6v7dvAOfLZWCOiZlFRZBFmYlIesQFqGjXdeu6lr3Dsqq8L5rFsm2atm3z4pI9miwyX6+Ol/NlvS6ccxvHqrAICCKtm+bFl26+fOe2IlbTSVJJTeAkBZSJIYh0KbWx61IEhVxLWhOT8xkQ4q3rLUtRlb7cO28qORpjyrIsimK1DgRorfXWeeusc31/5Qxd8LhRajOZzHQ6bZomd2iew74omq4daseeddKGY3o8B8cGzFhSShb7NXIYLflIZgFDzEkNpJRSiqjUdR0SWmNPT5bWGO9SXXeTyWS2t2fIJy+FtzxvnDWagH1iAAYRBDTkTUEGUgxBuh/E/+XL9S+dP/AAAP7bR779K7/39RJlih64Z0gvFDMXtHMusQCKNz5FTpIi86peB2bjCURh43To62Nus0CKsHUVIGay6aZtS9wy7Ygot/Nisdjb2wMA3oArhpC3brLVxzNlbELgdooIbvwROWa1877b28MDwpK0oX076ynccjTgfacMV9vWYHbWq4dSRvXCbLzxA29ZVsNG+qD3Gsuqruu6Md5FDvfjNNoYEMBY68kLcqscU4qip6fzNrar9do5gzglY1Sk6yI44wqrAH/mbV+iAF2KDXUoYowRxSbFKNoqB5A6dqu6TSxkTGFskziQBAAHUqiUqiUAIkpKnrwFIOxz0ESlC6Ft2xRjm0IUzVqMjgyOJKIEoqAILCoKSZVFOCfPIuz9+em4ZXRwGRBJ4sIYNMZZi6pgzxT6R9/4uiuXLjuWO88+Z0QKpBTjZDaFiU+WVMl5Z5Aw+9f7jXXseMTtnu37a9gHz+ujnT4ffd46aRylz76hXA2267q7R0fHi1M/m1SGjKF6td6/skuM8Um5X8bc6Na5TNACG+7gc/wRD/Bi5P1YtC+jnp2wF/S4McZamyt+ENFkMlHV2Wx25cql9Wpx9erVl19+OScgZZ76k5OTxGl65eB1T78RiW7fuQuGBBStiZwUSSOmxKo92/vId6bEsawKIkKEC+C0w8vGGJs2dKxnJQFUIZcEwJw4ZLN6mcPvQ4sg9OkgqpqxCjnvczxuh1bLSWfDzpvVbtFcQG0TMUZkFgI0ZqOoi6gKGnLGTCYTt+GTGJzdIqKioa2HHstfD9g/sqgsIEDW5I0cRYFFMWdl9EU5cYSxvL+hBoXwfkNlyB4Zpn9WdFVU6cEr9tbDqwrvwtqHUwaHyyAppaZp1nXdtm0mK0EAa4y3zvuicBYRY9OllDSxACRORLTJskMGVM0spmAIAEhy9j9u8UJsDIdePiECT7DdiAi4zYgF2cIFBFFJG7UAVQ30wYdP4sEeXobVge6rTDRotwCg29re2ChSBFBklTaEVb0+XcxXde3LwpcFEU0nezHGrutCCCySu1NiSjE5Zw73D4uqWq7Wp+uaNUnmppT+kYRz9bZIidfrtYhMqsp7vxZpu65t2+x2GqTjtG7bddvMqgkYB8yJUxdDFD4+mR8fHz/3/IeKqrp05XKXYtO2quqs9+BFYpfaVdeu2ialVDpfOO+NlRhiF4wx2fwfhmWmFuCUMgTLGFMUReZ5NMaQJZOzWYwF1T4dMiVAVI2z2SyH1Acf/Hq9VtWcs5iTSVili0G2s4yy/yYvTNnIERUAzZkDn/HNb3zXH3h/PvjKXzy4iE58W4iobRpmvnz5sigu61hW7k9/5g8MB/yl934FAsyq6ioV3prf/Njfy9//u/g1pvS+KIw1BIlYrCKQ+df1H10sFr/z2rdecNOXbt9R1j2azKpJ4dy3/F/77Jq/+4tfgYhEIIYis4CySNO1J/M5AkRJF5faizE6VWtMBsjtzfaWdd21LZmzla0sy+VyeXh4+Pzzz1++fHlcv+jDNZTBcygl8vQBgAwqs+b8R/yo5b4J+8uGwn1IWayWq2Zd0ISBu+0JCwDobTavmDmkuGib02ZVd3E9X5IlUDDGjhKHHhAZsJl0CEAUEyhzstYqELYdETkk45335bSaIIKItiHUdW1DKEPw3jtDdewc9EoPIiloF7sudjGmEENSSMxRJLBE0bTZ1BOzKLIKCyRRURBQ3kV074qIoKGsUyigIoxzVKonrtNsenn/gCqzeOGWNu1kOi2fuN6QlhZnk72mbSTEgqy+UkTNqyXZJs9WCiKSNVeuX2eRo6OjqnSXnnpqnEz2p97x3/zwT//E3a6edy2QQUXLhAAtsLE2Y18ff/zxr/3ar33Tm950+/btwvsC7OHh4Tve8fbv//7v+akf//c2pX3nH7186fVPPOrxtLRYoEPWrokxsRqLzgLR1E6OFytwJlm8dfd24mQBC7Kq9FLXgLWiFGJqQggxKah1hXc+tWsEUAEBjJIJaFHJAGJgGVkLAANGXxXsEIjDQS8cGufMNN2WXAF9+af7gNsDNdGPj2SXSlag8wbtvRfhG9ev3Lt3r2maqqpu375NRNeuXTs8PCRrjDW3br+cmN/4qZ86nc2UCBBZBEQ6SCGG7APSjNMCAABUPfDWbUyvCx28qgrZVIsxLJs4xl3nXa8oiqLwGXcg90eeP8YizCnGrIg7ZzNFZM5vTBugtYioiBs9lPcu54nldSyEBpAMAhGRCmnO9d9k929O3AkJqLzK2L8L9o7xSB6c+MMIHxsqmiPPXdfWTVPXXdtpYmNtaf3+bHb58FLhfErp3r17NdeZJ0NVBTb86ggyoG579iUUBM6Gyi6j0Jl8ohgqD11K6YycB1UkfbSV2v4zFN3ADUcxsV7Gq8Cuq3Z0sAKgAou0oVutV03bFmWxf3DQQxoSZIU+xtg0Tdu0whmbzRyjK8q96dQ6T75Yt10bEwAoUNdFRWFVUSY82xGds947VWmbpqmblBKM0tQUIUhqY8g1Q1h6PorIab1e3z2614ZgC7+q10kYIBdtMM2q6UJsumbdNSElIkJrnHOFdQlURLLXZGfLwb6OZBzCKd77EIKhHolprLHGAPQrb7aoPdnsysoHI2LOuhkvBIbIGKNht/Kg937IZs5cunmn6Qm4mF//t56InNrQyQMSes8VZs4JPNPJRMjVlP63z/6B8QH/y5u/5/f+y88uyTzl/f/jS39s+P5L3Nd/77N/gIgUNWL6HY99W/7+x8qvqdyHSe24ceWainqcWKBv/p3vHr7/Q2/6nn908/cZwphCF4OANl23XK2Ojo6MoTYxuov2dSLKO0KKMftgnHN1Xe8fXBqOyWxCuR5ztgzhYSuo9vto7gJvtugH80zJsG/4WCofOxN2FFL+RBRFEIOMEEWSpiaF3/ZPXv+9/01vl/6vP/vlVFgS4MhN182b+rheH6+X67bbs2VZlRNDRemrqnLOOVFgcNsDgIgs9CQfqiIpdZHLsnBWoZxUtmq6LjFLG3g2KcrSE1FwddPUMbYtFxIr50o1rq/ploOW2oWu7doc580RlSgSRINoyvy8gFESK4gIKwiQKIgoq9zPVjQW2eSjkzE5mDU2VCZPXBNr6Mqlx67u33jDU9K2T73+tVo6nfibd2+bwlvEqSuzWvMqay4foSBSURRVVYlIFyMS3bt7t+7aq1cuIdLp6em1g8Ph4JOT05fv3qsNJGsQyWzKG6QQkUhVvfcvvPDCj/7ojz7xxBPe+8uXr/AqfO93f8/3f/8/v3P7pgUqDJWWLu/tUUpFqaXBIhNnFMY7o9aBtUQUV4uDApiTI+/3KmMMENXrdcf8VLUH1ghQSNyGVDdhXbddCBK6g/09Y4y1jqxLCm2IbQhtG7oYJQnQWTRbRjpa5b1s5uOOujyOZuwoMEOGT5bxIm8+vkoLb2ofI2KuQJ+RYC+9dDPGePny5ePj47IsY4xt25ZlGTheuny5qCasCkSmr4gEGWHcSGpC2zaN5BLhm3ck1YmpUjKyXWTvflHt1eJe923DoLbnrdZau7+/X5Y+J5kZACPmY12LZiw9DoKj9oWYaMggGGApOaJiR3HObMYMhgrmNDkAg0iKg5WyIzvD5lV/SWYe1Lqd0TsGBQzhphw1GuA8w7jtuq6u67quQwjA4oyZ+vJgtv/I9euP3riBisvFIiejxpQyMEeYc4IfAEpO4xDIKCjMPN8ECucwFQDAx9lQ0fOJS863klHgjFABR/MBwcQQM3Rcd2G7H+ZBHsQonBksPtG9lR+9DCpyb8Fvpa+MbHqEdA7fsQIQYlKNMbZtR0QH+/sHBwdA1LZtSAEFDJHx3hs7Lauu60LXxRhYLStwTAg4KyvvyzYEBCUyS10nSFFFBNUABA0hdG1rsLLWMmgTQ5uCiBoa2CV03TXLerVYr1Z7NZUTEGZhTinGdDpfrFb1pcPLviq6GI1zlqiLYb5cSQ0hpjqFLjJZWxSFN85aT2QKDymGqiiMMUPFesjMidjPYQBFQuuMdaYLQoYsGUdkkIiMIqQNlBOQjKOMA/bet20LhGRMHrCD2zin0fNOiXQkZ6zp08AUiRBRRHXjEuNNRUiAi7gIB+8FQK5KBDEmUTXOAuJkNnv/L7wLPnv3rM//0i9zCu/5t//7zvfr07k1ZAz9jjf9k+HLL9Sv/7erP/Kv0h/6jZf/7gOf4Y/94Od006CKEim0u3UeCZEIUxvbGISo7uKqDfOmU+MkCYDa89kavfeOlZC6EFh43Ta+KJeLZVmWsCEoXi5XZVGsVuvpdNq23d5sD3VU9kQz/cgDNg/RjMpVFlZRPznL6JNNfCPGiIQ6Si3tdeihwT9quWDCfgIKKhZFYZxjhI7FJHYov/07X79fTWbTclWtvS1QsGu75bpdtO2qa9Zd14TuoJp675DIEFmDhXdOVRW8MyHK133Bj+Tr/6m3fTERWVUlUoUEiIk9GAuqahwBIAcCQbpz7/jg0uFsNgPrjJekEGKUmACwJY0ApGSEiFRUYuKQOKakAkkgigaWyBJFGZAVNMM3VJOCiCqKCIlIxvqOFbKx31IBWIGyo6fnRsoVIHrxl/ZbSWtHDcfZtQOj+82VWSJY3LtjrXv8kUdS09Jmv8ofXtmgugjt93CSUmRm733TNKELZBCJyqJo2/aFF19YTqdWAT6zP/jO0dFkOm1jq6oIqoCKCoq+LIpJtV6uqqq01vz4j7/tC3715z/++OPvede7vvNbv/397/tF5lh6i4lLco9cu+YIJHbGC6miGFQprEHrBDBzTk2mZVUUXd2UZTmzqIRqqJsW1d7eqg5knAB2Ma2asG6auoldSoro96csGpMkERJFby1hYWxkXjUBc80iImaOKar09XPRUPZcMAwwyL7f+1p/G21MNxB7BMipiWfNONpVjX2VFbAHLpT5S0VgEUC0ZPYP9ifVZLlYOGdTDG3Teu+Pjo4Xi/nh4WHTNMvVYm9v5go3mZSf+qY3rZvm8PIVaw0iAaEAAmjH3KS0jjHHFjKrCQAYlctVwQMSabMMPnCTYtUkEpkj8+lyAWD66t6qzGytlBNVMH0dR8wueMi1U/saj4CQifz7vshRio94sOvw78hVaywR2qTAUQIHV9gUM41Qj/vNeddIGrt2eL/Bq6uqgJBBZH2BZ4IhrRC3y3WM8SwAYF8RaUom3di8ww6k8/yIygjVm20S3pSMQ8QNuk1ybkhKIcYQQoeiBtEYWxXlwWzv2qXLNy5fDV0ITeO9y+UE+2ib9ol1fZlExQxgVUDIaeL95nuuA/GieZJ9wD3VTJ/g0QuShQ3jsSgqZPJStA5j1ylo5jICxUxyACAZgDYuwjlus61sHlUFVUIwZMhUZDMqM28JmTMG+/8KyR4KUWMUjEgM1lrjKCWx1jJrSpJ5WgG0KCoiSqnruroLdVn5Tadiz1G/m9JzJhdxXIysLGOMbqghEckXVVc3SdRaIyCSq5KJCLMfo+FFUmIhNsZYMpFHTtMBj2gIt3EwOyb4OK12G0++FW4aztrC1mMPeD87bVRSFzYLx/DvouuKslQWb6y3zgIZBkfGuqJT4MQhcExRRAihKn1VegBYrlcZ6GxSAiIFDAhT3I+TyXxvdnd5cm8xD5QQkYOcrtarVb0/3Z8UBXl7p62PQlw28dHD/QqLqiyjETR+2YU7p6f7eweolJoOEa0vU1jduTtXKGyxt1itkSh1MUrO2JN514SYUopIVKIlBVFNnEB1ryyrybRpGu9pundw79695XJ5+fJlAGy6ddutkwRrzXRW3Xj0+nK5MA4LU+xTUXq/Xq+LqojKTUxRIQmwxL1CUgpVVQGKGvW+eP7WC21ogcjFiGSJoO1CiCmEhKOSQZf291fHp9euX5PErBpTLI3NGN7ECQ0Za1NTM6gSSlJOwRZeNfdjrmoF5CwQRuEQmWOa7k2BpQldguT2ps6XCDSlByDLbzzy1LSy9a/8TICfG39/T0//p0//ofuP/7L9vwkA/+a5/9Y4cywhIohoBG5CmK+W82oJVhBMc9TMyt3YiyZOgSvjmybOWY47+oUX7i3EdmTUowKr9jUHc9r6mPYqdrEg49BaV6w4XnvkybrppoJH946HY5an6+mjewZVQY2SBJauU2EALIoiI4+P7t1j1VXbXnv0sbqulbCoqqZuV80ajXnv+37x+M7dz3rDpzz1+BNN0yjAZDo5rdcxJSCc6ASpcs4SUd00VVWqKhkDAN5YDozae2H72dqDq7FLCTflFLPnaXhmGXnP81YIINmgNVupLFub/wVEzuMjd+BsNF5DtteNLSgCKo5WmB1A3vDwqPDU5UcPp1debpZqZzFhASCSInYtgabUUNcmXXS8aLpl23apBcBqMjFGnRVrqHDoNHFYF2XBjk+Xp3/ly9853OgvfMGP/Ml//0UAhGQIzXFsplf3S7A26sRjFJk4f9rVp01NAmnddorGGAtAxlmGru0Wq1qnpTXknffWEmgOoKSELHYRmQFYTQKMyh1HUU455UxQN4qpagYzEKkuvra3ias/N900NLKqsmJi70siMmAKAWCpKl9M94bXqfaumhhCAld4nkyL6eTWug6hvbZ/5XB/nxmsKwlBIgMnTZFUTVkNNnX25w4pCmNYIxEZMlnnEFV7DjxRt0uFZMVrDP8YLk7Gdk0riQ/3DzjxtYP9p5968n0f/MBrn366rusmxnvz+XCdZ+cntcrdP7nMf176hgMmEAAhqLs1OQypA5Xjozvf8Bf+vLCsVkvmziEU1hQInvDAeysdiJZ+OrUVKec61UhgUAyRR0KEiSsUwO5XAFAYB4amezMkE2IkDoqMgOqpJCyJLlWFqGfEZExkDkFDkiSajATSSJqYCixUUUEFoU0JgMmZJMgxHfqSRTqCjjXkzDIVFEBABu4jXqoKhIZEIYmigIZuDL6PEgdFSCIVvih8kUtLIfTx9vvhqVsxmdE8J4RsLOWgugIWzhljs5PFew+I0+nUEorEo+MTIMeuWEWwldk7uLw8uWcQVGldNyJqnG+6dm9/ikaV+Nq1Kxqb0C6O7907ONy7e+f29UedqypkmUxmXX3cpXj73t02BOs8WauIMcTSukcO92f7+4JGGYyx2bsim/VhGHg5QwxEwRgmTMggislgQmFIrOw4RmaFTFLvvW85qiSQkGKXmBFQxBuy1pSo0RAWriqsMVaIIqLbuOgQoLc2RURYOKTMUUGAYE0IzKiCyqjWOsRcwTxbpU2KHQgDQNPNg7XeF9YXSCYmZoHEoqqOE2KvJxOhMdgruQJtXaOwtWBKbwnAKCIacKQYuTNFX05X+9z9TS9vE0EBQJ/9b0gTS19wFMCSEsYYAycRRfAimKJ6RxuDeew2gfH1B2sEQDIaJQNhxrdOI9JdVW2aZr1ep9ilFNGQCB7u7V05vPTa17zm8Ws3ZtX0uLkX6vbOySkbA9bFlADJEJmNlRJCJMLMBpY1YUR0aAAxbuVfbo3/V2zQfxzhsuP8/5w6lj/mx+hdlx/RI+no39FFenPlY+WxzOidtm1zSQ0YWSN4xvWxe/edzDDpzpaw8wFyH3PJUytT7qaUQHpdDEStsZnJIMMZx2tuJjmx1vo+jYMtFVXhWSThch3KomhESXK+qWIbY4qJCF3hY4ptil1MiYUQrSGDFIVZJYnElFhEVJxxiLiu66YLe3v7TduJgncudpIi9wRfABFEAXIKQl68ErOKNqHjlESknFRt6LoYqunEONt0bds0HAKJeOO9MRIjKaAoIquwL+08xNgFNhBTTMyZEoET202qSYjRIbJKEs50JrnjmSWmJCo0Cn4aYy0SiBpjBDDEkJiRGRRiSgAQYhQRxQ2EtDdAMx5UYRyuzQk2zASYeVqddeQsWWOQHrl67bX/b//c/+tsPfptP/glL3/pPYDEZfFt8sd/H/2V/P3341f/5s/8hgtGxa9/7bcOn//prT9gUclYQERrfNtKEvFChv677/70/+9vf08+7Js+8NuDSZBS3bQnq7qm4s7R/O58KWg1+58vRLURUs89KMKiSUUJyBgihM24m+3vdSFMJ5Ou7ZLEajL1vhCR1WplnS+MbdrOWC8i62Z+613v2TvYv3T5Mjdt3YXE8MwHP/CD//aHn3/+Q3fe+l/8pt/wG+rlqvDF0Xw+m80uXbqyXCxO7h23s8nBwUFVVVVReetDCKEJAMCUsiPnfpjl/4HFGnzkxvVn33vX7+21IRTWGIDAAiEACKNtGNrEHXObUtsG78ysLCpjp7aw1hgCTImVk0GD6Ktdy5ZzYW3VhCqxI0NTX1beieUmREyxTabyrlvWbB3HBJsUOATw1omx907n3ruqKEtfGCIUlcTCKgJRgSHnykNSEcjsDyoKmyL1AJv6zap6+qfPSos2X7suv256xg+HoIisYBRUFGVTHHu0U7EoorHW7O3tVVXVdV0TIoGpZnvWFxI6TkzWGIOAZMT2NT7OkZ38h8HSuGDk7URadINKx23OyXzxXIyobdu6Xl+9fPn5wpeFW61W9+7du37tmi/PXB4J5IU/fgQAV//i/r0/uTj56vmlv7xLy2sMtU3zwnJV+qKalCBoDBoCh+iRytJVpSuddc4gJNx2yFMmeyVEUOOs9946x6BoyRcFMyuIs9n3DyLqLU0Kz6IikgCoqiJz51IXuQuhjQkBDIIYtcbEyCHGNkaQaAgKb8g4YVeQCUkDQy6tK4BWCYFy9VBSZFDAMy5t2rH7h07ZOPzbpkXAyWSyv7+/Xq9Wq3XOecslXHbOOr8PR81C1FO6CyJRTGkymRwcHLzxjW944UPPNCEaV0aGLqSm7Rg0dAGU0dphIHjvZ7NpCOGFF14QiX7p9vb3RCG07eWrN3zhqukEAOt6xalezU/aZmld4a0RREBiNEQGCAEzOwz1PuYc+d9x8ud/sSf+dkVBTBkoJQyUjJIIcBReNI0hU1SUBNqU6i60IQioIQscWABzMv1A5JRZxFHPAxuoyJBYP3y58an3tLkKCsrZwkLFbIcYyun9iojOWgPkgRBUu2wb8uDcH17SCpOqKjqLZGnD7bXrZtqR8Vy+YO/QLYGNNku7NFEXShpJRnwNP+2UWBmex5jsCDHOOeucNVZVu9DVTdN2bcbEKmy8cllBVwDoq8qMnxiGwMODiGeyfKLkqFwgzAxbDqTxQv1xtJc+askR0rIsRSSEUIwcw7hd020nILhVCGnEz/BxTiwbS06T8N4XRTGQ1mUTmQzphiNvB54LhPmsbJq3bZtnIBJNqsmka6u2VsbEbF1BUeq6brrWkZmW1Xq9rru2aduQUoYXGzKBA4ukFEMIKUVh8Q4B4PT0VEBXTT2dTsuyrNumi7ENXd02bQhUliiKiBYJAUQlCYgIIUrsYoi5j3Ih88wT1TVtaltIXDi3V01mZZXajhRIQSKLlcip40Qppsht2+ZUFgKMKRVlaa0NMXZdB0R5OcDcVtYAQIoh7080WpucszavNapImFKyxlpjrLVdF/OCoiKyIfIect2GDznnDzaji5l7sCyRLRw6g8ZaNa998snHr1xb/q93kvXGeQP6H9JPfODFZz7nsz8LY/tZn/6Wd/6a7z09vmcATu7dhdOHHSG/49Fv/ts//1+qoYRgFS1RQnWFT8KC+ge+7y2Hh3tXDve54paFU+hAa9F5W9+6d7RcrSWnHmcmkPPHOJkeC5oJ2UQEAZ1zFs1gqJRl2XadGjpdL60xRdd6byVKUmljsOwzRfJLL94ixGWzrlMIyoo4n89/8md++uU7t0OKjzzyKDt69tbN97/vl979rne95vEnP+utb33rW98a67Zbt4nTbDJlm6y1bd10XZdhWscnp6Xzxpic9fTLNVs/nqIIVPgnXvea7uffASmKcC2opJGTaUKSQiB2TKuQ1m2MXQRVb92kKPesu1JOjLGRI5GiBYkpiaQYdm4RYmABEWGEQmSCuO/9zE+01FXdpvV6TVoYKosy8/IZY/Kk6/N8EMrZRAE6Tl0dDZJB1I2hH3LUXoRBM7MPq7CKKAjDmJXo/kSFBzfIaJLe7wQLIQBAzhnouq5pGhHZn+3FxE2IkNhbo0SRI4GazP+r52o4Ox7ZjNzoN5eH7L7New1JGjs/Zc6fk+MT56uu7WaT6aZuYFVOzgwVSfy6v3EjCrfQd1+20HoMGwAqSGJOCUQTxthhVRhLWCA4osripPDeWWvMAzEwmVOBiJw1YPryDtVsOt3fM9aEEIAIpF/YWZSc9yXExCmlqCqZqMpmblYqwDhnhUEAKnUhpLquQdmAMdYUk9JYqwrCLJ0AKysnYUBiUGcIEQaH8aaen2oPQFLUrRRhZh6UZxHMDDF5GyWiIRFxBwSxhQo+XwUdp54y83Q6tdYul0si8wVf9EXpP7ztNa9/43yxKsvJC898sFmcXrp8eX56PB4bzrkYk3P2sccem80mk/3i3tHdazceabv1vaPbaqmYTozzArhe3p2f3NEuFIWzKAoEQArWgqVekyVCzBH+M4jy+QOxdF5NbwiIUYXYSujietW5tRoiKiU2bXtvMZ8vl4kTGeOstYKqqCpkLqIi3JFhx7z/FBFBgA1F8dnjIkBROINIBomAOcXQdZFjTMLJQcoMtLvZvwqld6RalnY6KUBSEx4qyXALwXQ+n9uw4+dA0UdinmxdBDbYswtMYiLK2bZFUVRlVXCbB6Ww1E19BGgQj46PThfzEKPgVlBokHERYbgPjjR83gXCvZLX+vjKNrpppx3/09v4HzgOBpMj2+J4PjxRt6NjH8/EsrEYoiTivffe13U9DPEcXM2r7aAonz3vyLKqqmpQIBJzrl1qkEjAAqF1yrFpmyZ0trRlVSlA23V1aGOKROSNNUR5jqbEKcWUGKSvJbxcLEKKpXWRky1903V12wROMeMZRECVAE1O/FAV4ZyiEFMkRGPNuqm7tvNFAYTrpu66Dlgt0rQoD2cHZVWu12siMgIqjKWdr1dKKKiL1brtOk4JAMhQijEn03cxdF3nvO+hnyoiYtDCJnFQVNCf9aZ1zkGfBRFRU0rGFZOyKsuyTYGZTe95StuNv2FG3yTDqSogEmLKpyASUVF4NQRkjeCkMJ/2htcf1+vbzTpy6lAB+NmXXnzu1kvTwv+Hn/m54vK1N73x6Tt3XjbV/sMbKgDwgV/6oKuKyf6eKwtDRggFuyApxujQZQODhUW07brWmEb0mZduvXD75U44p6cbuQ/etC1ElJlC8jKtIplEv6CzSi5dDIvVclWv7x7de/qNbzTetTHWTWPLat228/Wda9ev3ZsvXFX9/Lve9baf+enP+dzPfe7mi67wL7300jMfei6mNF8siHDRrKdXr37o3u03vuUtR7devnXn7pPHp6X1V69eXTVra33Xhbbtlsvl8fFx14XDw4MY0+HezDkHGyjOf4Ir1kcq6gt3/foVIlyul8WkqiGpISusKXz/73khH/Sr/u6TddMCwsFsb2868Qb3bLHvJ2RN22rSBImTsoAaxK/9kc/5c1/8H/OJ/9O/+RVtjNlQEYCZ8zPrSu8K71AgxIiaICUz0raJKNdaHVYbNFZUoiRhBk3jIZZYVZVFBDQxJxVWYRFRGCucO/voBSKDoaJC950SY8xh9rZtba49YYy1JolKF1LoKmfZGuBkESwgIeH5m/ZOUmx+wuwt4osCk2cy7LC7PqZNFD17YZxz737XuwhgVk38bFJ3LRK+8MIL8JbN3ZkN0rP/0+3859W/tA+bBACFPh+MkKzz1hhnrDXoCa0Bj+QRHYIBNSokCVIav7JuHiarTcYQWmOtNdY657xzrvDGGEU0iJE1pZRYkiIrhJBCCEYUrEnWWCJnGAFajTl7QxFVbCTjEEpvkjBZY7xVBWZlQ0kSdMqSWDlXEwVUIspEpZkkMKmqCgBm8mDY9rTgSIVxzqeUcjJkURQ5j3EHZg8fidozDPiMXNjb27PWPv3008x86fLl6zdu/Opf/aufeu3rjXE/85M//lNv+w/3XnqRrEmjwdE0TeIwmZREtFgs7p02SbgNQQnr0CXQjmNRVq4qTo5uNeu5s4WBCEzWEqAygkHNqSxqCIAgewFgUxr13EmDmaGiB9CgMISO19I0sorGl6KAgRbLxe17t+u6FhDvfenKmamIrA71VHArd+g8GfT7+4MVI0NlNyOwq2tEQLJoDGd4LpIlQ8ZBEtyUyuC+rHDfVTEli5iSRRT/0PyQ47m8lTz8oBfRMbT4I5dsIVhrh1Dq2a3Hn4myuy3GONubVanJTNaL5QIB7pGxSPVydTyfp8RDyb+dB6fziwhv3Xr7NLtYLLLZrTkhfYNB6vkK8L4YDSIiCuvweTgyt5ohkoH/AVE3pAH5EeUcTf1+/8EmBi0iakyvz+0ovnqGwOuDiheY1LmBcpfkSynojr92C5P9ypIPhwhcThEeXSTjf5hTrl8O2/RzuZE3DzC+NZnR4B4Tne3YKbRJvO4DzqNrbFea3MkPwvHdt31yuyaibooiEaIyI+JkMmmaJoSQ/WoAIKB5og4IyE1XKlmTwyzGGOesMSZjIikll8QZ4wANKwE44zriLoYmdoeVr4rSGNPEUIeujSGnOrpceES169q27XRPAaCua+/9uq6ZGQhCilaki2HdNvlljLOEBCDMLKaHh/aNwmKELZkuRu46BEBr5qtVDAEMFUUBotPJtCpLTswxKRGIFkURgevYWmebEJqujZyYmYwBxKLw2R6r6zql1LRt7zPLhMeIIYS261JKSltek8J7DYmZY0x16mKMUmp2zDvnZFMmdtNT0v4/uxY6ADj4ugoAFLRtW0QUkby4IICxtigKESUkcq4NqbBFvVw+/eTjdRs+ePv2vaY+Wi07ZWMtESzWYbE6+st/45t+3Rf/2suHB089+fh7vvw/fPoPftF9g/7B8ld++3sB4A9/95uNt7YsjCuCciYiJCICJEBBCDEE5eMu3Vou3v/izXv1GqgEQBUh1A10YDNYCRFRRWGzKxCSIZJ+sIkAeOc0nZ2yrusXb9584eaLgVMxnTzy6KNN23ISa+3LL7/87HPPGmPKsiCi+WoN3vvZ3u0XXrz1S+8/OTleLJfMyblCVE+b5kd+/MdTCHfvHd+4dFWMuXN8LJElpceefPzOnSNjTPP/Z+/P423JsrJQdIwxm4hYzV67Pf05mXlOtpVZLVQVPVKAgqAPBIEriiKgF67IFS+K+u714RNF4PIsuV4QRQUtGxQoeXTSFVBQHVRRXVb2mSdPk6fb7eqimXOOcf+YsWLHWvvsXSebgkKdv/PLXGvHWrFmzJgx52i+8X15fvPWzUuXL0XNln63d9+FuzfW1/M8j7Zy1BKFg9l8uf3CWF916zFf+NjcineUMTP3rTmZyPkztNe9xTXw8E12fuXk1ZVlQzj1rgreEwYfjIT3fePN5jPv/cuX7/v+tU6W9nu9XmqV9ySgAIzSnpR3ZQiOIZBSaZIqou9692chYmAZq5KQOcLBASxCZhNjrGd2lc+9K7yr6skgzrlocCutCWtlLRauQmRYhSAYQhCWSP+lQFWhpFgxHDhEIGXUpI+qxLPtt1kM179vefM7duMf03/Qg1lRYXz0vPeB0GrlvY+ITJqvJKlTrzOOGCJKkkQQAwIjTCtXlmU/S62KBfkoALol1hZ3GZip+hycG/t/vONgc/tb7ddNQISIut3ucHdvMFh61SMPP/X8c6sb61euXuWW4CMBAuJdP7AuCJf+2ubmdwyPf/9yzDXUMI+67BdRQCElxmAojFJWaQNsCA2hElEAEjwroJZKmLLWzOSqtNY6sUmSKK2VNYDQVNVmWaaDOOecDxTEBRGDIgIsaZaUZYkChhQKIAszCBKRIjIVOQ2hl5nSV1LXV0gZvHPMwYOw1UoARMAosqS0inD7+FkhRK2VcyEaUzwPr9MxutVC0cDMErXWImJkf/YHeL33t9HWOM9u074x1u12IxUhEQ0Gg2PHjj300ENnz555/KmPvXDj+tVrL1x48CEOcvauu7ZuXp8Od/d2dxpBEWF2ztlEV1X1/PPPk4KV9Z7zVVFMh6O9Dkqad2RXIhsUcBHYJ0oDOoWKwAkgcIWUAUGsqyTSEXcYYi11zDBBfSFCTf+RAEmQGRQh+xBCFaQs3Wg6Lse8E4zywU/zfHNzc3dnp6wq732apRvL62cHZ9Oky0IswahEqVp8BZEO4r4a/yTaJ3Or1uyONEKVCFDzKDAjM6MojYoICYOw0dqSqgJ77z1zKAuRsB8xbFmqfWtRa5rpvXBj30ZBq8b0mlcfn9NAb9nY7W63bf3ZhjJnxR22pzQGdu1ZzarQrbULZraeT+wwc7RnsqyTTBLEcVmVUaueABWi9770zjPPpuQigjTaLfHhXfAgsCUt2EjDxP/r3d3dqAgR/ch60rSU6Wef3zdkEdG7hvSgVpxBrJFnM8c2BhiigE4MY4vSCDB7O++6Lbxu+scsrdccOLRl0eYcFdmv9FhwV6KtRjNl1rgKMHPNRLAwmWdvcfZEvbg259TRvCBjLEzUcGACLbiC834Ft4ve5wgN5z2VxlW9jdFzuBZkFDPmmfjjwsUc7GH9VMxG2BhjjBmNRuPxOLKeB2FozZlmaRARXxbRKY8teixEZKwNZKqqyqc5svioIeWDq1xelgPpZdYaY6rgplWZuypNE0VkqI75Rd1AALHGTMaToigYhJRCpQLz7t7uaDqJ/MUCAgzBszXWauM5RL7aADWxRYLghcdFjohaq3I68d4TodGGEG1iu72u0mpa5C549kKKSKlJWXphES6qqoopDgBEVERJkiRJMh6PJ+MJWV3kOc9k4+NoRz57EYlPSjPg2pgiLwHAB1+WZRRmaRaX6G9zCNFwz//3fSqtvb+dL313Gl2gKMUVlbKQIJKPKUXGGJOmnosktdijNMnOHz/uKpdmHVJqe7K7+TfzeLaVf7h8/frWT/ynt4dQft4f+dxz91x416f/Ylnkmt1nf+irDptU7fZ/f+VjX/Nj55JO9mN/ug6K/9n/9IDRmgBj3c4onxQcXpiUz12/uZMXHhAjIJCZEDTN4WXqQAlwXHa8854URj7r8aSqSpOkxtppsV85sDccbu/uXN+8deXaC55g5fnV0XDqgq8qd/36tVu3NgGk1+ulSRpNw1/5zXcWZbG9uaW1Ys8IxIVnFNZqVBQGVcWwNRqlN27atCvOX79+7fGLz3U62alTp4qiuHnz5uXLlyvnOlknTWxVTj/tTW9i5n6/n6ZpHSIRiUik9qPWfmbnlRwPNTEXl5H2d+YBQnOJ2DuWiVzwfO4wf+tdmRl9/vTpDz/3rPdeNHnARA7IYqKy1irUEpidq4AmZdE1KogoUkaTcFBap0lCRgPRd7z2l+IXv/OdnzOaTL33pDUCo0oC6WnlhpPJzmi0M81HzlchBNnfyHEG9kBErawOIUhgAAgcArAAsCAGAOYQjEYAZITopUSKmhnbVvse1aOx/v0r08rNCHj3aypFxDvPRrXsTmmQD/UgiBhjrTVJksRwT5qmNkkkZlaSBIIvfCjL0hAarTSpzmxfihjaZj05sIDv/46IHFGoMgfOnd8C2hZPURSRk7SqKgl88viJ3JVpkq6vre1NJ8PRsNfpNl9kH574tmsAcP6tx+NfjNYCEFwVAWAYpQcBrNK6Tt+wRZNo0ixWkUYgEQMAIQgjz0aeRGKOOg5pDNzEUfXecyFQ41tJKUUMSikdWErn2SGi1hpYXJ5rop6xJYXgfFDKI5PSxlij7cj7AJIkiSHwEjx7QEKFwYND7BlrrXXMITCC0qLqRBmRAWQFQsoHxiCEAEQgxMIA9YpqlQ4ggQPP+B5h5q92u92DliI0i95sG13Yl2FWlx6n2dra2nA4jATfWZYBwOOPP/7u97zrxtb13mDlwYdfZdNkOs4Z5NKVy6PpOAgrpbQmZg7sECnL0izLiMgmWmlllU0zUxQTUYI7lLqJDyIEK6uDxNhYUibkcz9Syhah0iJC4jn4EDSQkJ7RcSEgzCoXECKdVMth02Q4sFG6Ilfmk8KN82pvr9ie3JpcH21NpvloNCzzPLoB3rvB0sAqv2r6ShOLieQBSqEiRagOJFX2A7I8U0GJ86QVFheJwmhRKVFEZLZuMDMKB1agIghwOpmUlWOBwCDMabKf9SMibNTrJSYiVAxUCQSZRRkAajB83ROk0FokD1JXN45K46k259kPCtMc59hhgXtpJQ8AgEKIhhnM6lWaT/J82VsEKBpjzEwcOcTtzLn9Aj4C8SzcyM7CgRm7f0VzrfVDhIhRO44ZAPQ+PgReRNDlDlscDrqDtNQRR0UkPsZx+ORO0bafFC16cK0l5pO6tf2lj9NmD0Msly/LcmdnRynV7/dRUZM2aQf5RMRXdawIZxUsMUVASvW73eiJpsYWVSmEwDL0w9JV7LzSyibWVy6vysq7LnWs1jHvDgDM4r13zveXukVe7O3t9fv9rfGWC2EynTgODJK7QmljrTVau6kriyJN0sRaQfDCvqri7LJaN+qiPj7JOpIyIROkvQ4oGuXTMrjcV977brc7yqcVACKE4EtXxRGMFxhlVRBxMpn44DOVFFVVr0pKIUJMPcW/CMw5KgjYFP+8hFtptMFYQE8EANpo4hAjdtbaWKySJAkRdnppWuG5jQ0JlGxtrm8c+89//Neb8+z8rd1j/2gtNebStw/fDr/09o/90j/r/cD5C3d7hR/4gl9+w6984Z10Zm8y+YU/f6l5+2//9BPf+oufarQmxLIqJ3m+ORk9vbV76cZ2hQI6CQgKEWeo5yOuHxFFOElsp9OdTCfTaZ7EEki//6VLly6BopNnTue+eu/7f/f8hQt7o+nuzl5ZFM67yvlerzsqy5u7u0YbzNKt69esMd45w6IoUu1BhEGzQGAunQ8sz169cm1zM0tTozTv7YxHI/vYY1mWGWv28rwoCzFmmE+MhKVe74EHHiiKIoSQJHVp+O3iAn8wbcFufplnQxAMHqrqcz/t0x5/9mIQ8HGjaoHxYlPWEuqqqqSqsKomfVQur3IQ7zB4raCfZX/rs37r4E98z2f/5re/4zOZOaZwC4ayqL7njb8Yj376Dx2vmAUBocYzWGtphv5nZiClfBAhYhYhDSoAO66hqoqQmEFREA5S1z0LLoasmqAYM7+YfbOG5jTvsyxLkiTG0aLgTw3UJu1ZUBsW8cwUfXfPAVmc63U7xphabPQVpbhdsGwWAoj1sqa1MebC+fMf+siHb928ef3m9e3xMIRQ+f1MUb/X+8KfetMv/6n3PfttNwDg5PcOWDESxlLiRu2OkDRRonVitFaJUWgQEqMTQmJWiMiBWLCFUY97SiMJQrMmIi4ELyGOsCB6kbpGJQgiaqNrnilmhkBIoAgBvFJekVFK28TaRAHk7FOFiabEJKUrKy+EpIKGQMiMDBYhIIYgwQUuAwevlCitTGKVMS7ItCg5sBJBIqWTwAIwrPsvQDDjQ28Ve8e9oLGbD458fH30E9rr9bz3r33ta69cudLtdquqWl9fv3z58mOPPbZ6fGWcT5+9+Nz68ZMnT59aWup+ypveeP3q5aXlQTHOq6oIIdjEJInJsmxlZQUAApfBu+W1ZREejXdFg9/1Mqas01k7djzr9klpRKzYVdOicJU2dlrkopb3RuualDeJ1wZT0UqjIpmBqSLVPiCKgPft4L0O6FGAOZRVUbhxxcXeZPPm7o0bk53xeDyZTFDAlZWrKgTw1aSj1bpd18YqlbLQLPf5CWrC3gUJRJoDI7OqQ4AoEXAxa+37hQBwIDn2Cndr5mW95DO0J1uMIDdvw/wmFTnBoqdXVa5BdrAwIbVJfQ9bE5ts8EFvHObLtttzXkeMLN9ZXeCLbdIqWgocjlhQFwB57UPMEhncG/xfc0gdJRHzSdFoRqt6cPX5JGzNBhDb0b2Ns3mWzYC4xRJRkqY4Q8q2p6OIRLGwOBqxVD0mZEgpnXaN0sv9JUNqUuQBOAiPJuOiqnzlTJLZJCnLKq+Kyjsi0tpojP56JNsIzlUc6kjJ2tra9b1pp9vRqb169arnYLRBpQQhiKwsLyvC/tJgMp3mVaERyqoKIGo+6BjDb3UgRITQktHbw73pdEpKsYgLXvKpsAQia2xZlZVzcbVoEkfGmAhAJ6WaQI5SShuDiC4qSLIoTQGlHcnAGUloeEnLnDFGRKL2cLwQ8pImCQBorUPw5D2RiudXrI4tL1uVLa2sDA+wCrlyfPNv7mds/vL429/4Hffd/+oH/tq3/dVfePDHSASc+2PPftMRnSkO+BqdbjdLM0QuymqUT69vbl6+tbtXsqACQiI1K00FYuDD7fkkSUzgpaWllZXlopoiIQBO81yq/V988sknp75ywNdu3lBa7w6Ho0m+M9zz3mutBUEQ0ywLzKPpRCQEgqST+UgEB4KNxAoi+BApFIuqZJDElWq8573PjCUEA2Hsyxm0TzrINrO3tjafeuqp0Wj0+te//syZMzs7O7EY8ZW1L19OC4fIJb3kphGtyCP33n9yff2ZnS0mjYoQ8c0/eu6931D7q2e+bwNT9N7lXAl6LTz0ZSigYK9FMiJL+rZeSrvP/+Tz333w0Lu/+cZ9b101xixZGyVTqaUazswESAw68vvERAkLAWqlmCgE54WjoG2z8/PtHJXGpuTD89ULrVn9mr9MJpP4kEY7o9frKaXGo7EVqsqKQNhXSiDRilmUMIooRbdu3VJKLS8vxyLsO/z1O2k4j/5ttxh7igV1CnHn5s6xjWMXr18drAz28gkz+9Z1ZUlijPm0f/Oq0XgsCKHHo8nY+YAY1ROiphNqIqO1NTYxOgVWGBRhak2mKEVJiFKjDyq+RuhOjHPRvhCqGFJAGPPkQSRLEhUV+jQgA3om4hCCD9zv9ybjUZ4XhNTNUqWoCoykDAF4Tg31Ot3AjEopNFohIZFIqFwA9IgEEJCEJJAEEma0WUoKjUm0saVzgYMI+wDRsWsXgdSwtwMUIZEwKuLD4QCB27yjcqhJmuf5cDiMHLI3btw4ceLEr/3arymlXv/619te8vjTzzx/6dLrP+VN12/e2Lp549lnn73n/D3PPP44Ip48ebLT6ezu7YTgIjmn957FKwWB2TnHyEojKQzAWlOnlzEqQVV5N5zsTvJxXuUmMVVZVTw+MT2T2oyCKDtbP5VCowipI7Nkl1ILgHSJgGrgqsxDKFmccxPPRUAHAIRKAo9H4+C8UQpY8vFkZ2t7ONg2JktTQJ1+gh2ViJKIkGUhBE0kiKj0wlMz56h8gqPTMb8R44/ey6JI2Z21I6rYFxaXmDYoy3IynZZlGcNtPnKuYr0OHr1/HOGo0BGOyituQ7dhgTFAX8fp+ag7dmRUT2JiK2KF5ovKeDYRXrIOlhz19mU3nAHhIoFvBOEdIc/3B94WEnNzh1ovMFYcMcd9yxizsrISdw5QyCzMwVWe9vGByADdrBs4xLoUmKEtI83/dG/XWGuMSjspk3jhpCqQsAqVC94oZbQGkKpyjhmiEjyiAkJBFgmBHcu0LIuqsmmapWmabd28tbW8unzh3vtW19e6vV5/sLS8stLtdKHwVVlm3e5wPHrsicefu3RpMsl9YKVnitcAABApj0kpiV0lCEU+Ho0Dc6w8EcLhZJxlHR+8Tqz33gWvlKpDR0TRIRlPxgJCmkIIHEKkS48fC8w+eIlBJpl/dBGDsAvez7PA1SFeqAO9sSXfZcq/W4cz+/8gFay5sOuwvYAhQgBlNCAkaaISpa3VOmEfKik5cKogITDM50+fWpgSr77w0G/Oq6ncvHZtc3uznEy/4iu+fHlluQzVvzvxA3/m+rfHo9/35FdffOqZf/olv9t8nnS6cM5+1iWE0STfGg+v7+5dvLEzqoS0Ll0gEGOU+BArLwWPel6Cd5UPgAhKX7pytb+ycvLUmZtXr7/w/BV4c/2ZvfHYAe9Ox4JYuqra2gKyAVAZS1orhMI5PxwmNiFlpqXjANOiCixGGwk8I5MEEBDGwCzEMQBRMTvnYlIos6nSgQhDCJ1ONp1On3/hhczYE4m1WccF/uijH9NaLy8vK6UEwHNQn0g9+ztvRzzyL60phUbrLOucPnbiqRs3uC6wIAT1pn/70I3NzeFwwgkH5rz0QKINaaMKZnalB0gQUSt0R9nfb/2C9xxxtCRSyiRZZuu6oMANvUQIjII1Op5inAOESJNRBITD4a4ICB+9X+2DFmKu/MjdubXrM1eucq10n9Jaz4QvyrKcTKZECmJCgINRBICVqzRImmW9TpoZq7wDCUVRbG1vZ2kaaQlfqbbgqS7MhwZ0aoxRhFmadtJs0OufOn48BD+e7OMtl3tdRaAB1laWs06nrBzckKIsC1chAGOkrxVCNigJQaowJYWBNUiiMDUqRUiVskYbRZ6LuQEViVj5KNdWp3oAfAQwI6bWAlFVOYAIhCdC0nqmcYOY5xOrje6b0vnAoLShsvLeSwhclZnVvaX+9u6OIkJQCgQVQSDIrCJUSjkAQWQBtAApigQmD4RIShCYyBIGRYRSy961ydOasZ2fMzzDjMQo9cG70Lo1h05N59z6+npc9peXl0+fPv2mN73pscce63a717ZuJml65syZosivvfAcCt919903rlx++DWvzkwCwK4qV0eDvb1dQmH21ppOtzcqdkfjERpMe13SpFS8RnQusPbIkJfT7eH2cLxdutymxrtSsLx6/ZkqH/XTTi/JelnXKKu0JpNopVCnmkhrq0Va6FQEQOeqynmRMC3LwlWTcrI72h0XU1JKAo6G+fbWkAB86QtfJMZqsOxxmk97ZW5MqrRupzFuN7n3x05uZ4ZRtG0iL36LAwEFUARBrCGtFaDSgD5IgECkSKk6s9q6X+2Mip79YHOlEv//UnMg7eWGmauqimZY5RyYRTL3O2kLj3n7Wpo4CAGIgPe+ci4v8kk+9d6JACEKQKhvZvzfPO4YWxUW0jgFINLUTtflOu0AyQIiTHvPRVH1eghAIEJKE5EQELE6kA1omjIa6rEXL4FEAaAQkFZuFv+N91oBEoACVICzEmKFuOiNaH2QjI+INAAr8llig9EiDBDL/evrNqpVYIf1csDiOSBp5Tm44AWBtGYQREg7mR5q5sDsmT2LR1GITe7+JSIx2tfiZ5KlIQRldI7iUQRrKn0IPgbnGEGpffaDRY+8dfKm8iRuElrtRweBa5mn2EJoq33ViMx4/rZJhBAF6GI1i2hSMKt9XLyuUG/WgsCxChIAABghyvTs7ezsbm8TQL/bjW69Z64it31gYgFmZCFSEaQ1zSsk1GSSThpdlOl0Wpfdgy+LIvryrAUVmVJlXRsCF5rI+SXbLXAyHed7eV4gKm07KtUlGWMU0aTwO5MCbGaWV40x/cHgix983bHjJ9I04cCgKMsyrXUIodvpbF7f9M5pY5anUxCjKAX39M7ONhFxyJHqotsGNIKIQDjKc56V1vnSKRVYmEmP8tIYM50WQEpIVYGVUqi1B8idnxY7zALGloFdUZEiY6yIJDbNXZFXOWg0pKtQAoA1Kp8N/mg0EWtHRZ5zQERfOr2a2KwzcoVDKSVQangElauxZOnfs6CVJlWGKjE26/by8dQoFxxnqTWuTDHYBG1Hey4pWPZKyKjEohPT0ezEZNLLw/jKc7+0/g/+qPzt2I0f2P1bH7vviQVH5fnvGAPAc/Brv/Udv/uqhx8+d/bMIw++6pcf+o/leFpOhtdOPfpP7//d9ud/9S9d/7L/eP7tX/1sfPsPPvAWhWE89TslP7NXfuCFWzuVECj0ZLVFRF+VIKK0igjwxCQxVBFvR7RREBGExXmd2FuT0fNbWyHpjkq58egT0+H45uZm8+tPbm22w97ivWePqBgghDip0bHLSwcCwkyIVVkCQOldW9ZQiwJtFBhAYK5zjwiUmgwAKgaoPCCISDEcExEpnbPsEl0eD09oDdp86IMfefOb3thb6pmOiYr3aZp57513sSYaZ+J6wq3c2vyCMFfsLhIzM1VVGWPmM4JzlW40f0xaSYAIoGqdveW3LKbX9g/RwfUifgIF+spMkmpapmg6JiuDeM8emEmmLi/ZgRabqSTV4v3Uu6oCy5BW3iaqsCLAGNxKdhsd0jtsvU4/1bqf9RJjosfO3omXUAXnnIAfee9jfkPYMXsOwljXcmlbBJ/ZNLVJGVkuBJAxVkE2xg0pQqWQkQhRxJf7oUyc3xGMTgB5Mh3FOA6T3hqOmqMVqqzTrZwnbYg0Weu10VqXeY4iVVmiD7Gun4TZhambGEVW66y/lHR6vqzKoiIkpRQhzu9gc6kRJCUzCm+ah5/NuVItwiIAaPNPMnOaptPpdDydXLt5o+Rqko/vOXfm+vXraza957VvSJLk1+FH4oc//TUPbe3sJKHq9AeVDwXpMSlLxoqTpFNoNXUFuTw1sppVq0mRUFjpWAlMIoniVEtmTWoMInNwoRUpR8QqVAqUJl1WeWI6JAEloIiOhoEIhAAhQKBYoBdAkJgQFSEaYsEgNtZMpMowsw3BaFWVZQheaxu8r6a7KXp2lUJMCEG4k+qRCkAMXAUGYyyhcpUXjYqMK0tlrDbaieTANlEdBZMiL8pcUcqtjErlKyJllEZSVVk1Q69nND/1rVnQISCKWDUACLCvvBz5jxpgvE2yp55++vqNGyGEu+++e2V19fKVK/c/8MCtzVs+oFL2/vvuk+Au3HOOhc+fv/t9AFcvX3Jcnj97psrz97/3UjEd9nqdTpZm/S4ahVB5qSrElUFPpynqZKm33umuAmeJTQs3uXTlqe3x9SKM+11rbbbSSxWNbwzftzlWmpSiZK1/bG35dGZXsnQ5UdkuqqWs10my5f6AvSDpqO1Yeu+pKsFVAXdd2CmKvSrPgQJ2dveKYizFKOQjjwTGWCE9rcR0Egf2xs1drTNU0k+JdCCFRIainmCs3EcQASQKPrjgAaGsysJ5AXKBFaAvvQLkgBCQAmqvlCZUEkLlgRlEIJA4AvFBABAJQmCR6IFKYCdQezL149SC0COINYoElQgJApBnKVzlg1dKMbOhtK44nU/McnuxJRSEyrsyyqkBRiUDmilAxMnAHISZQVARaSXzQuptbiREpFZKn6uqmVFtax8AtDVRD7sWqA+8Nx5e2bx5a7Q3KSpBdCEAkFImXnIdCtBUq6fHUrTWesgchYNJiAAkBIEgAIwCKdZQlIbyKsyKZ2ro1yE1Ki8lunbQSWwAqfhi0nK1R6RUlHInQebF/qgWS0BNwB3H9/C44IH6+E9sZo5b8WACgNlW95IDl9JqL797R5/ioFxSw4aOs8Kb+KikaVpzsIYQy8pnIehYlVrPJBNru6P6sUBqk6Ve33s/LfLdfOSCr7yLDNwSgnNegsR6+jTtKFQEhISOeTidOOZet9fJuoKUJMnpc/c88MADZ8+eXV1dtdZam3pRpHQEmOlZuab3HoBOnDwV4VjOh7Pn7jp2/MTpU2c++tGPXrp0MaANHJnKgH2AygUBqEVhY82txP/GVywgAEQU3a2mLCca00EYRBoRRlIUXaBOp1OWpRCyCFDNjLcQRXPeRWmYwBzBDQAYQvAhuODrirzFG7YPpg9hX0UBmH3p+qsDYyMHiyg1e1QEOknGZRB2HWvN6ur16zef/vBH33bsr66dPWMv3JN2u9++/A8PmyHXv314HWr4zf/8k1/1xV/4x5wPVXWbWPigk37jf31o0LUnN05AgtOxq1Cubm8/fvnyqHJitDicFQftLxQRlzV3iS3FIRFOjArst3d34CKy98vLq8I8KYqtvd3mK17m42OtmQwwy5cc8iS0d4v9D92Ooas5YawmACQRCCA7w70kSSAIV54Gg+F47IJb6xxzzpGYJs/+SZxkvX07rMOCUJRVEOlk2WsfefXvXXxuK98TQlZaae1dIcKEYIwihc5LEBAQAvRBKCDXI05DL1/70w+/7csffbEdO/9DZ8EqBtoa7hqjldIRLeN9KFzpQwBEDxAiP2F8NhGkLmoFLRBJkIj0vpN4gFdV5tvi4BwW2kVkQGk5jTZJWdCzWE3GaqU1khIkDx6QkVA0GrSCMq4KRugkdl8aCdBYA0HHnY8QRfiw9GPsZztIeVg74uhkMokoNZsk0+lUa7V161YnTUMIqTbn77q7QYoQyN3nzg76S5UPmzu71mgCgeANoRcG0dvfvgkAmwAXfrzbtSpVKlPIqEjEakqMMlqRQhAUQhX2xzKqV8V/GKtACYlQBJCliVLPXBYAEKxfIcS9icFa23bUmDkxqtIYQvBlQcAgCjigrneNuPwLc8cagzidlgiiokKKoEKxSULGkFZqBh9h4NQqosx7bOfE63VXon12pyN/h206neKsLvTJJ5989NFHI0lxXhSdlcE9589v3drsdDq9Tnfz5q319fW9vT1mOba2WrnqAx/43atXr1qjEFhntrPSE5Decn97bzsvSxYAUkqnvd5geflYkmZi3XC6NRrv+uAUYb3RIxAIKh+kKAofnHhXBPap3gveupxX+xsPXXjQkPLeKYoSnBLpv11gF6R0UDhf+uBCKCtXFEWRF6O9YZFPQQIBJCZlxWXprDa9Xq9ne8YaEQ6+ZD7I2HGbURKAILOFd8YdOoMZATZ1aU0WIJ5mllqv/xrDvbWhEwd931GZu60tHwb2f0cO3XVecnsx0+cwA7KZn/XKhrMTS/SHXVmWpatc8PO/N7+9xlGJrw/8Qptycv8rKBzqYpGDa5SO3LIhhLm42idBw0jQMVthG0xb+wLUPAdLU1cH9IlGBr6UVm8uFPnQ4AgmriNaG+H3cbecT1yLfYj+bpqmMV/BzOC9CUGDCDIEDhBi8VO8H6nUVSUNJKnMC63UoNcPEJz3ZVkWQEG48s4wZMaG0hd5IUtiksSmyWQ02h3unThxIut2B2urX/L6Tzlz7uyJEydWVlbiDhoBlEliiVXlvHPOWtvr9ZrlO4TQSTqRGVlrnSTJ6urq0tJSr9fbOLb+/ve/x/kqhrWi1xHjWwziCy+z6deejdjwkM4clegh1HVm8/cLZlDvoiii300zVbWFMGdZVnlVxjiCIqURY9iscqWbadQc4azWcfpZ95h5MFgSZlJKG6O1icE5EVFBQuW48qSTlf5SN+3e2t7ZvH5z7fiJtbXl1/7WXLn8H3/bq37+az9221/84Ud+4le/81cfOH9extvwPy0e7SbY73ZOrG6sr25MKz8Ku1deuP7E9cvbkylrAOcR7mj9aa4ohADMQgoRXQij8YgDP3/50mg4rIpy1EKhHITDAs7xe84j7uCwQ20WjyMevbYrxcyEOJ5MQl7ke0NXlfl73+N8eff58xcuXDixvBqCXezbH/KGgs4HpVRizCMPP7T22795Nd/NC+dQBSsKtSYFGBRSNBeCMCAFkdyFgEoRBBTn3N4k3x5PvuDH7+okyc989ZNH/+jKD6wbpRWRJoVaA6oANGKnKh9LxUSk8EUpjoEVUBBkqbVN4hnijBIQEZTw8b1HEbn117bi66Xv6c2NwJFlHnmeb7bSfYg4Ho97vV6WZTJj7QzBi6LorxvREnxeFVKVpatKZ5ezjiEiipxSSqmoqCdHY0kaVtOjAYcLnQ/zm5T3Pk3TmKI/d+7ceDx+8sknlVLj8TjP82PHjsEsDVZV1fbzz3d6vQvn78lu3Oh0ei9cuSLOVRgC8pW/erk55y983a1v/vmHEqUzjeyJEK1WidVGK60QgngWbCMCFmAqget7N+80CiAKNTEPwRmxI7OIGLuPkOEZCKIuzWf2TRRjVqZc140QWauNMSLALAjxMUcisipBbYCQQ9AaNQsFr40xic1zL62ScaVohoefs6pjWLZ1w17KshC3rWjOIeLa2losViFFo7K4+5577rrrrl/91V/9lV/5lZWVleXl5Te/+c2//Vu/mSTm4rPPbG1tbRzbSFPDwgFCkMCEpM3S0pI2Wuu01x2srZ9cWTuZ2gGLTEJujel2+1L5MgQEE/8BqMlkJOIj0nLP77jCI1/PJ5CP3cP3fmpVVV5bZlb19hg3SCkrKErISz+dlGVZOV+VxXQyHg73dra3N6uqIOVtojs9RWRcZVbXBqurK2vpapZmIlI5d+f1Wg2HtSIKM0f2RTURCYFlhhKr8T4AcOTu8EnSFne9VmvvsDzTpI6NOcJTJ9M89y3mjIPtzkud281739TjLyyhuiiK6Kjc4bl+H5rMOFibGLPcrvgGYI5bPY5vbe0hhgM1wX/grR3MmheHeBGtcVRm8YA/mOchmuMNV11c4mOvIk98XYTc7BwIKGC0bt9KYRbmyCKRmdRqTnXS5cAI48nEu4CCyFgyGGOV0t1uv5N1z99732ve8IYTx44naaqSTCldVhUROhdmQpOstLCEiLVAxDzPo5BWlmXOucl4yszj6YS0UloXVeWCX1lbe7iT5uXk1ubNGzduFEURWMAzEgNCCOxmZGVtYpb4Ns9zpVT0lJotc/8aWyKMsZA60vVUwcdi0DCTIm4/nFVZFmXhvPPeo0aYJUOrygXhObK+27UQvPfeKI2IzMEYk6ZpnufGHMvSVCkls4cLFWW9ngIAxiTtai8n0wy1uvixJ/rH1hdO+w3f8g0/v/fXD/vRp75t6ynYevX/137Kd6fv/zv7sPK/8+7P8FlxfHVlY7DuHOUBn9/a/r1nn7s2GlcIIQAhAd8R+W0z4esxBkJAH8I4n6LI9s7O3u4uez8t9n+97SXOTrJ/wsWI+DyzfvtQ+zUunGW+hzjjkRSRKvgplqJ1lqSe8ImLF4vp+NEnnvjiL/ri9dctNQvvS10PPhmbIdPpWArUSZONwVLvpi3yqsjLCZnOYCnPp6Gs4tPEHEniObA4H4SYqsDETsh52SnyXS8DUJ/6o2ersiq9B2We+F+ux1/pffdSFUKSpTaxNrPIggJKaSIFQCBY+cDiNeuO7gCCj5kTQiHFzs8cFRGEiCJk5sAs3MJuHb667nzHXvN6+J3j7O/vV2G1zZSF70fCw2eeeQY+t/5L1DhK03TmotTPdRm8IiGkgGAQNZFKM2Ap8yIXxMAiQoBGKcAZiScL6UM7HB+BRsbx6Hjq/vv5T3U6HeccIkZQHDOvrq5GycI8z8uybByV+++/f3d3dzgc7u3uuDz/wKOPjnd3CIM2iH7R2OinidVao7BCEoheitGkEFhCHahv93CW6kKAsiyhJjqe87IkAhelBm9irVzBwAwyR/lPREprTWSUEpGCPZGNh9zM9jXGKACllAtegLtZyixV5YUpAm0wogwa9T3hGXuyMgYCtiOqBFFzYD7avzDyL201iLc40seFEDY3N7XWkfA6r8qnn3zqx//1j21vbxGpa1evpml68dnnOlnCS6aqipWVQbeTJVYPpyMnblxM+msrOjFoMMuywcraxvrJY8dOL69sAJjJNA9od8c8mUxG+XhajieGqinnideoclcGX1aucFWFLBpNZnsry8ePH1/f2FiPqyoiBh9EkGsJF3Gey0qKIhSFq5z33hXFNJ+MJuO96XhMSrLUZF2TpZSlnTTpr6wcW+r3lrvLhFi63DnHd+zdNWt7FNd4CUHjtlssME9y8AenxH2HbWFrm8uMzObh4s44q4fJ87zIC+f8EbUSizmlOzNTQwgN8GEhcaJDS5VvRnssAkC0T8a8AEo5eGHNx2K8OKbOERVCxIjeBu2ELeLahTYz6Pddq7ZR3u4JHQiFtnaImNCrtdLbZ2sSW/t9a9p8j+Zn2/yxQ24ztO4xNnoXs2KifcwIQjtBNNerA/cVW7I2zX9FZrnH23YQoSEP8d4virhJzbHdrOwHJyUA4EwtBRdIbxCYQ7S2o5fSXIXRGhElcAAMkepO6wh/qivIWADqhGKMBjrni7JkASRFZFJrXQhWu37WU2SQzKQK1nbOnD7zGZ/x2adPn9rY2IjRRxEQVCGwgHdxhVIaiRSRICVp5irX1JlECdWIJBSk4Jy21iaWRcp8Mi7ygDJYW33Tp3/65UuXPvaxx65evTLNcxYJVeW9369wOGC8tv3nfR/sgKPCzIFDR3eIaDQa0Yy2vM2z2Y4XlFXlZuwxcRckoqpy0+k0Asfjh+uZVud5JEhAxMBclhUAbP+tGg3/4L84EVmJjdbGWgTwEM1EVtqmaSexFhjL0gPRYGU56XfW9iY33vMhOD83JY7fc3q+XOU27SP/e/X5bz3+tf/hfK+XdlK9POjaDLK0u7qyltrB5tb2c1u3Pvz0sxc3dyoCDwCAWpmag3WeO6V53RTLMTPMRoOFI7i1KqvgnDFG0dgF752rDsR7DnM5Fqb9HUbWZP6jNGfbydxNAcyLqoCi8j6AaJHhaJxZO5lMy7K0ppauy4siUoFFOqM2qHWhk/MeV72Kvti6/MOM0VcEjWC0VR7EBxD/mocfvLR9c/viUAAKx13AzCbOVN65aNwBYgBwHJBICJ33jABag4YqcFm5yWicks6Lqqw8Kln//jXPIoKswCprtU6NVUoxe2DGwAIoEoQwlBUigyCXDgDQBwO1WC1oHVgQUTgIIhKEmcmhtYkF2N5771wrHIAitT7SwX13Yd42sbZYeND4ySLSKHrFdunSpSi/A7NFgJm9c+CDTUxijEYwiEvdLDNmOpn4siiLQkdCQm1EgEOEsQiAALa7sdjDeSd/H4Z+xKRvq68oBZHhJ3KpPX/1qlKq1+uFEG7cuLG0tNRevqqqWl5eXllZKcuyLPJBvxNcrrVWiZ66YuFXelZF2hVGIJDopRiFhBIYmRCB9vOZM1koCezLCo0S4VhXE5f3/S0SWYAAgDFicLlmQBWSUM0KeiTChThigXguAdvcKWYGYULRAJFplwkUkkIKgUEksIj3gnUApQ7YayUihNTqfSwpiZNkBnU9ZOjbr9ufaoUpFz8YmCOZYVVVgcNgaTAaj4w2wuwqh4E/9uGPKKUGy4NOtzvaG1678sIjDz9EOFheGWgQkTBYGTjy/Wxp9cTG8vrazmiPQFDZwWB9ZeVYlva7WU/rVBOV+fD6jWtXr17dm+yIEkIY2bxne1YnRRVCcHkxrsqpeJ+Z9OTx7tLZ9XNn793YOG6tTRIb5f3qyL2I8y4Ieuay8gJIpBEpOKkKr1FnJrMJKhP6Hdvrpr1eb3X5xPLgeGaXurbH7AWDl1oFWCmFSLGue2b4ImDtTsR9JDJBI2IInln2javaDINZ2fcMOSJCFFn9qXnAWZi5riBqOyrI2FLREGmJMMZpdttgwcJTGcsIZ29jUPf27lQrwAFKEc1IDu88/IUz+cWmG411GiMgwAwswQfvgw+hflhaQoNx+BrrqMH7HFwqDzP7a3ytSLw70eWmmRakjhcZy1TaHcWW0YAHc9ntzXL280SktSJFwdcVe4046G36O//03XYnbu/3zaG5t9Tuxr5bEdUfYZa3FeHo/DVjV9+JuF60h2qukPRwP2V+sBd62FgqRKRI1bMMlUgNxxYAZsCm3Kp1R+Ma1DY7pFVqLyKNSYR1wn+++62XcarVLKiLFznnDjWW9IJH2vhxNapgBlgEgRBCJKdr0ikwAzVhkCAhbgtxNJhqynhCxSE4ZseeiELp9oZ7rnJESqFGQK2VzVIklaRdnXY6wS0t+9Xjpy/ce+/dd9+tlMrLgoUYlQ9+MpkWlbNJopVm7+IoSQg2TRKbVKWLCK7oqFhri6Ioy1IbbbM0d5WToCM1baeDSlVVlabp2sZa2u0NVtefevqpJ594cmdnxznHgjNTsJ5RtbkzG714rK6unn/aZZZLERFFiogioXOWZdqYiOyKWanoTTWD7/aNJEQkRRQ/kOdTm6aN3tn+4tVaJkIITmD8/24q8+HXv/H6a3/r/ixNtDZEhLHKkIUBgkKnUSdaKa3TpBjnu5PRoNdf6vT74+I/f+jrvvK1Px5P8uibfvrh93053EFbW13udtN/9qUfiG//8RNffPbMaed4two3J/kHn3zq4q3NCsADACExBccgsJCtgtbz3lQBxSk645ylIKyUEXRBRANM8rwsilA5mDf0cT4sIvMr/vzzO3fkMMcJFryd1iGO5Zf73yIGUWgC0dg5cZXWutvvJ2m2ubk93Btaa7e3txHxkUceUUqVZUlER/hLi6sNABzUuX8x7ZWGSiOyimWdWuMjD9z/sWeefubSpakLAcp+XlhtLv/13fjR+/7pCVIqhOAldBNrtCnLAgS00kAmtZgHl5dVILn27TvxK+d+8DSIhMDehxvfcSsi/O79kXsYAQg1sBIkAQrQ04aU0lprUgCYWlU/lSJCXBeZRVOJ6+VaAKw1wrWj4trM4AgiLIB0IGwHi45fdBwkhuqROYJCASC+aLOQv/3tb3/wwQc/5VM+5eTJkxGiFhcrdoVlzEhnxhiERDARNEmHtdkZ78VfjKqpHAI2mwgcavgu7CmNK4WICyij9sSmueeoLsBzzq2srKyuriLi+fPnL168OBgMut1uFN+IrdPp3Lp1qyhyQnD5dLy300u0sqZUQBge/IHVx799O37yu3/zDWli/vqbaxq37/ntNygUTWg0EaIGQBB23IRvEWb3gCU4p7VqJOoi6qnBYkQFJgEQrJXRUSEqhcjguYndxrNFU7DZChv/P5p93nsfPAgrpRRRVToFpLUigUq890GYQyzpRATEaKhprX1ggQVkEcbA39E23MKx9vdbBuviOTgEa2xZlvEWjMfjqqyindPv9YBlkk8Q8Nj6hhLcubV55uxZrdQzTz9d5iNiybIESLJeprvJxoljHsVLIGuSpGNNJ0v7ie1anWY2cVV+47lrjz322N7uaHu8y8AIhH6UqFGis9Gk0Iqcr7SS1Jpe0l9bObO+erbf3UhjS1IiRFA82+a89y5ULlSVLwVBKR0moMGcO3U+OZ8S6bIc3tq+5Pyw28uWl1fWV9cG/Y3ULJlgAleoZFo5rbUiivusxEj0/njW+3J0PKKjAhDL4oUWzc5FR0UDINZWc/t+1FbTQoXGIuPJvgnddlTid9vfaj+VDYIj+rTRhLjNLW85KgBAs5QpH6k4snho5iA18x9mS4rn0DgqcShqU7AOP++fEGcDsrC84OE5idv1qvaR/Nzli+ZWW/AK/lttkVoUAFgYmfGTQ3btlW31vivSQJMPa02gulma2ydpZzbbbxvtnQV5IGiS8lIjKLxwHckQGbm8Th0WhXMuz/PpdCoi1iTE5CuPRL1+L+12kyxdXlm+/8Krzp69a/3YyUleOOeAIEk7has2t3ei9nyadSMvfpp1EdE5p1EhovOhqqqYtQizig49a6R1JA62SWKtVcvL3vu9vT3vvfNsbXry1GlSWmt7+fLlmzdvTiYTUgi+AJiB7upo2G1aY2HH8ZHWYxXLeMqyRERrreN9wre4I87RmbcWJhG2ScLM3vs6T966ZXfYrLVR6ybuk0QIqDSisUYZjVoFImuMZch3xsU073SXVo6vCvHPPfmNo+lk4+4zxdOXPv7PAABA1k9/5E98oHn7vz7wCz/Hfy2vps9u7/zuk0995OLz4yCgY5AAUZAEhfYXyjtfiAIHJIuauBQWjvSgC/J8rZn78dtLWwDnnJbFhDMFCQEERDjPM6Nd5VbXN7JO92Mf+xiCDAaDp556amVl5aGHHoJZVJjDXEboD9GyPKPejJM5+GKy0u2cPXHq4uZuzqEqq499y5Xmw0/9L9fv+afHGQFBbKosIQSCIFJVzgelKCML1lz8K9ear1z61qsHf/Tpv/Tcq374tNZKIYHI7/2lZ+Lf3/K2h+JOGRdD552rnGNxVeVEQggu+KKqPAfUqqa7vbO2+v3L2//bbnzd/e5MXmpRZJ7njz322NNPP72+vv7www8/9NBDa2trEjixHQlOISXGGsLpcK8SXuovCXOn0wGRoiiCD6mx5veP5FqiVR8Xq16vlyRJfOucW1tbW11dhd36oyGEpaWlfi9zZSG+BO+6qSVDAZiQFcLn/fMz9x9fP9XXg675K2/a18P5zs/cXzf+7ZOfK4SKqJK5yt3mnsZwUTP03CpWaT80DDAjGkGIRljY3/SJSBoTTZiQQNUbaJivBsSITxVCEJEAIiisUESBO1AZ37QjYuF3Ou53vHxFXZ3BYLC0tLS9vS0i6+vrb3jDG5xzt25tMnNZFIPBAAEuX7r0ute+rtvtXr5yUampUUAIxuB4OqZEp51ENFTB9wb9xGb9zuryYK3fW+lk/dSkRAjCe3t7RT4VEQQqirKYVi4P4EiJKYNPEyMQ1tdWTpw9e+Geex+6/9Xnzp3vZ/0kyeI2JHJgnaZKWzGp4kqXU64q3lg7fd8D9xqdjkZ7ebm7vJxs71zt9pN+b3V5abXfXTWqL4UrnQcAc8AUOaLFe0pEhNSQLfx325gXXfTbt1nomllCYPhErjztZxkB9h2V+k9/eHbEl9wUUR1+5noU/ttrPOOgjCXjR0y+ZtE/uJiGGXtrVPwIM0oZRmjC2zGdMheEa5hX6gS3lGU1LYuqql7YulV5V5RlVZazjAFEpE4Hk5Xl1dOnT544dXLt2Mb6xsb6sY1Op8MCw72RTqy2ZjqdCqJKDBjlqsrlZTelWIYxnU5jUK3ZXRTWSCprbQihKIo4vVkkeJ9lWcSFR7swuu9RnDH+t9/vv/a1rz19+vQzzzxz+fLl8XhYFkFCgPlCsduOZ5MWYGaZUW9FDyHmNKOi1n4UhCgaSe34ig+BQYBqn2cmwlXrwmIrf3KHLUkiWWsdFkVErTQjpsZabZRSAkRIK/2lnphie293uql1MEtpv+omCqubW1e2txaQYLdtX/Uf7pVOtfDHm5vDa5u7v/PMc+994rEiCCniIAREM/705vJflAPmmYFIac0IASQS4e/TzAHArIz4Dle22waeZyc61No4vHYQNRkR8eDBYxUEmLVIPi2eevJpzMcvXL36GZ/xGUS0tbWV57m1tsGXN6e4bQj/k7mJECEgkSE4ffz4m9/wKU+/cOPxK9d1t1cWt1EkiwYLi1OEvUQZ0Folv/T1dQH9ue9ZupMfXet3lrq9bpr+xBftW72/9rWPfd6/fxVzqMri3X+h9l5e9YPHKhdcDKxyJByawZ9ezAO1/L1L8SkWkIX7decnSdOUmauq2tra+rVf+7Vf//Vfv3DhwkMPPviaB15lFJrUqtSmxqSZIRGrtHfaALuqYmZrjNbqFc6HHd5EwLnKGLO8vHzjxo1+vz8YDGLUKcuyuMw2H06SZGXQB+GqzNdWlm5eu7K7faPfGeTVBFEswVKaLXezrsX0cOHTP3v/b7zt8c9ShNba5pFugrVEtKB7FgPzOCsdjAdrc5gICAOHyJRKoKBVtos140hE0kFgmZU7+uioQC2yIQA8C81LTViNoI684wv0rC+hyeGlzwutrEpCcs697nWvu3DhwtWrV1dWVojo+PHjFy8+/8EPfjDLMqVUv99/1atederUqcFgMJ2ORnvTwWBJK+z1OgE496XtZpNqmnW7K51etzsYdI8dP3FqZXkj0Ta1lrmCwGVZdrrdrb1t54JWCZGAkDAGRq0lzZCUueuuU2/4lNdfuOveU8fuWlk5lugksyqxCSlazOSijKa7IWgWcK7iAGurx86cOb6xcmwyybsdUgYBi2mx0+12Op1emvSVyggtk/c+OOeY1J2vkw2EhBD5fzgqh4gwLrS63slaY7RS6qUIUb+YLrWfZS0zs5Jb1H6foPZJMheQav5iZqZPdJ9m9MTtRTNiJz+hTWa5vMaoPeyTelbgftDw5VkoZyGjggDex0wJREjSfk2wRO2FWi3GOTfOJ8PRaHtvd5xPd4ucmX0IHAIpMtamabq+vrG2unb3ibuPnzh5/Phxba1JDGntvPMCRAqUlGUlCEmaCeG0yPeGw7KqkCgxHQG21ma9LCK7kFQI7AL3lrrj0Tjyn0RHJV5p8MH5sLS0ZKwdj0eVqypXjUajoih73W7a6QrSWpptb28XRbFx/ARp0x8s7+5sP/qR9zOABInaNQQEKHjA0cVZO5gDjRZzDENWVVUPF6JC0qSihGVznsAsBDGEKSLGGA7sWpX6H2/rksF3Z3t/p0Z//blfepM5o7XSRBRzXgS1/5SSNkgKIpw/aNIAUnEwWt8abRnCUkqbago42d39l7/zpX/xjT9729/7gY/9mY998KMsocyCOWB97Bblh59+9gNPPDHygRAVaeSAQo39QTPIHLf53g80nP0jAI5JUSRCBVGnqC0X1AxETL3P1p+jt7IjtrojenWkZ4Ux4e+FkXkSwsAmV2/euH7tug3VXefO3dzeNll2bLCUF3mkVBIODS60ucd/iAIqKAIQKxshMeb8Xeceuf+BRy9e3itKh7eZtPHKnCvf9U03Dh699J3DO/nRd37tU3/xnW85GEQofOmd/52/+Hzzl499683T3zeIxqjngETGGqhXOY6lHvW/uXj9Akh4/7+wkFKLa+8ssXx0y4sisbZZEETk6aeeevbpp3/tV3752Pr6qZOn1lYG/Sw7tray3O8H5xEhAKNIt9M93umisVJ5qCsAQWpqutavznqAi6m+uQu5w2atjZnwXq+3dfPW3mh4+fJlZjl15vTyysrq+jrMFGIC++3tcTdNrdGXLl2q8qklSq1SDhWIQe5YSg0Z+jgcGizwdQ//dnz9to9+XgMtAQQiACRuzSjZx9VITHfE3VYQCBUCxeCQCBhqkY0LIREwowgzeBd8kBklcWjHcAU4UqvOlqr45Qgrkpm1i9iitgUAvq2bgXHruNPhb0+wxZLRVrPGKlLBh2effXZpMOgvLQnBgw+/6uknn3rPu989WFp+5FWPXLx48dj6sWMbx6uyeu7ZZ1dXV+6+Z9DpJJubN4uiyKuiu9IfT8aDXmISq61Nk26Wda3tJDZNjDVaVaUD4ePrG89d7q2vbzgJO8MholIahZVGhQl3+okx+tTpk6dOHcvSFIAVYq/TNShaa5oh4QFme6hIJ0uBbJporXS3Y/r9ZG1lYDAZ9NLAvVEuIsPgAwgQgLCwgyBBouquc6QaO6cFUz9sPGc8Gk0YqP2czG4xtO/jESvwHBrs4G/Nf/JOTnhUzyMKdb+/zVr00ncIabXb/mL8Ja11kiZJkhhjrDYu7KcRcf7FS+rK3OMQLQFsSvsmuc9L7wIwqADIEgAEVLRjSGsbZVW9Z63JGAsAMZTeOn89P0QEQBiArFGBahcIkREcB+W9fimimdBEnZsL2D+0gAxsvYzSfJGZihmUqpMM1toQOPgapBitwGZ2z/stcy4/z63+cNjn4jIms1noCbJOx5WsWBikEo5eCslcfDbsp0EJENpk+ITUrmj0rg5JIuIiMlLahY/1+FubyrzswzyAEjzvq0cRUTs4JC2AMhElqFCR9945rwEMgrVWvPfCUVk5ovODr4gIORT5ZDTNt4fDze2d0TQPICCUJqki1ev3VpZXjh0/ds899xw/fiJNU2X6WhskdMGPywqqKjoYVVFYnaTd7mQyGY8ncdHvZb1OKs67Qa8X0xR721vMrJSy1gx6y1VVjUYTQQoSbm5uJUmyur4R62o0IDs3GY6UVlxvTpxom/QMEh1bXZ/m+c7OzuryiohUVdVJs5VBjCD2Ll994crVa1HcbToZdRLNVZ5o5dvzJOI4Z/cIWrF8mjGkMTMKGMAkyZxzqTKZttPJRLlWXb7CIMw++OD7vf44n1ptJr4MwhHV1pTE7N8+ZRqYA4cq7aQn3zqoiiJRJK+FjcHqatcKAFqtGRRjQKoAEqt8VSgIBBBCmAIJsFrVEtgW4IsClARmAlnqZktZ8vOPfvXOzp4kSafT/VMP/7vY27f+1pfuFddXV5du7WxXE3dsZf27P/xFf+c1vxiPftfVr/7lR3/vPY8+MaoCoQaAyjMiNTVm0TCEwAiQxGpmIkVKk0JSgCIgNjERU6xI6agYwUCUhjIIgyLDAkEIlJEgrmWwBhBsyZUCgBxgC9wf9rbaHVKsi40pL5nD6895NPbwPEyQkggsEghHp3Ti/dSNEMQiFFu3Lu7tWMSH77t/XJbjK5cH3U6i1g2qOCSIIIKBZ4FhBBLeN39xTjMqFu/eVtRvbo2av+S5ZWShMq/NeL/wrcM9OqsABDkwMyCpDsHnvu6Rq088+v7HHrsGeM//ffK5b6mhXHf/0HEgSYBQ6GPfcvOwE95h+5ef/Wtf8p9fs/DH0e7Nj37raOGP0yIHUqSUtXqwsqKt2drZLqpKKVWxgKArKgAB0gINJIJFKQQIdaQghLb1ORNGRAFCrDk9gMR5NApREOs6JufK1hQDUeLFcwiKSMWdg4EBRqN8PN57/vJziJilaZZkpICImCgM+kmaPXLfA8tXr91/5txq2suAMmW6WacIlU0TV1Vpap2rCIUlVmcIiW9MMERFpAAggIBAm4E07uT7b1uuljamKAoA7PT6TzzxxPs/+CERGY2Gp06dfvbSpY0TJ9s+YqdjKwFkQMeDTjfVqpupxMDPfc0LAABQfMYvnu4apxPKOXzfO1/9HZ/9kdve0z/30G81r7/2kXf8zMU/DiBCXIkr2FfMxscKeBGOolYCEGtT0CSp9zOWIOZQBZhVugSW2X1slywDAYALoSxd8EprBI4yyjWyIKjK1xtdREzPRgmIIskHAbAC0Ii+dNNpSTopA86p2zAxgBeIcmFNsh3n/Y/5JA22YTbOz5spTbErkAbFDkir69du7t07/uxP/VSTJcPJ5NLmrUcefg2i/q13/vaZs+fuOf/g1etXjh1fPX3+zM2tqwA3n71+sahKkySepCReXR44z9tbozNnzhANup0Vaw2AN9oaAgFc6azcdfzeyf3u8q3Lo2kxzquQopcKNSJh0us4wk6aGZNJpVLVWU76fbJLKkERYowpMQCwVgNwVRb9JF3rrgEpvWTpxIZW2ibaWoNIgXlrd7vb6T17dQtsqHAqum8TlVICPq2kSDq94bSwSUcrowmNEkvKkAJ2M/pgYOEYDogJTF9UCkgBFtMcYuA1qr8RMqEiRAQNCAGCZwgcMCotaJht8ZVzwTPUuTinsSX42K6+BlHdhIxGRCXAIbINcgBmAVIKFKFWjgNBdJkkBN9M1PrOYr3Re++dq1TXaiWIohCQhYP4AJ6hZNAHlujGPJibT/OHLClhYQTGKBkXZhcCnkMkomBhEfDA3W53fWl5d3vHC4NWCmJVNlCMijCAgBMAkcCxcoziahObJhV3qKYAbH/Ot3q4n+d0LCJaONbGxIKC/efplRej+e+y+RDL8DwEEYWxkh4XPZ2j2otF+LyctvBb8wBSAQBkARYUacQ1CZEDC9clcSzMwTvvJkW5OxrtjsZ7k0npqjTLbJYmvaWVlbXl5eVjx46dPHlyZWWl1+sRkfOh9EDGIKICtEnNHOCD8547HTPN87wotNZWawCIkq42mLjoxGCktTZ2KW4/ZVk2mMaICouYruFw2O12tVKRwCOEQKRMqpm58m5vb1i5urhlPB4Ph0Ot9dra2tra2t7oFBo7HBeqKAGBvWOusjQR71DwsOgIthoAMLNzTkRYxGaZIkIibUz8S3vAeRbmiFxYIQSHGGbhvdvGP9ohUwZxropcFhx8UeTCQStljLE20QAmkEcduR5mGTAAYcFI4cmIsrKyPN7e3R6P94ZjdEF8MEiGlNXKhTDe2f2pD36VCzyp3JirqizHxbgoy/6gYzUZbX7kxtd2Bv2bk+k7H/vQ+x99cuI9w+1RrUfHlhqbeFE6NhYKzbbpOB4sEATaSZk7SaR8IpvALK6Ns3U1dmlU5jJEJawZlrq9933g/Y9/8EOve/UjX/FlXw7zwfz6RDETe/iVNKHfO4e6fSIatVLzSZI4586dOvlHP/dzxtPx5YvPjfLxPT90wmgjkT0GMByl0Pvi2tbWrde9deWD37YT337WD/Y2Tp78KCw6KkmSeBZtTG+pn2ZpNQtaAcBsD2xCb8BR11VAcP+6bn9r4uVjjC0hIdIdXFc0cOKdnc2TuYRNXhTTPK/rShUNh7tl6W5euzFIO5fvPn/P6bOjze2qKFcGg+X1lbNnz95z7uwkL7TWBExeNJExuijGrewKxxQA1a7I4TSjrddVVUVGqaIoxuPxYGX52rVrvaWlrNt59uJzDOJbcnudThc9cunKIt/Z2d7Z3hwNd//VV7/QfOD//KJH3/r+T0eEyvvc+e/42XuulSKoFMiP/6ln42f+3jvf+H989u+0+5N2Oxy84wqYUYlhJKmNI0GcA41GBb6oZUQksn/3JGY5ZplpmIV7AOKuA8KIQiGIDxy8yAwWIYAsKIIs7HnOUYmxDwEQUDFCS0QGSVnrWYWyXXKGMY55VOL4xbT95RGAAIKELOsURf7cc8++9o1vePWF13T6/Y2N9WJr9NEPP3rs5Im1Y8cComM5fvb06z/1NY8//ntPPL1FVmHA4B0zCPt8Og0IpNJr126xU6v9VUJSihCFCI3WWluF3bXBKVDq2cuXtoa7VagEKkEw2jLjUnc5n5YXn3nu2NLxjd6GWVeWtPigtMaZboHMijAVoSE16PVpVkeKkdfOGBEI7Ktusn1tb3f7ZuULKqptURaWVbashQBIKat0SpF5AQWbyNcRg3a7BIQs5E9bJ8GXndPG1mkXfuvFtmbHi/+L6we/jKSKzJsVc91GJAFGREEi1EonxnaStJt1hsWUMRqENYnU/rdextXVXdqnwhJpiulj4uHlnfl/tNu0WEgXI/cgL6X2SGQeAP3K9e3j/tZC4xbxLrVa8HWKPHoFgTnPy+F4PM1Lz2Js2k87vf5Sb7C0cfL0hXvvO3nypDHGzRoRCaC1idJRx4zKsozW/GypkiRJ0jR1zsVSk9i890qpqAIUqb0imwcz53lOM8VGrOtkyrIsYxlAJACIdfbQikgREYjs7u7GMxtjjh07Zq211uZ5vrWz2ck66+vrejQWYRK/e+ua9y5UlTo8VxjNi4aIpgGAKaXSNK1JdZVqhzGa0Y4tlq9EqHS8ungjDoN+Ncs0+yBKJdpAqMbjsffBGJMkSZLUjopCHSnE2xNAGnlKFgEUQiRSRk/zfLw7RJbU2uADpknW6U6qogoMSgcP0zK/tbk5qcrltY7V2Ot1tE1uDafv/vBH3vneD+858YT0klbSpm4EBfDIZaqZhAclij8ZmsyDQJIkU6TFOVI4KXJlTNrv3nX+gkrSUFYHN1qSj+Oo3KGo3+9nixCaJEk2NjYeeODBd16/OikLj7qXaQ4QBDyBU0etal/4r8798tffKYsDlVXK8kf+6bGuNX3t1u5aOf/Qwz8Nc3qRp/7xoNPvgqBJbH9pyXMoylIppWfsIwvn3J9Ud6q2ELUZ4jN/hx0/qjVLAREhi6okQxhv7bwwfP7ixYuf/dmffe+99443tx/duqbHW//1A+89c/z4qbW11z/w0Nn1jcwkmgFcUEoJzhBiEt3D6EITC8odeIpElCSJtRYAer2etXZ1dfXKlStZlg0GgzRN2xm8wWBlqbvMrqomk/FoZ2lpKbhVgGn7hNYorA1+Vkr3MuUZgvN/9ifu6aRpr9ubaLvYh8RiUBIoEQXsPQcMHqlesuJkOzhuCwumAHiRIPVtbUJI9SfDLEzmg/Pec+D9VIfa3+bagWeAwCIgAYWBnRfnAwMSKWOs8uDlNqVZFDM/L6/hPCMrCmmAJEkmZdHr9VaWBq6sVs4MlrrdZx9/+nO/4C2s1Bd9yZf81Nvf/po3vu41n/paD663Mlg/cTyw29vczkcT8KK8hKJyClRidnZ3+p0lAMiyLElsXZXKkljJbG999SSlJku7iKgI0pQ6abaytJKmnfHetNfrDPor09F4e2u7OHaae6JQYhk9tBYrnFWKag6kdSR9qcOgsXRWhMhnqVpbXa12dsp8An5adPKuyRENIhljEpspZUEIWnDi/9HusPHhNSoKqcngR0RSmqa9Xm+wtLQroajKGnFQBwZesS61TZHaUZkZfjUX6iv2U/+jAWitRBvQWgVhQngJMpS/b/mUI3+sPW8aRyUuJaKkuSwRqYJ4EURKklSlHVGqs9Q/cfL0+vHjJ8+cXVldQ8KyKE2SmCSpoXksWWqUNk11R0yVxGUxuiIRvh9TtDBLvzrnopQhzNIsTTciE2hEW8VvRfr/WE1YMykjImIUWyWitJPlRWWMWVpairorRVFsbW1FgQtmNtYsLy9n/SVCQD7+tLidWy8YrY+4qc0oIWJcf6NQhtEGESvvrTGe2VWV5zkkY/OINs4bzDQE2w/w4m2aBWWVUgrEouplHV/AdDLx3mttkiRRWlFUj6DFuPuCo+KDIGHa7URvjZnHo/HElVVVAXLB4p2rfHBBJt7tjcf/6S9HRqbN73vsi5NOdn1770NPP/s7jz6+54RNIp5lP1r8Ilo7ZHhE7L09P19m9eonqC3EqyoXkBFF0iTJnXvvB35vKU2D0buTSU+buBJHCH8LQ31U4zsT9fv9bBFrkaZpCEEBnl5Zu3z9BnkvsViAAIBiOvI1/9fpD/+VOUavr/iPD3/Gp3367uu2zv3siR/90vfFP/6xHz33X7+h9ls+75+fxuB/7X+uK1u+8sfOZxt2qddPjAUJRo8v3Hdh7eTx7332T/2N8z8VP3P2B1dtJ+slvU6WJWkSQIajkfigkLRS3vnFLKUIM0/+dqRBhuS7U/h4rbawsMHevdy70NzTuIzookyzDJRW/aVpWT7+9FPrp09Tv7ux1Nse75WT0a18qkfJez784RvHT9x3+uwg64aqyLomYooRauLVGbD+TrekJs6itT558uTNmze11rdu3Xr22WcffvjhtbW1uA7HZpMUDTpSWtFgbWV1ZTkhB3ClfUICYRFEydI07RgrEli8Fx/EszgfAvi//huf9X9+bo3++ndXv/wLTtdY05/d/dOaPQUvSqBVkHnQUWmiA9LKqITgwzzBYF2UEhhEaWUE0PlQRegYQuPiiEDUtw+eQ8vzidzEIsAopXPTvCxc0AmRQBFc4ebIRWhOguJltYXcKSGaJGFga836ysqFu+8erK4Uk4lSKu2mRGZS5f/lZ3/mK7/mTy+vLRVu0ummkyrfmYzK4JXRibEG2JImrXWis6XByeP3rw7WkiTJ8zyzNun2FJEyxnvpdXtFKIW5KkpXliDQ7/bvOnvu/Ll7+tlguDO0KtkYrC13B+sra1op4Lo2WlpgpNh/pZQ2WjnRihKjo0cUPxx8qIB7Nl1fXr9w1wMmwWubL5AYo7pKGRREMmRsknSgQbHOgUL+h0H78VvzmCzsUCiAimLBDyIQKaN1mqS9Tnep18smkxg5JVKEyK8oCus2jkqNaa4h4/tVMXcIIZCmXBiAI7FSbUIRIMospVCD9T+edsph57+TC5t73xJzPEg8XV8/yGJd2jwd/hy7wBHD0D7F/Me00iXXMmEsHGNyXCfq2ief62P7WmShG3M/e7gPe8SYSf2DdbZhtlhjzdzY/ukDX407HGI0u+uU+jzPlVJGaaOtaKVM1ukuD46dOnX27F0r6+t5YM8ogbXNWNgHpxMDgMLgQyClY7gl2sQwo/CKp434rkZqIA7RaDRKkkQpNZ1Omdlam2VZ3E2jLkpMIkcYWK/Xc85Np9NOp9PkheIno3gFEnU63cq5NE1XV1d3dnZu3boFM5FUZg4+MAciWl1ZyRJdjHcne5tKuKh8YGloCeZ2jlgEJRJtfZjFwJIk8RwiBhSYffA8b402j5UxJgYLm8hZs+82LT5ZXPP4IyEogESpbpomymhtptNcRLx3Sqk3vvB34nl+79g/AoDAHEcs9i2EEIIXAV9WmowyRhtfeI9Gp0t9B+zKSmkaeb832kWAsnTjSV4w/+jX7cetv+OhX3jr9T/7xOUrv/uxJ2+NckYVAgAScJg9mJEV/CjA3GyvwsCso1cpIgxRm0hrHVdWRcoHHwPeMT7bGB+zk9ECK8/8kydySFIfcZ9dfrEwb369WQBJtt2kue/Mf80maaw/E1Lbw+GmcxsrK7uTybgq+mnqyipJE19V8XebtXhukZ7H6Da9hQNcYYtLSmsFoBYSIwoiNm8X6IzksIVuvgouHor5STQmgjNPnTr1OZ+ZjAF/I3/vzZ3dKvUViIgSZs3aECnCN//wuaVef3UwGA93LUKRT0jk1Q88+MDq+uc8/aqdvb3heDQ9PX3wZ9Z9rIpeBZvYT3vHg0jkvZ+uTpRSGxsbq2trRTmdhs3eqTXqpaNQfMF/ODsJOHUSlkyadtf6g06WFWW5O9zzzqEAskiIKgGL6Z3GSwGA8u8U9u8nc9cJABEBH6l7W7nTepAJDrsR0K69hEbdCgkQDkgEQmR/QewmqQT2VaERDeL1Sy9cv3R1feNYdzC45+57l/orxXg8nOZl4SbTi+//0EfOnDzxhle/ZqBgqd8R74lQgg/BE4DVuo59tO8l7M+ONrGFtEoZu93um9/85mvXri0vL+/s7Jw/f77T6bQfEGYJIVTBKwQkqKpCAf+j337d3/zMD8YP/JPffRNaiaTsJKATk0gAEEFFJvFCeeWLMoym42/6Lw90Lfa66Z/5nJ9uzv+ly//p50Z/JoDz6ATCbCrP7USA1Jg7s400YvmEhaK71qyls3JWiXWLQMhCDBRkFhwSDMHPIKYyAwTGRqyAg3jxQdB5DgBCFBimRb5XFNOW/myQelBvY/Pcob3RatHKr5dUgH6nY5IUELMsRZDfe//v3Ny6de+99772tW84d+7ss88///Xf+PXD0eT02VMMfrW3dGvzBRe8E1+Iz4vclYVVNjNaa206ncFgudvr9vv9NE2TJNHGxLAJIhqtuh09zLmY7o32dnxZAcnq+sa99zx45sSZlXSQnDMoaNCs9pfXV9b7WVcR8QyGB7NdDGdwA6XQgrLGpMYkxihdS5sEhVYTSRDgauADK6NWneNutqKpS5BokzKiVhYgVoZFCZ25QkSobz8AQNzxI2RDZiTU8TNxAitS0W6tTUCp1QhiV6GJAc0OzE7fYluWfQDugTs8UzhowGD7ZirOcU4GPzsTiLQrUfcX9ua3GwZRmKVMG5ej6UsbMxWVAW5rWi/8EVlIYs23CHsUSY3tpNlyf6k/HPnKTaSieaBdLXs6e8u8v5MiYnQFVH0Vc79GipqO1zns2eHaUYnXryL3z4F2tK8Sd98a4BsEMdYn19Rvft57bjyB247Ry2ztc+LMhr5d53F21QcOtM92x6GwRZ69NuM7oQ+eQ2BBlnjPawLfxU1/wUdqDiG2lV7i9J19am6LmbtSWezVQmsMQb8vU4gLHMULNcfQsp6ZOUpJNjtB/K9nJmNB6TTTnaWlY6dOrZ040ekvaZtM8gJMGoABwAePSNqkRFS5qqxKo2w0xyPGqYkKI2KU647EvjFoF52WBsgUeziZTKbTaVEUUVFqNJpEWfqiKHgmogIAeZ5vb2/DLIoQ/ZziOh5tAAEAAElEQVT4tigLz7VrMRwOY7pmPB5H5ZP46ysrK3uTPCYjsiwDkKIskYywxxllcHvDjrRjMZfSIM3iJ10IqJVn5livhrJgFsRrjBmhsH+b5kBf+09W/VqQSAlqgm6SdJPMkArauGkOIFVVfebO322++/qbf/M9J76Xmal1TmaOYcSiqoIrCMkLu+ALXwUUtEYhIiaYT0FRWRQVctDIfvEpu3hj83c++vjmpCiFmFSsJomzsm3JHT05iQiRQgg6Ft6FWsOUo3AeEYRAiiRWlzIErpcamvMV96tammFrDSDiUXBmjDsZz4tzHeGoxCdh//08uG7uqpGCgIhMijLRSimzN53+5nvec+3GzQvHjj/y4IOxxKHZ1VTNV9gOGM495dRiHFmYhwvrbduZievVgoNXx7HUoWXW7VXu4FLT3F92LiY2kyQ5uXH8yz7nLQ+dv/9f/vR/enbrJmeJAKoABsgozSpUwo4DGaWU4uDSNH3iscfvOnE8W06t7v35e/91PPlP7X3znxr8UHz9r699/erK+p9Mvy++/caff829Z9c7g8E3Z/8GAAB+41+Gb7uytb07yT3rJOunad/adHlpCRHHo1ExzcUHBJDA7IP4EKV42iMFh7b5pzUKIpFSMwG4OLREkTT79tWGTdJFZqNPRAQCqFrnb91JAeYqSl0rgK5OMLidqzfvPXW3CsZNfD/pdzB1aZFPxqVIYe0OyG985ENnlldPrm+cOXuKqzLV2mRWK3FlCUpzKxYqUhM01I7uPISy6UdEq544cWJjYyMib2GepDtWi5HVxEKKELhjTD9L3vqRt2xvbvZTTYYNIQNqrargESiloEhFZAkok1chr6q9kR5P1Xg83RvnMN+s7eTlkKWp5hMCagL2IQTA/chOtAVE9vFejZfRRG1nbgyyZ0FgRAEVYgREhEWqBbUUUXUYVhiQPLMPXAUJTIAaiRlgmpfjqmx/LTDfvpZgfnIsLI+HrZYyi7jFLen1n/L6TrfT7/ed97c2N9/5G+8oq+qd73iHNuZPfuVXvu4Nn7q6PACA8WhvWk5wJwh64aC0JmPEauynArpUAgQWURMRUrMXK1KAwMIaUWnKMuqkamvz+mhvRyEGwV5ncObUPceWj210Bp0kS22iABNtO0mW2TQ1iUIkQMa5RFDtqyBpDISMGBBDXQMfeRwJU5WBJZdy1SWEQeU8kbaQECht0sJViFYpUGSIZvyRCwM1cyoip05VVXG8GwHWpktKKZQgUZqhxUIZPWHYZ6du1xtiGyogUMt5zzqz33g2AWdnxOanF/bEJtrVBCkahIU0va2N/foozhaShQk1O+3crtd8Rloy4vFSFgJv8QdQxPsAIIYos3a5tzTo7HnnQlm54GHeLWyH6kS4VTiJAO2NaQ5zSvvgW2nqx2L/D+cw/2+3qVlOnqNZ88mXG8Q5M2suMsrhZbNXY9ztXpxc4BGtWeIRkUixACnT7XdPnT178ty5zmAASAGJBcZV1Qy3MQaQ2DvvQ2DopIaZo1K7iESHZDKZRMRq9F4i6oCZo9pJt9tNkgQRvfdZljWmpIiUZbm0tDQcDre3txthMpylMhqt+njmoijiI6SMnkwLFsnzPIpReu93d3cj7Kqo8ps3b7KQtQkRJdYm1hprIQRtkpAzzGoD5m7fzOZu4xDqFxij7zz7twiCb8ps4leif3h01KBpmU16nW5qrEXFBMPpHXG8Nt0DAGYuq4pDcM6VZckcPAFrYoySkQYVgQQEUIDKLU7L//pb73l+a68SYtQAgBI/8N91Ln4+HoHOB6oLioTZKYQg9NzVyzdu3bw8WGHv3vC616dx6s7qjhBfRIb5sE82u2OcTrG2tZlXjZNz5+vDgTk5l7GKEdP4W+fWjrHAw/fd9+T1K5IYJP3CX6vJvh7+obNakSeZlqXJkpDzT37NowDww/DbPyHf+iey/19zysZLAYC/cPJftX/4X/zxD//cia/5kut/u/nLXwxv/bK9168sH6tKTpNelna0SVxRllWVT6bBueA9CEc/kIleWtlAXECoaYCtGpVXMiQnKABcl8EDAmJi7PUXrnWz3igvd8fj46dOXr11FRHywk+mI61JO2dJbU3d9Seefe76rQfuPW9JBr2s20mZWILQi0F/Na/jshYDPbeZbKIZg4gEENLU7/eXMet30pvjIjWUaJVq1Iq4FlBiRCydN0p/04O/Hk/wE9e/PLVZYrDXs7dMtrWzs9CZL0z+BSQAAP/x2c+bWX6Hj9ssih8X3wCBZ8CKZrmLr1gwUogFYS/sA3NUrWdu+xuzE0aYhHBgz+I9uwCOgwveBxGFLgQHc8D/hpT4ziUKqEERHmgNgZLWmggE5Iu/+Iti9r7b65EipdR4PH7f7/zOu37zN7pZ564z58D74Xhva2fLpLi80h10O0orNMqlyisoGLwSowkQoQomlrbXSV2IsxoFCEkTWWO63ez4xrHqphtOxq7ymU1OHT+5kQw6NkuShFA0KKO0UTqqdUV0XdvshtlOR+wUAolAKyoXB6qbJForx5w7EOiUvor7DgqGoBA40k8jKoCmRuWVD4UzMyI1nX/5J2yH5OATE75/ma2OqguAgEKMmSSjdLfTWe73QwiurKbTqedAUtdcLbqIrcpMxHk8wMdJguy3/x4dFVIKIxtdFHz85DOcFlTn+ECF08tpCHUwKQbA9Muuu20yKjEUGBD7S4P1Y8dPnj4zWF4VUrlznr0QcZBGwjkmSeK3olhYxDvCTME9JuIibkQplSTJZDIZj8fN0szM3W43fktrHUV5o9S91jpyfNfaKSFEfyZaS/HkRVEURdEsE1GrPk2xKIvRaAQA1tqyLOOi75wbDociopQ6cfIEIWqSbq+7srwi3W5e+dK5eHThyUuNjZcQi01j8Ca2tt/S3jLr2zQrMWwcldjusE7aGpMmiUYiRKPMnW+KzXwTZmtNPnF5npdVGYmhK+8AQIi8Ah9VphFRU/DwF37ykX/9FR+NJ3nNP1t/+tZmAQRkRQDBkwQE8S+O8e6/tYZzKDQUJABCYBAJHACASVUskhcTM9nc2X77z/yXt3zeW04dPxGlBmpm1RZ7/UIUo91EDlUhxHmsZhPRi89UBLnhQcDcnV4XQCuY0ljwAECKvfdL/e4f+czPfO9HPrxTVc9/2z4l8aPffPm+Hz6pXIXj4aCb/ezXPNoc+qrsB++wJwBwc2uR5njz6t7KysrSUkKgEBWEUJTV3nBvWuTOOR+CRIQDoiZ1kKyh9w/7479V84a1cF9zLYaEqcZ9ESI2NSryCpRMzzUBEWQBYEQG8Kh2x6OxhBJlfeOYK/3yYHVz6+b6+sY6rO/sbfeWlkioErs9He5Mb126dr2fJanCUyc2HrjvQj9LpSjupHLs4JSIcyyiUhfWpcjAHwgUoLam38n6GHpWD01ljU60soaSxPrAXJR5nhcFa22/7c3vbc7wVSdqoNe/uf7lebAFyzf8/EM/+scfO9ixrz7/jn//9Od+XJNnfw0V8bxfTN8+Ghm9AoMP3jMH4ah0HPFaBxk66m+BeAHP4AK7IJ4hBHZeQNh5ZuGXGVz8uDZAvYVpeuyxj21ufu4b3/hGEVlaWpqMJ8K8vrz6pV/0xcPJ+B2//Etv+ezPu3758olTJ08/+MC0Gm3t3MwnYwnsQXLiQjMpk3U6aX+pZ7Numhql22mBeorHzD2kWbL02kc+pWD3m+/5jerSc2W+W5ZDrUM3yTqmkyYpIShCo3QkwQNE5/3CyNeAK6UUqybrNb+yidEASKmxWdrxQjpUAgHZiwjnmgiITFxj5jVsXuEmzLWXJa8MZxu12sKK/cmwTd62DyJijOkpOrF+LLEJitwSGOdTCZ4OWezajgpiS+xscUk5dJLrA359k/h5aQMV99NIaCEvBj/1+9QQgGYptlof6hP6e4ICJIiNhX4nzv5cCmW+QBBbkIt5LMbiD8/jNBaPwSzrPYfuaP336GGZ29hEJEb6I1uxUHdpeXVjI+svkdZOgAGIlDI2DzEWCACgZkAskaCDaJTgg4hkWZYkSVmWUaJ7Op1GWuGIoYo+DACEEEajUaNGb4zpdDpZlq2vr08mk8lkkudjpVR0M0Qkeikx8teOfRZFEetbtNbG2rwskySx2uRlEWNRPoTJdLq9tR0k3H3XXS5wmqbj8cSLDwzWWNTEUirEWOyBjawQAAq44LU1GmzwPnoywqxIKaWcCxFR0P43N8itbIw0bfGeyvzb+rVCVAAcPCORqkkRGeBdK9/1GTP01wePf285C9UDzKClzRYi4p2vvGMQmyRlVeVF7ryLa00IzIGjJtpbv+QD8YTf/Jufi0n6vscffebWCw5Am7QKHPki4wZCn+DloBEb+SRbdeo2n9xHUjZOE4KIQuaKPXsRop3J5F3vex8F0dp8+Z/8k6lp6I/m5oDMV+MstCMyKrHV8woAWj5Pk1HBecbJxZMfHhmL+m3xP21sAyEx8dJS79VLD37N/+vLf/E33/k8bLfPWXhHgN65Xjc77Hc/brv5/BU4NfeX+++6Vxntna9cVVSl98GjTKbjKqqPB08qwr0ICeB2FmH29zsiwrfDRcemABVS9DvjP6z/4Us1aY76liALIKMwihcpgHfyqU06VWBEKqrS2uTy5audLFUar166Np3kq8vHp5Pp9q3riVYnjq2u9Dp7z126cvPmyY2NT33wPmpYOEQWUMjNq1htE18CACmAKFESkR6320pRAJGsVtZoxZ7FG0VWKW1IGWUMAULwfjoZV2E6DoscX7H9uRM//YOTL1teGjj2f/ZnzntXLXe7P/xFT7Q/w7JYu7XwRlqNZwAwboFwokxDmPGbOwbvY8UKMAMDziBbc6dlQAZkgcAcGDyLZ3GMjtkxIIoXDvPsXnJg6f647QgvBRFJodbKGK2NQoSf+qmfHCwvfdZnfkaapBzc9WvXjNZnz519zYMPfej9H7x1/ZolOrG+MSpGlsxgsHLl2vNpmiVumrosSNAqyZaW+oOVJZV0TT/iNqkG0eHsQUZhzpIukNoZbp89dua+uy7k4yEiEHuD3Ek6HdtNE0OICEgAtW4N13ocPMPfRdZoREAURZE4m0FCGxOEACAVACgUg6gVCigW9ijATNEBqrlhFga2ma44b90cvJP7n56Zywvma4QF1joeNWH5nRjJsvD/2Ys6IbrfFtKShy/rC0deAQP2sIlY2zGzw82OoEhpY1aXEYmmRT7Op3lV+uAjkbe0hxtBokZCo+zZRpm1N8TZeKMsdkgANGkI4kqXu1CllCrah8baRCrnKudi5aLSWmldVZXSOsyhksULi3daa2UMhrgzMSIABqWBA5Zl0en0F7bY9l054lFsh2oOZNwWS1WbN8F5ZmalJTCwVFUZCxuCD4AY40BxoOZGZA54PjdaRzCrzmnJcQ3gQYyZ0oSSdApTL6KRFPtatxkF25oS83SqoaUDBS0jQBCqmQgxCsRZ0RiarGZbYs0Y37xDxfu9JyJFERzPDdionlhIjMGHQIhGaZxRTkUcZ1N/JsKKwmxCkiDbNPXeG2MnpVu/cP/yxrFsba3S2gUAxIDK+xCqqTKqqipE7PV6Wmsi6nWz6XSKiE3JuA8hFAUgkNHM3On3nAs6ujUAzjlSYIzJ83w6Gm3vDUMIy8vLy8vLMasoLF4gAPaXB1mWRdb/4XAY4WFpmmZZVuUFM0dcdVVVWmvvfeT+4uA0LgG7rVs3Jnk5yYtJnvf7S4O1jTRLV/o9Du6Jp56umDq9JRdwqT9I0ZddNxnvjoaTICxIvC9rDSiMoYrQHRVQYZTUlFAGP9sseSb20vZITUSmhVCUpQ+BlHKzNGCcMQRRFJl98ARgNCVGF2UIDD2bpIo6Brzzo7zUWccx3NgbDgadk2X5keN/TxN5BseOBDXqWLmmiFwQBWRJ++ATY8tq2u12jTGj0YgQDam0Y3d3d7mQQZY6hQWZv/vF+0HQH/qc33jD285/9LmrAiSg2Tuaza6ooKKNbRaqaArLrIZNt2o56u0FUSlFWiuQOD4ooGb1UcyskECB+ODLKvjAwCFaG9DWRIRwgFVW0X4mOfK/NW+Lomg9lPWT15j1cEir5h7fuUWlrdYKMIcTtuKav0X9OCIMIh7DtaIaCC8nne7Kmhfw7AlAkO98V1oIVqn2UskgzAigUQGCmnHoCjMhUnzU6ie9XohiwK9dQ9UWwCVskRihCPqZJAgqo4WhLB2RSmwmWE2LqSB9zqe/8cSZk78OH50bxko0Qjfr5tVR8ePfveuff+rz3xRf/4NLX3nvPRe+Kvyj5uhq9+Q/ev7r/uZdPx7ffsM7/qgocOwrrqZVPimmZVkNq9whe+RA7BmccywQFRzRqFaeU+o6PQRApFan2lssAqREClEjqrpOFAAEJYAAtgYND5QOUq3QCopIU6wCDiIgyIizDO2c440+aBQhYCUBFYWyGiSJJupkWVkUWmlXFVVVDgYDrfXy8vJ4PA6rYTyZ9lZ7nZXzo+Hw2niyVbmHH37Vta3trRs7w8mHVpeWLtxzz1K3A8ETAHsHnpEQyQtCpHxlqHe2JtqGTawM570bAEbQpJSIFU+IGjnPx3/i3ncAANwDP/74ZzL40hWkaNBPJSzvjqvLm3Pkxe32rRfeHl/8lV99ZJxj3pbMBACAIkg3MRqFCIInBKVIUOv9BTb+i1W9sdwCAJFZmAGCiBf2LF4YSLxAIAkEIUhD7aWIOOzbGE3OP4TAgBWjE3ABK6Fp8LlQiVJVrmIMvGA77MMKlIqhgSACSql20DD4ubRk/TSGSEI2+xiKUsDeiUYEWh4Mlgarl6688L7f+cCrX/M6pfXy+spwsuedK30Riny0devik4+9/tPeNFjp8QT2xhOhzvHT909eGAJRVy8FlixdWlpaHXQGnbSryJBOq8p7z8YmhCoEEYWxmkBjSW6y1uuYU3cPKHnN6QeqqlpOlztVpgU1gdGaZlwyNFt/kgCVK/KyzPNca7CJiX6GIiyjucBoM2tVonV7NIIIoHgNkKBCJMeKg3LMzF6gYvZIBMikhBSQisuugmgnIxCJK3JmLxIqV5TBIWEECCCCqjdrQAAWrxFRgSvKypfMXsAjKaXAmij46GeOLUMtoUaLyEeAaJ9BlIZTWmvtQqiYQ6xHYwEB8QECk4ACJKI5+S9CAAgSDdEQWIAUkHKuMnGlgYh2w7jqICgCMToSEdR8Au0uaW1E5sQfZQbrcjEHHp9i2a9URoCKPQAgISBxCCHqQnIQ5w1it5t2Bl21qwU5sHcSHIFoUpUIgEfwKAxCgAbr4Kkxipvq/1nxGAAgoJ8WLS9MmodNELRImAVzG3apjx/0PzIUgLNbFGO4eKfkmof91gG+mjtpjZPKzLF2KlZjx3qD38eGAshYM9jXI4HAKHeOxlk43dyppX66ZPaYAcQ0jrQ970bSSwCc8yFEfmFtlPHV/oJIiggUsSAhCgXnBIWRmZiZQRAYFSjBKP076w6pyjtEGk/ytRMne8dPZktLNutATU4aENFYmxAVrtpY37CJjaomcRuOqK1IYxrvV1u4dAFUEDVbiCgiqbrdboRvTSYTgLo6JeK7Op1OjYhljiL3zrkkSYbDYb/T9d7HXE1TSe+9995NRsNpnl+5cmV7d4+0QWVOnjx14cKFpcHKaDQk9rduvFDmeWew1uv13LSzh6iIlpf6d50+dTFcHk/zukIaKcI7tVULgZcYjwkSeD7Od9vbfdghEog0oyisAFRcBYgUsQRCQa1IK6VQlwwexGjjXCiqajLNe6kBJVGmCZgCBzUzxBHAaB0tEUYSa2MWqE050Ol0QgioFJPgAXTQs5evMJLsmzLNDNyPxX5C20Ic7ON//vDB/0S3hZUtZvtEIAAgyGg67Sh75txZZm4iMm1hwd+H1g71LYzSEZkcJoo9JSAA0kikFQERqgIVZR1x4dat7b3R5I/8wut+/as+GL+18v2rATmwOO/Lsvojb3vo17/2NjgfAPjVn/+v38tf/jde/dMA8LfP/ed/8tTXwPn9o980+MHvfOpP/NWrfyyIJm2cdcPJ2DknAM47570PPiI3WMJs28Nm2sw/knc41kKABKIQVXRMX949OhqIhUgITDE6iaAJhchXbjQapWmijDLW5kVhjWER532SptPpFAjzslheXnbeV957kY8+9vjy8vI4uNHOzW5inrpy+d6777r37Ll+mrALUrlON8PmsRWUuZ28JcR9+17WEbDxpOj2VrL+yp848ZPNwa978Lff9vRnkkJjjFJWK9vp8Uhtf8W/P/2T/9PVw04JAP/X53/0r//q68uy/OaffeCHvrROqnzfu99U9b3xaGqPoAYh14j4Aw2g9T+ILwCBAAMAOuciZVnMgbcWuMMTagCAyALM4jn4UCdSuA5XzY1UOxrV3toWHqgjnq92yjjukN5XU/b+hmNRJ0+efNe73vUFX/AWpe7uL3WPHT/GzFWZry6vHFvfQJTEmul0OhqPp2WVdTsC1OsMtLYd64JHa9JuZ9DrDtKki6iCRKptFF5M+BOCVjq1KWd87pQ9tno8QqYTlckBotv2ddVpGcJIbm+MstYSRdwX7N+luUaNbTrjmIp5+tlfD1v1Z1tQc0aOaL6IgG8tp038t/U/mN9PFs7fPAkgeNTGdtihl6GJN2fONwnCV3wjE6hZqQRAWun3OCIEEGbuuiIyWgOQl+A5oA8Sg6kqqtWzMHgRAFRGBOZUieup0hr/g7lZ3eA2257WJ1U7QoLwiNYsATwT3IjY60/Oa7zDhgKqdTtr8dRoEeNR9lloPROCChWxiOcAAokx+9ZkxMKKoKCIJNY2fxcRjgpNiIjaBRKKcxVZxPlgtEZL6yeOY5YRUcxfRTejcT+SJGHhSLiRpqlSKkK8orDjDOG9j5WPCipZ1t0fAcLYtwgDi6kVZs7zPMLAoluSJEmn0xmPx3mex49FJYft7e00TaeAaZpaa8fj8XQ6LctyOp2Ox+OyLG7dvDHN8263e+LECUGyaefUmbPW2hdeeKHTyYJ3RVH2+0trx44pmxKv713PTCgGvW6W2qqqXrh+Y1oUkeMtrq0xkjSrhEZBYJEYpRCiJuB3cGFu3OyFGUtNVFOAUEiRtlrHGK4xzktgFIg1zAiojMU8Lwrntre31pfS4crSyvLAB4+IgoQA3gfSRikVM2aI+OnFd8Xfeof63+KoWmvjslJVVafT8d47FqUR9eKzWVbuE6xK+go3OVLk9BPaDmo+xNeEgIRLS718mj/zzDP3njnzB9I9ADioztY+1LxemKI1pYQQMka5CaO0IgMKixCef+Ha9a2treHoxu6wAnX2B8/s5XnlfLCCwt77qqpKEFT0+f/2oUGv3+9mP/aFv9E+/84LN77nC9/ZvP2r5//DYr8ZVgerutubTPOtra2yLIuyZJDCVWVVVd5xg/85QP7fhEuOrgpYaLFu/oii51ewKaUQMDoqAqiUoiQFwHw61VqFEDY2NmLVX1xdJ5OJ9340Gq2trUXmQ0RcW1uLK+3m3u7W9gtrg/5yt7v9kb1r1649ePc9d586tb66PtrbBRVj0gSAUfI70jdjVIM/3DojYUYKqHTWFwxn7ns1vDD3Aa21CDvnjEmyLDMWXjfonD22/Mj7zn7Xm95zxOUbSRVCFcpv/f8/SAoHiQnWh4DekzZUeymKFFHA2zP7i0DDpyoCBMBRKbCuvpBm4ZU5aKUcbnNGO5hnxob3zAFQhA5asO15Za2dP8N+OxJIst+cc0jCHD7/89/ykY985MSJE69//eve9ra3vetd7zZG3Xvf+U4n01pfvLi5vLz8zd/yLT/yz3/kVa997WDj2JpdU5PpcDS0Nun31rvCzBI8IKok6XSyvrUpgip9qRABkOvk09yFxPrSJtoYMdtEKFJHG2/jcLRaWXofXAgaALRWRBpgXxz5sKF+OS1GJN2BjNwf3iYzD4LnM96vVGuMsdtMQkTvfRXNBkCFhEiFc2VRmBBBiQqRBKGOXEbUXwhACLPNpTEOQY4SRN93VP4AI4tHtzuP5LVbu1oUEaM0h1KKCMv80BTzJ38jbjHszzbZmZeCzc4hrViBAPg5heR6FYjpzsr7Js8DQAElACGiURRj/xwCx7wbQl0xiuD2jVHyzGBT0fbYifWkP6gIo08YC8HjWh83SJMksYY+uhkNnEZrHf2NCH+KrgXOMPSRTTi2Nl1vrDCJwo6xOD7G/qOwYwhhbW1NKTWZTPI8z7JsOp1GyF9Qemdnp9vtTqfTp556ajhsGLFkeTDQxqytrS2vrZEyyiSdTqff7ydp5+bNG76Y7uxsh+BjtufEiRPbV5arvVsoLjXq7rOnEeSFazcmUsQUVsN8Wye7ECA+rSGSv2q+nStSD2tNTLd4FEFq6kNghdhJbJbaWCFTCiilYuWmiHjvCQUEpnmuEEbj8c3N7TTRg+XlXmoIhQgI0fuQGBtH23vfeCkA8Hn6+38+/1+89zjjbWTmr7/3P8ej//ijXwYm/I13fd73fsY74l/S/w8oo51/JbkfPtFtgXX39/enFzMqtRGDoK0dDkcraffJJ598zf33X7jr7B9ID+mAOltzaGEd3r8WQS0zZB0SWYtKOS974+lePv3gU086ADQ2B8oZTt99YfnUXe/7wAccjxl8YHbBV96lVgthYC6rUh1IIZ1YO3F0t9ePHR8WubFWOS+EeVFMi1wIK+dKV/kQGCVueCwRdl5fy97f2Ikvku/uHLzkIwcKaT5GeCffemltlgeIW78gYafT6XQ6XJR5WWxtbZ08fWpvNOQgLgQGWV1f29vb6wlPp1PnXKfTSZKEmaOm7Xgy6Q6WMTHXtnemOztXrly9tbn5zMbGifVjF87d1dc67g0IMTtQh10+Lh5ghgpDnfbyYtxZPXU7RyVghNSQRoTMcLrcWU4/zurxPV/w7vji237uVVZRVGJBxEbzJzpgCCTCMP+INdxKMttFYySXgFmQiIhFa8QgEc/IYX/5rYP4hztnIsIcgvchRNoWFaXkFj52aBbl8IzK0ZPQh3D2zKkHHnjg6aeffuqpp+6669zq6upgMNjY2Lhx42a3m505cybLsuVk6cmnnn71q199/wP3j0pHSimlWEQpY01PW6PQOB+CF6OTxGZaJRBzhcIUCV3mZ3VZOoaASMZYpRSRCiGMx2MAqE3nWdFmu/8tPwUBIM7DiHrtdlblDsjrX1prHsyFot8/7K2Jqhy8Qa9IW8x7zB/jELxzwNLJMtvteRCamsDMHIhQGUNaQTQCo0KHSBBGxkZuuxHK48AKD3VVdOOl1D/d6sWCaxs/GR+zBnp4cI+fy60CMjMHVCqaXAyosFUc3P7WHQ7cYXvAwgl5xjkoItHwhZoJERtwPNfyCDAjxF4MwCxsxYf26YjA0owyQw7kBxcwFQsLU310/oKxFaxeCPsJgpASmVXEojDXACqljOkkQGo25wQBtDHWGNK63+83y0rMeMf1hZCCDxyCD8F771wV43MAgEpTAVrpsqycC0xibJJ1eysnTupOz9Xp9FquMSZSYkWKmrkfRMSBnXeNzIjMuLlwholHxMQmSGhMIi1ZyUZRJM7PSEzcCB7Fe22MiaS6RKRIxZIYROz3+6PRaDIcDYfDmIdxzi0tLXU6HWMMIhDI6SRBxMqHKrhukqVpGoc0TdPClWVZjkbj5SLPtAUAY0xAUgDWULrSd8VqqIrdIU3zwrMgURlHDOonM95TjyKt0tNmDiyEYw8GERBRizCHWJSSJbbf63TSxEde5xArFClO7LIsEcWJ8mW1ZC0A7gxHALC2tn5yY7XfSUGkk1rwLno1+4bygT40S9WfP/8TzaH/9ZG3/x+/+0VTDt/0rrd85OlnH7t0qUQugwekwx6Ig7tvPdkW4tA1NqBunkPwXilFSLOKXyEiVMBBmgeBZ/CEO9jl2s/yEVZl+y4dNDnmejz/tTs6O86/bi+2VVVScCWqW7dubW5tnT93loW11oHDXLWJLHg7h/ZvThfy/2Hvz6Nu2667MHDOudbazem+8zW3ffe1ai1ZltzKHXIjQ7ApgzEpuhRkZECAAmKqUjCoUXFVMUZRDCAkgSRFma5SYQywoQowGBtwwMHEyMbIIFmWZEu2Xnff7b7utLtZa80564+1z/7O+W6jq6dnOzXCksZ953znnN2svZrZ/ObvBzv09bvr8M51bW8Nl/Yp3D2CburvDVKmpm1aMcaWJSOerdd3T47vn5wum2bBMhyNW5FWifLi6o2bXtR94hPMgqSiAhzbSHWLmSmdoaZtEfR3/PDXf/9v+Eg615//9O+22eVR+g8e/O9/49X/Kr3+M7/0H9Go3JuMjo/PTk9PHxwft8FH1eiD5xgSCwR2oAWOEhVYURTPN14KALT/WZX/3weX+/OhJRrSSEq1fL1NtluIstNRl0tUNnQImBDvunXk7ee1AxROJl4ytCMLKFprszwzkbNBDrNzMGTz7OT8rGnaoixs8FmRK0CMcTQaiUjbemM01ea9//3vX62XmSW8LmfHx+v57Lhuj19+9edefuXVkwdf89733Di8EkM0iInOzHtvkAAE7BPnQyISANOykC3Wsf34u37g/b/w29On/59Xv80V1po8ERBwRBUQ0eFguDd6WhbKv/AbPvXH/8mXISYOEGVhA4igBlL9CSVwbJ8eoS1pv34sp44mJGsRETUykVFWZur8jc7ziMKKJpfNntxPjZSGISVMSs6bhVpEACTF9rZn5vZap7srxc7AeNTXuugV92uFKCihPT09+4Ef+AHm+NVf843D4fDk5AQRm6YZT0bO2RDCaDSqz6qmad/5znc2dQNk1tXa+5DnObdQ5HvWJc3VGIAJLahNtoS1lmNg5hhDig9yZAQRYRFlRUJjXcdP5L03xnofGaUPJuIWnUaaHdTR7hMAxBiaJiTFs7IQ57Iej709BZKlc8kgx43OfWceYBcsgIcMa02+09am07nfiIQICqLMwghIuyWFaTnsit43G8u27d6V6inAjtppV6UMHXXT1vJAG9Nua7e9MOQe2jj6c+GmnvPS7po+l6fgIetH7PaK1HXgVo/tLvidiEJ/GWkJ23SjVk0dfCCig+n+3nAkKnh830e/aJaGTOGyoigMUYjRe+/Fb98ydiViXa7m0va6s4kj2Ms5na1EZ++opGvvZ7ts5EUfqZkIALi71bFABsgiIkq0PVZ2LuvJvdy3p3RUmC+IaNN8Sxaw963ZqeKVbfaG7UPjTm+8ySAZUdKexscljjcPafe59GG5ja/SfxRiJEAyBIbQIGqXrAbAFtBmruO5AogxWmMGw+FgMCj3p0CYvDQEJCJrjTGWLImh3iHqjMANsii5uWnFUQDmWDeNihii0FRlUVTrpm29CIqAs5kdDCDLC5clKV/vfUoNp0i89564W7zyPLfOkqGkw5hlWc8dDBvAWIxRVBAwobbSZSRYV4oFtm07Go1Go1Fd123bDgaD9KCTQErfq0honW3qZrFYIGJd16/80ufS0nB4eHjjxg25EGDh0LZkbVmWUbSqGjTV6ekpAFiX53k+P/WLxbIoShFt2/asXoYQAJWAC5uTwcO9kcrVIrcnp+dV0wJSjB1bDNluhZKU/qIuZdv5IaApWbU9NtLc3I0jqEgk1cyYUVkWmRvleenc2vtEScPMyYYxhlSVY2hjYGY16L0/835dN/hznzbv/1IiM8yprtYIWSoQemSoKUlwpo58eAosQ1uJnFXL2ycnTRQhEEB8PPRrd5pjgtV2ZUg7urnYr+xECAIhhASVTl/ofmUtq/QTWQB6GPWT15MvZCpfXhIec1+XDr4Tx338r7Yog2lLihw0Mo+yLIa4Wq1u3779tueenYyGqmqyHUL5S4bvQwGvxy5f23fy+B/t0EpewkBvv+55tFWVgDSSzUo25ni2vHN2evvkuNjbO4lBM5fnpS3KZl2dLRbz1SrLc1cW+5MJoZ6vTlRh/seXcwAAeN9fesYVpAo2Igb9fT/64be/9LZrhwe833DT/NXP/b7f+9JfTmf/m/f/8BL4/337D618u/TtStvVSeWVZ/fP2rZpfFsnpi+QKCwqUYVFu4JOVWEQQH1o0D485C+FmbZnqzGGHjPqnuyopFjSJj3SydtvHKD+vJd3hz6jYo1tY7TOWWNZeFVV15955u6D+4Tk8tzHaJ3LiyJ5Zev1umma6XRaVWvnXALtnJ+e59b6NpydnTVNleUDj6gWrcHP3L27Xize+fyLX/a+L4sxGNXcGkFAhBijdU/SNtiYpSgi1liJvhyUPwjfe/KpjwwysKV1zmWZBUBmFVY01DLEhnOjPzr7bb9u+rfScT74F5/5V3/wsVUrVdMWJosIIWiwigZNKjdBIyqdZbVlFKbXf+grP5p+/l//m69TUFZVQiBkZgzBgFEFZlbJWJKKlG+FPTOSgS37sh8ACNjGzkZKu5hBUo7pYV8aFdtDatsKuhw+2FHP3LFZt8lBiKgsi/FklOowT09O79x5YzqdpsV8PB4jJjky27bNpz75ya/+4NecnZ0Ve1NrrLUama11aAwZAwC8QQyLKJESIRLJRgU4xhhD9IAs6coJVADRmswYG2NE0MwNEIJyTDHKFCC+2IsRQ4iwkRNV1aZpVqvlYDAoilxVE1FnclS2p96Oo7Jl6PV9u3EHNpmaTaf1x0iDAC8s8q73UlmTxKiigLAJhcHWCS4KtR52VNKqoHhJ7XTruW95GtuhqN6/Sl9+VIhQ+5/0FhozG7vjyWMy1lQBlOiyk78z2C55wluDSjuulAtPpn/Lmy7sMGDKvXkfOTZ1w8yZdQd70/3x2IdwfH6WG5sMv3E5GI/Ghqhq6iWzBxBVs2Wr9x4aEeE2Iih1Kl68tbqVOXpztvhb0t7yU293xK/ifT2h9S4KPLWfpgBoTRqSQBhYBNVmLs9z49yz15+xzhVlmee5MPvgEckaQ9Zkk0l/Fu99iEGQ0BghDKBoyFr7sG6XUSVVZDab0vZRyrcokHJmHShFFgTTtn52PmcWNabfF1NSr98nRISTuYkoIm3T9ptHnw/p83XpbQrzE3GaOb3R3BcdhRASSXE6Qp7nZVkSUQghobSTjkpd1bPZLMmwvPrqq3VdD4fDyWTy7LPPZll2enqaGIqdM4h4fn6uqopkDDnnkiy9dflyuazrGhH29vaqqnIChtsUIiFlUi5sZvbG1prcWWvM+Wze+mjdoA3psgkAOi+lC6Bu0PAqhswl06fvtO0nggqgkqEZDwbj0dASWEJVMQCZIe3oNCFzLs+L3EhVd1qNzhbe+8iyXNe+9W3rv/FrvvzKXpkbylJBQXpMKv9M/tiHqdP5/uHFH/TqZZd2ebt51UD0i7dfP16u2AAgCat5qrH8pNbvaqrKDwtb/C+gOetijNPheFQOPvuZz9SL+a2bN772a7/WgpRZ8at9dZfbthUoAGQHp2ez89XqdL2qQpA8+/lXX6Esy/IclAWxDk3dVtbg1auHy9XymeuHg9Ism/PFH531x/zE73/jq/5fL+TW+ci+9Z7sJz/5qc84MywLa9ASfu+D/xURBYkf589MxnsqMF+vqxiXvl34tvWeY+QYfYwskryUKBw5ighspBsUutIx/gK3iI0XnSRTwFqLm8X8si/yxTd87AZhndU2jEYjxER4KArqQxiNRlVTR+G79+/dP35Q5kWZZcx8cHCwXC4T091isWiapsxzcKVzriyG63U1n68Hg2IwKtGgj+G1Byevv3Hv5Tt3vuL9H9ifjNyg8I1kzmZ5KfwkoL8CgRIgkAizLw2Ir07vvWEtGYMpPpXwQkRqiFhMU9Wz+TmpXL929Z+tf/eiiSer9nNffvqv4LGOShRqQzSowlaVOow+giIjKCPwZv3c8HzC93zNv+1//j1f8ZP/xb/+6v/DV//r9Pa/+fQ3kbUWkpWsAJDYIK0hQ+Ace3DbPI3bbrx4L31cCXAnxNmnAN6iZoxhjsxsDMYYRnbwgQ984Nlnn3399dc+8YnP3Ln7xnA4vH37tjFmb2+vqtYJW+Wc+9lPfOK5F56/8fzzAyJrDDFDEpBNtLJdE+iI3Tj1gzHGkU1h+8jRIHIUZiZD0hkVtCVFliFSaKU3dtNM6TeyECKg9GoBqSYtkbWktvEBnpzB/oJb71qIyLaaGWycHMTEMET8dPM3bf0dDyOi7GhIbPlNCJfE0rY9hIs15AKj9IW1fhxesh9+BVoq9rPGYJ4PB4NBUSJrYd0gK+phmIzGR3v7k+EIVB1S27bGe3hEOqh3NYF6ss7OGbroDbvdg79C9/eo9gTU4FMa8ZeabKT9fnXv6wltG+n09AM0cFTEhAAux6O9/elgNBxNxvlgUOzti2paLH1dq3FFOciLnBA9gAqkmKhYROMAMfW4c1mKXROiIm4XzCERKjgyXT4NNMsyFYkxZi5XUWtc9HG1ruu68aDkHLksJLATorW2bdsQQlEUXbm8s8kVSUglAEipj1Ren7oilZek8ZDqQds2TCaT0WjUlXGH0If/E8QrpWjSQVIaJ32hqqqiKERkuVzOZrP5fO69H4/H0/Fkb28PEZfLZapp8d43TVNVLUIX5IgciUxZlLCpMlfVxWKe5/l0Ol020eZ5bEKe56G2RW6cM86aLEs8hNZYm2fZqqprb+rGr5s6xNg/5JR4tsboJkXZr2t952/Pyu0p4BAHZTEeDgrnDKolQlEEcc6ij8xiSLM8t9YC+LQo53k+noyccaTYxrj2fPvO3R/754uv//L33rh6BIXb5MwxJdB+hL+nT+bIloRLCOGv/sJv/r3v+nvpSn7/j37QD+Hu6clr9x/4ZO+JGpvBF+1a9GuuqqrwW7xl/f9DQ8TRaKSsR0dHXFW3b99eLxcvvfTScy8+/6t9aY9oO0aAws/ff/V0sWja0Hh/vlgu15WSGRmX2azxrYCcnp60bTMejSbDcnZ6/Oz1q+PB4HN3Xrt0WO99bqwP4dQvvABIzHPXBq8SDUKKTta+QcTh+UJE69oHVa8aQBm0Dk2KmAThKMwiMaFYmFMJHBFZQlJCARDd/7P7Pfqr+FPDyzf5UEummTHGECZH5ZcpKJYWxv7tNsQDAa2xV46O1tXaWrtuVkTjpDBbVdVoNDo4OGjblmNs1nVRFOfn59bak5MTEdnf39/f3x8OR4Zcta7JuuFo7LxDFb9uRqPhZHLY2mI5n3365ZffuH/v1o3rN69evXp4eOvGdecylfDkQhXFVHrPpNGhnt57Y704PTDGGEopOOcskbGWQA2oYdFY58vl/I07d63L88Hkyt54VOT/7Wd/0x9+x99Px/w9/+gDf+3bP5Ze/5a/8fy65MKzQ8uCIkYAhEVQCZHI1r7dwA0g9cnDllzvpQDAf/IlP/4XPvUhR+4Pvvufpb/8xZ//cNq5rLU+RPDIelHn0JsWAmgNWwvWqmUJuyAceasdFdxUDI5Gg+GoLMuMmX/Nr/k1H/3oR3/pc7ezLLty5cp4PHr11VevXb+S51mWZdaSMUaEp9PpaDR0zikhhUfatR3xC6AkN8ZZ64xLiGJmDqIaOIaQFbluFmrEbjokUhwOLW6AM0QmofPSnu69R9qAWUCzLEube8JBpE2wz1S8ta0Pd4ZwSYETiUg3CRl+WNfzMUejTS5UkfChQoYNImlLaXRrS91xZohoU1P9hd5Un/pIruIX+vMvpgUfRJiMcc4NyjK3WS1rFDVIw+Hw4ODw2tGVaTlsmza0bULoPFz+cLGyKfTCooqQaJz7b9ptQ+QtWmQVLkg1EPq02ZN/8ySABPYH08tVMZcgDDt5LgRIuK4O3bW5lguNhUuouF+GvIugXBS496dUQEDViGAw1bAgqvTfRADAjp97Q8i9OWAx3SvKYjgeD0bDcjjMB4Vzmc0z45xXjKJRhFkEjSmcLUowFFiUSHBDJU/W2A37meggH4AmNkYGgFSDny6kh9ogYtCIABk5SVdvMh9aVqnbcD5fRJYsy511gpQ7y5GTiwIACROSPJNQcVmWyTnRHvOzlQFMeZv+rUiiCIOUSeyXwsGgK3WtqqppmsSdkjItbdsm9Jf3frlcJp/nwYMHt2/fzvP8pZdems/nZVEgYsqioDGgkpdF3bbrqraGptN957K2qmye5WWRF+W6qkIITdMIy82bt5zLSnCjyd5aAxSFOjcoKbcJdou5s1LmKmMQzp2brSOo+AjCGi9GLwKiyzKVLXoZuJiosKlH1BRZ2mJLLF0+KIs8d4SKACbRCitYIgUVEANirQGEXuKyHJQGAYTJZkad983ay6tv3F3MTr7hq7/q+VtIQD0ZNKh2gecobV371ocQAIGQorD37Z/9V9/Sspy20mS4qOrPfO6VqACURN/AORf4i2UA30l5C8BDEitfZHt4G+xXqy/mmI98/eZakeUijGSvXb9eEDnQzJor1662betKg3DButmvEr8czhxuBVtFd5bIXrsr8UT4EBfL5Ww2XzTNbJCvQMXZJsSAdPX6TQIclMP1er1YLO7evdu29WBQXjk6VOHxaPhgvcoyYx4yIgOzIEaRJrYBF2WRqSAHNSoggsqqChkN8nJd1cFHQxYBSJRUUBWIFKBzTkRYucv0qlhE3QBQQIlAUQUAxn96LzydjDgiEKKhDQ+4McAMiInv+E13eKJFueTob8cdATqVrNT/UdRm+d50f7Va56OxX0ZjLQS/Wq+zPLPOtcGzyt50elzVq9VqNBp578mQy5yohBhFBAxEVHQWEPMsHxZFbBuKECpfe58NyhZh6f2r9+6dnJ8169WzN5957pmbX/6eL6EnbaBp11YEdda84+f+fQCAd8Lfevnfs4YMISEZImMtACE4ABwEdEfTLLP3H5wcn86yYjXdP7DWZsJ/9fbvXC6qdl3rPv+pn/y1Z4v5/fPz6MBHCcrRkiQQN6iKAiqQqnBV14CASArgQwyR6fNlewW091IA4A+++59936c/bABQxJDxwkZRVESQAHgz+wjAOZcBhshOTQjSRsGNQMBbZ1l1TZUBNc/zyd745s3rX/8NX/uZz/z8T/3UT6rqjevXlos5qN554854PLxx89rzzz83HAwt4YkPzz//4htv3P3qb/hGYy0DEhFs0KdJCQkT6XR3sV3u3xAZu9GMZ46oGmOI0bADMhuBb4MoaT9HJOzLgFUT/XfPsxdiRFJN9DyAeTmY7O0VRekyu5tRubSkbdiwtbeGcPNPUhJUUr3Q1d58hpvVuPs3aU4KU2eaYmcYJpehg1X2xMMA0Fcpbo7bc2/glmWL6vKs/2IyYHqJk20Dezv4uFXXhpfm+JMbbr3oR1cKNm93mvbX+8tj3DJHFbXGOGOdtQDKHDlGEC3zfDwcHkz2JsVgDasTRQ2RQxBD1uxWAe2iwS/+izuk3jbZfF2ddDKYOqlBiJGT+RJj9G2bzLsUjoox6YWlx42EiGkwalQIxikwJdScIaMiAEmlQUiF0nKyBbRURCKjj9pqERTY9yPTJA9VVZhVQbZWyg1URLuCClJAFGFGDhKscWQoSrS5A0MRZFmt90MYAQonZKZBJNEtv0Jh+yLp0gjYhmvvXHCqjEyXobXhmAFYCEk02BApGAXLhMjJRI+aXEtUABaOUUZmhIqMqoheohoyRVYOBtOjw8ObN8iYFLMnY5BQADxAKg5QFVGJzFme5XkOPS1MnsUYA4gXARHEzYKN0IaNwt0GZI3b97K5wSzPvW+RyLc1kSUxhSurql4vVsriiDh4jWEy3jPOBWYwVObDVGpSN01KGozH47quexxqsoyNMUVRROG6rhWBVQRUQKu6ImuuXr92enKuAE3b0qY6vygK59xqtcqLARk3m82SjD0AGJsZa1frGpTLskxYr0TZOR6PvfeTvT1EAwjjLA8hWGvzvBARctl8uaqbMGIQz4luoKqr8XTSeKwb730VmfNylLnSN6vm/AxCa63xiuuqpeGgsHnCmyGoxpgd7t+4cnC2nC1W9s795o2786Zmk+WKTpjK4TByTEpUBkBFkAW2bKQmRX2IyIBqjIHJQJbR0dX9MsvzLCPRzNgiyx7cu2+JJEhd+TIrDZHLKSIy62zdqMh+OSgyNEhBOEAU0gowuMHdRfvxf/jj3/YVJy/cfObGtWugEHyLCpg06b1XZhBlUNFEPi/MvI5h5eNZtvdgvvj5X/zFB4tGCAyZxAnUhuYistCNHdwsKZew2hdgPxEhs0mhqDJoE7wxJmm2tE0FzKQOlGNkY1yWdF1UG88+hhBbl7vYNLqZvzulBR2+d+vUxP3udWmh3FSUXZ7mqCDxQtl1+1cKIFsGkOLOiiAc+2DbQ0mzree9ex0aY1mW3jd3Tx583Vd/9fO3blar1clqcbg3Du0ihpAXgybEvBggWQEUIlIkkQvhMdrVudipV9mJa8WLNf+SQQwGUVAiQSSw1m5rF9pyuG5DYAkKVcuv3n6wWFW2KIvhdDIpZovXvPeELrM5kTs8PCTEk/NzbuVw/wozV3X12p0HL7z40umq/eQvvXb12pV3vvQ2+m/1/h++m45/87+4UlkcQmaHxfn9O+tQlyEflYNhXlgkAwhgUwC9rioAgIxiaGMMIsAiEWBuwUdu2ia0nn0A0Ny5PCusdXWSikICBGURiUlhHEEISWGjrIfbdUQqJBojKjjnCksu/d8YY4wGj6pJmV6SruOmIwWNbA6oenmXU04a85jIThRAhBHUJKsRFRE0cgKsG2MQUwJIBY2gUTcQNYe3nnvl1TvcNBy5XtXMUtV1Zot6XTuXjcfjalUXw3GU5XJdtd4D2awoTZYZ65oQmvl5CpQMJ0MCTRhXYwz5Zm9UrNcrm+XMJhhboVuD+9nX7/zcq2/cuf/gK97/ZUeHR5lzoWnzLJN4EYqO0RsqlZw4+56Pf3v/99/24j/5H46/k1RIBARVICucIRNVBjavmrYQe4B7YOH0ZH52ep5l+WA0wZpDZCTM8sxZRxmytFXdWEM5ueFwOCxyihGMWoM+SuPbKCIqPkobYhskKoHNAbI/8I++9Pu+vZMZ/Y9/5L1/5Ts+uf04Pnd6D3bbqpY/+hU/kV7/yY98bRT2IYQIUYUAN4xFWlohBBBSY9GCeGbAVlSBUXZ4V10avACgO6qpl2afqmZZlmTBrLWJ7t9aawxZ4mduPfPsrVvvfve7q6q6f+d2mbvz0+Pgwwe+7L03rh790A/9w71ROT8/ecdLb5sMJ+bQ7E/3z8+X1uRedN2E8WCiKogOyZFBEjZoAEFS6CsZvWqQ1RmgqM7gqCzzLDNIloiRgFA4gkQm5UAETISZtWogRDDOioJnFkRJwUpCz7Gua2ZGQUQ0Lhvv7atKchIAsRiUAMDKAHBJJpfZMytziDEwx+RcEKX1ORjkHKEgGqBxAhpVBYxxHTwEERCEBZScy9G4GAWEnMuttSoCUVKlLyEBmKx0HNvAgRGCSohBQdUgOeu9IkAUEjDoyBExSIIXGpdEXRQFjaKhLDNWFSRGlxVBNEcCQ2BsEAVjfWgcGc+xQABDQVhVt5FRtKm7SXat9z6BUCJzBrk1zhqnAswsij7y0jfDLBdExdTBPRsTAAB2PHv9ytZ9oSPdSq6OMQjQ41lSDRbKltQMICdZPOOW66WojMqiFB6NR4Myb+p6WS8RZZC5fDy+fngwHQ5KkwWAcVEM82xRUSssaHqr+pJzhnb7qSOh6TemJ9XDval2KR7Uu63pMxI0gCi70tEAsEHvP7Jtse52R0tuOmzXn/ZFRZosIOXeYOivIIUIgBA64c7kmAE80kn6optuaCsNogLSpgIykdWiUu/+J76tTsfUOHTO+8CgWVFMyr3x/nR6dJAPB8PxqBbBDeTg0uk4tNt5ie2Pkt42IuZZhrtYxviQbvej70WlBynBBmzaNI33XkWsc5svSiosSdMgVb33yC5VzfO8rmvvfVmWuKk2EZFiUPZ1MumwsCEjvnbtWqpOSRCvGONqtUredVkOdcPqlkhssixLgNfVcn58fBxCWK1W4/E4Cac0TVMvFgcHR4PR0Fq7Wq28903bFEVxeHR0794931F+IxnaxmUJQF1VRVE888yzp8enpyenk1ExGZfGepdlHNYSPYdWCEDVIhTOWFQBHZYOoGjDXohszteLygNQkRWhbhm75CZBJ4lzaTwTAIESiwG0zhV5VuR2ZIvCOEeOQAmNr3xGbjgYLNbr4D0gDcoic1aUl+t10zZX9vfHg8KAJwKDaDgB+pBFW6Ga8R985Gfe9dwbH/jSL90fTzREbkOoG0NUuiy2DRGRNWRs4LBcr9f1mlU1yx/U80//4ucenJ2RsYY6xOCTda+e3GSLSqEfnw8HIzdxo644kja7e/fiC4wb7QSgADbhpz6gtp3Ov5AX697uXNXOMfuvdRiKzbefOmamxrk6hv296et377Q/8T99+Nf8mntv3F7NZ9/2Ld98bTIkIhU1SJlzSiaKCEtkzc1biVFWTIsygQKJYtxhZp03DbpiVi3uPjhuvJqi1CjDwyuD4fDOvdeWq/VkMimKYrI3TYe6++C+cfbFF196+dVXvPcKsFiszmaz+8fHs8Vi/8rhzRs3z0/Pmj9doUJmraCKoI8MRNPD/eVycb5a1MFXWWGttUTO2A6uurkkFo3SxSwj4HJdxxS2EUFDloy1zhhLRBxCUQzSCpASv90wSzJwj+kQAyiEqOBMWoG7iDSqoj40NLTrwy+ow7fePPZrm2GJCuhDxDxHMoPR8PYbd5WUiKqqapvm6Ojo8PDZEMJsNkv/LpfL6XRalGUCFiLiYDAYDgezE0wFzdbapmkWq9XJyclwOBQOD+41k/Ho6OioHJRVVbUxurKUth2V5S987uV7x8ff8HVf/463vx2yvAlxm3dIMKmC72SJ+/5JYqBdRLlLT4GyOkvDQZm5LDdFbsrj49PFfLVYLKPJWdRYk+d5kefG2sloMCxzEWHvnXOZy3//+/9lOv7/42e+igUCQxs4CgSwYrAJ0lQ+aKgb/+1//ZkaiZBuw+o3/Y3n//5/8Gr64a//2zc/A+tLV/tHv+J/7F9/79f/1P/5X3wVIiUWUxFJFMhESookQEktnCB5wQ+LJMImC/n5B4NqX8lzenq6t7eXZdnx8XGeDxDil3zJu77ru77Le/+Zz3wmBfum0yki3rt7/La3vXRwMP3sZz/7/PPP/8D3f//NmzfzPP+mb/qmK/vXbj33/MHR0aActq0PgJG7cpo+0Z8sbcVOU31j5pIoKhIZa60zSAgGkJq6EpEoygpZlllrjeGErWLAKAwAakz6CySlaQWLDgm3w5R9LQdtQa4UVLYsE2MckjjRLM+EMABIsvNUyFoDQNajtZRl1uVkHRgnFslrSvSrAIhw4NAGDYxK6CxYA4SqqAZBkyo3EhFHVk5Qd0Ai6xyQZnme5WWUYNCQta4TM+qUsEWkTwgTEqoSkTVWIkNkl2UI+qbBXQ837Laj7l23UOPWQ3x4OD39wbcc5i7o15vfBJi4l5IHZYgMKqBJQAyOimCtzVWPJtP9waiwmQGUFBkzZJy1QFEuVoRLG6I8JvoPAG+5o/LYpgCCiEAKJKiylcMjhYfS3RdNkKDTh03WPigoowKAuaDAT7VX2gPAKGUtd42/1Pp6buZfFkhx31DBITkg2/GpY7pL1AsnlRS6kINq61sAAIuLts7z4vDo8OqN6+VkVAwHeVlUwXsV2OJMu2TGcQgAXXHIJTcmOdM9cdb2p/HpVC9UNVWPEJGINk1b13Ui5hcWtmyMCSFUVUU2w03hDRElYce07AJAR+clkhyVBO6KMfoYAKAoilQln0DkzFxVFUJXJZIK5dP1N00zn8+ZNR0wpWjSRaa1j5nPz89Xq9WLL77Yy96nC2vathwO0jagqlVVrdfrvb29w8PDBc6h4/AhADDWxhhTd1lrqcCjoyMVeHDvPqgWRb6uuW3bAXYIrt5RLMsyhBAljuwgywpri9wNhuXyc6/fOV/XJkYwRpQVMQ2A5M1uG9rOJDIDzMAUzo6LYliUmaURuRytURNVlKVumizLkKhuGlUxhkaD0hEuzs98tb52eHjj6lWVaMkSEjBYC0bBKCjHEEIdfFT4t6/f+8RrD567fvDC9Wem5XCclzna2AopSGTxnlVZhVXY2Kqul+v6M3fP7p+fpoEh3A1LfMJK+flaGloXCLTNqLtUvdYHmVKV0vZu92bO+oW0SwjgneTD1psOxpf+Dk+Ws350U8AWtVmtV3VVEJ6dni7OzsZF7qv6w9/4zd5LWThlICCHlgVASIVJ4PE09G+ypRuxSWJUduJfs6Y5vnPv+Hxmsxxs9saDuy4rYb28PztdnJ1Mp9O9vb0UccjzvKqqa9eulWX5iY//3Gq1un79OgDUvl0tlyk7WlXVdG9UtY3LMxBtW585RyBV2xhnCueme3tr5+bz+Xy5MNaSNYZMYiWizqhSVWXhzb9YSwQAQ0RImXWZc9aYn/8DXWX22/7aiwn82YcVt57bo1tiGnXG5C7LXWaIDOAvlzTd0zXv/bVrt1arVbWuxuNxVmZJP7dpmtdff72ua+fc8fHxdDr90i/90pdffllE0tKa+OLbtl2vVxDjfD5Pwfumacbj8d7eXtu2mbNWeVDmIYTT01Pv/XA4ZGbv/f50mu9PZqvlP/uX/+Lf/NzPfs1Xf/XBdDrdm/YXJohMAMj2ISaizYRFRDSbySsKaW23JlelIo+ZK5zLynJW1f5sVUnkelnVy6WA5Fk23d8vi0KVqqZS5d///h/rj/+HvvKjf/ojX+ajLFsVpSAaRFuGNkITQxQFyorMAKJVRIHv/BvvYOZIGAkV4Nf99Rd+9He/kg71O/6/7/z+f/8z2xff+oioQAnfRAAAKKJIioSCRIjaI6pEVPRNSnb08e8Ee26a5oUXXrDWXr16xZr4yiuvfPKTnzw6Onrf+95XVVVihamqam9yQES/9bf+1h/5kR95/fXXX3nllWefffY7vuM7fuzHfuyl59/x4V/7a9dNcz6flXvTOoYQu+D6ExZsSZZL4sIiMs4aJEh4r9xpCCFGbtVzdJkz1qpojKFq27ZpRGQwHGRZptoRx6CCdblRdEjGWFAFFhBFA4DonN1ZRXue3A5lp6RkWQgQWFBElFkELCmQGhJLbMhbbEktclAzyA0yRGFWYYQIEjgyockdFRlYJ4AxRGVNMXSjKJaEGYDIGFVHMYvoySK5AWUDW1KWF9Y6SHihvgBFUbqtiYwhBUAiMhBD5LbN6jVwTKxZb24w/Eo23K2IU47bH/VhbkRy1iZgv7U2EX5Ya8uyLMvy2v7h/nBiiZq2bYJvJLao7AyRMf7iXJct2MdXqv/KOSoJSiBIiihb9f0AkIjuHm3fIMiFalKXDdnIOOkGCAsAiLJx/wQIBBL2YUM82Z9Nk7JvMvdVROSXrwAJASwkRwUFu1vcgl4ibKCXqsCiCpSXxWg8zsaT6cHh4dFRNigDRw/S+oZVirJMUYeUnbiEJFlUq1SkmEbP9pVsm+nwKC68z9uSp+G9t9YK82Ixb5o2CZUkVdr+pN77VE/CzIaMsZ3pmWrr27ZNZSq4pQWJiFVT939M1F5pYqtqXVdJWt5sKdlbaweDAZFNZmuqw+szpOv1erlcqmqSa0wqVEk1JctzREiFlcmjY+a6rlV1f/8g1L71HhHJGBEx5oKM21pblENVretaReq2qaq8rhtjjEOyGygIiyCgtdYa8h4gRptbS9YZl7nMWXv/+PzsfN7GAObCUbfGOCIE7LUnnTIpEGiR53vD0WQwyKwjFSMKAgLCMXrloDoo8gez8+PlvMwsGjPInfimWS4mw8GNq0fDQYZsMAiQAQSjahU8J/ssehHNTB04I/3s3dNX759Psvzq/uHRdH9YFFf2hwAqgBGVFSrvz2fnd+/fO1m25ym3riqgyYCVrSn2Jto21rYnoOt9v74hXlDdp0ezQfp+ARbjpZ15FyS7/dnWooQ7aATc/pmC2cS3FC4lYnYoR5+S3FABTuZzZwwAQWSI4c79+zemBx/6hm/wMQJZY3MfhJmLPKgoGVOSpYxY3mLFZUEkTbElQkTZyth87t69s/m8HIwky33kvcOjbDhsGm/IFcNysVxaZ09OT1X06OgQCMma119/3Rhz7dq10Wj0yquvMvMLb3vp3378Y8vlcnowrarq4PAwhtBUNRCyiBFpg//F3/VKOuM3ff97DeCqrrxwFG5iYFXhi6xY6mnpsBhKqNZaZ6yzLssyZ+0n/+OLev1f+j0vP/d9txI5x8VjQXzc+E3WKRJZazPnMms7wLPuAg1/ZZswDwblcrnMi3yvHK6bNSKmrPJkMkmW7unpaVmWv/ALv5DsjBQwWq/XABBC8L4dZK4oiqIoyrJMTIlt256fn685ToaFNZiW9OFwmKzntm3ni7lKU7hs0TaL+3c//QPff/Pq9eefew7G3YVFIiA1ABblX1z5Cx86/iPp7//49q+nYa8t0VOQEyk4Y0UhgcKJoCjclSsH4+GwDWFvWTV1k4BDgGidddYBgrJCUQyL/FK3RIaWpRFqgqybtmk9K/3D3307ffpdf/e9Iax++Ld2iZTf80PvI+o8DyRq2f+uH34fCwtzfCjM8Ge/7WPpxX/6o+/FVMQpmApRN0XRSgqp3OFRwlRP27Isu3nzJjO/+uqrg8Fgf38/9XxaHq9fvzqbzT74wQ/GGFMuhZkPDw+LfLhcLj/4wQ9Op9PPfvazd+7cefnllz/+8Y9/93d/9ysv3x4OR6/eeePasPTLBRMFAFEBQ8qbVDJuSjA2L3QDJWJEAYiigMqgQbkJsW3apm004RKtMcZq0mwNYbVaMfNkMhkOhwoQYjBkMmsJjDWGjXEbAi4iImZCqH3bT6WdcBVCAFRC3/kbEETaGNs2BI6MGlRaVQBdc9CmjtY0qoagyPKkAJN4yBfVarZeHK+Xp75+sJgZMgAYvRdmZOEQKeVpUVFEhUGixMAKFskSZdaWwyGVZVkOrDEQRUWABVhEgUxuTKpXoy4gD+JDiG0LJyzBmw0rz5scEL+CbXsn5W2UBCL2WwBhj+vZcGO4siyNMZZoOhgNXO6jr9t20VSLtq6i98qdsmBvKvTQtO7tZfRE/9omoE7/CW2YnlUTrcoFGZFuaGQRUfTCdVBV2VjA6esiKc+VStgpMU5QqhdXQSVVQQDEVNKtoEIIG7HglI1E6DYeEjL95auqyAbsqzvGg3Y/38A5WFiYEsA3gcsTkieEi055aNBs99slz2n3zaV32xmr7n/pFiJzoi+QyIAIlkCBCVQQrBNQUWUQYQWi0f7+4dHh3v7B8OjQlaV1NsbIlhLFu4BGYbhQrOpofPvWJxMwqU9stWRPb4QvdylftwPDl5JxW3fZj4EYI4vUdR1jp1fdLzfJzbDWJi5IVRUnGWbpt33YMnkm3nveUrxOFTUAkOrg09aY53nTNAnxldbiFPOz1qadFYCMMXmeJ5CYiKTQYNM0Z2dnRVHcvHlzPB4nD+fBgwcAwCKRxYeQXJ1UnZ9q/dumcc5F5rZtXZ6RMTHGHCBZM03TjMphwq15H4TDarVk5uFgYP06I7SIJi3sFp0zBKJM3kvmnDPWokHRwrj94ehukS3W1UoDC0tkUM1dllmLCg+gTv0w+8/6knQPsISnah4A7sCrm7fzj8H8KX7FAFB3D5tPoXoZKoDXn+KHX8Am/JQW9BPK8GdPdS+PazvZANryMhBRNeVz0JIR5YuSSlXFTkoMkYJeyu1AZ2UBIstF5hZBL+onkWzHrIiIsEvx3A/+/uL6jJTJ8hgCgiDQqBw+c3TlXS+8+I4veU8dghuOV3X74P79+3fv3bh27dlbtwhxPBgpMRrYcbu2/aUdNPxO8iCdv1uKt6A6CoBooatqRVFq/VbNXjneH0zOzs+wbYvhGMgIwNG1K/fvP1DCG8/ctNY+OD0FwvlqZaw1bXN8dlot1ienp9evX59MJodXrxhD4/H4ypUrMca6bd717neLyN037iCib1oBff17LvTMf/x3fPJb/8Z7y7yo2qaNvvG+jbEV1Q3iFxJ0K2GbVR1oRja3Lstyl7lkoF8aExeA7OQqJ1TxZhlMnjJttkBLQGicsQYNdVDerrvlkre0cbxFQfBitX3Yl8au1jbV4dMGx0hIils7y9Yz6uhus7KMga1zt27dSovqbDbLyiyE8Prrr4vI3t7eZDI5OTl57rnnhsNhQtumHFdanFMUYDgc3rhy5L2fzWZ1Xdd1ncRwVbUsCkKsqsp7XxRFIl1cLBaq6n3rcjo7PQsh7E8mg8l02bYf/dmfhW/o7utstd6f7BGwRj6//8Z/9fFv2c9wlCENO2cJk/gDdndnjTUI0UfPUVlIJbNEgAYkj0gOYyhjGIkKM4cY27b13kvgyWg8GY0u9SorsVLNsm7ict20gX/s9x33n/7gd+/Upfy17/zEn/m3Hy6MMaAsspK2Dn5V1eua2wi//Qff8QPf9Vl4qP2Xv+6T/7t/8i4ARlQgMGAskGXAhD5MAysBg3YXn23BPoOkWw0uqKK6gF0/loqiWCwW4/H4bW9723p5cvXq1W/+5m8ejUb7+/vHx8cpkh1jTDm0hPX60Ic+9LGPfeynfuqnptPpRz/60TfuHH/lZz+zd7APSI1v6xgjYERVxcgBRWOMrW+btg0xIgASIuC6WiKSMzZ3We6cswYUlDlGbmPbtm1dNzGGtL514l0sJ6cnoQ0KWpaltTZxgiOiM/bmM89Y67Isy5wzthfgJkQsLwDksG3DKGCIkUV8CHUblqv1qq5D5BA4Cp/Mz6JI61uDlMTZssxZYxGRJSZuIea4Wi7PTk/XTbVerc9OzhJrIABoZGVJyS9Kdg4lXI6icuZslpncmuFgUA6Ka1dv7E0m167kB3sjm5H6qDEKsrI6Uya4V+asMQCoKoyMiKHdKL/oRtVaNnoPvcEGD5np/U/6xSStVETU1+sbY5MaWcJnpY2kD/PhbpisPzt2aqSgm2KVbX86nTFZUzHGwDEVhBuTnHlEIo7ROGvZOucIKR0ny7L0uEmxzHJDxKqLanW+WpyvF5VvWNhas+v4PNaQxs3imkaO5Y3O92ZwXFj+24KavY4eMxtjJDD0xTpb50gsdalIRERBE9E2AYAIWwOGgBCwk2rVVPytKqSc+BhUZCvnAIrYtGvd+CPbglkIENq4ZXDsVrhyCMGTtUQkISoLIqL9fGTV+vj0/+N/9bCj0l9hZ4sjojOcfJLESwPAAGSMdc4564p8MBqOJ5PpdFqOhppnQsCg4IxJXITWpk4ht5MA6tmxRCTbcG6mZ7xjmW2e48P3sRNOxp1fXYotJhSHqp4c3+uZK3SjGZ8sfhEJrD1xO27YF9KLlNxPdSl94Dwdx+VZVVUpRZOS3cPhkIiqqnLOJecEEdPanUZpjOx9k5Itm3QkJqdisVgQ0WAwSCcqyzIdGQCC90U5TMxjZiPbknDqdVMnB8l7z5Gtc4ZM8pqSnzMd752fnxtjRuPRehli5DzPzs/rPYsEghBB0SAagwZUCZggI4LESZIZGg5ybDNQd+1K4/1Zu/IhcIwGMTdpeYNfgNnjhtm/a2+6bQ/sLsV68RF1br+CIaQomyAvGrJpt04rizR1f0BCRCXChAFB3am5Q0AUUdaEj6ZksXSG8tb0kw0tNW4adJsHIBnIDSmAiC3KSGhHg5fvvNFW9cuv325W6yIvTu7dvX33rnNuMhyVLi/LPOIOMequGOTWy124Rx+DUAUi6cHPaYX2IiSYZUXdxuPVBYJfrCNjh5ODBB8hMta61157Pc/yyXRqc7deVy+87cUQwv37D3zbnM9nr7/xRqjag4ODGzduINH5Yo6tqaqKmaej6WgyfO6F5+u6att2dnbeNI2Plwm4SusyZ8ss98G3IXjhB4ul9DQ71IXp0z+TLHfWZllmM4eIDy/sbdvCRrVJewAYGt1Yz/3qRESWyKJag87Y1F+45ajsIA8RYbMsKyjLI0693ZJ/lEyFzifCCxRBfw2bZ6QICghZli3q5XhyeHh4uPZxenCYraqocTabnZ2d3bx5U0SqqrLWpiiMc24+n6f6vaqq0qgLISBCVVXD4fDatWvz+TzlmWOMZVmqcGzWyuCc894vFouiKIbDYQhBVNd1lZeDcoBV3ayrZlgMJpP9/qb++t/+ga96/5d9xZe80/t6dv+uEwYWBZeMAaKOsQCNSRaFQRIFYeFU4qhAwBYFHThjFZUte8MxSitRIGRWDCAbNCCk/IOvf+d3PftD6dR//t987Tk0rNh4bkIUpMGwADiGx7da+I9/eUf29X0//6GmpVxNgbaKUEX5nX//nas6+BD+8e+6vf0rJMJUyaUYhQziD3xn59K857/e74YTXJaf2tE+7yx7hi2YQxoDMcY33ngDOtUUvnPnTtu2h4eHIfjWt6+99tpHP/rR69evF0URYxwMBiIym81Wy3o4HO7v7zPzbDb76Z/+6R//8R8/ODh4z3vec+OZ57/vr/6Vt7/rneVkcv/sfF5VjXAVQmTxTcUiMYQQY7Ve13W30CmA3zD5IgCqkoCKKIuqREwkK6ypbnaD8UPoyEyJkMiw8EVgFEGdAUPJSE9yCbhxzsxWQvuSnZYZx8whcoyigEiGFYRVVNERaydxjoZwK+tbFoVuMqwgisnJT5NdBTYg/BQqwE2ZQNzUIhKoKgMoJR5zwCJ7ZTQYHuzvH0ymB/v7+5O9QV4MykHhMmusbxqtqiKzuTWEghzapglNFb1PwFnY6Pn0qRVjyt5RgUuW5EOOSgcsp07jWzvhphQPSWsEIlygZowxuHtAZk4UqX105uHQSV9tnyjO66bxwatoXhRFUQwGpbEmcnRF3rR1lmWQQaoQBoAOLCPqskwR2hjOVovZermsqhAjAlpE2fFG4KLWBgCAtz9CvBgJFjfb8nZ/Pdz6GEHyyRLusG/bWRfVrkdiZFBUJdUUSkezmBlnCTFuBPuk80wEYuy3il7DIR08bIX/U7Kgfxvqpn99yRYBBlERwun+/t7eXjkaikELBp64Z7y1TRFs5hjRS+SkiAxgM+eyLDMWXeayLB+UeVEMxqPBaGidy/LMWLuo1hcw9y2bAgGcvZzmhi3sIG5lwB7+Ajw0/5++pUdDROv1erVeGbooyr+ohyMCANmoOsJmmm2n+FOdTO/Z04bIy2aun4oJY3bv3j0iKsuSrE0mRS/s2DSNiMToncvSMdN9tW2bvrBarUbDQe+oDIfD5XJ5eHi4Wq0UIHhvbFe1LyJp6gKAiiJ2HP9AWJbldH//+OQYN3VBzjkidNblWSZFub8/JBv9ambadceasCnuFmEVMYRlmTd1G0PIshwNskExpBk5IGMHIUZVdcY4MrvUiv+u/TI22ppUBAiI5Fx6jdYAaDJ2E8dOvxaNtgJ+/Qjv/nWuP6CoiooigSEFXAV+mhm3PYWBCMBAx7KgTeRX7tx9cHY2GQ19006KYZllt65fX5zPgExQPT0/C237wgvPXZLT+iIbAigzoQ0Eq6Y5Xa3Pqov1NhuMrclYTN2sCc18NndZtpjPr145QjKvvv76ZDJ5/bO3b926ZZyNwh//xM8SwPPXn7XWTiYTUV03dVPXqcDMh3D7zp3lepUZu7+/PxqNfvEzn2m3lvfUTOaGRQGJmkaYVY01qpDsFMDOPiIiAirIInbaTMmC+Za//1X/42/qVMlv/cWbTWye/GjS40gLgiE0kliRyBB16ZRNtaGxG7GpRyXqn6bpNk4IYRtouLtoqzHU1xw+++yzIup9ODk+aXxAi8w8nU5v3bqVFs+6ru/du4eIe3t7zDwcDlPgJkWOYowivLc3XS4XqSBwPp+n/PPx8fFoOMDYIlyYSimPHUIo8rwYls45QmzrxpKJPrTNBfx8UdX/8qd/8uVPf+z58SBfzoYIljBxQ6cGgKSkKUMSAgtrlBhCEs7jyDFEMmgNoiFFjJFQkFQxI2soRmKrHMmazJDGEP72L34YiFqBU6wjqw+RCEXE13VoPw9h+p/4yn/ev/4D7/4Xf/IjHwAwubNk0GAg8ehDLZcnl8stqSGNgFjX8pe+/ef7jz71Pee3/uyAEAEpBSo/7wDod8ze8uk/Sluk9/78/PzTn/751eJ4sjc+Pz/f29ur69pae/Xq1bOzsyzLfMvpuR8fH7/++utEdP36defcbDF/7e6/dkX54z/xP62aRq1btb5VaTlGUYlddSsibp9aEWRLCdUZ64wFVVIQ0AAxUdIn/6Jn5UGF3JlEE63JIN44D6oQVWMIzKzMaa+ljfUp4WL8bF8G6oZ4Acym+kch5U6TS08kqkDAKqIXjCjKoiIoSimxBaCixJrInCTBPHehm4qAG06YTqkeQQFS/MqvmuWqvX8yI0BnzaAcTCbj6f7+aDDcy8vD/b3JYCAnlVMeOutA1HtpG0Mxz1xvQb1pG+xXpiXIfUqxzubz2Xxetw0iTiaTw8PDrMixi0yhNcaaboVk5o46GICsiaiNb87Xy/P1ctHUniMiWgUKIjueydPMDAAA21uZT/4FbjUASPXQvevSR30QlUFCSJnZAEqqxCxEZE02Gp8745Jl6UMbYlQVZgHFxnvZaEr0hxUR4SjhYpVJVSWb8CCKbDESdB8BACAYwxbRRIlXb97Yv3I02p+SQescPGXHvEXNZo5RG44AWgwH+WgwGI/2xuNBUdrBADbCvMZatEYRWlSQmJcX4tMIsJ0sa9oLEE2/svQuSu+oXJoMqSxHvwjMbPJOF4vFnTt38iwPQVOSETckdx3P3YbXotP0tTbRy6SddZMgNulFqoD33qeYn6qmchfvfRJLSTIp1mRFUaTK1zzP03xgZgAcDodb4zCmj+7du1dV1bWrR8mdrus6JWSSu79YLkUhIc2IKFXdDAaDoigMmVC3ddOs12uXZyk/k4r1UygiFc+wxLOzs+DrojCK7XAwoHjhqqXOTyETYwypqDWkgCJF5grrmjxriiyEuKiq1rcxRAI0kLKq8Ht+6EsFoSWjZINo0/p13aybpm78um59CAwpPiQqYo3NXTbIi8GgLDIrWl053B/meWZokGUWIYYGRQmpbkMUrNqwqJpZ3SzqZuVDYFA0lW9ENcYYO0o8TEF1BVSwCtiVUSXyyothyQiaDDVnjEUCUYmsoJHMtpu9vbAY49K87kfO9gBLNScJyNc0zWg0SgOprtdlljvnQNUiDYuBs7ZtW0L0MXoOy+XSZq4JIXFbM7OoWrzsrl9cxpaeQsoEpjHJHIV1g0boLjx9gQBz3fIDUohLJYlhW2f7O2HmyIwp00JEBdVtR3z3hPnV5+KttQRIiqCoKAAQVd1wsGiq+VltjfWMY8X29p35yXGWZ6u2zQHR2Shi4C2ut1NGsLgO/vWz07PGq8v6j+azVVmW3oem9sKMoiTqyOyNxg9OHxwcHFhrP/CBD8xms4ODg/v377/vfe9DhRKzclAm9E6WZVE5z/PZbHbojm7dukWG3vnOd/7Cpz4Foqenp/fu3h3+qdH6/7RKZ/zw3/2ANwoajSIRWrSW8NmjKyr6Q9/VuR/f9gPv3Tw+Q2gBkFUEIYpIZEH4mr/5JVXbnK2q2tdpOj/h9tN0TpVs1pCJwaT674T30y47pwDOORaBJ9aDfp6u3l6xEbefpO5QSmjmLEf2cW2NGQwGZ6enjaiCcXk5HAzX6/V0Ok1ujKqmhZSIVquVMWaxWMAWowkRheAfPLifWBaZOZWpOOcODg5ARYGbugKA8XicFsCkjUtEe+Ppcrn0dTMcDB0ZmyFvZcBaYYVQtTIL633fjHOnosa4HqgM0BUia0qhMElIMf2EIgYyCJ04EyuzQSgLV+Q2IXk2S74YMwIFkCAIzNx69j4ElsDatq1B2JuMh8Phf/Qjt/677/j4I3v+4M8Mz/74DtnX9379xwDge3/ymxL17ciYYpB5tr/t777jb313lzP5gz/6bigAUAD0kSkzVQVE89SOSmr9BrrdOlfZGAA4OTkZliZtc03TpI2mZ5T2Laf8f9ph9/f3x+Pxer0+PT1tvLgQKXNo6I17d8Flai1YY61tou/VF3ZWbARhTjyGCMAiqsEgJd5u63JWjiEKRyJDW6wJDAoKFyj9vk8AynxgVBmJkVREQ1QiJRJEgwY23o5u54ARQkLEACJCEkVKHJaIaAwgKBpS6rhcYUOBtW6bVEaiIs5YRwZEQERAGVg3tLGI2E3nrdBDOnFyGY011jpDFCT5LaiIHqBp6rO2gdMTRChzuzcor+1Pr07G+5kbkRkiWGUNwYDQeJwYUBNaBDf8lk85Kn4lW9qaq6qazWb37t+/c/9eXddEdOXKlTRzE/Oqs8Z2yWNJ1b9N0/QDTxibGO6en56u5uumijFYRVIgTmWPXeuD3Z+32d79eJSvkpxlQIAYY6K4TaXMi8WKI8cYYmQffAyhQ1erKGgIIVVaJ8xLiJGQjLHOgLM2xXJ88JvwiopqVbcbP6VjT4oxVUFxbi4ua3sa6y617m5GBQ3khlzLIUh853veLSwkqsmv0e3hmNL8XY37F8Qm+TSNFcCaYjIeFeXhlaPBdGIzV2S5M46JkFKoz7BwykWmyyC8ICu7QLQpAMCgLPvHnHKI+KgGu2nEPt+VhtHTr5t9M8bGyE3dAlDdtNZk/ZhJu1fvgTB3u6O1tkeIpQto2zaZ7+kaEpgwZUJGo1Gfk+l9nuRgUGHX63Uq0EfEBB5LN3V2dpYKb5xzWZY5ly2Xy4RwyItSRTOXr1dVVVeHh4fGmP2DA2adLxagoKpR4nq9FpGiLLM8HwwHa9aBMd77uq7Pzs6qui6Gg3TMwXB49dq1pvYSw2hYHq9ms9n5ZJzHuhmAWFALalTNpmgHASxRw5xlmTXS1A0IZZkDsKQuWMyLaV1V9aqKMVpjrDEp+yyIqtp4jyKTLNvLixjF++i9bwOvkVU1wWod2UFRDPIit44MuAFbixyis1gWGYpqaFk7LFMKtwsoiySjKhHXoAEVEVIQIADaKg0PiUk7qf4lXj3Qzl3ZVqHcjNsdat5HtRSkSDioS47K49rxf3IPAFZPW6Vz0fzjP6of/9H//NsZLAHgS/7yi1gWDcCnPvdLZ3fufcX73rd/eDjI7QaL1EUGN21nwu/IfIBuA+F6ro/0YBjp+Pz8wWq1JpQ8Y7Nd5kGZy60xBCjMaSu4duVqUzej8bhtmv2Dw8ViMRqPW+8VUBQI0eVZqgBxzmHbVusqmcXW2vPFvHDZerGc7u3X6/XRwcHpg+MocfqfT0cDxyGcHK32RuP12pNoRtYQWcI8o7/zGy/Exf/pb//kb/zBDyT/oqmZVQNzFA4qDMrKddtWbdu2bYiRmU0ah1vDthvu6Q4BHJFBtIYMEiKaThQuTYWLjiIi7b2UN5tRgY27ohfPoTtFn6ZJ7EttWzes5WQ6PTycr1sf5crVo7P5gqrq+Ph4f3//7OzMGLNer/M8T1hW4+xqtc6cCyGgQmL9KsvSGsqNGQ2Hs9msqqp0GaJKAHme28xM9ibWWmdtXdcPHjxovZ9Op3lRVMt1Zlw+dLH1irYsylYvMmCHV66d3n/ZN6EYDf7Y1/90+uPffflbk4SaqqAiqKgIgDIICkJgCIwiCGCNsYiBOUTPzNFHa22WOecyVeUYWTiGyAK//kqH+Prvf+4bQ+S157bxzIwqGpkAMmdGZX54sP/nX/2tZVkslos/9rYf3O75S15K3/7k1/34//Yff2Vp1BINikyJJNB/8A++hGNTZsbmpMyqUUFU2ehDMQJFA4hkhGV3w91GSDxiGKS2bcClcZWEwlarFUFmrTVk67op8oKIVst1ORgsFwtrs9FwXK1rVd3bG7etX63uAoDLciHrgw++rWOYjCcNc0CMIiqaiuATnssYQ9b2sWDKjG5MyxQBAgRCAkIfAhJZm1FWKCTMfn9XKCCiIKxERFtwLG4ZEAmQ0DIws3RhsE6MvDPDUiCo7y9yTlWjsAqrAgEpgjFIaEJbGyQwijZ5UN3kQQA1RpEAU741cSohIKoIXpDOAiqm3/WOCip15yVLllhEWg4ayVkRZVAF4cQ9S6mQEOq6ntXz49nJNM+e2Z8+szcdG5ODYuSBwTwvlDnEkPKH3ntFMMYM4CIk/avYLqrbsTP1Z/P53fv3b9954+R8tqrWzliTZTbPWKQochFxxjiiIs9STbJutBzatlUB5rMqxtli0TSt95FZMiQjoKLbBF5Pb4vaBAUjQucSzoHTLxHAGsqMbZAaH1hEYlzOF23b1FW9XtXMkuBbTdupXgAAKPi2TXkSYWHhTQgf047YfaSisuMzP4EkdztCJXIxfAFgGytDRNuoMNRKkdTg+fmDGBuU6EwOEkkhI0dKGjW2MYRgXG7IRpHI3lzU7cOW/kF3a49rO4gd3fYQVFmNzcdXrz7zzDN7e3s9ajxCZzUCMzB3hbmP6o3eN0uflkUngIqIrIzKiawEEcGQAjBo6vbt5ElCEHZTkQg3UTpV5cgpm0+bApL+V65wbRNCCM5lzLBeN8u1V3B5kTfrtWocDofG2BQ+CZ7VIhGNRiVsMjDp+hMiK8/zdElpJqTAeUKoZ1nm2zgoRwCwWCzquk2htSIfpDqWoig6/cpUjZNlKfeyXtfJ3ffeT6fTyWSSauuPjo6Go/FysVyuVyHE6XRPANsoi/XMuqxars9Ozvb29sZ7k9Fw7DnOl8va+3IwmDfr0LRVU1fLpXNOQizyPM/z8/Pz69efmdWV1s04d00GcDgQwyOLquBEHYADcIkTAsFkTkVY2LpEmQDZIFdVBjYZlVlZKqwXDQ2GzrokrcgizILOZM5NmSU3HJlFYmgixCK5QQWiK9OKENo2qbllzomI901OgoqUWzIGhZk1KkVhLxDUVd4vm7BqQxAh56wxwMosuaAVQlIPKkiKBpVUARUFOI1YvXDnu/VeOSUCrdtwJyAAdLwX29NmJ/wRW28QsyzvvJRtV0eEACxSZqxBQtHM2ETX9u/aw+14vXaZ+7dv3P7Ya68+e/XG1aDPRrwCVlhijJsoUkzQbVYF50QhBRdB1BozLMvRcJTnzmltQXPrUIEAm7YpR8PKt+sYX1uIkJ1FK6CBI+CWop9wEG7bgC4DjMvVejqdiEhV1blz89MVtzAYDhZn1WAwKOzw9dM7IXi85UqTHe2NV7NFmecH+we/+PLnBqPhfLWSijPrnrv+7I3plRmbydvfszpbvHH3rgKd160hfLBYecbSZQ5JVDMFERC4nMGoGi+qRNa6QWTxyi1Lw6HhUEffeu+Za98ApEjtFssDAQAaYQNEhAYpsya3FhENoNEUbEzE92Kttc51izbium57mUjYSGUwoG7CtN0ZEr3+oz2ZbqIgYgrUQ1rYiVjYh568G9sWFIuW23e84904KEMIzzz//Hy+XKzXVb0uiuLZZ59drVbL5fLg4OD4+Hhvb4+sWQZf7E1W5+cQ4rM3n6nW69b7jGi2WpaTETJMhkNDBghFsG5bRBM5BA6DwlJe3L57lxDHh/sTAImsBLGNq8VSVff29tTguq2tvTDW94Yjs7d/0K7/L1/x4/0fv/vFH/sndz4MGpTBkiMFCNzbARpFFVExcmwksiIgRTaBQVnQWgPORxBRJGuzwjj9UPk3+oP/h1/6E3/un385g+bWTgyD+uvjyXy1lNbb4LVZVeda0vTWlcuV909on3vw4Op0eDAsRMnX9cDmZUbqclIuQAqyBI5AEcC25j/9oS/9L7+zk5K88Z+XDEQRoZUi2/Y6wRpIWSOX5W2UFNVKWOgUwkv/8tbITNX1IpGIBoOybRpj2qIoOMI61AAoKnV1LqItyEobIiciVdU65xCsqnrPmhkUUEBV9N4Lml7hLbIQGIOgxgAgxD7cAdaSykYlEICS+CBHYCBjQFJp/eU5iIAGyACBgQTSRERDBhF5235TQEAVYNmUTHT+UZoGF8qYGgUADWwE5QEARNkzgCCrsnJnKW7bhGabGlsj77AxbsW7QWBrkuoGppPgZSiIhMZYRFQjoADCoGoQM0pSeJqUMgEpCByH9nx9/MqDxdXJ9MredC8f7NdL4HnpLLeehZPNFwwaS4pd1Uqy0HayTxshna6oPYSNKYhEuBFXSPotGLxX0MjssqwHmKWU6fYtp4q1S2kuVChMHoWttXXwTdscz+avvvHGG6cnd2fni6a1LiNjH5zNGu/r1doRxRAya69cu9ZkWeKX94FjlKIcWpeHEDJbtn4l6yCrYAIAmgDgCYAIZCe7AFsEEnk56HOqkOB8/axJVfKJXrZXlkhDhbQDYjVN0zRN6qyExpmdL3vITTr0xblFH4mzBABrLjgucJet+Qle1XZgkGA7FnhJWvIyhQCAoFKnWpayQ7vbBsBODiWxJFzmLv3imrPu2WefS9Xe3BU/Pbptn3ZbseGSIgpvcdT06ZGHHdPPi+W7OO+mIP7hCHf/mFRBReqqiZHzvPA+bjZoTF9IAImUnkYi3bCB6abiqP9yIvsaDAZJxD0pOYrIYDgGgL5yPa2MKU+SEBrpftPfuxMhEtFwOASAtm1ns1lRFOv1OiV52taHGJMqJcDUGLtardbrdZ5lxpiECmubllXUoMsyETmfzRSx9b5tGgQcDYYmc8vl0gv7ts2LEonqttHVuqnWMfrhsBzmRUsm8Q4nGCV0Qw0lVQdK8s9BFWiHQhfzwtloiMBuOB4SJso5BzEyxxQIaFH8xkMTEQMIAhIC+ya3kBkxGIkUHeSWpC+pA4gAKaEtiD5EHzlG4SiIZCxaFgUhQLCGIgZVRGFExI0eKoIqPFw304HykdKW0U/zC+/8aYbdo8ZhP0jeRMbvf2lNRIIPzrnx3pRGw5+9/fKnH9yu1Tfer6t1XdcJs7FZbgGtE0nKsgLMlsx4NJpMxqM8f+9z197+/HMv3XpunBW5dZhlDVElcl6380by0SQfj9u2HTlXJQ14AACYzxdpiU/RDRZ+485dIjo6PMqz7Mr168aYBw8eqOrx6amIDIajLHeT/b3cdJTizHx6crJcLiNz3dSucIbMoCyLvHDG7U+mX/vBr/uJj3zk9r03XGFFuW5aYNXBaFSUQsCISFS3l9Njy6qx1jpn2Icg3Hrfcmw5tBJ95LBJJz6yoQIRmo2uUaKx7wiaO7nnTRSwryjQjW/+Fu4bCF1ADpWgh1WjJsQCgc1yo/r8iy+tmtbl5bqqfAhFnguH6XR679696XR6eHiYwLez2UwR3/6+952dnpzfv391sidtq75pF7OzdpEbg02ViCMGqCyKxgHBcjkryrISmZ8vV7B65sat4aBM0z1z2XI5l9JX+bppmj4Js9oaHgAwHo5Kvcz2pwq6KeTRCycl3XRXbsQKrQ+RRYHqpl03dbNeDsoy8SOnFZKtiAiUOwcnQptlLnPOEhrUWg4nAwW1Ftv1ylfLejXf35/+1cl3/d5nf/BpnsPd+w84jgOPR2VhyIwQQgygnOdZ7pzBdBsqiqIaRf7Xf+uF28vl/XVTgULidAAwZqf6EAFSzK5tGyUHjwHAbK+Bl+ASxlhQFNYuVQ6AQIhgDMQkJwTdsh+TyYGIhGQMGAMJ0aDJKO5TCrCVB1RE7O0i3Pr3ctu1FrYveDsEtUMu9PnW9QtzLGXwdzaVSxPs4oK3gTDb+9WlUvInh523VMV3BmWXYcaeTzZ9rsLM8eKLReYk5YUQo8KybkN72rTcTEZliVKtV4qFtZZQNuSKKQ6BmwrYp8EXPNyS4ZDS1JfEVS87JE8+CkuE6Nt2Va3PZ+dn89lyvW58AGMkhU5U67o59g84BlTYm4xcnk8mk8T0lWD8KenHzHfeeMCRASCzzhnHElLaTAEQd3zCvj35Nm3C7g+Hw95X6c1B37YJqXZ6erpYLBJ3YYJFtk3svZFL1duk3cR72NpQ4X5O6m69xFMi1S5N6SdKFf3PouV5npLvT/Mw+napN3aWAN6x/vu6CETcddtgO7/0hFMTUQghIQEuVbAwc7oSEW1bn7IfZVk2jU8u+/bZ02C11jJ0HkU/kHqEWCKTSaO5n5kikqIFAGCMSWzCiRMzwayHw2FySzpIFXbhhB4+noBnIYT0wwSzPjs7a5pmuVwul8uEsExO+Pn5+XA4QupqSYEwz4rheBRj5NWKmY+Ojng8WZ7Pq/XaRNfGgM7u7+8fHhyMxyO/WIaqMYaQKcvyLMvY2sIVeW4TOG17xZGUIn5My7JMTMfmnBx+VU2zPS+LBKhLmS4i4g3/RMLLpXtJ2GXt+AStI5ZEYdK55BcPPbBnDqIRSQ0QGTKGiIWZUbNIbGKqinj8oHxo2PTe45tbYR8+IOzS519qL/2lW9GHzLphWeYuCyHUdd1I9DEsl0uTOR99qvxMW45TtNhVaiYSSOgmghagoJIZGuT5ILO5c4UzVtEQZANE0TIvDvemubPqI6oiiygsYtPG0NR1EPVRA4sxhmxGhK2vjTGIFFkF0EeOLErUtm0UVsQgum7juvGeodUusWEuR00uWmY6b193oxvL/2OXYlIWjRJF16aqlf3ipNZYxQh0wSMGG5cPEUmjStoZmEBR9Xw1t/XaIPzMZz5eEg2Me+nGs+95+zu+/H3vH4/HD06OXTEY712rfUiD0Fo7HA572FxZFiGEw8PD5XI5Go2qqooxXrlypaqrer3GjaTg0dHRfD5PEQogsMYaY5q2aX1bFMWNGzdO5uef/PSnRqPRZH9igT7+8Y8/c3T1hWef+9SnPvVVH/yawHz+T//JslqACpARNN77GlCtAwCwpvbtB//7t/+r//AX01V96ffdXGntxOWqqjGyNMG3MXiOrXISYHlynZ611qZhuOGr3B6iiday3936Je7zm2BfYEtBqP5tTzmayGfOzmZf9jVfXZTlyclZEDw5nU/G08VisZifv/3tb1fV09PTg4ODEMJ0Og0hDIajz33uc8NysD/dr87Ph5PxYeGGWszmpypcs6ZRAtYOhxO0DmKYjAdR1eXF6OoeIg6Hw8ViwSIp0jQcDPOsqNZrRByPx9bas7Oz5fICn5lq5B9eGJiVqCuo390TERAjS4jCLD5K4/1ytV4sFqu6huiHw0HbtlmWJb2XHVmFTbPWujwryjLPc5NnkFVkjIh672PAEOPsbL5eVoP8/M/f/4a9velkb++3XP2b20f43o9825/8+n+aXn/9ny89+vV6ZZzxiKWzBQCCWDKZs9ZaAAFJIFxoCVuAhqWOPgorEqEaS6ho7c7Cmvha0l5mMtdH+i4Ny50w7qb0NA28DgcVY69dhht5HNnVsE4x9RQ9TDVw6e8qytIVlCvgdkrk6UOcT/jV9kdv2v5+2nrax1/t9mW85fEv3RUjrqvYycMjWGMDS9WuQt2Gep3tlwfDcloOWuauWkE0U2s3PETwxTkqkuiJDV6SJL50hfbxioGpsDPEUNX1+Wz24PTk+ORkuVqGGExWIm74eQUCivfeGYNEyeIajUbD4XBjhLh00unBvo+RQYPwNgbq4QdwUVj+xKdjE7trinD3tmCMUUVWs/n52dm9e/fu37+/Wq2SWl+yO4Uvwp+XuoNZcKuke3u0mU2Vav9stvv0CVd5cZ+7o+0S8vMxmpG/mm3bK9Nd4OkT2hMmWJ5laQ9LWay+qxFRtgZEKvS5dBmPbCm0mc5yaXcUEUPGGMscqrpOKbnkFaSH27/oqw6ISLQ7SNqHiCihtlKCO+1zIpIKS9KCm5ylPtUGu+OhaZp0benFYDBI1c/JUlfVtm2Lojg/P18sFuv1ejAYqGrdtMkBSNUmiLi3t0dEeVEgYpZly+VyVa2tc5R18vOj0aiu62FewIBRdLVcToZDaOrb9+54ZmstIoEqcxyNxlwrCzOzMZS7PMtM6gHcEDEDpFgPQ6cKB6koq+9453JKaSGDTk2WWVExxjpnrQIRirIIW2cBNYSgIIDAHJKPhthVgccYEMll1mhkBelqGHefcqqHcsaptYiChCyIyEhBCCAaZVJJ0Z6naf2Iegsdld6nfeSaRR3CcTdo1H+qAAKmy4sCAJTOWSJnnTWYhJsy5/LcZdYOLLV1DcLDIs+tsQoQAylPJ6PMYm6sc876BjxmSIaMNYRERTFAQ/Ola1rPAD6ydCXv4JwVSOkFo0CkEBEBCQ1V0ZOxRKSZZU4WgqqogDxhi029wb1i+kPfFFBjrSkLGhYxN7XGykuRj5SFIycoBRlKkVSEDQuzCCoqiLKyiJdWhV2eeebZcj2cNM+rbV2ZucJNj1g1et+0bVGULnPe+23qz8QZMJvNmqa5f//+6elpok+NMRokZ60CuCyzzg2GQyJaLJfMobOoFDKXDYdDBk2BiSIvVFVAkob9eDx55uYzy+WyLMuv+sqv/Jc/9RMSIwJwjE3TsA8xz5kldyYtlF/x372U8MRMEmOIPkRRVRNZ2uCbEKJwABGRxEXxBIfcGGu6YPhW1Wc/AhG2t7C09IkImLdYOnl7Ke4k5LriPYgcs8Hwpbe9Paga65iBMCYs+Dve8c6Dg/2qql588cWzszPoJB195MX89Lwx8+eODgEkLM5m1Ty2a/AVx1CYLLTeR0ZjPd33LEA4Gk3I5eX+1biq0ODJbOEjO5cNR0NUJIMEMXHjnp2dpcX8ypUrF9evmigI/sJPf+iPfM2/SH/8O7/4IXWdxbMhj+jrENDH4JmDZx9C68NsPj89PVXV4Wh0cHRQFnlZlrThZk2pjL/36rf/5uf/UTrCX/rXXx8NI4AxaG2mRm2JMUTvoyPLDkTyGAvfxnpd3Q3Lk8XJ4HT8F+5+8x95/z9PR/jrr/1v9Jb+xc/8xsV6df/4wYPrs0VdBVEQaRuvnmsrk0E5LAfUgfSMoKhKVG0QaoJauQ0cOQI4MICABsmanWXVGEqbIG2gB9traf+17SlPWw0RLRIzc+Temek/Choh8ZtjylwpYhdsD96DVQUI3GWrtM8O7GCinnaIPmHZl92MCmJKNXxh3vzT24RPc4S31kuB3aA5dWAf4A21MRAaZ30MJ+fnsV1c29/zh2YvzzMFE4WQLFAGJsHhHhmTesomqiJ86Xq69tQbsyYob4x1U6+rarlaLdarJvgOfQoKAKxaNU2L6ohYZNXWI5mkuGrasmmjuN20bePb+Xo1Wy6W63VUVtOJPF5CLPWhavi8jsrh0eF0Ok3pmzSQUoh6MZ/Pz86OHzy4d+/e+fl5b192dmQ6Y+KSJyTYDt5fWM/baZ3kkyXjsnP0yehF9WCfUgdQ2La56TJ7Tx8rxA2ZnqbJQED9AVOUy1qrCiFE3pBDb8fDUtq2S56JGEMdpviLaL2pioh5XjjXJcU29/hmeB62x1u/usFmaG7tZxd63pcs1csZwc2s6EcYPGpUiwiCGGPatqnWayJUhbZtncvZR9rQW8lGvSiVoyQqOiLq1eIxCQU5TP5VIo7ovRdETEUyKWmQDhJCSKmD5Dan17IhfEuO3GAwiLGjAjPG9nw1g8EgMcGrap7nSS01pYOstXmWFVk+HI3ati2Fgci3fk3rwWCQHl6MMSOTuQyJ0qmbpmWV1vuBFkjUtq1xZjweN1zxRrc+hZxxQ13Vl9VaImFRhcgMLIBgiFiEY0ieD9nEoorUWeFIiOxb0YgIxqJNQxuoJ4J2NrPOEqFzhojIWES01miIyZYXFlCFDduMKAMkljbMrFEkRSISYWWjDRpWsGrFt4CGEoM5ASoiyPbQ2UJ4dQwr3fvHYwAS0DeNHBExKbyHyMwKeilV3af10ojaxKq3RiNiSvzyhtk8/T7BCC1dEOwYgFGWqUQLsXTFoBgUucszW2aZs3aQWQ0eQcvMDbIst0aDV5ZhmWUE1hAqxBDERwR2lnJryVomQWMKHIZYCFJkjSyRJYqsPLIIiwogC6DDpDFr1ZGKIgUFVYiZEyD1gZPG7eNbv7R1vBFb6ZHUyBjJbYUsoSaXMwIRhSagoEiH1JYoiiioQKDEYAwCSogaApKxZEQEFDTAKB+9+N73fOPXfO073/Y2BLw3m48mE2Oc9xGjAcKmbX0I48mkv4A/Vv9+gA1lgQO4DgAAfVlyD/m5u3mRaNXbLVHPBQAAvADwws69/wz8JADAOwAA4ArASwDf+ISueotbC5c5kX9lWr+ppeduNo87RZxSFqLbQ4175tZz4/39BiCIiNJqVdXV2WQ0TsK4N27cqOt6uVwm6cbBYIAIR+PBS88+056fn50+aM6PoV1BrIrMWANOmqDRCasEQXJEvomz+Rm6bP3gZO/wyvUbN4sic1m5qur12flovFcORuv1LAnmnp2dzWazlFfpb6dpmoMyN6FW1b/2r7+ObDCZYctijDAKAVPadpmQFDQy1IzrqokhNG1zPjtfzBfMPJ1OD/ane8MhASAnbWhEEEmBZNa/97nv8JG9D631wiwavK+tc84iKpAqKWTGiaCKUSCfhdb7eVi2PlRxtmra/9tHPphnhSV3Rg8QBG3IMB7tDQaFXdbNuvZBkvQ8j8t8MhjkRZF2MQBQpT/xrZ9Kt/xb/t47mxCY2QAhoLKAidbkiLgdNGSWlA4yxuiFqENnpOKGk+bhEaIbwb5UC9QXh1wYWogCyQvvxLwAAIh4YyalPT71nQAIYsqo6Jb8kuzK+HY1ipcNiu56Ln51CYuxjSPY1DyLcEf3u3WES7bN9ke7Iemd1XLHo9v+YNdUl91PHheuvdT/l2yo9O92V/ehtP6AqJABKAIjMEI3MshglMBx1obm9Py8ap+/enR9spcZcAIgSHIhpfXIJ54Stv0Vbtts0Hn5qeZbYKPUu33x2zk02IQUH1mUAUACEIVr3y7Wq8Vq1QYfhBOlGihIEjEGNYbIOQGIoImnJ4WDe8XtEMJytbp7enb35Hi+XLTRg0EEQkOgKrpD8t3fVDLXZfe5bz90+8LzL0wmk4SuSXBLVW3b9uTk5PjunZMHx+fn54nvCzdVJaqKF6JgCgK8XdG4KZzo/aS+d4w1eNHTmJyKHh0EPZ5Edvpxe3hJV4K/MdBxs5drR2HUb+2qHX+uiITgH+moQBd06AJj1jkU7gf+m87Q9P1blkWeGd1IzBIZeqx1sjNydmcsbEc5mqZJmKWeLaf/ffKC+me/YwXijr2pu9eZ4EP6KK3L9BDrum69N9R9zVq7XszLskyX2leMpIRJG0NK0yWIVyphSjYobGmqpIHRNM1qtcqyTBRha5imswwGA+99go4k3dP+o0SRqSoJcpY8irquy7IcjUbGmNl8kfpqMpkkQzZV8Od5XpaDxBWmAKyihGmCBWZVDSwuIwAdlOV8PlfC5XIx3tur1usrVw+TAb1qq1E29m1bQ8hDjCaqujQ7tr1HFHFkY6oEFEUAi8YQoQCLcgyJ99Dart7GGKsqMQbv66aprTVF4YxFZuMyyzFpZbIx6BymdAptNDcAIHglQ6qKKWgPm9IjlpSNsYRqCdAQWaebuKZhH8WqVVUiBCRUJAFEwJ0gWDdqun83owehoyl7ePz3Yw2R0srSY7BCWhzsTjLaGJO6N8SYavS3P40xElKeZz/zOz8FAO/9yy+oalqHsixbrVY2lS0hpnMUljioI5wUdjzIMpdKX6MDziVmmcmtLZzNLWWENssNAiGUmaV0L4VVFhFOihkK0RCAis2tFlmI3MYYmUIEFgVyLBqZQ2SvgkYjkgg4Zx2Cj9oEZoTCGLbQxoAEVpEf2vu3+21nvyTC3WUBrWFHnEqUQkAAkxxaRE066ZosEAUFEGAnpGjJ2NwJAUeOEgCgcO6dN2996zd+6NkbN4dFOSnHi2qtaNnYrCwAIyIFjpEjWePj5ZKDf9feqpaWjf5t/6xVVYRVu21UVIPqsy++2IQYrSWTrap6sa6mw8nbXnqHdTIej6uqSgqAiVlkOp3mzvJaw9mD2euvrY/vWV9b9RbVSGsELJIhyJyKahAJLEa0IA6xqasmtpVfL6YHh+O9fRRt1ksVzpyZz2eplgYRE01iKhdMrW1bGJQKmqBHxnYFvqAoAiIaQ1cZjAZjlDbyouGq9fVqvVwvfNOUg8HeZDIej/PMWaJUzmiMKcryNzz7w+ksP/zad4BxYEBSMhnQS2za6MS5IufQGkCXZQiEaEUpRskNDkvnYhZibH0b21D7lbjoUo0loUqrwJlFa9yoyOMERCklqQvLmSNE1I280v/1Qx/rb/nv/ObPfNl/MwQBC6igNsmi2axpw/aSyKlWGBKp1IWQQLJW8UIHeWdx2DYuvXCfYNmMEEnuUKcGigAAZCiphjMza0QySJROmoj/LgbbVqYU8RGJj237eOebW68vRiwA6BYFLVFvinRRq0fd1KW2HZCFXSCcbpSa+3M/7qouHXBn/Xyiv6SbTOm2xwIPQV22f5VKMpiAKaWQQBILAjkhrJiXZ7PGB3893tqfWudaH8D7kqW/u4d9FdniaN3spLj9LFSVRWRTiXRp37gUQLzkqFyyOFnFx7Cuqtl8vm6qqCIi1tmL4yCktFirERFLg4lvtR+K6ZhJGfZsMTtbzhsOYEgATO+MPQrN119MQm5fuH/bjsrNmzfzPC+KAgBS9LqqqtPT0+Pj49defa1ar5Mo3sPD9Gna9q8eNyJ/mRoiaueSxqcFO74VrVsyHird+YLaE/qqDzNv51JSS+5Q99u3ItGZ/Mm2bUOI0HmARBsR+mTrJ8syuSh9LDy5qb2mZx+l6DMkqcCgbdtE0lAUBW6OnIqmUkok1aIURbFYLJbLZeddqCJiXdci4lwOWxDEs7Ozq1evpnBXURRJtCgVlaZUOzNXVVW6zDrLzERI5IJ0JSJ12zKzQwKWLMsmk8kb9+4en52enJw+/9JLeVGcn5/nWWatm89OB9NhjBxBxlkGvNtpW/wE1hgEEGI1HQxSWFTEEIXQKjrrDBIkEbdUIYYEmKQ0CJDAWjIGmTGgJqhYz8jck/xeAAsREZEoZT63nAdDloCIDAuSBSJhUAFRYLZtxg2wMUaIHjf0NsPqaYnPH9m6UMKbWk+Y+bXvufcK3OnfIpFuuj4xVhGiJeOMNYQZAhXZsCim40FhDWl0BBmqRRw5kxkoDOUWc4uZAYtgAYgos0BKKeyjpCokHaFql0EWRFQ0qC5pGmME1CyVIqkCoqIiKKEKgCCgooJGBAfoAQgTXEwQntSNPegL4LFzGWGD3oANq2YSluou+GKjUkQrIsISJXAkhUFRcAgHB4cf/tC3vP9L3otRcuMsmbqq26qOHELdqOpqvhqPxxIVDU329pIKx79rvxwN8bE2lm4AEiLCAOjczWefPVutysl0XVchxOFg+M53vCt3+XBsl8vlyy+//Pzzz4tIEnYEgNDUen7/9uc+55fzEZkCogU1qASICNSNJFTVBBNU0ESmM84xat0u+SxU6+V5NhiNBoMst75ZIsBytVqtVtPp9MaNG8fHx+fn5/Dl3TUXeY6IwQdAsMaQUbLkKGWGkTdl9EQkAiHEtg2rRqrGPzg5NYiHB0cH08n+dI8QfdOQCiCCMc653ksBgN/w3I/88OvfmTpGRERZVZKkcGS2pMaY3DiXOSIDQMwsoiq6hyPvuapqbxsRIUIAQQkAgBKsSRuRIzKgNnlWqlrXSwTtssMiDwf26nVdFoPSGEUzKIeIJnBsSS1d5Jq2PYHeHJctXpyN5fBYoyUF/hLKAC5Zz9SBSkQEFJE67t9LSBFEwAvrDN2WlO2llXlbO+rS+HyclaIAYEi37rH/YeLff5yj8jB72CPbZcvn8S7Hpat9sgmqu3UKj/zypSvcvq9OcR1BFQQUEEkhApCiD2qMUwvH67W/3arGFw6PckPlVrf/6rbI3AS/rNbni/lytWy9T7aLbjmtCgCErBIZrLXkXFHkqS4XNpqkIYT1er1are48uD9bLZkTOvHikV+aMZdd38d/ZKfTaYp294D+09PTe/fu3bt3b7GYC39+9NgT2kOOyq+orwIJSB0/T/XkW9u2AyRE5gnLzRPaE8rUkvOdciCPdFRoAyH64hsRIVCiTzDWIhCzJjdjPB4nQ3mTAe8wYIjoXI6IyUVJBjRu0muwWZGTMwNbGdVyMOrX6JQZT5KRTdMURZFS3mlWpDp7EZlMJgCkqulr6/U6dUtd16o6GAyapjHGrFYrVR2Px0dHR8w8n83app3um8FgUJRl3TbHZ6dAncdvrS1cFpq2qluOMc/z1WqFCHmWFUVxcDg9e+NOXdfJPWjbhttQWuseogbXvh7JAGyKzGhTE59iQrp51t77hNnY/Bwmk0nv3fVdl75QFMUlRyXNXBFhIkhpK7y8zxmLBowqqiKRITTKKgqsEBnrwE6jtTYq8hPnKHUcqaTxzQjbGWOS+/rmHJUX/5/P7O/t/Zvf+SkAiDE655KDsGFkQYvkjM2ds4S509yZUeEKwhzVAGTpBcE4s87YwprcmtyZjNARGkBMXP4bGRkGBtQkvouIVVslTJwkLUfDRpFJDaphRJRNojndm0rCABAoQ0CwSBYYVVAFQAEF9LG+SggB+ijao76ACo7BIYiCAAil5538Fd6Az7tGKjZGEhVRZXHWPHt49A1f93UvvvhSVdXgMILme4PSuHpdFZmdDiY2z1ZtvT/dy/JCVReLxfn5uar+Cfhzk8nk/v3752eL+Xx+9erVJC9Y13Xi0qjq+uT87OrVqykFenBwsFwuz87Obt++/a53v3NY5nvDIbe+cNns7PxsPvtX/+aj67pGZ8pRSaIkmiu9+Nzz73rXu9vo/+mP/dj1m9eGeebb5od/+IdTzi0RA7ZtG2KgLO/v0xDhJhqqAF5831fbZgoBJAps2hBC9HElRAQDFjdvRJMDbDqmJEDUPhCzvUrHx8+auFtYvGMA6U6AdidO/FA0tGsAN289N1uuyLrZfLFe11k2qKs5kVWApmmLonjHO95x586dlE7x3ldVVc9P4fWfk8ViUpYlqJHojEkKs0CASbwJBRQJQBQNgiBYAdPWWZYzxvXydLmaTfaPjorr1pSi0WXuXbfelS57Pp9PJpOmaT4C/zJdcJbnVbXQqpLCiVJikhYAtJvU0AZGLiLr9XrVtLXky1VFxt28ceP6taMid5mzsW0iYW5zFSGiRHn/6J5JAWOWNHd8CDkazKlw6Mi6zCYqw2SHxGAgNzrKBCaN9z42LBKYQcRAaRCVCJFEJMYqqSmIShIVZGWRqCr8kKcyLEd7o4klE5kRMMQIMQ7Lwbq9EK02xvTS6bibN+gHISJu6ydeMpp7CMP2xtodwRCo9mqe8JiGiIYIO9n1t8BYuDywzWOOiaB8gTP7vM7DU53r6fYR3S2l3t59aFMyvV3d8HAgGDYmVn+ELeMWsAPygBIIYceZqaCKLFZUB4MBgVvXy1fv3SssvXB0ZPLsV9ogfkyLHOu2WSyXp7Pz2WLug9c0UAG3bXYFYFUWNs6azBVlmeoaACB1XQLIzBeL1XrVRk9EiE/CJV2Oe+6Wr2w/5Q0rDlEqyYkhrNfr5Wy+mM0RyFpDZGKM25X7j9k6H30dfUsnf8offvENscOxCTOwIqQiHtRHy8gCANBbwUysAEldFRHedOh5+wldckiSZE36S9q2+4/6+ry3yE9JpIeUAlTOOiLbNG2MsW0bdF0jorBpHdigtxVUu4vRzj/ZJrbavs7JZFLVrWzov5JrlOd5MoBoo/OY/t3f37fWrlYrZs4yl1RZkiGVhFmqqnLOIZnkzMzn855qjIjyPBfQ12+/Ph5PfPAnJydt8MZ1lGUPHjx45tp1l2VJjObg4MA5NxqNY2RkyayzzuZlntFkOBwv1/O4qijFDPpO2wqMqaozlLwWNUZElBlEEMAgGucUVDn44AnEGSIQEZUYCaGnew7BJ6RfCCGJahlDLjPOmYQZw6iAAgyKaNIAuMA2drarNahISQTCkEVEJVABVmgJnTM2GIOYSMNgI4u6Oya7HSGtGPyQfsVTjagN90Z6mjufbS519w8XTVgILoRQReRSBAVRCcEiOqTMUO4gs0SEHLwAFs44VGfQIhSGnIXCYuawsJjWWpNWVWP7nktx2sAxxiicAqiSyiYxiYQRE6mKWgQGEARFNaiMahUYlRRUMSIaQNpoij3NqpB8OXgCkgHACRCDKESCgCCk3ogkKqI09bpFD1A1RwytP9jf/8D73//Ot7/jxvXreZYFH248c32NQJlhi2zQlTk2IBwtZKOsPF6tzhcrETk+PavrejIZHxwctG07GI0J3cnJyb179yaTiXPu6Ogoxnh+fj5bLA6PDovhABFdkTfBD8aj1++8AYbeeOPO88/eDFl+/dr1k/sPqqY5Pj198ODB1RvXmxBiiI7slaMrq/P57Tt3RHVVrUej0Z037n3Ze941LAcvvfTSK6+8goh5nhGBsRSjawJvDVQETSqCqiLWdtS+QJp2oA6sqGgUKRXOESZiA0RMAHoiooQjRgSUi6wU7G7al83HR+NPHt5QdsLVO+bWluu+A/dNrMQqCqogCtdu3jibzfYOr9y5d18AT0/mVw+vrteryWjYtn6xaIyxe3v7eZG1dRXaqjo/Pb/7+n41Hxix0gIjmWQOJ/g0IimjqhBIigQTGSYABR0WWeNDiLUFUsLF+fFiPrv6zK1bt557+0vvKMvh8elJ8D4zFJrom4vyHg7Rr6uxNSZ3MdYGRVEDQWYRAEUwIatFxfuwqtplVc98jca+7W0vXb9+fW88yK2t6/W/t9cppfzYg+82ZPIiv9SfxajAYMii8VQ1TcueJaTkP2uGkBWFIqBBIIPd5o8wKPOUcFSEkk0bjefgQ9AozjsQiMwxwTGYRSWqqKolgqS/IClAQH/0f3jfn/u1n0hX8o1/5epwmo+KYfBh2TQ+MFkzKkseDGfbxM0XGRXcCk4hJFgUbqoVL62OW2MlywtAUEQfuQvSEACBIqoxwqypxlpVsLOWAUAIMWmbJpjQxYBDfjx5zzYe/NI1XbJSdGumbC/kohe1iAgAfFGlcMkYfcpcvVyib3kMAu3h9nmdIpFEqtc5kA+vvbIbQYYttFvXyWlSazodpJpaa2yo6wbVZZjlZc3+wWx24/BgWdfDyReg6rN1JwCwKUxPGDC4vHt+QU2YOcS6bVar9aquvUS0BnfrDtLMEVVmEQBjbJZlzrpUQy6iMcY2+KZt1nUt0EWd09r1WLqxSwDClDjtVA9ge/m0zloEkBAlxljVy+Ozk9fvnN25X53NrbNpmFqwF/TcABuyvR1MF/ZhcrNlwWz2S9Olh7S34XovNv1rABHSdk5RI2mXNAghMHWCLcl0QyRVjcoqGkJ0zlnbcaLFLsqLiCDIzjphMSx+tTasFm3wEhVsXpCzsZKqbUdtm7ncZmgQfd263G7xae9uS/j43Ij2pqoawsic59loNPChKopyew/b8ZG2Ktgu5f23qxK70N4mYhRV0g5DRErIsLNYpI5KR7iUz9067U6KM1End1CT7WJ/xeg1xrZZt8BorSHC6JthmRtjfYzaNkqY57kS5oOyGA7SiWaz2aZ2AmhTUs/MiarVWguEq2qdTj3em4QQZot55oqECkNEa21VVSGEvb29/f19AEh2bRoSPb1Y0zRV1aT6hPl8vl6vU+YkhDCbzUaj0Wg4aAwtF/O2qfPMcRycnJxY56QYVK03ZSyMyQZDbe16vW6b+cHBwWQ4TNHB8f5e1ra4svtHh6+99lqGJsyqlZshAmbZ9PDK9WduXr927fbHfsatzl2GCcyWsBaImDj0AMBoJ+ejhIEFVZyhGGNoGxJrjHHWmcwAQ7tqIM8IiRTWVW2MQSUCyl2RtHFzJyKatBFylydnL/ggogkU5gorrBwjgBCCUVEQV2TWZgvf+OCTa5dnTgFiCCGEyExAk6HhSGtrFlVNYARB0SggCvZuvTVEScra2tlsJridJd+x0+zWmBQVA0gqwnGQ5xw9gliDhIrQZdu66CCjSQl0EQTwHJUvwlcAYERzsrjJ5HhlAkEwyi0aygcFR48GreGCNCcBjdZkZeYy1JwgNziwVGYutzQ2aglyg86YzFmbCmNSGZsCIVKq+rdIqjbNDoCWlZljSBemXW0QKgKwIQGibuEiEfAhMHsf1dnCIlkFg2pEHeLA2FjXq7rJzEV4eBMu37zdVO90Ky0mx+liaW1C64NP10nG5NZmzlTDrAlRgjfOZWggikW0aArrnr967b1f8p53vetdw+Gwruu2bq8fHBAREvnZcjGfYynFlSvrppmM9+u6Pl6s66Y5Pj0bTyZZll+/ct05VxR5URRN05yfz5bL9f7RYQjB5pmxto0hhKCEg+GgbUJZCCJOhhNmXi/XFm3hCmdcQZlBO5svIyCVZbE3eebFl2bzuQKcH5+VeclREeD5W7fsYHQ4HL/72tVf+uwvfublV9/+9he/5Vu/7Yf/4Q8tzk4dag5QjkchhFZ3PGpNBL4iKsqJmxIQIFUbcfpIVMUZTX66JmIbglRGrGAFEFQFGOD/x95/R922ZfdB4JxzrZ1O/tL9bn73vlf1XiWVVCoFK1gqycjIloOEA9hAY9wywYABN9DNIFhmNKMHtBuwcbuhDQYPQGC3sY3dDm21ZBkLCUuyqiRVkqrqpZu/eNKOa605+4+5z/72+W6oW6VSWzJe7407znfO2fvsvfYKM/zm70eCSKheKSPqoqwL7KXnFYR7+0aXUSciagtS9aPeUa3N2M2V0PIjGWOQwHkPons2+iCIUZJmy9Xqa772o+l4d5EX5/OlQVMX+e50dOf2tSdPnjg/HIxGxkQ7k53GNQGdicKt3eTeO/fM/H6GLjEmNhhvOE6Us0YEQIwq9CFCCD64ilisiBEwlJCNEgwuhCDchNBURX6/vr86nQ2jG2+8ke1mRYkLbMoYU7yYsKauIkBAqbj4l77u7+ibP/jmr3fITeVcI8ZmLFg5bpzLS5dXzZ1br0wmk93dXa3+R8CPpX+qO+F3Xvnzf/He9wwN/V3z+z8a/oS++dODP+CocfNz5QN0ZcVI2XDcNE1RNk/mTVYSZsMBRRGiIUEyaAmArOLbEAAgNXYYJXVde3BsxJGvaud9IwyISNYigOJX8vm5AAW2LFFgKjyvnf/tf+ZuXuXWh53pcJQNpOHScZyQDK3J0nXgn338sHQXQ8VtHF4BNCCBWzExATBEjMRNbQAjiiwZAGiaRusfWquJsGw8IIIRNIiRQWMCKipVQgjWs3VsggRfM9c2jiMDzFxEAyfonPOeRXT8BVBg2FYl4lYot2ekXPZhLtnx2PNG+mFt3IbS8LZT1Pcr+ln6S1YlXzLGttKSPTuKSLZTTJ1tc+ni+797CWdr9AEF5sBIaHo2Efe9oH5GBcBHFtR50PD/VnC5htiSGHHijRWAh6erW4fVeGfmOKAh3/KwXC5Tiaw11rYgQ0IGCcGDRxssCAFZx+xAHELtg0EEgU4gsuvbrgdAFJYPzjnt2E2xMyMb34TTs/nJclEzCxl9gggQguvWKERM4nSYRYPBYJROr+4ejtMRMHphFqhdWBfVsqxK59mFmOLAARgIkB07L8YYS8YSduOhX5gnAMaaTls6BN1122aZ2SKxiGtcVZZFntdFGby3RPg0i+PFCP4SkirbT/aCVKGLPRtjkKX7CDfM4tJDyHTuTd9q796Ry06FzkNWvSxkAAYUQDRIIp0AJGwg/aCBjS9XtqtHura5JyD6yiSQZEM9oU3hT9oubZb9tPjzArHw1HLzwqaxlhaj1XtwLf9Uv+e7qa6V64rOQkTvveKajDFJlqo6iipglmV5cnKi5u/5+bmmEfVArcsMIShlPmzmm46KsiybpomiaDgctNDtEMbjMQDUdU1E+/v7tHHosyxrmsYYs1wutaImL0ute0mvXLl+/fpisVDREkS8enh1sViICAMkWeY39WeENB0Po4jKhgHAmoiMFY6TJLalEfF6+7wh8YAujx8uKHc1Q9JxIXgObWmB0rGIBOe9iCLfND0lF8OqlfTSXtKmWLUueUWeQBT3DERiiETrUshYYwFArBjTRlM5IBEaQ8RCCJYottagysG20Yzt0Jqoz1mWpbW2Cc3LDaGttOoLJoTpuPi0APypIWqQLFHHAYhIPgTaQk/plQsCI5AhUueqdfgQDJE1Jo5MbGxkKY5sFFmzYZttg5rWwDPniAK9gQCJSBGPAbvf3L4I2KxXxoAPIQQJaieLtEqCgARbq9YXjfY93WQT4W+zNAKJjUOQJBug56aohml2uLf/njuvfviDHzqY7ezt7C6Xy/VyPR6Pr+xfUfETYRgk2cHd/fl8fnJyKiJ13TRNc+/ePSC8cnB1f/+gKArFVdZ1U9eNc+7tt99ugq/rummaPM+TJOmY60MIaZYCwPn5+eHhYZZlWiyR5zkgAMNqtTLG2MiOxuN5vkqzDJfLKI53d/cMUmD2zq3zAoGuX72aZYObt27df3S/quvE2N/43b/hL//FvxCqQozRYG9kLkDvIsLcKrP1hXxBEbPG6LQKwtWmu1tXoNuJBb4kNaHuQTy9beiUDCEEvvxmd13PV6xAFAVNoCAgGRPFR2dnd+6+enjr1qPFygMIYFPXWZp95Gu+mojOzk8n03GaDLzn+WpxenYGUNtQvP3O5+j8yVCcbUOV2PLR9EhjWC4qCpCsjYiZSYRZQkAC5DYrSwDAwbNrqnz10//rj7umfvW113am4+lkUpTNZHQRHr517SpUhT8L//pHf7h783e/+jf+/Nv/kJJTudp5llVRFOV6MExv3L51sLeXZVmWJipjQESwzd3wvVqdEgAAflr+OWssOhA0BISMHMQ7L56jJAYjzkItVfC+cI3zIY0MgPKAqRME0OUbAQxgRAaIXXDq6yq7f2AIAkrZIQjBEAcMgE6g9ly5pmoqBmcjGaVRltCQAC0hghgL42GBcro6c9vmZ98rCNw9DeyY/RBbxV1NPTC2hSIa7UJEayIxiEhiKQAEloCojgoAkGxYNYigK7FmCSxBvXqkS+O189m+pPaCJQuf8/rv48bPuU9BAJJ2i+d2Z2Iytfe+pwH94vW/Wzcu7aOimXyNjACS1iS9RI9vTLk2PVXXdVGVZVV5H1rzGJ/SYmsXWEAga6I4ToSwdE1Z1413DOKCz+u6YQ7CIKgL6csvpe1vXSy+W4daEUFCEanKcrFYnJ+fLxYLVXLhL3nrfOq3L+Fuoe1uDUqpr9xmDzZCRYp50Fo2neCO2y+rnQc9yfM4Tjpi3BdcrGyQSIhwSRMHUANqG0Hxr0Tb5G/pxYPvJVtnAbf2KASFnz6d4jTPF/Tpt6ceyot+XJFmAKCikF2OuIPJdl/lnmy8PlYttdeuUOM7z3N9Z71ea2WUejV1XSdJokkJRByPx3rIeDzWkhg9p4KPUcltNyIqcRwrFDuO49ls1uGVR6PRer0GgCtXrlRVtVgsDg8PV6tVXRaOXVEUcRxrl04mE2vt8fHxer0GybIs0xIRdaiSJNEbSbMsIDdNRYhRHIHGAKKEEYOI2fwu9hCupFVKm+fFG7fncvK6h4lSl4kiC9ukH91M6ZQuW9CmMd0Jrbeb5ZKtxeAFoBX8isDGSazDSU+oZIKMhM4bou55uV5Y69I40YxW0zT9jN8XHWzUa/z8csnO72VhedZyS0Q/9/ve6v689y8fAcCr//ebzzthZIw1NjLWohhgg2iMiaMoiWyaRpE1CvbTwMeFdJptiQ1lEyHoTtgFvHVwvrj0U7tdEJ3TGAkTMKFYIINoECKkJvivCEC8uz6/LoxARAaRrl278Y1f9/Vf95Gv3ZlMLRIEDiEkSaIT0Bjz8OHD4+Pjmzdvjqe7eZ6riNB6vSainZ2da9euFVVZlMWDBw9GoxEzz+dzJYckojfeeGO+Wi6Xy3feeef4+Fhnn4qo6IxeLBYajDg7O1PCvfPz8ySO3MHhlcODOI6Pjo+K1UoLrkaj0boohllKgIvFInh/dnaWJel8Pj84OEji+GD/4OHDh7J/JSL62q/96I/80P9nMhoXVRm8T4eDzsbq4/Ivza9+ZIeEG99jd/zlASTLhuzR8+X39QUCRDZ6tlMkYJhQICAJoBAFxN2rhx/46NfWIIzQ1M1gMPDe3759O89zDcQkcVytC7S2cFXDFa+XqSvWR8dj5ACExiBeMET1l27Pl5E/tGGgunRd+lEIwRcFCf7E//K/PHny5Ju/5VuTbJSm6MOwcy32p7vReLpo8qfOAETIzEWRr/LShTAcD3Z3Z8PJMIoiXcwVCyAi8HySua/D/+wnz/53ZE2Okq9UQdQFJwQ2jhIQFA5lcBCaRZHsN8NhkpIYI2ACCD2jqFeRBYo9bptAYAhBlKtIkJiif+tbPqGH/IG/9lWNr9gXKfEgtlkSZ4QxQAwmGo4whLMQHuTLzz859ZQhPXvB3JglnUbrJVbSyw+FLiB7BIYAkYV98AE3hjJRBABCaBCIgVDAOAmBwTkf8Nk0uF9ee0El7T9oW80gsEDgwIIIUWREsKq9ZyYT44YO5wUd2LNgLxtv/Y+etglf0Lg30Nf5er5crNdr553iI1CA2qzv1m9dFMQyn6wWwLJcLivX2DhCoib4oqm9xpC+ostqW5OtTtVqtV4uFqvVKoRgiDj8Usf0pQWRtlXMoFc9xuKlR1WsAWPt906XQ30V9WS6kHPHmPyC/IVm/AFUx+uS6PsFb91XZMdCVJ5kXXe+fH6krl1yVIylbs3ais89JRf1vHHfJo9ernXVY/riYrZYe2lt6i5SwSFq/KkZ3V+IYTNDNNOSJElVVVVVna7OAcBaq/XreZ5775fLZdM0Kn2aJIkaiMaY0SZ0JyKK+9LTKiyqi/KqjHEURXmeawm+MWY4HK7KRrwfDoeIWFf1YDjIsiyO46qqlGRTTfauZH88HpPFOtSNb6qqMAixiZwL3jmH4IKfMDNj31G52H42eT/aSIjolYcQQs+E6fxtrYPEXn7m0i7V+X7dD3VLlWm6GsYgDMGyDnljrUWxkVa8tJwH6lJKYPSBlEksjqw14Leslu51izTb9le/aOs7Ki/eyYgIiUIISrL59FfJ0Nf/6fclcQyEq7JYFnlZV3C5tvaiWWMjYyyZyIgVJBRrTGSjOLJxksTWdNTvKjnaDlFrupF8Ofwh7XXCs6gkL74lABuXBggBCTx7xEDBOfYMFiFCNFoN1HUUfAmz8pkNAQYmrqsmjuhjv/bbvv6jX5fYKIkirt2T07MbN29oLk655pXS4NatW4h4dnamuRFr7a1bt5TmO8/z/b29d+89nC8WSvagNH2KzAkhHB4ezmYz5asgosVicXZ2dnBwMBgMjI3Pzs6qqjo7OyvLcjwe60/HSeyaRiGacZwEkccP7hdFsVqtBqPRlSsHSRSPx+MkirIkPTy4QhvsqPd1sc7fKd593+uv7x9e/cZv+rX/y//8o7PJNElN46sLSpnNTIFLuYv2uVy4n1tiDl9pX6XbntqAmlw2Orsffu4a3QZhAQAZiQGjLP013/ZtgWi1zjVY8Pjx4zRNEbEsS2PMwcHBcrkaxePJ7s44Cteu7a4f3Dv73C+OgIwARUYRaNwW+YLpIS6kr8/HItBdPHTU56CkoNIu5l6kLEvv+a3Pf6Eq62/+1m8jG7um6Z5FU5aT6bROL0PwNyICUhRlXdfZcPivfetPdZ/+aPn9OjIBgIh+Ev/AN8gfe14/Pz4+AcSl94t1ISIAImzSNImjQV2FqnJV8D74vCoq1zDHBMYIGAEIwD3HoTM5ulT2ZvJjCKzaiADAKP/WN32iO+qP/Yaf/31/8bVIJIloMEpYAkrw7MgYMcnifPGZhw8eN1XhBSkkybP5nbpl5GlHpVsc2kA6Ufs/YhMCsqCwEDkIDQfeRMENADMAGkJiIjYkBgKLF3EhdLlChC8p2P3s1p818pWrjP37r21KyllYCyEiESy8cwK4nVF5Xh/KBq7/dIRaOuP2SwhAb5kNIrwu8tU6L8rCea9YCvVSnjlKnHNFUcxXS99U3vnFciEig9EozVIgrILjr0Ct9+V2wfdVN/V6tVqvc8XAtBol2/fWvd6qZRDpvB0AoJ7QpjBLz0xxjvvf7LwRPV67u+UF3PDeEhELb1LB7WTuDu/2JNoUcHdXpWYfSCvusaktVnBoe1He+06zRU/C8mLSo2c3RPQbIjZmtpF5Zsj5kvPw8itF59SJiN1o0QCq7NXzT7K9GW990nvdjXL9tzV5jWHmqmp4I+bYsY0lSZKkiW/1DKVLF7SpMNuqeYpIVVX6uLsI2WAwUFkVTYaoUa5BXNULQwSt3dfQmh6rX9Z0io4BjcI2TYNoqqqaz+d6hq64P03Toihms1mSJMwcRVGWZaenp9PpNE3TyrOmTaIoUmCoDjZmRrRqpemn6/Vae7uu6qIqHNcgAQSCc85x7YIjUwYeI3SYLtPjRNep0b2jVWW4YcqX6iIQ1U0i7WpNZCkHpfZ/l8LSoXXJRcQNITIRiogxGAwYwwAbt1ba8hLlQOscp6B5ElYT3VpriTwrKpOMQehKnqy1rRPVQjQvDbQthGdnFOo167XpOiMbzCdtZDH7DDZP55q6Zk1bm+Q5OOeE21lPRNzBcHVPN8aYFsm2QbqwcoKlUZTGcRzHkSHT6hWgDhtUbIwhXR+YWbkftKu99ywXXkp3FzrrLYIKxwYBCK0+ChEBEJJQFIHzoa4jgRDECybG+DiuglNBzRcbyjrXn9fiONYVOyLj1sVsNPlN3/M9t27e2h9Pi3WeF8trV67WabqcL+I0aTNv1lprJ5NJkiRFUZydnZ2dnd2+fVsRXOq2TSaToizjOGZh1eUYDAbz+TzPc6X5Gk5a90Nr0tTVX61W3ntAAwDT6VTDDUQ0GAwmk8lwOCjKMsojIjo9Pa1dM51OdtY7Sp7x+PHjyFhmnk2nSRROT08Habper7Mk+dCHPnTv3Xd+6id/cjqZXNk/+NDXfE2WDX70b/1olkVKN6tTRivZus7c6rNWIaytqjdbayN29P7PiFcJQKcTv03V2oWKREAuw+Z7Zsf2+9LDPIfApmeedkOLiIyNvA82Tmrn9q4dvv9rvtojPjk7W63WMcVN04jI7du3AaBLREdRTIhFVcaxTWOT+9qt5gmDCGNkgQwICmAQFMHAsIFakAu+o3iQFvikMxxZQpvI12tnxauh4uWsscU6f/Pzn0e0X/f1vyaOo45ig5DyoqYo/cM//m1/6JtbZfq/8u73NFxDmx82w+Hw3/jOn+l39sey/+JH8t8rG8IVRPzR5vs/lv0Xzxz5v+W9f7X/53/0499kTGzjVMjWLqzzkkEEoairsioDDxTKwj4YS3BxS63Fpqn7blIbYyAIEZFA4AtLsd9QaJCkqcUEqHSBEWrC2uJ5UX7u9OT+qqgBkzQVsn3jUpQFRH+INmHW3pihTZ5cNDlvrWo7BgmJtSAEzAwkjALIgEE2nA+CcUxaPy9IRIYNMSAaoshy7VqX+RKmVfFg/VHaL3zt3+/z9bIu2TaX2gvWt+d91Bkk7RPqTb0XBIl4m+usb9u84Le6YfCsz7Z649ItP+8yLpc3i9dNUohEuG6aNDJF7RpmNP343dYpZbPydNuiyNZQAbioOu820O5BoALElBugtTFgc56LwczM63U+Xy7OFudFXSGiGvAdR0N/0dOSdSUHPj4+PiER5rquEbHwzZgnWZrKRn6gd2HP7adLlsPWy42p3+5ZxhhfN865uqrzoqjrlrgjBA/b3sj2DzzDLtE/+z4Di+Cm73QAda+1qdWlRoY+j0vxVxFR5KaaDp1ngtsCrk/PEyLyzqNQ4NDUTbcqQS+T473v7CJmNtYCv2yo+FLTBAIAioAa2d39PrPTXr5tSry25u0zv0mXKr22TtJbehC3AC29MgizgXEjYghe1dw7R0VfR1EU2cj5prNZOweyq53Qahm18/QRq38C1A5fZm6aZjAY6KfGmCzN9DJUAFGkdUSLotCKlCzLFHmim7S6MdbGzjktYVdgkg7rKIqU7CuEsFqtiqKoqkpt5SiKptNZVVV9INNgMEBE7/3p6WoymSyXS0RswVHMzFxW5ZPjx3uHO3EcN6VrS0HIZJOp3duD5kiXCYW+yAb1AQAobZyDSJVZL5aVfk1Rt6TqpHB8URHUjfZnuijduiMb1SciQgQOwlasVUwjxWYja79J7LTTTMQY4y/2SENkgAWRyBgURkTYOK76xNtpuFXpjvisBaGzyfR15+fQBhfX2c2ICKFDD24tjl3rMEsu+BACc7BGRSpJFV2pnSKotSiRMcDCrQMjSGBa8uI4juPYGn3ixlCfdoKxXT71ljv2rcAhihIy7WDuHpa+YEHNqBkSIkHockLkvSNDUWQitpH4ABAFiS0JxCsnQTb77hcJ6j976ehMc+89AE6G09/8G7/nve95rzXWIBLi7s5ulqaP6xq8K6pSZ4QeNRgM3nnnnaOjoytXb9y+fVtnGW0YYHV51ErHEEKapsw8Go06R1qfnWYs9YQ6962167wcDofr9VqXweVyuV6vnXMIkCTJZDIZjUZJmp6enz05OdawQrVcXtnf841DxDRN4zgZZgOD6Jxrqqpq1qPR6Ks+/OGf/9mfQzTWJtdu3/mGb/72n/npn6yren9vZ71ep2mqEfH+qLx43fMcDKCFLVC+bC2WzzWDnjnIQwitadfDkvWthy2p7M1+ox+FELAH48RNTBSRGpRokC3y4qu//uve+PBXncwXn3nrzWQwZMS8KF3TvPbaa7PZbDAY6PpmjJlNZ4lJF8WqWVfrxfGTt7/QrJeZAYJIgghaRhAQVBmTi4hc8EFg42H04I766DsdcyAigxikvQXfNKyeXeC333xzb/fgw1/zNbBht5pMp4vFerazW53v/Ic//g37GV3Z3Wn5kMnEcTwYCOAzwnnfOfxTAPCjxffrLAOAHy2f66v02x/85p/4v/6v3+ryStblfLkumpAmAxEPwQfnmTkIE1IIHo3lrcSRdP/CBmQbQhAIBkSABFRL/jI+Yl40kzQ2hFyygwiTOBc6XeX3T+YP1+sakShJ7EDsVoRZo+rUUlla2Q6ydMsjmpbgkMiISO2dBI7imCUARWqbsRKSbCIxAExIsaWISALXPjQcAgGKWk0bm1slIS/M49bMgosR0GtPRcR6n7yUPfMCiwUuhb/7P7u5wo3BcDk7+syz4TZfc9+2ecE1bH1ftssjL8l+v7QFJxcvBLRmA4kQgmDjXJykRd2UjYdNnRqiMnr0u7ePprnIrokIbjkPesktVgU3DQCkF/XDC13BdkNkFt0Bz+fnJ+dnZ/Pzqqmh9Rw2FCUCiFsLonav9369Xl9QcAJgXWfOUTaIoyhL0jppZRguOvbZHQ5bhatbi3fremkEubXtmqZRBA5vBPuC90+f92VaK1rXU4HoXlNP3gh6xCl9e6uDYZiNkuBFv2+cGdh4Glv29/MHYuAQvG8Fmn4ZEpTaaQCASEli4zjZ5AFeoD39K7R1Oa6maZxzIXBnCXV0N13hirbu/UuPSTmLu/hQCAF8a83rIavVSqUYsRcMIKIQdGMQRNQ6k6ZpNL2mpSy4KVPRmaYru5bRD4fDji45z3Nm1l9Rx8M5R2R2JpPGuaIoRERls7RAPE1TYc/MigHLsgwAFDPNIoPxIE7jsq4kiDUURXFTreJsEM2m/vFjdXj07rb51kgzLdJLL1z4FRdfa+9dp0mSJH35TtyE2S4N8r5/rhY/B12U0UYIYDYLH6EBH4JeZJerJCLiCxvl6db6FZr/uVg0X5jH68He4Kkql85FoS+GBHtme/ooInKudSdoOyfOLKbVCBYyGBkbW2utjaxJoiiKLFHromz7fhfLsnqGyqBijCFjcONcQS8uwALEm5sittaCaM2diGAIDoQZKLI2EfTBRQgW0INYQyAbp+5L2AQvmtZ3KdhyNBp/x7d/7CNf/TVElKapc85zYJDC1XsHB4vlIk1TTb/kea65Du/9nTt3omQQx7HORAUHXr169ZOf/OTNWzeNjeIkWa/XR0dHIpIkyc7OThzHi8VCn+x4PNak5XK5rOt6vV6v12sbJbpL6UfKJL67uzubTfZHE5VOX+XrxWIRQhgOh9baJMu8dwAQx/FwOESWxXyepWnTNLdu3OBVva7rKIo8y6NHTyKbvP+DX/WKmMlk+tmf/ztvfeFzSqShA7vrnK3HCluu4LZjveUkyvas3Bqx8FLW0qXW/6ku3EZEBEgk3cl7dOSubpzEMSfJb/3NvykZDj/+cz+fjkZ7e/vrsgKWpmkO9vdv3bqVJEme55pPNsYA4qoql4uFhZpXZ6HMhR0AWNFkEElrujwlgP1ULuh5N4KInXGi1H0i4lmKVf7zP/uzt27dhjbcBA2HSnhe+rUXKxgQnTB4H8cRCgWPcSwCz0WqfGzwX/x/V7+n+/MvHf3jLPK9hz/44q5+Ml8StST46XgsiOzRBB80XcIWUDwHEY8BOkelH2a+FK2XTSKOmVnwD//I1/+h72yBah/9o9OHWZ2LGbGN0FTel6vitCoeLVerwMHEwVpBGxiox7XzgrZl58hWkkOlxz1zXhTGWIpiEPVSYEMeoZ4yheCjZJShLYqyqV2F4AjVUfnlsHz67fnG6K82G+gr3VrWQDGMpMa5FyiaZl2VX94JtxOwWyOWe1WyL+55NckUeXt6drYuCud9IJDN1mYYAKCR55d/i3Q198RiGCLANB0Oo1SY8rIERSJ8kfrx3h/bl9efla1DX9e1Rp1D56g4/+XVeXY0RLyRxejc3Et9160LzNwXvNNL0k8VS9OZd7ANkvFP8dk9szGzD4E5EMCz0O+/1MbMcRKJiDEYx7Ex1F0w4suiBn8ltG5kOOdW61Vdt9CXzjjrgFh9s0qflFo5uMEm6ak0KjYcDrMsGwwGeVl0ofTBYFAURV3Xk8kky7LgWY/tjHW1I0VksViovpvCiDXuq4PEmKgreQ8hnJ+fP3r0KISws7MznU7VnxmNRpPJxDlXVVXTNKvVSshOZ7M8zxWvH0WRav0OBoPl4vz8/PyVV15R/TKlHWsVXary/O2TGGFEAyXrmC8Wo5hjEWGuKjcYDLTr+hYzRla9JugVomjn9I34bkirHYMs6hxqioY2yDrYNv2f4ai09bKi2l+do+LZo565FzV42ri/1DT6rk+8m5LtYHhR3vuCdPjS+ftm34uH4tMNNwID/TeNMVxz8AHpcoRPAgsJMzIIGRMZa8nEZKyxGoLq6Dq2LFreqhClDT7NWutCABbV7dl6fAIEqN1rSHUjkVi89yxiI6tKLEARIRgEIowQPGJko5ZM98utcNX+zPP89u3b3/Gx7/jWb/q1SZLleR5CSLLU5JHjkBCOphMy7WzKsky1iZ48eXLjxo0kSYAiZt7f33/rrbcAYDgcLpfLq1evpmlmTDwYDnd3d8/OznQMq6TX0dHRaDoZjUbqxqty0XQ6nUwmq9VqucrV5l4sFq+88srZ2dmDBw9ms1lkTSKKJuLFfD6dTufr1TvvvDMajUaTSZmHEHzTNEWezybT2NgrBwdlWSLCdDqx1gYvH/v27/iRH/nR6c7evQcPJpNZnA5ef+8bWRJ9/vOf73aQ/tjoXndB66c/urRxXHJUdM6q5Irp2QQv/8j6v9WPshEgidBFalM6X9HG0ZU7r772xuu5cx//yZ8eTqZpOliuc1c267Pl4dWrH/zgB3d3d5WiYLlc3rx5cz6fPzk+GU73dyaTvUjePb6XL84tuIBkwMZgGMBvZvFWlARBtqto+h1CT8UFOmuCiJDRsRcWGyXLxfIzn/40fLT91KZxhnZ1crSuXeJDA+SEg2uS1HbE5s67/+xnvvOf+9ofeWa/NU3zG/daz+R/qv5xAfgfHvz2f+zGn3tBV98/PrLW2ijK0jRNs7GQE5BQceOd9857TyrXaMzGTekbQyrruAUkaXc3rQPAla9//1//mi8cn/7i46MvVEta56M0S8kYAbH2fL0qXCNko8GIrEHwjfNVXc6S4cuA9juvmFn54S+GjYYeAKCua0EyIXBL8wUMANjjB2Px3jUiIbCQQUIyKrCCnv1T6ZKvWOvMs2fe15cRk/r7qIkxiEAGEYAEQYQDQ1E3q7z44kc/q3X7+NNBQ+4V5b+42zUYrSW+i9Wqamoh1DSOVtKDwjut6Z6rZg76pwAABCABocCNQ8/JMB4P4zoAbuD0/HyY0qVh02dOu5iVCrvQe1P7z7mGA3dhy34HCFxQGr541lGvMP1SXoU6cEYPHKJfTpIENiaObIho26RPZJ++pU34+dlpH6Wo12GBrUhNYBYUpl+GucqiFjPrUqPrGrR23q8mRyUEDoFBpK6afF2y35i/zLApmVCzvk9x3VmxuiUrNMt7XxSFOgAdDiqKouAZlCWTxTs/HA4nk8lyubbGbrJSqOxDaZoqt+lkMjk7O1P0iNIWd4rsTeNXq5WIaGg8TVsV7dVqNRqNNIQMAESkMLYkScqqXK1WADCbzRaLhQJUGISIYk2eMJ+cnOCmLCeyNraWRAjkYHevLgpoWlGLpmniyXhk9xYPSZxqgAUJtJm/oll29eK6lEg35vEyrwN2e9UgGxiipm4ERFiU+ExEQMRk2aVDup2A0IAKJIBYq3E0nbHERWUjA2y9d8ItnBLJgAAAATAgyQVgFBW61LkcGqTstxf7+92NbEeugRTGCUhPRQzkJXZRZd3kDToHAYgARJjZkqEW8ao4CARhYBAMAoBoTUvRQcaQPpBuvHWmpACAtKulAFhrAAEqBESDRKoZCuit516SHQEACUmQEFoZQQLPQsgsWZpxUda+DugEiFAMAiIYBGPIAHsVRFWmnpdenFAAEZq6Nsa+733v/97v/d69nb2jo+ODq1fBkOPgynJ3b2+9XgvAYrWUEKqqLopiPJnk+TrP8/F0si6KNBswgGZI9vf3F8uF5GKMHQ4H1hrn+fjoSBOMCo8EgMFgcHBwkAyyuq7LsoyiSFGUWimRpimaCBFbkuLFvKyr8XQ63dkpynJoo9393aZ2t2/faYI7ODjIy2J+PkekbDCUECIbTacTiwZFHj5+fPvmzcD8+PGjw8Orr7wyPT49fe8bb5yfLYaj5Wz3QJCiNP3o13/jnVdf++mf/unzs7MoimBDq98HFSBuwfBNH4WPGuUEUBj3ZpcHEENkCJGwqwt89rN44ZOizWVsyjv0TIhIF7EDxChOFLh59eq1qzdvhix7eHSyXueHN27YKBaB1XxZ1fXNa7eu37oWWVsWxb179wHg8PCQiEajkanqsqmgyhGaerEU14jwhoyXBFV8rc319WcbqgT1pj86VtJNbRRCqyyHiCgt7BwNKWQUWRhCCAxvvvVm56jkVS2YDKc7dPXa8t3Fo7NFHNn9nakLPnAIzJ5DXldB4D/+qW/JssTG9vtf/xv9fuu8FAD4rQf/3Z978rs4yJ9597cbpKaqfvd7/9Klfv6n//xrPnFJnExns8l4nMSx1L4pTFOELMuIKAijoGNGZhBRjp3O2uv+BbPRCRUEgX/1Gz6u5/93/9ZXL5vmvPH3zs+Oq7oxRDYKgGvnxXlIsoAJW4sCrvZgRYzBBNsigRcNEATowD9a9QTCQp2khLSFu4G5qmujuge6QNPmUAYhXROwKKsmICExYBNYg1bw/ITKi8vqLwzBF4Z4u33tGWf4+8VL+XINR1QxJgVsIRGIBBb2oagdP7UJwma+vYAwGk3LW9dO5XaoXvCCdI/jBZ2vRlpd10VR1q5mELIWCCH0xPkQ4jju/qqbprPl1D7YREkheN/UjW+cEUijZJhlzjWFtXUXSN2sv/3poINdLs63dXmdzc/MVrwT9nVVeFcDsEEBkBB8EkUFBxZkDtxB93QDEAiu6oKmrcdjLBgyxhDgcDAkoqqqDGAD6JwzNhplA6G2sESZPbz3ZVnFcZxlmTFGmZ3KslQsu+ZSBoNBV3itegQAYJEMGbyktYCgmeiWVYwRkQSwQT5bLwpXC7EhRghIkKap0vk734RNAwzb4L+tkWko6izyrVAxirVQljkRGROTuag9sJa2LI8XZeIuRx26G9Gauq63pQfUuYRko2dBfjdffa5Ti9guZCDILJFNvQ9nZ8erZZlGKQAUeZt2GGQDxbjXlTNx4pxTCL7W2obAxkBdO2Nt0zjlCHLOaaWvIsiTJAXALMuYQ1XVURTXRX5+tmRmkxBZq6uwNWY8GhljECBNU2OjVV4kgaMoYsC6rkNRApnJZHL05Ph8vhiPx0VZDQaDwRCSNGOB09PT0QSLqkzTdDweN01jIis1lHWFRNPROE2zNE4GV6/eu39/ma8HoyFZGo2G+9V+WZYu+MV6de36NXZ+KnA42xtl2bXrV4DwSfm4Erf0ZVPa4WDgJXJxnE2u50fvRoLWe2OiEISiSCSwq9bORzZqE7Uiys/b8U11Dp6NI1B5U+fZB8dVcA4CGyIb2cjGFgkDh8ASXXB2MiEhCbdbbpYMRKADxdW1q+sqjmMGjmOjG6A1xGjK2gVBieO6bGw88RR47Vd5nVcOTWIteQ6Nd4PhQIKv63ZKbtY+QNyCi+G2XGmiruxGLUc2fhv7YDzbOI6MDcx106BInCYaBK0rF4JzEsC06uBAbbGptixJbGTL4M6rPBCkaRqqOo1sDhibGATYM1kkYMKGUIvplWhe2HNkskFmIytpbGxiEIGR9XeENiRdiL43Y5lZENPhwCYxs7BDDgIGByk1rmbhJE1YxIXgGjTEDBSh896H0BAziY9EXBkPzTgeDoumqpkhxlpKIBfAJRQJc4N1QMfQ1g8oHy3ChbTFxVrea+y8To2v+eqv/Y7v/HV3796tqobD+ujJyXA4DCEMBoO6bNI4Y89lUZ+cnFy/fj0bTarGVY03UcLCzoWTs/M4SXb2dpVtz3E4Pj621o6nk7KumxB2D/aZ+fj4uI0lETbBR2ly9OQkjuPd3V2d2oZa/GSS4tBG5/P58dl8d3fHJlk1X6aDYQA0SVo27uR0PplMgmDtOR2Ok8HIFrULsFqUgyw7PZvnhUMOWWIHg0HlnGsaLzbJJs4166JmwN2DvcpVy9U8G6Urn0k6Prg1+Z7br/7o3/zh4ydP8vUqjaPIQEzknSNCMiaAMHQrNoStmBf0LcmgUHEBBLRElgyCoFZbGtSyZhHxbaFUG4gHY4Hb3PJ2IlEMsBodgqwlGqxFTIBJZLLBoCiq0WCWDsbTnf1r129ev37r0fHxslxXDQ5Gu1UjMcLZ2VkAeuP9H5zNZvPzU1811boIjWuauiaqjE3TNMlSYJ/Pj6Upjh49yiAygdMkZmMKlmq9gs32r74ld4TyBi+MYq0P27htYCIQNNADL6nAOZrHbhU4MEIARiQxfP/R/a4bKcrOTs52JqPRzsHi9GTN8vs++Lf1o//6F39d6XxF3sW4LMv8ZB6n6R/5jp+7PMS3228//O/7f/63974vBA4SnLDzvqnr5pWGmcmYJI7jJIqswVTWID5Kh6OUjHENE4EhlKaBzfKrEWIRCT744AOzSch7cQ27Rv6Fb/jp7hf/vW//2d/7ox+7/9bbj85yjC0K7E7Gk2xYzBclhyY0QAgglWsQyUIk4skYa7CpXZ+8IbZJO/A0PgGIZBFAfWIQ5sDC4mtnjImjOI4sEbEPMZtpNOTADgpCEmxXLkZCQGIQwDpAA22BggAy6NohAFtqP4Jbqo4CFx9dNioulqENgHIzUraqvDaHtn9u0058Gb7KpdqQLULp53tWuO0UvqDg+FKeU3dMBYP0A+JyGbq5zRbXOyHZfkjuwqtDAALTdWsEEKExxlTWF4C1oQbA51UcRd6zSrhbBsMgkSG0hKTc2BxAGNEYQssMLAiAAdCLNBqER0JjAdDauKeu1lmSDMACErg1D0xkGaRqajFQBicWQ3DiL8q/GWU4GOwMZ4ooWa5XoXGeWuynILSDlwwi2jgxaeIQc++hrjB40P/ZA7TaLIEDADQezCacp+CDrq+ZL2ybfmaCiFr1AGYOHORpNk58xpi45OptAyeUxqaVEejQt+rPRHHSRTEVFdYt6GrcI6KaRN1yryfpVhPZRva/oKFcJPEZOpFfedYNvVTrfv3piWetYQFjTJLG26D83trwq6NhCFxXTfCByF4qMFD/W31IIaN+iDqcZ2dncRzneR5F0Wq9Vry1kgLpo9zQoHX9hnEcq6vz5MlRVVXe1apDPxwONSnZRbkOr924fv36vXv3lKVAa1G89ycnJ977yWRiNtKHVVUpXIqZF4vF9evXFeWyXq9bjUXvq6oapuMQBxEhAGPM8cnZZDYdDod5kQ8GGSISIhlTFGVqI2MMCqyWy5tw2LjQNK52zWK1AGt3d3eHw6Er8sZECMrfwsLcFjoIszByjyX9BZ5qLyKlAUtCYmTEdkLrSn0JiXGhENbW7F6MNxEBYF0KhJkItFis9TMAVNdOAMkYVzZlWbnG6wwJwixChrqoxgsCZpcHkAAIWCRAIAHTas0zslgiJGgZmluom7koO9nEhLB3qv7datLMB68q4NpFIfhumyFAg2gQCQQRrDURiUEbkySW4thGkY2iOI6tYOtcPXMT7e5Ti1KwBYCx8x4IhBlJyCAAigFmEZYoIkSQIIzy731za9z8Wz/2kRD4//Zdn9A/f89ffB+HmkOIIQwishTVlRgEC2A27KJbP//FmjH2Pa+993f8jn90NBobstPJIE5iBkDE5XKpOZAoipQjeDqbHR0fa3X7eDJpmiZN0/l8HpgBsShLnbb7+/siolJa0+k0ny9Go1Ge57oan52dpWmqBfRKVawkGcPhcLVaPXnyZDgcCgDGcVlXgPDg4cN22BAu16trh1fFeV3WBVEE3nr7nSRJDw6uFFX1yit38/UqTbO93Z18uTAoo9EgMK/X693dvcBsbPThD394f3//Z3/2Z5n54cMHb7zxBgIXVZ2vllcO9r/r1//DTx49+umf/DvvvvPWIEvJSmApqyrLsiiKPPTS771sy6UBYOyG41vAAppN7AoBGnW5pQX7CWw2FQJBArigs+uf0wAAiKgHCkCIxloAYvaUpKUPw53d/cOr73nv+41Nq8afrtZni1UyGewdZHmel2W5XK1Xq9X+/r4+tfFwdHZ2trOzk8TxarkcDAZJHHMIi/k8G6UHe3tJnZy/Y7nKI0BdklxPqKGDPGxtpl3aR/hCBVzgArosF4SccRyjiT0lx6dn6/XaRibNkso11DNPr9+6HYKId2XtAtB/8m0/0X30e17/4T/6iW8NAQgpjeIQBd98yQWx/8Stv/Cn3/3NEjhL0sj42FgfJ2Ej5BUZawh9cAiMJMyBmZlIdfdE0LnAzCGw91pHqgIR7EMgdBwUXHB5KuZ56QOPRyNIIpPGg8EwQsJBWuTrqqkACQiNISAM7EE1nxGBoj6ecNvy7/sLap20Nord8Hb4puEQLFKapBFS1dRpljQMPvhGHR3oW+fYrSQ996OLWX8F2i8D9+zfg9bfzl5ya/sl/NilXbvFOTBg2Ew3zddqyYdK2AaRjlXw0hUKAG8e5wvcxRddUZ+GO7QBOwCgHvsuWkzSdHc2S7OMmQGkqMrKNRf31BtWGrCrXZOXBYfQNE1T1ZfYTfSVIQRAIMRtypxLbkV347pGtQ4iMwcfvjyodLffMzMAusbFNtJIKm6qDrTMMUbEC2KTtqIfUQlVTf8FbCAZnZPTOVh/rzKJ/SKBS+NGrcmOVfnvyeV9pZp3XhXE1Nno3te70z04TdOibpxzSZIMBgMl1ELEBw8eXLt2bTqdKv+P7ohKyaXV4U3j9R1mVj9nOBwqYmR6eKD+xunpqT76LtOF5qisyqIotGpFy05Go9HR0dF6lTPz4eGhosW0lCWEoG7Ser0ej8e62UdRNB6Pp9Opc87iJsXBMp1OHx49fvz48e3bt6Moik00HA5X+RoQ6rpC5mq5NsZMRkPZFI0Q0XA4Go1GQIa08J0IDYkS8zETCwYWFggi8sw46+XW+QOdoYO9ovPnFXX0z3l5LRPR2UREwTWEpLYVPJVTDoGLoliv14HZWMMC3jnoWPWeVWP6xZroAOgm8kU9Om2K0FowoXn5YhUtQuhAaGQIjdEnItIDzrWYfxV6psiayIA1pNhCa40xlpERn0HI8XT3mr70jQEmIAEGQEsIKIZE+J99rQXZ/wcf/6Z/++v/Tnf4v/+tH++f7b/+3s/+o3/utgGXIEcWvY3nVeMACZVMqR/v/OLuCiJeu37td/3u3zUYDHScA/iiLMMG1DudTrW6fTKZDIfD2rk4jh8+fPjKK6/UdQ1aWRfHi8Xi6Ph4f3//6tWrutLu7u7Gcey9f/LkyWA8OT8/d87NZrOyLBXMqYx5o9Ho8ePHs9ksiqJHjx4lSXLz5s3j4+OyKtPxRKv5tVhTSSySJMmL/HAyVZrsqq5PT0+ttffv39/d3Y2iqCiL09PTNE3zPJ5Op7uzMQefZdnOdOqcPzs729vbc87t7e3duXPnk5/85Gw2+/SnP314eCVJ4ms3bp4cP1ksZTab/c7f9Y995lOf/rlPfPz0ycMsSTMbh+DZeSTqEE1PF5R3Pe+apvVMBASJe44KRFsp627oMgghdeoB/dmKIkZVFDZBAh/ENQFAyBiJove85z0f/OCHB+PJYrFOs/Hq6OTRo4dVXY/2Z/fv39d4zXvf+94sy9555539/X240JZpdajKshSRJEmSKB5mg51Bmj9cVXkBRRkPkiAsnh0Lb9Cnem0dS82LJiBuMUnKBpItIgbklZvXjKHF4ryuiySL4yhy9oJEJIRw57VXH9+/F1w1mkwvnbhqlGgQhjbdOZhFNgL49PMH+7ObeMc+LIqKN5acsue3n7I4r7Swhlm8Z2MVMtrevnopIbC6DBrJCizMDQdgxxwuWxppmk5HExPHDXDDvlrngia2dpCkYqLGeS9sjGGAINwhs9BQHzble/39LHbDzUfWBg7sfPChqevImDhJjDUUTBTFwiwg+L/5OvUvu4WXlgL7ZW0d/IGI8Kmy+A749BV3pUREY0z6rzAToSFDREJGSZMRMYojNfy6OO/zT8iqr+K9L8g4Dkoj2bccdOBrfW+3+T7v1nS16dYo273lg/+lOCp6HgYpq5J6tGK0wfrrfXZf1kyLMjhBjwesH1dWcwe2Rda+jDLcr0hTW7MzXPr9670HlF/tLoo2rS1pmiZJsv4dtRQLGykuraDVqmJ9iE3T3LhxY29vDxBDCAr6UuNeR6T3LVu/jo26rhUBdeXKlaIo4qg9fzeFugHgvdNKEhE5Ojqq6/rOnTuagjs7O1PEoLSKpSsd3MPhcDwZKZ2XyttroYXOOlf5UHJVVY13w/F4Op3du39vZ2dnNB5Hkdnd3T09Pwvei6ZTENM0TeJEr4qIsmywu7s7GI3ysgKAOI4LS6wxWq26ZNZCJQUPdRmJFyw3XdFYF47tXP2N4f0MjYe+qXHpo66sSK1PshZUv0nkUkisKPLlalWWpTXWGOuqOgRGwphIvJdeOuVlYwQsUWyNNSEwISrgjZBMFOPGURFmJDTGdnWBX/SsmlFxbrNMIRJi4x0zbzKdraKr+iveBzLIhND6kD0O9IjUUfmid9StY8wMBMCMWmLCBISC9P3X/1r35f/jR37iBacCAJMkYoic9+KRyQBZhAjJIL1cH1y03d3d7/ve71O8VpYN5vM5szTB7ezuqjunLr0WiSVJEvJcRHZ2djTxuFwuZ7MZANy5c6esqkePHmkgQFOjmu3M8/zo9CyKovPz87t371ZVNRgMuudliK5du4aIZVkmSaIRhziOR+MRW1vV9Xg8fvDggTohy+XSGDOfL2ZxKiJxHLPIZDJpOOzs7JydnaWDwXS8c+XKlTRNI2vG4xEirlark5OT2Nq9vX0lNWbmwWBw586dBw8enJ+f37p1a7FcjsdjDkwmWi3meZ5Hcby3f/DP/wv/0qP77/7NH/mbn/vc50SECMm0HCAoID2MwSXoF9oL69EYE9voIqOikTJpy00EAJAQAUVg4wXBNtalzdu1LykiE4KHwHtX9q/dvPHGRz4IBhdVdbLK13kVxSvnebo3i4rqwYMHi8ViNptdvXr16tWr6q6cn59Pp9P9W7fm87lKaqZpOhwOB4OBsqKPhgMLUqzXw8EQMaB4FvEgzgeQ1q7t718bOPFl5dnuzz6BobAICIGEpuEQYj863N9ZzHcfPH7kXZMNhlrw3d64oflikY3HBDKKL2OSS+cjNLGJhslgkGShbv7TH//Yv/TNP/olTACAqij/uQ/9LX39xz716zbYDWohbczesRoa7CX4wGRAWiJp55mDeM8hsCKJghcfJAT2xMIgAYTx//I3P/Jvfkcbbvjn/8ZH500J3s8Gg5p9lCZRFCdJTEjwKt1/cnI6n5/Nz30IxlKEBgwREhAKbK0zAS9CRbY38rgtFtwUG4AgkYkU1yDsQ1nXsbVoqGrqwCAgxpgg8kvW5f7fYuuvtn+vYt8AwCwsosq2KNTnRpdNdF7DhV/p3+UO+hiC3xlN0FBkLVnrOQRhH4JGmnhTN65qVy+4Ee88+6AVH0zQNM55pxn+vsnRxV6fNqT7rbM6WoomaBnEOPgQVMRAU6Hdf5uT9R8mb0T9aCPL0PoYIj4Ejdjp1XTSjUp3q6ae2Ui8GWNYWiId6JkFsEm5qBHcuSjdHtA6xP1rEmBR1JzuPKioBjLkvfc+MLMwBwg9GrEQPGs5S9drz4U/Ij7PouKeyKO8PDjtKXbaS88JW5USJSF41jk3l7SJMT/3d/kSwfb2LG0aF8dxCIJIOkC7kaR9pV6H4j0UiacZFaUWVZlbIppOpyEEJPLeK7RGpBNkoCiKmsYzs/IC13WtyvGqhH1+fq7brZodRVkgorXWh5ANRsPRCADUEjo/P3/8+LFOmytXrmgCp/OF1DRXh0TrQKqq2tvb09B7y1tchfPF3BhD1rpNjFA/rX0rGcEsg0EWmWg0GuVNqJual01R13meu8DpcmmiVi2naWoyFggb32SWpA0FBIuCRM7zBcRxO5AbeuqHsIHD4oZMAnvEWd0UYGaRzSxAjQ1fUAZHkblAVOLF2fTLPaLN1qYSABEuy3K5WBCRieOiVhcRVEkgeA98kWjdHvo9MINCoNv8CRBgZCwKMIshgwCWjDEGWyFJ3CA0ImttK63T4yrpQhvSQ6kCgLIyONfoHXEIBKAhXg4XFhjp049Vc2aDo6N22Hfun/qU/dmnPl93ns0SsaEZRvQSgohnbpj/qWtbYnMv2SqM/vz3fU5f/4Y/fSuLEgZuyBlAI+JFQJABSC6D/NTN7gcOfutv/a27u7txFDvXsk6n6cCxU3BmlmVKLKG5sul0KiKqEL9cLofD4bVr15Q9b7FYAOL169c1j6pijtZanaQKmrp+/boS9zGzOv91XYO0O81gMGiaRgFgSZKcnZ9XjWua5ujoSN/XUqUsy5IoVpYwImqaRnOqIjIYDM7mc3Zy9fCQiOqqFBnleb5cLsfj8dUrV4bDUVmWCi1DpKZpXn311U984hOf/exnX3vve9NsUBYFCCzXeRpHDBAl6aMnR6PZ3vf99t/5iY9/4vNf+MLb77xVVhUSZVnWVBUBGSRA4BC8D0gYRZGAsA9WdA8UEKibJjiv840AwRIBIBIQiBhmDhJC6/2jbAINnS+HiIYMgdgoco36u5KNRq/feuWN979/7/DKk3yRr4soioqmjgZD77wA+OCPjo/yPN/Z2Tk8PNQsyunp6dnZ2fXr1wGgaZqyLCeTiXqJk8lER/XZ2dnpyZMU4OzhI19XKSKzsAQvwgj2KcY82OwLApsdsJ0EF9oOSWz70146VJGEYjXPBsNXbhx636zKkgxCL4Q4nU3ffuedyXhCcTzOdn/gU//0D9z+r/SjP/jDH/YxAogBQaDEWIlRmvDHf/w3xDb+Z77hf3rJ2dR5KQDwBz74w/ri//ELv1ENMDVpUEAZlb1nh94QEgkh+QAcIDD6AEFx7wp6Y2g4AKMEESbH8G/+tQ9XIhxZiSLLcLA7M9YyiI0jBgFCQEizEdk0TTMUmC8WjXdAFBGhITIGbep7qlOOg+JeENEzE7QRZgYJ6gsiAEATPCIaJGMpoYy9FwYXPBE1VY1kgVAQhFvnq83IbpOXyPNMEYHteFVvMQfYStQ8Bd25+PPSufsYpG0D4yVjMFvSik9zrfS+9qL6/94nl8FFz4d7Pc9me9ow2/psq3O2X2+Z5heOusIQRcQYk+d5UeQwGmrInkH6M6h7lM+ctnJBkY+B20pX3EQtuy9I705FDfRNU6FYZk6TdM+m6SCL46jxvmzqqqnzoiAiUHA2tc7/MzuntUVAWFg3Yg/gETgEvjBp2vKhy0OmZ8HCJjjbNewrLkJfb1G1q9plWtkgWn16fbffU9jrR9wwq6qfoHel2CHdmdR+8pu7VfIoY4xiDBQI1J1csVWIqMalUsrARtYANikgEUHbq4hSbsHu0W6eiaHIORe8b++eL2jNmDmwZ74QeLnU+m8+D2MDAICgyF16SuTxBa7wCxyVztvp+vZ5J2nvXVFDz6+l78bBM1cNNSacuOBDXVX67DQiK5sYvxr9ZVmqmTLb21cJBRFR8PdgMND8YOPcYrHQQ7rBoG04HPOmaV1+l1JU/ceyLI0xSZJkWaaZRAFI0izNsqZpjDHT6TTLMhVXAYA0yXQIaSJIA8kaWtNsj9pDymusFnwURaEpdUymg2wwGEhVjtQRKgpAImuiKAKQ6XQmzq/WBSLuzHbQhiYEa23d1KvVcjAaT7JB0zTL09NRZJmgCT6LY/XVCbw1aNEEaB0VRORty7vzRqCrzdg8dGUp7cZG57p3A7U/hjt7GjaRko11TnqqrtpEQuDAIYCAsk4H17jValU3zWg0chuCVNqI+gXvnrdpXdKc0hVCbbQITWyM94FELFEQSYy1UcShzUl675EoiiIypoNTSw/8ZjbMhv1RqvfrvQeDIuKDt9w6KtiudAgAZIy1JooiS2iNJuW0QCWKNvBF6IF0+64gbUIn0oPwdusmB/BBas//1I3neinf9Keu/8TvfaivP/Inb3oJP//PPNI/v/a/vPrn//cX+Ja/9k/d+9h//WoAX3tr0VC7t0kbTO1xpCKitVYd++7Nr/qqr4qiCBDG43HTtMJEwnx+fh5CUD+EmdM0HQwGR0dHo8nk5OREq1a0E9brdVmWe3t7jXPe++Vy6ZybTCb7+/tHR0fGmFdfffV0vlitVqqypfGLqqru37+PiIai6XQ6Ho+Pjo46sUXvfQhe9Tf1ITrnlstl0zTn5+fj0ViE8zxP05SMCSGMhkMRefjw4c2btx4/fKIi94bw5OTEEuzv7yur+Gy2o5qG1toQfJqm165dy/P845/4xHKdf+irvvrk+Gi1WownMwT+wpvvHB7sWxsdn53tzfbe+MCHPvy1X3d09OQLb37hU5/61JMnTwgMWfLsgQGNNWR98HlZiyrxOW+JrKIStUqJiIgMINkLpVRdslAEmb0AGBPkIr6m4yqOYxtHwYcqBBNHd269cv3mrenOTpINFovVJz/7i5xE2WjEDjxDuc6H2TCJok996lNJnHz0ox9VHScRSZJkNBoZY9br9XK5nI6G6lLqKqoXo0wGy/PFbDbdmc1OF2ehCaAVKqgmAKkjshUcaW2EDVignc4Xc1mpbZ8e5wJC4OtiORqNru7vyskZAzTNxSaeZMmVa9fOz84xBErM/vWb3/9j33n04N2R8eusATAxIgo1wTccLGGUJv5prNWX3v75N/7qH/mZ79RaQWLFwiMiMEvTeEOgXNNOTOA2i9I03vuOuhc9ibAAa92xCSBAdPvuq/Fw/Lm3HkRR0oGivbBHEUNAZrwzvHXz1ofe9/7Ts7P5cvH45Hi+WJChoqqcr0OPoTWKolYRFrFxzQVJgaEL7hAE4dBagEqNba2wQCu0wIQq3BkCg6C5cFS2TcHtQO7lR/js721/cvn11nbQOwwvWaFbLsFzbf1tK2j73IJb7tNz3YDtK7/0wUv9Ljw/wfKCK9eP+6fYvo6etSwXT7/NkAAQUVmVqvBmrKnLEqzpX3DfAnwmZdvGQbjgXO1ifB3oAHokYH1HRb+jGJOd2WwwnGSDASCeLuYyPy+KwjUNGLKqHobonAtP4a22HRW8uGaAIAEIOyaGi29c6uvNIW2k1bayE9BLS+iL59u2l9rzneK+hQTc53tog6PqaVhrvbsQCuzKGNqV3bnustSH6bIrCozrrDT+0vFpIsK6i+ja+ysCnfii1lls8MKpIptR+DxHq2t9F+XSN2XD7YsAeZ6v1mtm1rW4qgsFTQ2HwziOj4+P1+v12dlZkiTGmDRNldFLXY6ukTGdUrVyuKlX0DSNgrn0BjtfSD179UjVr5CNeAszkzFN3QRmTelo8k3P771/8ODBjRs3BoPBYrE4Pj4uikKDvsYYluCcU4GgrqxIrzzLsqqph8MhRXa9XmNkVP9hOps570aDNMsyH0IIIbKmcU1ZlrPxOB7EaVWt1+vatQNS8WnJIIOSkCgEYWERxMAbwl+GTdLj6Z5/QTPbOg+di2WMaXz9vKNUiLNzaztbhANzLz/ALdgBvPdFWS4WizRJ4jgu84KFjSEB9N5/KcnmNhtkjLFIsYkJCSFYYy0Z9gEBLRklSNVZ32lxd/yMmzDCcwv3u6VgM4xBpNWTYhajJmUrtUKEZA0Zg9ZaYymK4jRJNdsmIsGHTelQWzio6yMS2Sjm0ArEwcbu3PwKNV7K+rkd88E/sbem5iP/2b6xJo4ijMEzfM2fvMIs3ofSXWbNj03kvERkYmOqEJ5HtqAr4YZ8om1ZljVNU1V5VTr1apbL9XAyvHv3rvf+/Py8ruvpdLpYLA4PD69cuVI7l2XZ0dHR3t7ebDZDRK3xePPNN68cHup01i9Mp9OrV6+en59nWXYQxcvl8t69ezrNNXivHBJ15QBgPp9nWaapj8Vikef5aDyCpvHe37x5U9WNAEDdld2dncCsU957n2XZfLV89OjRer0uqupg9zCObJZlIFzlawI+vHJAROvl8hd+4RcGg8FoNFJsT9NUAHD9+vX1ujg+n7/1zrsfeN/7jp48Ho/GBmE6GX3iZ37m/oPHt195xZ/NHz96HEXR7Vdu/Zpv+bav+zXf/Pjxk0/9/M999pOfWC6Kuq4HgwEAKLQ6iqI0TazByJAxxhqbRXFsI01ukYAW4wmREAmzlr2yAAIURcEIURRpSZ4OKu9945xJ07t37ly/eStJB0gmno7XefnO40cmSQzbkFenxyd7O7M7t25/7hc+d+/evQ+9/wO3XrkNJjKRVcir7n2j0ch7v7+/L96Nx+MQwvHx8dnZmUaIdnZ20iSZ3riZCZcslgwZA8EDXBCDvgxPQ7cLK9gUn1MIgQAEoalcCTAapjthMs/L/tYcJfH+lQPHoViuV1VJgDuH1x4/flg1DUrNDJmNWCCqaxOZLE4owiimpir/xI/9+t//rX/j6V98+favfe2P/Hs/9k3CPEysFqohoHAIwBKUCgsbNoFbOLqORgD4ge/+jJ7hB374A8AIgHGSBM+e5fX3vX/34Oqd195f5mUSx+C5LEuIjFhau3pVlE5iMnGSJOmHMhtH8+Vyla+TLGu8K4rmfLH4z+H/qSc3gF5zOBrj7nZ5xC3LH9vYFjCweNBEq8gzbdZ/0H4lt7CtQqv2cAhhEMdxnCCgbAKRL7nnduac8LP3yi/a1MRKkmQ8HiPi7nSfmRfFuinKIs+LoiibOk4SQFRFrC/isD3zJxTwuvGeW8ztC0/Tt3s184EbKfCXdVRe4CF0FgYrlm47M8C99szDO/cDe5X3AKARQY3SqbejnGtfpqMSWEQUmf6lHv7//9ZVET1duN9vnQn7RbMuZqPg0Z25/6kqwQFiURRNU+s3N2XKonkJxZAQ0d7e3nA41Ii7wlH0MXXins65wWCQpql+X2N+3RUqM2bTNPp8lRlMRMbjcRRFo9FIEyPqluzs7DjngrQer5o4q9WKiBRPcuPGjaqqTk9PteJFN3U9swLhuv7BjTL9er0OjaSDLM/zZu3iNJ2Od5DoU5/6VF3XB5NJHCdZls1Xq7Ozs1GWIcB6vT4CuHJ9V/2r0chGUbyYL54cn6RpOhlmZNrYQRAGRkRGZAkgKIgXlKYvPwD6NAadMQ1fzNVRF64tgu/R+wQOgtSSGCtCEwQRXdPk+VpY0mFa13VZFiAq2CpVXeOXOFPaqIQxcRQTts+6qzHrrl9nMitthml5OwWAuemqQZ55m6FlU23XfWRABu+VtqcXfSHSAIix1hAaa/7Ixz6uZ/gzD36L9/4fnrY8p3998du+e/o/6usfWv9OAADEWMC3nkm7zihaMARpnC3qZplflhP+tf/VzRIIEZMdMx6ko9QOIpvGRtmG6hDVDdd13dT1Z2DZPzA25K2NjZIUeXhOfWdgBu/TNF2tV92bzJym2Xg8Wy3zNB0URUGGEMAYs1qtTk9PRSTLMuXsStN0Ohio6ZwkyXw+V9zm/v7+fD4/Ojq6cuWKKhQVRfH222+///3v39nZ0Zzkzs5OCOHs7Ozg4EAXivF4fH5+XpVNlmVFUWj1iE5M55yNosMrh59/8wt6uLU2TVMl3zs/P5/YON6JB4NBPZ+fnZ05DpogvXLlCoE5OztrmmZnNt2djknYez8YDG7cuMHc1q0pr6COkDRNX7nzypPz+dHJafbOOyj83ve8dnp6nBflK3fvFkW5WBcHB8NkOEzTdLHKHUPTNEk2/C3f99u+/Vt+zWc/86mf+ZmfefjwYQhBQadxHNvIkDSo3jKLbIAr+mfnMyh0rV9aOplMKtcoL6Jurmma3r1795VX704Or57Mz/OiKvK1Z5kYcj7UCMMomp+vOfBwMCxWxc/+zCeuHRx+5Lt/48HBQZEXC1fXdY0IdV2Px+OdnZ133nkniqKqqpqyWCwW5+fns9lMyUKuXLkCAHEcJyAjQ25+vHjwrnfe0obx8qXXHuzBLTZT85nfE3aNeF9XbLPBMMvqAMZcjE8kMtYORxNEWp+6JrBJMoqzUJeNYxBHQ2OEl03pck5dnVgzBIsoSOE//1+/a5CN/8mv/vMve9FPNeccAjQOLCCZwIgGhES8BJEgAnUwgbWYXlMU/O//5l/oDv+BX/fpf/eHPohItfNC9tX3vBpH6cnxqRdEFvJsBCmKxVAFEpFJ4jjGQTYYpWkaQLzwwf7+4eGh5wCIo8EUAP7ze62jEqoGDBpDgNBsIGGXo4cAxhoddZ4DBEGlJkJ6Cj7zD9qv9HbJNlMMs/c+jgdJkpAhvijefqmJeglP8WVflSplx1FkMSqKoliuV4vFep0rfljxUDaybd3aS/+QqPbohiuipUcUIOnyfs9ufbu381LUyrX9US/9F5eygc8Jc+q3LzJKLBcCVwiB2YeAwfsQ+jBN2JhfXRieORijsHK01iBhYI9uq/b/OVY7bl97+yb376bNeoFavAS9PJR+A1vszZf5zJ/bvszzdcn3Lij+vK9p6775vHZpWF/Kt0aRDZ5RcTUCABACq7mvKBEl/NF0xGw2A8SyblSIBqANNHaFKLPRSMOTCu2rqqorR8nzC3k43dS1Qnd3d7cs1lVVDYfDoiiWy6UWimhpb5INVWlHEV/GGGVfRcSD/SsKuvPej8djPbOW1J+dnSrTsfroSkAEANbauizVgXHeZ0TCEttoOpnUde08RzaK4pR57lyDWcbCjWsCexGI43hnZyfJBnGaNV6oLJ1zy+UqQwNthANEhNoRFwAQthVkXzKt3M+odHmA1kt//nMO3kXWav06bmISutsxqYeC3PLFIIv4IGXt4iyzcTJfrYuqAhMRGQMcQrDPXzefMQkFCNEgWTKxsSCCAIaMReVdR4uEiEGCQTREKEwbMXk1pKSfmH1eRiUE2XxVABjAMYc2OCIEQAikLKFIRIYM/ScbLwUA/tEbWyJxnZcCAN81+rN/bf6PCECQNj2ka6VCE51z3nNdh6Js1uvyX/zrH/7j393KPnzbf3mj8T4ZpnEU7Yyz/eloEGFMnFokYA6halIXSxmTS+0/8Zc++N/+lk/pgd/3Z97DhC0WhbAnFIDcF8cGiCPrva/ryhrTQJtU8d4bE3nnkzRdF/lkPE5TXle5Jidv3ryp4EmdDovlom7c7du3p9OpWtvM/M477+zs7Lz//e9/8PDh/fv379y5Q0RxHM/n85/7uZ/7hm/4BudcXhXq7azX67fffvv69euTycR7H8cxBxgOh3fv3j09PQWA1WqlMLPGu5OTk6osZTqLo2gwHOZ5fnh4uFquDFHtmqIsRWR/b08QnpycaIQiL4ssGQ6HQ0Q82N9/9e4rp08eI+J0OvWNm82mdV0vFov5fK6VMKenp2VZGhvt7e077+bzuff1lSsHSZrt7u59+pM/jzaaZuO68Xv7V7Qax9j4ys5eURQPHz9JEPYPr37jN39LYG7q5snRk4cPH+VFLkDBc0RorbVkSMA5x56ZA4pkSQYIoEqi7ajXrReXRSFAUZSkg+zWzZuvvvba7u5uCGGxXL757r1Vng8nk+nu7nKd50WJZGwc+8CzySwy0XJxHpnoldduv3rnLkooVmsXgvhQl9VkMinL8uzkFBEmo3HTNFmajNLY+/D40aOqLEejkTFUFOssG4yGg3ESk2uAEMkgqWHA+JR90G3Q0JkRFy/EbLQEDQIJPzOjIgC1qxGRnW9EbDwcpWnaC6/EaZp5Xq7yqmooig8OrxuU2f7+vFj64P9fv/ML+rV/+Uc+UpdF1FBiTBQNk8iS2KZyy+X8z33md//29//g0z/9dPvDf/tb/9Cv/bH+OwxIiFUTLAiRGITYkEVkDlojUAYtnfc+BHyK9h0AWAAJjY0D4Gxnd7lcxtmQUNJBWueF95xlqQcBX0cGdydjE09NFJO1QQQNrYvi/PzcWNs0zS8+/uzDx4/ga9sz746HNk2iNLY2ipKkqps8z4uicN51Vif24esMQRhEDKAB1Q7cPC8B2CgvyAtwTpumltnTUW2EDvgG8JWwgn4ZTKlfxc3YLXyEBowkBBtFJooRSVilkIFFNOTZ9V73rKR70gAtKBOkjTu2X3zx87/8qYZujTFZmi3PVnlerFbLdZ4rB5IxJoqiLEktGUubjMpGC1ZplBXt98zik2f83ktETPp2bz+jIiLWoAUG9oJoBEkQyBAg1a5RAg3eyEL17SpjEUBCcCG4rQg9AgN5DtzU6J01ptzgVrGnpKMA337YuHIVBjTeEFEqaRRFjh1jACOpjQEgsCsrp0YXt5FhEA/WxETkvVP9lc1MQ7JxAE/AyIKh8VUeWctigkcSio2NyITArvEuqNC6IIHflA20ZT397E1PZOaSiYnCsTUEYhAMIfcAqQz8vIcT9cgct9jrAeJEk4Peu8u0tgr+JiL13/p1Oy9QddQi7i5UphZMmqZ1XSNDqLmum8ViKR6yeJCmGbPUdW2HVsFXu9PJ2DmlJVVZz0maRXGsLorGOIlZtTsRoK4qDiHLMmtMZK01xjlX5LkxJs9XWZZYS87VTVNFUUSkbARJkiR144uyZsHGBStIRGXVRMmgLKoQQl1pHkZm0535fB5FkY1MNpgkaTwYZtobTdOYkgR4kGbj4ch7P5vNQghVqGwUT6dTQARaKNDr5Pwsz/PdnZ04iiNBQFwW1aPj0yhODEZZlAySZHB4cH52IhEsV4skHUCLQQpERsEYvq5Xc+99SI1BEwsbMRSo8Yjt/LoQXZL+o4wtCUtgr4HnqDcdmp6garsGbXCqRG1qQkQYWAtyFKc+GY1AJLhGfSbvG+99cA4FyiowAPsALJ6F0sHZ2eosl6OVH812H5+c5I0LZJ1z3DQAEBMCBw99jrBtJ8u0ysnqAZOgFRuhjSlKRllwrilWWZxFURR7O8wGVVURgrBj52MCAUziyERJXpbMbIytyqrDHAIR9BjJtZWBl1Vdu2AMASIRratizWiMSYgI2bCLBTM0f/l3fF4P+d1/5YPPmxFPt/PlOoktGR/FcT95q5cRgm98U5TlIl+vCv/b/vtXS+9FhC2nltJhPBuNDiaTaRwnCIQ+gHfiwaBAEYJDCElMUUzf/zfe3zRNXTcOSqBgE8rIlGgjjmKAqmEQE5FF9E1TsUhsoyiKJfBwkK3z/GKEeCrqPI7iunHOOQYYj0Y3b91aLBfTndl6vR6MhipdOp5OJpPJ2+++c3x6PBwObWyNMdOdaZIl6/U6TuMrV66cn58vl8uqqnZ3d2/evPnZz372zTffVLdBg3/T6RQAtJAsjuPHjx/v7V+x1jbeRUnsnHPBF1W5Wq1Go9FwMtvf2TNIgySLyIBnkxAKOOeWyLyAbJhOR+OYaJTE+SocHT8eDIdVUwQXaldVrjLGBkFXubPzpUE6PnkTEIqiyLKsqMrT8zNr7d3XXrXWNqF5+PjJyekcif7Oz/zMweG1q9eu7958NS9yrvIsSeI4QgN1XZ+en+Tl2hizu7vrXBONJMMkzbK93d0PEzZNc3xy8vbnPgeLkypfr5Yr1qgDS6AAAAbIGlJKw7KqG+8osmyxIRiMpulgd7a3v7+/PxqNxuMxALx1cu6dj6I4zbIg2cHuQRTFBOn5+TkZHEWDpm7WqzMy9tbNGzdv3tzd3W2qOs+Luq6n09mVePLuvXfrYm2RXPBRHA0Gg7WEUZree+ets9Oz2OAwiQ3w3nRijAnB18W6yj2G5hffejPNUldXMQQSRgiAgoCC4EWhwoBIbUmn8ChJCNkYQwAGxbIjQmIkAotoIkuE3gdlndHhxwCl9SiUIhkfIFTehTsHB/8zvNV+gZAoGg/GYRJW83OI7OTa9dG164uTo7/wW362G8Z/9Ds//nv/0gcMQhJHubid8XiYZmIoYlrm6z/z879zmGRJlM5Xxe/48H+jh/zrf/HrT1eLP/VP/qL++Y/9ybsPZss/8EPf/Me+68f1nX/2hz6SR5DGEXooymIQmwTZBQ8RNcK1Dw3L2guABPYgjBDsU3u0RxvHmROzd3BtNNmb7uzXznsuvK9MRHYQMQKwJMZGwt65ojlNBoMmD/cfPHp0dLRYFcv1ar5Y5UW5Xp4BSOeojF0eYx1LZE0UFUaIMDKwM6uCX5d1UVeehQ0tg1R5wbVESYZZ6okFvA0h8pxZwwgIEsVJJFD5EBAcB75E6LhdN4K44Q6Rdi3vLFzuC+ihSgK1f8kLwDrbR/XtHNyyXC/zTHaNiKgXk/F4sdrLi4iNXrb1d9tLyYdLJ98K3fbev+z+bdWkbF0hgdkOjV8cYqJYj0MBUuPUxpBSVbmjvH5lN0PvEFg8RwhGSIQcoTLGGQ7eNbWvS2nYijXCEHxoICCh5cDMgohRlBiKOJCw2I19yMoHp/kDkTiOQwjAEDgQUBqnkVHMP4YQFqvFo9Pjk/WykeA5EFFi7DjJ9sdjVzdSFKM4XgFrDKMdOcIISIKIaI1V14KZRcAEVCIHFBCB0BsDxIIIAoxEnV3Us45QGAVQEZsgoNQYl6FfWubVseE88/G/uClw/6I+tYdn6Jtil4plWyCp3pVnQuag0nkQeqNDMWwsyNJWXDCI2uEMWxwXzF3olTkE1vyuYnCfc+WyQeh2mYqXvOWORvlZBz33JJdYFLazHG0e4GmY1i+9dT4nbxgRtMaKWTgwAHoftIY1HWaaJOmC+hujLZC5KPkAgKqqFAsRQhgOBgqKUHhYVVWKsLfWFmVZlqX6GHEcd36ziGjZiYjEcdwlc0IIVVUNR0G/BgDOOa0xVYYxvTwAUDKisiz1BrXy3mwUyrIsS5JkQ7fX1vEvFwtrbVmW6zyPokYAyqK4dXgdAKqqzte525kK82w6HQyHq+UcJfggIkI2GkdxHKUucNM0VVHOyCjCmBlENEvAAAaeCiv0x0cLYXqJ57s1qrZX2/5wxZ6aKQfl6BRCspak8a0Pj2AiW5QVWbtaF2Sj2vtmE4q4FMghuLTxbX4XttCmKp+oMt6RtWRMCB4NRXGMgEmcoBYWE1W1k5biTEdg2OQStjpBnpWAct4FXRSoFc+WjUaktHlHRoAf/j3vdIf84Pd86ov2bddO1814ZAcxUwjW2EtLAYt4YY8cEMQgGrJgIzJxZAzBYJpNsnSamoHBQRJbk5W+KVwZfIgj4oDBl+yDgAgzCBgkIGQAQhXYAEIBAWo1y5U5zYiIIQzOGSTfuDfe896fhfaOZju7q9UKEdPUENFgMPAhlFXpnFNa27qusyzTeERRFMqYp8oqKr6xv7+voQpFWJ2enqqgatM0u7u7P/VTP/XBD35wZ//g4ODg8PDw8ePHR0dHjx8/fvfdd1Xe8ZU7rw6Hw5YiL/BgMHjrrbfOz8+jKLo+maRJkuf557/whRs3bqiTMxwM6qZ6fPR4731v1HVtJrP9q3t1U8dxPJvOXPDj8dggDQYDYX746GGSJAbT2WxnMhoVxbpxtUqyqCbSbDabTCbz+Xw2m5ooevLkSd04RmOsne3spGnaOJehP3r8WCWVVApmb2/v+PhYGbSGw+Eqzxvv3aZKYTKZfPQbvnEIPjJU14337v79+1VdPXjwoMiLyBhXFK52EtnpZBpQ0NBoOtnb27tyeH10eLPx/Pjx47Isy8bFcTwcTxUca6Pkxo29w8PDxWJR183B/pX1eh08LxfLD3zgAzs7O7qKfv7znz89Pc2ybDqdLlZLV9VVUeoymCQJAZZ5PhmNyyK/cnDAIdR1vVot0zQ1RHVVlWU5Pz8bDJMsjQ6vXnv4+c8Ls5bXIGxqai/WjQ0hHrYmpYbnEbTWXJOTaNQcEEYhAuGe0YoIWmdvBC2ABE6I+pxFwywdxiNi42vXVEUQJwKT3Z2H9rLJwYIg0jhmI2vnwFgM3HjnnCurqoiLhOJRPPyht36/ieyyLpevF+f5+g/96I11Vc4Xy8o0j58cF08e/ob7N4az4WCQSWQ8QFFVMcUmioqqECPTUWYMoUbzRJfqTRiaEVD+4F+++x/95tbL+jf++leJoWw0OrxxZ3ZwZTjbUciyqZ0XYRKrFjAiiBpqUBbrz/ziLzw5Pnn7nXePT8+FKLD4ICwyzKL+6jawJiaKCCJky0DMgiAgwyyZDbJVWa3zfN3UVnCUDSCzTLYGlRWHgOKN+MoP0qGJbOV98Bvpvy/Fqsfev8/+wib38kXrCn4p7Uuysr688z/z9VekXdq45XkfIfCmC1ELjS5mEeR147ykiAjIwChtJXHHJNBtybIRBZYujwsAmnVjABHVOv6SnpX6MyGEqqlr53wILBKEtTQltpFFMkR1aEttDVHYFnvpknuy3eACWHVx/e2L7fr+re9sf9THobx0Mf1LN+4p4F7yYvuOyna4VIyxyt2q9W3qYz3N/NPdQHtmbO3Xy+4ygt6mcpB28DIr8sLpeSHmGDbyji/TFB+1cd9fdj70b422iR3C88Ulf+mNN0xHrcIJt/frvUMiNdGY2TnPRRFFFhGrqlIcl8JgmBnQKH1Q96wB2rp8LbJXP0EhW3meV1XFzIA4Go20+hMRtfBUj1qvCy1cCSEo67GW1+/u7uplq9eRZZmW9Q8Gg52dnTRNleBL2VTX6zUiXr9+/fT0tFjnekgHYPPeK3gsTgajwXC1XCqZktYojyeTdZ5rgEdBLLPpFADW67Ve4UUFBVFZVrXTwg9GBEOKZhKNwj6v5y+lCGTDgkVELwgKXDrqEhIDN6wDrEIfm6Y1cGoq1cG1Atnak2SapmKmxXJpbVSUlZJ9dab5y4yiS02rUOI4TpI4iqLgHRFlaVqXVRRZ73wcx7G1LE3nqAQADi2pYnjqR7lXV6dNneGnL0+/wRpeeWqh/vo/efOnft99ff29f/b9BuF//B1tyexv+cH3/KXf3eZe/tm/+sbb2Xy0LF85GHBI9Ha6pUbbvFwvqjqvq6oRRpPEySBOBnEUxXhwMP53PtQSpP5Hn/yuP/ihH9LX/8ZPfvNiXgQXRMDaiJmDExQTIRlLPnhWwccWuymwsQsRoXPddSKEED7wgQ90jsp6vda5oJgrJSN+9OiRxgsePXoEALPZ7ObNm6vVStHGy+VSyaP0cT948GBvb4+ZB4PBwcGBqtGrP/+e97xHRN58883f8IEPKi5lOp2+8cYbX/jCF5qmef3114uiOJ8vq6qK43gymURRNMkm73vf+wCgruvT01Pn3K1bt5QobLFY6Df39nd39nb293YtUlWVyyVpQvjs7NTGEZG9ef0GIr7z9tuxjV67czfJMh1acRwH9qORwotsWZY6Z0ejUdVU6WDovZ8vloK2ruv5fH54eLhcLnNXzGYzvfFOdPLOnTtN0+zt7d2/f1/jF7PZrGmaPM+Pjo7eLnIUEfa3X7k9Ho1nt27HUXzr/R+qqqouy+uz3SSKjLWeuWrqVb4uqjIE9gDvvPNu7bwmlJhZC0sUfXdycqIIgqIo4jj+3Oc+d+3atddff/2VV145ODioqmo+nyu/2WQyee2119br9Xq9LvK8qqobN25MJpPz8/P5fL5arW7fvl0UZWRJa+u1Y7Vv4zgmgqZpONRFUWSDrKrLF29G1OoEbMU+sOP7IiKUvrDDpUkXY0QClowVEjLMUjcXZDnF2bk1WRbZ6WRSluvaQQi8v7OXjUaXTuVCIADnXJRYaMogHCGBC8ZLDOWSKAIztaN4uTTWFr4JBkFCCoaSzIyFdpOyqRZN3khYFXm+XExGg2E2SKwhgyQSfGOTNMtSAPAAzguykDACYEARLWMnAvw//ZX3AqJng5aMjfYOr955/T3pZOoYKhYOPMLUI4aNSjUiMG7g+ERFUTRVSQiEouY9GRTAzJr+6j7OUktoLFnCyHskQmImcE1ONjqcZqMIz5aSr3Nv44aw5MCs6FDyhIJkhIEQrBHvRRhwww/5gof9K7LJhuLpl6n9sp78MtRlmzes+0gQeHMZJNCncxSAxXJZuyZBINCQFZD02C9eookIc1DqBfPSUn6yAVkpO9G6yIu6aoJnYI3XJ3GcJIlWk1Z1VQdX1TUiwfOkcrd5MgGeW+DKPcbgF3zUnUov9SvvqGj0fUPq89y5cylXQIQiGIJWzwdl8tH49FYmTgP/LC2/EnEQEdFA64WxJwAtFawwM2rZnDB/URwn9bJR8HLRbtjY0F+qhfeCUcXPF5f8pTeRVptSUWSdMxxC8M4Jg3Mhz/PVaj2ajqLIdtkMfaB6p1GcaKalT/urhbOdvasQfy3MUjTkar3uwCR6GVoJMBgMAGi9XutrzXjoaa21SEapn5lZo8Lqk6iF1NHHKapytVqt1+vBYMC+3U7U0xARVWaw1sYNz2azyWh8tpgrr3EUx3GalE19vphPJ6M0TUXYGOOcW69K5c5umgbQKMgtG4wGg4EgNU1jALEs2yfFmtt79pO9FEIIHDr/9gXj7HLgYXswdPP5kkvvnfOtXImliJa56x9CRPm6aOo6jpKqamGpndvZtUtU+/2EyyVviQi7/JX6SMaYJE2LdY5EWuVPRNZGm8gKBR+Y2UQxIgZ/uYCNN0Qo3Ztqgr9gLiAhmMvrY9U03/KnbifWRIhsvQj/pv/mrro7tTTf/advZrHNYpuDD1x572ZxYO8QsavlaOGvIIFACCUyJBBDFNkkMlYBM52XAgCdlwIA/+E3/Hj3+rf92fdaYwnFKBEpEUkgAUtgSAhEbR4E1JyNMuQ675AMsOzt7L7x3te7s6l/HkJQy1gH9q1btxBRK8qePHkyn8+n06kKuh8eHiKichArzXFd13meG2MeHz3x3u/t7Z2fn3/+85/f3d3d2dl5z3ve88lPfvInfuInPvCBD2RZprDPmzdvLpfLx48fe+/TbKijtygKDQcoB+B4PA6yZubVaqVZU11n7t+/v1wtpjuT2Jo7N28d7h9ExgLhE4axXgABAABJREFUcD6MoljZ2u7du5ckyc7Ozs5kao0ZDod1XR8dHY1Gg+VyqQaipn3Oz891eDjnGHA0GlVVc75cS+3u3bu3XC6jOBka1iTMlStXBoPB48ePP/GJT6h7duPGjZ2dnYcPHyZJoqVrAJBl2d7e3pPjk93dXZsNHhyfnZ/PAUHL6IdZ9mSZSwhVVa2KXBdnF3ySpsxcVnVZVTs7O9PptE9TqWd2zp2fnzdNs7Oz8y3f8i1HR0er1WpnZ0cJQrREfjAYqMhmFEWvvvoqsqi0lKaXtfOHw6FIuH/vXc16qXaNzrvhcMjsV/kiX6188IQYRRH4C8/hGfOlLeRC6M0+3MAh1FG5tKpcfE0gEkQhI0gIgCJN0y94ffz2W9loh2wSgJI0jVNb1TTIsvF4+n1/5aN/4Xv+rn7tH/kz72UrgTk0ji36unIcMhtHiIbAszcBkNE3bCsjhhyHgFAHzyhoTeDgfWVimiXjsikJwroMxToHlngyEQlFWY6zZG9vd5Am3jnH8O98+0/qT/9r/+8PBgERRCFSQIsYBCSKiqrem+3uX70+nM3MYGgsSWBX1aZpBIGdAxBg4SCMJK3UJ52cnHzmM58BgDROgIwgoBCAJAZNz6IdJpEhNAiEYpkJRQiQzDCOAmBd5bM0PpzdCPcfHbkmr2sHaDAiIAB0ZBzyKLYNB2xqIURrIQgKEED41VYccolo+JcDPPLLd3LA5wpRYB+4g9Ch+vsV3NpW63XtHSACKUdo6/q+vNMpGjs1cslxenHrLExmds4VZVnVtXNOTQljbRonqY2sMbV3i3xdlOWqzHUtIGmdc+zZ05dTCM+/EN6WNnneR/0sBSLaPM/LstIYlXoLmnoiouAFOvHabTov0xtfRNTPOEVocLt1H9m+aX7JJEIUNqgaBpsBRkiC5IW7/hBAIdbnioICzCpkhwC0UXVlTZEZQiQkEAne94jMZSNgTT6EbQm+C8zV0/3bf7N7zCISgrc2ZWZqF+xtsxKfc4ptAOV21uwCgfb0ZXTu39OYsH5FoFxasJ6VYuuQLSDSNE3TOCQSAecaNdSiKB4Oh4r10l/TCKhaHnjBySAa7U6SBDYsSerDaIak+1Ha6A+oa1GWZZqm4/FYg6bqhERRFEWWNwRiRATI6oQYY1QPR7lu9LfUC5pMJsaYqqrKsnz77bd3d3fZh44HUOFhyn0MAIQOAYbZ4OzsjJlPTk93D/YdB3Vude9P08w5N8iSqiyiKOIAcZYJEBFlw6G1kTEmHQxFBFmaB+sQmEMQa3X1bUXiejXS3dPsnrImDduAwcbR1eXGot3MHRQJfQxxH47FwP2jOpY2AUAiixhCaJqm8g2i1T2BmUGCsS0zgYhoJ/OGDbw/6ghRAiOAtREZ06cvC91aA0AAgbnvqeqAoQ3fWodgYWkUfpkXpXMcBG2cWGtXRdHNj261ujTAFVgoG4ZAZgbmizo+xHf+D6t3YNU/5MN/bLQ7jfZn49loNEzjSAX+Grcqy6DUXt4ZkpjYEMYGLIpzTdNQi8ojREYdnE1VxUlinJgq2IjIpsDYcIAmNM1lHrBntv/xd37u1//g3SSyMZqYMDIUxxZCsIyJtWkSF5VruCl/oDUur//HuyJggMhg7eo33vv67Zs34eRiOIUQNAqgI5aZj4+PDw8PNZCv2qynp6fq3mfDwfn5uXNuf3+fiDovIooiTZUo48XJ8XGapu+++6619tVXX/34z/38w4cPVVN1b2+vKIp79+5Np1N9msPhcDabHR8f6080TbNer7WORddGnXcikmXZ/v5+NsiqplSqQNc4plAUBSImaeJD2N/fn5+dt9JMPujSEUKQEI6P8+OTI2UoVr9IhSmZ+cqVK8t1Ph6Pi7Je5IWNE2a+f//+aDzZfeX62dkpAKjFr2va3t5eCOH+/fv6ej6fL5fLO3fuKEEzkdnfP2xq9+bn39nd3RsNp865bJAJC5EZ7uyenZ4dLVfr9Xp/bx8EhCLPaE1889bB2dmZ9/709HS9Xo/H48lkIiJFUeR5fnBwoNCywWDw+c9/fjqd7uzsaGlZVVXK3/XKK68oT5rSGI6ygV75YrFQbzDP8/l8vrMzy7JM8W/aq5oWns/n1prgQ57n+zu7R4uFtRE/x1HZ2p0RyBjxIYSgQjGXNqluMvaJB0UkMRaEEAEYmBmJE7rY3x+/+YXrd97rKMIoImtDAAQiNIPhaDSefu9f/mi+WkjjOEU0kTEAgEEEhD1z5R0TxcYqb59BPD5bEFokEgS0RgwACIGABc8NekSExFAyHg/SZLleI6LzHoJLI5pOxlmWgkgI/K989KLm/o/8pk/9q//T+1QzF6wlYwTA2Khq2LNJBuN0MPKASJgMhsjsk2TgmirPuapaUF8aQwjCXJbV//y3//ZnPvMZRNTCRQGO4ihLM++8ldCPnwwiQyAIQihxZBBFUABF2BOgJYTgoVzfPdwLZ6fzurQYEQEEAUIhw0SUYlk2FIhs5EUCX1Cs9I0PFLwU5r14ddnI2a696EV8Zdt0uGS0PfsouGR8PL9I5ZKZgs//iLY/2rqMZ58bLvaG7nq30PX99/sfPfcet/8k2ArE94ttVCWx/SGtx9CjBQiIN1u2976oyrppIEsFMIgQAqueAQCIGCFuA8mKmMC+C6Rbtg8BEYhMlyRBRGX1hI3Ks95gt7/LBjGuf1Z1XTZ1XhaN98q8YY3JkjRLUkO0LPPT1WKRrz2zqMboUx2uS5lsFF2cc+1KolbQZdnN9hY2psuWaQSXq0La27UPHjxYLpea90ckbAUetfBaLhnTvYe05aj0kwOm96B7gKj2z+2H3h8cphuLXTwVAATAhx5aRhhYFFcrKCG4AC1ND3RFFMIiYglQQ0ISvPdd9o2ZaZPwAfG8bcH3fTh4Ybt42CIbMjWjnb49B3r3+/yp0r8A2WQ8nvmd7qNneM/9/nyK7rBrtHGB1Jiw1ja1L8tSXY58vfae0zRNklht6c7x6CLuygnb+9l25LXUnCEYYwaDQQhhuVyqwaTzp1P/REQAUcNagZJN0yiCBVssma/rWrUaq7rRk2h+Jo7j0Wg0Go0UV3Z8fBzHsf5cHMdXr15VfZW9nV3FPilJUZZlGvfN1zllVK7XRVWlaRqVxdn8fO/qFS+cDrPVahXCFe99HEfMMsgGxXpNRIQWg69qZ4yJ2rRBy7MMzHEcax9bY0IADoxGBKSlxeih47iPVNysFLQhuOh6cjvbtrVm8yXXGkRxdKA8tpvWJ8BoX1x4wgICZVkikYraqld5uWyslYkQQlKpRGb2gCEEFuGeo6KJzk1GJRYJHW+1NQZF1K611g4GAxeC6tN5RqB2gWvqBnsAwv6VX9z4xolSP9l7H5g7n/34X99yUd74D+nmwc7k2vDK7u7ebDpKk9gYEg7ONTUezDZio74RZgRdUoRADG0Upqw1xoC0zPeND7bxyMIhBAbXNCL4Z3/zz1+egy9s66YO4gNaMIJG0tiKkyhQHJksjaO8LH/gAqvw8F89u/IfjIkoTtI0jr/z2799Ohp3jgoAjEajOI7Lsjw/PzfGDIfDKInVxRoMBnfv3n306NF8Pmfm8XjMIHVdj0YjdSDVq0dETWC+/vrrb7/9NiLO5/Omaa5evbpard555x2FhE2nU63vmkwmyhiubsnDhw/v3r3b+TDvvvtunufe+529A/UkteIlSZLFYhFCcK6ZTidXrlzZ2dl5/ODh4nzeeLcq8uFwyMKaUD0/Px+Pxw8fPriyf8AhpGk6zDIRed/73qfT5OzsLM9zVWhVP225XIrIcrlAwOCDCKh07MOHD5PIFkVxfn7+6quvXrt2zVp79+7dOI6fPHnivV+tVtp76/X62rVro9EoBN7f2T0/n48Gw/FwOEjTuqqns2kIgQzlVbUo1vEgGxsDhoR5kA3zPEfA8/NzEZlOp1rzs1gs0jTd29tDRBWuUZxekiR37959+PChsjnr6pQkCRGdnJyoMRFCyPO8SDNmVoCfVvTp3FytVnXdzGazoigU73d8fKxr42w2WRchiuMrV66E1fLo3Xefl7LvgggiwgwRtrATNSv6q01H1tKtSN3ubKwFRoYgAMzBWAS5yMx85u/+XRsle7deCWJQwvli7quqKkoks7O7V+SlsXHjvCABWWvIGFNzqVxr7EPDLAbARtYSWOMGehmMAEitli0QGCISQxuoCZKJjGXmqq6Lshhn0d7elZ2diWtqXzXhWdJQSjXQ+DCIE0J7vs6XeTUYjW0yqBqPq/XQ2CgZGANJnBqDkYRokKr2FwA8efJkf3//c++8/alPfzqKY1X6SpN4OBg4V/mqHA8HhrdMtdQIAiu4P4kIUEBIEAEIsK0VEhAycGM6OlmuQt2gjYJgACVQFAe+9o6IQDgEATAbJ2FjvQEAgKBsKbNsFbtvh0EvGTud4YiXLfqtUXSpK7ex9xdfe3GNy/M/7Gdb+vVPrRT5xQleANvpv75kLr8gM//8dMAle27rqJ711fd8EEyHzVOK3s1PO+dqLy54MKS12YAEIJqvaB0JvgBNaGl/F19u8xchAKLZaDq3T3Zzc10cEwD8JszXfaTNNU3jXVFXDfsW9xXFwySNjYXA8/VyvlquipxJC+MvOBi6kydJoll6ZZDvgA89k2bLKehdG166mK5zLvkOVmHHKl5x6eH1hZABnuuoXPJH+44Kbmejts6wfR24BULjDhorCBBcn4OiP+wZt1Kd2ondY97EF6RlTG+Nwq9ABrC1C5/icfp7214w917Q0jTN1+cqdMDM3oc4TkajESKZ2DJ7HYUK8dr4GHARvN9MGdy4f65poihSomHoKYz2w+R6qVmWZVmmUC4t+VVlye5AZq7rWnmrAUCdJUV1ax2Lrsz661EUjcfjs7Ozu3fvpmm6Wiz1ItWa6fJCRZFnNs2X66Pz04MrV5IkQQ3oGeNCaKpCNZ5FxAdflmVHIh4ct7F8Uc0f0yYbASJrjbEGrbGWtVIlBCZkZCQD29v8M59Cn8PNe09Rv5rruU+5y2tpZim2Sf9rerXqu/cjUgLiffDOAUhfQ/DpJszW2NYnMwatjaxtmqZqtkQnWSQyRrkNNBcNAFrRJCCuceqlOOcm09G6KMqyBIEQQhwniOice67U8NOX1FuihZ971OGNw6vjwSRNZsNkklBCgdgbhIDeEKejrOtJ2ZTDheAkeGsvosiKYv3u4f8AAHAA/8mnf20EaBiYQ+nDX/pHPveS19w139RgEwpgxKBAZOLAJiIfGYwMRvbySmKQIhsRwM1btw8PrpT5hWTkZDLpCrrSNM3z/Ozs7PadVxTFl6appllUJ2SxWDx49FDJtauqok0Npcaniry8fv36zs7OarW6detWWZanp6e3b98OIeRVfX5+fnx8/N73vlelV15//fWf+ImfYOY0Gy4Wiy984Qv7+/ve+6Ojo/F4PJvNNDahioRaT6L9ube3dzY/0zTO6elpvs41/1B5l2ZJ1dTr9frGtetpmq6WSwi8M5vNptM0TX/xs5+Nk2j/YE9Enjx5osVpGpUYDAbD4XA8Htd1ffPGzSbIYpXPFwtEHI9HzG46nQ4GgzzPj4+Pr169enJysrOzk2XZlStXFBeXZdn5+fmTJ0+cc+qqWRuvluu6qotivbu7MxwOWZxzTVO6kl3VVEmSxGCjmCxF+Wo+Pz8/2D88OjpOsmxvb+/KlSvve9/7tM5kPB6PRqOjo6OiKFR85vj4GADOz8/VJ7l27VqSJIPBQKewc24+n2v22Dmn4jbMfHp6qlno/f398/OzLjKYJImmoFerlff+/v0Hu3uT8Wj07rvvxohxHIfy2RmVvr1CCAHAICpek1QtdQP92gombkfZBEhQPIGgBADZFiw9evedXxxNvuHKteF0R4yRs1NX101Ti8D+weHJyVlZFHGcBgHnAgJGRDGZyBhrrABLCH4TWzSBolHaXoOAiKCI0QsEIYskgEIoKALsnRFkABacTiZxoiTjTdNU4anOCAgCFA0TAapFhEMpMt47OLx6/ead18aTaeO4WZc12cCMBKEpgcNoNB4lWRbFSZIawLfefPNv/fDfnO3sZlmapqkx5JsquHoyHEYTrKtylMR9oyMhREAS7VINuSK24XkEQdaoiW8O0vS1nR04WswbxzYKgMyGAGrXOiqIDEBkLmpUfhXhvv4+bn2DWwD6iCDp2+wIPnjHbUhRqC2X13rLL8+s3DICnz8aOjOMmb2y93IQEUAwxqRx0sGDj+dnqzKvgxMRQaBeCFVNPlWeUHtMI9rGmLIOvV/58mi5tpp99OiR2nBfduHR5RzCtqOy3XHy7KMEsUeteymj8tzffSGOL3BAYREGDEGLIvi5TMFfatvY9J6I+iTZf29b/wm+uECo33SDVNl4RJOm6Wg0nkwmzFI2lRr6uncCAG8C55ahGzZa5hHHsWLKeSPTiYiqKNRlVNZ53j10ZeNRF2i9Xocgg8FAK1+LotAJoHos9x88VK99OBzqd9Qwqut6Z3e2t7en8zyOY32hSixFnud5roHMuq4fPXqkvzgajUeDYfDBVbUW3xMRENrIBg6W4i4r6p0riiKOWnmfC9OfBTfipNBFPmRTVgVkDBkLBo1Bo5fUunDP9wp0zGt6wXtvaMsmeN5Tlk02pks1XDqhujGBw6XUeeMalbF3zYscFRtFaZJoBTNpvRBiURQM4remNRsbqaMiAheOivcC0DTNzmwWx/FqMWfOggraILCwLmpPh0he0DobS1p5mGd/7fDq1RG6VFPSLELyL3/gR/Sj//bd3+SE/+lX/qr++cc/851atg9kCcha1tsEAGPMd6X/XXfOf+UDf/sHfuwjxILhiyw+z2xf/59OppNomibD2KaJjaIIiQKzsWTZREaip4rWtNo7iqJv+qZvUlXE7qOiKLoMmEqsXr9+Xe14tVyJKE3TO3fuLJfLBw8eGGO0wqQDSQIAIpZlmXN+79495dXVfIVWSgBAMhgmSfLgwYOrV6+qJtJkMplOp+fn5z6IKtyLSJIk169fH4/Hmng5e/CoruurV68WRaHl+5o6ODk+KcrcN83w1dcGgyxNksVqGWXpyfyMQdI0PT4+Pjg42N/fn9599dG9+/fefXcymbxy+1ZZle++++7BwYEGTfRKNKWAiNPptCxLGyXrsqIoLqsqz/PheJyhPT4+ns1m6p5pvcrJycl8Pt/b21PPQTv5/e9/v+ZAAODw+rXz+XlZVk3TTKfTyWTiXJOEtKyKgRnu7k7Xi+VqWRPYYZrMhsPXbt+ezmY1v77KCwDY29tTEhENrmsKSxNfi8VCRHZ3d4fD4Xq9VjEoFcZNkkS9TS0lGo/Hj+4/WC6XiKhuVdM0Z2dnGgACaZfcpmkWi4WqcO7t7c1mk9V6HoxJswwL9t4/b4z2HRVACCJxbOM4NiqP3nNUzFNFXxdnwIuwIBNcAviMInN0796bn//Fb7zzSjIcsfeLKDoPbKJ4NJ3OdnbKfF2HIOwb54goMjaiKCbzJ/6hj+sZfv9f+zAJiEq4m/ZWjAAFRgFCtgGAwJMDRgQ0TOyDbxpg/4O/TXVa3vq3f+xr6tUys4Yd17X/t//6V/+fv/tn9VT/4l9+nycSQB+CoORFZeP49nte39093N3dvXJ4FVC4KgSamtd5ngffLM9PnHdJHCOi816d3qO373/sG7/58PX3zXZmw0HW1FWZr1xTvfPWm5/4+N8Vg7HtqyRBYgigrffTojQjKu2mYo5ktKCafCiLuzt7IdhPPzktmJ2QCUAMajIGBINPxbH+QfsV0KRPEoDAmyQlCRBtSXY6733wzKxJl05p5MtmWnt5M15tA+99413jXQghCCMZZV5J44T+f+z9aYxtWZYehq219t5numOMb8rMl5lVWZXdVV3FHswe2JzZLYukSIqGZVOw+EOSbQgSBNOwaRG0acigLEi2W4Zg0rBNW6BkkBYIkyAsS5YpkTRF0k2qu7qru6u7srJyzvdeRLyIuPOZ9t5r+cc658SNePWyqguEQcA+9ZB1I+6Ne6Z99l7DN4iUVb3arCvfMuFt0WUAAJVyHY/Hs9lsPB4TkYZ/MUYfa7gBQdzKzr6/zSrmR2eurnjcnwjvn/Nt3tNnVkBfGmM5a7HP+2OIAbpOMQrgXtrJzIMImgCws8O3MJDc6JC85Pw7ZL+AAAOCYBSIynxTw5pO1RRvvgcVp/O9PvTaHmCJKEL4j0uiIrfzwO8xUSl3lfdRBNq2IeyCcmZu25YI0zRXnq61VttunQE82Q4iGYKI6DBdrVYhhDRJ6rrWWEfRVgPSYDwea7FQRBRuBAAaoCyX6wcPHuh+FQE8xN9aQCUiDVO0qbLdbjXpf/78+dDk0cLtdrs9OTl5UjcKOJnNZhqQiYjC6wFEmEejUQghctxttzHGyXw+m8246eTGOfbOrIbqum7qMndWk2thUfgMohLMo4Sag48xBhsRKXHOOJOQseCa0ELf7vyMOzLkFTrHkdzSx7tzm4eXIQQQIerM2GO4sTlVUTwRiKKFEhiydEEMIfoQBciHKH0r8gXor2TWTdJsVIyAEAnTJCUiEgneV00Dva6wiBCZKAzUe12KOOeChtExuMSRoTbEumnquqmqmqwVAb2GMcbfRAVhaJWK7CtonPwvx8//B1v9yB/8f3wlUkBnBDBwLNv2T33lhtT+33rtP9r/vn/lB/7m8Prf/MWfGhvb5dUA9oVmqYIzhHkfj/pdt3/mr32FY0sPYmpxlNosMXnmnHXrpjVEjowlsYYs4um/mV78qa5b9cX/zQOXurwo8rx47dXX0iQrihvFJG1RKse9KDo+g9bd9dooB2kymehyAoxXV1cK7nr06NFms3n+/Pnp6Skze/a73U6LYYeHh0rEd8595Stf2dXNcrlM0/RXfuVXfuRHfjTLssPDwx/+4R/+xV/8xfnBkT7+igE7OTlZLpdN06zXa+6J9apYpSjN8/Pz09PTJHda6Vhvtm3dnJ6eXq9XOjkYY8ZFx4i7fP58OpvNptOjo6Pry8umrQ8OZoh4cnLy/PlzbT/eu3evaZqPP/44K0Z1XSPWZdPutru6qpjjxdnZ6XyEAIvV6pVXXplluW+bt9566/r6GgCrqlKd4gcPHmhDJsZ4fHzMIGVTbuvSB78tt+goHWVk6fDoIMZ5nqZt2+ZvvlntysSYLE3L7XZcjATo+XJJgNaai7PzJE29903bOGufXzwfj8eLq+umaZqmbtt2vV5vNpv1eh1DOJjPUeD48IiIIsejo6PNZlPkObC89tpriPjBBx8ooUh7Ms+fPy+KXJvPAEBEx8fHk8lktVopUFZY2qatt1sod2QN+64ngoKyX9Xve4laLOQYCa0zBoEJhBCGf3sAzy6IIgRA9VNgtRxkZCARBIg3u4i+bWD7rW98/Us/8sPT2fTgcC4xbhbLxKbGmNFk4rK0LLcgIsIuRgBryfz5n/ml4Rv+/D/5K3/ib/yIEj990wgICXRGDgKIFJGIsAkVoBCTYXI2TZz7ud9/A8j8sz/9y3/6//WV0AbxHCMGlj/x178SRKKNngCQGKj2vmn58OTkSz/01ddffxPBOmNN6qrN1jc+d4kFyQjZ2GQ03243bVlvq7JtmrgtReRoNCmmU2dMW9WxbSQG4ZggpsbkLpGmRuH9a2+JAFADnlZR610Zqc9VBAEgtD43KQuc5MVBUS2rCsSACAGQsWroSWSYb8IgVLiN3EZ+62+7iGcPFwYqM6hV/AGcc2etQaHbNZmXg7/+UagYy+3Xd368C1B78RhefPvOh4Zcel/2986+/xGcx91gDECAAESxUzgcG8YoUSTqygKkv0TVqQeAvhBw66g638e9JV36e4dyR5/gux6kQk005NZLbIkSaxNrIUrrfdt6EVF6uTY59dIhQJqkaZKMi9FkPM7znFk4RkvGGusMKXNK7oYvtzccrsR3OWzr97rDvu36NdoCRt4be3v7E4AGbsUW+/f4FvTxDkUpooiEvhCIfakZkUxorHNAJnBgDsDMwhFEBBjT4VnZb7YAgHyn9JHAgKCYG7npWlwVgYFAYgy1sSmYOqIJoIJgXmJQcG78rIabuRkXBNaQygIKBmtvUHd4Wwsi+DgU1LHr9PbHeQd/r8BfQEC8ZaX0PetVsA/Ya4VpRHVzoW4NglsTTwAsyzrPxyBVp6AafV2XTdNUbaOphYiUZakUlDRNJ5NJ2wZMkrquszTV4qtqaiVJIgDFaMQiIUbrnKb4nZEfAhmTZGlHRkwcWVO3TT4qqqatmjrJUpcmcbf1MRhjJrOp0kuGlEZ5pdPJON47bdpGKW3rzWZX1RoP5XmOxqZ58fiN10MIZ2dn588v7t27N5qMnXNFUWRpZhl3VE7ceFvuDMC4yFKik9lU7j149ux5lmWLxcLYDsu02Ww2mw2htCjL5erBvUepKYitI5vl6WJ7lTrfXn57gt5lmQhnuTEEyBQBBAMQiLAKGwNBkjnvfWAOMSTU1QU0RmTm3W6nuA4JN8MmKitiGDaAzJylad00wDHNMp0gQuuds2Ioxlg3rQChTUSEyZks8ZGdIYu2brism7JuI5oIhgm2zU6EhRXAGkR4XIybssqy9GiUT/KMSJI8dUmi0ss4TpNkxs+3rQ8hBiR0Sdb4Bi2sy9W6Jmw8IW22JRHFEBuW6Nyyrr01n1xes3CDBqKko1GQWNY7NGAMKTi+I+tjp5OzP8tprUGo72URkjCHSP3T9PrPFfNR9uBoNiqiixzaNriEImD2vZYS/tSP/v1/99d+yoQgzJm17oW/8yQRGVAc4D/7n/6Wv/RP/LL+/g//X9/+6/+1b3av/8qbWWL/wz/cGdL92a/9THzQNm3tY0MWjEVAYfE1B0JnwTgOGWMbeJamO9y8/r8aO5c4hBBLm052u83nv/CFdDQ5uf8gmBuLWLImHxWBozowrlarsq6UF+ScW6/XitXUTGY6nZ6fX6QuzfJsOp36xvvGr5drAprNZsbQ4cGB/m2eZYcHB9vNxlm7XC4PT45fffVRWZbvv//+p59+9EM/9ENtWx8dHRRFvtlsvPcK18zzvCzLzWZzenp6dHw0msxs4kRkvd0AYVlXZVlmRT6bzcp6Z4wDofFo+q1P38lHxW5XGXKMMBqN6rKy1i4Wi8wlRZppUcP79vj4aDweee+14fPkyZNXXnlFaSEIVO9KY8z11SUQFZa++Mar2+32gw8/YDtbrdYcIxiXJSkCtG1EgbZpLqqz8Xj89he/OJvNtJxR5LnqayXWvnJ0r/V+l42996vzK+dcyuScW20rRIxNzNMUADbbsqqa5Xo3Go/L7RYlLq4WIYSDg4PFcpllWSsyGo3Wi6skSdJxkViys2mSpsfzWZ7nxWjUtu1ysWiqnSpQJ0ny4PSkKss8dc/OzkQEUbIsGY1ONQO0luYHMwmeUOpqV+4219fXAFAUxdHRkTDHKsZaApMrxhRjWdc5UG6y0NQNoQKqEcCQgMTgW2NMau18nDoUI601JjHkDBAiERBiF1jtBxGEQEYAPUcRCIBRMIpEkbjX37S5HXNMFhfv/Z2/cf/0j8Y0o1EWvUzSXEJ0WTI5OVxU61BH8mI51C244hbUHADS3KlmUmpG2vZvogeRP/8Hu2ftX/6/v91wU+R5lmbC2Aq8qDd0sRUCADAiEEL0wSMRUV7WtefQek6L0Q/+8Fe++qM/Op3OWYAYCdA4qpar8cEsdeR9ScaDhKqqwUO5KRfLq8Y3V9fPI3DkwCD0/rz1frtarlfLtqkJxFlKrMkJDcT9tZg17jGOkJw2tBGgW+Y1dGxBwGJGjMj+MDePT8cXT1alIe8lQmIxEV8KgE0MSpeCGGOAiMgFH9S23FkDKE1dIVKaJnHXjIo8SZL5dHI4n1lrnAGFj7bGrLe77XYXoja3ewkpNNs2hNZHEZskABJCHGZlRAeAQB0aX0AkRlFppT2B1cGIRURTqBs2pgZ/Hb9bRDjuy0nuhyl76Rj0iZd+5laDYj9MF4SonawuahPs40gSoJsYWRmKOET+/Bmpyt6ChLePMOxJ593Cswg4Y6G3cheQwAIAaAgAo8gHzy5fO7wnbWvBATEIkpBhZEQGDMJNZGZwYpDRiCE0zmaEaYQo0LAa1DOzRGZPJqnrWh20tFo0HJXrgzGFAg0nJJGjb4SDs5Sl6YOj49Pp/GA0Wu2227YECZaAgzdEhTEGKbEuTRJrzGQysdZmeT4y1gm03sddSd6PrE0no6quq6oKyIgkJMysekW9Al43qyilnDmK4D6DwBirxBsNCT5Lnvhu8iw3L83e+7eJU7f+7E6iQogCoH2bm5FKhICGwBoLhBIwEvaeucwCMYZh9rkDM/uMLF6GgYgQRaKqH/QRu+wN4Ju/gM+2N7q5BDEG5gjASZKkmXvZH8AenWggafzjtsXIHPW0bywdlSwohFVVKbhCR7bmJOv1ejyeDk0bBSwZY5SKMBqNejSUVni63CnGONTouNc7ht4nYTKZaCdH2aiwR8BQQr8OlY7iDMDMPgRAv6tK/b0q17Vtq6RVSpOqqo6OjhR0oYYJysNmjqq+EEIUkO1me311df/evavLyxijSofFGJM0Xa3Xz8/PRqPReJQ31c4Y27T+erEE45J8u67W1hKJcKgNiDNWRIhUarUb2xJ5GAX7o/fOYJC97cVf3rpfIejpW2MYUSKDiGa2ulcAsMaGboT36brK+XXfhqDMfsFOT2wo2xBBhO6muORgNs6TJIpYi84RWoOEzpN1dlJyVbd127BEBvWpksiCEpFFoFOXjjEySNSbGIIPsfsYotw66+/esOZeb+DWdet/QgBrTO5caq0lpCgun5RNs6vaf+93/9J3+LqXbNjBxgVEMPIvpP/8j4X/k77159/9nRe0NhZtEGfIV/U/89d/gBDunxyf/uDJb/3GFzlE4eDeptTZn3zni53/1giel5u23o6no3yUReDWN7WPHAJigogGjYXojM0SsYZAhDnWbS0AjUkoSY+OjibTiSDuyygo+EdxktPp9PDw8NGjR9fX15pXq2YxACyXywcPHgDAxcVz1TJeLpcaTM/n8w8++OBzn/vceDze7XZqOzgajV599dWnT59qV2S7Xpd1/fDhw81m881vflNzkul0+vnPf+5rv/SrqOrAzCpu0eGXqvL55WWWZ1ma6qOtbQTVVwjskyTJ8ryOu9dff/3s4ny9Xu/qOh8VFxcXlszl5eWjhw/VMYljXK/XIcTlYrnZrLWdm+e5qortdrv5fL7Zbs/Pz6fT6fHxsbZYnXOps94/PLteZkWeWFfWNQjMxhNdnKxzuRRFUeikobONsn0U0qmlmaaufdtWZclpqqQ1AizyQkQuLi50RlKhDmXvfPTRR0o7UW3u1WqlsgT3799XlJci5XqBTUqSpNzt9HbMZrPRaKS3IHiv4oSqEqZQSQ0oEfGTjz9Orb1eXKVpOh6PHzx48Pz58+vr67IsJTIynpyeZMnDptqef8rl8pq9l86xfIjTpJuRVNLdGENoiQyRNWgISJMRREL5TsbkCACIYAC5w2ShKB3/lgmsWCOxqj59/9tnH388euNNYN5uNomzrO3xLMvzYt00YCiI+Mjehzt7stYQWgSIQAbIAgmaf/f33TzOf+4PfPO/+x9/kYXa2AXYLxZwV9uKFYqDkKYpILRNW5atDzEy/9BXf/gnfuqnH732OCtGm10VmkbAxxAkSpYlhOzbplwt1svLhGzYynvvffjRpx+jwdnhfDyf5KORS6wAfvLk/Dd+45u79Wo6ncynk1FRWEJniRCAw777RF8PR7zbq7iJnEEDWwEUIeHM0jRPm0Yi9sIfcCva6zep652xFkSEY+TWEIysNcY4kS++9YXXHj66f3o6n06mk9FsMsrSNIZ2vdm0gdsQYwh6y3XqJiIhOtsstlWtan5VVZZVqVjxGGS58z5w1Tatbz1HAQBDEgKLSGJk79Ckk1oFANRwDgERKXIMIobIWENoQh0HCrLArUhS5Fb+OVw57LgG/Y+36ukC/QIh/WUX6DA59JJIT/ZV+F9896XvfFY5+Tt+4RCI1j4EESRCZhBkHB5U1IBVuh8A+68S6bzRlaWJ1BX8Na4eRI/MbRc+vm05qOuuBiocI7KgIWtMkeXjvNDJrfVt9EEim67NkiTOZUk6ynMt+6qZnqJj6qoK3oOI1YAQkRBIhCGKaIIKdGPd0B0YS9do2s9gXwyWv08fFYcG9p6Sm3ABeyU2GH4zjCEYCqV6IJqxaKJC3F3WCELMBBIis0hgiSHuwb1uk4m/N8YRMwffaZt+lqTD97wp9VYP375gtbu/6dDpHvt/LOGkg+qr/oi9unZVVRFEjZNFREMHzVuUDSI9EFMVaUREP6ldr+FrFfGvyYbWWUUkhKBJxeDoQkTaZqnrWsHcs9lM+S3X19dq1qbF4+HIEeDg8KBoR0SkynXqtG2MmU6nBkEx6Kenp+fn55p7bLfbqqyIARCdcy5xkXk8HltrN5uNjmh1uFf4r6qCjkaj09PTs6efJklC1tS+3ZTbtE5dQtPxZHn2PLatXgc935uBjShyc20HfcCuXnV7OPCe4txnpLW9JECpexlMG7AXBQYAMoR86+v1yxXShgCGtGPKzNx1cgVANRYJ1MetyPLxaJw7FzgCUZplaA1Zk8aY+bhe1zGGuo7eN7ruiAjrwcQ44FkHGYPdbqfabjrktIO0t333R0OhffTy59ca65KEiEDEs5wtd2jcX/0jvwlzegAYjSdGWolcl6VDsJZ+Ifnnt021KXdnZuOsSdAkhsBYz3x6ciIxzEajmUuaqmLBcTFOrIm+CW3btnUbfR0CQZxNR6PJOM3TCLGsRUcFc1+pITLGGCvWWkBrrYvRW+vyPBtN56+88goi1k2T5zc1kel0utvtBjvUtm1/5Vd+RbMFHRXaf3j48KF6oZ6cnHz66afKmhCR1Wo1mUy++MUv6uOsKYqqD4vIm2+++d5775VleXR8bJxTY/umad55552f/dmf/fTTT7Msm06nZ2dnasKo9YWiKIqiaIN3l9fL5TLGOJlMlNN/cHBwcXHx6aefvvLao6qqPv3kEwkxzzKdJS4uLr7w9heLUfHRBx/ev38fEUOMWlKLMeZ5dn5+dnxyVBSFPlOq/qfeLCHGhw8fvv7665qhrddrnWm32+14NNpVZR3LcTECgOV61TatJUoSe3gwh05Bqzk/P1c+aJZlBwcHqqXhvT85ORkkvKuqatvWOjcs9upaCwAqM7hcLA4ODqbTqbX2ww8/VIKKqgavVqvlcum9Pzo6yvMc+gCiaRo1gyIi55wKSau5it7TJEkuLi60wqLz6uHhYVWVvq79ha/r+vLycjKZiMi9e/fG43HTNNfnV3Vb5WmSWnSJc2kq3sc+U7nZEDSqcc4libPWGARrrTWklj4a9BAK4EsfN1akCYMAGOUB7+3EoBCg5/bi4uK9b33zKw8fFUlujWkBys2uahprnLG2KqvcmECmCcHV/M/91R/4D/5o58f6r/0XP8HIaExf9YGBPLa/5aORsEQGRPQhtj7+C//RV/6Pf/BX9N0/9Jc+t4uRhZ2zbdssNztjzPVqk4xmP/ClL/0T/9Xf/+DBgzZEQdqWdYicF/n2egWx9aHNjIltc/Hsab1ezicTI/Dhk49DbO89OJ0eHkwOZuDs5fXi177xrQ8/+mi7WE0no4P5/OjwcDYZGQQiMcq+bQX3AhXFUt1BVL3sGgMCCubOnYxni3oZEV9mwdld9gSdxVDXqbWTJC1S9+j09HOvv/HK/QeFGAJoq5LKXeCWLFL0DnFb7kZJNh9lWZpa1RMH0XkJEB7zHDTb6ktm3U0WrINbrXdnFxeXV5fnFxeb3dYkLsZYx3BVbYIyWDuViKBxMQOCSwQwxighkCiKhCgKoRG4wRpqoiL9FSN+eRqAdKt7s9+8EtDkWXNovEl3EOAfsRfkvlDn9x7pCUJV1z5GcmYgfn52sgS6mu+tm0OQiYiqj9rZMNzW440hDMst7BWLyRgDZK01iS1GxWwyLYoRgiAzClgyxpjMJUVeFFmWuqTI8zzNkiRBQ1q5bpqmLEulTSp2BpsmWEtIIBFEGBgQDXSh8K0T2dv2o+U7T/pnBdm811TbUxIDELDYIYvuJL7D1e+2vb1pR2U4CMVvDD+SEBFGZiNMHCUwMLJI5Bhv93P3T0C+t6SDmUMfI9I/irYGEQEYxI5QDvTSy7g/huA3M4L/v7ZprDCk4MqbV9C2y1INC4Z8YzgdBZaoYJfaZrdtO7zY698Z5dOrl1njW4AbnSV9QZ1XYxdzKynfGDOfz3W9Pzg40JVeeSa6I2ttmmXBBxX6rOuae/8N5cseHx5oT0ZdILbbreZaTd0QWRUTbOomcCyrkhYL59zV1fV0dqh5VJbnAFBXlXpva4SdpulsPmMwNknzooixYe/ZB996UpmdGPUaDgM7xpsEVWlzItKNh3CLFi89w/W79t8040JErQoPV7tpGuyke6PczuKZuwZGL+JOutfIcYCcgoAh0i6MtTbLUg4BnHGGbJJYZwGRDFlCIjo8mBpjYmgFQtSWjgjHKAzIsWtG98SbGKOqebZtS0TdFHvb9/27DtTY++G8dMPuYw1z9GHhab1bfdev3d/+ub/2avyKN8CG0JIhFU5g+V34l2EE8Cb8L5Y/nhpqjAQfQ91sl8vZdEwgFH1hKQrXm1UDYghRopVIhG6cZXmWZGkEZuDAkiYJiFib7Eoh6vQPmX0MgYhckqZZVoYmzTINUu/fv09I27JEujl9pYGpxpcKDX/5y1++uLjQJEQFfO/fv68k8tVq9fjx623bfvLJJwoxUqKXyiTEGDebjT6qSZIo8z7LsuVicb1YvPb64/l8fnJyslgsrq6uvv3tb6tylxLEVSdac5VuHCKNxxMyRlWMNWVSaeP79+8LsnJm0ixr6ubevXsRYVdXALDdbh89egQASHR6cpJnWQxhMplsVqvj4+PpdAIA2pYpikIf5zRNU8Q8zy8uLtbrNfRPjTaIGG2apBCitu9DjNvdzhlDZrzb7gQ6/6Wjo6MQwmQyKYpC8Wx1XRtjNEnQLOX9998nojc/9zlETNN0Op3qhQ0hvPPOO9PpNM+y+XyuuLWjo6PxeKzqZzoZ6oSm0Is8z8fjsfZJYownJyfGmLIsmXmQHlGdAK3jaPLJ3ClPOOfWi8VkMtHmkhaArq+vLy4uxuPxZDb1oambWiKhMUmSVCCB+c46ierQiuCcS5wzFi1iN2+hIPCQqMjLA0RC6lZmBgCNEPfkRAFD8GTQEP7613750effPr73OCtyFL+pSufSvMgN2qurxeF0gmmGSHUbA+If+ytvW4POmKXdOSLrLCG5PGWQTvH99ta0XDW1b72gYYEQmBn+8F/6XGSoYlhxqwtcjNFaU9fNeDz6fb//D/zoT/z04cGJS91uVwJZRxa1ohJ4MrapS3xZUYy7XZM7e3B6LyP68KOPmtBk00KIdk3z3jd+/cMnT55fL+rgU2tPjg/unZyMRyNnyFkyBCjdZTeG9jU/DAMiGARECC8v0vesXSbAkU2PR5OPLhZswH9WCMGCQYCdg7cev/LVt99+eHR8OB5Zhqaqd/WuaZrnF2fVbnvv5DgfJ8tNPS5GdazrcjfCEduRQQOISEhCxEQIEr1Di4g+tM7aJEn1kEUoFZwfzt44PgDzA3XdtByyPPccyqrOZ+Ombjabza7cta33wTdNU1VV68O3np3VbSh3ZVmVdV157znG2IYoAEkWv9Nwi/gSB2U959v+Lft9EhM7chCqfvOACUIA+EcmrdR/512IxPfyVwJQN3VkRuOEFYf2XfkaN4mKDMlGH5g567SJDQBacd7/K+59VIaCKSISYpK4LM1sns7H0yLPrSEJbNCkSTIdj8nacVFMJ9NxXiTOGTKODBK2MRCRhnY6mxGRVnw4RqsMVAFhRgQhIGUl7AfwfWLaQfL2ouXPSlSwF+nqTm/vs7c5EzeZ7x0E1T7PB+7A+BBIqS9d25mGFhUiCve4SGsgEkQUQjBIYEK8xQ+6den3jmofIoMAlix3vwdjjQbWevQC0qV9vWVhn0Uw0Q1xXz6TCIRIxnT1XdkTjb6Ttw0eF8O1JcJOGYmDxuhaYOM9J40+ngQRIJL9vucd46P947ttvnEbd3eri7qPKerY28NBYm+zUBSFSZx6/AGAljDVIR4RdTnXSEWlHgb6e7Ve99dEimKs0AjlekbhIT8ZWgHqJJDnI+o9g3RJVrJ7XdeaaShXWHMkPQAkzLIsHxVqmqbZgYh477WcqUxiRXRUVaWaobvtLjXJZDohleGUzrtgNBpdXi/1aMuyTJ31IeilyrJstVppacE4VxQTQSRrQXy53hY2qWJMXSd7pcaUw/U0xugFZGZ1GpXeF2n/Vg7lDR0kQ0QuvIf27e+y5vnSR/oa+ndfoifDAoREpvvODm2ucE8GJDJESMxxGK/dwUQBFkMkzKm1hKxTi7PkDDECdb65dHQ4SxKLGHDJu6oBiSTCIaLceEdCLxO32+10/GgS2M2Ve9ZGiCBK5rutYb3/AOqPXXgEneqXiIpgCJFxznUDIISmaWvJ/fcsdPE/+eXfBaG2r3G13VJqKclTm1gywPxj4S8OH/sf/sg/+Nf+sx/IrOkWk9BakISQMSKxzSgbjYGDcLSmM6BOilT5YpFjEzwETowVywhcW6YYrLXYei2mENI3/qUL3dfv+Mv3rcvf/NznxuOxTRNomv2rcX19XVXVdDrV/C3P82fPniGiIqMAQLtYqoHRtu0HH3xw7949zW+fPn16eHj49ttvn5+fX19fP378WFcX7b184Qtf0Cf67Pzc9JH3yclJjPHJkycfffTRl770JQBQ7d3hKRtsPZI0Ncas12vVsFKzI604OOfI4GazsUBHr7xaV11x4eTkpBiPp7Npnmbb7TZNEhap65pjPDo6ytMkSVzrGyXu6x7V/XA6nea9tm/TNLPZjPJcTVGWq1UTxO12mjA458iYNEtd4vJRMSry3XajYuuHh4cK+Pzwww8fPXqk/dXBDkVExuOxNkPqutYcDxFVcIyItI+qimdK7tcn1HuvEiP6qF5dXQ1N5ul0qlKHRKSoVOfcwcEB97p/u91uMp3q3Hh1daVzl/bH0jRBRBUTc86dn59rI7qrHHnPIMDclhX6mkEYQD1SmBmwC0102VBVAyJjDKLq7GO/uA+lkjvlkn04AyplGwXRCAKZfWyiM8gBhIAIrp+dPX3n26kZTadjX6Qtc7nbFnnqyHGQ1WZbltV0NAK0zhADMlAUboMQQJJwmrimahC7KOZP/J2f+nd+R6eN8d/+T756td34GHxQG2gbReo2NE3bhsiESDbGUJYlcwwhfvnLX/pDf+ifev2NzxvKrHPGmOl87n3g6BHBGTQo7Mu6brnlWDdpYicnpxdPnn7w6ZP1en29qy6fPNmUZTaarLfb59cLcDbP0tl0+vjkgJgTZ3TaxF6yB0XuOJh39pbd9bwNcOpjCQEBiRovgEAiMDbmMCs+3lbiUhA0xnA/x6qviGLbmKuQ2JFNHj04fXhyPLYOqqop67pprtu6jf58dXn5/EISmK8OUbjmgCQALBCitNF3tlHCGERiZGdc8G2SpsakzFI3QfcrLON0nFjnYwxt40jGo5ysYTSJkZExkGWnLonzOYD0gv6OBReB28BN3TRt3TRtVZfr9fp6sdjsqm+enbUMdVVXVenDDXsHgDwFUC061W6+cUQwIfr9jkqnhouIQFZEi+0dnBehq70jcGQhTcqQb/F5b0Wbd01absW6t70y9l4qMOE7fuH+JxEgxNh476OP7HBP+hZRY/g+TuOeOr6HSAIA7rxWujq4IllgjzCD/aCSPXUl6U01Bo2iUV5UwVPipuNJkeUWKHBMnJtNJkKY5fl0PJmMRnmWKfnZdKBu0Gp1XddN06jdsxa/VD4QWDo7U51KROGBpgtwuwgbGYT0TcQelKpnJNL9LdgXQ4GbH83Ntce9W4YChmS/SHCTIcitRPVWrAwA1AfgcNdiBQSNtUgIhgAxCDMIEoGw8C3/muEIBWFfl0yDl73dmeFj0Le9AIAQo4iunfuJiogwC+H3UNrtwkomUnsJw3vCVkNdXDeVAR1OWdcGDaY1UaFuobjJExAx7tkpamB/c5p7JS5NcoYf70hc71/8O9AaHDyDNNzb05vSEFPLeyZxg6e78ry7UYgYQidBy73Cj4anmmBoHhJjDMFvNhtEaFtf17VCvwY4EPTW8qZ34RgsIIk6d3DtxugL6FFD3ccArbVAOBqNjo+PlYvCzIqbVNy2QsZns5k+S23bPi8vqrgDBGutIQLE8Xg8n88PDw/LuiHjFJOmRzgajSRGZrZk2rZJ0lQMuTxFYyNHg1Ruy7i+pv5S6K73B/Z+dA57RQ5m3teslD354+GvtADSSTQMd5lIa7RDRUSvZwjBGBMV3yUgECV2+AJBQUTubzQCWmPIkEigwadKs15hY0ziXGg9IY6yrMicAFhLzpF0+u5oEMgSi2ubvKor7z0AkjHAAiB6MNpq0+9W3Jce8DCHxn5QMjMgCncQd108ZM+ifv+5w947e8i11VvaGHIu6aZy7uB2u932+M/ay//xXez7j//v7z+6d/pX/3CHD/kLF38M7zXiWwmN324skiXqgMAsd6p5FjE1SNYhEMfATV2VW4ec51mSJ4Rg0VqDCZGxxhgS0TYaBCZAo46R2M2iXW8ZNVHj+M1/dT3s6O/8sXd/5q/98GuvvqqDajqZkrnBPartqWbg2NtTamXdOXd8fKxtwIuLC0ScTqdnZ+cA8PnPf/79999XDOdqtRqNRsvl8urqKkkS9arXlENpFZdXVyHG3W6nN1Q1iD/++OOPPvroi1/84mg0Ojo6+tVf/VWN1NXq6/r6mqx98vSZAKgno/YHNMEIIYynI183J/ND5nhwcLDebnQkzGbT7W734Ycf3r9/HwCur6+P5wfO2t1uZxA32zVAN0sbY66urjQ5VxNStZXU2h4zLxaL09NT5xyZtK7rJ0+fXi2uN5sNACR5VozHaZ7neX59dTlo/282mxjj0dGRXgdtfcQYDw4OhjZplmXL1QoAFA6KAMVoFGMsiqJpGtXdAoB79+4NJfymabIsW6/Xmqcp97RpGjW11HZTVVXaoVJbzN1uh4jqQqOcIr3Rjx8/fvLkSQhhs90cHB4YQ/r9R0dHqpqo5177piq308k4zbM2th0zgEUQozD2VsJq59BFAwhKf4YeN7G3GN1KVO4U7UjXVkFAArprMWwQrYEQOcbWMX38jW+eHj+69/obYK1Ns4unT8W3be2tcU3TbPyuCTEkWWJtnqSpQJo4gyDRhxAjGdTmM6JikP74X/9SiDF4f8WrAMAMQdBH8dx6lhC5iRxFmia0vhKRJHGj0dwYk88Pv/3J04+ePZ9ko9lsPp3ODErqXJHnRMiRq1BLvcQYDJBBEwXe+/iTv/2f/a3lYpkXI5/n4/nh229/6dGjR++9997V9udVA3MyHqXWEBoDIOw1gJVOtFn49up7U9wXIXNjO6eFJ30BqlmK3RsmxDzSYZF/eLlkYwVJ1xFmVkP0rvaIQsZCjGnuUpe0VR0TjixtXW83m030ZdteLdeND0BmV1WTcdFyzFySiaRAJnbFdohinAMRZCCydeUhskucsggADIEBQi09MHsfWiakSN6ztTb4Fq0DEQJl3kv0AQmNsRzC3GVgCbIcoMMVdjjwwFvBum1Xq/Viubi6vlqv17tdud1u67a5iE3g6IMPPrCwsCCAS1yW2G0jA96LIzMwIREZQokxqDU7d141muqiQcLeNpJ13bndltm7WXKXrN9vKHgLZ7b3Ukkjw4+38AJ4K/kJMfgY6rYNRWZAuAthhUTz8l6YC3ioIMMeWb8PEmB4TdZpvQP62n1foLyFc9qH3PeJShsR8jRLk8QFEURn7Xg0tmmaF8UozzXYBRYSSFzSgrcSq9rrzKPfmWWZcy6GCJGBmRSdQSQdJRVAxBD2112QwQCSIAv2vss3m+wZsNgY7+JP+jvU3SXYO73+DoHC1/AFjgrIXTjWTaghQHt6CkNNXTcy1gmjNSFGzzHovxjUDGc/UYHb2y1G1D4fZm/jPegXfOYWQrzh2xDSyxG6L9uYZf+S3uly9DAPJavZvhZYE5kBgIuIQ+NiyChuvmJP2P6FkvOtU95/607Atz8UQgw6Xofd6bBLksRlKfdsE6WNKjKhaZrdrqSeuQW9GYsez6QP2YfnUwRURJW72ZhFRAFmmogTkcK6NE3Sfpd+SVEUKu6pi31VVbPZrG3boig05rPGTSYTzQA3m42aJKhrhyJhdNdKkD09Pa3K8uzTZ9fX10dHR7PpvKyquq511Q8hTIppXZWz2ezo6MigbHYbTZ/att1sNgdH9/JRnhT5aDRudrtQ1plxZ4vl1HS8lEEoYv9SD51Zvbz6o7V2H/p1Z9NHo6+u3b61e5vuUg8vhJDn2fBWjGrSjQAQsVOYM8YACKA1phvb3fzVZSlAZMZFkbrECErkPM/yLAEAlyb6bIqWChEQkJ0r8nQ6ymOIpg1RiIWGsdcBunreXtdEIhre2s+yPsO68XvfEKFP+yENnEZwGB/Opl/894rU2SxxqbVZmubOHH8pvXdy/LOfvj2fjNeLy6q6DG3lyOSZy7MsT1zmktQ5gyQvFC4cQgCwzlnjQmgNIbdt7QAt2xTHRZYYYwisQWetITKgnktsIguwRQxIBinebkZroeTOvoqiUORP0Lbe+sbwUUv4VVWlaarOQsquVpyVtjpns9l8Pt/tdkmSPHz4UBGDX/jCF9555x3lTozHY4UeXV5eajNQg4+nT5+enp5WVfXRJ59oFK7+RTotXFxcPH78eDabqZ99VVVDP/D111+v22a52tRNrbA0rcIURaHwMCBBlvl83jQtAtR1/emnn2bj0dOnz0IMJycnIvLs2TNLZj6ZIsByuRwXOSFZZ7RWoi2jYQ4ZTyZDDeXy8lITtq4JXNeL62s1B0SLSZ7VTbNcreq64npUFIWIqIfJq6+++vz588ViUVXV9fV1kiRa4BisS4YrrFUMLWR8+uTJ8fHxer2ezWaK3Xry5ElRFIeHhzodKR41y7K6rjWiDSEUReG9//jjj0PozleLMlqvUZTXMEuIiOL3zs7OiOj4+PjJ0xoAlPeiSoyDfc14PG59HI3z8ajwbYWx5TwP5Y7aIN8vzuVOqXEfs4CIolG3MGhtYe9ZcQiMGoNgbszZBx9vv3z9+R/54auqGc9mJLi6fF6VtUQxxqLEdVm2tU+tLVKfZcmI0yx1IACtN95b7f0OFQrmvvtvnEsaH9qqKVvfhOBFPEsUCMxV227KUgAO3QFGRuYyxo/Pz+td9XA6Pz0+fvrhh8HX08n4cD4dj0dExL7JoDw5OqrqdrXe/vpvfOvZ2fNV4HtvvnXv0aujBw/uPXr44P5p7mwg/MY3f90QnxwdctMKRwAQAmGdIQWhowny7bJ8uFGsuhUecLwjed5NzWodkzIWZBPCSl7KbkGBxKZVuUltltg0RA5RIHLlQ9X6sqp3ZVltKmtcnhSJyRylBtCKAwmtZ4FIhCzAPgISEQmTBJDAYFg8G2OsGTA4EkJbN03TNjGyyxKXpiRsjBGQVmV1CYXAB24kAgNLiBxHPV9HQNq2bZpaAKwxWZqYqjkZ5W/MpvLqIwUTtPoJDmexqUNbVlVT17uyXCwWl8+fX11d7epqZtxem8+IUAghtG2MMQoAGbLWWcMggkH6/omFHl+ktf7v6Wn4Xre7MdvLPoagFYS6bYBQYgf9Evz+Htbv9aiGlXdA9IxGo4aDF06dI0CDaMkk1gWCyXxmnbNEHJl6sQoFYijOX+d551yngz88oSIIKrkB2rPTTde9Ti8bEQC5w3VoU7eLl+B2tG/3s4U7icq+8vqdSDd05KQbUQXd6A5O5XaiAnQDQdzvqAgAILk0sc5FkaZtY4whqgkNM9OQjtxpFNzZ0U0WexsUpdE29wSAzxgFRCQvmQW+x02jpeHHffJ33HOyp/5DXVdjDzoFAJvNZqiS3gl8TXKDU7/zPLzM/A72oET7f6shosoM6IXVcYa99M22l/iAvnszUFP09865w8NDlQ8eYJF6ynpgnbq/iALKyfaNAmbNDXRfbdsq+Ej6uFYD2bbf9GqFEBTTpZ+x1jVtw9DxZ9QZbUBBpGlaVZVK8RwfH2dZ5r2fTqdf+tKXIcjV9bVebe99VVbMXNd123qty45Go9ls5utyR6aYZEmSxNYhYuPbHMAkFiyhxcQ6m2WTrLDeDJaIQ39MN+YhL6VhBGoaFr5botL16OBW5/DW2iYCfUvQvGAXuHezAXoGP2oR34vCMHXY9LJhYBCn44kBDEgSOTE2sZYBrDFkbTeha1+FAAFDkbVhFCLArg4BGt/jAvqtvwhdA22fQz9cEO3qvfTgP3PjP1Nr8D7/X88BgKiD2mPkGbj0+HCUJkfjyXxUHI7G06KYpIk1uKuWeWZjaDfnZ+vNGgBHo/HhweFsOt5cPsmdSdM0cYlK4v298r/+24q/orv7C1//8We4cUCAaKxhawwCocS2aSRakJSgGI/y1DkiZSdzbGMUZkAWbRgbAoPq+3WrIfxiUqS19t1uR0nGkTs4BAAAzGYz1ZLSKUV7GtPpVBsp77777nK5fO+99w4PD09PTxX+dO/ePeXTq7zE17/+9cePH7/66quIeHBw0DSNsupXq9XJyQkRjUYjIqp227Ozs8PDw/l8rvYdH3744Y/92I+pPeIP/dAPffrpp8+fP9da2jvvvHN0cpznuUtclmUnJyfaImBmJbujAYgcQpjN5xz5+dXlwcFB2dRVVRpr27Yty3I2m50cHp2cnLR1TUQHs9l2t6nrUmlOMcYPPvjAqGBGD7La7XbQK3cdHh5qhrBe7p49ezY/PMiz7ONPP0VnTk5Pi1EBIGgIBabTqYgsl0vNczQhGY/HdV3/xm/8hrVWM72DgwPtPomI2s5qPfvg4GCz2WhCooNZ5deUQ6+9GhVz17lO9dPLsry6utKWaew1BouimM1mWjAqimK3233w4YePHj06ODi4vLxUAbHT09MkSR6/9ni3Xg+6FPfv3yeis7MzRBxPJruqFgkffvRRltqT6RhGedimyBIjfn/k4ZdRhLHzbJDQF0rhFpMUDIIhIjSJMRYtV+Hy7LysSnRpkmUxbS4vry6fX1qb1KEh5yJzFX0jXMZgG0wrl2dJ5qwxhBxd3ThDGglZa22SdHUfwG0T6+Crtq3atmX2LHWIVdv6yGQT6zJmXm6215vNZDIJaEyaz7LieDo9PphuVstifvDg9IQQOLShbiG0J6dHvmzfe++D3/jWe5uyfe3Nzx+9+uZoOn/19c8//MEfODw6zBNTLq7SvChGmWGfGg7ogUEAQRBIA00BYQYGBCa7X08N3OElUMC9vGEFXXzFKITCiZjCuMSYCiK8nLIRfUQ2wccYOAq0MfrIuzZsG980cb1t6kYO5+MkmwA4FicSKYpBDD4GBq2QMpCPKIG993mCITYYBFQW6hb2z0gU9kxEKMRtjBzBYfCMdk/WVRApICKiAZKWbyYxk5rU5U1TCwElmItxBog6czZj0KSYumQM7t70lEG4lwCt+vKiIK3rajimyKzoj91uVzdtFbEJoSyrytfrzXq93da+aZq2DRwpF11eEQDoH4nG0rCJ3KpW02d+eRQpqwoNxdh1Pfi7kem/v20ANQwhJfYYn0kxiiBNDM5aA2gI2ZjEOWbMs8xYS4AMAUQiAApoq2TA4mqioi63XZkyssSuCwQiLEJ3TDdevDhyK1Hh26uhDXt/PWApALT3uA/iuoOm7L9Fbv0f9OHyjbEO3qQyKtWqpZk7rbYYOQ3BukSoq/HroIwiIL0+UgcvvElbBGG/AQK0lxTFm5ciEjgy812w4AubsWb4xAtpsdx+If0h3IYn3s4r7jSs9vpaNwbnQxahp6zRs64Q2COyhi/ZVjdV1QGz2O369sntH7wiH3RTgEdXyZYbKSrYq3wDdBIreoRJkqjkjpYSNUoYDmDANemm6Qf0/BMdx9p7kb1Nz3SP11sMqaYmlhoBbDYba0ye5+WuVF7KZrMpRkVdNSPnmtaHGPM8VxeXPM8fPnx4dXW1XC7L7UbJptfX1yGEx48fK9LDpvbx64/LqgKAqizLsmy9Z2bvg5acF4uFBg3e+xiCyTNmDhyzfLTZbvOmFRDvW71Y9Xob6jpDIkJjULWJh0HeiebvbdBn1Ih4F5C0t8XO5V1Qu78vKc8oPmTIMKHXPEGFyaLRxwyBfGQB7JuExlA0iJ1qT/eXAAKEmKeJRAZm4SgAXWEEmFCsAQFUCRtGAEtp6oosqzLftgEk+iAMLD1jrzt+BFUoBhASM7zFwijI0Omov/xivHTb/ulqeP3Jf295+hcngIRkLDBYk1n3YD5JEE+m09PpdJqmkyxLBCL7+cH846dPqqqJzKPJxCXpeDZLkqJuQpIkSULOWWOpEzUX+Vu7P/q7R38VAP7Fr/6Df+Nv/wCBMEcwmLrEGkKIWUoo4gAcCAQfagaDEAwQ2oSiRJGgOARE6oy/EUAiduMEQVAE3vq50bv//Z2e0e/5D9+mBybJshB5lKS1j8WoGM736upKI2ZNMIhI5fP1YTw9PdW+ytnZmYbRJyeny+USANbr9enp6enpqTHm7OwshPDo0SNjTJ7nmqUbY3S6SLPMGNO27eXlpY5b772G1F/72i/99t/xuzUc1z6DVvS//e1v37t37+TkeLFcaivm6OhI5wFNJ/IiC23btO1kOtttN/rk1r7NikLtX1ar1Ww6BcRytwORPM+vrq7Hk2K9bjUXquu6KIqqqg4PD7MsUwzbeDxeLBZ6HQBAexfTyThNX298S8a88sqj1W57fX1dt818Pm19W2422+1WWz1kzNHRka6OSqZ6++23de7V/EovUTEaDUUWVblRmtBoNLLGpGn68ccfS88xc84pJvbs7Ozhw4dpmm63W0Xi6ZXURopiwHS21/xns9mkaaqUGOpsoybPLy/LskRE71vsWS5Pnz7dbrfqwlkUxXazCQDOmeOTI4kBDLkkdcYKobqeqclfp3ALCIAkiJ29BMEwFPcWuH7d339LFEtOBKytFEadS/ZLfP/67/36C8/rN+AX/3c3Px0B/Avfx0P/m9puTbEVLP5T+Ju33h/f/pQFsACKvnwE8Eh/+wvduw3AL+39rQP4I9/PMUVQyjciYoi87zzYeyqgIEjn56EFfyYA14kd6FSJd0vCAADgy8ZaV5dNWbUixjNBjE2MdYxB0EcOIi7PrUu9gA9RJDLgxFLwgUmQXOSobUDnnHUUJXjxKIgdsbbbEQqM3JhZCIwh68haMABghKwYCkiEhgwBGUBARsSUkkBY+no4cAtWRNrYOnKUECAyYeTYRh8lEhA5Y8hYIhu8xI76mIKMklRcYq11aVqGMFwKFYkJMXjvOTKlOQtG5iBxV5XrzWa12242m13dfHS1rDSlqaqyKmvvu5q72gfeBhMNN2g/g5D+DuhvlCN+czdvrdgvLX4rlLEJAdEI4AAnE+zXzo4Pjipgxmq1Jzda493u7hbnv8PGrMBtwCFEQdUot2mWjThS9MYY3R0ZMmIsATMYQTIGDQhzDAyd1QxyZK0LawSiVdp+de+CbSISiQosVQk72jtaRBxY64BACPsh8v7B20qMNarq4AGArOmCKYDWN6S8WzKAGGPQYzLWehmM5GUfmiIIxpru1wKkd46FiAxRwyyDABF3uZ1qjcRyF5uAPkYlYaiVChMKoHXQ41O0XNqnLehehoNChRhIFObIMfJmW1ZNm6R5jAy9/zoACHehOSIS3QDlAV6gQDEPLSsCsM4WeZokiVaZRSRKMOq0HYKuQ2maGtyvSAGADGkA7LGpNeIEQCILAIMFtXKJ9rOR1O7VYEQ47Am07wkl37nT0d+I2IbWh9b3eCQCBI1vFIU1ZBFt2yLZJLUaVfvARJCkeZLmOgzSNC3LcrvbYa8DBgCDzo8mId3MkqZ9sXajRWJFUrVtO5lMyrJUvpAGNCpYpExTDb/SrAi7crPetN5XVZkXBbbeJknVtGRImbsq5q1tDRGpqipNsuCjSxNCU5V1U7fj0YSjbMpNkaeHR7NPP3kym88BIEvztolnz57n43G1q1579Mp4PN6s1pvVdV3u8jRhZgRa1B4ADYvxIcZWgm9W1+2T8zkbtDZCdAmYVMCgoZQZWBqRCCoSYciKRUIKpM+2aiVpTWIAySh1iogMOWGILBG6wamXKEaFmgMICbMxHd9JRIzKVAGQQNSRpkQ7YRY0aAGBLRARRE5QDueT882GnKTidvWuiW3mktlklAJkebaVeL1erOOrRTE1sSXiIjEAVpAYiJFCaJnQOsA0yjhgCJVpiwQ3u8CMbeudcyLRpmnZVAAABKzmYNYYMAwQY0DhxCSMEkEYbgSV28gg4pxze56LqlKgr+k7yYL7KEKGrEkIEqTjPE0JU2dTbEOzrCGVaBBEYvShKTIzn86yPHcucc5FZu9Xk8moIchSSxZ29aatmyAxHRW/O/+rw17+9O/6jT/zN3/Q+9pSZl0Chr1v8+icQSccyqrxLSTWpM5muTOmqavALAFQRWJVVIkNMpgoCZpd2zYt+EC+RYvJV//8CDmOi3RRPf/Br/xwVkzFZlUUm6ahbYbDWC9Xo7yYT2caDYcYVIR3u90qq0GhjK+//rpqgqnqtyY23vtHjx6JyHvvvXd2dsbMDx48cM6VZalFa30MR6PR4cERCJZlGdu4W+82m83R0dFP/taf/Ps///9GxPv37x8cHFxdXekAXq1WDx8+PD4+9hzPz58Jc/BN8A0RxRAun59bayFGizQ/mLcxXC4Wy81aZceDSBsDEK7X67Pz8+gDsiTWcohZmomIsckoy4hoPJnps6OdW2PtwcGBkt2Xy+V8PlcW+2KxWCyuR+NxlrjJuMiK9PTBvbqprxeLNElS45qmrepmW10DwMlpbEJsm/ZgPrcuDXF1cHjkvT8/P1dbiNZHaQMATKfTxWLRNI02u/Mse/rkyaNHj2bz+Wq9ts4tVyvtcY2IXJKEGFVMTAFy6r9ZFIUKG7CIS5KmbS+eP2+a5uHDhyLCMVrnppPJwcGBb9vDgwMRef3x47IsESCGUG42TV0VeT4pRm3d1LtScWWNbxa7Rb3Zfe5zb5YQW5F6t6WmStkbF2vCCBhQRMQKINhCXAFZgbZp2kjoAB0hgxgCQ+iQDEEILWLHokQc1kQBgJp9R703CCzIYl4ekP3/t2FDxh4LhkMRHTSB0WzPGEZo2ogsRkRYGsGY5z624NtpPt74qP6OMfgo3FWclPbmcl/Vy7K+uLh6/PCV1ofl5eV6uaybel3VV1cXSWJPjucuAQn1LlTGYPREzmVpxsJ1aK2xYCgCGwRjrANJR05EQMACWSBCDCG03u+gjJFd5uqmBhZfe0AADyDoY0da0OAhSiAklsjC4yzXWkCMMTaeiEYuJWNi3cYQIrIxxtk0IQR1A2T2IbIwx1hVVZbnIahojTXOIZFD8G2bJImAVNVWhWKscJIlnr1v23ExQnIZ27mdmtND55wxdrXZRTWbYWma5npxvd5s2ra5XKyWdVzuduvNpmVfB1+HNggH4ShgkkKQQNFGRNo6U5dJjqShOAAYMuqI9V1AYCICkKTpZlf5AJmkKF4wRopMCOgECAwARaEoIoJW0AgahxR9DE0bQxAWRmCEYNAg8C1/EA2bO8CEGKvEjC5LJgsxxBDT0dj7NksTG4mQfGgjIhggYzNw1uUACBEQSZBd4gjRe99E9iFq7KHCKhrjhRBYmFIT6ogWJQgIJK5rIAsAcwRQyetBjAo6rg0ZwRg5Rh5C4m6zdds4x0QUOYoIyU1xHUCYBCMjRw2StNALQvtQjf0bwQIqJ6xvKPOGACUEBIj7giKo4W/k1nMMuTGMYJCsS7QBFDsusSRZPogSDfC1btf7bZk7Q8JLBFHGWRAmRIVXCaJ1XeOYiH5zU+tLGnIDfDaGoIwOIkqcS5xrm8+om+99w+284mWv4YVe/Gf81f6P2pLTY9MOSV/XJ0Wd6ucH2qgxRgDyNFMddCVqm54O0batCnd2Xs5JAn0bEQdyMICG3YrjUmkIFVTVdAj7tiNoAyFG/fx0OtWgvK5rxWFHgTRNbeJcmiRponsx1o6ybLlcKjBM4zO9JhqsTEdjBRop7kJ9rJ1zTV1F34hIlqcXz5+7NCuKYjKZNk3DUay1SgJeLBer66vD2UyZtRdXV2STk6Oj1CW+qZMiDTGybxNjMpMGsZ0vcOf2SKgkvH6YYdQRT4w3PZbhsps9GcHuhdxqxGn2NYzw/a4U98x1AbKJG1qPquAj2Cn9CAOjiACLCAuKkCI2OiEgQjJISITOGEdkLVprtlXVtFGN3QnJWsNIAoaRfFsT2cS5cVFElrpuQ4wxeI7B9YoRgNiBu/rK061HFBGVo6LuRntNFb003/2xub1Jr9OHCEiQGsitLUZZlqZ54vIkSRIDIBIiSKql9A5CI4FAEosGxVgkQhAOHAIHHwLtAa76p8k0VajrCixlRZrmmRVwBq0x1hgE5Bg5UPAeJKjRJrMIA7MIc4zMkZkZuFMu4w7TC4NgzeJ6cXh8cu/+/cjimzZNUkcmSW9wpFVVLRaL0WikonbaCSFr9LyUrNW27eHhodIeQoj379+/vr6eTqdPnz594403jo6O1Djl8vJSlSqSJDk/P9dAX/XEVJBqu93O53PVq/j0008fPHhwfHz8t/7m3/rtv+O3L5dLfbSNMU+ePHn8+LHONopA0/urC5iKZr7x2uMuUY/Bx5CkqcpnpYYKREHIkpSItGNQl2VxmgPC88vLg4MD9XK9vr5eLBZFUUyn08lkYgxOJpP1eq2OT5vNZrvdqmrZbDYLKu8xHqOzZE2WZ1mWjSfj7XJdVhURCQAzK6gsSZLr5WKU5YeHhwpNnM1mylr59re/7b1/9ZWHqskRY9ST0usjIt/61reKosjzPMuytmmsc1VVjUYjVRoYnnRdvxQUnmXZ+cXFkydP8jxXSUPNvnReFZGB2QIARKRclM0mXl1eZVlS17WqiqksWJZlR0dHlFJlXOLShmNkb4jSPB1l2LIpV3ULEmL0wozEKMwxxNCgCEEUsF17U6WERAh75th3qNUOdd/hF7/Zp/X/Z7d9VilCB0TXkJd7SYKeUqSpIbo8Y0tRJPrQUgWJ895DiGisQSORUbAr3xpK0rSt+dmzZ09OT169f6+YTlvflk0dmQkBQCLHGIIWtgCQOQImQCja3VFYCpFa7cTgcVCC60cv9GIngkKWHDiyJsY44Guol9/UxasvBJP3nkwizLAHPICb/+4FWPqKlWAuLKIvWZgMWWsBsfUevN9fHFGlwZCAxOgpYEIEiJAlTq0CxHvftsezaV/6ZyJ67f5p7MzcgrPFpqzXm82urTfV7mqzulxeP7+6XG3LVRN85Cb4tmnV7EKJ+ILI3IenpBJWsdM4Zbapw+Gc9toyBJxYIxyrqtptd0SU2q6L0l0HHJ49vfwGkVDxUagkagSAQedfviuCGocwo4sfYgwxRmONiB2ikf0/2H+0tRErIIIShZu6DiEQ0aCF2I9wFSlDArJo4i3QKb8cuCj7ycSd/M7OZjOdc4cwaAAgkcHhD4Z4yBjjkuQO/Wj4UkHwzDGEtm19CBA5NVYZ2Bwja5/JWu2Mi0hZltvttvWxIUTm1JmsyLM8Q0TlXINIlo6GHd0BVu2b2r2YqKjiQ2QOHHW61+CJbsbT3QbT97fpQ6hBT1VVRKQ4it/UN3wGx+BlB8m9vMOLH7tzagYTTU9lEM/uOyoa/WhMP1xAYwwQpmna9pSPrjTSn6OG78zsnFPJf8V56weGzoCSvIcc5vDwUPstzJznedu2q9Xq+vo6z/OZm+t+1RtES79DG0F/r77a6nXQydeI6LsaVE2nU+/91dWVGlAMkj5t2yqKbDweN027XS99CA8ePAA8X212aJzCXn0UDbCOjo6qcl5uVtPZNMuy7XYbY5wfzu6dnoam9Y13zlTrzW61PrRuMso268RaDe4TIkvdA00Cqo53k2kMA496JWI9EX24uLdlNC+MHe61wrAXPOA9bjrACwwH1ULuQZMhsKAwf4fEHI1B40CY0Fhrk8RliWujS51brVYnBwdpYUHLIcwRUROVLMvIOBFxSQgC21IzlWitRbRJjFVVWefi7VnqRZ2JYXj4PbLckMt9RjUKAA7/rcn1/6jDND74ublMJUYGESQ0REToElMUxXQ8zlOXOpsmFpAlREukZRfNk1WaL01TMuTIGWMkshYdvmNFLE3TXRXato07sIkpRmMXwVpwLnHOojAgB2HVHgAz3C/g2DnPxhhDiFFuZAeisO4MDQHQ0dHRbD7Ps6xpmmyaZ72hx3AMWm5QN4+e8hQEIcaohQZlmIhIlmXz+byq6rqute358OFDVSt+/Pix9k+UNa7WK6qIr8UFbSCIyHK5zLLsC1/4wmq1evbsmTEWQLRv8/jx47OzsyzLlIPx7rvvPn7zDRHRDu3l5aXeYk0zPvzwQ2bWTEBRYSpkbJx1aWrJ3Ds99U07nUx0JmGQNvgsy9QpRYkiBwcHOu9VVZXn6Xq9VsFi0y8uiOicKzdlmmV1XY8mYyLabLZlXek8cDSbA8BoNJpOp90BGKPsFHXSnM/nKvurbvE6WWn5QMk5ii5TuN3V1dWgK6DWkA/mcxFRQTBdxXUUaay2WCzUZEY9VZbL5b1795T0ooEgM2/Wa50r1uu1smiOj4915MznM2Not9upHrT6VB4eHtrETubjeradHxzM2Ptmt/X1+uwp+51xNEtcw1KzVNEjMhM1HHbchmgTNEYkCBJLJCFhEojfR6kA4Of+y58AQB+YRaJAZIgCu6pqWp+k+WKze+u/8rt+5+/72W++/+5/8H/+i03bSvDEkQILcwsYRGKIbQw+ei9RyW7CiKYn6fbPo+2xJhCDuVnS+5VdJ1l3o+GusOEf+IEfTJLk17/xjS//4Fd+7Ld8ZZ6NtovFenktwkcnx/Pjg0j46HNvH92770YjjxBEqqpOwI6KMXtfb67ffeebj05P/ty/83NQN5Zbw9ExA0BrWLWeDBKBmhcCAKAI2ZtoDxHjHlvI4k1buDtSfY3QkTaRGcD7pg58NJ+Ni3ztYzQeiNlIbGsWQnQDcs8iQmIk2IuL86997Wur1x8/fvWVk/sPDg+P3//owxhaZo6KnsDU2U4IJ1g3UGR1jKlMv7VWvB96I2omqHOmD0GFZWVP0/LmvHrVSv2q4ZFEREUT3GFyvrgNWYQeVZ7lemBadtFwawBuDB/TvVCvpujbRp846EOs2OuRrlYr6EMmPSk9ztnY7S43J6m7Pz5FayJCAG5jbKNvI1/v6rJu1uv1Zrd9cvbs7Py8bpqyrtoQ1rFGMEhGxboFwVgEAEEbfEAhuAGodekpCXDTRB98VgMiGOrNiO7mGzfVfdJEDLvihw45IEvGEFn6DDn+O6vYvolZTJME9/xY9j+3r/AwLMr6Vz54ze70WdQP6E0PvYe4pqmfvY7f7CvGoR90d0R94YtvJUmaOAed+SiHEEMIzCpWF5Ua2zRN09QA4JxLkjTLi++YqADCpq7L3W65XAbvBSDP86PDozzPQSQIWOfU1kpL8tfX11dXV5vt5mq7BBEkMEU6ms9T5/QSIkti0v0rtX/0gb+zZBkAOLARuhNogy9Go46bvmc0+eJd+f42BLBkJLJv2uiDTRODBMxt3cD35uSAt5kut4/q1k/7mQndphy9UK3eS1Ss1VU8z3OtaN4kKs5J7+eok07btqPRaDqf6ZebPSln7CkrqrSjC/lwMZMk0eBGy4HqTq1gEm3IWJsoB456RYGiKBR7DQC6nKhJs8ZP6/V6Op3apNM12u12mgcOpccsy3TO0gRD8RVDy0jnrAH6AgCqZFqWu6PjE+99nucsWPmgmqQKKcmy7Orq6vLqUnWKNpvN+fm5NcZZu16vy80WCdsqWz+/qC+vT44fjGfTXZkaIkNkyBljQSwRg5AAMBEKD4kK7xPrB4t6pVGFIAMf6bZ23nDx9xOVIc/R9oWxd/8EkXreErJ4kS5RuQ2/RUALSEQWdL521lpKnXGO1utV2zaS6xiW/SGqB+y9L+umrhuETp2wCNIESJLYQeqDB7r1V3eGqA7FO2IPQxGBvxt3Zfo/cyzgnINMZ4BOroAMhegBUmtNlidZmqTOJAoksxFFACXGyBIBhSUiYpI6QgC0hBRDDCGqWp219h/QH/9x/vd1j3/5yT95nqxc4sH7qq6Syo0nhUlSa8AmzlqDKChsDaIhIGDumC4s2s7uJtgYYxSOIhEkigQtDyEIosFOsGs0HjvnDg4Oi9msbpqq3g0nPtCsx+OxKoNZa42z+nxp39I5p6IXxpjdrtQWR1mWRPTw4cPnz58fHx8/ePBAmwbX19dDBTTPc9WVOjm9/8Ybb6zXa+1ULJdLEXnjjTeeX10+f3793nvvIeKzZ88AQLXFlsulgsoGIyO9xcYYJZHfOz7hXtZP8Z/akBnbsZqrZi65d3qqC0SaJD7Gpm1HRaaiW8ysms7aKYoxnp8/S9O0ruuPPvpIiSvaz9Hov24a51xTN+tyG7SjLtL6dleWDx48mM/nGjYNjRERubq60gRM5xltknjv7927V+42gyAh9hLhOmMg0Xw+R8SDgwM9dyX1OueC93ojNCsDAFUpXCwWPgRE1N7LdDodtIw15NpsNnme62xWlqV+w2Qyjom7vr7abrc61KfTaVEUiLi4XqZFUu7q3fbputlyrIu6KvJ0NkmsxbqKbevXEgxjy4zsvVAl5JmnkKCgpsokwixMEJmB4PtCcwkRogCyoilglOdN06BwnrgPfuPXZuNiud1wVVsEJINARFEA0LDhGNSBzlgG0xeKoUXiPtsHAERSVBEh5CYxhNZaaywSInTRGxJ5YKUJqoGlS5IPv/3tzWZjiD56/9v3DuYHX/4hTJN7r72aJkmSusl8Nj04OP3c51yeV0EtEiTEIBBzydu6+gd/5+988K1v/YJvoW6kqZGAWPsizMLIXScY9xkEcnfavHWpbkNChoBO21UAwECIaBJHQr/nZ3/f7/1D//Tf+8Vf+Plv/MOn5+fXy7WxibF5ZBGE2LFZIsRgLEYP51eXmksfzg+MoV1Z6mQrICEEZjes+KrJwb2pKPe68CJievNyawz2AT0CROayaSQE/fM7c7jeJ61HD3gBfb5C74/+2ZXcIUvhXvOmi4D7sun+Qe4nKppTaUiTETrn9Oxkr8ODiCw41E+hZ+TWdU05omMkaKMvq1oQTOJUAyohfHxygIKADwAxMtdto2LlVdNuQ1zvdleL68v18mq1XJXb2rdV2/gQM3ODCdoHCyBwam0S2URBFCQSYEHh7sN36877ebjmFYBkrXXk0jTNkzRLU4gvFc3AG74GECIZIhAUMmhN50VGQzQy/FHci7ERkQhjjAoMGC61NjaGbkefLzTDYPgew+z9CP5OZmPffPN1a521VmMDAI0/tOznRSRG1thuV+6YY54X49GkGBU4xFKdxoUmCrioqqvnl1VV1c6Bkel0eu/evdFoRIhNiMZanZTzPBeR4+PjJ0+ePLs4X7ZV6wMb64Fcmo1GY+dsDMHXnqDTNnuxurlvq6Pi48OWaDwiwiJOkiRxeh2ttfEFt069B59dQhIRY9QlxwPAIMkFEklQfIQQLSBYlxhHgNFHBCB3w85HhH3CId0K4G7dyn2Aj069w1vG7DNbboVxxuxzVG4dvO7K7rmYc1/MBehqEoNMsGI/QFW2Yoy9WJnOMsreViyZ6uTou8YYnQjW6/WQmdyZa9o2KEpEex0KBmNmFfDRc1b2qgbBnYkKGU2KlACj6ZZOWNpv0fTp8vJS13Xt27DvOF7KuNVEpWmasixBOmcPZgkxLhdLAczz3KV5jPH58+cAUO7K6TgnpKap6rou8ix1ifd+NBlLiJbBBoE2JFlm0zRLR3VznWWOyBlyzJ0EuAg4a2MP94K+Cabzo/jQ3+JuGhraJqDIY9TJ9Gb66L/mpiEjg46cfl4dIQWBbEQEBVACpmnqJahwh5Z0siwTgBjZWEM2kRiRDIBYaxJnmJNRlq63VQhBd+dDKPI8SVIWakJ0zrQ+GmOctYiAhJo6JmkSIBZFUdd16Jt4NwiSvSd0WGDg9gz1HZ6H/ZHcnzj2yt2IFGOUjvcOLMwMhjrOHhEYi9aSNWgM9S6RwVoigrZtYwzWojFkjCBSZCQiz8wcrTUuSRCRRX7e/PGfiP8+APyxR//J/3b1u4lKAPCtDyFwZEzQOCMALJJYTVqhSxRjf6ZRWCTEEGPoFmyQKBKZowIcCFnkl/87TwHgF+HsX/z7P6NSVFVVLnY7ldO9/bybLMs0SNXHpyzLxWKR57l6pOoTrXFzXdd1XetD570/OTk5Pj6+uroqikJ7jx9++CEA7HY7Ff9FxNdee80lGTO//vrrT58+XS4WxhjFVcYYLy4ufAzKyw8hKIRpqP4MRQf9Tu27jsfj2Xii0mExxvVm3batelCqhu/i+VVTVhwiM6vBT5pl8+kMEGOMZ2dn6r04wNvKslTlcTV5zNK0GI2ePHlydna23W5PDk/m8/l6va6a2jnXlqUWU6y15+fno6LQAgf3BlBnZ2cAgNPZcrnUJOTo6EhV1DXBa5pmvV4rhi3P8zRNF4uFEutn8/nx8bGuCFrp0MSsLMuqLNWPJU3T2WymkySr9vpotFqttL806CvqY66rpJaNnHMD8EGbw6vVylqr05oi0HRbr7ZPPzk7OpyrrXDTVHG9TjOaTLJxQgGNkSQjLIMvQ/C+isBZlgZWKgSCI0sE1Gm2asxN+9CDW4WGfVXQWzE3krCG6gxBxBJkaUKE4yxd++bp++8e3r//+ddffe+jj4QRGJASgZiklmJADwQios5y+j8ohaWDRSm2U7rCF1LBaACNMUidTqY+4QKgjNMu+bcGgcng6dGc0MQQYozHpyfj2aSHeFgANGnRsDStL9saiKwxiJi5NLbV8vKCmmrs6Of/4ddm4xGhdJVd2ZMkUY0QJPMyX47bARj3kuSCoM2j/keMEQg6k8O6aUYHR/dPToLN/qmf/Znf9uNf/ua33vmP/5//+bc/+pShIZOgtQEMx4ixZe8JgAiZZbXbPr9ekEuctVdX18HXyhclIu6h9UN1EpQ627t4deVzBOMsGXU6Ho3GoyzPAcC37ahp1SKJmU3vy6Frrr7Qx0Gzi2H5a307xBKDuCUzA2Lro0sTVUgf2iB6VTVg0PV9X/cce8CFflhnPO6174cHynuvF36Q5Wx91MlKoxT9Bmb2oU0maYgxdanfRR8DpcZawyJpkmAAiQIghMQkLrHTdEoHUwATAkdmz7GVWHNYVeWzq4sPP/n44uKy3LYSmbkniit0wVpHNJ/khnmaZIl1LkkyawSZEQTFISGi6mqoppZeT0PkDIXArffHzHUbfGCyzjpHZIJvY29JBz1So39GeahRYid/IYaUp39zPRFvWSKVVUmkFw1EWICNAcAuO9Cbrk64AwVAqzN6GF0zoP9CZlb42TClDFG9dKlX58fAffLTZZKPH7/Sw4BIVAAuhBAjx9D6FhG8D3Vd7XYu3boQwng8PjiYz8azfW+TGCP31jNhuVovV7qPLEtUH1OByGXdIJGK9yu0WgtjLku2HM6fX4YoVdX4IER2lE04xDJuOXihWy6Kw0Yvb3VJGJpjnWwC9MiTITPZT/ThDkTyhW24i96LtZ27nN5UDiFGDt4bQGOsQcLIhois4btfsvca7lQUbnauy8zNCLsVs70c33VLWuDWF95oRIvow9wXJyRGUFNqLcwrdGQ6nSKRb5qhqcLM2rLQB0ChdFpN1JYFEemXaDCkPQ2977oM13UtgnVda/VX66waZ2RZluYZESkYTM9L6zG6fusIVaM6PQwtbWriocevFVzotciWmy0RjUYj3cXZ2Zmu684533SF/N1uu93s2radTGdFUaT5SDPzxWIhwlmWW+dCaIui4BhXi4XL03v37qVIzgdcbdLJbD6bmSTJsvF2cy3i+hGnwW03deINMLTLUqRricCwVOCe4pnWC4YRR2Rwr7ewn50OOSQiCgD166MAgnEGjfIOA4u1GfjahygABIiAOulHrhgQreO2EgBmMMbkLiFkz8ViWy2Xy1fuHYbQusSITuiMIgF7IXaN/JxzgtTfKclcUhTFer0GvJWo7I/e/e5QjPFWEtNPYS9W3egWZE70AsUYY9cBFmaJgTFzxqCxZCwag8YiGr1IwqCOuoplDUiQWkvGADAS6hX03ocQE0dJkiRFbtPkh+u/MBzDv/SDf+vf+oXfFgDLtlksFsZhenhs3YgsqUAyQBzAscN0rMRQ7jiCyMyRhbuOinpnwLf/1cWwl7/wU3/jp/hniSjJsqasNFEf3h2PxzFGlaxVinYIwQTje0N0Ld5778uyPDw8JKLZbJam6XK5VFtDZp5MJufn5/fu3VNZP33GJ5NJmqZN03z00Ucnp/cVcZTn+ZMnT9abjSp9M0iWZ1VVvfnmm0VRhBBULk8LCtuq1JYC9/J9WnfQ9BURN5uNRthJkii7zHt/fXlVVdWoKIpRURTFarUSwpP791Ck2W31TLEXuFutVuoVo2qEXeOUiIhOTk5cb/Su12q1XNbBR5F8VGip5cGDB8oJRsTdbqfj9vz8XBsyChFp2/bjjz9eLBZatSnLklAmk4keuWJT9XFW2t7Tp0+VvAcAyqJJ0/T+/fvlbqfms3ph1Ufltddeu7y8bNpW8XLb7XY8Hs9ms91up1peaZKMx+Pdbici2h/T/HC73dTb7Xg8staqKrS2gxQTO5nO55NZ6vI0h6aWNrKzZAmjb4skdYCOkiKaPKauaZZ1FTgENoFtjJEZiUxinSAKomrt6iQF30lilehmuewc7Ycf1YKPAQiYJTIXaRoZGICa5vmzT2xGP/WTv/W1N954591vX5xdEblY14E9ADmXWOsskgZbukplSubd27q5EWCWZMORqVaoQSBDghh8AABQBDsZ6FmRhownSbNsNJ2kMAakJEkRsNzuPFPLYgDROCIAkcSYZrslpI/f/ZYv19/6tV9xJCSBUBgEeuW+vcdcDN1yTuF9F5vbfn/7iYrsFWIFAMAI9F1iayazqXWGCBOy5LLf9uXf8vbjz/3n/8Xf+3u/+EtX27KKraA3xkDkNHVERiJHHyPz5XpFaXY0n2siR0TWWGOMIaPPgvfeukT6doTmGEPXohgXJk1ERAyCQSFEQ0qpG0okusrHXj5Uq09DZjI0//Wbh9ao/n6IRBEgxGDY6q513uhDLIm9k9tQ2xrGJPdYAwDQHEl7yCEEDUgAQJvJCuPUi+CSDKArAoYedZymqXOWIXjvjbORIyGmzhlrY4x5kjaxZYjMTNY4YyxjjDEEL6FxER1AChAMjl1ykudvnB7/2Offqtu2raPy8gzRgG3Recb7JjEmc0lmDckwVBgQIATuecXa2h2GjSX0IUZm41yM0LaRBSKzsLjUaWSllVlN6jQFjr65Ub2Sm+EmAKv19ubhvSO3lXThygDaR0RrTZansuwSwoG3rDdLQb8AcEPYTpJh2MeeR6C3rw9yyACUbQvm5q3h5iKizfIU9h8zBiJrmJgNUgfsE2HvfZK0iOCcdc7t51zGUOI6e4QgeoVDCIFFkiQpRiMtPiFA3fphslFAUZIk9+7ds1lSkml8vL682u2qals1acGuIMCUbEMdSWiIbG6u4st7IPsNErz7Vndp6DcD/SIiUVdp7GjT0D+HoaqHeEufWOdcOhrBi2DD38S+OmrQZxyhrpfDj98xl3txGwrSRIQIZJzrzdQVta9Qh1DHwKJqWtCFbsH0xqjUm6RKz5aDfibSyAn66oWu6EpWqaqmaRo1WSMijSd0aUdDd2JfEdEXm10JPQJtMpleXV2WZfnw4cOBV6NZjSa92irRwEvnJr0dGtgRUQg+hMiizvQmxMjCKm2sbSXfVIvF4rXXXplMxpZQDxJBfEBkKcvSphlU9W6xnmeFs66OgUxKlCASiEUgJfMp9Gt/BGBPTRlSENgbjfs3KIbuvmtKuT/mtfS1P1Swq11pmaT7ta7rKjFNgCKkXHlABAZdAEajEa53PogAAhIzxBgR2BjKjGujG41Gq9Vqs9mMU5skuQh47wWM7rHrKCIPiYpzznnGhkOM1lqXJLFtXka07fOKG0OV/Qul24tDGhFRDQYQEckYa517/ifXW/DPYXv0l17fwwCgtaTpChESARlgBqJudkAGFC1ZkjGqqyHWWvFRqVlWNeYnE5MmUN89/jRNDw8PF6vrsiyroi5GqbM2AocYiQQFjFXHyO/cixcAH6OP4mMIMQSJL16mg8NDRLy6ugbnsjzH2wLkDx48WK1WmkXoGkyr5eHhoYiofpfW4Jm5rus07Xx+lEimzQFV8Wrbdjwef+5zn7u8vNxut8p7uX///quvvnp5tXDOvfXWW++8887R0ZGCKBARRJIkqZumKArtcyZJcnZ2Np/PkyTRr9IoQSu4igNExFdffUU9W8uy1K/S52633Z4cHWn16mA2b4OfHR5keY6I0psnaBlCl4CqqmKMRVEURXF1dbVarfS8lD43Ho+ttZvlpqrrtm3zvJhkCVmTFUXbtixSrtaKTNB27tXVVQjh85//fF3Xygl5++23Ly4uNIip63o+nxPRZr1Um5cY43vvvXd0dGSMOTo6Ojk5WW82g0g6Ec3ncy0JbTab1XIJANoSUZTaxcWFpmpIpEwVAPj0008//PBDbddoaqe3VRlEGl3VdT0ajV65f1+EFeOn2ushhKOjIyITWn704NHV9aXfharaIYeUyCAjcJIQsMTACScZUpIlYMy6bUOIkYREWEBE41tNPAgEmIWg1wCg78luAgF6l2IRAUKx2CFfEEQ54evVVZbZ3/P7fs8P/vCPnJ1dLq5W3/rmO8+vz2L0sQ0h+ABAjACEYA3yNEsRuuPQNdcZa52zZPLE7nshaLKtFFm7V7lT1hoZY60xZDNnDZHJEjI2IgAZEEpyBJtGRoPGGUpSCyH4du23m3d+/ZvNZvvNX//GcnE5mUy25XZU5IjQG8MhAQx1Y01XepM4baIMVW28G468ZEttGoVbbnwIgHB078QZqtpmNinG08O6aSank//mH/6nf/onftt/+fVf/ds///efXDxP8yxaAkTvfdt4iZwkae39s4vnAOCIDBhjTIc8taSVsuGSYm+/O9izCsDB4aFNuv6GSZwgtMGLSBCmGK21o9FIT3lQgKiqytl0WL/u9IFpD7WFPSAixigAhrroQsuIds+UTPaQRfvAECIaIEYAoPxY7sk2GjoDgOYtA0NSL8IQWcXeR857H6MT3zCLlzaW3lobpdZIK8RGbG+JIUhIZNECOiQkkdajUsUJogj7IC1bjlmIpwcH3ocYIpkubuwBSJKSNURWxfOsJsegPYe0oL5rEO8EgWjIkSEQRAKQJCFhFAQRQIMaWekaPQDtQDhz8yFuj73DrDEGDTGbG7Xb2/erDY2apTCzBm/r9Zo5pKmbTKZIpEuG3tP5fO6c0zKcRmUKihlUjEmVZuFmX0P11iKWzNLzy/SwjTF5nud53sm5Dh3AvVaRDBmwprNt2+qCEVov7sYDm/e22A8+HbUaGek3ow6IPjnmnrKfJMl0Mn1weu/y4nm12rRlXW42TVpwPk5dCugCBn7Zs00vT1QE+uoyyO1YQUe8jvI7d+UzNmOM7weN6XX3+vpBd4BakNAn5w7G7De1/aYO7PveBWqjCRPNRjRMBwDloweO4+kce7EOvftDM0op78PJwp4Gg45OXWJViFBngdFo5H1UpIRGMPo4dSpAHDU5gT1tN/2NAsO0J8Mch5lI66Ad4ihJJpPJwL/33mu9UzOink9cxRgNmfl81rT+7OwsBJ5Np4Fhuyu99/PDXMsDp6ens+m0adrlbgsSJ5NJniRNgCaGzWZj2gCrzdilp4dH4/FIiNGl1iQIFqDjpHXuxEDfMVHRsxPk4Tf7t1tEPPthbhK51U58MXbv6hOGjCE1TmFAFoihM0nqUiEkIgJEYdFK0mQyobPnbYjgLKKJ0Xvf+raNWWKMOGtSlyQj88knn7z9+dfbtnXOsveAgmT2imeMSIlLgKL3PomClY/ea/ZS7ynqvrgN5bEXE5XhLt/5E+wE13vXVGcv/uR6ePfv/rMf/pH/29vgCEGsc9aStWT7lIqIABgIhHH/XgxEQBGJIXLrYwiqfK1lOfTtncNo6joS/du/8+v647/xtWMBiCC+qmNis8TqpSZD7O+Khg1biMFH8Vr6BJEXShKr1eqomN+/f29d1WfnZ4eH8+Gtd999t2maV199FQC0qI+IxtnpdKp8cQAYjUa6tIxGI+0AK5YsSZLj4+OyLFerlVKzRGQymWy3W31wROT8/Pz4+Pj1118vy/LJkycnJydpmr7//vvW2pOTE+vcBx99cnV9/Uu/9EtvvfWWc24ymTx79kxVxTT9ePDggWYO4/FYMaK6KLzyyisadiiR3RgzmUxOT06ePzu3ZKbzmYisVqvVdjOdzw6PjuqyCk2TWKc4rsViMZ/PZ7PZarVSspyKBDDzoDyjldeDgwOt3pV11cawLcvlel2WpUuSx49eOXv2rKqqzWaTJMnjx49VzXm1WmXjyWg0evLkyWQyUXjVarVaLBbb7bZtqi984QtKvZvP58y83W53u11ZlnlR9MswKiCtruu2be/fv//GG2+kaXp5eblYLPTWPHjw4Otf//rDhw81n9dSji7zCku7vLx84/XXNfXSPhIAaIjQtu3Tjz9+/fXHOicDwGKxePXVV0MIiJy4nBnun9xryT97tm1itAatNQBtxIAGDKAVNECMOE6TlmPVeu5Z3CFCiB0vG4BAICNHg0Pc91rUE1BjcpVrRSBC0/NVkoQ48nqzePf9d6f3Hs6ODvPpwecw+aEf+dGyWl09v/z444+fPXmyul74uuEYxUThmBnoY1M0ZJD6lTfGurmFoe9al4RkjdkDp3WBr7XWGCJDSea9b9voDQcAIpvZJMkLZxMEAgYRljZmzm58ePcbv7G5uLz45OMP3vvW4eG8aRqb2DYGcrb3aIBkD48hClzRQ5Jbntjmu5HIhy0ysACgESOjyejRo4eISADB+9AyC3EbKcZ708kf+B0//Xt/8rd+/Vd/9Re//svvXJyvdrtQtcaSGAdExiVNGz59evZgPsqdYo5sjKGqgjWUpmmWpc2uHMpGxpjDw8ODg4PdbhditIlTBIQ+1PvZgoQuZ9C4UeNjHZafUWAdJnZFTFCvByMiEVC/eRAIuQmxELSpqF+7Dyu6U+MbUpoYo00T7tkyOpmbXuaHDO5XyoaY0BojkjrnCDFknLokhEBAqctFE1ARZEBEjIAiJGQEgaBJuruMAMTMMTgyRZq5xEUAFI7Y6ZWR6Vd8ltAE7GRCIQorXEIV9cC3gKBXNfbYPN2aINY6AOTIIkTk+pAJNXKgnk10ozTA7PbIqdy3STU229XtwKq6E43ot2m2oNFRlwUwX10vy6pSMRLt6muvLM+zoih8aDVmG/aohwRohjxTGzVKaGliFJcAdtX5IS7ShMd2dgtRO3GsJJ1+NAREECFjUP8xi+IoAGWo7hEhkWFGFjQsmpAEjixgjUvSJFV+CHOSOCRKkyRJ0iRJjTE+RjIhSdLUpbPxbFFMqm1dVW3bePU3tWT2i9B3R/332FG5k4/2M++LX/iCy083zaAAEqjhjXXGEBgEEmGJECNpxqTRZ4yxbcFaq043AC90dL77NtQbEPFFAt6w3YnkvscZcPiwxq9IHdlG5wgAUHiG1i8BQFMLnVmG+oQC0LEXIx6A1/olWlZUeZz9Xo2u/cpZH4/HzKxQLu+9SxPFYmo/x++Fd92B9jwN3a8ekjpSaxakuXtRFABQVZUmzEpCVXjraDRaLBbLxSJLqGmaoii223Kz2SwWi8l0hn3zMITw1ltvBd9eX15sN+vEuZPTYjaZHJ8+OL9+fv7sbLNal8/OXp0eOOtEOrIhkiEkLSECIgihEAhF1ZpEYIBBnZtIYdhdoDz0N4cxKbdliPdumw6zfnm8eVcnO808gQTREJHr0YWmbiIRkRAABBAVUB6lzqDE6I0lJOAobRua1ocQkABEnDVpnl+efbLebIrUWYAYmEwnuqKLU4iMCNZaAXDGOFIiF1vqtHpfNgLl9vadBud36qhAp5UJAIT0ItlXdX4RBi1NY4kMogHpJJuJUGu9hKqTqeaL2rat6xp9kBhT65xLqjZsr5aI8jfoj/7MuHNT+Z/+3d/yZ376F/d3+qd/5B/+ufd+T55l1jlC6JGkWj1C1XcRoE6BFJARBDCyRAaOwsyABIj3/u3i/E92jq7/yq/8UfPb7dXV9VhwdnwCiC65aZ++9dZb2+1WbQfVfTVN081ue3V19fDhw8PDQ3UiUmEoANDOgMKH9EETEe3DGGM0MrDWFkXx/vvv67O/XK1ckqlsxsXFRVEUR0dHSn8v62o2n51fnH/rW9/66le/iogHBwfW2oODg4uLC88xxnh5efnw4UM9BoVXee9X1wsRGY/HiKjs/OPj4/F4TIgqRnR0dLTebq0xk8kkS1JDNJlNTJGH1isZ4+TkRMu9TdM8e/bs+Phwu90OxouKB+s0M7bldrdLkoQMMUdn7Wg0KrKchX3b6l8pmNkYs16v1XVepzKdOo6PjwFgu90y86NHj9q2VuWxq6sr69zBfB73OrpKyNECs05En//857VtpcppGqIp1yhN09deew0QN5uNzlQ6Dygx7/T01DnXtq3eF51ImfmVV14pd7vnZ88UKjafzzXRevLkySuvvJIkqUPX1lXbyHJ3HX0rMRpUHDHE6Amoc1yNkSNbQIfQKr4LhAEYIIpExqDzl6BNHHUIAhKR20bPMjzdtykq2lFB6AwbgKA3awdwlsQQoLk8O/vw/W8//sIP5uPDuonZeJKNi/nh6euf+4KE2Nb1dr26vHj+7Omz9XLx9ONvEYBmS4CgA3U0GqVZGgwOaUAIoWlbLQAH78vVZljSDZGzZAitQTIUNJC1xo1ysZbAolCKTgI7NCQQG99CIyJXZ2f1Znvx5Mk3fu1XRkVR1TsAk2VpYGbs2ckI+31j2SPd0W3IK+4t0yhwy7VPzTe7eAN924BBtGiTZDKdHxwdRWZrzK7cJWlmnfU+5EkyMaMYA4d09iM/8lu//KWnEs8ur99999133n3v8vJ6udqUuy0Z65mrChMqjDHOJS5JUWKIAX0w1AkVQJfmSZIko/G49V689zE4SUgFdYxpVAVUmABzmxIRd+zTVtc1LXxwVOe7jjeMiMMIIaIQI4hYAFR9cJVsEkHrdEFU2okisjSWNdYN1VuNUoZExdw2bNBj6ENaDnt2hF3l3loypq7bobQ6dFqYOcS42+2yvECAsm7Q2BCiEXEi3geTOGRGJiKCCBxZzwsJxVlWNL9CDmJs27aNjIGzSU4GYiQkijE0bdMtTtg5AWr3rasl9jFo6qCTYAtRAJ1LFBAOCE1okQwRMXuOIhI790NSAJ6AFbVv7hAICIBoIA5Nv8Q5JOquAEuSOOljhb562MUVkVvhAABKR7AGR6Ox935Xlq+9+ipqnhkj9NpFTV2XVSkxrDfrGGMM4fLq6vL586Zp0jQdjcaP33jjBs5EVJXlkydPPvroo4vLS8ryNM+mk8lILSKur58+e7ZaLqv12kIQAiQ0YEzsmiLdQVpVrCIIFBy5xCQQgYSgY4uRXtjOBwDV0AyhaogBTdL6RshChMSgtbGNPrUsiASIYkASQYsmupwo43nZzKazJEvTSVFJWMfmEGJh0YDNXBH7Fpj0LFsdstyD+4codqjyWouMHUXeIRCh1v6REMm0wRtnyZq2bRvf+hhcmkTmwd5dUARYsLthSBxDgNg6I5k1IweOfWiatmk4eBQxeYaJbdrWh4qkXi8204McEyeS3gB5b6dGt0Mz2J/q/SDdQEqou/kg3w5b92e6/S/UivPezzcfo/19CQYftP6nVVhELIrCGCOIaZ4iwXa79sFnWWatGY3zDhNvktArfgyrLPXCX0OurEgGlVUVkdnBoUsTNBRCqJo6y7LQxul8FmMEQc3IY+BdU+oNXa82m81mNpvZPM9cUu7KEIIwS4hNWaVpGluvqREJSIjI4uvGOXd8cNi0NTMvl0sfWjIUOYjnpq135batQQCZeTqbLj95ookTACwWC4v81lufTxNLKD5yko9OT07nh8eAsG13BvnNRw++9cu/xiHk04kdFUDWANB4itZV9W6ejz20EQwgWDQkKSUIkSUQQQBB4UAApEox1GUjAxdQerwfOScCgZl9uAXwQ9jWjcaXvmlD2zpjAUyMTSF5REDqe2WEaBENhRhaXzNBmjnDpmk9SGTBk9k4+ObNg/GvfXJpUrTMLsl2vn22XBej/LgYT1zqsV5vNgdHh88uLqezOVnwvklcGBdTDx16GAVC3YbAaZIGtKWvsogIllkqHyd5UTZ1FVpBIGM43GocaRUEAEKMZl/ObqCW7f0y+qDJTwjBJS7LslB7qO4Cq9qA0iAhQ2ZG+aSwifFt7tCQkciAFo0V9IYEHABCCAFEjDFN29Z1XTVVGuJh4orR9KvZ/2X/m//cr/7Ev/xDPw8A//pP/zK8sBFjWzaGjM3SJBnleQ4g1jnxhtlHqevQNAEC2gbjzte1MLtR65uqbdrArfdNiC3Z9H+eB+9HiP6/MUmmhwLkvT8/Oxe5tSRrPK2PqspGGWO8D4hU101RFPP5gfYZ8rxjZF1fXydJcv/+fe+9OhSNx+PVahWinJ6efvzJk5OTE+vSh49enc1mV1dX6/U2y0dODU+t2dVVEG5jWG7WTdMcnpx+/otfeOeddy6uLg8ODqq2WaxXQfj09PT+/fu73e6b3/ymBg1N02RZ1jTNeDxuq/r58+eLxeKrX/3q06dPZ7PZ9fW1iPgYMSGb2bIpT+8du6SDanBdHxwf17y9Xi+9b8bjcV1Xz549OTw8bJoKAM7Ozt544w0AUOZ6URSHh4ca4rvUjjAPIQCwBG8RDyfjLUhkdobeevONi4sLTa6appm/+so777wTYzTGDeLyirk6PDxsmma5XB4eHx0cHFxdXkWgNjIYe3B8kjg3PzgCDm1XFoxFniv3ZrlYMLM2fNI0rapqMploL/rHf/zHEXFXlkqWVQCeMWa1Wo1GI2ttXe5Wi4WWgVQeXZ1knHMPHtx3zj19+lTVkHXuKsvy6vllYp1JzPx4WpBZfrrKYkgJhcGZNIkkDEE4Sqyj1CH6EIz4jKSNgXRZjGiNSa0KvBokqdtgDDojFpgQqau3aKJth4eZQeKehwNjoguo9i/VeAFFWMRGAQYIvtntLn793ePicPLmxKKJEsUkhGCtoEg2mYyODw9ee/g5+DIZ2lxeP392nmcZIDLHyWSSJomw+BAoSa1zSZI4l4iwD0Hrx8K8u768PD+7vDi/vDjfLJcUOXfpbDrO8mJRtsppFsTpfIZkDaMVY8AE76WsM4N1WT799OP3f/3X2mr7D37h747zFFGsEICEtgboTU908TZGfxLNOPbX5T1AiMQIELsSCqLrhGZ17SZzo1AEbdwJWJMXkeMrr7/psgKd8W2wCYqRwJEpRo5N6KrONk/HefoW0psHhz/x5hvhZ6Rumo+efPq1r/3SN3791y8Xi+16kZKEUb7dbZPExRizLG9jhCAuteKIyGyacjqbUp7U3DYSXOay0Qi0Ek3YxiAIlFjS00MSwrqsA3Na5MxcVlXVNm3wKVoUgcgcuxhMRBSr0yJrDOOFnVqhC2huORpNtG0yCIdoCqFkNgDQ6EL17rQ3YozRPowCUCNHAOzsrY0lUgtutC6lAaDOEDkaazl4jkKGEtc7gBMG7/M8zTLXNG2SGB9qNMgIZbMjonpXjseTgMFzi9ay2pLFKBE4ikucdY6ZgdkYzPNOrrapGgQgMMLAXnHdIASi8kqEqK5FwQsIQa9FhikYTc8NATRto12mLM3z0QxAIrMxaQxcVZWxpmxKRIzBE5FvxRjTNio0H4nIGtuKYI98GY1GHCIgorFkkJuaqGPvABCREeGmaa21zGSNCd5ziERkiELbIsA4zwUEVGvboCHTtnXTtlmW5dMRh3D/6KBpGgT84ptvhBD6Xqhx1rJwjCzMrfd4dPCDn3tT5Kdb3+52u0EW2BpT1XVd1+Vud3Z+fsvduavH9ts+CcHsbdRv2HdohpIwEFgio7adfS9UhTotkDHAoFb0FpEQCJFRDKJY0zWqgChq+dmQcdYhhibu15v3m6et90N7RA9sAKFh5KFo+z33rPUadP07jcK4m0hEhEnd8SAG37Ln6NvgvQTvyECMMUho29i2oa5907L3Jrlrnv2P44YQQ1T4x52eTIyR4EZkaUgRRWSxWGRZpk+OUttVMhgRh3qtDhJFdqVpqib0KgQ8wNZ15RaRqqyhV35QbD32LHzV+FKzSEWpDSUQ5f4y8/X1NfXUOgWMaRFFiz16apqpFnn+yYcfjCaTqqryYhx7TcbNZjMhmh8eqj6Soiwmkwkaw4CEsNtuUmNSNL6q5pPJbDZ3aSoggYVuenECIJ0bmupLiohWQghRiT2svWnQTJL2sJdDvodqk9h3FYbz1Y6KGgZGjpHFkvQ9QsrSDDRRIYogQggEFigwIqtShlaYyFlHApM8O5qO0+SqrLbWpW1oM2vLELbeTwVGaTICZB+S1K0W1598+unpvZPpeMwAZdN4wMDsnCOUQSaIDBmiNE19iL71vvFsftPtxGGM3em0DPWIm48BWEtv/NtHH/zJK/3NF/8P99pZ9B6CExY1CRNkkcgdBgUQiZjDMM8REguHEGOIDOBt6n3lkuQnb2cpAKBZysu26EMTWcv5iIRIzBwZmCGyamNAFIgsgSVEDjEGJu66Yn3BEUGQGCjJRsf3Hmy2u/sPHgqZ7a5erNdxT3ryo48+Ojg40GdwNBopDKlpmtlsFkJYLpez2UxEtJGi5oBHR0e73S6EoEq4SoHI8/z9Dz569uyZPtFKGHvy5ImiOFabdRELpYCXZcnMq9VqPp8jkbDMZrOHDx8CgDHm5OTk1Vdf/fjjjw8O/j/M/WmsbVuWHgiNMeacq9nt2ft0t33vvi4iMiMjMuTMtNNNGqebyuowUiHzBwSqEsJQQgZsqgSFkCwhTFFZJYoq+FHIoilAiZCKEgaEKMtkYSd2ZtiOynQ4M5rXv9ude/rdrW7OOQY/xlrrrHPuey8i01nYSxFP59yz92rmmnPM0Xzj+xbr9TqEcHBwoF9UBSRt7h+NRtfX1z/7sz/b968/e/bs6Oioqqo3Hj+czedacdVmDxUxjCEkzh0dHfUIBAUYaEkWAFQoiZlPT08nk4lOm6qqdttt7CgK1ftXBIW1tqqqLMsODg5Wq9XZ2Rkzj8djjU9ilBDC48ePz8/PdT2qFspkMinKEhADx+N7x8o3oHIrDOKMmUwmOkSaLFssFnt7e73ukxqf+XyurfMqUqF06mp8dIYrldn+/v5ib3EezhU6qzta59xiVVYako1GI7V7WgHbFbvz7e7BGw935W578YrLIpGeZQq1YiIgncqotBUSllZoVLRrjkIUAy0U35EwCxAK3/SZKBgeb2XMBs30CMzAeu7OMSBBBiQCQyQAjoAFLk5effT970/29u18zmwiGG2hQxFkZg7ee4ZorEmS7P6jR0mSZFkWvGdmpa4SADSpcVb3hd4BEBGRuDcZHRwcwFe/Vhe7i9NXzz75ZL26ns+mWZrnMzdZLpqyWi4XqXVANkb2TfTR17tKgpfoVxdnTz/++PzVq2//nV+bTEbTUR7KNXY5RbxFH3Cr+QTvqMzd+pwucxKBCGAGJ5Hb/O9kHSOE4Ed786PjY0AsqwoiZONxE6Ool4tIlnDQuOsEGUQMRhKL8K2v/+TP/YFvffDBB7/1D777N/7jv3V5dW32941Iuds5Z4EFOpVAY63mv2bzeZZn1rnReGSMSbO2h5luN/SigEVjjLEciS0iRu/JGpsmgmjkpp8ucozMZMiSRUNNU2tFm4VDjMZaY01qyDjLkfvKDN7uRl7XTe8VmI6UDAD6H3oo0dAm+xD6Eg3chqbodghdq4LabfUWEmetNSJWcQ83zm3bBBU1hxaFtS2Je25fDTv5NYDAIIlMRM66/hkRbxBo7bN0Y6xwUOp4yUJoKVhCCCHKaDSylpQ0VR0qvU/VgBeRGAMiph1VYM8roO6E8773kYwxLY1W1LXFGgEaQ0niisJLN1B3/EMY6ksKI4g1ZAiZ2Rmz22ywaxLWrIUAg4jvaG9EBDgKgMRARIkxe/fu9X+K3jvE6WIxevjwvbffvh2o3KmjYTsJ+ufRo6+jUdf1cvMVAWedMa0oRyeqScaAEFjLDM5Y7WgzQERAACxASZLkWZZlmTUmxgggGkZnxkbgGD0R9e04fYsIde8SOwxS/8rFh6ilM+b4IwU7v+DArh5GAjFE12EZfeNBgsQQQsAYIQJb7xl9WTW7st4WdVWFqk5G+Y+lS/+P9dCFqgnaOxMxBG/ActdF0MMTy1LZp53uFoq22m63IQTdMm0nCa/ASiVL1TKm4kCk02larVar1Wp/fx8AYoy+aZhZVUGx69hWrFd7IRFjrXYMN00zm80mk8np6alqv+hFFTU+m0/NgDORO46RLM+ms2lVN+PxOElTDWyUO8iHYJ1VpEdZlpr7VFePCD/7+P37Bwc7xtQlD+4/mM2mrb443RY9uX103QfaewcCN6qzyHJ77bS5MUSFa9z0vfUeqiCgdS2xo5bMb1iwSLhdcgiA1hhLaEwIwbIo7WMsyuBrskmapSQ4GY8O95cHV+unJ2cAHCUy2SKEi/VmlKcu3ctdtuG1RNnfP/jBD76XZMloOjZJ4hGdTQCiiOx2RVVV1jjqGDLIxMBcBR8k4kCGlgA+v6/8taOviw7HR83OnT2ADcamefvfnlTS7KpQ7TVlCAVyEVTuXVW2W08PUMgQtsRc/WtA3Z9CCJElgA0RK/ndpRh++e//wXyZK1NNl5cC7vEH7SGsOsBRZVrYewhBq8Q3p2r++zsAOIemeFGs1+uj43tFUSVZfnx87L2HVfuxr3zlKzrPF4uFc+709FQbRbSIURSFNpKqVqDishRGrBG4shIrIPMnf/Inz87ONFWp6QOdimdnZ5VvNDZQYq7lcgkAr169AsTpLI5GowcPHux2OxWJf/PNNxUhtlwuT05O9E0dHh7ev3/fWvvZZ5+p4qqKqyjcXA3Obrc7Pj5WZLwOoNL49kZJO857d1+LSNPpVJvyNer46KOP9AFvuDLHY/XvFWSvQGhNfJAxmr8gIk186HdFhAiNMZ9++qki2ufz+Ww2U6Cp4sH6PJ1y4OhLn+TZdDpVxg7v/WazOTs7u7y83O128/lcMWk6kqpxLCJpmk4mk9lspnlizaSMx+OzszMtaytwbrvdbjYba+3+/v7V1ZWi47S5SIOu8/NzBZ5Za2ezWV1Xk+Vob7HY7jYw6BCLwiAKV1HHKAqzRF0kkRCNRaO8sTH0jJQJiACGtt+ky/gJDV1quO05CEBqHN9SlOtoD0GstRABpG3AePHZZ3Y0/uYf+vlsPF7HRgAR2AgIx+Cr2NQowJYkcrkrJocjiMzMGk4DACEmWUoDz6SPVUA4RSBjxHsivJ+62Wx69uJF0zR1UZ2fvlytr9/5yntvvv2kqKpGpPHR+wA+Gg+xbsrd6uknn7x49tn/51f/BnKYjEdNVTpj+nbkO37bEIN6J8NyZ6D6zBQzx9tbx/BbSBYtBpG3Hz5e7h8CGQ4RBYhMbBrsMNi9D6Z4k6Io25QZoU2SEOP64mKxWPyZP/Nn/vSf/qW//f/99WdPnyZJYp1j4elo5Jwbj/I0p+l0ulgsdCvXkVTFWNupo/Q2ub/DNE2060AnMyL2xFBNdTPxvPdNXYdWaTFMZ1O94Z6Zo/UkiRw5zTj0JrQ/HJm+gbYHIPQhSp8VvTPaat8Uk3mHkwYI+6srVExVX6fTaagrNQvYEY7BYHeOnUzwHX+pD67aRPkwqMNbc+PmkRHVCvVpyjs1c/1V7VIXfgszp1mmA6VnU5y8WlRDbVuL7sXMLeuGKs5BF6goer+ua82VKPlH7wcCgFrL/v32jvdweEO4tZ9rSkgtLRnT99dpENgPfotsQlSnXToZFjWAvXXVjuieqfVuoDL8tX8fvRXgLv1sO+IF7EjoOvAVmL53tU0SqBUjADQmIhhD+hEjRAAEQAKiKfk0TanDJhqiJE0za5mYOQmtpEdbClQ8nHU3semNc6CdEhl6VZeO8cs7eodHr4jTepPSQsEQIDCTAiU5RI7Ut32LER+liUwSqtpXVbXd1VUd6sawJqp+zIv/4zkQbuzL50zEbkpoMqN/46pZ1rNzqJ/HHdVDn4kEgH7z6EkA+wqYOtyaOiU0va/gvY8h6MRV4Uj9d72KrkMVYtMuVcWF98w/LUoQ2lZXXfDKAQIAwTfT6azxl1VVbbdF0zTLwyMACCF87etfHyfJerPSjJ1ylaoFcYYOl8uEzA//4W8fzhbj0VhtFtxmhX794K4mR9pb0nnIAhHwxpwNQhQCAJKbQOXWtofAiHUITdMQIIowm25IyVjTV1TAEBqDhkTEMld1RYbGo9xa20T2MQBQ6ux0PHrzwf3trrjelolLmxgQ5Gy9sWmC1t6bzMejaVHukiR58Ojx2eW1ydO95WI2maCwcpj6GHwMZJwybZGzVfBVaDwHMAadhRhIfnf0d58bqKgVup2qkoZjkphNsTaZYeDahyqEwphdpKip40GYoAoRSIR8a4PRt++9B6S4rUyIUUqY/Vi3+j/6Oz8D7LO9jAYSvMNNq9+HuBMsCyHEzpgpR3F/tqu/dEMM8D978O/81dm/p+8/hJhmyfC65+fnmpW/vr42xkwmExUkAQBNw+ucV2pd3cyUtlgV4lWO8Pz8PE3T8WQWQhiNRqoK8uDBg0ePHmnS4eTsVFvIrLV5nldVpSzGIYRXr16RNd7709PTnu84SZLz8/PZbKYFk3v37hljtttt0zTn5+dN05jp7PDwkIiyLFNGyzfffFNPeHZ2pgGGeh7K2qchBKUJAMxms7IsX716td1uj46OmPn6+loLLCKijGG6vbWtbkmiZo06BqHen9M9UtWpVfZRXf+iKPb2lppt0dvWG0DE1Wp1ubp+4403Hj9+nKuCIeLl5aXGG865y8vLuq5PTk6ur68Xi4V6A9pGsr+/r6TGFxcXau60krzd7U5PT7UvXyMZZlahmD6Tql7IeDwej8facacQNa0R9VDb/f39o8PDUDcBghvbXb27G9ILtypDov8XZgZmYBZmJAYBIhLgwLHdtQQiIQq29UhBQux5DGWYKL5VUADvQx+oDM0aiKAF0zYLAyE1df30o/en88nDt9+R0YxRvQjtsa249pYBVKwwRmIhwtByXRilno9444TETn6AmUWiSxIXMtBdO2Tj8dgYu72+nr81F/6djz/99G/+jb8REd54791gKABo/3tqjIA0VX1xcf782dM3Hj/y1a7YbTkGNDcF4jueMfIQ1Ap3kN03H+vc67Y7YtDfLLfy/RBAjM0s4VvvvsuAzJCkqXj2TRBmGUBLdPm0/E4xAuloo/eenNUSa1XX7PlP/vFfMGS2u+1qvd7tdtPZzBiT52k6TpyzajGUBkA6GQMYWOM7iezAkbRVmZBBJLKAkDXIlM8HROpEAOBD8E0TYsyTxFnnvV+tVrqyAEC5mvJZrlu86ViJ+5MMu+fN7aaUvtbxesrfdqyD0qk93nyRZRgz9E5/kiTldqNZVOh2h34ENF2uHk4IAb8gUPmiMBW6ydk/i3rXmp1p84/dob6H+lE04EBTPxxea2HtQp0b9BMMvHfq6NG6tKYZRgjDsGc4UfsML75WUrtz9EkfvW7TNIvFQs+sZrkfmd5d188zsyabdDQ0sNTqmeZiNF6ytxog2l6d9hZ99DotXIsBbSXMXweASUdMJAKJcxrP9Q9MREnimhicSwRdkiQuSay1jAjCiEZE8jzP8jzLMmdtaJNtrT9KzvjQ9ERhsWNKISKVY6NOR4K7oFlEHJIT1iUqBNhR2Wrf4DCo1RcWY5RWSaXHenXaO4iIYAZKc11UpEgwoSgigiKWDNhEsjxxSb0rRQTuvtlbjSS3//T5ITjcajDpuvs/70+vGccvudbNwcIKrdb51IeCaMg4q1u17Q6duM45Q+0q0sKiukS6CHsOsRijVr9EWOtj6+1Os4YA0KeflRrC2URvIITQeK+3qzZL3RHVgvDea/hRlqUqPIhIn6GMHc+gJoB3u51mlJVhTF2H8WiMzALw/Pnz1XqTJtlut4tR9vb2qrIaJ4muHxU9UC+hKApnaJKN/K6od8Xy8ZNxloO+dNMuO2ttbFTVpGvfEoGAhIRdxA4DdRQkUvoLHrCO6F9ijNwVguB2Ek4E1MXVrRhZPKD2AgGIc844IyJIJIR9Sdpam6G2uEtswyrxUYRj5szBdHS8N11fryMgkotAuyacrdbMMrX5KB+VdVU1fnlwhNb+8IcffP2bPwVA1lJiEiICIkHwHFMERiBny9hU0QdhMehDiKIkKTcNpv1UHmqn8IBRADp7OlwIOkQcI6rAQozGmBj83nIeTovgg0EKPmzKaurGNXMTvMYAMXKMgUjphwS7diC9HzUaupMZY+6Nx76Ean35H1z/kf/8V//28H7//e/94f/yT/wd/fl/8cNfSlwSmiZMyuBrjQTUpPTyOMYYEFFfUyu7CoPUn5lFIxbuoAKvb26IWJZVkmZpNsrHEwVn66HBhoYQAKD0FUQ0Go1evXqVJEmMUSkl1L6pDKvSR3722Wdpmr711lu6dlS1bX9/fzabfe973/vss8/+2B/7Y0p8fHh4qBGImvc8zy8vL7UJ5Ozi6uLiQt2gnvanLMuzs7P33ntPizBFUSgZsTIgI6L2PyhhhtqER48eNU3z8ccfMyfqTIzHY6W2Vlcgz/PoGxHRvpqiKPRZjo+PrbVKjmmtPTg42O120+lURF69ejUej8ejke6UvXI2EakAy3Q2U1JgveeyqnRIAUDl4fM81zqGdoDUdb1YLLLxSES0caUvDmtQsV6vT05OYozqVRwfH+d5/uGHH758+VLtkt6nMUYT1ZrpVBdKox0RUcybRlyvXr3SGaWDr6QjOlGPj48Vy3F1dTWdTh8+fJjn+d7eXoxc13XNDQTOnSOiyJGFIwgBeIldZwFiFASwSEIGgLwQK3LfB3IUY0QQYyiI+KjatUhkowBwW0xRpOdNbCIInRIIiCRJ2gcqvTtFpGQSUW2GISwbnxrwvnr6wfeNweU7XyWTkCFBIBKDCCzEYAFm+cgmDgKH2ORJSs6qHS2bOs0SGhw3BhOwqEohcsaQMb4sik0ZREaz2XRv78mbb5KhT549+9u/+qsi/Pi9d9UmR45Xl9e+KK4uz18+f3Z+dmo5xFCN80xiIOB+xyVVdR2Ys+GmynxH06z/+ZYjGyQOxGhutZuKNQFg7+hob3kQQkQKBJbQcGRnHbS4IQzeN615YRFx1kZhRHSJQ2Pq2CosE5FL0De1ByCU2WQ0m+RZlomAJrNiZwZZRLfmlinbJIikAZoxLUFie79goghZ40MwCGio7Y1V/hi19wJeGBDAUmLzFMBBi3kaj8dZnhui0AEyNa0gIuqQqA+phoV90FZSjVj6TLwCc3r/k4haJxZRfUJdVl2k0Xl3IMa5PoSWjg+jj0NaV5Oj6gz0h71xI1XCC7UbQAaCidbaTu4U+qkSOnJkHKTU1bAoP6o+Gnds0Xo/PauQBo29e0DQooo0DEiS1BhSNZs0ae9QfTn1hfpfoQtvemPS++rDAAY7xSF9KcP4cLiHtz8jICBHJkN9CYVbfPtNhNPHn75T7tb7V9BNlmUalvTPKJ3IeBvS0JDV+KYAYhCxCU0f92isojNDj/5jw9SCCLgkSZLEGgMt905bXIsgzqFgX6a2EQTEMIMBybK2ycE6R3WtkFdrbZokYAAb6N2XPrJHxGEzvc6jm9kRotKVhBjRkHRYGgHRAKNNSHQbOTMjmW7kAQRAjTyAJQMIChcREUJqteNIOs+YGIQBkixNyKTGGjJlaKKqy36ewYK7Mcbd2AS+4LgNf70dptxxA3+sOAUAQEmyscNjqFsvCMbYustwqA+hKKwkSXwT+ymohFpaIdE2Et2ijDGIGo63AWGe57qXazFECyaIWJbldbXSIokxJhtAjXWRc8fyboxZLBYK6dYUpu3kt5VvJISgvkI+yna73Xa77QmOiChJknGeW0IWUW9jmueXq7UIvvfeez4Gbb5XF0pJgdR+GQBn6PT8YpyPpuOJIwOaGyACQkKy1pZlZGZnTFTLwiIxGGtULF1D5H6JIZF0njl1RdU+MgldymQ4LZhZWiFTBeyxhEAC6s9JV7fR7nAio246thp5XkQQEBMXBWyIZdNwwDxNDljeODy4ulidrbaQOCFgNOuiLss6ZXjrjTcgSXzwIfJoPHnv3a++/70fPnn7rYOj/TqE2WyGVR2Ek8RFkE2x2+6qhmMAiQgMUvsmMgNhm369s2kP5+vtjN3rgQp2gXRijJYFrLWEySTPaTlfbzfbKgQfP/jzpx8AAMB/6//11bIoq7E1ES2lRATGELP0QBRmEQlddoOZDVFm0SYkIxPL8H97+qcmiyPjEl9tkWJ1yP/hyX8W0O6q5r/0lf+HnuTf+Qd/nCPq7qJT0fumKNr4U2KUGHUDjlHVu0LrVSjlVzfPP3dhYp9u3G5skg4FH5V6WEFc6/VaYYoMEELQlIG2ecQYl8ul5hpEZLVapWmq3Fzvv/++1kWRjDJkNE3zzjvvPH/+/Lvf/e5Xv/pV7/3meqd+toKO8jzXToyz8/MQb9DhZVl+5StfOTk5McYomfj5+bm+IE00nJ6elmXpvT9c7qsDtN1unz9/fn19fXx8PB6P33vvveDrJElWq9Xx8fFqtbq+vmbmjz766MmTJw+Oj5Q02Xt/dnbWa7OorLtKK65Wqxb80IlMq3OvLToq5f7w4cPDw8PtdkvGqDCLtj0o4kUlIM7OLhTdKiL6XbWQzrkgrD0t0+lU0VyKheOOrau3RbvdbrfbHR4ePnnyRHOZmmTRRmEtjDjnXr16pf8uIkVR7O3t5Xmu96zGUAvC6h1qg59aJPVv1Ebp4798+RJEFtNZlmar8ipNTYwRIkeJDMIIXiIikjGCRAZdS2MBsQ4kUDcNplniXF2XRKKoUiCoA4sRIkMsAMCoun+AiJZuJbZvjg5D0C5hgF59RRC8CDBaVOl5lzA2In63fvnhD9PxfLRcjhZLSmxVN1XtUVOZUdXsIAiaxAGKRLaJ00oCmYbY9OiP4fJpOBISx+irChkiUDoaj8d5U9aTxew4HF2uV+cvT7779/5+luWHDx/UVR05hqa+ujz/+MMPX754BjGEWBsE4UC3NVDUUg+W6s116bZqAg8UkoRVcLb70+COcWDuBDAg5qP8rXffZUSTJGRdZEFBFkhS158kdPhqPbz3GsMwC7Mvq5JB0jStm8YgJtahluEhEhGjGKtNSLcAxn2qkVu55z4IvNVFAwYBKYaQ5CmzEGH/V0IUUI5mjX6AOpbr2PjAotYy6QJL3elCE7WgGjuVD3UwnHNtrgtAHQz99zZXNVDx7qbcIHndPUX3XtQPvFWW0V24P4OWUzRoC3JTNsFB+QW0hDKgoIyDBkIN2vvfNFToBvOmlVrDG+ecMhL1ZQe9lhaX9HVQV83Q7xrbUkJ3DnkbKeltaGCmkYZOid6V6m8pdulOzT6rCm0bE7ZSyG2kMQxNtbdtMM/b1wcAgVvBFr2BxFqdlv0Wpq6yzivqBD1lUGDhTh5D30Ifoen0+DIodh/D9cWHYeoCB7W5YaDSlzuUEXlYOSIS0WQzEhGxCCkNKpBIqw7T5U3bt0XGWLDRhP79wTCU6prp+1vqb96Xld5+xuw5BuA7H/iigxGM4nEFgIEQlMJjqOWiiw91lEGiBAaMhAaJnHUCSCR1KJraJpMfecV/vEc/L3UzHo1Ginwo6wqwVYbpDUefNlAmk37x6EtvK2BECnxUalRNJ2uwEVhms5nuvn11r63Ooen3bFWR06qfZl41+FFvQJvv67rebDZKKqr5SGstiKgPJCKjcUt2fHV1pd29y+XSGFPHqLCuuq7X6+3FxYVx6f3797MsG1l3dXZKpmUz7JlGRaSsytyYy9OzsUtHSYaEwF/kXGrtnQhICElQ4YMCDELCHRchiErMmwHiVldKb1OwO77o3Yn6EwOuxvYH/RluIE6JU5yr0vN35XIgF41Fg8v97b1dVT67KAqwSZJlLFRL/Pjly0h4sFwKc+3DKEsNw1ffeu/ly5dPnz9788mTKLzd7RhAXW8FljQcgzCDAHbyWDoyX1gP/7GO1gvqdhREJILUJRjD8WJ/no+evjr/6C/u+s//z3/pB7/8d5dlYdNRwtGFGFFDAsRb2c8uPaaWnQXAUTqb0DgDTE1CAt4b/09P/hpMP+eu/sI3/+a/9Z0/TmTVBPZZKzXEBEjakdJ263c7oAJxXssfzH95svpX2rLJv5v922maAsjqehUByTiFKumhG5UGGKreOJ/Pr9drjeR1DU4mE43PR6PRbrfTjz1//lzB6Ih4cXHx8OHDqvYKDNOE1HvvvffRRx89f/783r17ZVN/+umno9FICTM+/PDDb3zjGzHGjz76aL0txtPJbDZ7+PChlnoODg6+/vWvf/vb3wYAIppMJpvNJs/zg4ODvi56cXGhiJ3RaNQ0zdXV1bNnz5j54cOHo9Ho5cuXJycn6qxoj/vBwcHh4eH19bVWRYwxo9Ho4cOHSjU+mUyUFUBjMADQ/yqg1FnbI8EeP36szGObzSbGOBuPEbEoiqdPnyKiqjHqdff396+vr8/Pz5fLpUJH6rrW0x4s9jR40PzIfD4HAAXRLaYTJU3WLawsyzRN1fjM53NN/ShJl4hsNpsXL16Mx+PJdKp5O31TZVlut9tHjx5tNpvz83NtIlImdyVTVrS9JUBErUpp7Kqls91ut1utk0l2tb1oRklsmnwwtXTKMyofByWOEE0IQWKdp6M333zjp7/5zd/8zf8kRs8SGCQws4gBRGFDQsQiaAjRoH1ttx06A/wFqCe9C3XiUVBALDCRSYzb1uXq1Ytn3/udg4ePMUYcZV5EhCNIjCH6QAQQOeoVDYEwEwhAYIa61k3KDFh2AEAQQmQEiSH4xkPwjQ/GWGvTkEQD6XR/fnh4cHr66vv/4LsG6Y/+4i+m01kQ8ByA+eLilISTxPmyQgEEJrhtin83YgCfPxat1sznHIzgRZ48ePjmk7e9sCVjrSMhw0QgIQTpjCkPwLH6q3MJIq4368gshgChqqooDNYEiAaNGARAIWSt/goPuyx14xOR7XY7dFLv3jyAb7xxVhCMcxLC8EEMACh5g/SoQARmUOQtdImhvtmYiJkbunEVtLNCc9xpmvouPQedjcWuNyPehqIMIxC6VfJq/6UNS25XBvqSCDMreqE/m7mNhx9+64sG587RF9L7h+3PMHRfpRN16cOwob89fBd10/Tp9TvPqNdSp79P7/ZO+BfdYS9F9frD3nrM20+sAZjetqawuUMhptb1H+vfb/8gPXqC+Ra4aTiZe89Hz/8jAhUdhVs+ECJ2xAs6WPJ5gQoO2Ayg7ac3FIVBI+tO5KZrpmeGZBioMIMIIRoyjGL5pom2LwZpfHbHRetvnhuP1lhrARGDBw6tbf0cONbgRdz+E3URy51viIhENtRO5QJYAIWsKKKRDQKUvrnerg8m+18ywv8kHIqm0Pc1Go16WZ+maWzSFr8AIM9zdW408LAdg4SGIloY0ZhBu+r7tdFH84honCnLsigK0/Vy6WrURKxmFGwnzKIngY6dMMao2ZSLiwsAuLy8jJ2Uh753bXDS6SciH3zwwXw+Pzo60j6Wk5MTZXFNnJ1k2Wxv7+jo6P0PPrIhzhd7y+VyuVzuyure/ftEoB6bNsUi4mQyQYGnn37GPty7/whFONyi070Dx+sMDyncocUsCwgCUsdPDiK3MbIwyMr0CYJ+BX3uoQtMfyYiItMHKmRMb5pEJaZFGPpOSzGEzqABcoY4TZ8c39sUPrw839TBV9FlJk3zKMUPnn6yLnez0Wh1ffXmvfu5c74o3rz/aC3l8+fPT05ORqMxoY0uKMP1al3symLXVCICAr9nzdPXj7Z62c06Uu7J6C3APM+mSVqV4SPYDb/ig/e+AUgEJPignaGIdyOm3qY5m4QGBWzAKGisza1J69D805O/9iU3Vnn+S1/56/rz/+7pP49d5YeZU5fEGNpIJSj/je4bikP4nC0w/Z+MAfBP/NzPJ/9CkmWZD2GxWLw6u/joo4808d+PhpYfVTNEkYppnitmqaoqEbm6utK+rLOzsxjj0dGR9mOcnZ01TXN8fNxV20nrA0mSrNdr59y77777ySefMHM2btvldU86Ozv73ve+9zM/8zNf+4mf+N73f6hEYY8ePTo9Pb28vJxOp1qU6BGbxpjlcjmfz5VG7/T09A/97M9lWaafsdaqKSiK4qOPPjrYX+R5/vM///MxRqVdfvr06Xw+3+12Cm1i5r29PS3DrtdrzVZcXV09ffpUUxW6XmKM4/F4uVxenJ/r9qmPbK1dLBbj8biqqt1uZ61VcrPFYqGOkeJP8rzt/tztdlpsUX0VALi6uloul9Pp9OzsTO1YlmVa+UkNHR4eapkLEWezmfa9aGOJUu48e/ZMRBaLBQAocwAS6Xn0zhW3ttlsttutNtmrA6FVaO0rPT09ffzw/v7+vrVWpdaur6+hzXdgjLEqy4cPH85S8/zibDivGAE7agsiYsYYozN2Npnme/f+qV/6pxaLxXq9+q3f+k8AhFm8CAJbNCCGgkeyItR2ZarE+e0W4RuH5ks9OCQSJWZnBETvG2twlqcY+dWHH8eGXZYu33iEia3Fm8zFEH3lyUexVo0mJs64vnH/BvNzJ6cjCGicGouGuS7Lercb5xkTCShvfH58/+jl8+e+9k/f/+CvnZ699/WvP3n3HWeTUZZmiSOEqixRAJFJEJGNST7/qX6vx5cM1P7h0aPHb7okjRxjhKrymUkTZy1S4Td9ReXOYKdpGjhWVbXZbdGY0Wwi2pbtrOeIYNAgEAEaQWRCEInCZlDzUaCBxgCvO/rDw1gbY8zzXDmybzYvacGBXRim8AFFTLE19kaDb5DoZGaTW/V0Y2cn+4JJn33vH1m640sixmGVo08CqoMRwy2eo/4eYowq69huzfiFI3Bna1Yoaf+n4SfV3A0KOzeByjAUkb7tecAOxcxKXD4sp0sH07rj9A4vfecevjxQUZdJM8LDW4XbY3jnDDiAI2luF7r6j3lt3IYRl3p9fXz4uYGKep4hBA1ZPy9Q6ROOSug5wJkNUrYIjMyxTQsiAiEAIiMZ5a4GBG3dgxbjqvys2GZ7VWUNhIAQhVDYGeOsM0QgoJR5CIiERgyRJeLOMdNanlLzGWUCpVazbRBbkzFkAYAdMELwvdP4o8sq/RtWRSv9OIqgVlfwZo0QESBFFjAEoII7whIJoG4a3G4PB9XSf7SE8n9ah3IHqeqZ5gI1eWmtizHarrFJ3a++zyl45k44Vp2Ysiw117jdbjU3qdAUHhBrknWqyKYgMZ2jGhWAtF0K1lqtisDAJe2NiBrQ8/NzGJDRgS4nES28qFdRVWVVVUqLrBj96+vrEMJ0MsmsWV1fhxidteNRPp/NjTGbzSayGBDrjIhoK0jja0vGAHjm1fnl/cODt956a2jW9ZB2yZhOAqSrhLTs3YC6QFq5+lvEljQof9NNhRe1+MjMd2Yr9uhEBRKQcIuXJaQWnKtN40OoQgzaWy6RITLHKDGqECVMRzkzPrBZoNSk409Pzk6vV3URHI4aCEmWvjg7vbJuLx+B5zfuPyCh9aYskzDZWyLi1eXVZlOMx9M0zVfXq11Z7cpqV5a9H2OMuc1kerue8WPXW3TJERELt/kuIl9VzoxRKLFmMZkBPB9+ZbUrRpkZpy5LLCEKM4igsMDNugbpT0bWmCRJA1iMFIUlUON9WVVw9GU39j/4Q7/W//xfefx//6sf/jNN00ThJElCxhmCmvIYY2SRjhFUBPpOWgFVe9PpAQgwnU2NsdY6lUZJ0uTedDaZTOAH7YUWi4Wm+ZVmt6qqyBxC0A4u3XKstZPJJISgACH1d5WDS4ny0jQ9OztjaTM+u91ub29PGa6Ojo7Ozs6me3PNGrz99tsffvghEX3wwQdf/epXDw4OlsvzzW772WefaTmCmZ8+faqb0G63izHu7e0dHx8z86effrq3t1eW5RtvvKFNHVqiUXmlEMJisUjTlAgmk4m27BdFod1lSko+OtjX2qnaDepgVFmWjcfjvb09VbfU8iwzq6+vdFsxxtPTU+44N7U8Yp2bz+cPHz4EAAVM9z0zyiugwpdFUWjgISKaqdEmYB127WZR3mSLcHhwwMwKo9XNXpv3NIzUMFsLMjryMUZnjPbOnZ2d5Xl+eHioX9nb2xtnmXbzr9drra4sFouXL1/u7+9rHHV5eVkUxXK5PDo6an0FY5D57PqCkJR5FoFV7CMiqtwpARKgQWLmsixdkszm8z/9z/5zB4dHBPL1n/rmy5OXL0+eK8oDRDwKAgchExkRW2x0r5Lar03loenMXsc++DkHITEAIgNJPsps45sYHdnE0iQx9ebq1dOPPcXp8XGaj4GwdiGYwJ4BAhoCQuOMIUIi6ff+gXPSX4g1eBPm6B1iw4ICiU1cngaJtfdo7Hg+Pzo+3lytX52cfPbRx5989PGDNx6/+c7b69X1y+dPOfgQmsT0i/R2RWVw/F5rKwgAHeWfAnPbczHA8f0Hi/399W47nk6tNSgYY6hiRMFIsWcnuZPGquqqbGrvvUsS46y1BhBjDNbaKlSCLMg9Ebogi3CEQGB6Q8zM2+1GEaRf7ipZZy3YqqqIqKrrm5Q/AvLNBNAtjVGJsRkt6kMjojDHDp8CACrZRIZCiGkMqgvJQbz3qXW9q927o1oDDz0X3eBF6MWHoDgQwY7LS38d/EUAkZAAtZDYV+xVzfAWoctwBIbBgB9IVN8JErIsU9CKOvEwKBcMpy4PujQRsarrNE2tcwoiiHwTMJhBB/idlzJsMrkDb/uSBILCwz73M3f+ZXhF7prG+x7F/qXc2c2HEYQGn9jxQOgbuZNlgAFLW7uXmSTtoyKNerRMoE45kZYJxVqX2CRSsEAkWHux1hrnJAbvPQsTGbIOERtckzGptYZIiNjaWqCqOXGJcRSFBA0jBIYALNg6+4vJhKtmmmYjm1gACR5CMCjOWQPGkGtM430dWTPoQAQEJpFUt3aRdqfvoSZZbpXaxKFhNIy2qBoBY21KZDCSM84Z14CXKChoyZKxLVOoupSEIiovjgbFijhrkVBJ2cg4QGAAYbA2Y+GE0sY3ozwvvOfgZ8buLq6ao202nWtXRlAD3r2O26LaXzKLbr3BW0mjYR7r7p9eTxzffFAjhGGWV0l4FEvdTo7ERUmstePRuFUjYfRNRV0VT0R6cm5FhwNA0zSCZFzinJO6xsjU1RVYBLtmAOrk6tsW2zQtdqXOQyUb1R90F99VZZJn1tnRdBJjrHxj0yRJkul0imgUHgYAgojWOaQksrN2NBqVHZdonubLveV6vc7TfDKeGJLN6rooCmNQGhYOu+16b2+WZxkxIEnN4eziVZalae4W+chGf/7i2b3F4t5yCRxdloLBqDKnAAAmWCPpJG7WaTK3ZIxDJGDGKNYiCEmUKCSBg5IzMCGgoLNalvHeR2ZGEEK0hkBISPOaIhFQjNH+fxRB8IFDjE0I3sfIxli0lpwzacLO1iImSRCREQFQmFv0S5IrfFUkEprUYdomaKgMwVBmi/rwcCT20NpAUlys17vNNk0zxCRN8jrEF9e7k031wdU2S/MkcXt7M47BhxCD3Xn36sWlmi0Wabx35AAAUIwhAPG+QURL1qIBhggCCBEkdgAoAfiRuUofBRAIxHtvnSsbv1uv9ibucrvbXxwQUkL1L/yv3/pb/9LH+vl/7n//6GJPxp7ysiGUaZ4Ie5ImhjQGSpLUGMPCFi0Lg02NUAyh5IqFkyQFj78w/RUA+DHpv/rjv/rO/1N/+Ne/84smncZqg4QcMEYQwRCFownBcBAIyBEioxcsfCi1nQ4hhnhw9BDIVU206ShJ0jcfPb66vqYBP1hRleNp24uihNoamaRZtiuKoiwVMsEi1rmj4+M0SbR9yxhzfHys6avpdLrZbARIqxCqdKTR/v7+PiJ+9tlnT548efHiBQA8fPhwsVj8+q//uvbQHxwcoCHsmiN3u93jx49/8zd/c39///j4EICLovjss0+MMdPptGmq8TjPsuTo6IA5bjarsiy323UIzcHBQ8Wn5Vmm6z3P82fPnqmA48OHD621RVEpxbn3cTSa7Ha77bZwziVJpnmTPrup94+KaxdsfDw/P2+asH9w5JzzIUaG8WTmfa0qihp7ZFm23W51B3XOJYklouPjw81m433z8uXL2WzmfR2Eu7ZMCKGpa/G+BshHo5FFi2QReDLNtBp8+uqlpm/Ho8w5p635aicPDw+VJFofMHFOs4bFbjcejzWJeHp6qg05h4eHWthRho/dbhe8r4rdYj47P32Vp0mejtQ+N02VjzMENA3EokkD2hgihAJQIgXgkbWu5hzQGGShfD4/eufJt/7wH14evF0UdWppdnj/Z3/+F37tV//fZycnaZoSiqcYEX2QJoYkSOasgJARAiZVIjaEhLHrthAEBmgGNJtkqN+XBBC9GDTWOLQYI7Mha0gAxpNMbIWuWp99XBWXb/ivje4/JpeZPJMgDBY5IkpqOXXM0Pgo3qZsk3GW6kan2GBhQUJjDBKCNA4gZ9kU9e5iNc3S5XQWBUsA9jazOeTpo7ff++3f+s1AcO/ekQWcZPb00x+enZ2BcFOWmVWyFARDmnnFjgCTRbj3HQUS66BrSWeGvmYgCESmJyCX2w1pzBC7DggwGGLMRnlVVfPl/ptvvS1CRozUgcACgAAH6EsJHV0Hojqyyie7LTaj8cgkpq6rPB3VddV+EgVDTNBIE9RKJ85ZwroJFgCtFMWuqqq9xZ51CaKDOiIxEZnEIFFvFm51LIRAiHmSIJHmrI01zMwhNhwJES11wwfUdetKCCAiEAGEmfM8DzFs1sVisQxC0UcBsYkbpa6p6xCDOMMhhsDAEiSmLmtTgEjjPEFCQ2isretak9hN8NZaC2SJRlk25CpQlwgBIPIQmxRClMiCQViIwZBVx8hai3ALJ4wdA28fVPS9IolJbtLoMqhsAOzqUv0Q7yPiTS+NiCRpHhlckvnAIghoVIAIQJoYQ1UZa62xAhgZrLWRY/QhTzNDpKJYWjMnIpWbW293zjlCrOu6rKubegXdfhBA27GVqnpH5IiIGBWiHxGRQYioCb7nIpKuRVzzLBJ7lgLus8ya0Y4AIQRAyNJMRCrfsk4jiOm4EKgTgOodV02lac7IdBRn+lyW+/LZ7ZhGbtcBhjlIlPY/LYEOETJodgMRyagEpYI01BMRQDJIItpg32o9IBAgg/6XxZBxNrHGIhILNpEDC4Jps8Vd0liAUfWlSITb8iIriEwlc9syCKIoAax+jwBaQh6izwcd3j10QBAiSJuIFUYh6Cp0OnLCQmREBAVaJS0QZTRC5ugDihjtJR6UKf8xchbL7SN0HWnUyXpKpwRE0NbjFIetxU394Sbf0LnCfdSkWG1FY2sSVIlH+hXVg0G1/UP/GzueBzWIaZqqcdTguyiKg4MDRDw5OdFIJs9zYwyR7RMVvbOi1BPjUT7Kc9XFS5LkjTfe0A7d3WYLmVVsWwje+2a72SCZGMLs4KipapdaLovxeHywv4SmtiHmxiRIR/v708nUGCOvh5VkUBEFjMzCkUkbIQSHlYJ2zgADowhjR6zZZxSo66rnCD3wWge2TzkgoEHqNVDbd9omNRXaCAAQuySHnjMyt0II3RXbe0JBAmswcTgSuncwz/N0Ns4++vTZ6cVl1dRVU6ExSTqiNIksu7reFhWLnF+cS5tPaWeOtLuwuIFKCbQtaIRIhmyMjESIIIjCkbl1blpq8y+ft3jzpN2/4Ga34yS93Owy58oQqhDe+eVpDZxmrhzH0nPlY92E0qIjQBQkTBgArAoy3szbrq7CCMwQIv/C6Fd+V8vq9eO/9wd+9d/9wX9ubGFYlGUBbm2DMEtkYQEWMc5d/YVWtnL6bx7fu//gerUGpMPDQxHRfoxhwng6nWpT2d7eHgBcX19fX1+7JB2Nx2+88cbp6el6vTbGaOdJURSqm66MUsodKSLj8ThJkqKs8zw/Pz9nZq11bDYbY8z+/n7lm6urqz/yR/7I97//fe1if/z48W/8xm/84p/8k331RnFKJycnk8nk3r17zFwUxatXr3a73cHBwd7enoK7VEFFBV6qqloul0oIpnXXJElm06nWgubz+XK5fP78uWLVdrvd8+fPFdumxVW9bQBQgJk2lyPiarXabrdZll1eXi4WixBYmXDUImkJtzMvTn07LYkAwGQySZLk8vJSacEUdpXn+Ww2UymVs7MztKZ3UxTepqXjzWZDQoioOpuTycR7r2+hKIrj4zfVgilYazQa7e/vE5HC3i4uLh48eKB9/5rR1NaX+XSqRM+K8lJkWowxy9PcWkTQlhXueI2ttT402902cQn4YIGyJMEGkEAIAWk6zkJRIlpBqmJglxy/8eSP/ok/lcxnIbJN0+1mHepqMp0/ePCoKquq3DWNd7llkQiKxAYf0BpyIVqBSK05EcEoMYQQRaJwhC8DLfQqUu2iaG0aAMJsNgmRmyLU283TDz6IER49eRcMZov5zjYhNBIrHwMFQ9aAWGQwiDHE/mK9OYoxAkg6cqFuRpRgiE1ZKd6YUmOtzecLjLFsogDOFgsESZ2DEK2FLDWX56d10xCCMdSZet3B8fYD9Fb0bqH4zkN/7r8OSuMgyk/gEh8ikjm6d68lAxTR0hZATx2pTeEtBVOPkmJm5tgEb5p6PB67tKX51iIkADBI8L5PVGOSpEmiEqhRgg/NZDpGhLquZ7NZjEGDPWaJoVECzCH6CKAlHhMRFBFlQO1Evq27aT6R2xCpjlhVdOspyh0ATKZjJEQGQmEUQnGpS5ypqgqEg0jwHfEIc+skqORle67WgpMxtpeXAQzxBt/V47h0EHkA/dL6p+4Eyl0R1AWPd8FvIXhGCKKgnht+F2ZOO/FHRtAUef+tLMugK/dpYAPdph9iWxDCjtipfekiQITGIBEaitrdjqD8a1o+VaR90pGwa/HWdNxcwyLG6/WK14++1ANdKrl/cbFjhIOOhE1BMQTS1210HPo52X93WGjSYxjY6Dl7nE6MseXI6XjSXCs9aWxfhVGX6Msf5ksecgitM8YgKs6KFaeBCERmKKaAiIZQ0GieJUYxzro8M2kCxnqBMoRKJCrqi9u+IvX0iTrWatcGVIgKoIU2elLb3JF+khAN+LB/zIdCRDSkhNutxnQnfag3o5MDWkY5FJHeZujbEOa6rkc3IjNfhqf8/+fBHcEFMwfvFZjYN/xIJ1DIXaYqdAqvVVVdXl72statddRyXLf21G/QxQMA6vcQkSYFdX+1X6DDg53t0xWof0rTVFWuEbFXPWuaJs9zzZ72Dr0yhWt4o0niR48eqcMRQtAewRhaGQsRQUC1Teo8nV2c100T2I/H48QlsW4yQKzD5vr6wf7h/t6iF3m4M55EhCo2HCMFiMgGDbUbttz+GPZxna4Y6Kg8qGuYM8aEpiWJ7p1pPYOIMle1M3CIH339FceOJR1fY0Mfmq1EorFEWZJYmgjNp5PFdLycj09OLz56cbLe7nZFXYWNsc5YZwEZyYIgMwlqRlVAgAO1iDNyipYQEgBrjYjUpOR+2o+KZAwYohgkDEbnd9/NIgCbctcEb85ORmnqG1+W5S76QCABt1WzrapNlY0dWAkUtbUavBdjk9jxJ0rX29Du30gi7H2E7Hd7O59zbFbr0X4GIBEpEkbAyBAEPEAQCSIROApH4U/+Gyc33/rvvvJbr0opShN8fHx8eXk5hEHrhlFVlfJHzWYz51xRVmdnZyojqG69Lm2NBFQnpM9H6DTI8/zqem2t3d/fj4Mu1adPnzLzk3fePj8//+3f/u2HDx9++OGHMcb5fL5areq6fuONN56/fBFCODk50eLA22+//fDhQw2QXHdoPLBarXQ5q825f/++Ovrai6IBlS7qV69erddrrXIsFgs1Fw8fPtTIQR9cKZWdc9oTAh3a+/DwcD6fZ1l2eHjonDs/v9ztdo8ePVLoBRFp9iRJkvX6WmOY+/fve+/7Jr3Hjx/3TMF6KFJLjd71Zl1VlcY8yrem7IUi4iuvnT/W2vPzc1162vL3/vvv68grmQcRpWl6dHRUluWLFy+I6OzsTIU7NSkeQri6upIYT05O9F/UqGrChTns7+8bQ0VR9KALxZv50CyXi6YKV6fnq9W6Lsux2nPFJ6+3qbVpltYhsjFvfeUr/5k/9UuYphxMUzc6OE1Z5M699e67gPIP/8F3jXOCCCCBowgDM4oQiiEClsRiAEEhImIQjVI0n2zMTbr6S5wKvKPL4YNEHrm0DHG3Wn/2/oeG0idP3kFCmI/ripoqRG58ZBMiSXQpA4mSVumhecLQ+qACRZim2ep6XTbNweFhPp2MxmNPYJCgyw2PRqN79+7tz2fOmHKzvbo8Q3Mj84dfDJi5c/O/L4extm7qxWLx4P6DdiwH0nD9x6RTytNKGgD0M1bkRihQbZripY0xLk30557u6CY1RnJ8fKxrU11G6tiSQvBRWDPotlPwaO+28xj7jWY4OP1e8yUTgIh0ek+nU47K7H/TbKxL1TkHzKGM3Hb6BRg4nIC4qyuBNt1JHaFWCAERLX5+/wZ0soP9v/dX7NsnuBNtHH6rd1T6NyId37TaFh6A1W++JQLdjFLPpB/hpiO178G6vaNvhE2nYardiWpLm6YRH2NHIDSMBrVqIT1xczfIvaP1RUf/jP0n+29hJyfa56x7Nwa4pYo2g95gHYF+oHqsTX/YgTyjdGRLvZKvZpn7oEgJGJumaWtYpmPM+D3EKv2kvB2oqAPaNvsikjEE4da3tIyj48MCaBOXZugytklAWzCUkQIlRABGpakMqq4SgfpEgKLsS321h9pIhYmt1lv/UQIVZdGOMbb6QAPdn364hMUZGyEC3Ijx9tal1z/WOPmfhDBFOvyVHj4EbVrSVpPeEIQYGh/79nRE0hnTSzSYTjOoT9L38ZsyAqsCnQYYuvaUcc8OdGf15EmSxMD61xCCujiz2ezq6qqqqtliT112XSQqv61X18tprtF0CpJE1DSNSxO1HSq9ov/ovR/n+erqtChK5QDQIhszF0UhZChx6SivqsoBzKbzXGDri1hUqv8NHaqSuvZ3Paid8CIiITKToEG6G6fcaEK1tqCXdyQiQuYWVCAiwl4GkrR8E+vejPOXW5/e3LcpjQ5RToPEiU6HBESMWKTMZT5KiJDN8pG7/+Bwfz6fr3e7s4vLi6vrza5sqgIQkQwRWrSglN2ARuVyWgJKE1jFAUgAp9Opc8lqvdltyxgCQbs1GmtFJEDoW3B+bzkSzxKb+vnlmSMLIj4Gz4IITfDf/u9sAS4APv3X/ta3EiDiyBxBIARIM2SWvoLfbyqIBIB/cvp/+j3dy+cc2+3u8CDXyi4DRAQv4AWCSBSIIAHEA4fXrO7JycnB/r4irLRDXTus+g+cnZ1pRxkRzWYzfQSdpb3SiIhcXV0BADNfXV3t7e3NZjP1fZlZ14sx5sGDB9oR3jRNlmXz+Vxz/1VVnZ+fHx0dnZ6evnz58vHjx3q56+vrX/u1X/ulf+afffDgwWazUc/m+vr65OQEO5IZzS8cHh7qytVJu1gsSODZs2daBTo9PY0db7L3vqlra62GBOrT61qbTqeJsdpvAwCq69LXfjWJqOdXzXtjjFqee/fuIeJNRplZiQc0+FHlmc1mc3p6en19rRWVPh2j6gF6D7PZbLVaXVxc5JNxryemwFRjzHg8ZubLs0u1CVonUV4B7XVJk2Nr7WazGY/Hb7zxhnITb7fb9Xo9nU7zPH/58qW+vn4j3t/fPz05UeXHs7MzVVzp99kQQlV5JWfvvQft+BeRxvvRaERF1mDLrilIQDg16Wgy3vowOzp68pWf+PpP/2w6XwJjsavKsojeMwc00MTgsvzBozeuLq9PTl8ysnAEhsgiIEYCIRkfkaUhJARiQRAkMs7quzcifNsufYmvP7RgHKJETtOUIzKK320//t5vU+BHb71F0zmyIUmRjQBEDwjgmDFGylIenJC7CSgiwftNE4rVKkvcZDwxVr1DsUTE1MToQ4iRj4+OmrJ48exZCCHLshevnikEmrtQ4Ytu/tbv/8gdqALAMRLRo0ePRuNR7FyO152Wum50SHtSCu66BdI0kVY8KvZtA0mSpGlqE9d7aKpTroDDPM+VrbhPYItIjMF7YpHAYJ313qsa6fA2qOOu6LM8/RE7Qir6vLzecAw1BKrrGoFc4oQIhJXdGLV/BxHJppM0ePa+8d4D6BZEuuOANdbZPogaGskhul7B5/2vblAd0hCClIeWyFgrADpQfHvwiVpGTwFoPduuY4SMEWaF4Wln7+DSmrBXZVW0xqlrb8jkdkzGqNpmX1XwITCzmqC+ERc79QiJHKRR660hWU/L7pwDamO23pfoXYUvfxF9HrN3oqgTn2iaJsRoiJRGlYgUKVPutv13pcMZqXekLJEA0DQNCw+bcoe8ZMOMAHShaQ/w0TS0PovtU2v9wuseSRTA1QaIxpDiPgHUEOGtlmCArt4Enc9qjOGuLtY7ZD3PQSsX1V/UmIghn87T8USMi8YEcpXQxss0JUbj0QbDohgug1FiDGGsPMgC3nsidMaCiIYEZIwuoO5mSJcidQQU7bTrshExRiTNELRgN8Q2sDHGJGQoeg3+ENF0Vky3DlDicJHIfFNsI4ohKv2OKERMWBihBW2+3qV067cvmlKvzbDh+H/hx+5cSoS1/BSi4toktFoc0pc7QghFUdouJ6oOATNrY6gOBXRsM8xtTsU5J3gjD0REykbaBkXeq5XUVCveokJH7NTZlONY0WKj0Qit0Y49EVHoyOHhob4IDTbUKNd1FWOrlMTMKiKhk03LKerYCcB0Mh2NxurqZTaZzfcmk8l8Ph/P5gWHYrtO0RCLVM16vYGyenh0b7m3rELTg7SGIlAiorGDdPChDugnXTe99Cu5n5BgjQWDcCPFo+hVIhK51VRniMTavmRPpM1f1M9q7HJXzJHoxuKoR9WVUJN+ymFH1oGI1pC0skrAACRIEknEpW6UunH+ThX8erO7Wq2vV+tNUTYhRGXQIGSGboHHyNwtHKoDgCBHaXxIyD568IjkZaxiEwUMJmmaZplxNqlrAKiaWlfNcIYObd9gDktL+4MIWq8XZsAoWAVGaABaLCgilP/Dm1rTX/mF3/wf//rPVIFNI0QhciMApqOZx05zU1jImj+e/R9/zKX3I4//2v/1J3mKlQ9kqI4RrPPceJbAEgEDYSPBc/TMXu5Wxn76Wz8dGl9V1bNnz1Q88fHjxy9fvuw/8Omnn6oAvFYzdHexrlAuYMVq6gQQkel0Op/PlX5KCb50vSu1XZLm2g2vHoOSjGu6Yb3dMvNbb72lZRNrbZqm77333q4o/uF3v/vk7bcV0DWfzy8vL6+urg4ODhT4pEvv8vLy3r17R0dHxpirqyvvPftw7969s7Oz9tJJoomP3W63N5+rU2WMGY9H3nstIukq0EtfX19vt1vFTKuDri6pNuRon4mKTiZJMhpN1MhoIoM6wpkQwvX15fX19de+9rXlcplm2f7+vqrLaxuJc+7k5MR7f3h0ZIjyPJ/P559++mnlG2vtbrdTu6RPrQ1CSsRc1/V0OtVTaVPNaDR6dfJCh1pJApS0UF+N0iVpDKYFor5VxlqbJIkGlmozFWhnLWGMm81aXQGNiFarlYhkeYoGqtIvJzNlllc7YdIkBkFA38hovvjWH/6jb/3E18s6boqKApVFGUNTVSVAy3+zKwuTpO99/esVy4uXn6TOsbBEQYRGGNETkhBaImfQobOE6hhgL583AFfHyDKY3ta50El63ykIGzIICJFRokMCkc3l+fNPPpiM81meG4N2NAKR0Hgl+hYflMezqxEajhxiS2PgG48xrItCvJ/tTYq6RE+zPAWW2ARFa8cYm6b2jrI8T5IkVLXKaMogV93T66pZ6r0jRKvFbf2VyHCn1gednVe7HgZ5CN0D+p9FOkKNDmo/n88XiwWIAGg3bOhj8oGdb3GMCqsOnSRFPsrR0maz1kmuuDUR1tUBpEp83PvQuqc45xhITygdlhsAmbnx3rgUuw5pTXCo4xhjBPA6MoSkW8FNWIVtLah3LLmDDPAAOY9IzrUbNCKaaJDFgCBoXQIiR+89iolgRVQwQoiQrO58hIhZnvVZORlkTuF2MKkbVb+tVGXVtTsgWgMAQgQiiJascbqNEgGzEHQDT6RvnYzp7sSY1ttOnBs4n0R9vzsAGJLILEKERIZMm6ojxChsSGsphsgIAMVIMXBsCX+HSUkNF0HEw01pIQ50wBBRIWd0GzchXeHriwoSId7gJ3UkbSd4osUf6sBgOtkAQF2yllopBDXFN05LBwlTK2S6BnoRwa6o0t8SdFzV/VRRrhTdibR92prXhG/6VWQ6ZeWbwI56ccoWLt9/RaRfwwCIpKtiIJDJLMNAhQh6KyUIJk2lCXWMbjQ6evwGkYNk9NnJ2enF2nCTWJMmiUtskro8T7I8NSoo2cRR6rIkTVJQLWxHRkCiRDK2RW0pBwKZfrVwF8C0LmV3k9bKMFAREdXKsNZmiQWPGtA75yJz7EqHKBC0OThGLUOrmbPGNG0CQOeQEdEovJ1kckuI43aY8mPHKbd//ZKszhCApH29DAAcIxJyiDo5dFL2qcqqqmzX3gQA6s2YTuszdgo+RBQj9QZRtZn0VCpSpgw5SZLUda2uCSLudjvFcsxmMyIqdqXisJXrRjEVmpKsQyuIpvNQCUOVWUhto20F0bz3TR9l1UWBiJrv1FWXZdne3l7wPgJodvbV2XmaO0RQDH1V1ZvdxjfVKJ9wVa+q87DdHu7tjcZjAaEucSs6qwYHtBsbRY6OrL5qaQVPbwKVPkVHRITWITKHPpqCm4LybSqbbomKCLMYQyKmC/Bu1ja3WK+bCEdfjTFGJ6102S+dBjeFQSQECQwgQsIWiQwzGitic5tHGlmznIzqo4OyrouybkIUxBg5aBHM+7qpvW9aIEoU54wwNk2IjXdIbz16EwJggO2miBTzUZ7nOVqTprXOuhC9fF7bWJ/ggO7xW0L+3kAzCJMgABnlBGybWAUAbiX/GgasA7CIYAhKWhR6Kxm7I8tHvy+Irz/3f/mKiVKTMNJqVzhndnXDaErvmyhe2IsEgYa5luglBo7TfyPf/Kulfv0vXv1rbs8aJCJSHJQ2S8xmM7huL6Eqq3Vdq++b5/m9e/euV+uTk5MQwtHRUS8SrNCgLE339vaUPGq1WmlHinIZ667QiwxyR5C1Wq2opFevXqmiwg9+8INf+IVfePnyZVEUx8fHf/87v7nY30/T9OLiYjabvfHGG5eXly0CrdhqTm6z2Tx69Gi73W42GxG5vr5OjFXSjrIsr66vppOpMpsDwBrx3r17b775JgBsNtvr62sRUfa/UdqqxWdZdnR0pLmJ999/X0Sspb7cqqUkLZhMp9PT09PJZDIej1VdXnFcT548ubi4mExG9+/f1+qTEo+ojKN2mFxcXIhIlmXOWg1CAGAymRQX5xoTjsdjLV9o1nM6ndZFzcwPHz5UOZQ+IvKdrrPSqV1cXGjqVEQ0OAGA8Xisai1Kua7uIAAQ0fn5uQYq1lpdwmRQ61rz+VwrzyKimSDrDEOcjMe73e7Zhx+O4w6xWswyRIzM0eUP33z7az/zBw7feHO1qwCNAwl1wyF430Ru6jogoCVj0iTP8r3DQyFzvb2sdlsUsC6BGKJICFKDZwJrKQKBJUSr1u2Or9Mv2yGSwFirXil3eJL+TwwASD5GRHSO2LNFKDarD374O+/NZvP9Q5flPjCgE6wkRuZgmCKz2khrLRvGgG0ejVmqmhsPhEzohSXy9XplrEWRXVEhiLPWTCaJM01ZIGAI4fzivAe33DBE9U/SPQ8AqNw0dDANa+8mfNtxQBS5oYm8m33pGk8EAUQS55TVra5rm1rmli1Qk026zfXxNnRUwpvNRnUd0qwtu3HX9S4iyhoSQrCJ6z1IzRjqh0U5hzqldnWINT3PIkikmIgeQ6H3EGPk2IKjsIMW98WHjlirdbR0e+ojru4z7VC1OT4RX5X9uMQYEYBFfF1bmwQGMlYMARsV+SEAjSKxY67XU2nDaltDGDDTxRhD7OS+RNI860oyHYa/OxDvOGPY/5NOXeqUymwrvSWKn7/9XgdnIIoxGgTnHKKmBZGQgFCisHZBg6AoN5MorY4lh4N70DG31oJA4z12vR/9S9S6cZS2AUY67q/+Nlo43CDpefMn73UFDea4KPNKn+3irl8FEdVMWUIFw/d3woNGgH6uQteZ3LprHSYldMot0iXKFa4cOy0dPZt+9xY98a03dNsH7mM7RESi17/V//XmQz36S100+jLvm0GaGL///vubop7Ml1XgMuJutUPeim9Qe9SRjcE0S/NRmuVpZsxbxwdVhAmYUZabPPN1sy5La+04n0j0LU6mZy/ubIox9CV3cnNLzARtWzkSYkdl3c/s1q1kIRaX2hAjEil8WQuL4TZX9z+ZR5+qsR3VrwbHoROs1RmMrx29beqRhRrDBB/68kJvZLHL8QOAtbbHgGm2WEFlmpXUXRy6LgtjjOcIoEUzUkA5AOgmXZa15laJKMtS7YjQ62pfigItFFmuU3Q8Gl2Xa604v/nkzbPzq816U/swHo9DlNg09WbL4mBXXu6K/dlkuVwyQeHrjiEC6LVytqJKsiz1jc9ui6jyQGvpjgXUPUrHXM1Hb3SMucH+wsDiq3HXikr/InRjrqrapkn32b6Q2Al03n7j0pWGIwuABUGQKErgCCgijGyE2XsEJiMOaZKPBKZFXXOMQCYwxigh+BBCWZVlWfrgm6aJUdZVxRHryluhxXT+5sPHGCm3+cnJq1rqJEuTJAFEzV6rls5r+/ePexCg5hNuJMsYjMCdhVcHtoiRKTJyBI4tkwF16Dgloh35AIvf030Mjn/h//xuESpisLmtYsyieOE6xLKpS++bCFWIdQg+SCOx4ehD8DFEkNG/ORGmLBmF/2Kom8YgaaZKWxqWy6V67XocHx8rkEnjgbIsP/nkkzfefBJjVKCjgpT6XotorTZ+fPjhh5pESJJE07fXq40Si2sTufrf0+mUmYPwbrdbrVZPnjx56623fvVXf/X+/fv7+/sffPCBiJycnDx69Ojb3/72ZrPZ398HgJOTE2XgVTZkBb6q8GtRFE+ePLFI19fX+/v70+lUYx5NRhhjJuNxnueXl5e240rWhVZV1XQ0nkwmqn/CzPP5XE/CzFVVaO1IlVJijAcHB1prci5oMKAVpPF4/OrVq+9973uHh4dVVc9ms46Hva1XfPrpp1/96lfX6/XV1dXR0ZG24uCgF//x48cXFxd1XZ+cnKg4jJqX8Xi8nC8B4OzsTHd3HT3dsKeTkVobACCi1WqVpun+/r6qoKhp1VTO3t7ep59+en5+vlqtDKIKWeoXVcqmKIrNdp0ZAyDeeyVagM5QhCCzvdmzz15sr67TNNvPsylW7HdlUUzmB3/w53/xJ7/1ByqJVWAiF7yvm4YrH5pmtbkEFCKrvUWTyTLNMt/Ee48efeMbP/3DH3z//NUpGrJotJMssohIFSIDar+vIUIB0zGzw4Dccui7I4Awm6717o4hZdQOa2GByJGRbYp1vdudFOOPPpqNZ+AyFJPkiRBxqA1xy4bVHX1iCBENog+xqqrJZCKESZ41TaPRb5ZlSZpVZeGAsiyzBNvr2lhzdXV1fXU9XMu3zZL0WRC43WEsHWS69+N7Bx2+1O25cy2XOOXWb5oGTEZG1LzrHtp/THtf+0LEdDrVTFxVVjZzuny0XKkll9FoNB6Pm+C5Uybptw/dwUMMfTCsRVrtb7bO+cB6NgWHU1t+JyKypu0FDQM1s899rv5yIQS8CyQZgoLqfqMSEWstqfsukUxG1iAiEIYQWoomEEJ0AycWByUIQTTW9BejGLFzf/vNdFCuGBBb38F6dTqGzAyDb7XbByICuCQZYr36td8ehnQ5UEeKpW3WiK2gAJBS1zIACIhqYtKtqQdwo2ofeRBW3Rn5OxvpnT/1j89dB87rBxHlea7eyOseLHXS9dZaS9hnP4cha++Z9EG1rpR28mBbpQEAReNrBKuO3J3bVoRtkiR3A5X+E8M1qX/rOctfF8Gh4Qvvf9YksShpqaKePndkAACi4KYof/jRxxVDOt0TtAAG0CBRMCjMzCHGACKwLWW7tcYk1nz0ySdZksxns+XeYjmf7y+Xy8W+Naasm4wisqouCAkQSx/w3QnPvujQ2EodYgI2xmCWqZFVFKCaJ2EOZT3CvPE+GaXM7H0ovI9NY79Y2PWfoENad7lvvVBzlqeJS7OeYFuBWPpfHQEc4NHVzHErHt/mL1tbQ4SIqp/db1EqdJCmqUoyayuV9uir/dUFoOuk8m2Zu6fc0RRvCAGAFOiioYIyYCjSIwYPAGrQ1V9pdw7E+d7edrvN8/ze8T1j07OLyzTLdrud95EYHu8f74+mp+uniU2ODo/IGs8xNH6SZr3wxZ1FruWa0WjU7K7hdk6+Dz/Ma2QVfTihWYR+22DmGAQ6fEi/oxMRQNuW068y6HrsiHA8G4u0lqIPV/Ruh7oG3DVmMHOMTGgEMSIIsDIjagAuLKEuBcC2tSQQYDHEBomsB2QGZhs5Tkap92PNlPsQkiILEYqiMmgW8/n943vryy3vi0SsYmETi9aEGF1IWLgoy1YW93c/c1HACMQegootggIBsr9sqr/cWvP/wn/wXthHSq2x1pqUrGFmGrgUCrMpy3Kz2f5vfvBn/sWv/vXf/b0AAPwfPvwX/95H3/84vPDeGzKUOEZkMjFGRirrxrOUPtSBax994CbGwKHh4ENkYUIM0ir71mWl8/nJkyc6nzWX31+rRzwuFosHDx5cXFy8//77H3744XvvvXd4eNg7MSqJqNl3ABiNRo8fPyYiVeG4uLiw1u6KiplVo7AsSw3ydY4lSfLWW289ffpUizY/+ZM/+Z3vfMcY895XvvLGk7dfvjpBxJ/4iZ84OTlRfNd2uxURbZVBRA1UdrvddDrV2iY5q5qJJycnin7Wks5yuWTmJEkWi4WuhfF4rA+uG1ie57vdDgD0VH3WzTmz2WyWyyUiTiYTTSu2fMf5WOXbVY0eEReLhRaOnDPX19fKGj+fz6fTaY+8UmvWC9jpRltV1dHR0cnZqYio0svFxYXu6MvlUn04ADg4OLi+vl6v12rBsCvAKrbNdOQB+i7yPF+tVgcHB0VR6N6/Wq0Wi0WWZW+99VZibV3XSvKh5lGDyaZuXJpcX181TTOZTCaTid5w0zR1VX/66eUon66ZJ5NJsTmFuJ1Nkm/91E99/Vs/N7n3rnepr0trjG82Uvu6KEJZCUSAmOf5eDxNkhTAWJsIGs8BjH3nK19Jk/Q7zd9dX16QdQgYWEQYgckHAcKmSy0TAWJChhDjLcfhJq0rACG0dytDCAaAIEQAQQjCItCE2PgQlRuR6OSzzxaz5cHjJ+lsSUkmRMELSIPO8CCn2g+4ekLB+3JX7O3tISIgaufAZrPZrFbrbbHdro+XB48fPAgSAKDY7V69enWHvetWlQDEtA8BMDDsrQse297O3tq3HmFsUdY/8jDG5FlORE3TYIvJzNTaq7+hHyOi2le6FnQMdXUj4na70YYHDe/1rwpA6AMnRVoqYkfvUPP0ve8oHTzYWssATah7ws++TV9XnzB+uct7Zw5oQs0M6LB6tE833LdGo0cBGJcEIOucOr69T6I7YDIgGr5VGyGUgaIudYSi/T33Zxi+Zbi9uUvXHa7/ruWa/ovQZXL70evPcMuR7pKKWrLoIz1AdGT6K/Z7PaICvm8mtt6D+pMxRmMtDu5wWA6Kt1HEw2fpn/1uHHX70OXjO46lO39VX0VhwIltiyF8m2OAO/ol6LKi/XMRUWw8DRrA+lCQB4RMepW+ihhCuOtJ33pJw1wFDtrfX6uoDI+2pEftq+KOba3Thmxfnmi5E1BQBHA8HhFhWTeVQKyrJJ8hIhmLYpyxuqCM6JptQgQ0VmwaDV6VxatnL8yLk8TaUZYfLpePHj1+cHB4LzcogMTEggikSnstmksGd3FzO3ovN829woKgkxBEENCiQyQtK5NOX0QBqOrapdZ7n2FmEIF5U+wsS5IkoLhKwDtYlH/SDhzgXxExTdPReCxIu6LQlnTtowohaKASOxbIO2F60zRFVQ/ryEO7UNe1Wsz1eq0XPT8/d84pQFaZTDUy1Oyp9pksDw8AQIswvb1WwQEAUo4vDfE1Q68IEOTonIshqEy1wjyauvaN91VRlrVBmszngjSZzs7OL05ePD88vPdoeZgjXb06pcgP7t0b56OiKPLZ1JLjJhJ2BYuWBLs9RMAliUuy7ToKUJc0EgSIItpBjkiIBkA38Y79QYCQABEERVC78ZDIGBYBIjbGhhjb5UekKizD5dbZBW4azyyILWJquI/eSewN037MgpYUcy1AzBxDUKAyiDirUEBLxjJA0wRHAoBokVooI7IQgIvRVbWxBprGMJoQmQDZ8yQfTbIRx+hMMhlNE7HkSBAaH4y1jQ+JS9AYifH32o1KPd1ly1HZ2Xf3l3EvT4+neXXAVYgliWWwUAGbxBhhaCXctNk0y+q6vl5vJpPl/+r7v7TdlsWu3m6qf/2f/60f8z7+5mf/7d86+XB7vbEmgRCBjM0yMq6sqsZ7QbNa78S6EMVH9iE2kT1zE+Gz/+ZKz5D/W6kowWAMRKCJUmmBqaGqyuGeXpZlmmbzvcl4PC6rEglH47FLXF1V55vNdDrJ8rxuamvNYrkQ5tVqdXl5+cEHHxwdHc3n877OmSSJD6xNDqpM770fjUZFUehuFEJYLpdnZ2c//OEPv/nNbz548GC1Wh0cHgLCN77xjZOTk3fffffjjz9+/vy5ljjG47ExpDy8/Xy7vLxsmub4+LgR0CaZZ8+eAYC19q233tLSwWw61dCIu5b0w8ND9cIT65TNTNmTX758mee5gsGUwrinzbi+vtbtDRE3m5VKSWZZpnAsEVkulxcXFzOtlDKr46UN+n01yRjz7Nkz9ee0HKSArr4lQMNa7YrRnr3xOEc0zHE8Hh8dHfbEgwAgHDXsWa1W1AFpjDFVVWngpNZvvV4r+Zg+skYp6ijohUIIo9FosVxsr69ijMqTtlgs1AjUdV03/vz8Yn+B77337gTZXyUPZslPf+Nrj958UovdRqyqgoBzgc1qVxcbiT6xZpSPJstZlmXOpT6y99GHaAxOZtPQhAZlvjd/+913PnkftqsrhdFHZhT2zBCRGChGRVmo1gghRe0nALhJISAAAAowsO3QsGRIuDeEIKjs7cAILnGC2BSFCDhKd9eXLz77OJ/PRvO5IRCHAgbEICEJGGkzFIKg619QCIFjaOrKEmq9uGma6H1Cxo3GSZLW5U41hKuqvL6++uEHP9wVu7oustwOYh+lve2jqRufSOG/1BLKE3dsUa0XNABE6YPLaw75wAsCADDW2ST1IVa1n47GTeDbJ2FVrAU02kGJKnPRNCF4lzjjLIM0RTGejJUCxzkXOYYYEkhdmoSy1GZx7z0SQceHy8yjbNwnXqHL3OvK3e1248m4Rw31ZFne+wCRFHVnSBt6+7d8W8JNEMCQlrID3YpqZPA/sIaGrnnwjf5XBCjLyKC1RpgAUZj7usZQbYJEjHNtoz1R7Rtut1qNXRFFYmRS8e4O/SOicjbtlO3iagSQGAPHSMYkJiGipmnb1rtYNIqwENKNT48Agors6lcAoUQFxBOIgDBQ26tMXfqybbgHAZBWfCbemoVasRQRYWmaZhic34ms+p+HKCzo6jw0oLj83EMZVjT3al7jtcOuwTVJEmOo30fuzHmdJzjoNZWusOa7kD6EgJ2Wd+CITdPntRGx354AoK5rO1w/jK3YTHtPDABo0Ko+SUSKSECGiayz/bX7wWoLYYTJDbuzALTaq+PJdOeDMEQAH2sTrctyAdM0jU0SkXBwsN80PpDlOkbTWOcAgoTg0PXmDlDIUGJSAKjrYACFRpRkIrxrwrYur3anH51cpkR/4ltff7B/kKSZ2IgxWGQLJjdpigYlkiFnESSGUCFGjg1IAImmb21TJhOLQMLAgF2DoDEuSSimxvsQg/GBY3TWoIhLjDTe1wEiJ9atry59jBlFgeB9GGcTiaaJLAzMUQCHU6Czd/1sG84MuM0W9mPxkOi0GZxwMH0FQpcF0QyuSNtSQh31R5ZlZVVGQQBQ7IT2jegurgEJDGiptNseAJi5acJmtd7b27PWOmMNUtM0IbbCzzHG8/Pz3W43Ho9VC8V7v7e3F3zUVKXe5A3jalEQ2bqui6Jyzqmuwm63I7LaZTUajRaLhd6MQrystUnijE3LojCGsnGepokztkGEGK2xm121Wl1DjHVdG+ceHd+bZk58OUswrXZ+t22K8ujwcDofRwnOWK4aRGRgGbRjtTi3ELz3SeaCSWZHD7ZNdXpZ7O+N8tSgxOA9GMOICEYEtVmKQIxFBCEOyhMnLGiMJZFeT4aRMCIjMNiE0Cbee8FGQqDEE6JEicAmcb6JVRPSHIsqVLtCBTQduaqpyJABIywcBCwCIJG2j+sbDGrFdtuVZqB98CpmCggq9IqSioiPzL4iImuMEo8KQDBQN411lkWaxhvk1IlBm6UmH4+vrjc4AomQjVKTJGjNrqnmB8t6tyWDQZiwweiNaZJsNBrP6nCllMbSYRvUiA+nN0tAUKUvLKvddDpljJFElAIQQIQVNh5B+99oXTWEJklqQEPL8TQzwBWFaOKYyGH0EsgmzjojhHsHC5Nnq6IofNzWzaZqmsB/5T/+Ez/1ztsjQ3/6wV99fcX95vN/CY2Z7R24dP8fho8+O3lxuVltjYilbDyqfcPeWwtNiGVdlAGqugoMXiCyRIC6MT/48zf98eVf2tBfSdN8tFxOl8t5kpq9+Xy1up4vJmmW1nV9tb7oPzyfL4uyXBeFuVqlo6xBHO3NE+Bit8qzdDRKN+trlyR5nuepret6/2B//+Dg5cuXddNUda28WAcHB7psF4vF9fW1evNaujTGGGvW222W5+PJJDInafo73/vez/3cz11dXb06Pc1G48b7umki83xv7/LqikV2u91yf99SNkpHoQ7j8Xi33jHzqxev9vf3l/NlWe4UuNU3wr169erg4CBJkhcvXhweHmoW4+rqSsXar66unjx5crR/oNUeBcprJkWDk80maZpG6Y9dp0p2dXXFzNPp1DlTFNvpdLy/vzg9PW2aBoB3u81ut7l//77GY4r629vb0y02z/PJZFKWpWbFlINYQw5k2ZvOXr58ee/x0eFyf7VaWSRkyZN0u9tYY8uqEuEYeTqdWmt83RS73Xw27ykKNL+jVd/NZpOP891uN5vNqqaa7c0EJXI8PD7ssTdahb66utIs5mg0Oj46IuHGN2RNWVcff/rJbDYriiLLMjLmvbe/YhG//tV33nvyMEXOEufStCIbGWzlc5K6blbbumkCY5JPZvkoS5IkcUYEQmQQAfGIQGTrsqrrqql26Ow7735lPJp+8P3v77ZbbkJdVYYIKPccY2PQWGutQ0MtB2dMKLnRYUPQpHRLdUFY+VoIIktVVyH4Ln+JVRMQdBvCEGoU3ktTYfE+mKTZrj45+SimtD24/yjNRgEgAnCAHCxHChjZYLASkYnYChCYqrg0UFfb62mWaOrEuqwRE0IECY8ODsaTkTVyubv+rd/+zadPP82yFMlEwygAXXuxASBsleGCr9QHJVXNUnMFEYS9r62x5FxLqxMDABgCA8aCY4DAkUUZdTSgAgFgi00UALEuwTSndGyyWUS83jRpmm4Lja6jtWY0znbFzjkbOKyLXZ7mFihx1iJMJ+PL1VU2GU8W01iWdV1OZ7Prplru79XBl1XlxunF5koiG6IgDi1udmskmkwmJIYSwwCqgy4iPkayNoqUdZ2maZY6Dt4YA4ghxtS1uLLpOK/r0hlLJD7UIB2sBpGQmrrWfBtqBBN9jA0B5s5iH7SpE8sBEa1BBCzLoOURFQzQQN0aF5mBGGItEJFMYpDRACIIgUAcKBkiIgCyAESBGNE404MgAEEQUaw1IEh24G7FiKSwESXeHfjABCgkACECRE7SG4L4yCJCxqYA4APr3qpHhyVrIx8iNKqALECIibv5pISuYweQhIABGGKIESQSELRRrjOmqcqqrLz3vixHeapgPCKy1qi5EJEsy4qi6HPHxhhUpJwSF3Grc6IIArVvw2KIflK6jpEW55LkiSVLLS4rhKgKsxy40koOGQFo9RgB0VgEGE9n0CZlERAVHVBVlQDYNBORIALWtv1bxmSjCQBADKaTjxuNRkp3qa7pj4tN0kBEb4i/OBoDLXO12o8I0AogRmYRBhhAENtEKAKAANR145ydz2dPz67zVGLQPlcRYLiFW7l7tS6VSmQdAAhiYOAY/qO/9WuP7h0/eHD/4f3jxXxuCYroY+JqACtAqo5nCIg6SXvse8Cgm1+qLKKz/9ZVjbWAZCxREI6i+XBgBOHgQ9KA2DAeBZbJdAIAiCrZbhCo65SnYUwIt2MJvJV1+H0+sOdm0TYGa2NoOTp09gNAWZaASKbl6SMi6PqY9VBwvBY9EaFpvO6p2gSvpQ/vvfeNCPS4pr67dD6fj0YjPYMuG2vk7OwsxjgajXSHvrq6QsTpdArGagCjyUit5ygSRuNhDZM0g6tReJ7ngpKqRjvzdrslwO16vdlsCKCpG2ctItZl6dfrzFqXpkfLZe6S5mpXbLb37t2bz1vRK7gpf9x6WXrom8rzUQzNbDJbLI8uTp83NVsEa4CMjcBaqgMEIAHpNinBwKzONTNjq1Cq0x1EuwQJybRWAJGQDFI0QtzxfQkDIgGQNkdWVdt3q8GkablZAPBWSm9YkAEAa42WnbVWejvXcuulA9zo9BpAJQkHAYMASMCMRCgciZIkiYzWhTzPI0cRcUnijE2mMyTwMZKvpSqRCNAgGSADrzFffe7RJ2YUxdenJNWy4ACxiohRpI5cNP6v/bkf6tf/nW//AUESJEASbd1BFEQia5PU+JhGaGKDhAwyn88fPLw/35tPDP366Z//+aN/T0/yw4u/0DRNNs5Hj2YNSkTz4YtnP3z60VW1qbgJKIkbdcYfAlNgiQyRJbaUXxBFgmDgu3bNGkMGmWNZlsu9vXK3qavSOnN1cVFV1Vtvvgnvt5/c35tvSveDD95f7i8PxsttUeBkInW1ODwKIQJIPlJ2r+1isRiNbFGWo9FYQ4LRaDSdTnUCbzab3a5Udxw7bl8AcM5dr9dX19d5ni8Wi6OjI03f/sqv/Mq3vvUtAdhsNo8eP16v19/97nfTNF2v17qxFUXhy2q1WilJBhGt1+vZbKawqKap9vb2tCUjhJDnuZZuNpvN/nKpiY+eSYaIjo+PNX+hibfFYqGdNrHlNTKaW9nb29O98NGjR0Sk0CxjzOXlZX+G2WymlZPj42Otu6qh2Gw2vc6M1mQePHiQpun5+fl6vdb9e7vdTiaTrIP+av9MT2GcpmmIXqCNsvM8Y45XV+vRaJTl2Waz0UJ0Xdd5nit1gSLliqrQqpEyAXjvZ7OZGjdf1tPptCxL7OSZ26q18Gw2y/Ps5OREo7WTk5PDw0PtbQBAYX7j8aPZbCq+FgCPJIIhRgkhBF83deObfDxWFsQW9R69ShoLAFkL2sQcQ+RIxjmXTkfjvdliOpl9/7d/5+WLFy4dhdBEMCQSGEKQYCQCc5vhwE4XoLUgQgAsageEPXfyL4CYWNOtX0QWQqO5cDYoANYaFok2kCWWWF68ehb85fNn2WQ2ni+m82WWT9EEYxANRWRiQCICQuEowRobfLPbbPYXS2dcbDQSEwTOExfrEkK8PDv75MOP1lfXibN5lmrxsivQtBFUtwWwApVUMEpar6TNbOZZDoNmlVtJ7pvBgOE/Sq98jUTGWuvIGMWuEhrnUk0XMEMIPgRDBN43q821zUcCjES77QZEyrJI88wYqus6szZ4Y4xZLJd100QQJPLBQ9fZD60jJzhA3Sj40HaCGD0+It6mZevLLK3XyyzEInSLMIFIgPWZ8VaGdfhjNzd0GFuMAiDieDrZbDbG2WyUiwgaEo5CaBBbykdlR2p9+LtVqdeu85of9SMUIl7f6m/VK+784UtPBa+d6kef5PavN5MmhNg0TVWWdV1H741tYXv9Zi0D2ioYVA56AgNmbkrff5iZnXOTyUSpVuDOLj+4DWXXFL6RRhk83Rf65cOuB+668Psz6M0h4p16DcWW+yd2nMXYoUN/N4FK97U70/e1T3YVOaIYWZSMiIe6TJ93RLbWvfPkrU9f/t3oA2ODhM6QMP94CE/Q7a0FyvsmT8ynF2cfn59MPxzdu3f4tXffe3D/eAMc2E/ZJYgIhtAiGBBq/3f7SsaYJHFd54aYwUvq2wCMMaDpXxAS0WpziMESEJEATsaT2DHwGmeNstoDCJAMYPl3RvU/7eaWLvYARHLOgbSE3PpQKrIzmozVtHUP24YxGoUPAYVap2thi0nSkzjrxq+MYXrFNM+MMQoA071ZKd6VRl09j7IsFYginUwKkmRZdnBwoFdR70cR2xqc9CB+XQzOudFolOZpXZYhBGetr5vNau3r2hiDItZal1idLQiwvl4pxk95pheLxWg06hft5x4iPa0wEtHqajWdjRBxsVgS+3J33QQhMs5SjHVf2kaUvkiAghwGKx3vnh+6PnsYMHQREaBlFmOMc7apAxGKQNM0iFRVlXMtjBXa6lZjjLmD1YRBs5rCWvo96bYlAuabuOXOaFB3DO8TAACJxYxHoxiLUQ7z2SyGIAKjNEuTpCqLKKKx5c1DIRLhjxen3DT2qCP7JZ8kAo6xrsvv/8s3Peh/4Q9+53/5937GBWZkCAAGxLOY6IwBQ865qUkFa98QRPSNP331EppyfzzJrf2t9V+EyJM0NxOzvbxYr7Yz6zzw+Wb9/Y+ff+/Fp2fFJhCQtWqLgIUjM0gIsQnsA4fIntmLqtGj93ero8oGvlqvynVxdXGxWCzW6/VoPZpMJtWuWNvr/pMXp6dROCXMrZ3kadNUyDZwMplqyXGbpllR1pvtlgWtdZvNZrvdMXOappvNRoUFFaK5t7enS0/5J5QFGBGXB/v33X1dU0VRnJ+fP3jw4M/+2T/77W9/+5vf+unf+d4PPv300/F4rE0jL168UKf/xYsXy9kcEc/PzzUmiTFqimGxWGw2q6Ojo+9973ubzebNN99ERG3S2Nvby7MMumSqBiQKCSvLcrLcVy6vk5OT2XRKxjRNc3R0pGhPEdHyLADEGC8vL51z9+7d0wBG1VpUATPP8/Pz854z4OzsbD6fHx4eao++DojKxgPAgwcPlKpru91q0KVUwm+++WZd15vNRvUc67o+PT19/MYjRFQLqfwQesNVVUkU7cPR6o124mmPgSaMZrMZImpzy6tXr46OjrIs25vMeoaSuq6VGy2EQAabxgOIcr7t7e31kvbX19cEZIRjjE1dW2RjLIv44JvGN9tN4txsNmsnZ+c6hBCG/d7UNcuKCBljTcocwdB4NH7rnXdG4/EPvvf9jz/8EJFZokRBjjVCQhjQBLQOAG7XQtWSd75vhMgkYACRjHMuSdP+kzHz2KL/EQCNNcZYEY4+GOEYJAJCVXjv/XpdXpxfJxm6/MnXvplOp3kyA2tqBmZCpADkAcbj2eZ6VRRl0/g8d8xesToxhroqEKWuqw8++OCTTz4O0VtrQvDee4cK3QBNLiECCrQNA0SIrem7A55JbNu6GTsi7PbxAUO8cY/Vq+bOYe6L88aaXqJHRKxTbptedVG1gERn1/zwMDHWCnrA1fX1xcXF/GBZN01VVZC4+d6eDz5JEh9D09TW2qaqUaDfQdq4oONT0W1CN+vWpek2uDstCqZTyDWdiAd3kpRfkmbtnY32LfPdtgfutInTNNWy53K57BFKRCTCZFBAQDhGQSTEPkEFP2YL0O/twC+W9bzzXF/S9fElx/DkfKvbR3gwUDGG4H1ZlkVRkNy0ggC0LkT/vu7MTM3b9sXhYTSiUhA6V/tdtU9h92cQzY7cjot+5DEcDf2i2kbFbmDHCuubpm6a/pMj53BAZt3PN2b+XQQqfTz95a+EOk0cHLTXaM3zS6ZUlmVF3Xzlva/87b//D0LjCYmtYbDQo11/1KEYBmzljZImFBGlKqsyblZF8dnzF3/qT/7i43feBZcqozWARXKITlpDRAIG5AZfaTqtUABlsLy1/G48dTBoLAAgCAkjYpbHxFprEySDREquH0Wccz52ZZvbMM4ffwb8ox/DBUaE1toYuG/z0OZRZnYu4dY4kyZTVQdNX2jv3fb8m6oENAy3dMb3JLlJklDHh7NarfqGE604bzc77ZFVrDYAaONaCKHYFYreVuDZaDRSmYgY4/7+fi8BURSFuiA9MYDSklpjokti4ysARPR1LQjB++12G0NAwfX1ypCZzWZhW8qmvHd4BNq/9cXhYv++TKfEVJV1QggiST5GgtiU2p3C0HR1frmpmgCgiHNWGau1xydyHCaHhiuup1VhJksoVtMnDBh7o9N3CsIg9aUbgBt4A9BtJP1n1J3qw4bhVFRVls8dAYNokIzuGV2pGwUQmMWYLG2qwBGn4wn7AMx5llnrnDUMXDUNE8SqpM5QINKPuQC4IxKIA/Hdzz2QUCL416CSq0YEOYkhQNMI2MAJQIbEwALQ1B6CJAby1BiRst6+eFls8tF8PCLP5GOT5ZbManW9KXbr7SoaerW+/vDs1WUod6Gy09FoMnbOWiIIzCEyQGCJkUNkH9kzBwBmiCIhxuNfXr76Vy71xpJfHgvJZrN5+fJlcb159tnTLMuU1ibL0izLEuvgF9un2BvnLk3qckPsuSkX4zxmwmKJTJKkde0RTZaNAKiu6zTNVb1RRPb29pbL5Wg00lgFEZVwQiMKVTHSyL+qqhBjkqZa/Xj77bfH4/Fms/nGN77x4YcfvfHmm9///vd/6qd+ajQa7XY77QK/urqy1q7X68PDw+VyOR6PkyRRZxoAvPf3799///33P/vsM81HzGazp0+fGmMmkwnHqHCs6+vr1WqlLFhqT/o4ChEFoAcSEFGaOuUZ0+720WjUovM7IW317abTqQYn2nafdiPgwScAAQAASURBVCtiPp9PptNit/OdLGzXl7wNIex2OxWKub6+1q/omRFxPp+r5dlut3Vdv3jxIr2tFV2Wpfd+Mpn42ovIvXv3dLkpk9hut0NEQCjLUpuVLy8vVThFXYqyLNfr9Xa7vX///nQ6VRKnuq5F4MGD+1VV7u3taYFI93K91aqoMpeuVqvDvYnCvRkghtA0zfJgv09CB45yQ7HOOqotGClGH4IOeJalvinz8RhFPHOSZY+fPJlMpuko//TTT7arc2EQ4Qah8TEx6IhFrMCtNgREZJZWZixGoxtrllkVj+h4mRCExVPXKmmsdYkzxghLDJ7rRgCZxTNEJAEIXIVdGWX17IewOL63zw/taGZtBjZjcAEIkOfzvaYsd7uiLCtjLAuzROYAEoNvimL7/PnzZ8+fBl8DSvBN07Cz5laUAoAC1O3WhERaAEFU6NLQLvWu/+0k12BsEQSghX61gQqAsrgaHY8bl7GP7rr8IMXolXc7hDDO8mZXKtv+ZDbbPzjQZr2TF8/q4K21TfAiwpHT1PimMd207NPN0lMOqIaJMUrBpAF/n4kbWk61upoKbOoaekLXTjqmd4pu2eEvTfn1X2TmmgEIbZIIobQlFERDyEAE0mrytOdUsO+XnPb35fiSOx+wFv/+nL9VUvu8Q0SgCylHadaPGHY0Ofpr6GS79VtqPJMOV3InKOpdBRrga15/orbo2l3uy6sU/ZEOExBdQqSvk1AHpblztj6prUZY42T1Yeyt8EtuEXMN24X75HEfzN0AMO4MN93wgwFA0J5CFY40hm4qwiQCAkJEIGIQLZn7R8eT0fhstXVk2AQGIILYUSlTR7OgT87M3BEUqL8lHbqOiAgTRElTgMjOJij41/+jX33vna+OHz/eFrvgdK47z5C4hMlFsCxI2ILtiJAM9YUqzY8O5430bYAAxjrRHilBEDE2AQLrEgHYFTvjss4FZFRsJQDArSawLpDrX+2QIA+GAd6QafZOI8prx+cv4+Ebdy5JnPNNwI4GsccOqQKNSxLd73tgmP5qOiJj05EXm05mpK69tLgvrzt372erjor2lqhZVH9IZ5RWcjQf2ZNp9ME3ESkThekOPZUShdV13TS+S8C0bTOJyp97X1d1DzkLTfPZZl1st2VRcgh1VUnk2WjSkE2sO1wsVU4OAGKI1rVU+jr9u1cv/azQK2ZZHnyo6iDcoOB877DYrs4vTieTDIWEAwA7Z42hyD6EYAy5NI0IwNqZKuw9MwgIK+RgEEtQp5DdvZR4s9SNDcJaq2waH1KjIJZhjVWxefLaHOgTJz2JCry2qWhGog9g+pmjyI6EDIqyZhgWEGCN/oVs3cQ8TX3Ds8k0NN4gCnPiXFkFnct9EMXMTd0Q3bLRAp+zCakdgC7z5L0HRGtt4Njd/621oIEfv1ah3kaSMuQZ1RBSxjQDjxIBjCERFMbEkMmzkUuq1K/X2/V6ty23l2u3Pt+kaPIkJcCiLJoYaLtrkM+36xdXr2oASq1LTJoYg0ASgCODRCYGZMAmxKppIuF3/+vneif3/409AZz9T6dlaLwwJ4LMAPCDH/xgbN1qdRWbEQJkadLscIvQVE0fqPzKv/+/3dtfHN+/t9jfdwSz+SzPJ0WM2/XGEEXv8zSlPN+bz6u63pvNp9PJarXSgFYX+Hg81o1huy20CU2dFW3vBoCXL17uLRexK9zXVV1VlcrhHR8fPXv6NM/z73znO1/96levrq7Ut95sNt/85jfHaaZdInmerzfry4vL58+ff/Ob35xMJs+ePdOkRpIk89k8yzMRmc1mAKD1k+12W5ZlWRY9JoSIHJnlcjmbzfb3933T6J6t4RNiuwX0E146RqDdbnd+fq70xxrYKM2XLhC1RZvN5vrqqqrrPM+V1XC73eontVKkQDj9uoovHR8fK8+HtXa73SqULs1akSjdIlX0RkMpTDBJkul0qr002mzz4Ycf3r9/PxtlmmFR/JiWTWazmTGmWG+vrq5UPIqZlX1ks9kgQmJNWRaanuw1arTTL8/zo+VC6WiRQ4xBYhQAJPLM/S5yg7wxSEKeGxRNn4AYBRcYMAatTSAnIlGWDhBjzPGbb0CWptPpP/zObzRlgcw+hIqaxFFiODIwQIi1NZaMQXVDJbB4JLYO0yRLkiRJUmONtYYQQ4wACm11Kr+mWd4+UeW98RZFwEcW71GELI2sE8QY4fr0mfEFNVW+d5AtD910wZbIUWIyG+a70dYYt91uASRJUgBh8ZGDs3R5dvbZJx/VdWksRo4SgzGUGEMKYcMuVulcZgAxhARgABFIG/f7qCRKGwC8VuZFJBQB1fQQVvYgUEg8QFvTSJJkNB5Dlzlq3Ruv3mfLtaWuFxFVZWmRrKCIGDKr1SqdjIAwG43mi72zV2fvvPsO7HabzcY3zWQ8LhufWGc7nW/NHirKgzvmpb5IovVPjah7ItDhvtB6WQDc59gGdZjeN+g9xt5i9zGSnkrtv+mIv4wxwjBf7IUQETFwRERBAG3VR1CVT0JLBjvEf9f6hDed0reAy4NN7fXwafiz/savMZhp9YY7k3I7bXfLre+9/BgjMxhzs5necf7vVDxu/v027ktx1G0SM8amvgHb929NRGKIZAjhxuXmzmJLR8ClrxWEe6IRfSIVgwIALSb3tzT0B3Q2xgHFsL4sY0y8/SC6a+txJ2HdR8h6wn4EFIPTfUmou0R/9T7cuJ0zxrvByXB04TZipP/AnZwrYquGo39lhaYhgYAhor6uhCDC2oIlACGExNosSSej8avLlUQO3hMCWgwSet906C0BgHQat+1IDZj1TCRgMWQBomE0RDGEv/M3/87Rnz3Yn0yLXVFVVRAMjBg4BIkMUahVk0B0zjnroJPMJCIauDt3UrnWWGABZuEQRABNiAEEWKCqmpFNNSAOIeDgi0M5F2YYlqluBy0wbKA35hYe80vRST/6D0pl2IMC1QZpMFDXdZqPbavn2CpPUVc+5o6zWKl41L/Rf+ROoLffYsuynEwmMcZ8PFKXQlXYNJjRbpM8G4UQNpsNIiqgQl93WZYmSafTKXYKXNZapRPV+0TE+Xze1wrVhY0xOmu18JIlSbkrdkVhO78/y9Jyh6M8r8qy8AECV1KMknQ8mhh7o5NqrOkXzOeOXv9zno+qsizKOs+SyXSaJDaAuLLe7LYjh2mapalDAsRWfkejuxAitCL3wIQ3kAAEY43WW4dLjJlVAkxNkjHWJSASAFqq+xhtD8zrc3umxT0PZsNg8WLXbnRnafc/98/Ot+v7ANADPLhN3iAABhCIIpET4wjrPE2L3Q4FOEaDGGM0Xdijti/GWNfV5/QAvTZvdYr2ZlonpLEmNO2avbNPMUdAAgH7l234y20Z/c/9hz9xNeGIzCQUfc7QiJiKi6pMnLPGxrLtI7IAiZXJODXOXu92q11zvr3KkjwxDTCXRVGGJhooQrOrqxpKY+1klLrEJQjGEIfIyEDACCIUBZoQfIy//S9f93f48l+9Pv7lRUv7Bro9gHPu2bOnX3/n7cSisyDMxNGRQQGX3BBxfvTD77vE/f3oXZocHB8ul/uHR/ff/eo30NjxaBTKspKIRLmh/cm4qgpE2N/f15Stxiea9d/tdvv7++oUqtO82Wy0djqbza6ur5XQYjwe7y32NDvAzNtit9mVT58+HY/Hn332WR8YE9Hl5aXbPxCRq6urxWIBAicnJzoni6LY31/q+dM0tc6GEMbjsZqO+/fuKT0XEU0mUwDQpAkRWaQQguohItEoz0ejkQqnhNBUVdXbk7quszzX3W6xWPSO17Bv/vj4eLVaYUeC6UNYrVbaxNKviFZXZzQaj8fKKbxarZQHVlGL2owHAIo+zUdZX+YFAFWD0dBLKcK0cKTegIgoKE59iPv372uBRflAh3C1/f19LXzNZrPz83NjzHJ/kaap901d10qmvL+/P5vNrq+vlRr+zTfePDw8DDFiDNBl5RGRcbCqBhZNEDQ9qXkzBDCJyxBi5ODDOM1FtMVUWMQYx9ZN9w+/+lMJ+/KHv/Pb5XrtbBIlND42hhphw0zEgEyEWihmDoiQps45N53NnHXWWhZWD068AECrNEzqQ1trjXUOANATgwQVPkdAshgZSWyCDIDIh7NUQlWcPa9367TYJosNTveS+V6a583WgqA1yfnq/PLy8tGjR7PZZLO5rsrq9LPPnj39NDQ1oXCIhGItIRFwNHjTl0jqjUqbmrFAgJ0jpcyPfYZOkEHiQFylHV4AIGqpvwSAEPST+l4A0RAiqgyuftkY40OIMQrELhCIPtTO2SRJopAhs91uH997cHZ2ljinNJBlXTcx7O8vBGC92Thrdb4ZY1Agz3J0RjpPUndPNaS2k+DsMtzSl6z73UcfuUcUxxiV+wUGaXs15tTRQ+OAbV86Ql7sUmzQdW9ryKRUPWisAJiEACACt1UnQiSjLjczGAet3ySiwGT9/413e3vX6F/QHVdp2KtChCI329/wk8bcBCd0F1X1ORfqBqRFD/UZ6juf7H++W6AYnN8QtTWrGKuqWq/XhkizqEHalnfFBLal5o7vmzupop7OuM1LAvYvAgBCCJE5hqCbgunoqvsKhH5L36DmjvtBsK0gzOChiGjQwvBaUHCT1dX5pqftR0Mv10Mf2xsevLVb2qv4Zen53+dDlBqV2ly11kct0XQ8JsBWhQiBIxh7E+H1i6GtHEELteyjPR1BYUhspmYaYiAEjnE+WfzGb/y9e8f3333zjd1mp6wyo1E+nk7Ipgw2RIixIWTN01tLLXsQANwOTug2SZdBKyIQWZhiZDDKdYcArJMghEDOfUn14/WFdHugblGP/6MM++uHD0F76bS7nbsDGHWic8fhnSSJOrXMrMBoxWDo56kDN6s+Wr9ovffK6QkAUVjjEH1TaZpqK23PiqhcH4rhVrejLMuD2VzxJNbaoii0/K2soKpGt7e3pwPV01nsdg2QRB/UUWiqWpijyG63Q5E8z83RUbXdQWQYTzZXqxjCOMszlyS2zTfjoFDeJYRuVKLuuuxgnHXWWDIkYGvPNp08eDR+8fQzCQWKAzHAEqUR0VqfYQbtTNeWSqS2xq2IADJW8KYPSgdTtWuMMQAYYxQBjsJWo2Aclvh+xHF7qt2p0g5xycPPmds6MMIDu4GkaAkGNIBpmiDaqvIHi2X2/2PvT2Mty7LzQGyttfc+4x3eHGNmRlZmDVlVrGIVqziUxNZAsy1SEil0y6IEQSYMCKAlwIDRNgwZBoSG4BG2BP+zDLVkGLYESBRVLajV7YZIWaRIiZRYxSoWp6rKoTIzMiLei3jv3fmec/bea/nHOue8c19kBJNkVcsGvBHIfO/de889w95rr+Fb35dkT87OnLHOWGDogRHUDY0thiXEb9No0RYCNgKY/9wWCEdF/t7BomkClMn/4b/3FX3f/+7f/wBCSBylzjpryZMBMErCwpEMkANMEo7waFvF7YobHxvfNM02NAGELZHDl/b2EoNJlrokIWMYwKP3IIKCYGMMjQ8+Mhp37SwJCUGohV0DKy20yHq9MgSGkAMbEiOiqlL9B61EDFKmzjqzPH8yOz19/bd/50v/7kujyeTo6DBLsxdefPHOnTuSUBOqy8sZlZOqaRBxPB5r9lTDAERUpmCtT+qepLgslyR5lq03m0ePHgGAdmhoc8XJzRt37ty5devW17/+9cvLy4ODA1XT0/UeQlApSQVN7e/vv/jii0oRfnh4uFqt1uu1DDTydD5oiVWb1vo9TFOAm+VKlb9OTk4U+vLNb34TAJxzq9VChS81nOhpiEWkqiqFhj569Oj8/FzbabRepOUOvUxVTdGyjBZSRqPR0dGRWr+qqqqqGo/H2oI/n881bFOqVu6k96hGIlLA2P7+fl+0qet6u97evHkTEbWJrq7ryWRSFMV8Pj+5ebJcLmezmTJ3IeLR0dHFxUVVVY8ePdIwaT6fz2az8Xh8fHzcNA1z1MILIi6Xy729vaqqLi4ulLw4dem9l1/Ossz7rfgaEQKzNrEjXm3v1/Yal1xZgA70lTVNs16uBAhABCQioDEeoG4adHZ6dPx93/8DqbG/8dUvN+uNQWxCbDw1NhJgllpE3blUCgXTNMmyLMuzcm9irSMt4CuqHi0RWWNAgSjGkjVkrXEWCcFYMLZZCaElCEbL0ABRKY8I0lFS177267BsluulnD8qT25O5JaZHCBCnpfL5VIEF4vFW2+9cXR0uN1uv/mNr59961t1XSeJJTLana2WGEW0xbeFg6N6KB1QW7r2Fdj59XlmCFusF3emnqFtxBcA3zQupfF4XBYlEalD2zSNAHnvAVvYfAi1D/VoVDrnMpdGMhzCarUqimI+m2VF4ZwLHDd1tVytkjStNhvdHw0ZicwhWCIh4s71xK6oohZgtxcFW7CNulK7eaveG+nzZZ1F33lnT889AC23eS6W1t/tdzdd5sYYNOaqmWcn3hNhT0a/hVkikYYabf6utaVdTfV5z+P9x473de1n7HKvehW/94Nf/6ZhzS10AvPwlBNIpAAKYeEQQuMbSyaEYABdlkKXs1Mciv5MHdvvEILYZ42NtTxoiNcQqA8/qIOCkzEanbTNxtIqQXGv8XLVtzxEYwk8JwAbXLtiwLiDC/auuwyyKtAVHvpwxX7bHd8POPS0VKUSiZAFEKy149EIASByhADCRBAj9mzImmDrr9B0wjT9fdTIPoTIBoW15Eo+emBOEdEmv/hvfuXVl17++Mc/0aKEAZyzSZISGu+jiVFMC6cjggE46znNUtjyOgqD+oxELROSkHNtGY6sfX6g8qwHcS3E/7YPTfs1TaO7r95kYwwZq8AD0+lY9wG3dCo/WnjpoXeaktG0a6+8dufOncVicXFxMZ1OjbNJkqhImWK49YPQKTMq0TB0GRqdo5eXl3me90GIEvBp4+9sNlsul/P5HAA2m02e50dHR9i2/ofoPTOnaYpjQJamrpumURNXlmWzrSLHGKMlMy7K1CXWtB2Nesk41O1iVvLtvho+XKXe+6IYWUvb7Wa+WKZpUo5La83dFz+0PT+rq/V6VblE4w1nDRFiDNhx1rXjyoKAWEsykGfSh5LnuXO2qjcAWj9FayFGiJ2+mveN91brVDRo6Lw2rtnKYcwlXRG//8Ozpg3HIUKMe3MDIFXdeM9pmmb5KHi/3WxHRUk2FQGqCboZ1e9zmrL5TkzxnpqSBSrhi81W01T/9Ce+2b/nf/n5f/u//nefNyyBhSJDBAJEKxYALUlVr7Z1FckW6Y3ENdu6rpgDEKWUWMpSypwz9ghdS1aKEIUbjltEBgnIBlzYNrUPIQo/1YmDRAaB2CC31MwhRhLZrDckgCwoYAFJwBGZgT1yBJbQIMamYRBrjQ8+VsuK/TuXTwjxwVuvA8LJyQkRuqz4yPf8wGT/QJee1j/V79/b20uSTKuaGrKWZTmdTheLhU2Sqq4A8fDwEBG1g3w6nTZN8847796++4JS7t66desXf/EXkyRJkkTbLY6OjlS+XW3y8fHxeDwGAGOMLtgYo9ZwFPV0586dGOPB/j4zz2azb3zjG5PJ5O7du+rr6xtU4JKIlGnjyZMnr776KgAkidUiTIzx8vJScx/j8VgZO959910R0RClx2UtFguNhYwxiviCLihqmkbpy7TBRjMv3vv1eq3KTtrrr13vTdMcHx8rPXrdVNvtVpWgmFlFwZfLpXPubHl2//79qqpu3Lhx+/ZtbYZJ03QymWg/nmLwNBGgcd3FxYVyhxDRwcGBarlo2ns0HiFHa1uOeF2tyiXw8OFDKg0qjawxTdPaT2MJmIYFfHgKrd3/rPZNba91FmLbUKE4bZ3eKICAZTn6rk99moP/+m/8+nY5JxRP2BhPwt4L4ZUfrCs9y7Isz12atr6pB0RRSlhrjbMuRrYddAIJGQ0Zg0AWyJmGIJLBIGglxhgkRCSwifWOIzARG2AMta88L6A2Xtbzsrg7Hk/quh6NRheXTx4+fPjmm28sV/Nqs8lIoW0GCZCNXjFL6OiqkLR1FdEa0wmDyHPs4fOsEFwlpHpjq3keLdrnee4SxzGScYLYNI2xSdM0gIo4Uj/SeO8Xi0WUkHelPwXIacidlYXLUrRYjkdN0zw6fXS4fyCRLVJo/Ha9Lg/2oNu4ey/wWsZNh8YYroOKDV/qE+GAaPDKhl87gu7sPEBS9bn2uql07fNA0yPLMm4Zvd7/HsYYjSHjTAwsEgGoY8dEZu4RJ3Qdd/eBxjXva3dptIWRp6/0aYjBBxxDT/I5J0xEzApKat+vMUkwTVgupBMnuXYava8/LGHp0TSGwa5fBTvRZ9gNVGRQP+knwHDL7j0i5Tvub9rT9214StIVczST1QcqQ5xO9L41WV3toXMqdisq367RN6INR88i2iUn2q4MQSAi6PpV8iwlRR8yCAgxEAToqDbUG9aaV4yxSDORRq8khoBdLzhADJFFgCWKcIhhUo6ezOZFWV6uVqePH79870MuzZq6ZmaBSLZt1yJAjtDUfks1FGlKFlD0UkJHrN5Oio4zWcWkkFk4QpdAAkQgIAFnKUThEMVxq8QiV/rmQ8P3rAdxzeMMoXnft/2+h8KottstAPTYKuecsfbJ5UzTjdqiqrupztSiKNSz0cmk25s6QNYmuuuri6DXlaZpjBENKYONliypk9313guDegDT6VTzeQqjJ6JN3WhhRDd4Xa56qsraqWyh+l2aIh2NJsbRermsqmqz3SJLmqaGiJkT65ar+eXFReocAV08OZ+Wo4PpngFAhmGUMswfiIhybUGPhR1YhzRNADhGIWtTymOM2009mozJ0XTviOOkqrar9axuautSY0SQowiDZ5SICCBCfQMndBGMfgVqK5pGi2maeN8IRSI2RqIRY4RIa/RSNY2GjkmaWGcN2J5OeIcnctemDHMfGmcP3hq7VdvXYUXbCCVeFXAQqEVKIAgKh3h0dPOllz90ebmsqjrGWOS5TbO6CbRBRAqa6VEOc2l5Rb4zwXjrWyAaFqgkLhufN9dpZ7Z1zZGEIxszMqUhNAasIWFvnZ3uZVLHbd3sl4ay1JlyXJZplrksoSyt2a/W2xFmoQ7bqq6auo6RGKJgE/H/+SO/pV/xPX/7RhSOUV76W5O3/7OF/vHu3zwE7egDMADMIsz6v6auMucAGBFQk9ogduhQoqSpY5BNVQFhmpQRMLHkLDa1N8b4au2sO73/DiFuav/l33k9yYvDw4Pj45PJ3tRae3h4mDhabzZNzWU5StPUB6/eMCK6JFksF4J4cHAoIpvNBpGsdePxaL1ex8jLxeLg8PCFu3eNMZ/4xCfeeOON5XKZpunp6enN45MHDx9EHzTwsNa++867B/v7t+/c3mw2jx49unXr1s2bN5lZ877L5VL7PaQjRaWO8kXzULPZTCGm2s9WluUrr7xyeno6mUwmk5FGBZpMiZ0SonJ1aBDiu6FQVU3N9L7UsFM/xlgUxaNHj3rlbyJSI3NxcXF5eanl34ODg+l0qpkR3WvVKQcANZi6DWlfSpmXb775Zozxzp07zjmFh2lVR2pR9uTVajWfzzVZ0zTNqBxtV2tE1HxNnzRZLpebJ+vUmRiDnsn9+/c3m83jx4+Vzmt/b6oM4zZN6u2ajLEAxGjaVTuY9EMLsOs5sci2qkTEWMfMvQxyZFVINT6Galv5ZlttNq985GNN3fz2r3+lbrZJiGnkSFI33pgsSW3fagIA1hGpXouwMDShAQA0SIRkjXFWggAZNBaticyBxbAAEAMZdIQGwSNiRGBh9p6cIUQzKWJV8aaRIHlmRzZh9vHybDWfyVGeZCMJjSEE4fMnj5+cP04Ty8GTS9n7iJLnOToUZgZhQRbWq1VDjK36RufPiCB0DGAC3PGDAQICo1z117e98gByzQ8a7PmCkKQporEuEQEfQmodoHjvkUwIjCREBpFYOMbAHBDRRx8Aizx/8OjRycFhZEbEzWaTFnmWpVVTNXWj3JsCUJRF6pLL2WVkRiLoYDm67erSeMpXbvfurmlhUNYAEWABFhESQ6Zld0WdXO29EASo64qUzcwQIPVOZ2Sl1jeK/TPGdn7CaLvdXu//6E4MAZjZWkdEinrqzlSZwDySASFgAwDYSiko9Tx8kHHN9Xq6utJ7Atfe9vsIVK7FFYm7qrHLLnaGlFEAWgaO7WZriVDAkMmyPMSoFqCPNKBD8cmgSx76Fp2u+wu7jiD1pXnQPqQvKftIH+pQ12ygr+pu2rOADU9+eJlml/evD1mpk5wfhqltDIMYRGhwt3nQGmSHdYL+2roviMPX0BAQxsjAUZ1URTGqy4g9WDNw6ZJxWmgo70Oom2bTVBOcWBEkRIMQQwyREsMQoeXVIEBKM2NICH0kzU2SADpBYdCO1KoJRtvWjEusa7wnY0NkADAuiawm0iRp6r1H1cpFciatQ2OztAoRAX/tK1/+vs9/DoDJQJIm1lpEze6gsAOxdROqel17Ho9L56x1ZAiJbGTm2OqHdkIxSj7hjUFGqUNtBKxFYGRBYsiMm80Wjy7OX/7wx5omgCVGTdpKQvJUk/P73flnj2sZkSEt9bV1NTzgLpITnXXT6bQsy6Zp+sogMy8uL61p++A1qBiSbtU+FKO2EqLCFMYlq9l8b28vy/PVauVjyLIsCq+Wq6qpsyLvY2iFU2uwoZnO9Xpd5KXu8VofU9zqer0uisIYNMbOZpeaoZxMJhcXF1W12dvby1wSbBOsU0piBdn7ECVxo/Ger5uyFNUINM4Aw7paF2m+X47HLjl970FO9uTgcJKXqXUOTWadRDapUeowXU7YcVAAtVk1HwMRGWeNMcqmglaFTAEJDJGxRER1VSGCK3II1lhXZvm22m42m1gF60yWueDPrQVnJPgGIiv4i4wlQK5r5mCd895HiEXmkMg3zXZbp+lI1wihB6k5ViEwogEIAhAR11Xl8jxhEe/JGGOuVn4PaRsu8xCvppCzDlHhfzEyGwNd8VmZitX4owhi6lj5I9iEKIEByYAzBu1Ld2/noxFT4jJLkW+9kFRVhcjWMIpsV+sIYpGcsQ5N6lxmExCOqhX/7KG3WgAa740xaZatViu0pr8c5uurBgVa9CYGAWhEzv12M/fX3taItUD/i8/9qv76f/nSHypMZlwKkGSZGI6I1VFROECDOJ3uZUVGxgjCtqmIYDQpqK48BIPBktgA1Eho4G/90Nf6r/jS//j05b850gV772+OiRCQxKGIALO1jplijBGCj8wAfruZ5gcIEiE2sUmN8yDD5kVjMEQfBMkmTLiqvSDWzdbGJrHWIKKgiTFziYQIzCTbsNlcrE6fvPWbVdOgocOjo+MbJ+Pp/o2br9bj6XgyMc6SMUnqbJqmZZaXeYiw3Vbr9SYET0RFMbI2uXFjurd3GL2PMSY5AeJnvvu78yz75htvvP3O2+Pp5PHssWdfjksxsl4vj4+O8iyV6C8en82WCxA5OT6eTibaXF5tt87abdOo/tJqva7quvH+8ZMnxphyNEqSxAhoacUYs9lsLi4utMnk4uKirrdKYtav1vPzc+0s1/LgdDolotlsBgCqUnJ6eqoI/uPjY5VaCiGsV6ssy8qi2FbV0dGRhkkq8yIiSk+s0LInT55oE8vx8fF0Oj09PX377bfvvfRSnuYiol0lWuM1xsxn89lsxszHx8cAkKbp3bt39eTrut6sNk/OniDi/v5+kRVlXoYQnHHpJJkUxdnpo+X8EgB6LcvQVME3jlLhwNELh8QZKnNjTJGn08nk/PHDplpVCVqTpaOJRG+7TAXzVTofcSdqEca+F1GFtrHLmzaxAQBWFXZEZQTzvuEQFvVm7+DAmOQeJpKNvv7VL1dxPXFoHdw8vpmliapKw6Adjj3LZgsGrU1c4gJDjAI2ISIQ47LEGAsAPgQko+X9GCNYa/KCYzDRQfQcibexir7h6ILkzTR3eZVUYqIhImCCEGvv68tVw1m51yw3X//tr7/z7ntNqMeJIWEyYqQZFw4A2Fe92SEgA5gNC0wSYoQ2Nw2U2datFASB1pFmEEEhVk+GBSAIewYBZEQGdtaBiEFAYRCMIsF7BkEyy2195+4L44PDwByiD1XbacnckDURZL6cT8bjJE1G+TRJkouLC2sJQWL0+Sibb5cxhrIo0zwBiXmSyGbjGl81VTnKk1EWfFj6LTuMFqq6ASIgM92fKHqwanxgAfYIIhAje0Bg8dZa55KmaQSMRTTIwKFuauec9w0yj0cjl7hqvSJggggABo1INCjWQFNvDEiapN7XwQtYl6S5JVfXdTkaizBCuxP54COLoKyrCpDEhz4XjFpWUwZZwG0AD0ypK8tRl4ZH5bPaNhuQEAMIk4hFSI1JrUmITM2N1gChY2eWKybM5Ooh7/pRhNTvla2TbQgAAke87o4TtXwPPs+LPmeBA8ZO2UXEEJmd+TXY8jQG6JYobOutIXDOYDS5c5mhIs22cTPO0qqLSXqqVQXSG2OSNPfeNz4Yo3qB0Piol1zNl0VZLpbLJEkAxQD4qjHGtREpmhAjIhqbJEBXUI7ENXVtjAmRAcFZy6D5NFbnUC9W8z56N7IsU3Ot8TB1VIoaURMgCuRpJiJ1UyNiU7VteIJAziphcd+MCoaM+cCCjx98ECIikUobYqtDelVEEUACYdHiZ4f8hI7+V/p/So4hcFWjlK4JmLq2aQnXk6N9mHsVAyD0lHaISMZsN5u6rrjrkh9+XJAEhIEEZb2tgGg6nRi0UVh5CZGA5KohrA0HUVA4Ro4h+uAdoSE0Fq011XpVVRvmEEIDaASi4taxbRX7/ZQOv71DL6HdlppG9dQ0v4gd9sl0KjyIqNSlfTQMANZabVnp3YX+/ugKaRUYRTRlCADMrAJzmvvMsuzg4GC9Xmt8omDuvmKjVEVEpPlRbSHVrlZtxlUZBNVyzrKsqqptXT18+EAJOEPjkaXMc6XuCd6TcAxBItd1DSya3TfKkjvIOvyuN01/1k1sMNpdWUNFHyIgmiSxaZoWZTFqld18DIiOATAKxwiSGBIURmEQmO6V50/Oo6BNssDKAipBtIGdAYWVhAfFIBtkSxxJI4rIHGPwwhEMEYI1RMZEjgrB1nrNDuf3gCaCERBFSLdhwyplygzIGuvEGGJkLS5pgCpIYMAakyZFmpbOpraYAFGIAmSEO9mT6EMMzjmXpueXF03daDbOOWeNQf9B6yn95qHxybPXz7WaLgqIADAgI334/3z4zf9pq/L+F//ZJy5t9X/sSh8A8Fe+55f+9q//UbYBgK2lxIDJXZokEAQA8swmidX9jwgsi0EUg9bZjJCMC1UtjX/fE0NEg4gIhIiGQtdjSyLWWHJJjDG6yBwsCmpGXzOLT6U0qNOobY2kek6m3QOlg/BV261BypMsSkUgAhANJnkqCJvl7M35BTME/mpRjG/eunn3xRePbxyPptM0zwDRh1iO9hPrsiRRhcT5fH7uG9W2AyBrrUscGVtV/tbtu+u6fvOdd955770Pf+RVZm584733IcwuZ0cf+pBamIO9vfV6rWAtxVlphWEymZyenp6dnWlTu9Ltq8xrlmUQW44vLfiom3Xr1q2maZiDHlAhWNr/tl6v1WgURaF1lePjY++99p0/evSorioejP581uv1YrnUwsvBwcGjR4+2262IXF5eakVXRLQwokVmLUytVivv/cXFhfbeYCeookWY9kFUleLrbty4oeKMZVmqYoyeg8Y/o9HIORdjMAJZlqlspeJyiejw8DDGEJr6/GI5n8/VCCsBtDFmMZ8fHxxMJ+M0TRmARXm8dDHIsFJ6zb71Fk86WY8+qaT9/X3dO3TsNYgw3t+3SY5k9w4PP/7JT0A1f+8bX7MoJ0cHSZoY50xH74Mt0AgAWTgIGMZA2HH0sgBIlGgdAII6qNdz1UQIJBzVWJMlUlCZM4SOwIAQS9RkB6EQiEN48ui9i+Xr752en17MGxZrHQIYEAR0ZpiQvTLm2P67CulAKypdbHdVX9D/Yv8z6qd6fBijLkyMrZomsiCzSATtoie0o3GW5jlZA4zoO75oZBFpfGSQosits0qSqdOsKCbn5+eHhwdE9OT8yd7enhJkIeKbr79xPJnUkW1iLmYzNliU5XK9skrCgcTMfRK9lw1gjr5uif60m3mY9df8N1Hom+YBYLvdOmcQOvPT6hwYETLGSAx+u20QmqbpAk5GoI7GjXecs0Glz+6m4X3H8oKIeV7oxOsZbPs3qllrxTOFgdXGxx21ye/86GOSazniP+DQGyzMVVVJiBovzjYbcjbGqCmMfvHKoCfedCI5V4cikkEzPQzKINr+2tPVDK9C4xWDiLTjsIoWNrrEZ88jJyJVVfViTdgVUnofPk2zfnvqT+9aBywAIGFLa4GIiN/+QEW5gYkMmesOnwgLY4xAHD+4i65u8XBf6X1o2Z3Z/eD36ydpF6eIwsb6TPnuDboy7D741WrlnEUsjSWroNKBHBK3rG1sDRBwCBxiJEAkYo6+ig3zxePT5XKVFCVitM7WoWGIgiRAEa84iq7dqF1qr+/s0F5LvbEalOu2FGJIXYIAGjD0BkJBWTop+5KaxhhKvKN/NF1zpAIneveiNz269SoZcVEUGqDr9q8PcbVaKSJi/+hQw5X1eq1YCE0krNfrzXoDAEo/KsxJlk0mE2ZebdZnT85Wy6X3vswLEA4hONMS84FELR9pbz11yj9E5LoOY4CW1uV9b1pvzbEtcO/MQ+iKk4gQYjQGO8ZnUdc8xhhjs1zUiMAQQ4zWOGeNCEuIIHG+3GT5SB8EmoRj9DFEJiRnTC0cDUU2YogNSf+PWSAy+xDqJtSNUSyZsUjvexHtoKeao/SZAkBka65wySKiKK8IAOtVcC5L0yLN8zwrk6RAMIhGwFyuVqrcomxOusoUtJPn+WqzzrLMC1ebxhiTpmni3LZB+EBFxNbkKTcdEf0e7Ej/gBAD0If+T/uZM3vj7HJUx+x6j/u8qguQUeH+0sv/rf7lH7/zxwWcCEiM0XtQAbKo8swCZNlAEIwWGmnWIW789RwKdHtAu1UghXB1zdThWplZgMXXoIAHY8x1bEZ3H4gw7ly+QWMQgEWA61CDdWVRaHeWRbREYAAQGYFRokhEFkJA46vlt75x/o3f+io5m5fF0fHxax9/7ZVXPkwcyjQrs9Q3zSZ14zJNkjRN07pqLuYrAfTez2fzJnhj7QsvvvTR84uvfvUrZ6dnhrBpmjRJFSaKiCcnJ3VV/eqXv8wgt27dUgio8mM+efLk1q1bSOS9Pzk50W3v4uJiNpsZY8bjcWrs3t6empGjo6PDw0MlEnz8+HGWlbpBhBAuLy/158lkosUQa+3+/v7Z2dnDhw+1tDKfzzXk8N63lGLWqpnSSu94PNa/KGhtMpkoQ5e1tqqq09NTFajtzREzn56e/s5v//aHP/zhl156Kcb45MkT7b1RRgFlG9OzUizcfD7vaQO0Vc9aW5bl0dGREh5uNhsIoao2t2/fVjuTJMl8Pr9//7615uToUC9QHY4sy8qyXCwWi9lsPBmPRiMiisHLrqdm6FmdylfJZu64HPuXNFus12utHY1GplOpIkMMABzK1IyxuHu8Z5dHYxMnuSvz3HQti9CJSMYYBSCEWkvTBpDJALTLOSJx06SdxyPXYTDUEoQKIVmRNMaAiEmSKDer7vpRAJAV7EBGxZkCQiAEQ2ANoigU6VqT3gCV8BSYh/rxXCCRACl9IwAIEosIECNpRkNEHT6OzFGYlU3W0HQ6VS1UPcjVJSNuNhs0rWepSkEqm6PSZ+v1Wps/dSM7Ozvb29vb2997+8239vb3JbV3X35pvl4BgDBba7GFfrRajZoH1L2+aRplyFTYc9M00hEU9SemP/R9qlmWLVerZCjjGNst1Vrb1HWWOFTxtDQzSRqiIEmSJNekh69NNtrVvOpvfBfoXomH7PpLGvGypt9YInJgMcDxv0NyKIgdSdrTPvcffOh23JKkkTk6OhYCTa9Qx892LcKUp3qbdXPR9IqGvpqDDh3xl06/Yfp+eEx6ikOotQNdo2knbNW2/PUPV89ELQB3LCnU0RzrKYmI935ndkiLvNXz+Q5UVIhIa3ZPRZbtNCO8ZiifP/oJyh0RQU/y+L6Rq0Z1Q7Vd6U+MyACkWabtidSV53a+TvtokIgcc5wtFlFkMhpJG4AN2bJb+ovZcumMQRQOAsBRoKVrYKlD3DQVJelqvS7GBIKiNSYgYCc757i79v67Gjy4vdxpOCKiqDFVVmVEve2mYy9gQGXCpY4KQ38wHfsEdPyD3LXuqRpR7xlQF4jrl8bAGoToRlXXtfInKkhM06tVVelmOR6PLy8v67qeTqd94K5zQ+OoJEnGoxHHuF6vdVuOkbfbbQihHI3qbaN1oe12m7vkyiASGWt7y/ic58ADzCXtVmB2/w4SmQdqR4qGF5GmcWn6AgLE0NTbTQweOHL0Eb1IvJhf1Nvt8dERkK2bLaLzsWIhaxCxVgYXokjERIzIiEza98IcQvQ+1HXNLMyi27VYAkRGVFWpvgYkAEOxRU17dvPcQCQWQGACbryPIRJZ5yghs3+wT5Q4l1ibWJMCkG9iXfkmBgBUiL/GkzollFim8R4BtU5tm8p07AUffMJfpXmYjTExvk880L9392dsWSOFGhZnk2Bxvm2isEB57ZOLJjI2/5NP/Xz/lz/74r/8pw//JDMaYwyhD7EJvmnqn7j5X+kb/u8P/5P11q+qer6u5ptms/V/9h996B//uTf11bv/+xQTvBaowCBQUavVXaNY25o4IiJj4ClWNCJifZg7HmfbBCzCLO1dIiQyBllIBesIPbMPAQEMkiBIbJCDNbCXZ2hME6vTt18/fef1X0yyaEZ3XnjplVdfOTk+GY1GuTMgwW/8arnyHpI0T/IsE04g29vfu//gwWe/53vWm/X9+/fHo3I0Gu1Np0WRK0pBz/nu3bs+htFodHl5qetxMpmMx+M8z2fzubJw7u3taWwznU5bSZDYOtDaT6xVX5Vt2WxQYwlEzLJsuVxeXFyoV314eHj//v379+8rN6AGLTFGJUfWyq3GUTpFHzx4oKCvNE3LstRd5uzs7Pz8XKFfRNS3ymipRGfjaDS6fesWIurJn5ycGGNms9n5+bkSEuokH4/HT548OTs7Y+Zbt25hR8jDXVu87vTe+zzPMMYksSqLtL+/rwiK/f19Irw8f4INAoAWdhBRuRPzPMeunGusQd5BEOMA7SVt6v9qLlHHQa9/0bOSThNQk1DQ114QRKQJAUCgqar1vLo4XV+cHo6zw9wkhFmRkXWEiFEbGCjGwCDAEmKbWxBERALstOqAm8jSMWpe25RJbVcXqACw95aInHWGSOsaMTKSEKouIxFR6kzqTJq4xJEEJEBCQEHa1a3r3SZ4ygz1q5WI8Omy5s5bryjBBFgQGdtmFhZgBhaIAlEgCLCgJYPGpHlGLbN8m/XrPTnvPUS8c+eOtXY+n6vSERGt16u9g70Yw3a7VRoG5ckEgNNHp0VRXF5e3PnQvflsNtqf1lXtkqRq1olz0HVR+061ucfmlaPRfH6pW3/fO6ovaT5I9+I+1677bJJl/dUPc8TCAgBa/8xyssY2oSGRJEnCrhm7FnLE3cRNf8z++P1usnvfuzJY1wsuyMwRCeD5Kbpv6+iD/L6+8W08OBIFH3yMRZpFjlaZQnVyGuojAen06zRf06dcdWhyuc+rUtf51g8Nh4Yu3DAhe60+A11LM3XAco182v6oAbkw0lWdX1P8sSMX7ae9GrHRqOgPri/17dnPDVQGqxY7Grrh97XnAUhI0NG0t7EUGX1mSqwEAMzRoBPhGIJhlqcWvSZsNfOqLxKiKHNxV8To56vex9RczeZ+dCd51SQEIspmKCJkzdHRkSYv1QPu74UAqLAFt5TnJjJXVU3OZXmesHa2oT4b9ae1bWOzXlXbipnTxDLztq6UN8sakxXlGBAQF8tlWpQCbRVFxZr6W6wU2Dv3fsDRNpwfT8Vmz+pn2jngU6vm6nd9jv3TVHKtNE2BiDvcnSoi92+w1laN15d00qs501/1Z10wWlDufXfTAavUivUXWFVVnhUasWBHRkGd+rjLUoV1qXS9pqB0e9OlovUc7pjERqORj1FazCeuNxsDmI5GHGIIgVmcddphBQAqnk0dmNAMUjjPvGW7Gxi9H/Srfxztvs7C0C7+2MqVSpKMRFjYWkuIDTALeUOBORajg83mrInGOadZcCFgiT5GJANAzBgiRKEgGAHJJeKZDIVIFg2gi2KRiZhMRAmAxmh4LEQMiHKVSpCd01fqKhQkQAqsaDhEh3lpjbGahUAghhyERCBEbHyIEZqmaZoQQ8jGRZkm/W2kjnkdAAC8S5JQV9plixVaa5M0NcYYMDGGoYG7ls5gZmh5nVsDaq2FZwcqhFbhLt1cCtYkxtosL5jROGudleiX28aH8B/9P178hb/0jn7wf/jPP3mZ+PcBDpA11hnjgEwIYev9n++iFAD4yVv/5D//yh9dbar5ptpUvvJhXvvv/7+enK3WITIa7PaCntsNDJnIV+T3ffQLKCpw1Bo6vQ9PzUlqZTJVABQB0AL1aBTrLBnbhOCMsYmDmjtPCxMyhBg4+hCAGWMYZ7mxtvZ18E1uTVYmjfd1sw3Av/XVX/3al345L4o8z0ej0c0bNw4PD4HsrZdfQyIBSK1hkMV81tTb7WZ16+TkrTe/yZwTEUc2xo7Go6Ojo7IsHy4WZ4/Ppnt7WhCrqm2MMctS55I8zw8PDz/2sY+pRVWIs9J4SAcCGY/H6/X68OBAeTabptnf31cK+D51p9RbRKRqLQBQVVWe5x/96EdVgkD5fCHPNV2yXC71ZmoaJU3TJE2pq1SEEMbj8dnZ2XvvvcfML730knJ/EZFvGnFOZ7Xuzb2H3ecOY4w9TlVZCjWNDQCKXNXY6fDwsO+wn81maZomiVJ6YM+lpl348/k8TRPgeHZ25r0/Pj5W+jIt0YzKsg93tSWFkEQiMyt/5rNGzxMtnTJGn7dCbvM1ZEiBpdICnMQ6kxB4v109frB49E5YXRQJJlTmWQLGAKEgYhc0cERjUCIhpN2cV9xPK7omgkqUrwzRRZHHyNoZLKyMY9LO847aXkQExHsPgswcgkeDSdoySiFgltmstnlqizyFKoTQHghE4o402bVbc0WQ2vthIoIIRGYH8YXQUoGAcAQRCCwBIAJGkdgJfQAQM0TVL0AQIAY2NinKsXNKUhoGfovEGOum2W43+4eHDx48mE6nymKnkfNqtS7HpXNW2fPUDCrbdZal1Ww+Hk8i862Tk4vFjLsNOk0zFdNs07hEiKgVEgDJ0nQxuOTej+o3buhAX3oO3vssTUHBXd1p69EQEYS1lR8RvQ9CjT5oZla8qJo1EdGuwis/jUlPD7tIcpBrfw4em4wxHKMioxFQIMboQRhNOvBiRbpZdC1AGjquMMiFDX/t33rtu6VDVQzPEBGG5czhEfqOdB38ftgfPW5/PJ0h6htbJGvtlhlsW5EAaW1X39nbr99+89UL1GmmNuoqALC2Dy16j0vzqoqj6ZPR3Spot6EkSVQdXWeg5nf679Xj9HGRDKK4Pn+tM1PrOZocV/OIXSVAY2a9qOcFKju4F7xqH4duOXVdOIC045xdLXFCDYwAJMbokkTabM31543YSlNvq0q6HiPtGkDZmTpD3x07eb4+Sum/XDnddPZw18pCRMGHVz70oT7ctB1ZuK4Q1txMy3MiLMiMVe0Xq1VuS2uGc/GqVWY8mmxWq9Vq1TSb3NksyUEiR/bCLimnSbmtqhBAGAkNt67ILgs1ynBmD1FS127U038ZjGt3Fd/3pWtrTV3zEEKe5zp1tGTvm9q6lDquYUQMoY1DoCsj9s+5p//SKaj9J32ji0Ys0lVL+uKyYh6UtEf34z4W1UYOERmPx01sKcL29vYUBa6lFWvtYrHQzhNlIVsul4olS/Osj8gtEUQxxhB0wFyy2rnrnC1HI8UmtRXPHat07e4OcpCDVAQZs3urr+yLiFhqKWN0NV0x1gvWdQBEEGOT3EkqHICjcBSJWVEcHN7ySvHM7L03iW/qhkMjNTMkwhbEcax8DBEEbQrWzGdLjpymKSWMTjI0xDZiQpigGEAEIAKyZK11LWMLoRXqpx7ucjMa66x1SZK4xIF0HowwM3iPqmkFAD5w8AGQkixDhKxM+wUFnZaO2sc0TcNm45zzcqWInCaJtTaCiTFw13yiRx7acf05DNbFU1vXcPtBQKM7EwtIYDLu9u07iLBerQE8IJJBYyxH8RyWm+33/Rc3DcnxwVHtDAo2q+3uwWG+qm0K2ygs0gS/qSu4sfOGR5eL1aauPFchLjbVYrFeVXXslHCMMdYaXTjMDIBkSOAqDXFtP+uzACxCz0zRXTVKaWqizS7qpksIiAwQmC2iMisqXDVwZBBhBuGEjBMm0aYmCSEICHJMEJtmWzoEZ0Bqv6nPVxdn999iYRET3L+a7B/cun375MaN0d7EOptb2oZ6f1q+BaISJS/efSF6f3R4OJvNRCT4MJ1MX375ZS1rjEZjbckAgOVyud1uz87O0jS9deuWBhuKO5rP55l1zLxer9977700TVV40Vr7+PHj7XadJMm9e/eUA0eNjAKrjo6O1uu1StH3C1ztz3QyGY/HDx8+3NvbUyjm48eP9We1Ucx8eXmpAdXNmzc3mw0AbLfb8/NzRCyKohyN1MJotWR2ean0iVrptQOe9729vRij6jPGGA8PD6uqUlRbURQqxqIPUYMZZk7TTHzDDCEErQUpluzw8LCut/XW9566wsHVHYGB2lqIEWIwIC25rSZcu/nVbcr90nqfqUU0JF5qF+DVXAUxXMften1+url4GNeXuRVHEDkyUOSoHJ5KEAKEhAZQ+2KLxvsQQi/A0eZJkMSHartVTkg1790cV4CC9CsDkLR5JjJvqg1wq17njCIl1ScWYZ9YzDPnLAJHYBAAUkiJoV4A5ZoZUUPdZaAGJkWADPWBiogIthEUi3CEKMICXiQCRoQIHLTeKcyqhiGihRckl+TFaDzp89b6Rb2LuV6txtOJpueUk1Pdx+l0miRueM5ENJ/P9/f39/b2rDGlsXqG8/lcWti8cc6laRoZAWCz2XR7n+O21bPywev9lAE2THHg1WbTIyT7GMY5J0LcEUz1t1E9XSKSTiodEWKIaNvwBsj2U2voB7bejnMA0BMP9r6Bws6vOXiD7zXG2ICCCLarxYlEYTFw1TGvnvbTj/vpOc8DiY+nvuv6Z/U9diA+0Z0kvO+nRGQoGvbMc0FFPUifw8qzvN5sicgQVd4Dt8qJes+hy8dZa3o0XX+79NcmtAxv6jCHoVfccSTqD5pk0ZnQutO7m5TOgWq77g1OX58BAJ23iKgla+rozttdEKkv6w1mAusM1PAGu2KAzr31ev3th359R4d0OFqdRn1Z6ul3DvPi/fpZr9ev3Lv3sY99rPeS6TrwDlvohMIdARmwqpsY4/G46L+r/2/3LWCMS5KUo7HWOJdYg9YaQ2ZTeRFGWgMAR2OMIVEOdRK+6mkWuT6z+2w97/LZXfNXnrPqPuDIi6LfShGxB1zVTZOXpswyVVaWrlLsvd9sNmRbXVudyno/tduyxyVrSlILkfqSdqHondd4XWd2URRpkqn7og6uakUrXmI0Gs1mM0W0908TEZMkuXxyqfDu3oCGEB49enTj5k00pMhyYDGIeZLOL2dVVTmksmjNn1pTkTbwsM8QHnmfMah4Pg1x/CBDEOomgPa3oxBwS0LLGAEFHIOAMUiYGJMIpDEEHziGZltwDJlvQogq2aTrPMY4WyxiDBo35nmeJKlmZJ1rtYeVRcU5q8iiNqCCK2dkkOtiEfTBIFKIEKsrLUgREcDIItj6OoxMCVlrE5cYY3y4Tqulh7XWEkUVTVKXUQWSrXPO2fo5GK7hfROR9+sUhOsbGMZuHyRsc/Oj0dgYs16sIHrQDCmhNRYEYgzbpuIYN/WjcVFORkXp6H/033zX/+1HWuau/+2vfmGWRWpqwbrxvgm+euoyn8xW67qpgqyqerbYbBuPhpxCbDubexWDATynLUeLt+oDoVzDhfa34jqRfws90eNrVwC1QpzUd/qK8hRBV7dGZRk1SAIYgPUgxCAABhlazWYJMVqEPHchhKpqCPz88YNH99+q65oSe+PmzXsfevnk5GSUpAcH+w8fPFKk6HQ88T7ootZ8uff+xo0bCtAyxqjsCQBoy/itW7cmk4lGHXq7kiQhQJUfUUxXmqbr9Xpvb28ymeztTTSjoX9Xr11xWW+99VavwN3jGYwxyl+s6MTHjx9rcUZdt9lslmaZsiD2e3YIoaoqDT/quj49Pb1z506apgcHB6PRSDN/GjYgojbHA4AGLRrthBCePHkiIgcHBzHGPM+n06kaMbVdi8VCb1GWZTdu3GCO56eLpqk1btHCTlmWr7/++uPHp3vT6QsvvKDV434jUycjRlUA0zC+LcX13vCzwCjDV7hDfOl05UGr1TBnTBDj8mLx+N3Zg/txfZmZaAURKYqtGaP3qFAFY1CzBSJIpExYbQxA182mtYbFVVU1n8+dc9pTBABRgACF2ywYSOw9TgKqtlvfBABIE+vc0IC3LXxETCCkXMOCKjYPXSc/7NqNtsiDV4HKcHFdu2nc8iFyD+tq/4EwtFgvYWCOAsgCgsgiQCYv8qIYtezPg27jqykX43a7KUalZv1U+DiEcHR09PBho85cWZaa0PTe53m+WCxu3bwZQ3z3/rt3X/2Qtbaut01dmyx3zgkzket7jTSFpzO2rmsU1vmjGcm+6qKzCzqQD3QIVWZmicicF7kKlfaZeyICBjC23SLJABmFYA1j6X4T71NOO5naLiHbn8nwzncRrtLXEqEltIhMNHAF+5L81aeefob/AYaa5f5Xa58pY8jMhG1rk9aLWhgCka9qgraGrDtLvycOfRjZuQGAMfSOZV8yhUGE2Yco+n7vr29w14YdCIJfe0mDnLacsvtqT9igPlhRFNrsp/lrbZ7RIqHq8Kp9/v+xQAW6uore4h7fZjqBmP5tbc6jq/z06+2P/JE/cuPmTfZeH+pTt1hJuNswEQANGQEJMQaOzB22T9/aGbKiGJVZUZbFdrNh76Vl+QAATNMRkiFTWGtijCqnSgKCECQMVtHOEjJmh+tsOLOHJ0zPq4d+0GGMOTk5SZLkjTfeqOta0d7GGOuuXCsNUfR2KTS8anyWZZp06VOValM0nAgdwzd3fS86NIBRlyVNU01/pmmKgM45JcbRiBw6a9UH330bqx6ciKbTaYv18l5EtClf+1zzUa7bbfShrmpf1VpvGRcFR9bAqbN5oJ1/HzxQGUaSRDtiau+7bt93JGkaYoi+Dk0DwgQAHIQjiwjaEDFGtGAMGVGOPEtILrdZu/OzKF0gIupNS3OnYs+Ro+YgI0dmBpZJYQlIm0/6eaWFSIRh1hQjA6u/w+xcogAM7z1fkTwCIKK9InxIEtcVCiKHONwP+gprV4JriNCgwdAmzJIkSZPEuQSuFzDef3R5I3vN4uu3mKvWTNRCRJIk0+lUWwvG43GWZRdPzuJiTkwGgyWrt8EigrPibGB8spg9ubwo0mRaFn/mpz9cpK7MsoeO89XCOYNEIcYmhjo0f/m/+fh/0dGF/emf+dDldrOtw2Jbr6rGC1KSOeeMBEMtm4IZ0gwKPCdSMT1/F7OooMPu6NM0V5e/q17VJ3EikUGCLisiCIKoMyoSIEOIkZAEMYIobRJopkbEYcvKDa22j5BEA5JY8rFOEZKEYpJ65vNH75zef2uyN9k7PN6/+8p4PL64uHj3/rs3j08sYp5mADCfz/URPHz4UL32zWaj0KzVavXuu+8qtlM3qpaQN4QQgnrbaZreu3cPEauqOjk5Wa1WdV2vVosbN25st9u6rvf393WrI6KmabRl/8GDB3t7ewcHBxcXF2qCptPp6XwOACp/eX5+DgDT6RQAxuMxIKq8LABoGYQ6AgwiOjw8vHPnzmq1mkwmAKA69zqTVXWx3+9PT0/rur5x48Zms1FtTe3BU1r28/PzPM+1SXq73WpS5uDgQNnDqqripnbOKhOJLsD79+8fHh6Ox6PtenV2dqaBn7V2Op2qs7JaLjVPZK1FQGOsJeAYvPfCkUzSz5XepOvYrNbDRdSnOUWEB0tsWFEhCGZ9GdeX5BeFY4cmemGxAQmYQuPVJKp57ROuSIa4l6gi2FV1T5I0zTK9RWrk2yI/CwFG6ZAUyJqoJGoFc9WJp8moyJLB8cCQWGRLaAkNoRhska+AYnpBt11VBhECoQHpy9UO+5RRl7a8zAwQmSJAZIgiEZARggAzRADlzECjNKiU5tlkMrFp0sSQ7KJUdmLjeQVEmjpcLpc3btx45513lstllqU++qapp9OpiOzt7c3n8zzPl8vlgwcPj8fj0Wh8/913jzikZS7dI1iv18VoagYSnIpKiDESoeb4RqORJgr1PZqvNB17Zx/DcBuacdY1Z0MHsdE7RsYgCpKioQyjUd40ZhaJQ195Ny+2E6joaWtqzOz2peCOEHMkTBSyzQPZdX1cPl7VCntM0X/Y0cdmv+tg5rbZkKXxvmkarbDEELIsBXNFO6GlFV3RdV1f+7r+512PZafwQl2+nrtuUgDon/6zRp7nvW92zU1Vl68t5e3Wb7VWo5kdGHBlIaIxljvW4/6ALTTmOefRSzTuXDm8z4rd+dTgs08P3D3IFX4QoG0y747QbqvXAExdZ1VXV9EUCHXImsHJdWgxEfF144ypNpvv/fz3fejePUPUhKDdgT3IUgcDCiqQFCKLiFjnkADbWUPaqafYtD6yDxhtktx/+N6/+pc/d/rw0fHB/o2T45u3TvanB+P9G9alLOBMEn2FZFDRsaKXqNcncPUDAsDZozNoa6ek6PCBbhS1N6dTohzew8FvH3RNhhCcJa1dqGiAmjPjnKJOdcI1TbPdbhXnnaZplFYbsU+Q6GbZh3+aHewtoy6G0WikyFrdUIcs4MG3sxMR+0i6Dy91SQCAosj0qWkzDBHNZjPNU2oB0Rjz5PxJUReJc9ptX8W42VbKhVqmWeZGMcQYIyqbtppFQ2TMB5eIwkFRZSfxttNLoBMaBw/k6qUQGxHt+TESI8cADMJIIMtNiEFRcOhj353FXVWZtDoSQ2QgY62PYNL08cVMwUWAVlAAhKzTyDvUnpBIkJgERCmGWxTX4JKZJcYYYgghxBDJNIasMdbYNDGkW48hg0SbenvFcUzIEBlYmW9Qdsk7euusuUokACYiQ3po8wFDxM3/6oOFMrujgm0F89Phn/4IAMAj2AJc/m6fvvjgX/TP/tM3f6/n9pxxH+bPf4MAtopO+ls3sPu9nS6EJMAghAbbKAUAISKKgGI3K+8FxIDEyIICSC2QH3lISULGxBh93RhDozyfrbYEfckaTGK3ElaX5/OLizfeebR/eDKfXVbVtvHBJokP8fU33vQh3Lh5czqdaj1kNputVqt79+5p/FAUhcqxa+ugStACwGq1qtbrxCVpmioll+LKZrPZbDYbjQrvfVmWxhhFgcYYp9PpbDZbr9eIePPmTSXXUuJj7716+eouOOeOj481wMCOe11xVoq60W2798Y0va2RldolrTYvl0tlx+rjK2UC2G63akVVqGq1WunVAYCWWbQEpFlGPRQArFbLG8fHm816vd2kaaYIsbIs5/N5U9dZ6u7cuaPBXo+bJSKOMYYgbTezcIxNYEKw1iFa7wcoyhBjFyQj7FBdWWOtMVGz+sKhq6gIgEtcluW66C34028+aBbnxlfWkiNCYwNTBASWIEHQkBhS6QEAQSEii0r4YEAEyAzDbxTwoUnTzBorzL4jwddIu4d/686CqBUSREDNAFbbbZ4lHDO03Z4oQKCqskLEBoUBUXv4BTu3RtcEdH4H6o5AiASoaPernbTrwu1l+FiEOwXEtoQCEEGiNtADMAC3HrzRzj/rXJ4XeV4wwmazcVmK1BI0c0dqIyLCfHzjRJ28t95667WPf7xumhs3brz1rW/du/fiYrV0zpyfnx8dHYmIltfyPDdEp0/OkiQZTUZnp4/u3rvnjCFAjrJerbNiojBITZdcXFwolX9ZFtaQCI7HUwDabDbOWUD0Ifbur05p7OgfRHsrnWuaJlX/uKl1HqEqzoBBIkLV8CKlQQMBkOjSzA6avBGRtb7LIoLcUhkp6BCZNbAxADuBSl9R0W+kFscsXQcIa1UYOPboKhTq+aP/A5ZWriWXVfT8fYdw2wMFzKHxTV1pApFFxLmekko6tJ4xJnIc9msMoxEAqH3TeywKZ+jdmP6x9gEnAPQNdc8aGkKETk1l+JKiWIkodBS7/UvKL6fJHQ2A1W4TUZI47WqmDvfbNz9bGKrPEA4DjJY5S33kIEYwMZYpcIwhRGPFWEQkFgBuw1xEiR6tsy5JyBoGCDF675nFWIuAaZKEaltVFbpUjM2ds8aKNqiEkGWpTRwbNEQqWOINIQt2k1NPumUVADCuRGEIECEwsLbOqj5JkmSb1UZCVNBxYux3f+wTP/Yf/4lRmhuyeVH2uTpoUYAiIgy1dHr2iGCMVQ8WCR+db26dFJlLWDxwsEQgBEAiYFMHwC5L7j969KVf+/J2sw4hpGlalqO96f5oND4+Pvqe7/nc937v92JXm0YACoDqF4bovU+zVJj/7S//8s//v3/+9L1TAQkSxnvjg5Mjm+QHxzd9wOnefpmnCPIf/9Afz1NbbbaJo8yaGBpnbS228QEAdFPs0+fGmBjrK0guDKCRgsBt7kThDdpY4r0na5qmSbMMALQztedQR8Q8TdLEOee8B0SUGHwIOvu1LwoAzs/PR6PRdrvV5LdCyEJHdqz7d9M02inIGH0I+ajUzEcQJqHJqKyqqqoaRJOmVvVOjHHjcV5VFSJtms1yudTE5IPTR5PJhJo6gkz3piF4S7hdrwjROVOvA8dACCH49Xq9Xq9C48dp7gQtkksSTGwwkFjTh8E9v3YHcmv6wo4CBJ2xloxuzMMaC3SxNDOHIN1LLQiiW16shrMNZQwiWWATOYBAnlpI2kP4ECBGEdZayw7jCSJHDzUAgJ9XiOBj9HUbOg6VfZt6R6lkN9XQcfwiIBI565xKGoBLkt71FRFmicCRGXiHVlJEUDB1iQhoh4NyXocQuuCq/VI7yiyERIAMgATh2KTp3nT87sN3rbNBYgQRxCv5YfoPtqP8f/loBD3HKAyGABkgCmIlV2UT0FQKoEFUPV0GYa21qTslrdUrbMIiJkQDimAOAWItkYUdJTuKO9amJhGAGNEwCIggGAANo3OXsDEsWFfb2f23GOntt99EZ9ji/vgQwBTjvaPjoxAaa5VjKozHpXMGUZwz+3t7B/v7i8Wi2m7X6/Xt27fLsry8vJxOJprK1dHEcHTjZDwem8SlRX55eRnWm/lqvb+/f/7ufS3zLtYbcon2ueV53my24/F4NN1brFaLxSJNUwOS53mIcbvdTqfTxvssyy4vL9frNaLRMgii8d6LtBoOWcZpYr33y8WCOrxKXVWaH8ny3DnnkkRpuLY6qipN0zRNtdkdEQ8PD/sGjM1mUzfNar3WJFGapurUbqvKuuTB47MyL1ab7XK93a7WEvnFF16YjKYVrq3D7Wo9HY3zJE2S5N1335UQX3zxxYTMQZHML57cuX278T7NMmYW4RgZBKTy3U6nbZKg+sUiXG82xpCzzljjYdtwnxZDMCbJM5dnYjCE0DDnLpEQZ48fNxdPZLMY53mWJr5pyLJlQfax9mgtN1GQbWrI2MAcIpMAG4NgKXGGuaprCaG3UYLgyIR6K6GRGDarZZa4UZFnWSrWVCGwIBpjwSJrqAEqVVJm5u3VzDec2uPUEUEtAiBggTgm5MPE5XUe/KpeccNgGAkIUy2bGK1oaK9J2xmbKFWUCMQosYX2GjKIIsTM0kG8JIgwYBBkwAZsAIjAEQGNZZDNZr2tqxBiarPY8I0bN/b29yKIS1Mh5hink5Hz3H5rZGsoAASRi4uLumlwbg8PD9erNVlzfnFx+/atECMQujTNinw6HV9eXi7XqyzLJpMJEKIhQBAX3zl9e2/v4MbNm7ytJuMpRwAhDkiIyieuBLIatNR1jUhk0yTLqiZUTQDjsnJC2hhA6GNNqLAiYubIXnNMiCYwWJdp07dLTbtpIgFhFE8Ane0BFG7l6wFIpN5sASDJUiCKIGgNBPEcgzCSdWVOCL5u8ixxgCEEFLDWMbcZhL4hVs+fY1XHqj18uz0KABCgxeCMqzdbjowmETLiHCYWjeVd2DB1zRuwW4XAXQJl9ZTUEQqdplD3zuv4/M4lxnpb9cGVltWvvheN9P2cwwYAgQStQ1xXdYZJtdw4k1TsIU0xsYnLuneBsYYFrUsbHwGg8VV/HrZjGdGhp91agC7YVo9Fs8AKPsKOWkn9NM0ZdeSc0Fc/NptNmRd5VmoNR/OzWuEJISggUL0+Qgwx9iXKRpqqqZ1zgaNLE+MsM7eC4GTSvDAuWa/X1XpDRDZJyboky5+ZyOyvVnBQpbj67zMdCFTVZcKO4EBY2k1RMSbYhbT9DwKgFZHBLntVaHjOqL03BNZaYxOrxJwaeSPHxhdp4kbOV7VB+vCHX/mJP/c/yFwSvR+2cPU/YNcB/X5fq/JMhgUji7nquL7KygjAzVu3/rP/+f/szTff/MY3vvGbv/mbr7/++nK5PHv8+PTs7PU3Xj8+Ofn8935+mEMyZN59793T01PlotmnfSK6cXLj05/+9KOD07PHZ6vNkomfnF+M9w6/+vO/cHB4q/bBIYDELE1/6I/+R8Y6XZmWTFPV3sByuXzrrbcePXr0yiuvvPzyy4hYlqWGRVe94DgseGGSJMFHJf/tW6OYWSLUTS0AxhiVVuzrcXq7+p/VfBwcHIjIarViaNe2Kk/PZjPtrNKWFUWNK90ndvTb3nuFGKkvwh1fp1aWZ7NF14vcMpLFGNfrtSJ3uUOE6xLSPv4YQ1kWlmi1WsUQyyzf29931i2XS6fpl5aooeXcJ0Nann7OZMPBUGhK3/EZ4lW3Hw5Yy/RCupc0/bwTL1z7PpXtE5DUua603RYf+sjH804VdVhU3Sl8i9AgUZoOqCSvjeGnzK4EatM0O9n6nQLejjVH1Mws93X8LkMzvIMgAsYYCREFLFkiQgBjTJI42DzrBP//431GX3wePo/++fTF2T4h3KV+NdcrEa9+9eqYCirZsYAwCBJiq7l7BU3pN2CAlh5CbQkCAF/VyRNnQsN19KvZ5bvvvrNeV7duNC/efoHIPnr0kLlt6hiPxzrfFABmjNlut1oatdZWVaV9HcrPW9e1QqcWi4VaDLU21BEwatlB6zAKYplMJrprqkbKYrE4Pj7W/od6s1aU/9HR0d7enjYrxxiLojDGKZDMOaelXd2JLy8vnaXJZFIUhdZpY0ftlSTJ4dGR+gEKal0ul8vlUk9pOploY54qnyhOQ2/m3t7e+fl5COHy8lKrLqPRSEv9aGk2n1lrDdHB4eFyPtfO1MSaxWK2Xi+1o288Ht+5cwcA3nrrrZPj49de++h4VDLHQSKzfXxFUTR1vdls9CZDD1IVib4xSN54Y4xqfbTNY8buHxwYZ5nQS2xCiDFWUjfr7exiBiGKgI9MURgNIwoJABsCQWTd/ZWpzxjh2DTNJoaMrOpZERmGjuZO5xO2rSHO2hCCJvDYWmpLG4SsYUWbOkEBQQzR51mGEoL33jc2Q0sUEIJwDBEEHLk8TbMkaaIP0voz6qZ1DV2tx6G9K++/CyAAtjVMXTXSokBAAEEwXJVQgGPYNvVqtQoctUVqf3/vU5/6rsDxzbe/BYaAMcZIiFYMdQ4HASCRQ8yyjKwJIbKISxMGCTGEGDW0WK9XeZ4rQltrhlmWXVxcKAPeZG9aNRVzbOomz8rEJcwClsbjWDeNNi3qvNVqoW5SkaXxARGtS2OM6jMTGREe3ou2F7qDEhBaEdEUvyYImqap6zo23mrquduDENWNF50Svbsl0j0A6JwsgsgRyLBIDOy1K5KjcQbxanuSwbiO+RnYSEIBicABIgMaIGpb8/DZH3r6KH9gouE+sro65348w+VAAWHlCuXgg0TOsgysSfLUOGcG+od9sauzyoM2zd6tfb+LMh1P17XKybWPKO8iDFBh1CnN13WtBrYvcPVvy/IkdLSu/L4X3p1Hf56mY05Td1G7ptWeG2O+MzoqxiCSIUU3MseoZdJv7xcJQCMxATKEYIghcgw6AVEYo9gk2SyW+3v7n/qu7/qhP/bHMpcAwHg8ir5S8mLa7aQXEeBnosapU60yBLjLz01Ejfe6Fd27d+9DH/rQD//wD+tuF5o4m82Oj4+1N2g4CXzw/+Jf/Iuf+ZmfEZGbN2/eunXrtdde+9znPvdn/syfoWhY2CaGUqo5rqvmH/7j//IXf+nfZ8WorjbjIvuFX/ylP/yHvrA3LsrUQvCXl4+zNAu1Pzo6UgTXP/pH/+jVV1/9yZ/8ye12630zKp/np1bVWqWjeisQYwThPjbQ2aO9pKour3lE6ODOMUYFP2y328BXgowqR9A77i2ozBhlxFMqaj2OcW24DwC+U43UKqGmMXr2D72N6qn0WK8kSfI8L4ri5s2bVVW99979GE1iVb3VNU1DAM65siwz5+rNppd4bKmvNPnxXPAodRJFfU/OsHjSP9k+ouhrqcN4+DnHHw49OA941fpjogwUsoiu5XuedcBhY9y1RMswMtEnODyN/me8Dq4d1q9lGLvC4CZcu2qdSI3fEqKz1iKRgCVTZvmTZ5x5+r8p8KlV2VauCGOLZNPGgJimmaKAJpPp9PCk8eHlV19pgj84PIwgTy7O79y5U2/Wv/r/+q/9el6k6aTMMkeJBYuSEBIKq4Y0M0cJITILgAo1oErE9Lda09UKPyBjdK9lBBZhbHvkQKBME+rmGHQtWyGEGHkbIbIM+Sf6CyyKggCNMQRoEA1g/6sQkjWwO1Wpz/g8Y/Snq9SGV7NUxEMUYQACxeUhEwECWjKxiX2gom/XmakTr09r8+4DSpytY0wIVst5WozWNuXDk+Vy4cgcHo6MQe1S05W7Xq9VWnE63a/rWmVVVDhChZKcc4vFInT0wcfHx/q4TSdJxF1b2na7PTg4SJLk8vJSUabaDay9cGmavvnmmwcHB9qVpwGP0mopVVdd10VRWJvkea4c6CLyxhtvIKJ2uSwXM5VYWa/X6/V6f39fMbEqyaIleiUJWC6XmmrZbrfbzUZzK9LJHXjvj46ODg4OvvX229o9NZ/PNRxarVZqNKb705Ojo4cPHyYuMYCEqL0rZZaNxlldtz1a2qjDzHfv3v3BH/zDY8MirC7INWR/TznQK6L0a9MmpmcH6WvC6rtvq63jhBInKM45awwxBKpFJHjvEHsKUT2atVYABEyvJGYArDFoyHtf142IlzRVCDEP9ekAGJC6HJDeJQ0XrXVIgoBABlv+rwgCgCQACCZNi+1m0dReOE9smmWuqbmKTSBDxlgBxQ1mDJHBa1X6/YSJ1AsfAuF2LSpG6UVRhAEFu14uhCjMurqFA0ffeCIyIhL55u0bf/gHfzDLsn/xsz8LlsgYMBRCMESx07kVAAZhkTTLDtPUWHO5mCncWkVy9vb2VF9os9kyRyI6ODjQ8n6WZfP5XERC8IRw986Ljx6drVbryWRPZdKcs0WZr+smSVsXUMsCSrRd1zUap62eKtmsV22t9U11DfrTzxBE1Aq/Dk1lckeJyzH2Vn9314AYI5lO01MEzHVXqq5rbWmDDiYUgmeIaZqYjv57OJ5il94ZIhKZow9E7vchqiK7rRf0wdpLrg3tBfK7Wtg63lfMt/9qXbPbbbVYLMiarW/AknHOmWT4tmtmeXi2z8Ju9RlV3YyuuQfDdyoaVk2omhRuhc4ldHr2xnQEm53boycTB0TnerT3dYGw4wDoW80VlKh2DABWq9V3IlDBPuYGaLGHwvI0JfEfdCDYNBEUDxwDEwkZAhDt0XNGLMDHP/bRL/zAF1595UPW2CRxdV1tthtH0BYHh1QVbej8nPZWo6V5TAwhDikd9dko4ErRxpqcm0wmwLi/v1+WJbf6dFfHz/P8J3/yJ3/wB3/wK1/5yje+8Y133nnni1/84s/93M+9cOeF7/ue7/+BL3z/8Y3jqqrZYJ4XP/qjf/Lr3/jW+eWCjK2a0NSLt995d/TRD3/pN3/t17/ypffefWe5WFKSjyeTw8PD7/7u7/5Lf+kvffGLX/xbf+tv/dk/+2fv3r0LMuRUGs4V6vf4frro+QtjmiUt0QSiQhd6y9j5WzFNjeKk1U455yREBcJqSNP7r2ocNaForVUHRfekoijyMhnOaX0imvzT4+utU2oIjZ2UGsJ1nIbqgqzX6y7uR42RyqKcXVxeLJdN3YjIwXRq2noKXRndLh543nTbbUqRntKaWeB9AhWdWsMYhp6Ccj5r9EWJ4aF0U79mR4Zb6TXGj+Hbrl3a8DT65jnoEi3Puvzdk3+6ogJ92Nmf8853CZCAtc7DFgUSaw0RCDhjsvSZgfS10Wd3unO4ui5E0kVnjDk+PknysqoaEsiSdL1akTFFlpdFuXjyxBiKuuSZBYiQrEH9J0wiwMLM4qzOxpYhKGfTtd+I0gpLC8jDAMgIoL1tIKywNmYQMcbSQI3hOcHkB5kbAsCofe0tartN6kr38/CAvQQdXgUqLMIoDN0sBQkcumIekojq1FkwgBAk9NHPtbWJ2MKhn0LnMRqwlnLjto1//OBBmuRPHp8VWY55sV6vYgxK5adi81qC0M6TGzduXF5eqgJ3Hy3oTqkcR5rpUFkSlXtXo9qXCN57770sy46OjpbL5f7+vjazrVYrRCyKQuONxWKh5GN6w/XV4+Pj5XK52Wzq2q9Wq7t3715eXiLi0dHR2dkZIp6enjpLDx8+fPTo0fHx8dHR0cXFRYzx4OCAmTedwPze3p4x5u7du5q7UUEYxc2KiArz6Tp97733ttvt4eGhiOik7eFtak4Xs9l2u40hJsZkWZal2WQymZQlGQZoCdwBVL+oKYqirmqCBhFUP/7aTGMQtCaxJs2zdrW0vEwUMMrOO9vZiAJcCbOmUlm0Z9moYGuyCd4aDCFQE9LMSMfVgUiemURx2MwxWudSZ5k5xLiZLQyRxlE4FF5EbU1oOTa0mV6JFoxLkAwII7Xdjy0fp4AAZFlOaLabuszLJEmLclQWae0ihC227exBJDqDeWKbKBQlQgzxWnH7ygUf8gdA13DIAAgQu46UqBRebVoUWSBCYIEorE5CU1V10xwfH9994e5nvvtz915++Stf+UqIIc/Lft9BY7QpDBSCzbHxHp3VFXp4dKihqeYH5/P5vXv3JpPJcrmo6nq73Sovxf7+vuYBT09PX3rpRRB/fn4OgNY67SkNIRS5AJK1RmO/LMvUg1wsFtqd5dJcm6BUCDt0Mhc1yzAKGPqgiFhXoV+P3IEgnHPG0Ga5vCqV7W4czGwdEVFkll1MgT4C732apHqorYi1NgbvfUjTRB3razsjPHsgIggIc4jRRv79BSq/9w+9z0G0GaOv036QT+m6E4Gqrrz3ozyLCEmSGOf4ioapDTmo64/nQbbqORUVTX1qRU6zh8NPDV2C3iJhRwcH3ZMK4LEjHUZEVUOmrr/FdzKm/eXA03tcx8qrMypNU62W91ekXxpC2JGupN0DDTUZsRNlx1ZptZ0lSoOOVwNCZOlI0/RoIcYQw3W7Kax1qhgjWhIR21UVRfl69CE8lSXErkikl8gSWKUTBXztQaIly6H50Ev3Xn35lc9+9rPHJ8ci7H2zrRrnXAxR6SV6HMugJnWV+Zaua5+6AQDB+6Yx4zJBZeLpsBVEJnJHVkskHf1UCEGB4twxFPVJNedcU22zLPvkJz75sY99bLvdPn78WHfEvcleZvPDo6OmaRgjGisix8dHH/noR//tL/97JLPdbpwxP/+vf+mX/80v/cov/fxiduEs+bpJi1HsnIkf//Ef/8t/+S//w3/4D3/mZ37mL/yFv3B4sB8jF0VRV5XuNEQEIDFKU7c8M4pz6H3rxnsk45Kk40aTpvEAoBnr/nI0ztZoQWfFarPVYAYAlEMTuvSAhhz9JqTpIoVx9+zGOPDqeoY7zcDVdR2CRyRFhmjEMh6PNQ2p52atXS6XuvaSJCmKwljjnN2uohruuq6c9niFQGkOIGRIQxp9ND2PPsIOIZZIyzdlrbVdTkgx/9Rm4tpb185PEREIwV+zF4P5ds1nvbKKcgWdkms/XzM8w7gi7rLDyTNSg/18fvpT10z/swovAOrTSvdFoETJw845auWNsXdHENEgIqAzljEwc56khiixbm86zfJ8U22xZfBjZuwr/M/x34VZfW5NmZdlOZlMkiTJstQYu2hWeZoB4dGNk029zfMiTTNhNmTSNGEffPCpI+3saGtroGxmFgBUrFabXCGCNdgSAiAIQAvwZxTBGpEBIksUBmEAsSBkEETJf3fQU33QKZ2Z7m7p7iTp/3vFFAIAoFEQsHCvaQuoZRIaVnoR26YjRO1i4ZYVR2IMvRwqK0JC2oRuS0siAswCaIypq8Z0corDEyaiXvbOgDHCbR0fJHJEAocQiXzlH7377qgo33n37cPD46PDaZYm6rtrx9psNiOi0Wg0mexpjWW5XCLS3t5Uf1D7YK1V5WPudF3X67Xix5j5yZMnzFyWpUJiVquVemPKyrVerxV2RUQqS79dLdXUnJ2dKf2gvmSMaZraGKNt7uPx+N1339WCSZqmRZ7WdX3r1q3bt2/rrFZaqhDC6empFiuqqrp582aMUQnW9Y9lWY7HY0Rcr9eLxQIAiqLQPAsz6wmAyHK1ms/nas1e+cirx8fHo9FodnE5mUxIcLvZaCx0evZgsZiphSHC8XhcFMVoNIox1LEZlUUfD2On0QYANklwaGEABCCIYIyYmd7S+BA4smm9DyqKAgC8RriIHGOI3DQNMyDZuqkEwCEFQSKMACFy4iwRsDqUkaHzOYqisM7GbaVhmNpbY0y7zSMoHabpaAw0tc/MhEhkBQURmSgicgDgyG28YEQgBI6RYxQQTJIcQWBkrSEyTpYrayhLnAgIN9YCI3pM/KA7fCdxo2iLdmFRy4QnDKrYKMIikSECa+c3MzACWuOrmowxSICQZdloNPrUJz/5yU9+shzvMfPe3p41tiiKKALDC28XNQCgSVzV1C5JGt+U47KfY2mabjabt956C1p6Ot5sNkVRaAzvvT8+Pn7nnXeqqo6hdi6LsaUO07RdCMG5xKR5T1JnjNlsNrPZTFOryqWpFcU8zxXSAxpRc9uJgR0RHHbCFz3oCzvtSNMya4k1dpjN0WAGAGKUK2MCV3rnXQjUhj36cuykPMqyrH0lV1m/qyzz83N/+giNMYg+xkjc6trgQJSvt7fDTz17w2mz/vDcMKCdO13yLnKEFuGcXMsD+qaBzoHuYWAxRg5BYhRmBFBR2nYhd7jHFozY+d69r+86na6nM2LXgi7pZBl7dKuOzjm8AkoMYa69b6/f2NONdBFLy6Kp2s3QbWGJc31JuX1qnYcgA8x8X5QTETKGiPr5uROowDVGgt1bP5gTV8yYu1EKIoJyCak3p+9vt/trsaluagCspL9XClPUKbqKXDuJq0mARAQCm83aOWuIQvAMPCkL4Vhm+Re+//Of/+QnD/b2rbUCzCCq3MwcVVAAu6P3WgTDudXHG8ML4xaAZBQgQoh9oCIcbUfVN3QriUikRSjq1Wl9IM9zjWWZmYEBQHeyO3fuhBDKvDw/vfjWt7612a7vvnxXONqUsqy8cXJSVZVxSZIVqbO/9tVfr1ZzX22me/u+ae7cefHg6Oizn/3sK6+88uKLLxZFsdls/tyf+3M//dM//c//+T//Uz/6p/I8j2GpLJzMYsiKMINSG1TUMc/0iEPn7NVKi1HXgs42lVEb3pw+9lWghR5NkdlFUbQ+fYy9BdRQW++SAiSSLO/d2Z7qQbu7nEs1FYSI4/HEdyLQTdMoNFbrznqTN5vN+fm5XsvZ2ZlzLh2NyrKst1XwoSxL9r5qatWF1BMjJIVzIeKQzE12QnVQQ9wGZonryxc4WDTX7B3iTpWjf1u3fK5MydNzHZ9SIm9diUFccc1QDt9/7bPX3jm0YsOXaBcM+Zw6DHZApq6w0AYq0N0otW5tkrJPxQGiSGJdNL7yPnHOGZNYtzeZjIri4vJC51IIQqTe8jNzZogogKxcPgBZlk2n08lkMp1OsyyLUWaXl0f7h2WeRxESyJMMAZwxd2/fftNZhGzrV5pZZeYWTa2uRzefEzAtt3YQQZYmChoERiJLhM6KcIyoO4hnoRgkKsZVkLTUsDM3dq/lKpnU38mdZ30VqOyoLIn6UtzeBN0tkQUBaLAJIoAqPhogRGRgNVCI4LtdBFu5PRJhaQXx0ACwdhYKW5NWUvdf1M+KNhzF9puwZebRq5MmBgTkEKxAZs12u1nP59OD/TRzeZ6enZ7t7+/fvHlTZ3hRFFpzrmuvWJSetEPrpefn57rHKy6laZo8z8uyVIOgQubT6VR7UWKMStqrbWxqTHohxd79CiEoJZd2y2BXK0bE/f1D9e0AoGkalaTUeo619ujoSDWd3nzzzaZptDFPRE5OTkajkbX2jTfe0O8qikIb69erVVVVi8VCGY2n06kWio0xyqesSHFtawGAg4ODPM+VCWc+n0eO6/U6MVYFrGJTz2azJLE3b95k5ouLC32sDx48QIBX7570FMk4FBpC1JLZ1SNrO8hRkZNdtY0R0VgrID74wIDolH8ySRIgiiGIBOVirrJiXa0NGTAW0BjrYox1vY0MiWudOdatvEOnlEkpBwfL+UI790xL94eILTUYS2v/1fG9ypobSwIsqN16StbBHKPwalNvNlVVNYvF8uI8K3M7Ho0ATJpmhtAlKQBojtZutkWesMhquQFE7croN3roYEKBY1tpwrai0pIQtzRfwgJBIDJH0c4sYoQ6BEoSg7hZr5U++zPf/d2vvPxKmqWBWUQeP35sVKKg+0aOHAGV7FQEbOImk/F6u2ma5sbNm8vlQuekNnbWdX12djaZTKw1r7zy8sNHD7RM9+jRo5deekkDobOzs5Ojw6beCoNrKeNjjL6qQozBCJKxGpB77588eaJxSwhB0GgyW3N5iuUOISSJi03d+3i9EeOWQ7bN1mEXD1OnBmOskVZath0dLyv3zoAgkDFIqM5h722naar+FXNUVr2qqopR3jS1ziKRK6v6dP1/aGMNkURwznkTWFhjFeW0YZbezj+9s7zfhgO99Xvftw1/G1pL6Dx+zZxe2wU0Ide30Q9czQaZUcQ3zWa9UVo/AgGRGALH3iGn4aNh5tRlQ+fqWRu9dNAvvQMaRl47eY3ltJGpf0k6IEl/NOkSytba3oeRLsUPABxb97gPXYxpsaYAQF07Sr8D6jPVXxFRi+fffuiXVjY1mnj+I/+DfhHAOC8JBEXEQGppmo8+9fHXfuD7v/9of5qgCPNmvbLW2sRh10su7UevDjM8R9sJrg+fcbvUgJmRmVuU7Ae7tGu+nS48zSc1lR++pPlObd74p//0n/6z/+qf1b6yuXvhQ/c++vHv+uznv//d+/etczZN66oalTlK/p/8+J9+9d6LjoQQbt+84dJ0Op1qig4Rsyxrmuav/JW/8k/+yT/5u3/37/3kT/7kycnJYrHqtmRNioiyZiGioqq09pokyagcRWn7wtWc9ZbIOVdVFWhzTtMAQF/Q1NACOqkmXQbqs4qIxhhtTaKzEbqda+lmuAa6BDAYY5WRTJerur97e3vL5VIjw9FoBB0qTNNIaeqIcL1eW2uzNO3ZvomIQULwdd3gLlq0mwBm2FFwzWvvx3Mm9jUjtfvO59UGrtkvGUDInv2pZwYnz//UH3xcO8NBtI/Xbprt6KrJmOADARoiSyYxtmkqZ6xBctYlSdqjX4Z28HcdaiJHo9FkMtHEOQBYa6eTyags55ezm7dvZUlK1iR5pjSaWZbVvnLWGqOYKGQGZhYtD4uCpthaQmeYMWFi5mgCALX7LYcYtH4pDODyETKrOnIQZJDIrH23wzF0jAjJWrriV9qdNs8ayi/cE8frXtQb3GtTbfjveceEnkS2e2oALKCsdOq1UAey+t3PEIAIBYAEGBEM1VVzdvpofHSQl+Visfzwhz/cNM1isRjuebobKR+lcg8qW8bR0ZHyGimQIM9z5xLmOJ/PHzx4cOPGDfXv5/O5LvbePqiFKcuyr5ZowKwN6GVZrlYrVTLRpOB0OtXYoGla9sLVajWfzwGgZ3RdrVbn5+fz+fzWrVtlWU6n0xdffFGPiUTKPqxRBxEpPrZpGpWP1G9cr9caOOnGPJvN+sWiLY5KIeCcCxINovfeEMXIYFFledeL+fHx0Xq90sYefebn5+cXFxcg8vGX75iOeOda4XRYl9T8aFs2MTayJwEG5BblKN6HxjcSohdjraXEmdSBOhnWpsYlYbxIUgBiAQAl5sm999uqruramnzo0ZrgW+JOwjRNfZapi9zfK30JuO1x5q7VO4RQ17VLcnGJIAoq6IsEiAUDS4xc136z3s5ni+CbcZke7pfeR2eddc5aY2y7PZWjcrFccfQxxtwl750vn2nGW06JNiPUX4g2o7FAZNVLwSiiq4YBqqYuEldVdZKmH/nIRz7y4Q8f7B9IjARISOv1+mtf+1peFiEEO4DZsB5AgBHWy0XD4fD4+N13391Ula47xejrJJnP58YY5+xyubx169Zbb731wgsvfOtb3yrLUgGEIhICxyiIRmv+1hKAYebG15YSC6jyABqra4myruvV66/fuHFD14s609BaJEJrldMZupRlb/CtQe3RUh2zIaoCFWHaldYRUVWAlVGm98REWpkHIgJA0wkXAopBgtjmVrabdV5mOp/jUxKQz9npQggGraZNY2ifI7Z1latxbSZ8R7fOa1POJYmukdAJZ3fOpyBHiHE+nzNHDd19XXkfIsc0yXsTB52n1F+FbjH2g6tXt6w57TDPVguQAXmxnmff3DJMSj5dzHnWkEHR5tqd4U55Vo/5nWmm71qNv6OBCgBsV6vom1FRvnTnzmsffuXzn/3My3dfqFZrbCJZzIs8TZImBAZW0ZGnJ2C3SNphoRO66upc2FU8CUWU90PVCz7YlQ1dYaWkFJFvfetbX/rSl37nt36zf2k0Gt27d+8zn/nMyy+/LFF+4id+4lOf/tRv/NbX/v1XfvXtt9/+8le/9l/+s/96//CWoIXAWVFsqsYR3Lh565Of+nRotnlifdOy4qgpoa6ZpK7rH/mRH7l5cusf/IN/8KM/+qOvvfaa1ouhC4UVNykdqMN0ADxmBrySBNIYQ/cPPWzfXAWAw0YxFumr9rGT7NFUqLa7SJdgM8ZocaYsSwbU8/edkr1ehfe+qlqOoMVioc9Ce1S0lbZpGpWybppGs57j8Xi1WiLC0dGRSlBvlutquzVksixtRDbL5ba66skZDpG2YE1P9av0Fb+nX7o2o8wzODSuZVOufe/QC8RBa9pzFtG1lMm1g+/klp5LiP77GE8HKtKVDa+dUv+e3pO2SIm1HAL7kFinWp+K9+gP+8FP2BijvqyCEnXWEYEhOyrK6f4eEXGMjW+qui7Ho6PDwyLLmhU654zmZ6MwQYs3GwjHI4IxSAYBjAi5PBcZOi7tiAJAzrJ4YygEI9pQy0qsORx9oEJEAGKg1WyGpyoqz7H1Wonr9CAFIoNBSwaVX+X3aHEF34/lUIAQogACqDAIfPBG0lbgAlCEBC0Zmoxn1fbdd99ZbzfHe1NDpMKy2gRy586d0WikVQjN5qr/NJlM1M5cXFz0SCGV4lbjduvWLQXYqJN09+5dtU7agaqhgio2agOeOlXGGO99FNYGd32z2g1NIV1czNQKFUWhvYX6OJIkyVJ3cXFxeHgIALdv3waANE1VnUl9LLWNaj3W6/VqtdpsNuPRSH/QkoiI3LlzJ0mS0Wi0urjQfVrdjvF4rBXpO3fuPDh9qD0DTV2TYOJasiZrHXQ8QnVdKybt1q1b1toQfOSr5PTvuvn2l+YsCQkCIIP6rzHGFkrFHDkiR4yerEUFIgIpy7wicwBAEW7K61hVVSvQBCC6CprGqS/ChIAaEAK0rVOtwSQUULgDAED/KKuqcmltk5KFBCNgSynGAj6y1sm8b9brtffNbJKv1lPf+DQZJSaLXImwPsfDw8P5fLaYz0Rkb7q35TMyK91rrqVFELHn54DegokIi5DTBccCkSWyCACjCEJeloKwf3jw4VdevffiS2WWR++1177xDVkzmUyss82AdkIQYojQZR9Y5MmTJ+eXl2ioCX5/OtEAuzdrikfYbDZvv/320fGhUlq/+uqrjx492tvbA4DLy8vJaBqjEKG1zjmnKJ662fq6EUobHxTkvFqt3n777TfeeMMYMx6Pi9FkOp1WVaUa4Vc2CgHRYoeg6UMFna6ELYPCNcB2jIwctQ7TNy2oR2uMjTG2pGsIQGSgdRQFAcmExjvnOEZkAcJ6U4mI4g/7CPxaoBJ3m92Hj5KZiVowYS0+REZmZIEYEXbo9Yd75Xc2vb7rcPbTjzpiT+ywcBAjxHhxeRlitGS6ExPpLrmPJ4f50wHLqHxQiw0wrKjAU7d0+LMmg1qrZSx0hKs9Lrd1Wj7YN/fWQ43JEIFGHbcYM2+322cGKtj+Z5CjBeA2/YagOsfv53QhgvayUN8FsuPVy1DVEUBhDS1HHyP3SUCNLBAYgXDwV+W30VRkau2dF+585tPf/dlPffrm8WFChDGmzhISEUcOVb0NMaLpYAkIuLuTX0tE0lVXPcCgJ1hEhLD3zYYhDz7dRrN7/P5ndb/quv57f+/vffnLX85S194IhBhiluf/5Itf/NSnvuuv/NRfHZXl57/3cx/9xEf/9H/6Y09ms7ffefCbX3/9S7/2G5vKi4gPwSCmifvK1772iU+8NskzkOic1Wy0+nzqwWtqsKqq7/v+7z86OvmFX/iF2Xz52c98Rm2FCGiFELoZo+8nohDCer1J0kxR47oPacVjtVoNCyN9l5VmE8fjMZorAofhfdAAgzuheg1sNIUTQoAWftUaNeUdVukV59K+5qjAbmPMxcUFACjuSxe5yrqFEMbjcbdFhvF4TEh+W3trDRlmaZo6hui919T+YLYDAPgQCFqba3a5entb/Lsmv59dUXlmtkY6qGP/az+e80XX3vCcQOXbPoZneBWHPHVn9CWdXSKi8lwKWtdgWG+xI5NYZ4310HiOeuLd2T8ryaAvttpVWZaNx+O+nGKtm5R7q/V6/+jQGDOZTlerFVmzv7+/Xs6tS/SDBhk4au2AGYQEBQiEBLFrxUXs/BiD0KmyocGunM2GQcBgZAERa0gQGQVECFXL7erc274RJCIBNkj91ENAhFZvVP1H6LdzvOqhh93UuICwgAEQVJxDHIZGqF/43Fmg0rFXOU5oeSH6b+mD+evbXic4q/sBtuYaSAAMCQgyEEJVV8lobJp6fvHEOPPO/fuR4cbxCZEJIR4eHmZZVtfVYrHwPt65c1f93UePHqkda5rm+Pi4z/ICQNM0SsY6nU61Z6MvlVxeXqph0SkRQlBjpYyLKqeo+LE8S02HgVYYGCI+fvwYAIqinE6n5+fnSsygTSNazCnL/OTkhJnJGB9CXVUhRt801tr1ZqMtMdpbH2NcLBZqxBSe+uTJE63bEJGyLccYJ+OxZvUIseiKP3fu3Fmtlq++8kpomouLC2OMI1s39cWT8/V6Xea5c2lsVSlxMpnEGEPw4/FoVJZ6OYphg91wtxc5VMgNEDJzEzywhEauJjZiYiyYDvfLyCDKZ22tNUTIwoEDM7iU0UZhRgJrKU2sc0WIxrpqvdBDaT9HDJFsjMwEko1KJLqYzWNdGTIuce0pkQHdkxAAwVpnTFNVVfA+hGCFsCv8obT+GrPEyOvNdrHaXszn1lJe2IPD8cnR0kJKqZjEIJK1lGUJiCBIkee+qWfz5eHBHrOs1uvNumGOCvNSFyEisCqpaawF0PKXSYsYbzmIRUSAUUSEkYyxt27d/Phrr03HE+UQGE3GeZLOl8u6af7tv/6V2WyW5plNE6vttQAowF2nPgCUZXl0fPTg0SNjLSLWVa0PVzdK3SW13pim7vLy8s6dO03TaM0wxjgej/emeyGwuhlkyBhjLCFh3dQhxGKc1U1g4V//9a995StfPT8/r+vKWMsxTvemL9976eT4qCgKBBGFFqH6ckY4YqeSAR2qx9kEgLTmo80tveVXfNxwG+1TlkSEciXT09oo6PQ7ibwAkUFB7+txWTrrTh89qmtK86RP2CNh1zdwhV9sjzVEzAhyZEFBssYi+SghojAosWP/9jYO61fK+6Qvv71juEX2pHkannGMCkDUzCVEXq9WBpCBg/aHkEFjmqrRxE0fn/SjqivsUGTwgROU8dl48uEYJrKJiADV2vTpod5h/oChXt8Pw08hR9S91HLTarWyOie7rx/CBAYOOIKAgLEmScmHhiuOUTgYFItARjn3ASQCt3B7Q8Zaa5BiiHVd+6YRiQyeGY2lCOCDt8HbwGmWA5AF77kJYBerlTOpSzIiCtGPjQlenDEWSZhBAgIkNrl39869ey997rOfuHnjZP/gIPggccNgBAAMsBYrIxuXGgfc4Wq6+9f2P4gIMO/gv6WV0yCiyIBR8akiIogWoK20EEe2es2IgsYZgNYbQ9VWEyFAJIrM6vcbY/IsEwAk+thrr/3O17/Obbe9WOeSPF1tNmNjf+O3fuedB+9+4rWPRY75qEy5TPP9u3c/9kM/9OM/9VN/la2pUbxgI1Jtqt95653FtrII+6MEQgQyQNSCQwCMs6UbAUCSpXXlP/Tqy7dfuP3FL37xjbde/xN/4k9oi956uxI0IbAIElkA2m5rrbfGwNk003uiucnNZgOdbNBoMmbmxvuWNjTPjLMA4GMIdRvTz+dz7fnr69eaGQWAHpzWw8CigKoZdBlxYmYl/YyxlRDSTKpCicbjsYJ0iejBgwfabqhhvffeOVttmqrZcojT8eTGjRtVOaq31Waz4RAt4iQvt82Sm+DyJHOJI2uJDKKxbjgZ1P82xiACERpLZNr/Eu1Mm2ctxfB+De76YW4VVTUCpxigaRoQsMawUUFTItMpqCjpLUDcJekafhcNfiO8EnwEACKjiVItRg0/OLRl1yKfayS4CFeNj/V2ix21MwiEEH0INAB6QVcm6qMXESFCkSgkJrMk1qV2u9gU1i42q/3RdFpMq2UFAckQoAEQIRAR6yx0C1a6bh5tw3NJDkCTyV6a5nleqrgeM/gQk1FRQYwYQaAJdVakZVmm1mBRFNPx5u3msChTosKRhMaAoECI6KEiRBYiwRBAvKDy9wOMCFAQ0ILVJiulkdEVRyjCgUPwShxGMUAMEjlLMxDtEIAoumEzWRRB8HVinQETfRQBJmo4NiyB2ZJlQN09g/IFI1otVNSREDskoiEyUXeaGFUSlZRlFduNOAiDQCAxqVE9ciIwLaUIGAB9goLskT0Lctv9TEgYg4QGSUJsQgSXGCJiCWTQGisdq4p6garKERkCI+tUAUEL3q8Ly6lIEjYPzp9AWlBSJOnYe1xcLk6ODspxJtA8Ob3cLBcS/OPHj+u6no7KUFexqYuiECKNQLSNfjqdIqJmRqpq05VnEVGm07Fub865GGU8Hqv0ooaye3t7q9UqSZInp2dacMY20E2TJJlM9lQ2/uLiQvtStEKi5BwiEliWi1WI4ejoeLa4PD8/H08m+/v7l+fnaeK0yqELajKZrNfrk5MT5SmOMS6Xy8vLSyI6PDxUW8rMB/t7RBi9jyDrGBccm8Zba7I0swBnZ6dIuD+eWGMuLi4me2OX2vFotJ6vZpfLosjHk5FIZIneN7PZLMZa50SfD9oBCxiKoeUTkw66TICIqAJ87dusAdFsHQhCoFY2lLqpBSRgqDw8MNsXF5dLml9A4G29MZJM83Ri9uqF3a4XBEaiCEfmAIKIBkzwiBsB6yylWV35atMQ2MQ5sC4ANWCctQ4hRC/eFzn6OmxWa2cduTJJslg3GDlBEjYBrGc6PZ89PHv8zuX52lkGjLNNcbq8cTDfo6RZLZOTG0gJEvqIxpjRNIshbjYbMkUMxoRmRn6B9aqKlfdVxWQKl2fb2rNIFIkCWlTqUrJEQYQhMrOwcU4Im+ABIkb88EsvfuELfyh4H0XI2iTPmLBBKfb3cjSPHj9ZbyuXF76JqF5Ka1GJQaIPniMLFuV4PJ4+fvJ4Va6zfXd+fn58fPz48ePDw8MnT54URUFEIURrnbCslhtCi4UZlZOL81mapuPxtBxPnaXVehEk2swRkhq2w6OjVawhS//dv/nVf/2v/93Fk/m2qhJnBUKa0H//ez//R3/wC0/Ozy1modkAtJJ/1prMWSBq6pbmxDhX5KM+9+RcQoTO2RC82iQAMYZIa28gDLEJkZkFmYiQhJsKENFYQgLfMIhLUgEKQTwEQ04YybhinAaWWiSbTH3TzFbLsshDCFlZ+BDItby6HKPliNBWcRU6099dAykHqCECgEmTIgUBgBgkRswKBCJgAhIU7JxrfI4uSxdX9GNnr8TrOc3+V95pRpV4RY0tSZpoDg6FkaN4LzFCiI4FArzzzrurxYKIinLUbDfkbG5tFHZpst1uBQENGTAAEOowrMpqKhmHrHq7o4eNXfkkiOrLqVQ84pU2aHfaLVSnx02gMUmW+hh88GiIRTgGANDqqAYhIQRh2GzVNBkBtI4Uj6OumlZOnLXGGENOK9vMDEjaf/jbv/3bZ6dPnhM7PhUUdUmza7gnzaz1T7flfYWON2M3yXv1SdSPohKMKtQTu7miuCAJTaxrZ1PhaKzd2z/Ym0xeuPvCp7/rU/defDFN3KR0ZFCEgUOLNnjf0x/mZndTks8Z2NVbftdS4Hq9VuaA7Xb7a7/2a48ePVqv16PR6OTk5PadF27fvt23h2oJ4i/+xb94+/btn/3Zn+1ZMq21ZVnevn37lVdeee3jH0dgJGz1rUCa2o8ndn9/Gi5nTMIEDIQCZ0/Of+O3fudP/vAfqdYzjNE4wmdk4hHROpcT/diP/dhP//RP//2///f/6l/9q7qZbbcb7HCiGhnrVueSJDJT11MFuylVzeLYjmtYP9vF0y0SbLVaKccIdnBGTfVpfsgYoxnEtp3LWhHpGMbahhMFgFXVRlm/+phHm1OXy+WNGzd0zejqaqVqmYkQM/FNLSI+eAlR01FJkrD3oSPuanOEu5PkGUMJ7vqiyvOCkw9YypCnst39r8Pnt1PW+/0WSfQhUsfH/ayzvfZq5B1CsH7ILlZVQ241ZM8/DaWL7VM+1LXTOWtTl6j1JI6CXcZk2DkBAE/le7SsX5bl/v7+aDR6/PixMUb7iZ9cnH/kIx+pqqrp2OQ062OsKcbjD736ajWbybYySC5JmYNIjDEwgoCIDGF+ejLia9+fzPBGCQBjw5GFg8rbgggZzIwDQNbqZYewEm2yFwABY8ggWkAiYpGoS0x0cQ/KGppEbu0B7iTQ8FqF+P1nsYYR1/7YTzYDKAiMKIimw3MGZoicOyeASEaGX9tRqAB0aR09Q0EGNC1mrC3JI6ncRIzer+YznBwrA+Sb33p7UhZ5Ofrtr3/97gs3ttv1wcGJAjiPjo40TatN5+v1OskLjRYuLi5EpLcem81mtVpoz8l6vX7hhRecc8vlUi3tdDrebDaq5wgAi8VCaybal6+yS1r41VhCBVtGo5FaM9WmUOzo0dFRWZaXi/newX7TNHVT103jO6HGg4ODxBAza2yjBZyyLAGgLEthfvvttz/1qU/Vdf3w4UP9alWM4cjr1VrlXCaTycHBQZG3zJ6LpsqzzHtfbbfaf6V9epez2dH0UMVStpvtfHE5Ho/WmyVznM8vt9ttlt3SeovWxq/Wb+ceqTUecnL07sj1JYZgqJ24IiIxSpfjiCKbCGxTRguMBskIIgo66/IsyTJf1TE0jEiKltacOhOCjQA2cX1OKkQ2UcQAAHILhcTI3DQ+hOCb5vLyMiRJIQV6hhjBOQBmrCNUjTSnl/PLTbWJDEjGh9PL2dv3H+xZe+twv1qvgKwhg4YoTYgSQLGEzpjE2My5MssEmRGD1FzF4EOkOjKwYBSKwpEpKg0eAACEDuMhAnVdOeu0uf/w8PBjH/moMzaxDgg9R1LeEAABSZLkM5/97Fe+8hXVAB0mhuq61gRfXVXz5WJb12SNb/xisbh5dKg1Q23+VOEyJcUKIdy5c0fng3I2AMDp6Wme54cneZo6l9rlamaMAcDEJOUIR+NphvEb33zjG1//pkELQkcHx5H9wcH+Jz/5kc985tOAMh6XIXoN+7MsiTE2Te2o7XVWFSPdr/uN4MrC7AweVsRpkKhiZmuIANVNZEJ1AUUA1Z9H1vnGURDRGpPnWZo6g95Zq5B8pRwGYWGlglf+WAV9XXM3oasTX0OFUdD4U/SfDOzh83ZYY3oI1u+yy/8+dmpDhMZGAUYGxLqq5rP5ZDRerdey63Srx6h+V9dpZrBTmuaO8e85juvT26ju42oP+0o1DZSmAWDoy4mIQrWh02jaSYtY23fQDfOV3f7RDp3PGvd671HaXaYX39N42Hv/nelRaXnCfw+81cOnGpm3q3WM0aKMx+Nbt++++OJLn3jttXsv3TvY23fGgEjqkixLV4uzyLF3fL+9FzIMi58/7bIsSxL38OHDn/mZn/lX/+pfrVYrdYuzLJtM9//aX/trL7zwgj5sfXgxxh/+4R/+Y3/sj6mtAQD1wtVTD6Eha0BEAzljYDyZrNerT37y4z/387/go2cgAQIgjv4X/80v/8gP//HKx3GRxRDxGZ6iBgC6df35P//n/87f+Tt/42/8jb/+1/+6NqfSYFrrvPTeV03t0qS/A0QtVWU/qOvZqOtaVe0VJLbZVFpB0ilojBmNRto3WVUVd6Bk9UqlF3wk0891bklFSLtdQ2gpDrFjF1FnFAA0+JauwUMj/ul0ur+/Nzt/sl6tNpvNdltBZAnRagqkT0a3NYcPCkjtZVeISGRH5O5aUeKD9Bw/f0S+UjZobX8XIfw+D9hmyNpyx9BOxWeTGsNAX6HNYPWnIRI7V74/Pa2DPa2s0Q99rIq6sZ1EDxElSaoIGedcZA7XiZuvxrVkVdM0qiegk1BT4FmWhRizcrRarWwntqNQb2utMP7AF74Qt9u3fvs3v/nrv2FQnEGOGGIXkncl7L4w3Z58jFd5lx1LjwhASNYYAUBGBlFOBgSqa9aKCiOgiJIbcws2CI7QAkUATbMZASMirKpz738b+3W3u/X+LoPjzoy6dsD+L/2e1+fZTAePbuOirlY2/NRwl2LZUdMjop6HdLVem+VycXF5kY4Q6OMff21vUlbfWr/zzv3tdp29Mi6LkUYml5eX2neuLMPns4ej0QgRtYsdBrDm8bh0zs3n88lkokQaigUdjUYhROU+VusUY3znnXfu3r3rvT86PASAEMJyuSSisiyJSBvfZ7OZov/n87mumsPDwzRNZ7PZfLnQhnhELIrixo0bypI8n8/LLO077jabjTKAabRzcnx89+7d7Xab5/kLL7ywXq/v37+vM39UFEVRHBwcaISmjc7Ksm0JrLWnp6ePHz9Wai8VFTk6OrJilJJ4tV4KxPV6aa2dTqf7e+Pbt2+31fs810u+mqM9i8NuJhh2EerXXrLOqv5O5Bg91/VWUxIQPaRpMp2E1UKiNwFME2MdKXUmT4pxuQqh2UTNjoj3YAitAUJjHQNmada4Tb3ZYtNQmmTRCiIJkzAioYCiYdI8a5pmsZybwuUWLJJwiHVT13XVVNvFfDW/eHQ+m2+bYKy1NiCeL1avP3hYpqkYe+QsEaF1RkyE6GPDwrFpODSqsjUalSZzYFyA1aaSbRX9tooGorSFQnWEBVqZoYaQVR5GGBEQmOuwv7f/yY9/vCxLJXZLXGLQcZfmFICmaV599dVf+ZVf0ZanEMLOHdasmbO8XFTV1jgnIpvN5vLyUie/NmuJiDbTa1/QaDTSYstsNlPLpnjpyd5BkuxrLLHZbAAwTSVGBoHGN9/61rfefvvtj7/2qc985nPGmDt3bpWjbG9aHh9Nek0VLccp+YRS+6Rpqls/dnDop3eifh+XFiXHV4FK19Wg7xEDjEjAoFlsZABW9g6JPcgAdmevhBBiCApEB4C+IwI45nnB0Svo0XRKCe83Bu4cIDP39vWDW1HbCc09/2393WjvwAfrFUFsOb5FhEO8uLzcbrf7+/vr7ebpdzrn+rhRYYHU8Z30y/zplT48wrUT7t0/LTVrjgYAdL7pvcUOUNojEtu0xVNClv0mNTyZ7o9XXJf9OatVseT6jKoO7T/k70gz/e5pfUDPapgXJJGj46NPvvbxV15+6dbNm+P9wzzPR0WZOAcswtEZKzFuVss8z5V1Tuf0tzdWwUEZQUTgqZTk1cmLNE1zdnb2sz/7s+quKTPvbDb7kR/9U3fu3NHlrXuwypVst9uyLPsQy3YiHt77yEzoWvA4iCMTxUf2P/CF7/+VL/27atEgQARiAptkr7/11n/7c//y+z736ZoBmambf9fiaTVwm81Gm+d+6qd+6m//7b/9d//u3/3xH/uxLEs5xF7D5FrWvJ/o17yia/rlylcTY1TKYJU5M4O+fD2+suOrx6x/791faHzfQB8jD79uMim1VqgocPUgewUDjf61X3a9XmtmtCiy0WgUvN9sNnVdpdYByGw2894TSAgheB9ijCGwfZZde2o+9D1k71eXGE6GD3jA5wzhK5hnHwZw19H4+ziggmF05cuuquNzKirDtGv8/xD3p8G2bdlZIDbG7Fa3u9Pe+7r7ukxlPmUqJaVSFAmSUKFCAodUQgK7whIEhiqqqAgHyPwj+MMvGxM4CExR4ZIDFxG2FUFAIZUkQE4kEBKSokANqVQq25eZr73dOfvsdnVzzjH8Y6y1ztrnvnvzZiLZK17cd87Ze6+9mrlG+43vG3FNysF04SyzZB3QD9v5R4Tkh22oAJm+gSZ/tMomSSrz9CEGIqDHVrYOFjYCColClmXW2tPTUykLmZ6GTgzu8fFxj1WwzuXp8bzdby3C5z/1adFoUwoSYxGUwevLfeOLtVKD9z2YX2IkQGKwRjmmwByZIlGkSETSL2bhMleAoBRTBCRWrNBqpVEhM4ICYsWsEVnx4y/htQ94cs3sxja+r09IVAYXa60FYzSg6hJ7VKgAQeakGQgPP3W9Mg8TFQCgXkih3ZVtuTeK67qaL44+//oXTo+PjhfHNCuQqSyrIp/IlRd9+s1mIw0Wl+Xe+6urq/l8LsIpu91uu91KU0Uwn5eXlyEEqV/EGNfrtXOpqEMURXHr1q27d+9+4AMfYOaqquSz1trJZLLb7ZbLpfyaZZmMGg93XzzLO++8s91ud1V5cnLy/PPP73Y7MfISyQFAkSay+GVKHgAePHggx7m8vJRUR5jNAEBkT7TWHONGoB15TkRSdhGzpq3e7XbW2sViIRm4kJGUZckthdBaa5PETafTLEvu3b+73W6/7aPfnCSJwuvRlINnuf+j6icHrtfGyLXdWFF1WTFR8CHE2LZNjJRm6STLXTJrKIXQtstl3Ky4DmHXKFuBUtq6tCjK3V5ItJVSHBAFfx+UjowILkmUs+12i0ElQkEWlQAkkTsdRQZEZYhxtdoAQoK2sAl5H3zYl+WuKi82q4f3Hu5bIuXS1GW5UxSB467xbz28DETWsu1VWbCj6wPvfVv7GLphttSoiMqz2lexaZtAECjKgEoUcSJEaaEQcqNEGIbkODnwbDp56cUXn731TGSSEuRuu81nU6M19bcgSZyomqZpKmHA+AoL6OD09PT01vm+qja7bQgBFOz35WCxxdnJXFOM8fJyvdlsbt++nabpcrmU8TyRErq8XB4dL0Rm3nuvtQk+tG2oqiqbZEBcl+V0kt86O/3d3/30tHAvvvihZ2+fYSytNRJTjsG6smxEt1SoHeTxFHCROdQXvvZTTGrM0NGXlmQFthRQocIIZJQ2mrX0sBEIOAAp6XNoBKWVmFAmYgrRe60AOFprmSJQRCYian0NxKqfvYaDjQZFYOYQ4wCeQEk0x08EPMVmev0J6scy3/NtTwgPnrARsYRDbdvG1l88fCjx0liNUbYhURl7YfnG4cCefFI3XhJIm8RmQ3tZvmW4s3Lu8h55qcM99SQ6430OU6mhU9++zggQr5mLY08iJy9ZbSVvkXBR0tGiKKxoZfRfgDdqeAcn05889BkVjG7wjY+NEyYfCABC6KIcVJpDJL6pEmqMAY5107zvfe/78Ic/+sHXPvTM7duJViE0JstCJBDWcQZkBsWICoDbNijdfdfNuzIueDIy3jTZXQZ5+KkDvFi/9XsmrW2e5z0DfSdSJSWTosife+65H/zBH/z0pz8dY3zxxRdfeOGF2Wz2Ld/6baJmKLA/MQTiIIcit/gM770EcLnLKHhgUAqkE16VO2OTF1989lu/9Zv+9S//GpoksGooAmJZh5/+uU/cevbWB155MUGl1HXsOD4vqRdmWSbrbDab/dk/+2f/9t/+25/61Kdee/9rsv5k2FT1WKwkSYTimnqiraHVqJQq60pAYrGnUBQr3LZt24aBL1zcvzAtitTaENeKY4Y+vRSWpLIstVYAKMUkgYwPnShBdg0Rs1CWSWo0fJ1ANWIMJ0cLOZGqqlQKEKXCBBrRaBOJlAwIXmfUHGPEUaqr4FpSaqxiP6wN7CFMdK0e1ZmIYSfxESLzzqYwwKidI/MEYmv4MEQebNDwcXjMdljlv/mSGBxEZKYRTPagNXQjOh8X/7jnwRt2OBTJ5Oeh4qL1tVzUUMeKvbbUcBbUc9O1bSvI5q4FZ4yOwExC9UDd7ENXwh9si2xaWZlTOj4+nkynvm1lhWulqrrWWh8fHyulkiSdTAqpERprVuVWRconM0+M5Nm300lmjQYGDcykxte8u3TA2piho4KjxYAoNBtILL1OjgyBWJFiYo2GCSLFIFVY7LynYlT9dDIiogJAdApjoODjIfL0YLtx03lMY0Cdr+rHSfv34OGdPdyP3IgBNjDeoUFlEJUW8Sn5HCmlmBVqFa/VtK6F8xSAQsXX+Q9hr03knF0vl76qps8XSZpcbdaT6TQCpi6j4M+fPWXmi4sLMQgiJC8kNnmei2hjkiTb7dZ7L/+en59nWfbgwQOxroK5Yub9fr/dbpzzs9lsuVxK/ULa14vFYjKZWFQMINwbYp3Ksjw9Pd3v99a5BBEAVqtVWZYD2WCapmi6XtNQqpCWXYzRIDCzNUaWetu2Uqh67rnnYghHR0fSMBEjLyPRAJCn6Ww2ExultT45OZGIAQCEggl7NWjn3Hw+l0r56uqKOTKzSyyzb9o2z/Pz8/PZfF6W5XRSSCiJfTYyTAYON3+weP06p2vj04c7shJC3UicKllclqTGGI1IxDaf2MnMTKZ+u2kbn7YG2hCCD4hp6kziUCtqQ4zROme1BgYl+oiIaI1NE9ZYt23StlmSusS0BFrw250vqJqm2TfNxXJzua0bb4/nC2iDb/2uLK+266vt9v7Fvq7BuWwyLfLUIAflW2S42pW+bm7P0zyxMgk5rGoi8pHKGnz0gMCKBUaY58W+ompfRcBIGBkiAStgBcDAKHzEGCACkQam4NM0f/7551944QWjdeJSqWT5GGIIrJCABc5eVdWHP/xhmTBBVMxhTB6YJwUzp2l6cn7mY2x8u1qt7j24N9R06rre7XaTyURQzVLvk86euDwJFl977bX79+9fXq0l2M1y1zRRawUIsmyaujZgplmhGTPnXvvA+77pIx9arS+in02yJE0TcccMoJWSIr33nkNI07TT/fR+gEqOMxM+LHUZbYiuHQcxY+8rQ/SE7JQmVBRbDRyVhgYAFPcC4swIhNpoZbSSEUMAVLpsavI+MkXfUIxEkYmAua6C7q/V4I86lweRerFFZh7mRRkUGwNw/Qgc2tUxyOrA2I6rdfD4Vgx3HKrIB1Jg3f/Hn4pEKA6OOLYeiAS0ud5dbbe7NEs7AtUQFYJBLMtSW2NdKs+17umJoQ/LB9Ot+hmV8QFzD6u5EUXItN7QsJIPSsIgpZ/BiXMPaZHMEHpUOfdocNmG9hr0bmwYcQE4KEPLD/KECqxmHFRAj9Q1w7sfvebjP/EQi4yuyPX33ZhHV9cFP6nAheCHm0dEkcF0146ZCVgxMxqFQX3sWz+aFYskySygATTaEZNU9hSQ1toojQzIhAqwLwsppW5GZjA+eB5DublneOhikMNzvrHarhd9JFE6R0XczWx10EbxVbPZ7Id+6If+xJ/4E9Jh6GA20NH5jTNLGFFfD18nvgQRQ4iqlzRSiKi0dTpya4z9vu/9nuVy89uf/rw22ihNCm2W31+ufvJnf+6//HM/8twkk1RHINrjM5NjGP97enr6Az/wA+++845AoYaHfJhuR63TNOUe8yOtDMlGAEB6zdATd4oDiJ0UdJhOp9yLqEiiIjEB9rmu5MrcV7u11uvtbrFYbDabsqyE5lKeCslGpIzatq0Y0yzLxLuL0ZR0SISlBUEHwPfu3ksTR0QUab/fcyCR2iTvfV0xs7HWWmuslaFzJiaI45E4UqSgy4Gloox963OwboM5wNHM/fi2xvcC4/WGY2DjBKWUNlp5JfwKypphwY6r+3hI/ntzO6gsjNkwug/KR4mA+dqRxHgwnT9eNuOOyo0mw7giK64IBtibVkSxf/91T3kwPX3H4lpugihCr7ejlELCobBAzAqVFFmHXY0vpUg9TiYTa0wMQaAL3nuT5aLWN5lMksRJYdU5p4xGa5IkdVn2oY9802d/699nSQJIDKyl4zHqZY2/CMYI1f5CdfVpBdQ1XZmZABmNMqAAkKOJRCGgJpliZkSIBMxgjQNiYAaNSiY9iJoYgCKDkeFU7LLfMfjqPQipu3fSiG9gdCtFxWI4+BsJjzz1Es10k9ZioJiNwPCVCiEC89BXYQBWiq8FnnsqM2YAREUKkJkVgrwuxkEjFom7985bRydnTYyT+SIiv3v/4a2j2WI6Wa1WAvUUHP+Akr13795kvtBaz+dzY4ykLicnJ9LNEMTgZDJxzgl7xzAfEiNL6iK8NCIJj4jb7ZagKw1OJhMEkBKGMebo6Gi9XgsVYV3XMhgjNgoR17stAIglHC57hzlszGQycUlCRPv9Xlp8SqnpdEoxitmUizDAHfM8b6pq2CERbTYbwY855xazyWQyKcuyqqr9fk9E0+lUhCAtmBh927blft/6el/uXnjhuZdeeskak7iE+/JQ16nuAehj9zgEE/KGeNgBk5kEmZ8kIiAy1mprUGtlDCsMTBiBPKbT+dkLdx7ut/VqmbXB+qB9JAxorUvTJEursKcYFaJRmhg0I4eISrFhY412drNa05qc0ooBrI0UiLBqG+GVbtq2qppd49+4u7y7jSfzjWZsm3q5urrarWvvt/sG7WSSuWniisQoVkqjZVYErQ/v3L07SdPJZJKmiZYkE8B7H9pY1gxGaavYKOKO8NqYKhJ7higcBV1sIpNYwMh1VcYYNaCzye3bz9x59rnnn3l2sVjYJDHWyJrIdAYiaSCPHkBdVQDw0ksv3b17VylkVtAT/spcpZQyd7tdPiksWGPMrVu3YtMgogy7EpHMZ4pEadvWMsElVfCmaY6OjsqyPD8/zyYzIdNbb5ZdLKFQaxdDNFrdef7505OTLHXzWTGZuC9+7jPf9JEP7nerSXYyxKBFnks8I4CfPElML080oH2G+vrQHRo8OzNbZ0I74rftE2ZEjITMHjQiitRUCLGNIUiAppRh7KgLCIxB0FpF0IFaZ1WrOYaaooByNTCLIopWXXVgHJQqpcQdUTdcIYfdeToGBSzFwvco/N0E9Y4iyfh07Fj9BRHxBhAwqhnJngxvYyJRxgRiikFqOiGE+/fvN03tg1dKMYJNEu20EKynvRwq9zO9Qz1RrLFch2F4eAhXxvbnxlkPhzTsSi5jNzoyEnIYYDLYF6eGnGToXkDPRi17GAZguINy0Lj3NTj9oSYOHciwK6ZorYui+H0iYsOhMM/Uk/vdrBPDtYwSU9t61MYom6emKAqnE4uKg4++1TZBqT4zKCYcJm0ZDhOQ3+tzOHTn2pgkcYgIfBN0mCRpXZdS6pAsc3C0TRtu7vdrOwiWvMYlummqF196/k/98A+vtz/xxTfe0mlWtU2apU29/fVPfersn//cf/tf/CkAEKM2VOYe3aSTuF6vv/M7v/N3P/3pYWXIWhRarSRJlNZ100g+vVqtiEi8NcuMO9MQqEn8Jxpe8kDK6hRnnOe5mDzpfRORdEXSND05OXnzzTclJ5EsIsYo12273Uqxc7/fn54WkkeJD97v94Isl6stXcIxStIYE4K/WK9xPtNaT6ZTJDaIRumyLPflXhMTkQZQhwTET96Uvi5D3kgexm+7Ees/+tJ13VpdAyNRXc8GRCJtrplhnrDDR/d//XOHNhp+Hb/tZg3saQ7+xuPwBDMt9TYYnS8O3PCHOxwKMApI8kBmBoIYY2QCAKWU0/Z6X4/UsYzGGGNRFMOwKfQwp2eefbZp26OjI4kDpKMdY0St8+ks1k0I/rUPf+hzn/wN6yxASxS0VgrMGBJwfbSs4oiXXI9YGhFRydgJIIFS0CnBdVrgShNpo1RkHSgGJi3FQGaltPADAjEwegAmNB5RgXo89O3r227cu4Pb94QeHXf/yYjzUA1ihK9nDIvBAYL3n/vcZ27deflOMblYrTD4XBtfVs8+96wgvowxIhkhvvb4+NgTCy5fbIhYVwmnBA8mACpJM2QZ1HW9XF4ppaX8MZ1OBTxDRNZa8kEaFNvtlogWi4VQqw88yN77o6MjgctmWSbz+iZx0hgU2q7VanXr1i0ims1midFjxpTZbMbMVVWVZUkxLpdLoXyYTqdytA8ePACAuiwR8eTkRGstRy5FTSISsrKLiwshWdnv99KlkWJZVe232+1mszIWZd5mPp9nWQaxE5yWoFNKOaIy7A5JV0d57zVrvDSxpagkRrWYTIpF4aytmwYQlDMyI46IoQlZUeiT0/XR0W6/3te13uskMcZoIjLWuDSt96VvvPfehohaARFGJmAiCkxoTdnUm6vVxKYcYjIpCNj7WFb1vq53+3K73108vLpcbb549+L1B5vE2DxJDKqqqfdNhUYb487TfJ6kR87mTjulNGvFSrFSTMur1YrXzl1NppNiUmRpaqzxPtR1U5WBkI0zNk/AWIm1xIO0dRuBGSECa22U0ULWR0TctLFtF0dHH3rtQ6++9HKR5ZpBaW2s0bqz2MLWiFpRf52V4vV6/dprr11cXAibyOjJY2vtfr+PTC5LmytPwHmeK4P79aYs95eXlwJqretaVrKAt8/OzqQL570XLjuZP05cYqwW9ZXdbuOcRbQKLYLR2tx54YWPfsu35nn+wW94/3q9bE6mR4vpdreSSFEa2uKdZZmlaSqQG2kSDh31p3ea0Ie81CN8CFTkyMIWggwcgRlYgSh59lsM3gM75yiGpqkNKKAoigvGGARW0E3CjK/nEED3BcQBgcb9f70l+rq2p/SAT9gOPSwfvgTlfl9k+dtvv/3w4UOpNQBAXuRojFQTJDajHvnCfX9j2MmQNvCoMa57CZrB8vNXw60NGenTnMuQpg5/HHo7Q+bDo2EV6EFfN3Y4tHokRBr2PJ1Of+8TleHadXMXTBQjEcVHAC1dBkXMyM5qBmiDL6toXK2dci5JjSOtfM/JgANhP4PipyXv+rq3GyvAaMyELBxBoRp796apO+lQ7+U+DaNdAF/DI/2em/ctKtBaMdNmu7p1dvaX/uv/5v/6P/zfX3/7bURVt6EJ8eTk+BO/8K/PLfyZ/+J/I9nCE54iWX/Hx8fM/Pzzz1/cv1D9/eL+AVBKKa0UqyF7GUh4xCBqawTDIFk7j7Qj27aSoqBQ3Q1FxyFdln93ux30c5zOOQIUV50kiYy7EJH8wMzb7VaAEPL8SCe6LMv9fi/wDIHk7vd7AMjzfDxCIxfCWpu6JMY4m87acq+15hiE3/Apb4RW1x2VG4nKDd8TH7PPIUvpLkXsFhECkA+h7YJpuWLv2VGBJzqJJ9R76PAIxzuMjx+mVwdN8JvTctc7f6T7D6OSzJCo3EiBxoUZxZIzyqRqVwbuih0KOEamOOxq/NXCQiHzdvIGWXgSxZ6dnQmW+vj4WFreSinQar0tE62N1i+8+OJ/8gf/4Kd+/VfzBDRCCD5J3FBCG99ZZDJ07eq6Z0Q8IqDVyESRWchMrVADAQCopo4aEbQEL1pdmz0CwX1p4AjAqAAEh63g8WQCX++mDkVIx8sjhqcqpowXAAPEr/0YEUAh+6Z55RvvvPih19ClbRuQKBItFmfr9XrgEZY1f3V1BQBZlpkkBQApJ0vPRCn1zjvvlGXZtrWskxBCURRDyNU0TQhRNDAFHiOkXh2p8b6sqirPc+l7SPrhvX/33Xdl0IV7lsKmaQRvdnl5+XB5mSTJycmJdHQl7RFkgmKSWSmxV2L3iChN0/1up5QSUVoAuH//vtAhIuJisSjLUlo9km+v1+uuoY0guVOMcbvdAkCapvv9/v79+yez4xi9tXa+mJflrqrr3X77+c9/nuJLZ8UkBDdUvrGPMm8YDclJBnNUt14y+bZptdEyEWGtRa3SSU6RYoypMwiAClnqHMSGTd36lmJyvPC7Wbu8rPc1GE0AMXOMoIz2ITRVlTgXvUeQIjwxQGCSZN7HcHlxkSv7zPmtlnykWNbtdrvf1c2+rJdXq3fu3b/78DKyhhA1qKg5SWyemwAYmKbT2Xk+Pyqyo6mbpOgUITKyUqwAsMn0dr3e1R6ttxnkNilmM0Bsyqau7nlft6GxEJVLmoBt28YQY4iSpYBSRiEBhBBQSR1Jv1CcP/fsMy+//PLZ2ZlC1bQtc0c+NeSBDABGQS/RRYj1evvu3Xsvv/wy9sRKw40wxkgmbIxdr9f5ZMIIZVneeelOW1aIOAzKy9vEsYbQrlar2WwmPN2iiHp+fl5V1a5ssjxFjJHa+XyqlFbKKHQIpvGt9/5bvuWb33337rvvvnN6tnAp7HabLEtjDFJVlAQVepMeY9TGwAhEIPV1EYF9ynSFR8ByY41KuuVntFUgbQRUpBgBjRlsr6RG0ktkirGVmYVWqgmDIDp0SOMDiz0kKvAfzWpzY7sx2/mUBURBvF/7/cdsIYSmbpDh8vKyLEvVtqiU0KsqpQhhgGO1vpMZkAGnG2QYcpDyxzDS4hwCvCcf7fjNTz7BOBrcHzKWoVUobZMBqsM9bNtaLTNON+tlh9OS1A9oaK0Xi8XXm6iM63F4/S/KWBQAqI7OnxiYkUnCF+wDd7xGaXJEUsZYUAqiiRRT56w1SiExUyQY9HD7L+QR+c7XefxPeZbX15G1wsRqBYyASiHH2PV1kE1f75c7MdxgpVT8uiKOcQ6GCM6Yuqpm00lVt8am1mV/+X//l/67H/8Hv/XpTytnZ/N5VTegzS/84i9v19sf/ZEfmRapQu7496T+1dPbSe+7g5kBiO+EEcqcelVLJFGFr/vlZaUdn+f5fD5P7bVAMjNLO0XmVdKUhbFnmBghInHMEmgOIDfBM2w2G2a2SWqtXS6X2+1W4B8oiEytr66usiwTSh+pjEKvRy4NFkGmiV2Tyy6o9KZpmqYt9ztnbLI4AmDn7LQ4vbwftDG+btu2DUl49Jq/92IQyZBH5Njhkazg4PEeZwjXc0/MzIqZhZwRoKnral8ykeh01XU17OLJaedjv/fGS4dvezSveM+Xbjxfj6sn4WErWY3kMnmkf/JoR2WwodhRsCEziKaPtkZbIwXm1Gii6H2IIYQYaPRQWWvn87mswDRNjbW6L+Bled627dHR0RhKhIiAuN/t86NFjFwH//5vfO2NL3+u2Vwyc56m2N2wvgHd48AQtOvEAcanAIigEDR2WHbg7q+9jcI6eEaU7plWiKC0wkiRQKFSQNChsAERwBBplFTlKW7koy9eC9pyl1SNPPiNKz/e5VB1HH8Jg0w3IyNyr7nRX43rZsuTlQeu3wwAwKFtk8n04uHDs90uXzgROrxar53W2kB7tZTxcQRMk0Rm5S8uLs5u3TbWEpHoZ4ufE0BXmnZUxQM3l6Ss2+1W9PLE3F1cXMxms9PTU/Hu5+fn4tFlJ0LPJbGgEHZJSOS9v7y8fPXVV40x+/3++OgIATWqpq5jCIlzDx48mM/nHKkqd0VRSCNFSDvkZyI6OTkJITx48EDsnsxVi32TSQA5VGPMw4cPxZqdn59LoLBYLMTuSaMDAGbTWV1XWqskSQqbLxaz9WZVlruLiwvgePKRjwy3eICwC7fsuLImEc9gx9qqo3gaulXdClG43e+dtVp3z4FSKopmNoJT1iTOWlChblbL/WZT+QC7khQoJmM0AzZNW7etDzFENkYGOwm501AEUID64nK1Xm6qslkcL3yMm/1+td2ut2XVtvuyWq03keA0L/J8MsuK1NgsTZVWD5aXm2p/nGdnRTafZEeTpEjRoPBeKgANjElqQmTd+qPT09PT08XRfDqbhhB2ZpssV230lffUeiBsItetr0PTBq9RodJoNCoErZM0mS7mRyfH02Ly4umZMxaNBmaFOCsm2mgtlbtHOirc34jf/cxnd7v9d33Xd0mmoQ9LBsfHx1mW3XvwoKzLZ6w9OT0JMe622+eee7auq+Pj47Ozs7Is7927N51OEbGuawB6/Uuvv/TiS5FoNpsZZ7U1VV2fn5+nxbRtGwa0SldVo7VBFRWywtDUjVaafPvaN7yfmaJvT05nxqrt9orYak3GmEjUtG2IQbDrWisJAKB3E8IuJU/NYF340E/c8FWy7OWsk8QF1bIPLETmiEyCxWdkkevrVmlijQfebrda67zIKBAFaOu6McYZgyxhJXf2FhB7kw0KoZOPREAaGTMC7B0H49gujS0Y49gQ3jytGxXJJxi98TZwC+me4Wq0AHj4dmN0nmer5dXV1dVmvU6VKqaTLM9Qa2utTV2apnVdyyWVepzYuvEO5SuGXyXJ0SPy4q96tHKcQ1f2cVVXGOUSQ4IxDoqIaAiGh3hYEDcDbdKNwAb7OYtxnQUA8jw3Q1FT/niIyh75SwYEkYLSCBq1DQRtiM4ZhYqGu4gsqGRAFYiUtsbYtvWt9wyqqWMxNc6loWmYSCnUGq1DbUxoPSoDxBh8s1+7KbLRpHRUiiEo6AYesKcRE/4GrR4bwR0so8MVddNJj26eGTOrMoTgJWHdbtYnpzOjmtSmrfcxsDZ6UEINoz0QRwQ0IrgLoPR4fwci9jcGCsbO/pprgEExUOBEJ7GODpSPW8Vw55npX/jR//wf/U/x8196s2lbFalu+NLkv/Q7X3rn7/2DH/nhH3rh1tlsmrdtaVJVt02hU2mUkgJjNTAhmtB6RWCUFp/dNM16vc6ybLFYAEBZliZxlcgsOjedTGS+M8+y+WwmSsxt3TjnwHFd11VZZmlqlFZKCQ5HUhdpp8iyCz6KbzbGOJt47ymyVkaGT2TaRD4FADLxkqZpUUzHVQEp50gX2Fp7fn6e57m0XAaWaq0No16td23bBt+SievderW+bJp2mmdt0+z3O4NKGy2Vb1SotQatDvMK8DFEJm2N7YQmibqZcsCRlMoNINA4mTl4FAUAKem59MF7QWhAtGkSY6QQyqYCOkjMDwymfmxShPjYLsfBc8IsCLa+IjLShQSAx7CKy9m9Z1noxl+cNt3li6R615MYK/HJ8LbWt4lLZrPZdrs12hSYTE1Rl83k9ChJbTopitnEWYcM1Po0SY0xIYbgw26/q8qKmauqvHXr1q1nnltvt6x0Npl671nhdDY/Pjr2McjkNPQGVBovbdMmLa3uPXzmmfMQYEX4B/6zP/Gbv/RLXJYYPDVrY1Abo63WRmmFBkGjVojjnrAM4QBE4EgMqIwCUAosKK2N1oqII0VmhDxrfYgxoFJSGbRaa21QqSpGFq4bZGCFEQvtLsu1JUvKAKJW+jo3QNQoORhAh8bqDDozUCAEMNpI4ivutvPGDAA4YicGaVZd/2oxEkSKgMCoZKBFa60AGoCWCYNQJ5MOMXEusc5qQ+u1YU1KRcWRuW6aQMEYVzb1sF6RQaYLmTumV5XqstyqcrJ+8ABZaWOzs3Ob52VTU4inJ6dJkqRZlrrEN00o6xdeeHG/2+/LPTJkWebrBomdNlJbNKh8jHmetW1blrVzKRGs11vnnHOpyI9gL2SmtZYxNmOMMQP7nKqqBoC0xjxPAbht67qmuq6rav/cc89927d9q1KqLEulAIl32y1EihSNNoHbRJtys1ORAampa63Ucrl84403Hjx48PLLLxdFMSmKLm3OMhF5FOauLsggOj49TfN8t9tt9/t9VaUycq2VcJEdHx8fHR3JwXd+nbncrMv9fj47K8u9TLqnNmsq/9ILr85mM4TrR3tAinvv6bBvJrdYiCgSY2EUHwxdXwK2abLf7dIkVUqFEJIkASaxYx6btkIGY4pnFy8VdbAP3vj8cQi3gKvtxk2PnE4JXBPb5b5pYD2dFZ58krhApJvMh7Df1tuKdpgsl6s3rj73vvPnjDYNheV++3B1tStLhZim+clxcnI0yZI0TROtlLMOgI8nJ8srTK06n9HZsSuKLM9Sa003MuQDADpKsiTLkuzk6Pj05HgyydLU1TXVFuZnp/fXa0+aydZ1rHxY7fZ7X7KJZ8W0mEyOTo4X8wVrVbVNZLLGJBp2211ibYeOzhNjbYwRfGDAq3avZGlZowAzlwoE8eLy4rOf+6w29nNf+HzV1IzQ+FbJRKJSaPXl6so/fGCMSZO0qet6Xx4fnzx8eD/65uz22cXFxdt33y6KIsmTwOHWs7fu37+Pyu5Wq6vtJp9NNmXHlz2ZTPJ6GgHTLDs6utW2frW6aoOw3TbAnGld7jZMzdXy3ek0n+aFbyqj3MniJCoLoLb7/Wa3YaYsS1pqiDxQbNvojBtm2AQPJmzazmqRnxc6xNDUqNBqDcTa2MFnBWKlVJoXkhxbTKzrBKC10p6Fzk7HGE1ooCdlicyM5FILACEGDpEZimIi8SR2pPYGEAk19ImG6DpFhsiMkYNn8WlNEwTr0zlAAKprpY02VhmNoqbcPRiQTHKh9gmetNZGWwAlmVHwYchp3jPI7n2lBuh1F7Qmin2kGRHBGC1PKDBnzkbfUhvaponeG8CvfPGL9XarEfLFzKWJmxQhBLTGJomUNqyxDFprW1UNdNom3eOMiMaozWYzhElDlRAACEFZIwoDiKhNBzGVm6t7ZlpiRoS2l250OiVho70eQUEWrXPsTM2Q/0h5uq7rgSJMEhI5NmmKhZAAgLVJb5oiM9Z1S0RGdTm/pF6SFXvvv4YZFcmNhvOp61oUDwBBeLf6SAVdYn0ERKV1BwqKTCFGL4byPQrXBxkFMlAMPnilvVYYD2P9997Bf9z2uHI1j+aArTPOaoUMHNXvwzF8lQMcZ/gUnHPNdvu+Oy/8+R/90Z/9//zCL/7SL+dpxpFrpbwP//6zn337v//vv+Oj3/o93/2d73vpjvdV5oqOWQhBoSJiRNRK1RTb4AVXIKVr8YhD+jsEoFJTEQONiJvNJsQo6vLDJP2QWItFk6on9P5P0Air1er4+FgyexzxRDGz6pVVJFfRWs9mM9mhkIFCHyvLXMrw2EhGJLLTQ/ZijDk7vbVZLTebDVOc5KlVuF5dtW2zp4CsOq73/j4+oTbSF/6RiYaWSH8z+o8/Uk4Y/3zjbde/0kGLRf5IAPRELOzQBBsuyPgLxt/19CWfp9n4ke0J73yal4RUTbAQkdi3nolOjo7n52eQOrBaWzuZTCZ5QT4kfSuZOpXSSkzQNEvPz8/Pbp0DADFneS4or325V1ovl0sRtRA00YDMvLi82Gw2L750Zxfrk9vPFAbvPPPMT/6/fsK3YZZlCMTIMUYEUlqRAtEztGpEnaQPWK3zNL2e/hdRcACZrjcKSSEQaqWk2CtlIrkU3Vw6MwMhKGBAQKmxPa0u7Y1uHlx3Ufrfb77t8R857LwhSpopRUcCVIjEHIkQY57nMcQmtLEnShkf1LCnoUDZKbsBoYIYvG/bxLrF8cl6vT45WhwdH5tEa1TCrgYI0iPdbreh9ZPJZLvdyuxKCGE2m4nZiTECd7Nqwqokd9k5J+8BgNVqJfMbYlhML2Q2rqQIikYqI5vNRnRp5Q3DVLq19uT45Oz0zDn3zjvvyG6D75Lh9eZKYGl1Xd+6devWrVunp6fM7Jy7urqSMqpYy2EOZzKZSMAnujEd+pxICJfvv/MOc8dV+vzzzw+4tei9pOgXFw8l/5nNZldXV2mSXl5evv/FZ65v3yEG1TyCWhkqKb5th0qQvEGCj8i0vdg1vq2TOk1TmZRQ1xybDKAYNIFy2fTk1nPN+kG1ur9ZkUmTeleWZVPuy81609QWeGIMGp03dVs1nrhZ76vldr9abba7artvFIa79x+6xLHRu6ZGrWfzeWrdfDKd58XxIk0SM+gFC1DNV84ZPZ8XxTTLstQliVIKYwCtgBWCass2MGmt0RibuiRPjTXgG0Le7UsfYt340sc6xoZjBDo5PZ3OFy+cP6+NSdM0L4qyqXflHsWjxUBMm/0O9ruiKJrQhctJkqTMYA0BE3CIkUMQfrkQwtnZ2e3bz37u85/7qZ/6KYEViPuLMfoQpkeLyXSyXC6rqnJp4r1vvV9v1kmaeu+NM3meS8paFEVd1/P5/Pj4WGn78suv3r9/f73eJUkSI9V1PZ8dPbxYauuqxq83O3ki0qwr7wKzpaiVUhp9aNvgL5fL1jd5nk1ni2wyQ60BMctzrTFJLDO1vm6qJjN5X8W+5m+U6BOIGXtHw4AKB+ALP+KJ+pqdYurCKoVSLgnQc3GMOzNyiYYIxCijNAASKoMSEV6LiuN1ZeSA/+mgcnfDRClgBAKITAx4XQ9ihmq/ZwQApQCBIHIUPCHi73ngJ0WmrnCJgLvNZr/bxRAmRaG0Rq1RK2TlZDoaoCgKGmsXPLKN0dH0yLTFsA3hk0R9N9om49snpVT5WSznAHuO8TrAoxHnmLDDiblTIxoGPESPQ9+NGRovMt0qKc0Nn/J1Qr/S0SYnNpRafV3t9rW0sKFfcGJZnnLnIYS6rhCNNSoCOP37mBbgIeQdDvULVA8jybNM1gr15Hf/f9mQkduISIVLdlVza3Hy53/kRz7y2jf++P/jf8yNabKsjSEyLYP/qV/6xV/75G/9r777j373d3z87OjIU4OoUCmtNIU2xuDbdrVatb6VyXsxoAPXITMrpcKotYeIEhAIACwKsVJP/RF78llmFrbiYQlKPXK32zVNc7Q4ZmYZRR2SHOldJs7aXkp5t9vJjOytW7cePnwYYyOXXYqR8rbhGZCqQFEU4uYlpwcAo91sNkuShCmmzmpko5W1ttxuRD5KK/NkIM1gnbXWorDM/XxKZ/377dFV8VUBqdA3Irra5eH2BCzsmGmUeqLw7oDpwD2Mdzs+uq+KUn3CAY9hb6OdH5z7jaGXgz2MCvsI3YS91jpEH5gi0+LoKM0LTq0gxRWAVqqYTrTS0uweCiVt2x4fH0+zdDqdWmurqhq4X3vvBUIANQS1Eiwy4gc+9FrkuNyuGYLiWJjUFJP/7Ae+/1/+9E+DUUgemDBG6RB3fBZ4cOUjxTECTZD373nKxhh5Tbre3LOvEJPiEe4KYEC0Pn1+edN8Pf6TNwAnT7n/UbbRJVWBSFEk5sK5CEwk6AoGlEzrq++xH0avNuu1j3R2erper7frVTZJ8zSbzWZVXW0bH9tWShUAIFJ33vs8z6Wbaq2VkeKyqaV2KBUNIhKARF3Xx8fHVVW98847QmLunBOa1zRNrVbU65OKSolYD5FtEWGW4+NjUW/c7XaScsQQxJuKrRMGkZ5UXZdlmSTJ0dGR7FkGXZhZOEJkajGE8PDhQ2bO81wCVkljBOu12+0QMUkSY7SiiAibzUZagpJ9GWOaqkqdOzs7S9NUkjcx2lmWeX9TSfAAvD56Kgcwj+RgwpUvrCRVVQl1MjMTMCNoY/I8v337tjHm3XffpRH967BDEe547rnn3lrdX62ustlst292u7oqq7quiYKxSNQSxUCw3zV1216ud8vNbrOvFOmzk/MiL85nRZZlKnG1b/fljkKcpNnZ7Gg+m2YTkyRucDeChSvL0mg1KSYypXYjBmLmEINEPEJhFWMU0lEibkME1G1stDZFkZ3O5sdnZ9P5wllXbSuXJNJ/22w3nmJeFM45HQPHjoNbxnhkJQhtFyUORsnefr+X0aOT05MPfegbP/PZz5RlySNweIwxMl0tl8R0enp6cXEhsGqh4GdkYxXWOJvNVqvV8JiXZRljnBfTuq7v3LkjbHWTyeTOnTsXFxfK6FuLY22NVO6ELqILKxGb3d7axCZJVZdNU4XYorVl68uHD45IOZfkRTqbzohjCK1SaLQDh4oHEq2O5FeeNa01BT+sgRs+hR4RLB6caWibcbA7bI8zGPIVuufL0j3/TfcphRquGTJvOKbxkogjbn3ZL/fdAB5NbjBAaEpAVMogaoAALNG5PUx8fm+2oX0pXuH+/fsipjSdTkl1KCwYOX1jTOufFEhTzzX/aDFxHG8MYUyfchy47HjI9jn8O9zHPti7vqTSqZZRbeiJzobjB7imazo4/cNZ/Lqthro2HFqYp01UhmRDuEekNinhKfQmr5v1aeqyalfbUoibmDmGGMLXkKjEENumNaZFMKzw686mnma7EXHecPRDYpokReKcMOrdDA7+f7vNiklV1llip5lhVFUbPvrhD/+d/+P/6Sf/2c/+yuc+v9xvGwUXVZka/aXL5U/87M9+6jNf+IHv+95X33/HKOXYWAUcuW398upyeXVlrYkUBYtljBkESTpL5MPgkwbrIJlAVdfia2UxUM9wGkKQcGGc+QxEIgAgQYAwpCml0jQVpp3AJAtdHjNJgEXGUUpTMse/2Wzks0OSo3umecFYi66qMQZYbddX2+12OskB+OLhw9XVUimlFDa+pRgBNcABjfWNDUdoLqUUMclj/mj68YRE5bCSffNTQ13z0a++/uXw5ScUP+CgEHLTTo0/8nUk20MV9oZlf/SAb5TTbu5k+Eiv+WOMKesGldLW3nr2mfRolh/N0jwfCC83682Q0si0ktb65ORkNps51U12itAEIgptgzGmqmuJJIbgQJR/tLW7tooUp7MiNpjZfHl1efvkeHZ+/u3/6Xf/h1/+hFPWKnSWLZDqpMcYEcc1aYUYe8QzPlK7Gm9GayIS1USjDQB47xsKUXBxcllG/xIAPXXp7ob5ehJ/13gdPtW+AYbWMQMgEKJSwMAhRoW0qzuKFFYINKC/v8q8CgMrpeq2reuOr5wB2rZ1Rg8QamaoqrLc7hSgc242mU51N4mutZbqmJQ/Hj586LJUvIzc9yEpFUultZ7P5wK1Eq2Aoij2+31su2aFSLIMzkuSjcViISLiq9VqMpmcnJys1+vlcumbjmJeFBuTJJFBFERUqG7fvn11dSVRPvXaApLDDEZV/Hee51/+8peLonjxxRclk5H5YBkwJSJmNZvNQvBFUUhZR1IvZrbOKWRl7VCJCCEI9vXoaDG+1Dfivxu3RbIy6Sld3H/AfR8Ye0iYc05bg0rZxGVZ9swzz+g0HbpDMcZx2GGtnWWz5sIsl0tH9cPl0gdo6liWNaIq8hyYLy8v27atPZZlU3u/Wm2Xq40nTorp6dmtk5PjZ28duSxBpaum3u923PrCJqfT+bSYQMLGam0MRfLBA0WKwRot6IZIxN77EBBRApTgPaAiZh983TSr9domxsc2z1Pftm3wSZ7bLDMhnpyfn99+ppjP83xKiG3r9dQIL4I2JkmSWFdicLIscyYLolyJiErlRaGU0sZoYzokaC88PdDH/fqv/8bDq/XAQSzAmC7UQxOYLi4vETFJ09Z769xemLKtDgQqhC996UtjahBxc0TsXLJarbIs996HEC8vL9fr9fnt20maEvN0Os+ytK5Fn0qGTTRok9jEZplr891+632TZk5aUUTKe982gahUClBB9ynU1NJgPyWxl8dNKeVHXu+GQ7khWCyXQve0lkN4Oq5mPppjDPvUWiuFBDiQrjALvaJCpXjkV2URDzs5dL43kFrMnd3uZluGPShUkcm3NXXIIKuNVYCgFcLvpaQ4AAyzrkTUtO2Dhw+7taGU0kqiMuhVyABAdFSesMPYczTDI15pHG+onuRNAvvx2x6pLY4Bz12TeXzXhleHirbqJVa4Z18Y3o8jHjDos8dxlKVGEk/jw+jUNsanN1hV2YsknUKoXJbl1dWVBIvD7B32uWmXnsZQN35XeWE59MG3vpMHGqVuGInE3hERin4zMcgsCsVI5H3QKirVIfBYVv4Nx3y4PTbovJ4xld8Og6fH7a6/tSIqjIhCxiMHcDhucvCp8UuCzx62IbAYzmK4MqiuAVRhJJcDN58xTtOUYvCt19ZZ4CxLE6N/9E//8Ie/9Ob/9DM/8/m33yBrTJ5HZ3eB/91nP/eFt9/50//5933bN3/z8XSuNIfGXy2X79x9t27q2dHMUDdfIRNy4lmlW6J6Cjx5TmKvwJhmaeu9dAylGyOTJ9RxlhsBKQ7zWNPpNE1T7/3VciWOfDqdAoCYbCkZtm3X7FNK5XkxnU73+72ovCllqqqSWEIeAHHqslzzPJcUutcAbSU8ratW1n1ZVhV34y6IuN9UdV3HSGAgxDC4c2KiyKq3j4MZNT2LvDMm8rWCys0l1m+Pyz2u798jL90w3EPQMCwP+UV+rkcFlcE0dMdMj/3Sg/I/s7Tph51cf8thzegmoXj/fvnfeIfjkzrs5FyX3CKR1tqHIFUfmdnqzA4iapXk2XSaz85OsvnUJs5a2zYNRzo+OpY7LkPPzHx8fHx+fj6fz2PTlcPVaMRzIE8TJrosy7Q2bduIo5UxzbLe29pADNF7bdNtWc8m81c/9JE3Xv/d+29+5SjLNbJT4BRrwSczaaWu+TONHq4A8oEWTeiRwR3rB3mLbLQWugAGBgNMCIQMmolYcyQKkYC59Z4RWKFS+loMtL+/Yxsy/uPwM40kVpRSWr23W8XDKUbFA+YCmYkZ+jWFqJGZmZiJtUalNct3IDa+gX7VUIf5QCLqjkmW1yNL3RjTBI4xVlXdtG1VVa+//joFP8kzmxqN2nufWOebJk9T4e01Stdts1qtRBubR52TxWLhKUp9ZGjnygMryipENJvNHjx4sNvtRe5WSmzLy0ullKCwJE8oioKZi6IARJnXL4rCaC2DsJPJZDKZ7DZ7pVRRFDIBH3virLIsb90+G9ylOEchGknTVPgS5TadnZ0JAu3ll18es7FLNiIFI1GCMsakaYdGu7i4ENIIpZRvG4xxvbqSgSthK9lsNvP5/H2vvo8iGdNBs5hZsju51/qwASJKKeJxirzAXtBWNFjEggkxFyIKqYBUnUZWjhGuVaJDCFdXV8Q8nU5N2wLpmGFbRCLWBuu2BOLYBiALoIDQaDPJc0Y1XRw/d/v86GhxfmuhrEGtQwxNVTS7vSNcTIvMuuii0NZ5jkjRaDQaEqvbulltVoicJCkxxRiljBpjBIYIDIghhuV6xZrb2ORNxkRV02wbXyzm6XSmrKvagGWDyqVplqVZQ9X05ISZq6pSxpjEEbOEjk3wRmtrEhS8h1KRiRWygjTJYl/GGhrdy+XyF/7VL2zK2iWJcMYMpRNEdIk7Oprv9/s333679e2zzz03Pz7ywS+XV6mzxTSzVqdpKuCC6XS6XC7n8/nZ2fnVant5eTUpiv2+Vgqnk6T17Z07LyVpHgOj0ggmeBYJcFaCLdWAwMpobVPj0Lqq2ocYCA0r0zatVtoYa4xSCiL5GFkp5UM02FWixTFhL+RFRK1vEVCa2LKu5IcYIyolclTSLFDQBbVyZSSLG6p7qgcTXm9KCYBcilDGGG0sURtj1DZRClvfUiSl2KqDsdIb+iCPd9MqMjF1B88gEisMAAyKQmRiikTEiLobdlfaKetFrnRke4c9H1o6fjSupEeAGAAQKQbvJfxeXi6Fk1AyB0Gwy/URdyYXXxHLlAv0kArdC5UQEXPHxib7hLF/1ypSHIJkMZtDzDm8LZI8N8jEMkk13CnuC5T9dCvfKLZK6BhjlAb1MCRDPTYHR2ppw9UbFkNvXgTSH2O8Hrg3w44GIzt89263G8onknjVdb1arYSKQUrX0uCOI0VMjV3S0kWuDEyk1LWAl9i+GEl2TEQSCRAQsNJaq8g+RO+9Vl4jMndqQdwjvA8XRL8En1QcP8wlbpSrx0nh4YfkgvZV/wbHWcpBF3Hckzl4ifh6Hdw4ojFz3HDxJRkdDX0eyCoBQJCQgKKxmoG0Ro6N1WC0/qY7z3/4//Bjv/wb/8u//JVf/vK77141rVcmzZO3t5sf/3/+v7/9k7/z3/7v/nw2m+235Wa1aeomItVtY7yi0EkpDwBu0TEYOJfFI4pKo/hgAdhIRKi16tDkIVhrfaSqqqTwKR+RDmAI4ZlnnpFERYIDkTMbkmk5QamXtG1ARFldZVmJjIBEIUMPR95AvUil4H+22y0zO+cmxUwusrXaGgd5LngP8s3dt+62vtV5IVd7MKmS3cOIaAsRh0QFrBkapjfu5o3AcYjUb7zzRkB/Y6MR0I4j8yGX8fBD4IM0QPUUW4jIhxnC+KvHISwSHuTt2J2+1AJ4fMDv1Sh49PQllB3/On6znLUxxscwLoUQEPJgmxC1UkZneS79tNliXhSFihxD0ImT2NFae3l5ud/vBRSktc6n0zEHFPS3DBGJeSB0kp6ehFwmcWRUkiSpTZI0j03rmzqCImWsdd/xvd/38z/7M7sHD4zS80meKDaGAscQW02jiwZ4bW4Q4uFdPihlxYCIxojoHgOiU9YAKPYQVQAgkmYdM0ATfQQABUqP0dVdAj9c+WG9DanLcBmHTymltBkhHx5ZNtfvHNsrYUK5ZmOTmxVBenQAxhogCjG2FLnHQkKfSsst4P6wH3XX0qdlhqapJS4XTvP9fv/GG+Xt81uTyXme5242mxVTSS3W6zX3uLv9fi9NBhnqmEwmrFAWAyKKMZF4WmzparXabDZXV1fMrLUSMe/pdDqbzUQJVBAysk6ol7GTEkxd1wIipZ75mpmlOQN9iCCTG/JSlmXS1ZEFuV6v67oWXKI8vAAgMx5ElPTSkGJRT09Pp9OpVAPFxEHwDx48UD3zO/R87qFtNTAAiKTMZrOJMU4mk4997GOnp6caWmM6Kd4BdNEZkD5MFL+TJIlkRDFGgwfsfEPJE1Hw86S13m63V1dXclXl+ZLYh8AoYFRcb9ZXq6s0TaeTYoZKoWPW3sembqt6ryHO8iTJMrB5G7ht26Ztd/uqrKrJdHZ+PC2KzDABBdSQOZ3obB89tEFrBowKSMDyoW2Cb5GiQchTF9rm4eVFoHh0dKSUar2PIUhwzAyMSiUWYtjXFW4RFJVNCQyeYh3NblfVdYvK5JNmQWBsAqAiUWKMUsp7r7QuJkWGRY8hiTbN5LoQACmU7mIbg2XabtaqRzQxs6zAZ5999sU7L3729S+J7ZJu8PDYKqU2u93iaDE7WiyvrlyWrjbryWQync/S1BmFd+/eHR5/MYDr9TrPJwqNQr1e7+bz+dnZWVnuy31rjUcVssIkaUZEwKiNBWZkzSJaaWxEZFBowCilIyMFkySBGUFRZK1VlhUAFKImCq1vjLYYu1kR6JFX4gFDCAqVrFh5OqR2kCSJtkKpc90SkZhblp8aNWdkt0MKBCOPBgCSojAzokI0EXwEZFTKWE1AHAAVKAN0XSR6QtH5OkDVGhA1ah8DQGAAIh5XmiggACBIrYghBgBUxBqxiQRjlvYDLNnBfB8/Eh8ONx0PPaxE9jGEhw8fSJlGPmzMNfWWvFliM2JWWsWRzKLppSQBQPDP1KM5xt+FiBRpgB9LYD/s9jrf4O4uBOrU8CS7loxoSEqJSHzOcKpDzVfipbEfHFIRKQYJgeEw+3d9hKN4nKiTupd4wLz99ttDNiJrbvhiiVa7NKtvmPhumK+Sp9H1mzCmaa0Tq32AbVnv6na3L+tqb52zo0v5VTcmDjFg8C22ijnNBh+N8Ei4//u6yQl2sxNPjxwfbarvllKPHYTDYvkQnsq/EtOLEPvgPMY7pOu1N7wQAQBBzTINCv7UH/tj3/4tH/mV3/zNf/EL//p3vvC6mzvSqib8jd/+nb/79/67//J/+6Oh3McYsjRpMUQiDdeNQlnl8o1t2yZ5ZnoadWFTGRCiaZYNHktCBEEmTCaT2I+IS5ZCfbMYe51RY4z4b2aWwp7MEjCzmGN5GzOLtqMxbpg84Z7RQb7Xe3/37t22bYuiMMYM1xkAQgjSq7laXtZ+r4HAdhx3gyNHVHx4X2+UecbbYI611jeWIY7UkeQ9w5Llwwh+nHIIPGucjUBfII8Ux+88eM/TPQFPyIh+T7aD83ri2w5OYRRVH7BaIhBCE/yRtU3TpMEjYPShyIu6rGRkedibaAsIRjwrchkm7u9L54qIqG4a7tvKUm6QkK4sy+Ro6nSiGFQEhToycsAQgQDy4+MPfNNHfvF//pnpdFruS5cnqEEppVkDXTsjHB07i6h8/+sA9em8hTCkMGPP/ChPMDO3NXSYeYmtUATM4MZNjkTALAbW9NLs77npxwjdwBNREKrHXQzubbitUXACiKChlXHwxEXPZVMFSaYjMZECFCl6IuKOH/Yx66Fn9ZAeyHQ6PTpaaESgSBitNlrr1dVqWhSpdY0xi8XiaL5YbzdiRoQbUGv9/PPPX11d7ff747PTgfEvxijzJEQkiP+qqrIse/nllwXW9f73v19Mq1UYQnjjjTeEicsYI+zGMcaiKKRJS0RS+ACALMuKonj48KEMyYho/XQ6zfNckp+7d1cnJycyOTNwGBpjBI4osYjWuigKNUK5iHJFWZZ3797d7XbSed5sNnfv3j2eTYsiPz4+lpagZC9KqWQ2g+ir/X6/39+9e1eY3F9++eUPfOADdVUSRAA93GLx7OLWNaIsIenkhMeI5wyGSBZ2IELCIcgYNgA0Rg81P2NMNinOz84//9YXLy4uzk7PtFZaW62sJN1pYowFkzgPOkENkCNiWVWb7TZJkkluUsfoGyQNQMwagY1VMXLtK6WY2iieNPo2es8xGsTMuZinV6uV2mwAURifqev/yTGCNkZbQ75tmma9ZV2iUooAS87nxyfH2i6Xq6ur1XqzW6+35+e3hRpbwMnOOTC6DV7cExjV+E6tUi5R07be+8iECje7MkkSGZWUoFxylT/5J//k/+0f/I/v3n1XEtEbZnM2n4NS1jkGuP/gwdHRESh1//79k9Pjk/lUhrLm8/nR0ZGUWpRSggG0NiGCpmmXyysBC+R5MZ8tuilxEYJBLWyWRhvUmk0iTzsq0FqblIiicQkypUmhUcUYt9sdMzlnGDh4Qg2KGXpqSsnEhuMX1SD5WbyzLFFldF031nUxaKQoBz8kKm3bylhU2zT6kbmF7uIwX5feARrvIzMB+BgFm6islbOhNj7NWN+QqJB0RRQCsBQOnHNqRPfK8bobjMAABBQp+hi/zhmEJ9he6sOG7Xa73mwQUGoBADAApnjURVdK9QuQh73JYuuL2r7LZ0aBpWyDK4Q+2BMjIFn04KMBQIqzIL4sPPbaDjkPHc7KwlD3HLV0sB/wDr08N3wV6DIPWet0OjVvvPFG/54uGxnHWNjrIQxoOflZOCUWi8VsNpNRNsnqlFJGQYi43lX7Jlyt1lfLC4XIcFhl/Gr3VaGgcbo5uGHy6in38HuyIaDSXSt8RGPztW1yPWX2DnsmGeGuEbiUjAUPN6xL+2wqH+dHUEZ08JuULAkAFJBL3G6zZmqPnf2eb/3Yxz78zb/867/xMz//80uGNoQIuNlXu+2eqh1RG3Qgw6TR2lTojMSlDXqoTdNoZ4eUQw5SrsbQDZRXxf+JXIBSCqAjNpGgwfQyQwPIYb1er9frAaTR5R7WCoahrussy0RNWYhuzs9vSwVUZKRljH5IBqSQKeBvuVYycfj8c5MuzkDQWoXWJ85qra11SilrrNY6BH/DYdMId3tjvQUfInU1+xu9N+x7YuPMU+74ow/weyYqHQayfzLHwT0qJdez355KxIoP6/q/5wn++LzwiXsfnQv74KVROI6HZKvquvW+rCtMbNO0dV1ZVIphkudegWC7kySR5HO40dLTK4pit9tJe+26CgBQ17UMQ4sA37179z7ykY+cHB+3iq3SoWzYx9Q4QzoojAEC02q3xiT1CGmeh+22bVpkIIPE0YB+z/kOZLiB1BrO+snpYpYmIeiGmVr2fU+KDjM4AFDS4+jX2BN2+Oi04rA9oU40lO0f9W2RIiACoNYaiHwMddP0ixVGnlxEALt/njBTHykiKklU2rZ9+PDhq6++2lRlmqagua2bhw8f7ra7Zj5PrLu6XG63WwV4fHoiz3JRFAN8SyKMzWYjzdvYqxxWVSVNlYuLC+99lmXQP8tN03S1mBilkzOfz0VmJ8YoZln+Ls+gKHyfnJzEGFerlbBOSRtkNpuJnn03IpWYIU0Sg4a9Lt5ms5F5aGF+H8asRXF8tVqFEE5PT2X1ytlNp5Ozs7Pj46PlcrlcLgFgMHHO2uP5NLStdK0vLy/lfj148AARoo6I3SSP6vnc5XFLnZNbwH1ZV6K0NE1pNIV/I1HxMQJe19GG7rdSqmlq6aggcKYg1FVd1+v12hVut9sljp0DgK58ntrUWECl9nXFSmullYY0RWDHFKPflX4/dTkazRgBNGvlEt1ELNtaOY0hDt5zQCJIcCwJwHq9Fr4EvMbAgJxokiRKIQDFGLyPxhhlHWqNxhWz+fzodL8rl5dX+3159+79sqzPjhdZkSFiJEpMYpztOk0IWZ4JwCzGuN/vhSFGhjDnRydCNiMzkzJVkqbpV77ylZOT4325F8zCjVh/tbraV5Wg6K21u91Ozq6u68vgjTGinyORaJ7nSZJ4H4lgMpmenJwsl8u7d+/euXNnPp+7/v6On2txu1prZQxpiz3HNSp2wETeZRky2MihbWOMaZoB8H6/Iw5J4uqytApVH/Xd2P+QqFBfnpcAQDpRMo2mlNKqi966gCEG1ROK4uMjOjlluafMTEwDZG4otA/x8dM4t6GAJTWZtm60NXL7BDl8baOiB9lpR8KLxMJX3IK5eZGfZtOP0DyMf5ZTkKBokuUKVZqmqVDYjaDgUuSSijmRkAhjn9LgEEKoET6FD0dJh0kR6JseADD0h28URuHQFLznNry5ez7GjmNE88U9Sk3eLDxbYv24l6fsPkXjYKy7X2KxzVtvvaV7RlfpHkC/xKfz2fCSNVabbkqhrmtkmEwmx8fHi8XCjSwgM0fvlUZAjsGHIDP3FAKFEDrCTEn4Rf71vc5faWUAldLioWOMiL/vFeL33LRCq7XRSj1lHfuRTdTZr66u6rq+e/fuG2+8cf/+/XfeeUdqwDxioZarJ2irF55/8dlnn/3gBz/4yiuvTCaTIeJkBOoRJz1/KQMAMhDyrt7l8yJU3oFN8jQJ7of/2Pd+2zd/y7/5tV/7lz//L5d377784se0UWVTE7U1NZDqrMh88DKXIH5aQgHo50DEKEvfQxIViWlkZEIgE7L0RRCjbVsfSUCKOIK0iREXMJhQ5SCigM6FDqVnZVGSpcjzJkoIWVa0bStBgIQUsSfrsNaenZ3J36fTqXydpFVVXYamaZrGaBUilWWpANMUQohlWRoCZbRziTLm0ZZtF2Ie4l0jBXpkaH78weFRHKc68ZBP46AqOfq5y0n6bfw2ISQdjAiap+5MPp6Y6z9+u/E8PuGyHJxLjMbarudADAqk8MkAZVO3Iaw3m/nJ8VtvvPnOm29984e/ySmdOGeLLE/T6D2FaEXXaLtJkmSS57vd1lpbFMVkMhHC4uFIBGQox1BV1UsvvTRkgJoxMY4tW6Ot0ruy7JB/wGmW27Nbf/g7v/uNT34yibxv2ogaGRii1Xroq+KNibjR3JtC1EpxP60xwogxMHEEROQQOMS8SFvlRdK+JmICQGBkYlSjbGXAk0hS/YSUY/zSDTdziIs9uHnDKn3UxhKxEoA5IGoTfaiqCgG0MUKryXLro+jKdBAj5O7oh92xOH0GZtG5ZIqhLPfZZHJxeVlXe2qDTbUzRnKAumliCPP5fLFYrK9WknLUdS3GkJnfeust0ZVP8ixNU4nnyrKU2c1nn312NpsJJ/VAVCjZixi3pqq2261Ivw/hzjBcHmO8ffu2LCEiEqbB6XTa1n6xWAx0XjKILyCu6XTqrGXiuqpQqSzL7t+/H0LI0mwynUwmk6ZpvvzlL4sSrrhXoQARwyUQOLFjk8nk9u1byLxcXq1W6xAiMStlFkdFlmWpc6vLB9V+f3R0BADSsXn99de32+3RYv5NH3hZHi4xsBK4iIPmfoRmsFEy8NM0jR3NMvE4GcZu+ErMlTbaaINSe+7sFyFExVSX5Vuf/Z2rd97WiG+/8+4Lz+qQIqWg0SilMmed09oia45WwKUKgYRFqW0bqUeycRAINJMipYzWulXgYxvZQQhCrB+DpxiUUlqpxBkAODs7u7xarjeb2rdZloswqLRUKEKWps46pTVAJA4MhEoZaylEAlJKuSSxLpvM5lVZb9bbq9XKaNTOJknShsB1o51DrYy1qBFcEiKxDwR+MpslWd40kuxladph4KXDZozV1n7+C1/4+X/9r86fea4oigcPHkwmk8hEANJOljzQpSkz55NJkmX7/e7+wwebzeb973tfkqZluU/TLIYYxSIwzGYL59zVVVXXzeuvfynGeOv2bVTapZnSWilNAIOmNqBSxqDWyhhUWmkNSrJMVgqNcxSVMQ4BmLyxTmkVYksUZrMpUWx9PZ1ONqsrZ6wzxvYktsKgDoBV015eXt67d+9qtdbanJ6e3L51fnp6ao1pfautoZ5Yb4hwQghAcTKZSHNpiGIf3bjXOZD2s1JGKSNDdDHGEEgpTQwhRPNYz4ZjAVyUpjeiOGrrjNa6beoYo1KgrwN6dM511krqewTAQDFSiGhYdvE1Fa7HzvHm+fadh7Ism7o+XRyzIOicC2rUcEAA7NSFkVSMneEdJyp9oVkPUcSNrx4KDTjC10m5/IaPBgCllDS9DT62+CUfHO6vPqQqhRFcmfuOCjNLDh97VfvHFdfkgzIY75wz691OckprbUKUAqRpamUqw+ioEIADRR8ZIgQfdvt9VZYpYgxt8M1uux7nowzYRm7bUFZlU++BWuRATKvt9mK9TvOHWmsGaHwg0K4sq6aa14usKLRSoEwMuN3uj89ua220MsZYEHwOIxGEQL0QWXeTv77wS/X8gEMNe3jJuLQpS+sMxcAx5pP0aJIZp2PbIF4nVje+lWK3n6FkIjWV5XL5uS9+4Stf+crrr7++Wq2stUdHR+fn5x/7A39wsVgIe6DAOWQ/Q53ms5/97O985nf/5b/6hTRNX3311Y9//OOvvvrq6elp27aiEN3NJIworoHBaN22EZVmIObaKODQvnKSvfz9f/R7Pvy+n/mff/r5W3PAmkzc7UoGmKrckWnKmkw306mUkgxKFkq128fWG2PIB4Mqz/NJlltriRm0EsiWLGvJQCSnVb7TtRX8gxTthtF8CSCGPobkQmVZorEhBFGbLctaMm8AWCwWksksl8vbt29ba9frNfVgWe61n2VZS1wixJ2r1VIDPv/8s8C8vlpBpLb1zB7JTLIpEu2q2iW5V+iVMqgiIxKI3AMiADEq1KgUIDIAQ9t0ja86NlKnREQmQESrjTgGYkJUiMiRfGw9gNLX7dE+J+GudRsj9111jUoLtqEN4ZG2DI8KD/6RjsoQwo6H6W+U7g6TloPmZARmYPmXicYM3TcimPFOhumpR8vwniKOlOlZYYzUBN/6Nk1SZq6riphRYQjMABGhCi0n+sVveClJ07IsF9Oibds33vwy4IvGmGey29V+G9paKTXNM6U1hWSxmAcfEo0XDx+Sb4+PjydZKloWaZpud9u6bbXWiTN5ljBzDO2dF56z1hITAVLrQeGuqabTWeKK9cMHFtPtZntyOssW2Yc+/p0f+paPvvPFL3zmk7/57sW9SZIuphMor5wCpayzFoCjD0ppsfl2BOFCRKswavQEAXTJWmljjHVGGwBFRME71lohhagYtbYBIpmUmY+OTvZ4/3K1USodzMyNZjL2Wiuqr20PFuCgzaVwGKZHBjcqbDBiHLS6mNseny1FOwnBu2kEQAwC045KoQYtvXGKEXtECBN1k/NSq0MVAwEzR2LgyBT7vIgUMmmOnCkLShH4e1cPdqGZJEW73c+PphSFRJ/msyNA/fDy6vJqrYCef/45pfK6TmL01uosS87OTvb7/Wq10s5eXl7K+pQ0RoyqNE/EKUq0VFWV7qXE2qoEgBDCvXv3JDWSCpE0SQBAIGHSJRb4ABFN5zPUKjJprYP3bfBaa5GS2K13HKlpGutcudnXu/p4dszMQtfBzEmSlGX5la985c6dO4JKFdbEAQ04n8+32+1XvvIVQZednJxOXJbk06osle4q0HVdB0bU1qWZ1INCCKvVynu/3u5OjhcvP39LayWIsuD9OCaKonppbdu2BCAtBlle1LV25QFHpTT3YArvg0JUSmOHvPJaa1ZMSoGzmbG027rQllcP2vtvQbl95tatt3z9xbeXd56faA2ns4R8bZCd1eh0VJBxbIKPwaPSjApQK5MY51RmWCkGYAJoIkQARYaUInx49+H58WkM7H0Inr2PRF7K9EabSZYwzYD4ar2pm42xDpVRxiKqiXIWEouGUcfYApFCB5F9WVujVQjchgBkncvS1CZpMS8i83K5qQGTNF9fXfnN/uT0JElTIMjTwrgkxEh+D2i01omBWTFTSoGCxrfAIMgzQLUtm1/5jV//17/8b2yalu1bTGSS1BMHZuCorFFae61PTk7KsmqbdretYgy7XXnr/NkkyRFtWsxXm3Kez0IILpsy8a5u/b2LYjL58pff2qw3THR6dppPCpelVVM752LF89nctxVqxQrBMDrFCoIWoxQBECgSMaBy2irtFCtE8Dqg0dHHsmqBg/agNSZJUu22aZ4ggOfomzpxGTFom9V1++Dh+t/82q9/4fUvL1eb2kdAlTh3frL4jj/0B1+589zZ8VSjqvbl8fFxExprrVaaiEAbH0NVluJAJRqWOVilFLH0ogFAvGSYTuddiyxEIJbqtTGKKPo6UIzAQCPUllRUYi/HniRZXbeIGIL3wWullTbGJQqx2a8V8ul8ttmsq/VKavQucdoYpTAQE0VgEBa3NMmYY13v0VeglFIalNbGGesErA+oceQ3qScTGx696+cQe+kZImTCEBLEuq7vv/32JM+qapdlGSAREmjbBiIIWZYZa7TW2joAYI5trBkgSZKmbdI0RY2ggJgIiVlJb1xsnfhlQcqIZx/7iGESwaACRNAKNKDrsyPrACAyKGP80K4ZIQW0QWYmJpnEZibybdfSsYaZPUUKXjwRA7MSEDQPQlUxRpl4F6PHMKJQ1+B9W1Z7pVFpMFLOkRBT7Ka0TZqmqa/acYlXhljKsiz3ewucukSs7biKyYCBMUTy3t+7d2+zXtV1RRSttUWR1/tSuDuaNjDqJC8m0/l8Ps+KAhFRW0TrPWXTeV7MhIeuB9YNYxkH0RIAfhU6zPfaZCfjvPN6ScVu1g0BrLXOGGaCHubwuA1HKk7GmLIs33777U984hOf/OQnXZZ+wzd8w/d8z/e8/PLL4g6HGG58PJKbSsrHzB/84Aedc6vV6jOf+cxv//Zv/72/9/ecc9/3fd/3Xd/1XYvFMffzHrIcb57dUPCSziUDAHzg5Zfv/Df/9b1797bbrUvcBKfM3NSNs44ikZLYI8roUVEUiCiDH9h30nE8cq2uLx33Lb/hjHLbjaJKH5x6AKXqp+iSJBE4+HDuTdPM8oKZy7Lc7ztqnSzLhAxHFvHR0ZGEHfLH5557rixLURKQncstGHgIkiS5uriU4kSaJOboeLfZxhjb0Lz00suXD+7v9/uqqdowiUwkjA2P3Fbsod7U42uHUsThsrkuSN94lR+/AV3/PB5J5Efwfgc7fPxSPKyZHzwpN34+eIie8F2P2QMcPkQ3D2PUFBIPJBWjNE0VXJsiGdwTQHkEQq2NtdLoFz2K7XYrg0/6Pooi8mRSCHVbcnxsrV1VK4Uo3IPUg27lYZwUkzasyrKUkYP1ej2Uf7z3DEpUgRKlAsWqqtIsa9s2xrC+WudZNsmSdJa8/5u/9c4rr3zhd3/nd/7Dbz7Y1idKRcBpmrYhBu8NKs2kgIEUR8UAzNjDnpABURtELjQCR6AYG1DaKKUR2TprlXlYelK6Qo1ZflRMvu21b0wmk3/2cz+33laPuyPD5X1P8/WEjWKU9UEAoBDVe9vN68Upj/boTdzNzPclNI5yF/tJ+o5TgYHHd/nRowdgGUX3bZvPprtyfzI/ee709nSROWNCCIlLpnm+mM6MNkSkgDebzXQ6kTUgwo7X8A9Ui8VCOLh0T9IlEbzUtrXWWZbJMMl2u1VKtW17PJ/JMEnsJ8hVL5+83W5l/N05l+e5JDy73a4syxBIELCSt4ilyvOciap9ee/evfPz88AUmDSgth0VShsaYTF+9dVXJR5qmubk5GRA/Ooe2dy27YsvvigjN9W+BAAZyDk7O/Nt24ksB1/u90YrYarlfuqvqirRRR/qlxISDRd+mCeUWT5+TCV76C8xc9u2MQQasYsapUlYcJidsUA0KfL6Ynv14D6QzxKH3J6enV8s3/3ym2/mr7yyK9EqVgYIWAETs9EYSYNipRWg0RHquo2hziYTAgTokt7oQxQgLoPW+uFFxzkWKAapT0VCYkRi7ECAeZ7vq7ppvUm0Q2WM0X2hCTpb2y0/YnBJgggxkhNeH/KgALU2Cl6486IPoQ0BtVbMPkRsvVIKda0j+eBFkEegd11wgti2DceO5QqNXa63v/4bv3n34cPbzz5LDKKU2nqvrQnACnE6n8UY33rzbbkjgjgIIb7xxpvPPvvsdDp75913792713jvnCMG8X3Lq6vd668bnbjEFUUxmU7TLBNgeeeYmBFBKdRaISIxIShkRogKaDxipxkQUAMCoLEWgBEhy/OmKhUSIrRNm00mdbmV3gIwNm2b59OmDjHSgwcPv/yVty+XK1auCZRmeWB+9/7lz/7zf/EX/uyffd9LzxMFrfXV1VUHnu+366J2F67TyObctGby9xgjMLAcP4uo1fVbnoD8op5YEpVSSqtuiFEBiMijUEvbSEwMxBAjA0QfySWpMaYq66pqFErR3CAqSTIE7qq10sYQs/c+ckifGulweIYAzOV+D8yDsozukh9FwKik8onjT3To8/diaRpkxHDUb5Gfx6MX4ziEiOAR7pZha1sve5CbOMZ9dM2efv9jrzSgu4dWz3UQGOLgYobjvxmTAAzDJoL2NLPZTPcb9J1fUYgEjXx43MID670P3nPsouTD/h0G1EQsg4/DdL44CfZeEpXWx8ZHNOvJdLfb7bKiaJqGURudoLK3nnl+OjuSRjNoba0G6MB2fIDS5idgsp+wDaM8j3YeQ/TGdKDANEucswAcRQDu8SGB3IPtduuc+8xnPvNP/sk/+dznPvfxj3/8x37sx55/8Y7ctk7cox8FkTk5uYtStBNLJPBraeinaXp6evqH/tAfWi6Xn/3sZ3/yJ3/yH//jf/zd3/1Hf+AHfuDOnTvSrHjKUxa2nBDCw4cPxXBIODhAfmFQ1O6HSQRHKEOlgxcXoh5rHfaQ0yGwxr7VKB3DoeOhe/oypVQM3aodCGQHXysufID5yvC0QOb2+/18Pr+6upLpfJl8lfk8GWiRSydZioArmDlNUwl294hFlmOvL5k5t7+6mkwmcvXatgm9LIDCg46uWA3uEW6h52R79PKGMMyu3NyGx3XUUel+hkPBx7EFvzE5M16l4yGlG9+oHgfheGKiotRjH6Ibgyjjrxs/RDdQRsNjJe+R4W+p8t4gzCUaWkpkrRGWWOfc8fHxbDa7devW66+/LoGdxARXV1cyFCdR6fHx8X6ztdaKmDcAiPzOgCEUIjipv3jvq6qS24ejIpyYKSIScCPaRJNBsmQwy7Ikyz4yWxw9++yv/tK/efutL82LZNXsiiRJTRJ9oyMZhUp1fl+iQyV1I20ByWhy2AqqPURqgwWbGueCj9uqLpOpTrJJXrzy6vt0kmjrmuhn02OD959QGFGjOYHHvunRDa///1XJD4Y+7YjU+poxorvdfKDJNTSUmPnJ2kS994oMbKz9wMvvy3Sa22y32ybWeu93vGur+vzkdL/fLxYLCi30cXPbx+ty7lmW1T4IgIqZB9584auUOqLkLdwR6ZiTkxNmdloRkfSB5bkWIxZjnE6nMtckQ3RDDkNEUkmQ1SWMsdKlkekUIhIBFu71UkLP6S+OUngyxfzKQ0FEUgxaLpcycCWjL2maGqXv379fFMVwU2Q0Xyus99tJnom4ikz5L5dLRHz+ueeStCtVDpd6uPJyCtSDCB437KT6qQax0kMSNQ6JpKSy3W6D0aDVxf3769VVlmSB2s1mgwxZmt6/d2/3zLOJM5gYzar/bsZrTlJgIKW6sSJlLRo9rM3YqwrKka+Xa+99p7jVI1W6/SiMBNYmxUQbl7QhMCpmpuBNnnTERJ09JEACAELYbbbHrkiSRCntRa1VsFGA+3KvtZGBkIFnH7pypFZalWUpqUU/1qVAkjDobKtv2vPzW9/20Y++ef/uerWaaJP0NTtf12g0ImpUr77/FZtkVVWtVqurqysRQWbm7XaLiEqjWDDn3Hq9lilQMV/WpOK1Bw3coS/X3WtUVhuFCJGQAbQc/WMeSQCjNDNpZVxeZGni23q1vKr2+6OjuVZmNK2hEJkhtm3zK7/yb2OEcu93VWnSfB8rJuJQU5b823/7q6+97/kksU3TTKdTfyjToUaRw9huAMB4ZAVHk58xRoDr5fc1VGeIqNeIND2fE/fEVrpXT5f7KD43xIhau6TDUymlkiTtcy1sw00iEzEIPrJ9vF9+0sZMROv1GvowUm6l0ZpBobrZTh+uITw6iQ4AAHK1ua+ZSszTP7wHhn+ITG7EwMOtkW2ICVWP4lM9u51IbwynPDYU8gbqp+epH57RWjODOFwx40NZJMaoDs/G9Fztu93OfOhDH7pOufqJHDEEngKLpFcPPg4h7He7qqxiUyUuKYpC7Oxg9aSj0vrQNI0Yegk9xZ5OsqxPVIJuAqmO41jMd+MjsNHGdaP5xmilQWutzaDoQMxPpcP8xI1GnM1wGMOFEFzivA9aQ5JY5yxziJH1Ac3PzU0GQ5um+Uf/6B/94i/+4rd/+7f/uT/3527duqWUCkxyHaRvoHqJd8ENY89+i71Au4TsdKgDeuvWrdu3b3/Lt3zL22+//dM//bN/7a/9tT/wB/7An/7Tf1qA1E+zycDoQCetOlpeBQD1bq96Igi5EfLrwLKFiDI0MixrpdQ4UfE9EbhcUgIMvSbUOAWCHlAxUCFLa0WORJCIsg5lfFAukbCRcl+bJ6KjoyNr7bvvvtu1a52TSqocm1Tcq6oCUDJH69s2xigDo845ZUytDXaISQghxL6+iHjQOcN+lE3ub4xhoHO5EYoN852DFR4vtuG63Uha4NBSjMsUY9vUW+p+Oyh+PLYdIl5z9M7Hd1Qev43fJmno+LxwxIp7mPlcs52O81it9fjyMl9nKUyke0oikS2SWPD8/BwA1uury8tLSa3feOMN7/0HP/hBIrq6ukJimUKOPZGR3ALnXBs7dpGBSnu5XE4mk8VikaS5hEf7/f7NN98U7cjpdBpj1KwRDIMmgDJQkmZ2nj/3gfx//eo3vPU7n/zMJ//Dxf13GWyIpAAToMhkohQy5bEQATKWmWYEDD4AM6NibVm7SllmnUzni9uz2y++qlzSVE16doYM3od6V2dugmyecHuGROVrcIf90CQAEEBkGpNcH95xuI4bEMfL5GbKTddrfvi7vKSfLIvGILerLMvtW2/VTXjh1vPJTBttsixL05QjFXkhtYPNZhPaxlqTpsmgeTwQ+jVNUzetBP2SmTjnJpPJMG0v484S8Ilxk8UvJRJJA8qy3Gw24kpFtOT09PTo6Ei4+GOMMqDinLO2G9IbLPYQXGZ5/uKLL643m91+Lw0Z6Ot6LjGyevf7/WQyuXXrltCBxBhnsxkiSrkREafT6Xw+l/oReX9+esrAbdMCQpYkLnExBt+E2XRa7ndS3pJlHGM8PT29c+eOs05AiHJfxgGH+Bc5nSekuDwa0vXeh3Ct1+Y7uSpEREZQSQparS4v18sVMKCkEJHKqtJGBaavvPO2Ni9GztAZzQIDjRR862OMURCCyiZZlu12u81mQ2kyTlQAQJqlWmuXpU3b1r5NXIIIIcZhtQViQGRAkcVGxMhMBMCsQSmjAJkjETBBhzcghiTP6qa9XK6yApK0QKMY2XsCjEUxr+tG2N64J4OJMeoQUAVpKg4GrYsjFWYqYwYOkRl85BjDbD5v2sY6t1qt57NpURTaGg4BGWIIFw8eNHU9WRxJACD57Xq9ns/nsn6yPDs7O5PppvV6LctMiMX2u1prnSTJmEdbAi3quZKM0hqQiBlIRB3Gvk1mXREAgQAQIscYECBxDo012qXP5tW+3KxXWaKxczNdSslMTVO98MILl1ef9y3Vrf+h7/++EOnnf/4TQPo7v/M/ff/LL/gQjOm4HMaLEEaubQhyhvqdHq/KPnKQFEIpM5i7pzd9w1ePomRxSYRKodJKaW0d6jZ4z1EmCKmYdpIMDCwBquq4W+N4qDrGSE0DXURnbrjUpzxCBo4xiv0Zw5q01kEUcEas9ONryCOdxBvfe309e+SOvDPSQeFynCjePKrRuUh1QAKwcVqCiFJlGP4yTlTGzmLIcyS5SEwnNClVJDXinFT6+lzEzksZmpnNyy+/PERIzHygQ8kReuhqpBgptq3f73flbu+bOk0S4WdUSo1UGtSubkKg3W4nwYFQiywWi9vP3D4/Ok6zzHvfhljWLWo3my9ms1mSZWmatoGkZz6dTeWEtdbQUcF2twpxzFAs4mPDeOvhDTscdb1xm29k533oxtZq4qg05Fmapg4ViwwlAh+kSABSxx3C6AcPHvz9v//39/v9X/pLf+mbv/mbJdkwxkD0kSK1NI7nsAcUDccDCAq6GxzC9dD2sCJjjPP5fDKZvPrq+z/96U//xE/8xN/4G3/jj//xP/7d3/3dA9Wv8EFJpYcfIWEQhl/JExaLhexTi+AR81CKlnK1dE4GKg8RqaCe+TfGKAtc0jNJSoUknhmMcxJbY1+6k758VVV1VUmndgAZDlyrWZYzU18oSsSXM3NZlkdHR23bSoolT46kRjL6Lz7eGMMMeW6kLh5jrKo9KS1RS1vVcv1DCBijS5y11ntPIU7yomnaNPFJkiitKERB4VtrsX8OJQYaRtyJKFKEeE2GAyNei2F1yb/CJzE8/OOigNQDZGVzXwflXl6TRtvh8PON+sf1z3EkZ3SjfnLDaj6aSkGHnj343GD1pCT5qOmlEfnb+LuGUxYsJQjbdZJw6MvwzGqkHRaJkiS3vZwtAGit27adz+cAkCRWqJNEAUNWhTFmNptdXVxuNhtZG9vtdrVayeiXZLB1Xc9ms0HpTyZYptOpVCiJGABeeOGF6XT69ttvZ1k2mUyMSRQqpTQDaKNYmZqjRwMaPvhtH3/ltW+6//abn/r1f3f/7TcybRmipqCBHELmLAAgKq21961zSYwRtalDGoh0mhHaZDJfnNxy+XQyP0HrqizbluW29LaObVWtL5eJcXkxz9Kiqvfj+82HTUvocc6oUIEChPGrKO8Y9eVxNOmoAJgRY89oc7igBL2FPYAYD0EWPNqGhTROUTrLFjpA1Xi9MTMhMHQLRlb4Sy+9lBfzrqXsrikyXdLReTERpsl0Osnz1HsvJOmz2Uwm0YkoMEiDQmILYXjL81zIaqXpsVwurbXyKSkGFWkymUz2+33sucKGxvJ8PhcjLLGgMBFLyTMEEqMkC1U4mmazmSRINkm2u11VVy5JlFKLowUyZSZr21oaNWKs5EEQXGvbtnIMQw9Zzmu32VoFb73x5mK+mM1nIQbnXPS0Xm980+6266ZpZrMZEckZzefzF154oZhMBpNLRNhHDPKr7vOWIS4ZHIQoSEHfbRNsrcC/nbNDkJckiTZdrUEZU7V+Yu1VuPRN67SmJoa2NUoZpUBBZH7r7r3J7LglYKdtkSQaqJ+radsWEImV01aEubZlibGj9+S+GyyhubV2Mp3uttv1ZsNi/7v41XsfCBUzKoXGGGedkWDPGq10VVYaFVH0xJFZkLWoQCmLSmf5xLpsvdnytjo+PTFOM6q6qZvmSu6UNO25H9cBhT5EQEzTdLlcGmOm06l4Hx+DNsZZF1sfI2nA1bZcLpeJc4y4LfeA7NLOqQGAM1YbU+/L2odiMmnbdrVaNU0jFHNvvvkmAPgwE50f3UtYCHlDVVW7bSXDVMNkKXSKYVaQGkOhup8uAgCGGGKIWmtiQoVAKlJ0zjmbMHRTCkppY62OgcjaozzPJ9vV/ejbofHVW4LwsY9924svv/ZP/+k/+8Ibb3zlK28kac4M56eni/ni9u3bSZISBSPSz9YSM4fQpQp0YBaGoIh7jofOeTFTrzIJj7SRhw/K0zTsMBLhiPyQRzqVoutCPduYcSlIRRUUKuNjwxCzNEMQMvE2xmi0sWkSQmgbaQqhTax4QWQgCKhRiWlFlImvR5MKENrGkTEfIliKJHOGwqWOSqVJIoVXQEysA9XBAsf7VErpnlxqfEGk+CK0T4O1H1edzIg7FKCT6ooUlX5sfxUAbC8sK2neUIplZu/De+ZjiBhDp1IB/ajtUA0f3MfQ6JbSibW2gxMDQN+2lbiUiMxghhCRgVmPAg4aFcaYiajRrYqEkb1WaZpOJpOiKAbjBQAMOFloABQB6aurqwcPHsQY0zSdz+anp6ez+bwsy0hQNd6m+eLoeDabGaFIAwVsGJSxdpiCQIVEncbqI4tAMfHBjMr4xXGecghGGM91DHViSaCNBoohSdxsPnXOMIVrgYTR9wxoAXFv9+7d+7t/9+8aY/7iX/yLH/zgB7GPwAZGrPF2I6qDUdQ4PGDjI5QpNMRh/amPfvSjH/zgBz/xiU/81E/91L//9//+z/yZP/ON3/iN2OsQSaQuaej4W4hICpaSOUhPQ5zcMOkhiYp0fgZFZEQU+I3qkVq+9W3woQeqDX1nKWkvJscSN0D//CDifr9vmkahZmaphkmHRNKnJEna4CUQkZxKHlfVNxlDiKLxLAgfyRykECXfhR3kBoa+fFl2+MimrpuqUoAcKYSARII4t9Z65hiDoL9opFIiByZXnnuhNGu7xnGXqMB1omL0tY4h9EUj+XkM4hqSCDGd45duBHzDlw5dgtE7RwsbDxC6wxQNjKKQ4a3Xezjcy6GROliceggaDsPTYf+PRq4wMkZy90OIkrQTHXBrE3MMwSVJjNH7VqmJ5NgdzWA/zZWmaZLYPM+Xy6Xc6MlkIquiqiqJPnXPBF3X9TPPPCPfK2BLcd7QT4oLFEdpK04XEaVOf3Jy4r3Ps6xwubVGaxU5+hAIwTprrYpRlxRmR2fvOzqeH5989lOffP0zv7Pd7/IkC0250IZM4kNQgAZVzaCNIVRgE06OXFqcnJ6RTqYnp6wTkxVNIGXsptmzSbLZ0bqquPVl0zKjTWwEOuiU9Rf3usLSy8oiI6hrGAP1GMJx9qiUwpFkMw9L8TpRuZlR4LVJPDBfjxou7lN0OkQLyC9ju0skU/Vda1om1J1LjDXTZJKmKSuvADabzXw2p0gBogK01l48uJfnqaimiPauDKqJ8MhsNhc/Jx2DzWYjXQ4J/na73Ww2E5V6sW9iW7bb7d27d4UvTq6G7Xkv1+u1GMbLy8vtduu9T5Lk/Pw8yzLvY13XQi683++TJDk5ORFLu9puLtdXLk/TaQEyPoto06QoilhXR0dHWmsBaMmhbjYbWXtD4RMRZSW3bUtMV5eXz9w6BQDfVtaaar9t28Yamzg9uX1b1HWlRibjN7I35jb2zC43nk0cEezwqLsLANx20BcpMMkfhfpFEpXhCMcVUGMctO29d+/GtgVf6xg1am2dDzHGnUvcw+X6rfsPPKIr0gUohxSih77BTgyoDUUCA2malk1dVZXUlIfkqpulQXRZnlDEct8EDzIpjhg9tzESQIykAKyNWmuLViu0ShmjIU+YufVALbICVsiMSlnlXJIVWT5J0inoUFb1m2+/c3J+8uyzt1FjYtxms7H9vBwRCcqgbX2WW9ODCYeUlZkb3yIjs2DRIxErpd55++3ennLZ1Kv1ej6fIaBgjEPVKGNeeOV5SXRPT08l51RKvfDCC2VZusQsFovYC4+IHRMDOKAw5CAFiSApt/jxbi2hEq681LliUihFZVVlaZqmqYyzIAB734aQZgV2oSTGEAEUoAJQJtFGJ9FHRCXU2XmeA1CI3lh7cnJ8fHJUf/azX/ziF1ofAOjeg/sv3HnBWqu1othDEAEEmCPHFuiAC3so+cee3EjC9GHoAEdQhcGyDasXD5v5PBJ7iTEiXvtiRI6RhoiFGCIzo3JZjsYSqLqpGXSIvlrvBQkEiHVde19SZOdckqQxxmFuTymjBg8IzCN1gSc4XxhFCCEGFULTNNJr5Z7WnIg4hDQrVA8Gu9E50brDn5teenWAAnK4nqTlHifZI7UQR/VQazqggXPuAON7uA2+YAC8wFBONUqGRLIsG/Ysr4Z4ENvAYe407DOO5n5vAC7GOE9r7ZNmPA4mKRlAojj+KuPrCpHhvW+YPFQhhEAslbBuc857j50PwycqzP/+bk1TZ4nL8yxJrFIQqdd4YwDseXMAtNZVVYmTWy6XP/7jP/7w4cO/+Tf/5q1btwTX+/t3hNhPvPzgD/7gxz72sX/4D//hj/3Yj/31v/7Xv/M7v7Oq9pPJBHv+/vHFH6LGLMsElj083tKACyHIoKqUu7IsW61W77777tHRkUBihuUOAKLIq5QaiGukuyJyV6J2IlmNtFyGOc4hJpaQUQLx3W5nrSVUQ/lEpuShF9xs2xaAByCpsIEJYnuwX/IXqapqrWezmVKAxGLltTFOG2RgZg3gECEEImrrJkainkO5ZRDKS9Orl8ZeC/U9KwfvuQ1pxntmpDRqiYrR5H7gbOhBQV9sGGz3gS1+fId5MOLwmNLO9S4eMZ3jgx/t8SlP+mAbn+M4ZiIipE4xjYja4MVOhRCCD7l1whUr0nsSfcoErbVaeEKurq4kzZaSdtu2LjOLxeLevXvr9frhw4eTyWS1Wgn95cXVUhhs5dtlIcmCBAwCCJbwVMa9zs7OFKJNsFO7ihxiBAKD1rkUgNu2JqNCjLNnnvmOZ5555QOvfeZTv311eVFfLR/sNrpulVLWGQfOJAUX89l06ori+dsv59OFSZLleg3aqSRZ70s0tmrb/b4ximOIdVUZZOM0QSzbKtB7i/ENl7er4Xwt6C8mvh6mf2rQ7OHi2xjAAAEAAElEQVTCu85JuJsovX7pxlJ/0sFDF5oYY+TxSmZpjBGBfQzT6VQLR7lzeZbHGIssTVO33+9kMm24odJeW223MNKJlxKMdCq890VRHB8fI+Jut5NyjOQGsW3kzcwsrQMxg2I6QggyCSNLEXqre3W1LopiPp8LG/J0Ol0sFuv1ug1eOhhZns/ncwkoZVpGPrjdbkXcSRiBxetLviTZi9htaS9LwOHms9lkIilT27bR+2I+n8/nl5eXd+/fV0qJ9UDEpmmurq6+/OUvv/TiC8+dLYIP8tRI0Qd76COPygdhtBFRrFu5MjIhpnptK+dcLzDQSWRIPCRfyqDe/OIXv/i5z8N+M3P43Mk8sda3vqkrJjLO2bRY7kq+WM7mkyr4FI02Kh5WZ0IMOkZjTJ4XV/s9QFegkSPv+l0ASTHR1uSToq7ryGStZVbKBBV1VQUiVgwA4L03WgEHiCEYDUYzCnKdQowhBESh4HMuyWySJlluEu2yNqIG1Ovtrq6rWtVZmg4jOkO0FCiKyZAqvjg18Thpmvjgq6qaFoVmaELbto3cWSbW1iqN6+3GWrOYL4wxVhuOhADLi4vVaiWQV7H86/X63Xfftda++NIL0lSUySv5IklUktEmxyCmzDmHWpVlqZT65G/9h9/99Kd3m+1uu81ccnxytDg7Oj0//cAHPvDKK68IQFr8vjGGOUJfRWDUoBQBAigEdC5RUt5GQYZb4uicDYEuLh7cu//2dJp7jklqKYbZUVHVu7bVAPnjLMDYHTyl0YBDIWa5I3LWos36dHtgomudUxL2LqO11sZGVMbVtfeeAHy5I2LxC03tmdGaDgb/lEd7Y+PDKh4MUAViZhZdETFBw5ultqtGUysHiYq7HpSVdUg9EzQcBgAD3sQYI3yh1631Ue5HT4gqHr8NLZohvxruaTycjx1XWvEQJC/Bj3x8jP2Tqoos+6IoHpuofO1kWv0HleSx75GoSPHbex+IKdI4DEqSZOiogPp9DPSfvKGCLEuLIkMcX2u6EbJJJiDe4hOf+MTnP//5v/yX/7KQeklV7PfvCMW95Xnetu0LL7zwV//qX33ttdf+1t/6W7/927/9X/1Xf0EwWsLOeSPIkEe9KApxmdSPN8msp6CzYozS+pATFEcr/syYDkFurWUAH6PkS4MImlyWwQDtdrurq6uhXjKZTJbL5eXFcng8BKQhAE3nXGDI81zKpbL0ZZPmxt27d4UnZ7VaHR8fJ0kiM4gnJyfyWErwKrOP4puPj48hklLKaH1Fy9h4WZEKYL/bixmKFIeHzXsPkbS6HkLFvrk8wEKecht8LRHhaDHTaAaMRkCvYRvvhPuG+COJyriycmC/cKQ7OeQ8j26PnMtjI077dT2J40RF7mAcaNMYOmnn3qIJ/4GMrskHJU8WWybrAVFLXTNJkkGVT8qK8gwmSSISzsfHx8vlUibwBAMGPe5xOp0CgNBDMbCgg8QiCRAWAFziWEWAKBOSHEkp0IE0RkZMs7SuS620UnbftM+88g0vfeDD9+/efffdd1cPL9q6cYmbTCaJc2ma1E2DiIFgQ7b1qt5tL5ardFLE9dYkxgfSSnGIESIyp4nj2EaIxmiXmtPz4/vv3sf3gNp1l3eoqn4tN0X0loEBWD3tYn4UEnDtjUZt+hsdlSfvUCMKQK5t2tb7YqqD9xWVqEnIrI6Pjvf7nVWz1Wq1XC7PT0+Y49tvv312dtbNbxDt9/sB4CfODADKsqrrShybiHkvFovdbue9lyET1WHNw9HR0TB/onqGDCk/13UNAFpradxZa9frtfTuEFGY6LIse+WVV4wx0nNO0zTNc631brfb7XaDYey4Z+oa+4EWUY6S7EgaPpJNSS9RLLBw1XzoAx/44Dd8g8SpZVk+ePDg6upKkpPxBKCox0wmk4cPH/7qr/7q93zHf3J6cqSUGlRZsO+tDc/gYIKGHsvR8SmMwikeqX+2bTPOHAZE3H6//9l/9i9+49d+rQB+5dbprVdeTJ2rtrumqur93jjTtO3RySnq9HK1fuv+g+PjdFbMU+eq+iBRiSFGE40xk8mk2m70qDU9BDEq+KapmXk2m8nzboyRUNJEYhBRCaau095yQFINaqUSx8BN45u2bps2RtAalDLWOpM4RghEAFpru1gctbEtprPl1eVuvTo9Pjk7OxPJOK21jIgYaxmUSxLh5JAah0jKTudTH71CHUNkBqVUVdUXFxdKaSavjBF7t6+qPC8S60LrDarpbP7+D31ovd22/bbb7YRAQoh2pO93dHQk/cC2bTebDTOfnz0zbnMNMV+MUSvc7/f/4p/980/+1m8Bs1HaGVvB7vLhQ/4y+Bicc3fu3Pkjf+SPfPzjH5doARE5EiB2bVyNCAoAGRQyWpsl1u73O+KYZVkILSCfn58+fHjxv/y7X726euBDkxSz177xG/MsvfPc7eefP19MiidYgCHTeEqLMViYsdtSI3afp9wDIvQ+kRExcYksbAlCBH8oAO+VipvNtm1bYFRKFfk0TXNjDAASfA3HPGzxEVabIax3xghWhR+h+jTGdnlU30C7PpdDyz+YXyLyQgkjc0o91eqwDUkCjaQhlVJ+dIRPX/+Sao746CFcib0My/jwxp8afy8e8vGEcECdLKWKzt89zQEBXM+S4+gvIoyOI8JUZADsZrf6Y5WPKgBUPZiHgLk7BooUVYxEwn6JDKAsqO5R4SfyAuPTlwZvfKwHQBz8XTFYa9LUOWtjaDlGe53iHXxRXdfOOeHF/7mf+7nv//7v/8N/+A9LQ/89WaF+D7f9fn90dCTZiKy2H/7hHz4/P/87f+fvlOX2r/yVHzPGtL4F7K8mdBTOcr+H4o3UmBPntqu1DJuKzZpOp0OhqCiKGONqtSKi+XwuiYoxhoA3+x30FBNEtFqtRFR+tVp95c23hDZn0IgUXlFmztK8bVspYSLiYrEYRgkJ1Xw+l29UPT2xeHfh/ZT8SgZ1JMTcbDYCApHDMMaEGIXFrqqqosg0oODXmVkbrVFprQ1iMS2uLiqbuLZpvfdOSMNCjIrbtqv1ElFPo9oldU95g4bCs3h367oBMR7hu8QJ6z46h17Ubxh4VSP41o1EZcxP/GiNZ0gUn9RReeQz449/3XWjGzsZdqVGSCTmnuKWGZVigH1ZllVlM3d2djKZTCRDFvZquewhBGKq6gpRuTTZbre73e7k5EQp1VR1jbXkrpJ4bLdbZn748OFisajaBgC01tLoq+uaiCSAm88Xqhe0ku5NN78YPFpA8sDs21YBoNEQQiCOHMt9M51Pyn2NiLPpoqqrq90as+n0/LnnX/2mhw8vAMAYU5b7HdG6jTIJPZkVVROWV5tdWbo8NVbH0CAoCr5InTUGgLfrVVXXIYQsdfkkP7t96/679x93ealfOfgIF8gTtnH18sbw0tgeHiBrhSx2ZCqZgYAH8HEnTY/SbpffER4vhoaAzJGRCYERIxETt3WzalbF6ZlLHMdojPFtG4y5Wq3yNFssFrvdPsvc7du3BcQlwZwYqKqqCBUzG2NkrkAQYlJqTZJkNpsdHx/30FAlRmO73ZbbrXNW5BqFckOI47BHGwpODAA2m03TNHme3717t67bo6Mjweqs1+ssy2azWYxxuboSMNJuu5tOJ3lerNZrEfPJkqTd7yWiEuN2eXlZFMV+v18ul++8886dO3ekU7Rer5Mkubq6MsZMJ5PE2c985tNHR8fPPPNMMclPT4/b1td1FUJcrbdvv/POdrt98ODBfr+bTAql0Dn7+utfeuHW0dnpH5QYTlC+A6Ar9gOHsSc+kWhbax1Dz5fT12V9r/lLQNg1lERcBWLwn/vyl37pl//tZ3/3s9M8yygeH82cMyH4qqqIOMuLt+9dBOKWw6TIoGq2ld9Vody30QisqFtPPXMDW2uM1nleaN3NLw1tf1nkVVUZayfTSSSico9aIRJqhVopbQACQod8Fja5qBADA0RiaNpQNQ2jSvLMOJdPZlkxzacLVFZpTQRZnmLb6Kh2m9XxybFi2my3q/VmPp8VRQGIWZG3ra/qJisKa0yDWOS5JI1FUaxWq7vvvLtYzKazufceELUxbfCb7dZNC5loCCFmSep9vH/vgT86mhSFQVXXzad++1Oo1cnpqSiRC+eNJNhJ4uRJq6qqmBRyX0RoiPpSDxE7Z7QRQHVsW69CePutt995552maVKXKECtFAIEonq/my0WzPzum2/+9E/+0wd33/3e7/3eo8XCIKoYQSPwWMmwm3I01hlly6oG9CFGRrTOUkOT2ey7vusPE9OzL7x0fHp+dn4+nRRFattqj+gBkve0APBEedknbEMczD2OSDK3/X6f54/r3hy4P4mMZQ9Kax8iEcdIMZJS2mWFtZb2ewVwdHxalrVLsvlsHkJUyiQuEa6qQ14yAd8yMONYwuwxBz/83GOniJlb3243u6ZupXpAxMJ2q7RGF5XuyMqEcWrYyTg9GxcjmFkZI4TGSilA8DFQJAIGRFBdS6o7/tEm4KBh5/GaHOtJm1JKBC0G5tWhvjAeHLpxBYZMaWj4DIDSpGd8gV5wfCgWm/HhIiNhn/1gp1UXKTLJ3QDQCqzWzurQGlAGlUFlhd60w05jVBCJbOJQ6SzNjXJtXYUGKGgiquoSjaHYolKA0UdP3UioadpIJOecK2VNohnZU5PoBAAjE3AHNJcokDuVbhxf9+E8D5tZ18EdimJi9ybsVa4ACSnGO7dPjEYdfGIMKUUxDlkWsBotfSUVgX/+z3/OGPeDP/xD+7oyxqRFzofkburxt5qeLowEPIgfMmdFrQwBnNYeWDF993d+xzTP/s9/+2/+nb/7f/krf+XHvApJkhKRCNUiY5JY34a33nyzLMvZbCbFxRCCQiyKaYxxtyuFhss5p7VdrVZEkBZ50zTbcj83+vj01GWpS1MACG2b55PtdrvfV977zWbz1ltvff7zn9/tdmmahkiTycTZpMgnomu5WCwEYpumqdQ4BWzD/VhqCIGVFt8pT6Y4WmnsJmkq/oCZJY8yxty6ffvq6ooYffAxxOVyqY0OZfnWu3djjNV+l6duWuRnZ2epS9q6zpI0LwpmTq1N0vPAAQ1W5b5qSqOgNjo1WkSCJXZBxBDDkHUQEQUkzUDIGihwVKS1BoNKox/hU2Mc+suotaEQsLuHaJUy1rW+bds2+tBU9bAmEZEBrDYKkNSBzM64N8IAY/QnRIojdCkaA31v98Y6hFEVajgjeYgSzHg0ljA2TuOuOgPwaIfjqvyQHckOTc/mKeWrIY303oPWwYembSNwYGpiWG7XZWzv3HoOEXa7zfHxsbU6xo4HqSx3TduitTbLt5utUkYbt9vu55N5xdWkmNRNdfv2bQkaxLyKfdjtdoQgqbWcyG63kxMsy1JbM5/PN5vV+fk5EQk7DooGZRtclnofQBljLRtbAWtkUFqDK7etPNOb9RYRlTLee2PNw6vLgFSVVYgdVrgMzWQyaeoSqp0x1mY2g1y8UYwxL5KqqbR1IRIRzY9P67rJCtzu90U2XRydWJdIp0hYa5MkQUBmREbXAymJ6NA2AMp8JBMw/H+J+7NYy7LrOhScczW7O/25TbQZSWYmM5OdSFmkTPWvJBgll/BcftYzbBT8/vxXVX8FGP6o9+Gvej8FAwX7z4ABFwy7VECVrWdZfpJlNaRsS1RjNSQzRWYXGRE3bnfa3a615qyPufe++97ISAZp6dUCkbxxzz377LPXWnPNZswxlNZCBs0ADMzSyqI0IgZmBWyUCqjqprHDqVTaIPgQFIE0KzBw6JqtYVDf9yF0DSd9cCsnN0DobNsgCWhE1TnVTeDKswKV2CzRaZNX00VWlLlJJ4ywK/IkTfOiuH18yyg1m83Ih6YqRqMRANa1Y8bl8tDaWOAfaZpKe73QBkoiQ4BMrglN7V0TJC0i9AkKzXy+dK6W0kftwziKx2lW1E2apFI/4cah80opReyIk9FYGvcnkwkz13W93W4nk4kI1zrnRmkGChFxOZ0XRV5sd3VTP338OI7jeLE4PDjebreH949Fzyd4RtDe0eHBsQDTBScmrHTSGVIVRVFXR8dHWhvHgTwYo6MssUkUQjg8Onzw0j0ifv+D9x9+8MEHDz94+vSpUvrenVsvv/SS0bquqixNRYPIDxQC+iqlmFmZGCIKodvmClgBKmV1FEIgYE9Oa+3qxiptjXn65PQ//cff/sM/+MOqrKZpOjJwez6djQxQvt8RA1Wly8sGMWrIr0qfQx2Pj7ZN9c1vX1CjFmM7noJn8NoQAREwow9sSFmtx5OpLKFsBFKpEENKASI2ijVXYZZNR+nYOecpKDQEKqu8B0VMGpmZnaeA7eEayhxQESiEKMpGk8XheL4cjafaWO7y64ioDSdp7Lz3HgLR/Qef2Gy2681mV1a7sprNZrPZzER+NEEFXO73+81mt1lHUayUms1ni+n07OTpkz97ZzeZTI+OME3iWbRp9lEWubq21iBhpGPptXY+nF2uPeNoNGrqBqqqdu7i9DxJEm1t7V1RFmmaRmk6Gc0QpcWuurw8j6K4LGvX0Hg8Y9DpaOICoImidIQKq6pUyhDg+eOT//jVr25Xq8hYZq69c95rrREhi0a+aCd6V29//X/5NZfXf/2v/3cI+1uLOViGBLzBMhTWpIpREShWjDFrnc1MvbpofK6UoQCOLSv6wuc+e/tgoa1N02S/XvnyzECSGB0r0BgrYwSpAQBSBZUH7pmNMTYyxDUAKG2JORAwKCTWRldFycxJklhjAUBrZbURk54kiTFasooAoBFGaaq08a6VODTaIGLwPbs6QZe8r5qGiATz5r0nXwNq11Ta2DhNPUFwwSYjRKV1fO9BFnwwkU61alyzy3cCyzw8uBOEqjIQoldCf0qErJTtneybqDYdaZDjiZiDD8QKkL2DxgXGi802m0wDEWij40Q8ojTNysYlSSaclsxc164/sk0UCbLAdKRqAlOP41gEK5XSSrHWWsgRtNaIquwSMUqakYgRwZoYAT1Rn9K1NvZUC1JaKUXMqFU6yphZ62uFjboqxJ5g13arOvIn1wTbkbAL6Eb8Cq0UIgoAW7xNMYDyvZr6qvPeO2oaL5eqa/dxFRUpZ/AzP8gJRAiMwEJ0d/UWVkAMoDkoCJrZIGgAxYQhILNiQmZkUkzIpIAkv9am/gEJFCNyH0pcr7UNa1gfc+cf96WunZ6sDUIg13hj7Hg0VkqazFjyhv3fDf7bDqXUer3+nd/5nZ/92Z+98iP/PBLSLz5kaYoj+JWvfOX//H/8P/2P/9f/8e7x7f/D//A/cO2M1iiuBLea93meC9BLMmcCM6iqqmmaJEn6NKEQmm23WxObd99999VXX3355ZcBQSohwoHjA6/X681mc3p6KuDvw8PDz3zmM4eHh9pYiadNJ/rTZ8pDxzPmO2E+qd40TYPmqmuzL2VyJzwv+XL5AyGgEJTFbHkQmIy1d+7dFb9hu91uNhtmAt8Yhe+///56tUpslMbJfDq7deuWi+OmqYw1y+VyfXG532yruk6iWNw+vj56i4PYtk7xALWFbdeNBqS+BnJjAWhsG2+YKBAQUXCefLgRRdA13auP6Fp+kfVwI3Pz7Ks0aG/o77aP/J8t2n7MBT/mpdCRjwFACCS0IeJHqo7k1CRRHKXFbp1XZatc3kFpW3hhB2y11pTBBx8Ck1FmebDcb7bSq9DUjdhxaTYVqxdCEMwGaCWpWUSU1u3dbieUDCIrJKn0GxMxyjJm9t7HcWyFKByBW67Ba7wFumMSL8rSGFO75vD48PLyMoRQlMVoNBIGp1KXx8fHo7TVE1BKeQ+u8VVVh0CuKu/cucPk4ziuCt80bjqdHRweZVm2Wq2IqCcrb8f3277XRhJ4sw59o/zxrKW7Mv6SbpV9wUws2DQGGGaBoPvzwad2P0pdlzp2oelkNs7GSRJHxownozwvImuFd9hYQ0wAqmkaDqSUkoBNqD6KopCsR4/23G634se0soDe7/d7YHV6eio3LMLEUmkR+J8UQxBxs9lMJhNJCjrnptOp8Mj1zI3r9bplDkXVl5plfnvmku16ozuWMFmcy5c/0Z7QxFEUCW2dtD0ID00UReNJtlqtPvjgA6niCva1ruuz8/Pf/frvHR4eSConhDAej+/cuSMooEmaJklSFMXnPvfZ11//lPf+6dOnf/Inf3J+dtr3efddDcLb3mNopTcGnpFIet6qUUo71xijL84v/uD3fv8Pfu/3Hj96FNvINW45ypJIR0YhUPAOuHWjCDSgQdQE7AGtNkane3LvnZ4/Pff3703TNDbaNL7hECJjIXj2NSBFkb5CnGNE7J0DItbKMBH54NELdUkUR6oDsTlbKWDmFsbWWuzOTXCNR23S8WwyX47mB9lkFqWZUiavSuzI8lxTy0Qnaaa12eyKo1u3Do6OHj9+fHZ2dvL0NBAvFgtgGqeJ8IuUZdnUjVJKK7VYLO7evXsJcHpxvq3ry6rgOPqjb35jn+ez2cLVDQ7cO6V0IN5sdz5QlmWTNGGA3W632+4IQUfWRtZa64KPbLRcHhD5PTlE2G63IbBCi0rbKGZE1IoB6lZOTQFg0zTbzfbi7Dzf51e0BwPz1btvCtV2s/uNX//ND95/WBX55998/Ys/9ENf+okfdcHHUUTUNbQxBEAFWmmTjce1a6oq10YRAbFqXHPr+PDs7Kzau1Eak4XIGiJyVRlloyzN2oZk54bZsc4btj1X+EeuvBCuHZHUtXVR14HdL1EK1/j9rxmuQR1GglLxiZ1zGkUJk0HEeQEZEBAZFAMqbUT/MQRX1UXjmiiOxuORDwE6YhI51Ns80HUSmptf6hmTK8lvAPDea2Om83nfTCLbM0lT0/jRZJymaZ+A6z2EoqoEySyIwT7/qJSq6uqq7tBxavVKIf3pLz/0JVYJG3qOqLqu23vTmoIX62Q6nu7BYlaDFOpzXZQbU6mgTad+JEqFOgoNWS1lWcpdfT+Cid9tECAxEACBZtBASAG850YBK2Bk0swBSEu4AqSYvIIgwQ9c/e/ZIU9q4Gz910YFgp5AxUlqZ/OpVrXCax7qc96FWuuvfvWreZ5/5StfUYPGoP/K+/leh/j9dV2v1+uf+LGf/Hv/l7//P/1P/7c3X/v0T/7kT4ar1Luqm1p67KbTqelgkT1AU/pHmTmKoouLC+GmvHXr1sX6QnD/ACDIqx5H+6ff+JZz7tatW1/84hcPDg5EHFeaB0bjCXdaXXJM9tq01LUDyirsMy4hhCZcsapXVd332NR1XZRlD7mWPalUSzp3enoqPaBCXpEkiagKaK18CL7xt2/ffunefVfXJ48ef/Ob33zvvfdio6fTiTV6mo3E+1EEPX2tjSPqhjisEusrpcQahSE5CYDcM2CbLnp27/VhAHXinj1MfPhn1EnN9Bakf0l1HAPteL6resP5GFrtLmxoQxEcUNnSYCCqF7zgxzg6VVX1eZGeu0PaS0LjlDVZlpW+KYrch/Dk5Mnt+/ca8gm2z8p0KnvyAyrcbrfW2Mlk0lS1tZFS6uTkxBgzzkbOOWlEFmSXLCfnXJ7naLS4npJNl0Ui6Zzzy4v9fi+EsDeGJOllCsLzSRSM1oAoaa0osqfna0C8vLyUhivRQwCANE3n87nsGkSUw0D2UdM0BwcHnKVN0wCH8Xji6hIAkiRJJuNbt26tVivhQHtx2OFf9KDB3gh0De0wXKL4HA4ZRggQWLWp1iiOmRlRNU1TV8ZGZrvdjsfjx48fT0aji9Pz28fHi8VilGbbzVbo2qRakiQJdXKN23x/69YtyYZIh4nkMoqi2G72h4eHkvAjosvLS7FReZ6nWQwA3vv5fC4JF+iWjfwg1Y/9fn/nzp3Dw0MAODs7M6j6XjhElGCmLMuTkxPswmwAiKJoOp3OZrOmaTabTVWUEqJLyRo6Nsjz83PoNE+gk5QWs7BYLHyTCxetUE7tdrt33nlHiKGW0+mnP/3pBw8e7Pd7oRa4c+fOSy+9VOz354/fPzk5OTg4OD09lbZ+MfVSqOln6mYyZdBUeePVUZrmefizb731i//qX0uIMkozDnT3pZe0d1kcJzYCIteQ50BEjtgxBNCgtIl0lMbJNIutCk1xWlxCne/c7vhgeXSwtEorYkUefEBo2Bs7yaizP9aqJDEAPgRSCoL3cmeeQpQmRkdKta6n1ahIMbNWKMgLIUchBs/o0aTJaH54NJoudJSiNiGwC9caG/oKMDP7EBaLBTF472/duiVMxDIvTV1ZRIUt24GkP4TxP9/vCdWte/e//fCDf/U//+LOu7JpjIm8D+p6m58cuyIURkSaiRXev38/TpPArK358PGjsizPz893FztUfHCwELS21qauAwXQSqdJ2iebttutRMgAULrm5MnJ5eWlHDRifj9yJ1prhXHk4uLCKPWHf/iHD588vix2X/mpn4qUkaREAGBiVhhCS4u3WCzqOimrfL0u9rttjTRO4+l0aoxuynycTSNrHj9+HEfWaC3Zopa0asAiI/GJkHZ+jGW74U2FEATi9ayLRR3UuXfDhi/16BnV6js34vPorp/We2eJbjRjSlTgXO296wm10jTdrCvouBJheIeIImvf/Qufd3DcGNvtNs/znnVDDTnEBxfovQ65uORosCMNF9SAZOuUuXJLRDoCANofOoMtgaKcLPLQJL/TdOq3PZmQMWaX73t/+8bDF6fuux5PvW8jwznuk9Q3/rKbkSuBSFnJ+kYp58XHsMwCAIO2Tw4IASho9oqDAW/ZmVCpUGEApF5CDHkYWSpSbYmGFBBckRLdeAb9KmyDSLrZ6/lid49d5oad88yUjeLxJI0j3ZdyPj7kEMfoT/7kTw4ODu7cudNPVZ+x/n7u6nsf4nVJgDEajcqy+fGf/Knf+I3f+n/9i1947ZOfun3nNgOQAgBApcQ0iJkIAzE+WaBSpEvTVECHq9VqtVpNZ9Nbt24ZY0Qx4Ozs7PHjx9IG8Prrry8WiwcPHozHY6nRi61M07SqG7FQ1LL6trouEiABQN++36/gEIJSVxRbzC2VYb8z5Y3c6UtCZ0pkhzvnpNoj/SrWWkRQkXV1y9Y6nU4no/FysTw9Pa3y/QcPPyjzfDYaI3FqY1RKmmHIh0W07E1qH2D0TxsGrB39LGitJVBpk3jPRAjY9RIIwKOPgoarRD6rj3aupWdukMQ+f3Vdcxav/yUOQDs9ZF9sQdU0Uqoaso48e8Eb4ci1z7pebRCr13cBDkNT51xktFJKuht2RTFdLg5uHY/ns+XyIE4TyTfLWm07MZQ6PDjM81yerbV2uTwA4rIs15erB594KQyG1loUKvb7PV2/caFwlWQ8EQk5GHb0xP2QRTiE8n/0s+7mFBEBcDGfV01zcnIip6kkvBFxMpmoTg9Rst0S20gUV9f1YjrZ7Xbe1b6phdAiSRIDfO/+/e985zuSsKeuKeX/v6PfFNQ2WV2t4BuO73OzawyBiBG0VtYa4RLd7XaR0VvycRpLdDcej5koy1IJRRRgkiTT6XSxWPTNS+KCS2ADABLGXFxciFOeJMlisWBCiWfkzJYsxna7XSwWo3EqG1M6s2VeAKAoiizLxuNxD2d/+vRpD/E6uHW7TytiF6aKW3n//n0xwnJvUuUQpRSjtFTwJGsTRdE777yjtX7jjTfOzp9K+SXP8+12K9ovYhKticqi2m53R0dJZBOtVRKn2+12vV49fPhQ4hCptBwdHT148ODBgwdxZJfL5eNHH65WKykB9SyIsiWfl0q7cWANZ7PMi2+//fa//Bf/8umTJ0ZrUjpO0sk0I+8n1maRTawFUVQAYoIGwAM2gVnZdBRND5bZcplkEYV6s1LcZOvVJWwrUPl8FKUKmD0yADcUFFFE/Z0gIUoHQAiBMICow2IIAdiE4IOvqqosSwqdOR3w4DEzEVdBZ+Pp8uh4fnDLJhmhVtoGBuedUoo7H0Rro5VuxWdDYNVYE0l8KBpl0kHEFCIl0q6tnHkPPkziZJyOWaE9PS2dj5OUtWUG70ISJ2GImGXuk9O73c5X5Wy5ODs7U0ZHSZKOR/v9XmvtKGQmM1YRUVEUzGyMBdBMKstSqdTJhIYQoigSDGGxp4ODpTyHHjL0kRtRVjsi5nmexFHt6s133qmCPzi69ZkvfAGVEe+OgLVWgQSZI6UMk6VjrcwkG1O1tQqMMfl+RyFMxsssSxCxrkqllGLo7d4wkytmsPfLwzN0Hf2afHZZShpCaoz97/uk58cHKj3WsYW4G9N4CiFUdaNtbOy1ngo90DGL41jrlJk3m433uhc2hGE0hYjq2rN+QSdQZJSk3NG7HABAITBdAYjErGHX1CGKQAL9Eleqf7Y4UFuWZG7v6WEn5iv2sCxL7Ib4b9Txd4WuOb5HdlHPFX79KQ2m57nfEQfYdejSNPo6D5CMvnbU5w76wrWBoWrMNeJ76O/16quKLdBK0BqEzEq67VrHCEFpxchoNGullTaotGfyTAE4oGIba6PZhaAYlWmIi9o7rM7LdSA9nx0FZg2gWqFK0EoPj73+9iQkUP0j6iDUz31a17p5dCBHRIhA5LWBNIuS1GoL6KSH7GMKWe2oqurp06fiWHRl0u5df5Hgrxuz21ckPAUV23iU/dWf+6v/j//7P/xP/+k//nd/4280wXOnIi9RTb9o2uPQ2sChKIoeuylmVNhpRBdSLEue57vdLk3Tw8PD+Xw+mc6lXbUsy15tTcyEcMiKHyZmVHf8xVJh3G63SqnlcillTckEmLj1BiRrKORm4qkAouA65OI9/XFVVQGE6bzta5QOfq11VZUWyWoNAKMsGyWZQSSig4OD8f17Hzz84Ftnf7q9XM3HE7s4SOO22tDzBcvXkR/ElTHG+LrpJ1YN5FcBANUVFlEpZL6CkBlU1Cmi9PUZmUixQ0PzBJ3tU8PKBl4PHoj7+K23YjK/Q+pPGIppMAf+iNFN2TCN+ryjDYCviZl3nwshiMcqnbjoPfWx3KBdB5oWogBSTvIhBKQPHn9456X7rMBxgI5WW04juSXvPQNTx1O8C8E7FxmbJEmrZk0ksV8fIko0HsdxUVdtsKSVTKW4bkLaI2GtNBFKDkkhErPE1X0s0X9Z+YEEVn89kkSFVVXVrpHrO+dk9Urgt9lstNbT6TTPcyISt1h3wtLn5+eI6L1bnV/MJqN2XYVweHAgAJ6oEwbmTnhOviYLL0EnEdWtw8GyIQpd+1O/6wez3B6xWmtP10597nEUAr/ubA4OBgOIbH1/b8OVQnzVf8c3Ql8E55okHmulUSl5DmkclWWBiEJKDsSz8SSJW0FopVQcGXmYsshlURVFsVqtnp6fzWYz6bubTCZN00i5I0kSISYWFi/o3DJ578XFhTQun5+fS5bEeydXUC1vcrDWzmYzRByNsrpuxJ8Qni7nXI9BHY/Hd+/elfdSpxQpnb5iIZuqFgN7cnJSlqUEXUmSrFYrISBZLBZtbwzzaDQqy1Irxa5O4iTLpkRYFMIkyUqZ2ewgi6LJdCIp3tVq9d577/3xH//xvXv3fuLHfuzl2wfj8TiEIL18zCyOnZSS+pVwI8c5HD14DAAC8de//vVf/ZVfQebFbFZXNTBoRAS0SqfWREohhdAEVKQQm0CVD3WgMgCbKB2NpsvFaDHTiWVwmGikpjCpd/Vl3hDRPNGkApFHi3Fkq6piodvp0b8s8QlbbPlgmMhx4Lr2wdd13bgGO45DAoWo0GhEZKIQaFe5Gus7L0+T8SwQaG1AayTGQDqKQqBAoI0GbUErBYDMmhFRCc2PUmo6nUwmEyEIJs/MrXif4G2k8bIsS63NrsjX+30TyMZJ6XztXBIlSRy5xmlzLcuAnSinnH2Xl5ciRrfd7/V2LRG4pcCaJ9OR7WRbAjEFtMZGUZym6b7IxVQKikGsa1GUQm0sJtG5xhh7dVjQFU7Fe48KBRFkjAFkDOHi9Ow3//2vvXT/5XQytUkcEAJLp1rbGtF1CGsido3T2igULUkwxjrn1usqiqK6qhrnkqQFWVDH4Slbzw1UraAjvRTLpqBNtPcWow9XevSHMQYVQrg6szrN5FaVpb9V55wPHAv9D5H3Tq4qX3m72UigkmVZnCRSKeOWFgSp1UlTxhprFQDXdV1VZZYutG6ptKCPDRDlRBhWVIYzzt0RK2eH6KLKWXB+fi55DZmLts1GISAmadyX08WwqK4HnbtYQhx6qdFJfGIiqwZMX/3TNsYo6Pi+mSUu6v9Mfi8VFTkXeu4Zghbd0H2pq+8p/ZbQBYF9hpeZFao+vyZz3U0Wo7qOGRt4QeSDENxBm9gNssVaHRWlle4IwoaP+OrEkpOpOym11nGS2CS2SWzjWBtNwkPBxEQpRUqhUWYSj8dRFqsIg4aglIoaZStlFOpd4F1RNduy9mdN41ygy/3O2OS//bm/oSMjxDJErLTS6poKTL9wu5P7upV9npN1/SBVSoUAREEp1Aaj2FirtCbEAB2RjbBmPS/kkKUgTIJEJBqffWPr9bf9BVZX+ixFG9YbDtx8/vOf+exn3/z2W9+8vDg1Wax1TAF0aMHu1DU9y2kkK0kwDELVlSSJwLWbppGTfrfbiSD08fHxYrEQYMzJ0zNRO5EsoLxRNpKopAlvpuDKxK1kZgFoSTpHWupFdy9JkjgbAYBkScXVgy5kT9K0rtvurvV6LUmsKIryPGel+1BKKGhFiTwE76ucvC/LcrPZPvrgIfmwmM0PDw8RMeuwPTaKRCZSFrYkNtSAP1G+eGs9h23rwygFW547aJflVa6FRDlkAPq6MsGDQmcP+uqN741y6nD90nXq4d6s3/QWB+8VS3B180rBALwr6lHt3d7IYw1+JGa4nhrsvdbe1hhjiNwwEpaVxh3JcmRsIG7Yu+BLapQxi6OD+eEBK4ziSNaSTKi0AocQlFZ1XZdFiYjjbGSVdnUdQojj+PDwUFpfxOkUV0yyiZPJZFfkEioDwLbYSsAssffleqWUEnCCxCoyy71oRs/xAAAKFSpUSpFvMXty1PWnby2Nv9T2BsjTEIyQZPQlMoFOs6hnW2Lm6XTKzHVVvLtZp7EVIaPjgyW4IBpwsmVkNWJX4enXyY0I5FqNjhmeKQoNwoqrlcbXkTD9OuoJ5oeBiuwOBYCosGsbvZG7vQEJG76kNDKxsVZp1TRNURSLxUIc9NX6AgBGo5FSOJvPsjhN4zhJkiSKq2IvsYGkDBFRNJSIKM5S7hqTBIojbUiXl5e3b901xsgTDiGcn5/fvn27hRTCRPb4crmUBIqE4VprgQj2IeLp6emHH354eHgo64Q6bmgJaMVSxXF8eXl5enpKRLPZzHufpql0wkRRVJeVBM/j8Xg8HsvHSYxd1YUYXmPMbNYqVyZJkqXp+vzi/Hy1221n01mapuPJOIpia5A4TLJou91cXFwAgBheAPjOd77z5PGjn/nxr/zA5z/X4w+ZWXoO+5OdByvgaqlcx9jIXBtj3n37O7/5H37j5MmTw+XSGqtiZKK6qmJtJtOpRbTAigiRACAwVD6UjSsclwQYJ+P5fD6fThZz0hDYp1kGHKZ2Wqwvq/1m7xz7utY0jTQDlK72jrWN4jiK45hIFq9RSvy8zqIyhQAuBOdd0zSOAgQllRTFgMSIwKxqj0UTTtd5/uRyU/ovfhFn88VoElsT7zbrxWLpmVmSa9oqbZXWDNzykQ0ejjj6EhMWeVitVlmayOkjObUoiqqqsibKprM/evvtX/2N38yrKihlbOQZdGCt9FVrCLRZp969QwpEVFWVNga0IqFwUGo0GtW7uihKY0yapnm+Q2Rq5emAKGy3WyGRE7Mmwbm1Js8LgUnL6u1zWNhyb3Q3otp5J6LGOfYNhTCy9tvffOuPf/8PvvjlHzbGolWude5JeKTkIiEEZuU9jaKEfGmtHY9G5Bsb2aYOm81mPBpty1oK6di1WRtjfMfyr7p2Ee701OXKClCsa1/Qxi41A13rIxGFjsS2NTt4RS4CA5SUc06ZqLfSYoR1R1hvjCnrkpm1atUQudsgClHKd1oLexaH4NsWMmuNaeU1nXNtRx8iKnXD07u2xbqMDjBrUQeSEzMEKbz33eTyjSRhlxr7rEvAneN7w9EXb17+2eca+rqQvN03rves4KMAn7rTnpdoQZyTzW6LXY67n5HWFGN7NOiOeQw6h6TPg7dhdocWwb660LG39VU1InKdWG0311cYk++Bnlh1ZM9KKUYgYGL2FBRoY408ZWCwEFNgoGAwiaNJms3TtCY26135X77zrjbWUVhvdtvdvnI+eGq8J2Jt4M03PqOtbYIfp6Per7rR63lj0PXm4Bcc3URrY9BEOklsG21SeEGAhTxlwagQkbqJUPsLHP1JI/mDQfRMwTtq3CyzP/WXv/TVX/+NJ+/82f1PvRJ0aLzX3mIn3d2nc2Qpu8pJR36e5yJhIS0lfbAuG2k8Hi8WCwFFCIZb/AzBcfWqutSNNE0PDg4Eri2ZSNl+4vTLPVxeXjZNI8k/0EY6beTAFg9Sii2AKAnp9Xot4Appjd3v9+vdvuelxa4iNBqNiPzk1tGHH7x/cnISnM+yUb7dvvvuu5eXly/fv+e9E6S76aCP2JFi9QT51KEk5Zk75/SgytFPgdhHYup3B3VYUu7k2PpABa7nWvqL9Kakf+lGvnP4LuIr6as+3SLrsK9uQ7c1+tD041fUx7z4vD+TK/c5HhqMvgbbe+3914yNoeCCD967db5Lx9m2yMewBAAJZafTKXQ6RRIw2Mieb3diXlFh3TSmM8HyrcWJl9BaJIB6oyl90jKzAjeX4sYu3wtKUCBDiCjSpd77oQZub5pVB+TtAxUhj99ut2VZMoBSiryTZd/HARKoyOaS0oHcibi8EqILz8R+p3/0R3+0LguFXFXVycnJyEQHBwfr9Xq1WklRvn+M/HyJq2vRwkdlnV5gxr+fMfR9uUv2dP/k4QnOzEmSxHFkjU3TdLlcJknCwTdNJegs7KD/Wre8w2VZyva0gyHunUC2yrKUc1qKrqFjyZQKsOTkmHk2m52cnDDz4eHhbr8ZjUaityPpZ2utkFyLTIpguqRHX5gYtNZSkJGzXBaP3JW4hkKbLnwekiUdjUbb7dbVzWw2k3TPeDSO4/iDDz7Ismw0Gjk/Em4SOdHF8TXGXFxcjJIUCIAhTbOqqprGLRaL+XwexdaV2+VyKd9a8v3r9TqOY63wm9/85t07t5fLZd8dKwvSdQ3NMm7ahMHPfTLl5OTkl3/5l9955x2tgHwQqfA4iiJjI23qotDj1IC2RlmNRKF2rvKu8lQGyj2PJ8lkvpjNZuNRBkoFpsCBmNGO4zgr4jRU+yrfNFVZu2A5cHDK1BISpAkrrUIgAGQ2CNA0TWAmosAUgH0ItWvquq69L50GVFppVNhmGInqui5rt698E9Qff+Ptp+frv/SlH3rllVeVahhU4z2DQmWMRqUUMXDrIUlkfi0hJWhSZs6SOLdWYesKU0epAgCsgJR65VOv7//d/9L4wBqssl3XNAI/VyRbKRWY67qmutLWHt06bryL45gRtdb7/e7dd99NUmOtrWunjUZAInbOy5KTo7mPVSJj3vz0m3/8x/9FbniInebrSGNJqbZZbM9AgYkUQLnff/U//Marr3zKxrHSce0aow0g94mtEAhRGW0iG7tmY4WURSml1Gq1SpO49e+7qt0wd94/Uh6IEnYuLwIAByqKQmoLTd0MK1FiRfsgZLiY1UCXgzsKlhACopLkqSQUhEmiPy+stdZ6IrKR1c8H1nrvIQSlBKhmvbui8L5hYF9wELHWSs7V1WolxgcAZIfqjvj0BiC5zym3/+yiCN9JJcp3N53iSn/sfq+3B9cr54goUnUS6Ql6RXVjlCXyBKSM3KPXmLkqG2YWn0e+YN/30nQlbgDo/UyZwT5khUH2RKrNLxyodMGxrCrJF8pD6Ss7sue3NeVlvc33D1cXJ2VRp4k5OtohfuvkqYcASnkXiqpmVCpKiEgiySg0h8fHySiDoF3wWqkXYe/t81u9v/5i30ZBWw5TSWLS1ESxZqZAQaMBftHFJ9jiEIKBvwhOgo8evQvYe7fd4ggKSmi8r/2bt289nE3XH7x3MEtrDSUR4iiyiUQp4vf0eW5ZZLLipVdVQAvHx8dlU65WqyiKzs7OHjx4oLWWBhXZNvP5XAqsEjSLPEsI4Z42skClKWW32wnoRVATACACZ67jzWxdOlT37t2bTCZnZ2eSBxW/0BjTOCfupjiLqiOmEH0D1UE15LGUZZnnuUC/kPnOnTtpnCjAfLc7G59eXFx84xvfnC9mdV2nUWStbUGLSvW0GNB1jMgd9mdSZK4UcvoIoX3+7HtzecO7lbeHZ7rnAQDoCvQPz3clb9hlgiv7KH/Wux3Phje94RhesA/AZITnd8wDXrvn4UWIr8nP3whU+qfX57raPw5OWwMA2/2emI5v3y7Jrffb8XRq40jKYj30q63GAC+XS+/cdrsdj0bkPADK+hEHVOpyvSMr7xXieVknqpN87uXGBTPTE2oZY4RqQmsdDbh6hWemn1NXN7JrxD+WY5iI8rIAtFIO6p3m/klKAA8AUoqktu5EEhqlSVwUxe3bd6oiV0zWaiIaJXG+2ojPKvBINRDNDIO0yI0j9mOm8sba+PONVfg6G8zQdN9cvczjLI3jRE6Qs7Ozs7Ozl1+6H8f26Ph4OplcXFyoKH748OE4zWaTqRB5Wd3CCKUYKxB/AJhMJo6CFLjiOG4a1zS1UkpKFtbEfTsWEQlUbDqdXl5e3rt/pyfsEtOkO1Gj3W4nWFYA6L3A/X4/mUxWFxdifERoxRiz2WwEiSrtrdJ/v9lsbt26Je0Ni8VifbmSP07T1HnH7oqTXRaMENBJRUgyQRTH3ISDg4PlcqmUEm1K6RIMFEK91UY7587PzwHg1q1bP/ZjP3b//v3Imph9VZWbzUaIHCX2hmdaLntPsZuVq5/lOHjy5Mk//af/dL/bxtZao3eb7WwyidMMiMl5pe14NBqlNrFolEL23vu6aZrGV64pPWIyniyXh8fHi9ksjq3QKwSGwORUmMxNmqZQV02+K1YXu80qVKVBo/IiMr7IvbUtc5HWrUuEoQ7QBiqE4EOomrosy8L5VQGMRimlUEELp+W6qqu6yckUVR0AV7v9b/zWV9//4MMv/dBfGo/HeV6gNmIuxJ0amm6lNV5/UJL8gixNo8i7Vv9XGjvF/jgfajABMMkyzvPRaFI3HhkB1JXI0HfZQu2dS1NB7Z3AB87OnsaJvnXrKElSY2IErOpKayVeuyxU2SNEVBUFM9+6devk5ER88au5/qhbkO+uFMZGhUB1UY1Hk/OTp+98551bL933zNZaxoDQStYTScHBGGvjONlsn2KkiqJwTa2AtuvLNImXy2WRF1q3D/aGngYMMu7iSHjvBSWbpql3DrpQGZ8Rpe1dTXUdeTsMVPrMfdM0qtXV8dxR+8h50R6XN06654wQQiCnFBhjlEJpe4Pv1sP8MaP1k31QSl1cXMi9iQcrIbEcOtbaG3Xp4SfyQNNZlqKcelprNVAg+P6MvPhR0Fl1QQpIGkgWpxzucgjK0SYJ4mGgMp3O+vCGOozxs591A2aSJalcuU/7AkAURfv93rR8bN3/hl56Sz/Z1rekgR5JIWud19RoCt67xq2quiiKfL/f7Xdl1TzZFPu6qerq9HKVN7VnyGYTT7BtGsWMGICVt5YYRSyZtVaMGuxnPvu5IIzUrRI8AlxPx33UM9Xfo/YZAgAEBEZkpSCyJo4ipSAE5kDwXM3mj6jrCenkn3t68uNHYGHc8eQdEwUGDszEzKHOTyNPZ4+fKOdfPprtnnxwnqmNa5zS8fz+dL6UjF0SJxoVo1KISuF8PnfObbdb6LCGkoaUZysSuUdHR+JjScDgvU+hpYCQyEFI+mUuNtstd2oDIiDNzGVZShlELiuHhDTiy11JymS73Up6ezKZiAkmovVms9/vQwg9LK3vzjfa7/d737j1alWWpXPeRnY6mVit79y6LfYMmYPzsbXjLI3j6OnjxxdnZ2VRZvO4zTlxG9ArrfqgQrwiHvQ+Ml0LJIajzw/Jq8NwpQ9a+BmEDHS/eXYJDd2+G0kphivUVs+PIebbDWVPnhnDl/A5ufZnxrWXblyEuq6k/uP6L9ibM6WuYKVEpLTal8Um3xdlQZGO4ijNpqQQESbjiWsaqdT15q+qKlBYB4qsZSKFigJZ23aPBPJ9OUVCVrGwkqaSSKB1XOr68vLyjTfeEMAhACRJIl160LVQSyFx2Ikj3mE/m9q2VzPGBApN05R1FSgYbaIkg04mtY8rxD8WB1S2FTMLHlIWszEKEefzOSJYa7NRVpVFmqb79TrNsldfffUb3/ymNsZ7r7o8UYeDec5sXY9vr0/kNSjCtb+8DlJ48SHNyM/2NvEgKa0G/gACECsTZzqKlbEAMJ3N6rpmBKV1WZTWmMja4P0ozY6OjqQh2Fjrm4q6Ri/Zj30vEAD0+oyIIJgckfgkz/l+TyGMx2NUqshzYHZNc3R4uNvtvPcC37LWSqd7WZbye6WURLlJkux2O8nySqOCOF7W2t1u14apeS4qT5eXl/0qKopCVEeTJCEmWWBKqcePH1dVdev2rbZ+G0X37t1DRHHUnHOSZL13924Sj5hYFo8xkdYS/3vJ/cueGo1Gn/vcZ3/gB37g3r17zrnIWip3RW7kgeiOvEGuf2PzDqsoLH2mDACQRPbJyckv/eIvXp6dWaNno5HI3nvyIXiDKoniNIkSo8dplGhApsYH58gFbkj+B4f37tx56cG9l+7PpmMFyERM7AkJoHQ1U+LryFVRlqTz+aLYbC7OTvebSygL71xRtcUfRIysjYzVGtMYiQMFImZC8BTquqnqpmr8LmdWJIEKActZWNd1UTdBJ8pGPtRl1cSxfevtt1ebzQ/90A/duXUM2jAqVIaYWPTZBOB5PbAOIkitlI6sRkwi21S1b7n4pMM4eO8DUbDR4ujor/21v/bV3/3P3/jW21rZwap/7gjEoFBrbTXW3p+fn9+5e2e73TbeldtqMhpVtVpvLqLILpcGwTJ7LKu8KKUTuq8uinSp1vru/Xs/9uM//q/+1b/K89xGkRq0KQJCX1YRovG2WztwRWGcZuU+N9r6wA8/eP+nIuvZZ2nq3X6wbIiIlGGt0Rpro8hEWBZFVRZpZI4Ol3m+b5o6BEonsShEAQAKjypIWYlFe5YpCIpPa52mCSI0deWdi+O4qRtENEZ3JMkMwM4FYqGFsMw4OOmunbP90UZEuvMTlFKRtU3HgKe1VoihVXvkEIgErt1e7lpgaa2NlGHmrqX06pj7Hhw/bteBHI0KVWCvUe33ezncJRuilAKBvdR141w2nvQXuOE5UAeH6SNtIfxQg/Urd/giwdiN0Qcq8gPqKyKy/vpSCWmA+u4Uidv7g74sat2JKff5X/EKhhELDpQSQDS7O5nX/iA2xlRVZRLUygMyaaVYKwF0iWSYwRgQg0JG8Ey1d7umOt/u1vv8vfN17amu66ZxZVkI8scJ9arGq9gmighw1zRC79U4QgYAYgQGIg8ge4bw9vLezM6hZoZg00gOZU8QmAyC6M62czBYHmkUyzog5+G6STD26nEMpxmBvNtYo5IkybIojoxiAM8atNHptQzy9YXoBx4MKvRM49n09OK8ck0CV6KhNyTYrieyrrkL1/7u+ksKPjpeZ4CizpEcVzu/W3FZWtIa4qoI+W4fmif79alrct8UFmuL4eRbH+ZFta/48M0fmcSffeWTD97+9ntN5efjcYTofSibwpsmBIpjKyIASTKZzSbW2qLYK2ukvHh8fCx76arGF2BflABQc9t09fTJCSLGSbLerp+cnKRpenFxsVgsJLo4PDoYj8fKmN6zlHRmMkqLogAASVtKL4qQHYsbIegv7ARKi6IYjUbz+VwMEAe/Oj+ThDoiZkl069YtYNZaTyfzcrdXCvf7XbHfGeDlYuabRbFdffCddydZlthEoR5l40ibEJgA43Rko6SFsRJow8yMSgGi1srXVyVLOScE+1eWZRYnoEBppUAREQEppeqqds4BD5LcAD3YGgCEC7Wd8etVDmWuwczC8CLY0nr0wUxfk1HXwWPDaEcPaEyoY0SVMQxv8DqK0sRXBWhJfrQJTkTT0R9x17ArS4WZy7qUGrHVRimxOAwhAMA++J1rVmVRER0uj42Nx6NplKXHt47TJFGIeZ7LdAuPguCwqSzBu9koq/Kdd83F+el4PPbsN/utjcx8MQ3kfGgiHSkNZVlqrdMseXRyYm00m02fPHlS1/V0Oi/LejqdI2LdeCbUWmtls3Tcyk41wTX+cDGz1uz3+6qqJNTBDiftPKO2TNQEIuKycVGSESgTMYE6PT1NksSHYKOImau6lmbxLEsAQClomkopNZ2OAYCIAShJEo3A4J2jIs9dVRtjg3c2Sleb1dd+9+vpdHr69CkyaEStbAiBAzvw2LE/E7CngIiMNyOT3ui1mEOrevFZkfUTxxQZtDbETBSIWXRy5axmBIXyZ8gACpBQMbDwL4ACZlYMhAwGUCkClgqY6wTXkFkkhrTWiBwYeXbLjQ4cKQ1gOay2qyiNTBKD1kfzRVUUGDAQpcuRtvFoMqMQTi8u2NXb9frWrVuSK63r+jvf+U6r6e4CIlpjmzrX2lZV1dSeiKu8strMx9MoskSMiMmtO41rkjjO0mxb5Gk2Lqtmn5dxHMeoozgtq8Y55+pGMGP9llFotps9IkrQcu/evfX2RMJdcREu11vVNen2Eivr9frx48cvvfRSAIiMXu+2ZVUm49HhnVsCyirz4vLy/PjoyBhTFqVspWKfJ0liTTxKJxLT7nYbREzSWGmom2qzuRhl1u3LUZb+1f/tX3nzzTd88EzOaODgbJxMjfXe20gBgLFx3B5NXFaFamdfwgDVLgCgmpo4ioC5Lquzk4tf/sX/+Z233gpFMZ3MUqdos59nqTNQu9o1jYXGGMgMW8UUAgTFpIzOfKNLdluG5PDw6O7dg+PDZDoma1gxKgwhKGQV6IASCGzmE9+4uq6sMYhwtFqtzs/e+6Pfv7w4Y4Snp0+1xtuHx/emC41KE7kqd3XtG79cLMvGaRNjmhblZV7tjE0dQxNCCE0dfAgBddupRqyY2cSGmBwHbczjpyerX/8PLz948Nk3P50miWxwQDRaG2up0Q3iOMlsHFVNjYigVWC2xsRpYqzNzy9ZGba6ZjKotY1QB20IgRXyZrv69OuvTcajR+9+0LjAbfCHbQN+Z2CH+9QTAnEgBk8MofbN08cfxlHsqsIwVPtGGzPNZsXOGVXCNIqSURPIBW/jaDqf2SiScFT0EqM0UZGNx2M2xiSJCyQdXVpbbXFfFVfWAQGVLARWjPM4bVwISl8W+9F0vK9zVFyu1tl4pBQyYAgt0ikyBpGqYls3lY2t91WWGqo81YWOxofLGYFqQmioTkcjYADNVVNZa6umalyTYByj1kwIhEAEHFyD7OM4aprKGsO+thoYWAEYI/oTHhgAnKREyyonQoVGKR1FFlEFIgImCkCBAbzrpEUUIiMysufGOwoBAlAgzaoJfpOXNopBqSaQdcGCQq2C9855Jp+kiXe+FDoWNEohoFKISade0NeF5Bz0TZOkMXXqBfqGSAgFZEIKwOxdg8QcfF7Vq/MzIDDWQiBlbBRFyhpltDUWjUatCSCwSGHrYUVFISFy25XFlI0SpVQUJ8IIEYIzpsV8OOeTJCEKRAgKbRzJISA99wOkAwUKgSToJq211OAIOEIlOAUi4kCdIg8qVAhaCSu7joiop27f7XZBAOoKT06f2k7FW0BYqm3qUfJ/3PeuINZ1PR6PpTE4jhNrSWqGl5eXxuhIDiFuu8gYEbTShOp8V9ZNsyuKXVVsyvx8fXlyeb7b71zgXQOBbzb6gDKsdOCuNbPN27H8DAOZdmRggv4lxRCZGFgZbfXNWRGIJ3yv42PiXQ5eR1EcmSSOdEtHMGSpeaERdcqd3/Od/VcMBIhAcQiuLP12XW8vVUPKm3zX7Hb7/f7DqtpaC9qQYm8QI0UOgwk+Ndogj7P0lVc+We7Kzfmlr0sVKZNYx+7yciUg7CRJ+iKpUkqgMlJblLSiJCy32y2CluyjgLuE8p+ZTWQZeDaf37179/79+8fHx1JMkILmvij6nSxojS565tVqK5DrEEJfP5FbCkUhuj+y0AXVfXl5eXFxcXZ6yszHx8ez2YyZ9/v9KMukzz7f5cG5y8vLpi4jY4h9yw9GIUvTyFgF6BvnrDOxstZAl8WHribeO/r9lr4xHWFA1SXfS3WjzzGoQb5ajihJBveIIBk3rn+jD+G6D/rcJRqew+QDg6o3PHNYDjtbboxhKNVD4/q0Cg+AZ1KxlYfQ53LEjZYcFBMH5pIINK5224Pjo9FolA4y0Mv5Qi4bnlEvOTo8lOrWer0WLNa/+Tf/5ktf+tLde/eQg3B8KaUkaS2RbV1XTeOqqsYOZU5Es9lMvkXdNCKnKNtf6JustUpj07iiyKW/+caTKcqif3rMLHKQAqdcb3ZCfCxzKky1csPjUSpxTv/fNE2bpkGEJE18XTdNA13ba1M75xwRE8Crr7369OnTy8tLJOBnMF3fU0qvS6ACQAs4Hz7fVo7qmYt9PLhBAXzkaruW6kFkpQiBJEWHejyeRGmmtc5Go+VyOZlMxNdHAIU4m86karFcLgWY57xn4PVq7V2jlBIy4hDC3bt34zje7XZ5WUsBRLIVZ2dnFxcX0+n0YLncrTdKqSRNjG21DkXQ5uTpSeXcaDyShdfjT8S9EHjDe++9h4gSdQhqS/r30jQV0Ukp2YnRQ8RRNpLUSQhBZv/u3bti4kYIAhSczmbS2iRVjtFoNJ+M5rP5fr+XTj9mfuONN5qmSdNEaz0ej5lD01T7/Q4VK4Wr1aXWarfd/sAPfO6nfuqnZrOZdFG/yBrQWqTbudfv7Cj6ITKmaeo0ih99+PCX/+2/fftbby2ms3GaurIm58FoHRlltdagIjOx8WI0no8zUjURuRDqhj1Gq7IsUEXTaTzJbt86mk0mkbHMBMRKYdXUUWRee+2VH3j989/64z995513tFZC1uK9t1F8dHT06r07337rrd/7/d9nZabT6SgbcfDBB2s0MCDjdDyZTee2rPa1Q6YoTqLIBzJiO4lZEQaFgApRsUIk8cQRCJXWqJARNtvNt95668mHj15//fVPfvKTfcpMJiuKouB87OI0y4qydBSSLPUUoGl8CHGSUsffyJK+QkTFitnEpgl7CuGbf/qnTVWBFpwwX+NRfWYgqsGOQSTgQEykEIhDZExZ1UmW5ZvN6dOz1Wr78idfGY3HUrmV0xm64rbUkja73etvvPHFH/zBr331q3VZjZJ0lGVVVbE2MPBynPMhBCPyklo3dcMUsvGoqMq8LAmorsvIGiACZXvT0MN4Gtc415B34L0mv1jM6ny3222wyON0EqUpoQIh3AeWVkXFYLVO4ohcAyDTRcC9ZjiDdD13d+jdFRkuAyRZ4lxDRMZExmimzgbeNFvXNDoUqkAtCBkAROG3LMs4Sa0NPpD3Pk5S2XpIzNSWrPs0n1QVrLVCnhKZSHye3o25snvdqXfjeAVk7OwtMhitq6ow2jx58qSp6zTOdAdwFPgaIIq5ljNIHKfvusflOAghKPkuOAgGrpqCrvkbfauVpBqVUsJfMCzLYEcypAdsW6GTkRjeQJ/BlAJRkqX9LwXD3MPAqqKEruO95/hSXcQSrqtbSuSz2WzMjlkbbaLIGlO5er3dnK8vL84vtvti1VBeVdvtdlPsi7oKCDqOGCEQeUctWEZrwUq2uViF5MMQPzY8TT9mz06mE3kiH+M2fU/jBlx7+JLUpHo6lO+hhNcNoTqVNlwhXflfZyBDxMiefF1QueViS94HB+W+3G82+3LTNHma2VihUmAjG1nwnkzFRrFBStMoHc9Gnxi7vFpdnD188vDpxdMkmUynU0kiqk4USUhvAEA8gH51ymG/Wq1221wE6eTvEXGxWBwdHc0Xi3sv3c+LXFhZpUojlIta68ls1qO2hlXatsiIKM2skhTvrYBSSjLrZVnu9/uzs7OTkxPvfZZlh4eH4qf29MqyAYqiQMJRKhCILDYm3676jvM4iqxp5dWcc7GxKlZ9hCYrZ9hi0cYe11eUhCKyw/vwBrrEqlgN7/2NQIU6mmbxz4YvDSear79r+Cq+WC/1jdF7yc9+3DVc2fXtcK2BbwAFxo4esf9vGJCWuND2BTKz65p8mCgAN8SXm7UyenGwTNN0NpvZJD44OjLWbDYb1YGPRY2kH4LXGo1GcgOTyeTnfu7n6ro+Pz9XQNLTQkSyH+M4FqGJLMuEyE78USnlyfWLLmDebDY9iZzkjXa77WQyXi6XumNz70fb0I+IiJL1kUksy1IUHqXzuyxLuZosANEG6eM3rXV38FCRF7E1SZK4uiEVkjQhH4jI1ZW10e3btyeTyenJ081qNZzXLrcCN8roHz+IQp8tQlQfx+T+5zyQCHwgo42JEm0iIhJskqQDRAGJQmiMRWhBSo8ePZLww1qrFCRJUjEJvEo6N27fvi3gUkatOoWyJEmiKFoul977oiikjW273c5mMwHxtyxwCMF7gWN57zebTV3Xk8lkuVy+8847F2fnkh+R9npBSJ+dnQnLiGjYM/PTp08llQOy76i1AOK+eO/Pz8+FFvLW3TvYwevlPqXvyDduv99VZZsMkkBabObp6dNpOpFlORqNGCiKDABlozSNo7/8pf/m85//LCIKu9cLToM1BmTDCj9nkOKZYLqp3Od/+Nbv/+r/8iu7zcZq45yLtEmiOIt0AKqAXF0zBINgAa1WVmuPqmIq6jovXe55VbpksZwfH9y+9+D+rVtpnFplfGi888gqBrUczz/1ideUjR88ePDo0SOBrolISJqmoywbHd89vnV/tjz+1jf+yNX54ShVddVUBTuGCOu6PlgskySOk1SVFZVFQrEtqtoplH65QCxmSimlFCtkuGpmkO0vbp9kbf7Lf/kvjx49+vKXv3z//n35M6HWiKzl3Xa5XEZxXNRVcVnaJE6SJLZRUdZG6yFtA4gtRUziOKqbPM+/8Y1veO+Nts+fiquhte7CB2LQRO0ha5T2KnhXp0lc1dXRwYEn3ux25D2Qr6oyhJb4q08/iZkVBPXP/dzPXV5evvWn35BacdM0jmpj294bBoiVYWUYmJx34EExAMdJ4plsFB0eH1VNra0dYqKgy8dhJ4a722zvHC/zdbHL91lksjRr2tXFphMkwK5BXJyKuq41tMS+1LHO9GPos/XfC7ruA/lQrY1WFrTiFpswVKkHCVR6SnfRzhKTK+jQEIJIDyutyLvQcYtR1yZKRNkoo47wU0Dp/dXX6zUM+A+HN08hwIAC62MmPRBpxY8ePeIOWC7DWquN6cGyUSdeLE2PEpQ+O3p6enFCdHe4604aG3oxj8ENyznOQ87YgRKJvNr/sn9v//c9CvfaEyCSnSUdpNRJw0mLsjzJOI6BWL6s6fhv+tRkrJVMmerEJfucr9nEar3dnLzz9PT87OzifL3bVK6pq9oHRj0iQAAkBRQlqFStoHGNa1wCGq9raVPX4a2tGnIFXSMXHgpDDrDRCHBwcCBp0X7pfMxMv8i44bQNL5iNshbE/FG75UWG1vry8vLk5OTNN9/8X7mooskDh1hBMKziAOgdNYwbT9v9fs0c0swkSWy1SuMo0pYJy5rYVUhehdD4ovTQFLXon/gQ3n333dls9tprr63Xa+yojcqyHI/HtW+l8Zh5lI3EIxck4mazOTs701rfvn373r17wniTZZmJrGsaRJxOp4ityAkAyBrtA2V5aGrATDcej7XWw257ABDleOd90zS73W69Xgt5jtZ6NptNJhNrjPde1ABHo9F4PBbHQhokOImNMZv1Lg/eVTlTyPNcsqHQUXACANEVcaFwA/QlAjVQqsLrK6p30+WJ9Xu4aZq++GCMGUK/JKQXQ9A3BMugG92ug2hkaDXkxeetjY+pqHDXe9cbo+FLw7+8HhRda2WROFB1DXzDQGV4QVc3URIrpXwI3nvXOkfEzKuiyKtyupij0dqaxrmL1WWSJnGaSqlku93KAxx6YIvFYr1eK9WCeoXRlYguLy+Rw/HxsRTfpDnBe3/nzp23334bddzHwABw584d6XevqkrU4qXhuAcWeu8BaLFYpGnSklUMS60AMtESwUr1b7VaXV5eMrO4yPv9njpmfaFdOj4+lmR537krfgMAxHE0Ho+K/T7Pcw4UGeubZrVa1XVtFD59ejLJso7X5Vr1Qg0kvb6HokqXrCQGBfwXGqgIVBwAGJAYAjMpE2XjyWxhkkQbI1QH2BXllFLAHMfJZDw+OzvrK115nqdpOhplqdbC7WutFbmSOI7lMYqus4SFwhgrWYC6rkWk2QV/en4mKwoBQqBAIc6y9WYtxBtKKcmnfOc733HOffjhh6KLcnx8LCxhoihVFIU0qfd9TcvlsvcPomgiQNA+iJWLPHr0qCgKMVBS9a3rOs/zoih807x8//5kPF6v103TzOdzRBQGMAAoy7yuK0QgDlpjFJn15pLI//TP/OwrL7/kmloqhzcwIR8ztDEsOVTuelS6hPXZ06e/9/u/97Xf+mpkTGSMVTo21igtwD8kRmLNREwKlEYWwEfNxnssarcuitJxlI0n00ms7d1bt8dRbBQiBRQcuXdWa6jCu9/6tmucFMZlw4rBJ6Kmca72p6fro7v3lVZv/8kfREbP03kwmlxzvt8Ib01RlIBqt93v6hKsUkpLerdpmto1rFAb85GBSk/fAgBN06waF0Xxdr/7za999cFLL332s5+9fft2itl2u6VA1tqyqhyTdDkDQ11WTVm5vKXAFudVDjKxh8574X/b57l+4WQrInYmRoBKV/KFyITAwKSByyJnBqDgXZ0kB6LqIzSJAAPySSITR2J//vbf/tv//J/9P9/99nfKohiPx4qhrgrs0C1Kt2cKIgKwUmyMCkxJmr7yqdc+/dnPuBC04H7x2oHTH9xKqdF4tN1uR0nS+Dov8iSO0yhCHQeiSGsx/tZavKI/A+ikqD4SoXAjR3blmiPUda1US2WLEExHScoMcC3R1opiidMs9ykJAu5QEt77unEOlOlImOQvqRuyTgTlLgeEvLe/oJyk4ov3H01EMNC5et6My+nWg9h1P4wkMjR1j0J39B7fxchj++ltxaMjuJL/9jEAET3rqPYnSB969Qa5j0x8RyrdF2G445seXkpCu76YI7QWwhYrBRn5lBCClKy541qQrtTeaPfIHdVxWBtjptOp+ee//Et10+RFUVRl5epAARSCQqVtzIaCcEwRK2QkJ81J2mCHFZCPxAHtj7pW+4d+mcshMYxUEFHUhBIdzWdz7ChxmFmoBrkFTLcfdDU13VL4mBmkQUuJ7sQHlFLW2sk4iyLTJ4CfV+fpp6p17FA550QUFhV++OGH5+fnP/iDP3hjGbUibB81bpYp+fkvDf9Klo5Q2jEBeOYGwGlLNgZPjasLD2XD+81uBUyzRZplqdUYG2OUSdIoyxIODZLbri+KBjiosqhdXSttbt26myYTcXpGo5F0iEr+wzlX1ZVkHLXWAueVgEHSYK+++urh4aG0gUoukJm1Mdqaclthx7kuG0CYSUKXklGdNGnf9pCmkRRe+vCgqqr9fr9ery8uL4VaR1Ijd+7caVOS3svMCm2O7gSYlVJZllV5VVkznU69a8g3mESuqfpMfz+/As2/kWCgjhUNOpYSADTXSxn9+mFmbNVpQQQQqe2oRmbgXk0Pr6g/lVKokPzAzAENQTM0aJZSSg31H9XQQFxfe9e6TZQaQKOhj/+ftaFq2Nx2vdFrqK/Rv08+s2nq9tedoeTBEEc/EFWuUUYHgkDceHexWU/ms+liPp5Nl0dHcZYUZbFerQ+jaL/ft2mVOB6qTfdHslLq6OhoPB4LsS8ALJfL05PHfYuk807SPM65H/7hH3772++JloV4tPJ8hHpLSnNSTjk+Pu47AgMJRo4k8aaMYmJiIkfA4Kjlm5ZgQwiOpQZojLm8vHz48OGrr74qSkEi9BFCSJORdKAxcGQiKeQaY5Ik3u23Russy8q8YKbIRkophJbSuixLSfNv1mstzKviVnQmt5uOFoDXex4ybqQkh1ZJGIZ6r4WIGNqLi4AUdP8Uu4SIghzrPxo7wlP5M9X2v8i5x4yBEEm+MyKBCow2GY/nS0jTKEmlb02IOuSWiKiqyv1uF8exaN2IK6C1Vojj0SiyLVKUmJuqku0vt9EfhNvtViYOESeTCTNLB3wURWmWWWuVVnmeV7vyfL2StIvES5KznE6mjWsODw+l4COrRUBfu91uMplIGCzMDX2OsE86IKJIuBhjlsvlZrMhouPj481+J1EWdIxGraZKNppNRgpwNpvt93sAEBxXCCFN08TY3W5nrVEM1ur15nIyGf/ET/z43Tt3mPu2n2t7GRFC8KL2I7PWB9ry3663GAMAAHrvtNa77fYX//W/fued7wAxo4pspACbqg7sjTGowFNAoEhrZEy0mqRplkQKIVZxyTWRUhi9dP/24vgORvbkYrV+fJIE3G3309nUdrgOjKIqLx++96G2bS5SThPZR0mSeB/m46Pp8mC/X9+6e5+a4uSdt50K0/FYAz3dXPbqwE3jQ/BpkjRIxpiq3DloeSYkFSNLmqAV3u0TtP3QWjvvwTdQQ+2ab7z91gePPvz0Zz7zxS9+8ejWrRBCXZbb3S4Kfj5fxHEEAI1rdpttELPW8R317lSaZbLZjTFV01hjXFuvAoaPywkMAhX5y1Z+VymFAFZr52qtLXlv4wQQvKuNUjWRmEFZbNAdUn0ROEkSo/XP/MzP/Nuy+vaf/RkiVmXJPlz1TjAoaNPkxmjCECVRVdcvv/LJH/ryl27fvYtahRCI2QyPHkQC4M4ye+8tKiliUAiBAgZME2tEc8yTJgiNQ8SASgGmUpXKd52laOlDAUD8VI2tsOAQH46IgYILvl/DwFprKzwd0lbXOdziKCqxDFEUkWp9yND1UsrcGWP3RaV0EK9mmLwXh1tikiiK4jgCuCLPVKiusANESmvqixWdVRzMbGegO+4KeVVrva922GkMSLykEK010vqhta6bllxOHtGNynlvgeVkwQ6v1T9VGJS/+lx871n1hzV04Yc8BGYWaRQxaHJvQNxfuf92/UEQOuYYuVtxyRAxcBvylWVJRLaTpzPG9DWTPk8tPmccx9V+J4zSzjml0BjbT415/+Hj9rhCYNDSqcIATOy8U4wAoAEFah6DYgQmCOEavxANi0fhGrHwtZ8HCV8GVqjAewoBVTSdTvrrIGLvmckk93MM3OYC5YkDPTeFPBz9t43jOEvjKDYANLDmQ3Da4A4HdEZKKQYU2eC6rler1T/7Z//stdde+/KXv/wsVu27y9p/T38mphYVAwcKwI6odKHwVLEKDTeFK3NXbIt93VRAgSlorYxFo5UCMEZnSTSdTVTwTx99WHhIkqkrvQ9BJ9Fmt5vP55LM2+/34nWJ+ROlOWHCEXxLXdf7/f7y8jKE8Oabb47H48lkojtePGxp8pT3bTuEBB5yfjPzfr8ngKqqxJOQXKZkLPb7fQiivgyXl5fioJycnLRUEsyIOJ1O+x4DY4y03VOn4sTM0seilErTdD6f79Y7V1dS7bXGJFFyeV6IneJuVTSuCaAMakmCIvEwXFE3art8LXjArp3OOWdV6zR08XObZwUAaxR1PH29aaAOGHp1caJr6ZnrXP5Dj8Q8U9jpfx4GKlpruG7dhjZ0eMHhFYbGCABA39SdHMZyvbkZxnXt13eOABjBxFFZVyaOKnLvP/4QRyObJTZNxvNZnCXG2tOzs6Is7z94qQcySamzN16+o4pfr9fW2p7uxne6NELGgIhMnOe5GNmmae7evfvuu+8+efJEoMmCPZDatACEoFOk6m03IlIgMG1J7cYjCoybzWaz2RwcHFRV1buV8peS/k+SZLFYiC1+7733Pv/5z8eRGV5HdWwtiBBHEUqxTmHwQZJxxCRVAgjBOTdfzOMoDs71gUq/TvAqVXZVJVMDVoZhoIJ9nbuNT9oSCzIQDlSrro+rdSJsOF3oDhKW94EKXg9UlJKkComKijLWRirO0KQMKC6IUOseHR1JnWo8Ho+0dU1jjNlut0mSSMDgva+q0lqbJLFSqq7r9WolaRRZxnEcl2W5Wq1msxkRSdFsu90aY3b5PgCPZtMoilzT7Lcba21ZFnGWTmZTOUF7aEdZlsQ0Ho8FbL7b7Q4PD6WJQhRX5DCWj5CoQ+CyvR3QWh8fH1OneDuZTNoycmSVUn0hqF91VuvN5UVVNyGE1WqVZZkIT0m9ZVtVRZFPpxMA2u7WR0eHP/yXv/TSg3vIQJ0fBt3p0C0vCIFCx8eqBiyuDEyhK/YaqwGRuGE+PT39t7/0b/7s7be1UlYbrRQHImKjtWJgINZKgB6WMdZqkiTzURYbE5wDVIatZvPgpTsPXv2UipPLy9XhaDqLEwXM7JM4MtZqpSXBFEWJMcZR41zTA9bFQ9psNlEUJ3aSjUfbYnN6eTFeLA/v3Hv87bd4lIWqmsxmhzYOPjBT3TQmilRsN9u1oEoYlVLK2gitVsYI6zvcoGAG6JnQUBj8ED0wMmnAXZH/5ld/6+1v/9lXvvKVT736apSlt0ZZ07jV6nI2nd69e7fY5xi47pjTJeQLIchOj+J4tVqx0lEURdrsixJN1AcqH7GvPmpwl8MiImY0WjGRUSpQMFohheA8eZfE1js/nU4vLi6KouiZ0GXSiUhQDGmafuLll+fz+Ztvvvn+++/HUeSAQiAGiKJI6A2ICQHIUzZOxpPJK6+9+pUf/ZFXXnvNxpG2hoh8CDiEY4nb1AF966o2sfE+NK6RB16Wlbaptpa9Y2atFDmvtWbnUSmtFPkwPChV1xcq60FHsUQIfcFKTpbGNaBanndjLAA457U2zEwhoFLSVSJGu9/UWuvgBpzpHbw8jmNUmqhAxYKu5E6RRjxppVtfERGJALEVOgcACO0EKaV0R4XvvSfmJI154C4ObCgAd+TTzMYYVzWXl5dEFBiapjGR9d5ra5iBmRQa+QhtNQ6w1s+a5dY3xusHeifX4TvRzN6TCYH6pSL2SnXa1rIN5ZeIJGkaudteSL7/Xn2oJrvJdKIu0lUoi1CUFfUgkJNbUkph5zAPI1Xoikg9WDHPc60bKb9EUWSUb2N6hYygkZGAvERc5Ig7Ckpm6fpCAAD0fA1NOHyI6mOA8urKc/LeB/ZMjAwKhKMTEVG8ZPVfjacaTq08LCkzZWkM0LzIFcKgPVrcIKHh//a3v/0Lv/AL2+327/29v3fr1q26rl/QEn1/o1+mRMQUlK/Al+Qr9s43VV2Uxa7YrvL1eucapzU3rna+SeJYGTSoo8hEMbkqL05P9qjMaGGN9uiIiUOQWEKQ1i061hit9Xw+DyHU3u12u9PTU++9KDDu9/vxePzJT35yNl0MqyLYZXAFAi4RTlmWIQQJpiU1stpsZFeI16iUEgSaUqpp3H6/f/r06XvvvSdtZPK0p9PpfDYT7k7ZFX0KUyk1GY/DQLKjruumaUSY0lWu2O9CCFqrJEk0krRLhhBc03htvPdMzIghRAJpU3yN5xoHTR0AoIaBitaq+8pEFMXtPpcvdS0CCdec+/7nG7vmBnrqYwIVus6SPLwIXQd08XN24o0LPi9okV88+xIPKr/Y0QNIu47MjnMNADBCQCjripBrDo+eniST0dHLL6dZlqRpnMTL5TIvii984QsffvjhfrtLx6PFYiEMDRLlit2UgFkyr9LdEXpFkRCqqjo9PX355ZfFb9tut/P5nIiSJNmer621h4eHZ2dniCi+LHTFJd0ROks2/ebpAgAA3nkffP+90nQkMZIcJL4TL2+aZjyZjcfjw8NDiYVkTWqty7KMoyuWSYmxO7sPqJTuQA6oLYQg32KcJu8+fF+2T5qkSRLnz0RNz046dtVCekaW59o/GQgIoSMB65qroauuUL9c4eM7gT9uILM0kQZCE9vxdJ6Mxo65yvOXj46kH73PZVprz87OShuNs5E8Uslrym6yxpydnY+yRKJWABiNRtJOkGXZ6fmltfbo6EhmVhwdY4zSKoojAtDWbPe7PM+TJImNXm021hbT0ViKYJL4EBZ1Gffu3JVeFMmSCMgwiiLp0RdWOmlTWa/XIpsDAGSUBBj9l3r55Ze32+1ms5GqCwBIJkXOlDiOKYQ6L+qqYmbBrF5eXr733ntpmr700v3zkydCheRDM5/PfuALn/vUp14VU/Ixj10p5M6R6sPXNv2pQB4R+eDqRgN8/Xd+95d+6ZeasjRKKUCtlEaFkqPt2n8DUsCATJrVKIqW4/EosgYhEG33Ve6ag6PbX/jLX87mi9Vm++Gjx4fL5d3jW6XmO+Pb8/kyeLJRjIiACkARsNaGKPBA2kKK7avV+r2H79y7d386m1T1Lt9vDl56yfnmnT/9RoLwxmsvWdTnZ2dlWYXgMehi31RlSURpllU+OOe00dpaVIqEOp/Jh+eQZ+K1ZR+ItNaj8fji8vJf/Mt/+fKDB2+88cbnP/PZg+WB9DSfn57NptMsTYP34r/K6SYVOefc05MTZVUyGgsyuSswfo9bpq38BGYGYoUACJJLZ1SBGcgjQBJFOs18CJeXl/v9vtcSkIne7XbZ4RERBe//9I//ZL1a/fzP//yv/MqvPH74YTZOgw9OClKNS7JUMjjz2ewLP/i5e/fu/uAP/aU4Taum1tag0UiocdjfflU27xJ5iIi73S5GnM1mxBSrrn2ua9pEAB6gsG4cqTDAuVhrFbS2Xf6eO7AWiccs2AJUFCCQl0KHD6QHzRuy8nsk8LB9XMIh6VAqiyKOo+lsMR6Pe7dbCuOj0SiQE4BG29I2nKOuREMdDkqcCtT6Y/YlESETSREGVVWVjx49CiHEse3b5dNRprRugmcMvTNw46R+kWFtZMyLYcau5y77Cfqun4hdAefZX/aJy+FvuEOsdFWU5z6p3ouQWmWe56vVyhjz2muvmRAAhHwBgBEBNQUgChQCQLhCuwy/NmJ4zjNAEHjSRw8avElyEu3DQsjSTLZ9eIbz5/sbN/aDMLckSaKNuoZoef5QA5QeM4M2u93uF37hF377t3/78PDw7//9v3/nzh1oSZO+T/WfFxk4qOtR8KYpoK5tXYe6gcJT4bHGiKKIYh87axRRaFwFEBmtrTYUg3dYB99Ue7IpBF/mOZPSSpdVHSWxMUbkzCQgFkxhnudPnjyxSXx2dnZ+fn56evr++++//vrrn/3sZ2/dujWdTr0jyeWIvRY2m7IstTNREkk8IAe/9369XsthL048M8sBL9ZEgP4XF+vLy8uqqqbT6ac+9anlcimGI4QQJ4kxRnLYtlOJls3QNE0fqMiUiWlbrVanp6f5bjudTpMkzbI0NJV4gYGoca5WtRZf1cZKXUEwBSakOhxqXxgBgFEy0K5i9gPSjIqr3ieQcKX/w6YudSc3CwjeXb3UQ5jgelkSPjZQUYNo/8YuvBF+DG/jxp89L1C5aad4CP9tgzc1qDLL6KGrck6Q84RtoMLMAfm9994zsV3OD5MsG8+mWZYprau6Ho1GElUqpeIkwa7nWIKH/gATt0b4wbArr8udiAi3bO2LiwsBuTrnZrNZmqbj8fj09FRMpzEmSZLJZIKIjXP9RHOn222MueGXK60Mmj52lRYFANjv9+Jxbrdb8aens4X0vXjvLy4uRANkuVxKYq+/YF/9c85JdpJRjnPcbtf5dpfEiffe1dV+v4MQmDmK42dj2sFiuDow8DpnNF7vngzXm+l7kAIyALZAQ0bR8eyiamANL9qsPxzYCmG1d2iixMSJiWJjo8PFSJ72ZDKRZg8ikuJqU9d7YhFAlIcm2auyyG2aCBwLAIqiaFvXnKuqqihKWXubzWY+n0sucLfbFWXJuqVekKkXwce6rm/fvt2UlTHm/v37YpGEDkFrLeSYZVlWVSVo6fV67b0/PDzMsmy5XC6XSyIqikL6+larldZ6MpnEVjOzgGYFoiaGMcuyJvj+/NZdt9JsNvON+3Czhq4vbrvdpmn60ksv1XV9eno6HY+M0UT+8OjgjTdePzxaVlWlNRqlP8b7UErxoIug357MwTdOWoPWq9WHH374a7/6q3/0B3+otY6MsA6hQaVRAZOQwsnRX4cGEdIkmsTJIhtNssxaE5qmqqu9C9uq/Ikf+989eOP1bVVxXY0PD27fujOajpsmb4ILSGDRJlEcpwgaUCFwU++JWhy/LFEBOt67d/fy8jKvtsuDxWQx3e7Xj1frowcv53V49J1ve+LYKte4uq4ZFDlXNjUzjMdjFXQoyhCC0hqUImapqEiWffhkhg+qB8XJS7KWrLXj8Xi92fz7X/u1r33ta5946cFnP/2ZN1/7VBxF+a7d8uJLSU+ahLK73e707Gy2mDbnF7/9279NTIDf165pmwSImQOFCFhrBFSgdAAwgMyskYtif3j/5cvNRoSYhfajP3rG43Ge5wcHBycnJ2+//fb/5qd/erlc/q2/9beC82AgyzJguLi8XG/W8/l8PB475+7dvRPHRmlEpQKThD1IKHptEAaMqNcybsSip65EYxBd7VipIs+N9wo0PMO5L+NGmQsHMo7B+Z5WVNL5AGCttZE12gRi7733jUJjbRv8K7q2G0ajkego0DNxg5wdkuAoq3p2eCzpBh4Qk0ji9SpAIgJA/QysQH7ojTkRUQjaPJdU6SpQYVKoGuckf9Ej8aQ9wzBra7QxssZcJ1YrmRf9YrwpSl2ljOkZVMjgz5ScsD34ahhXfLePUH2Ccvj73jdQSgmPAg6IvFSPEHv+lWXi+oy5IHHEMhsvx7Agk6WIhtxwYGbkAEwteSVdJWgRlGh79veH2LdcITI/j5fID74YhaB6SmZuv1uf1rr68vB9liuGPofROo5sHBmtgIJ/QSsidyLGyHv///7//H9//dd/fTwe/52/83e+9KUvibUKz29f/r5Hf0hwK5qOChGYNQUIzrqamso7p11AR9pDBGZss/look0wBhVCcB4YjNbGKLIqirR33qIZWeWDRx0AURt7fLjImzo0TiDXXSkAA0HduNl88e133nn/vfeePDmR5IQPIem457VCCRLEN5LcQ1VVSitlVDYaee/TNJVCh+z/7XZrokgSG/v9frvd7na7s7Oz/X7PDES8WCw//elPHx8fizTkbrcTy1I3DQAcHR1J/luoZtv0ZJcOAQA5bOSz9vv9ZrOm4AHYB1/XlatacY/tZue99za44Jm1A1fWdVyVSmuvHXU9M+oGChxB6k4yes9DPr1sClRKK620kmPmajsoxcDOex+kky9I1wMxB+/7igUqpQZiowSdlnBX2G3/xTBMSNywKdro573r2gK7EY2o5wYqeL2igoPRgx+o052ViFGql0I5SQhNcB8+fULAB4eH8+VyNBnfuXd3Npl2zc0YQpBmaNRaWqSEuCYMhlRIxF535em2JGKMkfhE3pimaVVVi8XCez+dTpRS6/X6yZMnVVVdXl726e0kTSeTSdvT7H3fVXmDUq2nY5J76H0UQeIKqRQizmYzqbQkSSKgozRN67q21nrvkvgaW0tfC2IRahXgHFGcJMF5q4333jUujmNBRmdpmiRpsc+HEzG8Wu+P9q/KshweUdgJRQJIIrn/FygA6nR+Bbpw1WwETNdDN4bOGt/ArXYxD7a0xcjYvlMIbZgBUcVxYq0djcZaGwC01jZNX4uzs/E0jqKmaVqFuA4JY4ylEHwIIVBRFvv9Ps9zbcxysdDaeAJpCrp7927V9a6AiHUGapwj5vFoFCcJM6ddV4yo9JydnUkk470XzgOlFDJMJpPj42MhXfjkJz8pq1poHg4PD6fTqWRGiEgoQ7TWZ2dnYpGKoijLUmBjt27dAoCL9ery8hIApKQvUa4xZr/dUeAsG6VpFsdxnu9F33Y0Gi3m89iCRqjr6qX7948OD7QxSRLVdUkhIHy088HY8bkpBapNz8usEpExGgEeP3r0td/66td/93cfP/xwOh4jIoSACEohIKMoT4BQqgIyBBcio7M4XU6n0zi2SiOD827flOuassXBK5/7vNcQWYNZ+sqbbxwtlgogq3BzcsIISZIQsgteazBaa2XQtQXntqzUmVDn3GQ6Ksri/OIsMJkoqasmd3T84BOnT89W660ajcu6CsHH6Qit9QpTO9bZ+L3Tta4bQfYHYOe9UHcEBgJJvsq+ACW6Pi2W58oB9yGgUkYpH7xSmkNIkgSY333vvQ8/ePjbX/3awXK5nC+MMYyw3+2EqHo6m00nk6PjY6kI/eff+d33Hj68OLuIs8wTMXacat8F4N2/Kta141YKqBAQUWmFSitmba2NIk+82axnt+5MxpPXXn3trbe+df/evWgxByamAEohQjLK3vvg/f/wa7/2yQcvv/mZNykERGUj6zmYOE6zdLyYvdI1Nydx4r3TBpx3VusQgg9BW6OF3DV4w1eBsYS9RAGAmAiIXWhmWaqoYfaoUBtTd6p/cnaiUlqhUldqmq4J/YEkLMnWmg4MacWoil/e+xU+BGxqRFHb0FqL437txJQhVlpwHHEc16W7agFibpwvyzIEipMkiWMAkBKoHOVSK3PehRCqqiRi4TS/Og8ZEZkYlCwiYkIpXRqtMDx/nll6VCSGBpImn1Ga+aYZjUZRHMt3VExxZFuFX601mt7vf/HcfQ/3umLi/ajRl60EAiDHopzd3/Wjeh/APaPAhl0/WCuZ0rlJ8oN0zzdV/bwr2yhyTSPno9yHnPjj8dg4f4WDkifJxIoCE2utmFQHVaFBETCIwhgAwA0Kfr4Wp8h7r77M4J4MYIuNYzqcTbM4TeMsNMGgIddKYGqtEbk7ABEQ2zMXmIIHAE3U+8GC8Os/KFTBaK01KsWjUTKeJEp7pYJCJE/PmwutW+l0yfMJSOk3f/M3f/EXfzEZZf/9f/83fviHf/jw8FDcMu7wby++jIbjeeVhBEYiRgWopYdGOQf1TlW7pN7h/iTUOde5q+vGhaA120aP6DjO4stN8N6AprIut2UEBrOY2TGU5PIkmmpMVGScsbuAuW/2m0sV6Xk6HmcjQKW03ue5MnHdNI2nR49OTp6uN7s6jmdRTLfvHB8cHqOxeVU33llthPcJVRzI7/ZbyY9GUQQMu80WADhQcF4hurq5PL/YbrfEYK1drVbn5+eSMACA5Wxx584dNC3to9YIQHVdTiajPM+VAmDWWnvnjNbeufVqpbWWpEGcpqL14b2XzmkBUWRZtlhMq7JQGn3T1MzkCVhvN2sfuCEfkQsVJVEUpxErzuvCQYi0yaJYMSKhUirQNQMh8qTdOrkWTpd1jqgkM3mjNuIpBCLvnA83y5B64Bf3OQD5Bw22VBs8dC9FttWc6pNAV1cMw2Z6VKj6dxm8MurDaESCjL7P+kagklwXkZXIpHGOmX24lk2BPtOv1c41ylqbJk9Onnz7nXdGk/Grr39qupgrGx8dHRtlEbVShggQwRPpKDZRVNelPL3dbtdjZPf7/Ww2C40jJvKhbhwipmm62+0gUGicgHbOz8+Pjo4kSW+M8a2kvdnvt8fHhxcXZ3keQnDjcaY1TibjfV5KiCIao4vFQoKN3XanZ5NQNVprJmi8wHA5hLYxUWBCfRx7+/bthw8fAsBoNAKG4EOaRHEcN3WZpanonWsApbvCOiAxKY0KkFi7AEVVM3OR53VRIkNV5S6E2nvvHQRvjDFWf/ozb3z9P2+C93VTplHcDCNVkOOSNQIyGt+ABJ4IzCH4qzSKNdF1IdpuAVxXiqQWM4DCedaQJAICtfHPwNYrscSMzBoYEZgAEYiVN3EgYmZrrI3jODIaQ5WvI6MbYm1TYxPA0NQ1M9vIBkYKREY3RLODgziKpqNxVRR1WXvvkyjSNjZRXNe1ibOEMc7GAi71VUnM1DhiePTkJAgFglK3796bFsXl6gIBJpPJerNuqvr4+KhuGmaeTaYK0BhzdHBIHV04+SDBsCTLtdZZls1ms7qu1+u1UPRIEjTP881mI+18RFTX9XK51DZWLiRREqejJaJQaZ+cno9Go4cPH0qq6/bt20QkNb2qqoh4lC2YQvBu35Sj8VhO9zzfZ1m8OX9irf7hL3/5pZdealxtEBRBrKPGN8BsrAUAMbni0kkZTWmD1ippstVQFLlCDN5FkeHGPf3w0b/+xX/91ltvedfMZyNjFBEHpjjWCtFood8wee1c49Mk9d5bbVLQB+NZZiII7NDv6tprvqDm4d59+pUjPZorwKYq7z94rV9FxtP9uw/qqpmOZ3Vdl3VjrSXbaG1sbIpqX1XVeDwOEFxwaJA9h0B1UQfPDBjbxGIcmVEUj1xTT4/vPfyT3ysnZd2E8Tg7PDosiiKOoyQZn1xuzs4vc+fqpgZsWCtCICZPgYQxCwAZRNNZ7KthDcDeKG7Nn/DBCvrdtiB3SRFq7YkuNtuLzRbgPQTw3itxyJRCAGPtaDSaTiZxkrz97XcIOB6NAnMADhBQag1K6cG+u5kk6iH0oquKylrRsGZUZpTGu83FfDFtfENIAMgKH58+Prh9J01HEMJyOtlent85OphNJ/v9HoCboJui+fe/8e/vvHTnx37mJysKxmpjjNJaV40PrixZa81srLVRZIkDI5WuUQo8Cf4Pgm+CbyTQItYIAEgA5JxzrmZg5gDEylEaRcpxsc+9y5NRqm1kIr3bbZl5Mh7HWQSAdVMX24KBszTTWmmNwbc9jd67DigRHR0dgWVBfkrVUeg9sSXjSZvGMbOxFgFclVdERhtrI3cFkmqREZJH894jtdleQOWJSWmbjTNrbRRHRgVXQ/BVU0kKP8kS8SJsbK3RxFzXZb7fArbZFqsM1N57TwzaGG0iNFZrNAYQFF6Pmq7S+swYOEuTpqqrxgXmfLM7XCybqh6Px8ZapXVRV+NkDIjOe/ESlNEIigFQISjE6/GG0TZ8pLKk2GUGpcxoNHkGcCHoqavOEHlKRFRVtSw/ZjAmYgbpBSLiNI4F2o0djKKve/R4e0SUY7dzjDnJUh7IUotHJLBYG0fcYamISASL2/ScUdoaE7W1L2U0A8RpUrvGwKB2hszt6UPQ8hIyE3P7++F3Jn5OqoCBr2aM+RoB1jBdqRQqRO8ce6+V+ti6yXdNS3zEiG3kXUOAaZImSdSmipi4LbZ89McJfqnHrJ+cnPzjf/yP33///Z/92Z/9b//6/36xWDCz5O1esBL3fQ1U2gB0OZ/guMm52FCxpnqLVd6UeVnkdVX5EFChja0HAmxXgHNUlk5hGQJWtQP0ztVNRehQOUsVcuwxzhRgXdTFZemiUZ5laTq+deeONtb5kCTpo0ePL9eb7XbHjEmaJUmEqMqyEhewIK+4TYn1+BxJIU8mE0F+9yCoPM/Pz8/Pzs622y2q9kydz+f37t07PDyU8qu1Ns7SYWVZcIBS+zMm6n/fs5sLllHaQwWrJi9JhbEsiyRJrNF5nltjttuNTL73Id8XxBQkrmUORI13kr8l7aWfvs2tXj9UBmLxoCjgoIbZeIco5CYtc0j/Ul4U1DF343WErh4sQnWjs+XZQKUbImzX//21mt6whY+Rh6Hw84VZrq286y85vtnN1WdAeUBC7qTjqDWa3DCn1rz/8OGTpycmimaLxXgynUxn2XhEoaUfAIAoikQIQqILa7XADqVDVOhEBYEzStIhuqzvVhqNRheXZ5JBF9UUaWKRFVU1LSuUYBqFJVYw5VEUzedzKdBpraMoklqcPF6p9ojN7etFwt+w2Wzkn1Kst9aKXLowdAnpk1jtvuyjTU8DerMOUZaFaxwACGl1ZCy0ySe9XC5267UAnORpUNcJ9pETB/BdKs833/icP/4Ihg98IePb69yj9AC0SXlASe2H0IRQ2P1yNmfyTV0mSYLAdV0BUxRFkTV5kcfG1k1dFoVvnAIQArSt80ka75WSCkYUxaenp5PJpCjK6XR6fn4us2OtFVkJSYVUVTWfzWSzRDZKkiT4sN/u0jS9uLjQqMRkMXOSJMvlcjqdym9k//aog6IopCtPa315eSmgFJllmRdBc8nSFYRn36smlA9SARZQym632263WuvDw8M4ic8en8dRvFjM1+tLAFyvVyH42Wy6urzk4H/0R374E5942XuvUCGgUHwrpfrGXPiIHBlKfy0wOBFlU4AIu+1GNc1v/odf/ePf//ry4KCCoDQao5iZQBnJ5BMDEiqNGhtfc4NRFCGBRhVCCD7UrsnGCViz2lxerLfzg/uHx7fzomIAQu5x3Qwwmc7rqiJWjQshgPMhEBsbRUnETMpY1N4FUgaUsYwKWQTYSGSXpHpGzKBQWTuZL76T1z7Q0fFydvuQNGicKFKn5+uz1aZomtKHJkhXBxNCAJZGPi230yIR28YU8UhkN/Zb4VrZcBhHDP7J8rQRe34n59xms9lut4iotGYmBFAsDpAUoFts5XfZNjf2GwAAaGPjOJnde1A3ZRTFZe2aEFztq0D7fZ6mWWRNmsR1VXnndtvtvXv39nleuvo//ef/lCTxF7/wBWF167mB0yztQUQSjrV1VARJyHErekhXsRoAk2MQVUpCYKNVi6sDBg4QoAp1U9f7/W613YymU7QxIx4sl9773T5HxCiKFstlnueXq1Ucx6M0jeI4S8dKIXErmDsajZraKaWlWVSsq7jCcs/OBWlzLYtCDqkQAgKjQtYfXTQAAK2UDyyYGNAGjWVQDAhK4k0WKsweYNw0TV1XcWwNotLaAPjuWQExkwuuaVwQnGGcoDW2e04fa3wROFAIAZgp0Hq9znf7yWQSCx/GR72VAXoWfrEtzwNy3xg9dutZ8Nu16w+Og4+v2AiUOoTQ+za9d6c6kZa+bNKXDZ79rN5kUdfBcvV4Wk1GJWVtQVioDngvx6sJzxFGxAHj9bPf+eMgT98N4jb8uOA9hjCdTl/wLS8+tEEiNEaNxkmSxICOwTMz0ccBr+WwEQjHN77xjX/0j/7R7du3/8E/+Af379/XkZUoBTss+J/7PctgAEBpj3MYPFKNzZ7KjdufhWJbnJ+URVEUBQGj0Urr2BpWqkI2Jq0plEVdFvvdtkmSPM2MtQoVK1AMwRfeYYHxXo8XJhuPEbTWSWSWs+l4Oktiu97sLtdrra3QepZl1Yq+A5XlXhvtWyW1cpSkPWq89xS996vVCpWpqurJkyfCfiOH/XQ6ffXVVz/xyVckmyjA7slkIgII1tq8umrYEEyO5FqIKMvGYrPEaZNeF4Ee9a23khYVo5NlmTEaieoKoijabrZWad80vmkkwiS6EsnyztWBvXLOOa0URW3ztHy14SzH9qNJtABA6nv9Phy+1HSS8PLLobkZBio3UiM4ML43ggfyrBT2oNVre3MYSnU9be3d4kcDbeF600t7EsvPAMOiSW+V2oDBXjmwzntmMqg8+aZy27r+5p+9vdlsDo+Pbt+9c3h8vDxYRmli4xgHrGhKqTRNN5vNv/t3/242m/3oj34lTVNJRYvop/SJpmnqOoF57IQmJZkkEqUCGBNMoIRAk8lkv99bi7ImF4vFarWSUFaeM4M6OzuTiOjp06fSZ390dLRYLKoyh64yLpR0oaN7StO0t6TMvN1unXOvvfba06dPJbARYJj4ytIQFUWR0QjPxgkA0LKIGqWUVkoqKkBkrXW6JlaCsWQiK1iyqmpt9zOAhxcZz7PzN/75527WiChQ0MZGUTTKRrvdDva51DwFhSy8LlVV1VWhAcuydHVDPkxH41c++cnpdFruc8GmSoSZ5/l+v4/j+Ozs7OzsjJnH47GsGSHglwOemYsuR7BarZj56Oiol/WsirJHx0k7rORcxKSIRZIa2ssvvywNcmJkRL1ENCUlPtnv9w8fPnzppZdECWqz2YjvJeZRuHcBQBTupR4oGFRXu+ls6uq2P0opDMEThbff/tYbr3/qR77041maiFyptA30MFroUpXPZhzEK1bcicARVVW9mM8N0O/85//49p/80dFsiuRHVkycZmaPkEj7KFMAJialAAxWvkIDCqSaHUr0CuDk/GKynDeeX3n19fndNz71xhtaawLWRvdcIwzATQPCLoWojc6LvNMOiolbuhHuOJqkHyCEIPUrKdRLFkMgdjZOosWydHUTJVuCYr/X2jpHbz/88PR8XcZx48lTi+wKTKBQEqECnFDcdk0BAOBHhQYvPNQAyt9er0PXKIUKtMA45Uly75x9fz23DOfn59vVapQlUZwExoZ1YAOg3n7rz6QBbzQaAcDp6endu3frunau+b3f//p6vf6RH/kRodWWdnkZNXkNmgJoBERQWgdhKibQWktrcRhAqeX78VX9loTbj8h73zCRNlobXVU1cRiNMlZooghMpBmkUytJElHFlaV77949pZRRpq6boqgFwRVHWV1Xm/Uuy0btdFsrmNu+VOicszYWA0sDbkP5jQ+BnxMnNE1FLPxmAMRIDNgnIhGgJflUnapPXdfB+/16G0VGd345A7cOA/N+swNUWuskzV68JaGtGDhHzBRCXdXynIuiGE1mz3uXmBrVEbe84GfJI+rzejduo/+5y3W0T2CYJL3xrmHHoyz1ntJm+HvVyUC3pR57U2Vl+CiwQ27LL/sfyp3vk3Fy2IltXK/XZhhX9N+k60sRlTZiainzrz75+efZ8Hsi4POms711RJ0k0pX+5zucq6LIZqMkjo02QITAKhAxk1bP1WOSydtut1/72tf++T//56+99trf/bt/V/rVPLcEptglVP7c7/nq5htP5NjV6AuqtiG/bDYn5eppXazPnjyRin86HqU600bbyDKCD55IVTWtt2VTB6NtnERJYrJRlCR2OkpCcLXb1VSGvMB8p9JROpqOk2ycxonV5OqqQOcaa8zZ+TkgTiaTT3ziEwcHS2ut0ljX48ViJi4FUYuDzPNcEoSCiDg7O1uv10pbOWaMMYeHh8fHxyIaLeoBPdFnkiQSoEqe0lHoF32fSJbNJr6FpCqF41wP2I3kCBQ+U6XUeDxO01QprPJ8wEzFxujpeBlCAIQeh0/SE++DRuWcU4jsgyTULUnpcwizGbCLBKIBNbaWhEuLkbxmIGiQ+LyxZob/CNdZvxRcCx6GW0+o88Tw4Q0Q6uCKdL2Rbtg31uc22gsOFDaGn8UAPvgrpE+HN5VIpXZXoFyhp9RaF0Wx2+3e/uChtubOnTvz5SJKknSU2STORtlkOmVUPSOwmMgsy/7KX/krWuvJZMzMIkIv1RIpdFRV5apa8tPSFdYHhNghYler1e3bt8WAStCSZVl+sZJzTmIG6bOXFVVW5Xw+lxN0NBrNZjOhtb28vDQaxZ0dcjbIqKpK2q7k2FgsFlL4Fq9UwipJyffOpbXWqKsm1Bv1iqqsBP4qFzRaq5ZE1ezzGoiiKEriOESxOLtKqeAdqu+nljuc8Y/L8f55mzUfPNS1DiSmIxpP4yxN4gQAvGv2rnFNPRqPJpOR0bhbb5qmUYC3jo6PDw4lPPB1k41SRGya5unTpyI5AgAigCM2YbfbSSJWiNQ7P6ARyyNqwlmWbTYbSUUxcRxFglWI4lgpJXVa6ZAWHKBELCGEXrExhHB0dGSMmc1mQggm+RTxJ6qqEudbbJf3/unTp2VZplksdHNN04zH47t378oibKqaHY+zNMvSyTTdbFajUVbVxSuvfuKzn/t0ksRSq9GDBl/ZBdC5+LIlrx+4AB1Wuqkb8gEBgPjDDz74o69/3Rd5NsqYWmCGMZqJPYByJNz3xNS4BrTOsmizy4tyF0eJ1rqhwAGPjg7dTn/7/fdffvWVv/wjP4bp4fzgABGRoa7rHkjBAEZpTySKN1rrfVFcrlb7ogjARutAQTz8wBCIA0MgIIKyrquyLMoyeL/P8w8+/FBmE4hO9kWZ7967vAAMdV0aY61JiqJ2qBG0qHEbZQg4MCEopRA0Vq4R/jJu1RfaoaTN4HsfatAzQB2hOYB0hFsE7hI9CpkCt0xP389HIdhYHR8eHx/OLs5O6zKvPXgyDRvPSHV46623vvSlL0nc+/TpU+fceDz+xje/cX52/vnPf+7llx5IOo8EiM8ADN570kwIJoDS2nbHBSFESjGDNHz2FRWZTBoEKhCY2DtXN00dvFuOJolVdc7G6CROArMHJEJANMZa2+bFAVA2aVmWRKzBJsloNp2KXBUzaxV5V5dFQ+zKsuj3HbVyZC1lqNQ/VUd/IieOJWYdP89maa05SDqfmAkpiIppB5egfvtI3pOZtTHUOB+CY26ahhGstahQK62VPlwuHTEzG2P1C9thBAyh1YvcbjZFUUiVlV7A2PKQf/xFPqs7wW+c8vBMoNJXNp7Ndwzf2FOfDeelf26Dh9k6b+3Cg5v+Rv9xoWsDHn5BiZQk89hHj6Hj59ztdgZpUHoiYgRgBgbFEJxv/azuptov3JX4r77zVZ99373W/vuGGv3wYfQg+zt37sis80eRhHKXm4BnnDZzpVMjLktL9KEUxrGOY5MkFhUTeeYgyjhtcXxwTyyajwgAIAD0Dz744J/8k3/y0z/903/zb/5NkUMuy1JHFlqOr5tItBdURHnme137J3YIyxACOqKmApeH/LLZndXrp/n6pNyel7vNydMzYk7S1KYJGm3jyFjribQxoLQnKKumKBqtfULEKrFZHCttImNRoUcqPfl9sy/99pImy+nioE4i39RojE1GpaN92ZxdnAdSqMy9e/esNSGE8WQEOEli2zQiyAh1UwtF42az2e/3zjlxLmez2a3bd+M4FshEmqZ5njdNrZQWPxK6fi9hyOkblF2RhxC8D4gQAsnCmM/nACCM6dZa4QED6YTpfHERoASA6XSSppn4LkRkjDZxREST0bguq2K/Z+bJZPLyg5fzfCenPkcRhcAtYaswnrPx2odgvBsqISoAhqvWpkChb2pHAERGFuLgdlZbpTwG9iSt7cMknPyX6eqcEzdo8HFXLw1NCSJKPYNbii1tzDDR0JqP4T6S9zny3c/Qp/qYAZmVUZKQkPtBhdAKFIJrT1kEaImW2wwGQg3kWTI3oSiK3W6/3+8uLi62+S6Ox3cP7i4PD+7cu3d063gyn2lrAnNZVVGaieMlOTMxfFJFEZZqADDGKFTM7J3vn5tkldoWybqWFgLpSTDGvPvuu5/73OekQi05GOpY5rz38/k8iZO6rs/Ozj7xiU8IsEeY7HvmOokEsNP86UUk+/nq7Y8EFUQk3qe0SPVYQUkG6wEPT2RsL/rBnXhWO0daa+kukJDbua7op7z3illrrY1B4oODg5MnT+SrhQEj3I107Y3S90em0Pg6ez1cP5a4q/6RpBAZW6Z6WSHtyhBrTM++q129SiGRtL4Sc13XXDdVVTWB5koZreoQAMBawwBFXgdX+6qK0lTOQq00IozHYyay1p5tWn4C4eza53sK9M4770hNZrlcihSjFNOEcUvKF+v1pZS27ty5IzDrxWIxn8/LssySVGom4g0J/55Ijoq66HK5FFi2sMZJYwkijkYj0dIRAyWCPP1zllrxcrkUENrl5SUzr1aXYusAoCjy0WgsLgsyT9JxXhTb3frwcFlV5Wp9sVjMvvjFL4yyVNIlPJDNvposZkHIjMfjfrJkWpFBa40Aoald0wTnRlm622y/9lu/9eiDh5MssVqzYgzBaI3UZi4ZmQAES87BA5I12hquqipoHULY1XWUxHFdOcR4OnvjM587unPvYutWq9Vms6ldsy+LthnP+8b7J48eby43291us1kzc1Hk+zw3xozH41GWAoiMndBItNyJQIDAoXHOuUCklNrnudKqqRsFSIGACVQwBpQyNQE0HnQsAFRSqABRK2RSbWIKkFgr7jcBQyvSh4iszE1R5mu49ms7SHVkFXx9s4n33O5luFr5gIgISpxT75lhuOXhOv/Y81xJBNaWklTNj49iE8jTdl9VDvOKPOjG8KNHj+7duzcajZRSd+7cyfP861//+ocffvjjP/njn3j5ZfCkLGhUCtgoDcQUHGqU4i0iCo+RmFyNQsAT2lbAznFkYPaBA4swAgCj4kCuKvZ5niNAZXSoOc/3wZUII1AqHk08aRPFCokJXUNNQ+PxKOggXeTBB22teA7ilTrnJpNplnFZFqi0tBnLFIZOG1oeoNyt6cR5mcH7QFSb1AK2vrK4T/3EGfkWzMRAbQuQ7ShSblIAS9pilGWnF4/SOIrjOIljIgIGg9oaK5k4VtoYY6NIGy39/TKP6jpmYTCVECigIKaIVquVc00SJ8aYyFpxOaT5jUWcsUOea9RSXZRZlsAMugxdf+fc4QtuxM+9rwUd1U0YiD73j6urL12jMh+O0NGTyMFtOnr9/iFLErmPi2QKpKLSO2N9ahI7NYt+cNdfR0RycewUCKDTzFBKGRy0ZtINjlR3rd7Egx+GsSTRlXZKjwzt/nl9H153zeUxTcbju3fvatPmjZ6NIIeBClxv/RSHoEset3Gb7MPJLNNKGYuInQwnyvzpIZlwZ4Gu7vTy8vIf/sN/+Prrr//8z//8ZDKRh2WthcFpQTf4iP+rs5C9wfLe+7rBoijWZ6FY++KiXJ/kqyfF9ryq9vvdtqy81iZVSllj4yhOEtBKU9CRRW0IlQcgiXmYTRRlo8lommSLNLKGGdO8Xq+L+mKz39bFel2sL5OqnB0cp+PJZrPxaNAkk8kkkAJlppOpUui9t8YwBKH2AwBr9ftPTiTxbK09Pj6WfpL5fD6ZTBrX5rx73SVJMyNiFMe9mq8A/WWh13UtStLQbT9JmQjoQnLYzLxer2UpS4RTdfJbPVLLey/Uos41RiFJcy0qqzX7gMzW2uNbx3nx8qOHD5mZQqhCZToxPARw3iutja61MfY6J6AdQr9unDC9WsrARshwZSWt1FcWra+TNlf8g8McAwA01dVL/TNpUxfDyJ/Je75xG7Ij+tIqilSf6jFdgp3GlsSTuCgqIWXBro+ivQizM1dbtrcpIYRAYR/qqmnyPC+Loqrruq7qumFmZYyNo4Ojo8Pj46Nbx4vDg/F0ko1GzjkGQG0k7S2nhekUk5RSVVX0T8l5x8wOnGBy8u0uTVPh0ZYKyWw2kyUhO3S32+V5vlgsBGpcVdV+v0+ysfd+Op3WdW2jtsrXJTLUwcGBdIb0lhG6xIeciLJQZR1KMUdCmv7UlMQ5dvkFWeRxHGdpJtQxsjh7EzxcOzJH1pq6qoqiUACRscBQNM1ut5NaCoSAiMF7o/WDBw++8ad/KovgeeoQcD1QuWFFJYi9crkGY/hPuh6oEKvWwxtEKV1Ra3hw0NVHC95GKWVMFCWEump81TTOudr5fV4orefzeZqlURRFNlIKkQJQ2Ox2WZJGURS8L8tytbpk4vl8Lsg9mZTdbifH9na7VUoJrcLR0ZGYFwkye3dQZlZaibIsm8/nkshUStVlJaZpt9uJHMd4PJaPSJJkv98fHBz8/5j7r2fL0uw+EFtrfWa7Y69JU1m+utqgATRAiiNIjMCEhopAUEM+UApx/gC96F9QMPhn6EEhPTLwJlLScCZoQAKEYTTQAAF0oxvVplxXZqW55tjtPrf0sM7e99xbldXFRk+QX2Rl3Zv3nnP2Ofszy/yMhFN1XYvYurTILi8vxWJS0piyLGU7krxihNdL+iqq2W1Xy7VJIWaMpVzXb65Xs+msafbed7v95uzs5Jd+6euTSZlZO5YVefAeHWMLMaZIA3iVB7y4OHVrUgjgQgAGQizz4i//7M9/9MMfGWMQiFAxMCEiHmATiDpCNJmlqNx+xzECJ45+OSntcqE9AEDTd030zYtUdz0z//4f/ckf/cmfP7vY9iE653rvAicgZADnXOtcmU9STD54Cf60NgAMLuybjjmN5yUeLkNmDWt1Iy5yeLMxklYAqHQGkAAjY4ggog0KgJjQs0M9pFuJU0yKSPSPbYBBCYK11ai1854BiBIyHbNP+CWZyriIbpbA0aq5tXDSTcVXph4fssrDm7pJJl/ODzy6Aq7bXVvpMqj5oozOTadFYPXp8+vp4uzJrr5cXf3hH/7hN7/5zYcPH67X68Vi8cMf/vBXfuVXXnv0KgJaa5EBYsqMIVIxBOc9Ga01ZUqjKFZFDwCMyIgBuWnqrm1HuheRSoljiCKSLqzllGJwXd80lNLyZJGiu1qvjIKqmCJA3XpbADNaW+62113npKgkFNOmcUqpyWQavZdzDIC9d0hQ11uldAghpn70coWh1i7j9PRcdmlpQUtdSaK6PkTANDYe5bGHwB1QFG6UhpAYlRGHRyDkyHc+dun/KKI3335LCm8hBFSkiDghR9TMxhimwUqVb3LOz0atxyPFSMzW2qaum7bVAwU6yzIgAoAD7pQwSal0SMbwRimK4bblBh5lv2PYTEeGCjQY0cgTpiPsKA4syjTg6GA4lcJggHMcSIw76ghRGXOM8QOUXWh8fue97JnjAYpH4G0c6o/yPIKsZmY44r045wQ6iIjT6fQWR0WCkMMHwUBHqcWds+04Nsfj9YuA/Pn0oDvjEB+E8Oabb967d4/gJpKDz5yyLxs3Z+qQfgGAMSbLTJ4bko1ZqZRiPIJdHj/Dze7PLCHOP/tn/2y9Xv+Tf/JPzs7O7ghF/y86xrfgXJdWzy4+/qDbvsigZb8L7ZY5oqKEZPNMkTZ5ZvPMWEtGoyIVlNIaiBMkJM5yo5Sxuc3LvJoWk1k5PZ3mmSEFVevz0hCBd/32+nq/3WoXQgjL9KCPADoHNG3bMStlJdOwwlH2oZdJ75wjyr7yla9IckKDa57Edog4EuslvKNBKZ+IGA5bychUpsGvVERCu64TlAUObMUYY997+ULgZLLqhDovLySlR7l96/W66zoAVggkST8gMkTnRKQ1hvDGG288+/TTtm3rGKMPmTLjnMjybCxp3DlUityOX985pbqmkT00Hkn0SpIRe09DmnH8tESk8QbxjHgLxGUye5OZiCLNqFDeuePLOI5NI8chXTpkFOOOo/JsjDjTEYY1pZQiyysRURyEYGOMgZOZVWl4VEwphhCiyCzHln06CBIc5DgSsFE609aWxYNXHj589MpkPsuKHIl8ioETIlZ5Lh9OGlR6x91TKtyCg5JzSD7Pvu8FpiWQP9nspB8tHuGTyeT6+lqsLcbPiojW63VVVdvtVtqkcXADnM1mIXLf95PJZFRfGKdlSgewgdxf8Q4LIez3e+n84CDLOJZ/1DDkDsYUJXAUavWdzgMcJSqffPJ4Np1Op9N6v9/v95k2smtPyhIppGEiVZPJfDoTbgOmO/vwlx3jSQZHh9zxVY3ffPknPPrm1o9STKR0lmVlWaG2unfYtN77BKgUMkfXtyn6dqD2lmWZ5YWyhegFn56chhA/+uije+f3EHExnRljrq+v67q+f/++1nqxWIh88OXlJQ4NsUNVcgBfSd9MkKKCFmNmAfH2fa9Jya/JLxCRYA6ttZPJZLFYXF1dAYA0RhBxvV4DgLVWgkJEFBCgPIkAFEdg6kjTl2Q4z3NJpGWH3G63cjG+d9H39X63XC6KMsvyk29961dOTpfW2swY8C91JRZBvNFR+/hGoABbY0ohcoiTsvrpxx//h9/93Xq/nyIlUCFiYoaYMPAgUhNJ656jMsoWuQ40n0/vnZ9n1jjX93V4dnWNRm/7bnV9hUpnJru42sSQtK2kIoaECAL40UopMtb1EQCVttocLMbHrSx+Ri3wMINGp8nhnRxhNgBJdEZRcFwMgMQIREhtdEhAiIwEyJKPxwQIgC4qokz0ZxFcCCQlZFQ/7zJ66RjPA1nhElkQEQDSYO0w1sK/xMCUdNfGzrjKKpNnTd1o0g/Op6xx+3gjGu4//vGPhXT+67/+62+99VaWZR99+OFyuZRmo7VWDB/G+J4SawallOsdAxdFgQDBdzWH/XYjfCpdVQgQvU8ppRj7tlVKkYIUQ9vWPrjg+xDCfrfVigFiSlzX9Xw2Uyr1fWidBzJVOd1s11pzWU6YIcZUFKW1drtdE6YxY7fWVFUpwaj3YTqdIOZShpdNePxblrAcAcdnASldTpcMh1NSzgXZvUMIMXFMEEIIMSmbl3l5ILoAkFIpHSiXUqEQznqMIcvKLLe2zFerVYhRCRJEUUJQosBFB63lL5gMN18DA6I4YDZt27WtImWHxg4S8lBWRjh0upgZjuL+z8TetyfKECF8tggl746PO67DdjH2Uobo94BZOCbDyPYSjrhwfGTdKA88funjq4qDy1z8QgOP47CHmYFuRUQj+rosS33nyo4+31sNkDsh0a1E5bgS8KXXPzMrpTiE115/XWutkhK8R3q5Sc1nRzoa8mmK9ktVZaQiAgPGmO5+iMdjTA0lWPnTP/3T3/u93/un//SfiuX8l7+Sv+EYYxfnXHB93F6n+lq5XWYCaTZVluVq11lsHYeISiGJQYfsfRA5RUjiHYTEuc3KosoLO5kWRWFMbqJGzkhZlWsALDml0PvYhbjz7X7z5Kex6frzh6/ZzO66LgRvrCmKYr/fKzWLMcLBkJvrBvb7fYz+0YOHYsojE0uKjvKtNVaOfGMM3Mac9M7JjiPVCykkSKJS17V0YOS8l41GfrnvDxGbBBY8tEoldDtUPgbAzxCmRA4+huCc885ziAowMybLMqV03exk8gTmFII/QhG3XXfQM/zMNpTZm6L4nRVohlIHD67tY+hqqwnBTdvkuAc6KcpxWY5NIRmkb37tOPhGRE13a/M3VwU3ebtgXdIgOJYIQ7qp5t6UTJj74d9jjJgShsjBR+8hxqt663nw/Rgb5USokMjIp8CRjbXq4AQsaDG0WcaESLhYLLS12/2uc71Yl4inXkpJxLho6B0rhUK+Eln3NHiWZ1nW7PYCcRYNJWGDKKW2221VVaenpx999JGcXtPpNKW0Wq1g0AGTmTObzaqqEqTiZrPxIT19+nQ6na7Xa9EBk23Xe094FxklVeHFYiFqDThoX6aU6rqW63z77bfH9SvXpj4jfnL7Y0+J+fT0NHi/2+183wNzGNK2OFjHHDQfiRSps7Oz9XqN+HP2b8dMDI8AEuOPxq+/dCD1hXoq47MRCrCTlCYi0kYZLeRIoXYAgFi81U2ns85oY4zZbja9sb7rvPN5nvvze9PZZLfbdV33ySef5Hl+//79kWJ0cnLy6aefPnr0aLFYbDYbIdwLz3i9vpZv5V1LPCRXHn0QZTBEFH7RbreTo/Dk5ES+lkoeDCUksaOdz+fr9fry8rIoirOzs8lkIr8gjVxZbqLTUBRF27bb7bZp9yIeIK9yeXkpC6rIrO+6k+Xy8vK5zfQ/+Af/vTi0VFWBX3iOytyTNXLnfhEiMqSYYggc0367+1f/0//8+JNPcqsZMAIxY4yHAtBwk8Czb5vt2enpvdPT+yfL+2cnpbWYYt/171197Po+MSQklReA6BLnZWV1vq/bw4xSlIJ3McSUYox9CJzUTatkqNFIJu89jDP4zrnM/BIzOGRLQgCRqE5a1EZTpoiWdkEECokQDZEWz8qYICFH8s43bdu6noEJWCUmBE3kftGZSoxxNCMSmedDXIjAPnxxrPk5gwm5bPagQg+VyS3mtrCZrdtucrJ8uI9/9t3vL2ZT8Xzs+/473/nOa6+9Np/PN5vNd7/73dPT09dee03qOLJbEmIGZCKQCwzRIiJSv93vdvu22a83V1lu5/P5iIAYus3oXa+NSi7W9W672+S5PTlZhuBC8G3bNdvd17/y9vXli4uLy86ls3uFNZnWxhgjZaOyLIXT3/f91dWV1qQtKQUpha5rmX3X7auqEq1RgXbL/ilb5Yg7ItKIuFqtQgjz+XzEZSCRc35ELMlyls6qc66rG0BFRIYUHXG9EgClKLyRUfuxbdssywBg5+oYPDAvz8/ioREBAKgAuA+Hfhm9lH0Nt89lBEZAHwIiNnVdN02Z5aKBjohEisU2KiUpY4JkDsCYcCh13WWcHo8xThjqifHOZYwhwQjQGmEFEjLFGCWUDoPNJQ6lVfl7vCNjuDJGJjhgz+7McOldywO/QAlgDG9gSFTuREo4oMR1OtLaJ6IjhhCTP8ZIAR+v7ds76c2LveyKPjMkaUbS8/lJ17ksnyAc3vOXPyzTkT0ZEmqjssxWZTGdlBzW6SBSPqIeP+dpjz+plNJv//Zvf+tb3/rVX/1V9Xnmpj/HuNNcuv2x8VHhCJmBU4IY2Pfg9qWN1mSFNcjaR93G6FVL2110DcucTIe5RaCCSL4SMyREMNZW07Ios7y0pBEwtZ1ThoiAU9AGJpN8sahc7Um5T3Z1513kxEim2qtidnZyD3XWuRABmVPd7GPyxipE3tf1s+fPyyJ7cO++ZPwH7tTA7NRaC7VDIu+hJXKAfiGpETwjj5Vlo7VGIjnvxQJS1mfbttbarjsoxhxg5TGOYf1sNru+vhaeAxE552azmWAzjCr7tg0heO/aukk+KEClVGZt3zVVWSpZdSJYOEC/WB+4UgPckMcbp9UAu0KW7sjNjUzJKGWMPWiFASutjDaKlGGkoyLB8RZglBpE+Q8/HaeJseZWooJw2B0Ri7w4LjYe7w9K07ArSV0vhRiD9yElViRxcAh+lNaJMSXgXdcgHsBfggz23vfO+RDd1XOVYgghxCBZTYrRx5hiUoYQkYzRmQUAH2KQPhKgzTNtTUpJaa20RsSqqkxmsyyrdyuBY2mtBSczNliyLBM6smypYzAtKY3MGalYy2kqpGdSh87Gdrt95ZVXRJVrNpt1XXe12kgw1zQNDQjDuq7btp0vTpbLpRyf+/3+WEcus1oP/o+yS8LQ1+ahvz/u5pJsS3VTbqIk2zxwAVNKt8Ti+ICVBwZIyfXC+KLpdNo27Xa15pTKqrJGp7pPwMyc5zmR2u/2p2dnH374ISrw/UsyBP7cHe5o8zkCfPPLOipfevDhv4OOknwpr0MKI7Ms/IyMIHEYARC0Qk7xwb1zbYzr+67vg3cArJROISTEAOzadhsiRK73tVL0/NNPXXCz2VwbY61hhO1+p63W2kxns67vldYxpbqu4yCc4HqHAHleiNj0mKFJkinCYlprMa0fU3cRDfPer1YrIpKZ9vHHHwtsTKokIkh4//59aWuMctWb7bapayJy3vngtTGb7fb5ixcAnFK4Xq1ijFqplNJuv5cUGpgx+KvLSwb+rd/637/26iPXtYvl3Het41iY/KU6NDECs1G6Dz0Ooul8+JMAiDmmEDjFH/71Dz764AOjDTIDYQJk5pAOfM3xCSP4ala9887bbz56hbteMViitus2682nz583MTpEY7NJkW/3rSIqi2mzb8qikJNVYjFQlFLyPnjv54vlGB6JEo+UI5RSkUczXJAgCo7ewBEyA46jCQWMKDwaJAVaG6WsUVaTpuRVZIWgETKg3GZFlpV5YY1xcLBXT8zb/f5yvdo1TeP6GDyyftmk//lKAXy7LYkMYtkIiAEjDC6BX1oBDOsm7vpuA2E3MaeLqshNzgioCJVWalaVr736aoyxruu+6z598qRtmvls9qvf/OYvf+OXxOX2+uJFkRfz+Xw6qawxUWft4J7hnAvBA0JRFEWRf/2r7+ZFboyJITrnXN+1TZs4KUUIHCF1Xbu6vooxVEXu+653XYz+/OzkfDkXNuPZ+flu352ene5q19ZNCv3JYtE0Teid6zqIyWid2ywEt91sjDVKqywX4/msbnZFUSIxJgCAGKPI4tHgfKC1dl1PSvnehRTHwmiMHGOwWgo/t8pzzNy1bde0SluttTYWEVIKKQbgFFIiToLSHDlg0lPN8wwQgCjG2DUtAB96GsyB0RIhEiAhEooI2tDi++yEOPwfWGpPRmvX9753Ki+11korZkZFjAewNQHg6N6bOKUD0EGC3JdOlCFb+GxHhW8PHFDKfNRjGXIq/GzR/5AnWJNlmdEmhBBTxAMBC8fIme/2MH7mQXTr4uEoCOebEAklenTOTadT770uMjMew8yRbyHBwiiVwYmBjwDQR4oHYrc5Hga3wHrpFqwTWQHwQZM7JYWKQX/lzW9onADSYdcDZMI0LGoEsFofZgJDCkHellIKEAMAGSXpMcRQFtXJorIGumaTmzEDRZYN/OaCby4wxJRlGaeY2eK3f/u3N/vd/+3/8k+YELXicGt24H/+cc4I8TOPktQEmRVhjCmCQVIATKlXPmQpkuX1PBhrCqUMhOAQndpt6tW22dWe2laXWXSdb5tYZAgRAoW2DW2T2k5FzKAAD2We37s/RxWNRUBKe6xbFzNfFqQIC0vnJ2Xsuhi7qvGberd3+9zShIP3XVnY6elZ0+x6ZS/W/dPnT+/du+e3PSC+uLp6fnFhjX3jtdX52UlZ5tLZ2G63XdeXZU4KUwqooOlqFw6MZBd6pZQPgRMdV03kmNdaN01TTmcp+b73RLooKoGNpZS6riPVyW5VVhUwdH0n6CDn3KSaVeXUey8BhFZ2uVyu1+uqrNquzjJrMqu1zrPc9/1us93vdxQZgjegi+nSaE0MdHRox+OyhTQP1ME4VMVEgIro4JwNfEhAELWmMQVVWimtbzrEcOgYSMAEAONKAeQxhVFaK6LxkBSQ8QFHiUfFm8NmfmCb3MmX4LANpZRY9usyN4gYUuy9Gyeic871buSoFFUpNlPaaE6JiMQc4NmLF69Mz10KnXOdd30MfXAd94jaWNKjv0YCRDTESAfN+9OzeyYvT87uzeZLAOIEmc6MslIM2+/30n6p63o6nYqQpeyP8sVsNqMBoRRjfPLkyXI+TSkpjZUppBente76FJO3Jj9ZnpXF5P2ffPiVd74qVBZEdP1+Op3KmSdEgldfffWDDz64urp69913FcHZ6XK1WmVWb4JLKVkjLDkIKSpOqEiUkXwM1trgvVIqo0yYCYIHk0rPIZ9RqLUau4ghRA7RZrYoiqbutLLAEEPwPiqlUoTMFs+ePbu8eDGfz9u2fbrZaK1d3+d5AZr2XUvKAPKmrquy6pJDpNffevvP/tNfuL6n42AHB15RiAzgb//keCc2mgCSaPgQUZ4Z6UiEGEmZG7j+eCgKnkeO6KERJCZbESIDkLGc8MAAYJG35RgjcCRllFZN3bRtb1rHpCKCssbawpa5JgqcXN8RYVYVWtSffVQxVEW+39eIOKmq4Fzb7gHAWxs4hm3I8jwLdqqm6OCnn26NsbktEFVRVa1zDFgVVZHn9X6/X2+L83M0qprOtbUhBE6AyvjIXefycuLcOgE2Xb9YFLu62e7rGGOWZX3dXFxdyzqazWbPLy61zXxMT5+/CJG7tlVEVVFcPH/e9/18Pv/k8eOz09P1drvZ7+q61lqlxC54QvSiywcwnU/rZo9Ii8V8Vk2K2aRpmnuLh2WeL6tpmeUP7p/9d/+739SUijLXsTealNKUWQaMMYJ4cQMqRSnE6F1qW6N06FrveooqcJI6Q8TYuX1ljGIOzXb14vKPfuffhe3eIChFSJySBH+ktU0pDrXVkCf3zXe/+re+8c4kKw2ZLC/2XV8RrPljbz6KyLawnjD4qDBOioqUnk7niCGmFGLyMRIgBkiRM1NwIpMpAiAi71zXtAppmhutDafYOS9ioIiolAiLphgTp0QJhuYzEDBxIkAiJGCI7WBtTlppQsUx9G7bMVtjU0wKUq61B58icmQNlGt69azElBSQoUw9enC9r19st9//8P0Xm13wQRmbjpS7bo7neIsJQCiotgN0/qZ+dFuVRw2RDiOoBDrxWNhlZkAARQDkvQ8xqkHPLbykLckIpjI19HXr1uvmRduUeXZ6sizKPKdsVlVlZueTKs+zT5/4VlE1m+w3q//0ne9EH1579dVHjx78nf/V34qua+rd808//cnHP1ZEs9kJkZrNpwBpPp/fP1+mFBfLOSKz96nud841bev6PsR4wB8Bt753zjVNXZTZ6enSWDCau7aHlB5/9HGeZdPpdHl6L8VEvQ+h0xQ3+8vLT6+a+RwAzs/PM0Xb62dE5EPwLuii4AQhJa2yGIPrQ55V1mSKDKmoFMUYCTi3RkDdQk0k5q7p5pMyL8uimiZAH5LSpswLQuWcSykSYGasUkqMeDhxiKwNElHwjmLUUokDjin2gduu40Hc3DmnFQEn1/cQkrHWkgbg4H3yQdyTkUiZ4sAQ1Aa0lg4AKELEhGPJGfBgh8spRuDkfK+UyrT95P2PCmMBIBFEhYkhpEQCKNBaaQ0MKUZpQPbRSV8XBiK7AJWVUj4G2aIjpzhs6QdBMzhoOqeBySaJVpZlKTEAipMjIjKD9wERrc0ic7vfy1l8AG5oDQBSEwRmZS0TReeAiAEiQGL2rpdfk/KxtTazGQCEELQyOrNIpMCg0XiIFACATZ7t9/tc5daY49YuAmRWztyYGCOj6702GaPykV8q1It3GWZfdnwRR4UHGXNkREicprOF0QYYb3509+le/kIAxqiUEqeICFlmyyIzRmmlEBg5fpnqBRHtdjulVF3Xf/zHf/zNb35zsVgIb/LLvNkvHjJlX3IRKFCalGL03iBYiCl00G+i25a5TmgzTOy5j9D2fd10Xds556jrMqtTiN577zxpJe1+RICUgDFFJmJFZKwmRYgQQoxtJAXEVNhMIKdZbqbTvHfVqYcU/aZp1xdPd3V98vB112yf7HZ2MqmbLjEUefb4k58+e/Zsv99vNpvnz59rRd/65telZzoSoaRaCYghJMHh8KA9JZVppdRu2wgpWUomRVHIJy8KTqLtI7V2Hihlxhg4kAcOYoUi9CRC8rvNHgbPEFGYnc1mJycnveuYvVFqv98/+eRx33YKMMW43W4//NFPmrapshwRJ9UkN8Z1/dhRAUXjjR8TKmOMVkqnA0B1zDckyQAAPM7hb1NKMp3RALTlkfYqhW266aUKNGJ8EnNUCFBHiuMAAOoWAu14ourBiYmZrT14cQJAlGjy9qMO9c5BnDHGOO6GZqn7pquKwjHkCjPrebdJDElDiMzphgw3vuUYIxDJn8712uhqUh30OrSWC0OAercVyrs01sbmGBHJdfFg6SgXL//SNI38joTW8mxpIBMLt16Ukfu+n81m4s6xa2oRXZB3SkTiLaBEvGVgaorSlPxLVVXKHFiGh1NhKHGllCCxfJ4ppVEUWy5G0S3bLEQUTxsp2h1zJ+QzkSaPZFACQJIuEDPHlHrvl7PK913X923bPXvy6ayaWGMms+n6yvPPhlz9jHFcdaOXo1u/cPdnOBhXHN7x8O/IwMF7qQbZzCpj2hBciJCiC6ltO2Os4AFEjCPGoLUpsqLd101zISflvq61McraEELX9/PTEynj+cTr3b7u+qIoAvvW+Uk+aa6uFouFIJ0gpc1mQwyk1dn9c2PMfr9/8uSJaHM9e/ZMMAm7zUaasZvNZsw2v//978cYxYXWOff06dPNZiN0qevrayLyvk8xAsN6s+m69tXXXttsty+uLpumqWZTH4OgKxHx5OxMgF5FUSyXc0GISdwgneG+73ObnU1ms9nsm9/4qnQ/bUYEQCLLh0cdBqlfJE4pxRBhrHYBjLVNqcIqhd677Wrb9+0f/Iffe/zRx9LfNpOSWRpH8mdowAADw+lk8dZrby9OzrOsUMowqCKLhGoxrbOsZPKoDSL6AJQQGTABMmirMSaGwIiYIEROjKhIKYUARBiC7yUd1QYFA4NYZjYIyGQ4OMa1jGjldwiBABWCJiQihUDAakCd4A2mHxKCKFVFZOREWkfEwLxp9srqaR+LPJ9OJkVeMtLi/r3Tts3K/Hs/+tHHV9swkKHvlqs/Uwf4MuNm7cOB3HsoJiHQEZKPiBTzyMf9oidUSFoxogvRx1C3LROVfd8HViY7Pzt99MrD6+tr750xum1ba4z37s//8i+fPX/euV+5urp69OD+ycnp6elp8s4aGxNPpjOlldbU9y0SbLfrpy+e9W0bu172sa7rYBCJkkMhcMjzrMjNpMytQe86zJXRtN3sYoh2Oq2qCklx4rwonr94bq3NMhOy7PHjT4qiiDGUZblarUTmxMdYakNKS00nJT1E0pBSmk4mgh8WbyU/+AwSUfS9SBwSUdu2LialbeS42+2KvJTGi1DFaICUW2uVMnJwSCTt+g5YGvgR4GDPKh5NMgMPp6ePXdtJBHKAaos/OZD30eaFMUYU+bVWIAI3hLcC2EOQCzCANQhxs1rRQGgUHjYplRIxABzE4o74ZnwTYNzNpW8PPqLUw+DWIGtKthq+AYDdmMSPHZXDSwhpdlD0ktDLDb5z42aBt0HReDscQsQxGknMo3gL3pYBkHt0eOxtCLElPZ7LNHBHQwir1eqlicr/4gMxxnjv3j1rXyqD/TMHITKwQrK5nU6KqiyMUoSMiuBLQKhhEBnM8/y99977+OOP/6//4L+fTqc0SDj/fKCIW1fIQIduENzxeO5jssYWRkXfoevQ7bXfRLdSfZ0ZiFor4K7turrdrHZXL66uLq92m33BTmZD8MF7r7zWh+tEQeYcMPDAipTNDAD4BLVrmEOIqO2UVK5J2dxOFxNG2u67vtTe9z524LN2s3oWQh/Qg9oGarr+9PT06uoKEReLxf3797/2ta/lmS2LMssyiRoFb0NEojseI4ysLAGMSnsEANrGyR5U17VIiBKR6OFs6wYAYoztoD0imcxkMpnOZlKAl5UDAPv9frvd5nn++KdPJJeQz2S/36/XayLq+7ZutixwHYYsy6LzVVXdv3//bLF8/7331pdXVVXlWYYMk2oyIhfRqBv4AaJQEq21Rikz+NnKghzRboiojzz4xsV/iObjrfV8s0SPEhUcerLjk0hALCPd9nuSooWM4/UPAKP9pTyEmaXqH2I8dpAciW4yBEYlTCHJNuV+TcoJFkVkrtvGBQ+KMIbEDMEDor4tsnm8611eXkobXZJYONpGy7IU6Wr52nsvd19id0kbJJWNMUqaUVXVbFLKJyBTTpgnstWGEMqyPD8///GPfyxpgBy3McaDiotSgmwWVbqRV/3hhx9OJpPz83M53kao4TxfwOByJafdeIwFd7CAlGeuqkpI3s+ePfvG194ds1YeeEqIKLLd47+PunlXV1cppevr60M7sSwnkwkNXhxaK4l379+/X5WVb7vvf++v/tvf/M2Tk5P11fUXbTdfboxgACIC5l84sVg+vQRcGnN67xxNtm+bpu8S06ScGW1TSrvd1rnAHIlU1/n9vpsUmTVZEHU+Quc9A5vMVta64JVSUl4VaKLsD957YCVs9U5rrTQBVJMJAnR9f3l1tdvvhSl7cXGRUppMJh9//LFkxtKDFdrS1dVVWZbb7VaWw09/+tPr62uBlyyXS5l1VVXlVW6MmUwm3vumaSfTib26MsbMZzNrrWxoEl3JnHnjjTfm8zkie++Fqispq7zubrO9urr46lfersrCtXVR5coAIjMxA97xaEA8RFE+BB4QxULZVqgSMDCnlCzpdr9JKf3rf/Wvv/u97yXmIstc8JIOjNHOcdyDgBar08VDW8zZGl2WijUx6QiL7KrQJjEwqcSsABQA8UHXE4mQxbIkHVIfBMFdeO9VZkXBqcwO9GhmVkQAB0bocYULxroPMBEhAQFoIqNJa60JzRC7jPGQbHSRuU2cmAA4IiatPIFSuG3amdLTs0fLxfLk9KQoC0RUCPzJJ6/du6cSXLV/vdrXcmzJWX/0Wd9S7v6SMcCdAO74R0TH1r43oklf8GzIQAi5NclmHDykoBU19X57ffnq66+fP1wqY2WvGBvUIh2x3ey3++ajjx8XZZ5pde/sdLGYlVk2qcrM2KoqvXfaqO12HaP3oe+6LoWogIssr6pKesVKKdmR8jyrqqzrWu9cnlti5uiTd9G1HN2jR68756+vrxGxaZoHDx4opT799NOTxaIochGlEIGclJKwDVGpNhzIciOLb+AoKvHkTSlJ2CCNDumK2/G4YbaZUUwJcDKZVNNZUx/U+eRDkOpPGHzGRnSx7MmHaIET6TzEQ1NRay3CKm3beu9VOoi1ZFkmtdThQCdj85BS3/faGjJ6oNaT8Exedjdl5j99+lRCTTUwe01muy6O5+adR91kET9rBo6RAw5CL/L1aDon1cDx2I+DlI4UYWEgYkgR7fgf78zSzxYoxxq0rJQ4aEOPh2b6DJVjrNallPh22DO+4vFq6vv+yZMn/8USFUIMKZ6dnUls8XM9RwoupBiNtfNZNSkLQkjRMzMifDEfcRx93wus+dvf/vZkMvnmN79Jgwzx3zxRkQ4gDh1hHnRWDh0nJAD2bteur9rVc2hWxu9VaCi46TzjGAKn3ba5ut5dXq2fPbu+fH5V101xWshMGusEGKVrcZBnSomR2TsfYqhMZYxxkffbpm0756PSiAhVURils8JWKZ0vKwJG4L1DB367ehE2G1bFrvWPvvGtX3702quvvppSssYopUipGEPf9xwdAFxfX1dVFWMUfQbvPRIpfZjuYzU9DkNmLQ9GB1KzOfg0D1BR2Z5Wq9X19TUAlGW5Wq9hkB7e7Xa73W69Xh/EoNyhD3CsCrrb7ZAAIEBKRJTbbFJWZZ5Pyurk5KTQ9vz8vK8bYwwpwsRa67FpK245Mkgpo7XNsjzLrLEGiY67KEfMk+D6m5s+nKmHDOR2vnz8ozuJyvE48gOGkVF3+NFRs+XOY8cLG4vEg7QIHSfJhz1iKLRIJC0bHDOL8u8rr7xSVFUd/Gqzbtu2KkplNPStj0G4E8cmMyL/JWUhIJJcQqJ/0Z8ZZVjQO7mqNFBTUkp1XWutiyKTaGbsPEgmI5oKwj6U5FDUt+q6lvkjXp9/9md/xswSy8pc8l0vpG0xMheTn81mI3pfv/zLv7zb7WRnPLBTBrbJyGcYr1CuVrLo8Q7KEbhcLu/fv5+COw4+ZP6nAz1xROSnPM9FhUzsBUUhoCxLoUbIxQhqvLC63m0RkVOaTKe/9mu/9ujRo+Vyaa3tX64H9SXHGH4hIiGm+AvOVKy1LsYYQowRAa0xEzWZzKaks+XsfDqdK9EF7lpE1FoxQ4zx8vq56x0D9M5tm8ZakxdF2zT1i4uTkxMi6l2QmMEYo1yoqmo6myMoZTQyIBEjOOeBmQDbrmuefdo0TZZln3zySZZldV3PZjPphrV1LbVGoc5rrefz+Ww2E1eo5XIpWpSipyL23qR1Fw71WqHOM4LOs/l8PinL++f3Nuv1ixcvhKG0Xq9lEpZlaRRC4qdPnhhj5UZrrb13Tb3/2htvfuWdt9v97vz81LleK2QIDOkzzawDFlx2UUYBT4+JCgBDTJFT8sn1Xf8X3/nO9773PVGeSMAmyzwkxWk8Eu9ERWLBUGRFJIhdn5JXEV3TXz17igyYmENkThwSipskAwD4EGJKIUUfk/Ox987HhETOuT46reYCXDHGMCfXO2Y2WteuuaGVyksP2yrwIVEhBEWgFRqjrbVGkcED0++gtiQGfiklZu+CTwmBlVagtUsxszb0XbFY3Hv0ldliMZ2XgCmxNwDvfuXtAlO/35dFvtrXOPTqbycqR19/aVwJvrwPQ0eS8nS7vvNFz8jRGm1mVWbQ923f95pQWfPi2TM05WQ2K4ri008/lXhUeiAxJELVuVB3nW0aH9xHn3wCAApxNp3Mi7xtGud7BMgLi5hOz07yPJtOqirLVpt13bavvPJwfrIsiyLPi6oqM2uffPK+d/2jV18FTvvdNsuMa5v19fV0NsvzTG5cGmiEJycncmrXTTtdLBiJtFFaFxMkbVwIvuvL2RzpgBca9UKEAGaUEkiFvB3hUkqhkEf9VURSKkbu2q7v++2+nk3nsiolkBuVwUIIWls5QcaA5LDvEcERQ0NSPhjqqvV6l2WZnKF8q/JIRIJeGXxbkMZEJX5RZRwR4eLyQipxpHUCICJjrHP9mH7fCTjHmubYM/n8aXKrJ3kL6yHbxZ3JNpZR8Ejloh84lmNsoJSSj/S4SJpuq7CMD5dERe4jHNkbHqcr46MEDuO9l8P0OCdJR4rM4xsXn1999yPgW/8//ozuONrcjIEmNjzPl4ruxSPy/PzcGE14N19igYJ9Vqr4SGSACDj6sshns2lVFloRp8ApSkLA6tbTvWzIS/R9/1d/9Vf3798/PT097KEoEDb8Mk9y58qPv1FilyRyeJxQESnqvQcAgtQ3uxePP/z0gx/062czFc6n2ekkLzNlUNV917Td9Xp7ud4/v9xeXK7rpgdAa6y0TbXRI3OdB6FrAEAEUbsaye6hd9pav09922ptM1tYDYoUUCrL/GQ51UoBImzaOqBSZZ+0Lad5DrNq8rWvfGWxWHZdS6QY2HlPAKCTynTbtqIOTIMbkcTTWh/6IZKCbrdb0ehMg5E8Dg1cmaybzSaEcLXeaK2fPn0qXhmyT2mtT05OSKnpdKpIVVW1WCx48C+vqkqT1Nqw73sRZfLeX15eaqOUgq6pr66uLl9crK+vM2Nnk+nl5WVpskVVzmaz/X6f28wYO05sSrcwV0TKamO1scZk2mTmhuAuH7jWGgETpNxO+GjAEUPAGDsuJmkDjIlKhHj8VPpoxaqXrTUAPtrX4PbixSOetB6UxwAACY9N0dNosjbgyszBQliso7RUr4uqfPz8xRYpM8Zm2abde06iXtL1vZhMy/TDxBE4xcDICvjs/EwmgNSoBNcHR6A4gb447wQfKBuTfD3urcaYkR5tCCW+lDaFtVb8wlJKITQxxslkIpHogwcPpMuXZVndtWVZyutKm6iqqufPnwuXFCSedk4uTxIYANDRSHJFA1RvBADoQUX+OD+UmZxbPRA6QJQPxmnAnAR+Nr41pdR8Pl+tVoI6KIoCEXf7HScezgZf1/XZ2dlHH32klTo7PbX3TdM0v/7rv/6D7/0VDT1xGAzmjibH0eZzO1r67Dl39BbwCOeajnc6HkiG43F4NM1v4Xb46CXGXN0537SNzgtrbVbk2hbACIBt28WY7p3fn83n49x48ytvNXWDiKv1qq7rvMgBQLAom/Vmt9sZhs3lxhgjPNQsyyCxUsoHX2aF1VoRceK+abVS1tp9vZcwSClVVdVbb70lmmxlWfq+Pz09retakpARdGqMEXCgzNKiKOSFQgj7usaMUClb5KBIZ9Z7nxeFtVYhjUJhiJhl2YMHDwCgqiprjO+73PAr9+/LpxRjvLy6iiF89e13/ptf+1UNqSzz/X6fZRYQCfVAJMfhbjIApyT82uScY0w2U3FQzJPJbJTuurptds+efPqHv/8HKQQRbQgxak2JEzKrI5DGWMtATheri+vLi8VsqpCE1OtDeP78+YcfvieCNCEEF2OMCUXmm0WUiAMnH4KLyfnoRA4WwKeYOLVtK4dCiJFDDN5zSjGEGEPihIDGaKW1UhoQUkqKVGRSwN57BC4mldUELJbQVFgL8bBf4cEZLSWixGBRUxScoSaAGBxlGfVZE6IyJaD1oH3oOHqffOZd8q7MTFmUAFcwWBrcTi1uvr6Tp+gjHwkYXaI/M44fNRz9N0fDcY2cvqCvkgIqMFpls4lRM+961zccjc3y5XJx78HD58+fV1WljfYhxJh8iAiglAk+KKVc8Jp0Sikmzoq8mi5//dd/5Yff/z4ArzcbpKi0XZ6dn52dFll2Mp9u1+uqqk5OTs7v3ZNuRuLUBzeZTIvinJCUUeflvf1+E6I/Pz9PiVerdZ4XQimUTaBt2/PzcwBInKbT5Xa7y/NMG22YtVF976ppobIsDqpTKSU5JmKMRVGkEORwlDUovREelGDleBQTIVRGPFgjH+C1En9LyUlyGxocOSQQkohCKncxJUBwwQuM/BhiwIMfbp7nIYSYUjz6xxij1lYNN3RUE+ZRIBkODsljnA4pIkLbtvt9PckLpZQIeSNACF5O3uMsRY2ujupw/TQgHWT6EVE4UsAaIwF5j2OVbQwzpNzmnFNKj78W440KfxxsDNQQTPIRKEANXoU8oMQPE5tZ4cGQcXySsVQqsQQcUe3HbUeMPserPy7C+qYb287MLE3Cvu+fPH2qxzUzLqTDMwzl//HmIX3+oiKgccGyqCUdf4ovWYbMrLU+OzujARJ39LPjtX7rfMUhUUFEhWSMnk6q+XSiCVP0CInoIMX+JXshkvy1bXt5efkbv/Ebt7A06Ra/5GfUP26u/WhrY3DOG62V1omAEzauY0BbZH3XfvyD7z7+4EcfvfeXBbdv3p9Wp5PKUKaVosSR6np3ud49v9q8WG0vNvt13UWGaVnmRX5wWtTGWmuMTsONE3AwDPKpnHjoYIDJLDN1XdzXoci5yMkYJFS2yPO8A0QXoYvk61hWUw+ZLuYLW1qbQ2JNlJksxuicj94jYJkXqFIIXgQNabAWktq/MLNFM0fcTgBAREJPTk4k+pQ6d13X2+12tVo1TXNxvRKj5ddff72qKnmP8kams1lVVVI+H6Pzpmn2+32RlUQkcLLtdrvdboXkGlM4O1u6rl2v17vNtt7tLl9cPH/6bLfbVVnR7eysmiilhMODA4hYZC7HW6mQFKBmUIz4mZRgTP0h3iKHwO1Zf0x2R0x01EXB20W44+l1XIEYwJyHEYeqAxztAjLodlsWBgDoHc4YDUhTGrSwjh57YxxbliUkRobZZOo59dG7ELz1iOic85yUMmQ0AxAnAsUOEnME3u1rqVHxYDg1ck6UUl3XNU1jjJlUk6qspJPgnJvPp6MMS9M0osp1ONKUOoYaW2u7rhM3qNlsttvtZrPZgwcPhPjRtq3YX8j0ExNx+fb+/fu73U5CSenqjJK1ZVky82w2a7pWOpbjPiO7drptr4uIIknHR/4k48crwbFgD+JgryEPUUqJ74c0duQcPczz6VSYKsYYqyZXV1fT6TTFWGaFJqWVyvN8Pp+7ppbP4Q7wDz5TS/kCcMmduTfOr5SQ+VagdudcOErHb//oCCodQ5ATKAS/3+0TqkSojDFZkZuK+aBADch1vZNDFhBnZydX6818Nn/9rWXTtjBk0a7rdyfbp0+fAiBpM58vUorMgIT7/T64rppMMmON1kZpTDydTCbVZDab7Xdb0TJ2zm02GwFfSZvOar1YLNSgiCCAE0lUpMorjT7hL0knreu60MeTk5NJUe5jSiFOFgul1Op6tTw9PZkv1uv12dmZSKPudrvr6+vpdFrvdoZUWRSTogRETvyTn/yEgS2pd9955/zkJPg+BX8oUjAlYqVun6cMIAr7kuumSJlWmeXEanCUUkqlrteKnl9e/c6/+bfr65UGzPNcomSfIsJNCj2m2WPosK/7Dx5/MK8ym6CvW60wIV9cX4JyqJAT9X3feOd8jAljTJ3EBgySqISYfEg+cRykGEIIwvzUWruuhxBRWPIxlmUusY61mVJKBDy6rpe1pUjuRRB2sXdBprFBJZa6iJA4xhBGvUSDCJQIQIGWKlNIKTI8f3FxvV4Za6BNfV8T+8Su2W2D7w9mgACyQd0JP+62UI5W0S1810vzlFtBAA+rbQz1jlffS1cosiGdUiSELLNGUZFpqHIOoe1d1zbL5fLp06cAYLTJ5tnTpiUEUip4bwgZmAiUVimR713X+6vV+o//5Dvr6+vT09NiUuW5Xa2uXlxcVZPpYnlyen7W+/5H7//kbXjn/qOHqKksK2sMItSZjcHHFBNCH6OyuYIMkAnAmjzGJOanbdtOp1M5Sowxk9mcrC1nU0WqKAtm7rrO5mVRlru6HtMDCZdljyWiXV1LFJEGIvhNvcB7SwpEXtIHYvJB8gC8blZEJErizCyhrYTmIaS6rhHx/PxctFXE0iArcqKs3zkRdBHO5H6/Z7F0ZA6DF3tKhygKJFZkJRUZUoSiHXU4hW/RSCQKlr2dY2Di3W7HwwkyRud977KsgqFZelxBgCGhPY7PRfWUiJiPD31NBGPPfwwM4mDuLv0l59x0OhuPG4FGwxBCHJCZQ440zlJB04254pjUyd+i7SnfyhE/LhA84quMraHxXov5j+xpfDtoGeuDYfCc+MlPfvLi2bO7PZpbBxiRsCXv9kZ/EYOZs8yenJwkEet8+dPzgfl3M2T6ZkbnGVijkRMnRk6IR8cs40s5/UdDPg6hib/55pt/k3f0+UOriBBi6H1gQl0VV6vVt//jf/jwRz/affCDe5We2XRS4LKAWQ55BsokJqyb7Wa/ud7tL7f7F7v6qunqGDJtdJHneSEwGCMdFSRASSNv1eCZOfFBDgKJlM6VLgF912Fd86RSeaZJK2VsXuZMZMuUNSln1kU5K8/sZFlNl3ZxHpx3Xe+93+12AGCtLYrcZsbF3lojR5Gc9JKQZEVe162gd4SgLGgcyWHWq/V+v2/b9urqavRQWywWZ2dnb7/7VWaez+evvvqqWFtst1tEbJomDbEgD6LGIy9FtKSEfL9erx8/ftz3fVEU2qgYHXJi5uXJcjGbv3L/Yfj6N54/f/7i02duv9vzXvohSqlRM/KO8oEiEmMm+ftOoiILD46QVOPxf3wjjr+lIx1nRNTm9gH55TLh45bOl3zIF487MevxIWqUMkpPJ+Vqsy6yvHeu1wYArDE+eVSEioAZWOTNEAGRaLvdCC5ZzhvZFuXzQT06H5N0fgUqI4OGDr4gCcX+bz6fq8H9Q04vefKu60IIbdMDgFLq4cOHzjlxC5W4fxCqJ2HvSQIwNvpF+lB6HWpQ7RzRCGMiSsOPvPdGHdgmY/NwOp1KunKcjhLRfr+fTqeSjwlCWO6UQMskvcmyrO1q+TSkrj/atBVF0Tc7rfVyudxvd5i4LMtJVTHz/fv3L589Pa6W/c0nwBcM2V4AYMzTbo5S1GMidxyE3Rm967vVqg9eZzYvpr5/Mb26UoryomD288V8zHviVtmi9Mzdft/3DgDyIi/yAo3Ji+rtd969vr72IWpj+76XfktRlIv5tKyKB/fuQ2KO0WgDMZVFMZ1OOcbVapVl2enpqeAPxd7EGLPfbqVoKvlJ27bPnz/XWp+fn0tWI/ShyWQiR/JsNrt3757ODs3G08XSh+D6npS6d3KmiLTWDx8+rOtaKsGS/zjnQojL+ZwQLy8utdbb7XY6mbz//vu/9Eu/9Norr0IKwEmMiRExIQhYWJC842fIzNLlcM4RqbIsSCsC5BjbpiVEYMaUVpvNv/u3v/Ojv/7rs/nStx0hhbFOwYCKcMCx3CpwIBez6fd//CNw/utvvVMaDYQxOsCorPZ133Oofb9pGhdSYlRitc5ACaL4wDJ3LvQuJBTHbvShDwDGmBgCMRCg1cbIYiBShgCAEAlAIyUEcU4V/nmWZa7nEKJRAxeFOYWQJPAanOmUUoYMALGPEFNi9omN1QTU7Fvn3HXXf/8Hf56pX530eXC91ZB81ze73Xa7qeu6bW82ui9YRF+Ujtz+xZc3MJPYYgy/8GU2bWSQiWGMLjJrFAInrSwktnl462tfa5pGJLMFpiskUkRUnJg5MDMjcGBAhYljcH175VoEePz0qVZqMilm80nv/PVq/fDhQ6X1W2+//cabb56cnDjnfAhd3/ngAcBWM3AueXeQtsYg6k0E4EP0zvV9Lwe9RNIS0SXApu0OfiY+ICIgaWN8TCLXKbrh4tMqat3CdB3bI9I/l82/bVvFvN2vAeDs7LyaLVxMXe+994QkNaZDqyRG4UZKjePBg3vX19dSEhV7Je/9fr9fb9avv/HO6enpZrORPV+iFEm6DCgpksLocD+SalixyHkqEv2r4zt+0wG9Ha+mlEYRfBgLBETEt5BUelDQwiM59S8xYTgdjTuvK4fmWEIdlKnDuGmnwWdcYqoxaR9jGz1I14zPz6OHvTVS00kpfVHSPbwRefjYUby7EQGIHpKctvL5V1X14sWLtutuJSp0O9gloi/bmPg5BnOeF9JD/GJ5rhhvlNfHSWOtzXO7qKwiAI7SKR+E4RIjMNAXlhQPQz7BpmmE8/CLeGM3gxGYkLWKzDHii+ur7/z7//TtP/2TbVNPc/P1ZTnXocJwNs2WE5WbSBgCI8fYub7t233Xrdt21bQb5zxSWRbVfFZUZVEUWZaJy54gdojoDjCPjzpuSmmlwGaTLGdiBVAw5zFaAK8DK2MpAhlPJisntmNji2p5cg6mVFqP6B1B2hyMigCcc5KoyGuNybQIuVpEAYwCgJRPZOZdX1+///77u91OePlVVRVFIRj91nmpi4hIiNRmDrl1jBJrSqAvy0zW208/+kRI2JJtAoDWer/fF2W+36+DcymlIi8MKdd1ruun0+l/83f+zo9/8P2LZ89TSs67Ms9pIDTR7cl+U3f8vIk0JioAEIMfQ1u4fWjdgWCOD/y5Q8xj4tovJE5Vt2mgdzIrwSu74F2K1pg8WgCwxrY+jkEPD0x6EKpAiGJ1t1gspM97nMLN5/PJZLLf75umGffuyWTSdQcRBbmeruukByLAANlw5V6nIw+TtukRcbvdhhCeP3/+zjvvCG6hbVuVDr1+CbKJKM/zuq7laBxpUXL9woRp2/bBKw+HRvng2Dh4A+MgjSLHmLRKmqbJ87zMq+OPVLZvEG++GMaOijGmaRrJo6R4j0OLRqSZhY2TUhSRgMvLy+lkSumQejHzm2+++dff++6dAtXffA68bMj2cvztTVULbw6wUTXhs6Pv+4QhEfq2bTtHgN73xhjTmLreFEUhfosmL3VKddcdoCME8sV2uyXEyWyWGaOUevXVV5fLpXTJLi8vsyzrXfv6G280+1orNZ8v6+1uu9+tViul1Ml8/vDhwxBCXdfyaUsxb7PZbNdrsaLTg5/afD5PKV1cXBhj5vP5AZ8gIT5iWZZVVTXNXhF1Xe9jt9/X2mhjTN+7oiga5wZvovjixQuh7W02m65p3nv6KTDc/EvXAcC3vvWtmGKCADFKowOHnmoSf+qjcEe6IdKIzvNcGxNTAiIfg/N+WpZ92+22u9/5t//2L//iL6yxm81mmpcSrKaBFYl4Y+g03NnDk3cugiq+9/Hjx9fb0/lsPimqLNtvt5eX6+vG73zYNs22a/uQGJASIgAyttudVAMTQ2JiJCAlO0ie5xpR4KxWm0wZLfk6kfcHG2WBeo7zn4gSIwBnWRaDCBKQzC4GCBDjMMdwsOv23jNECJh8jCmkgMl7ImzaWinsuuaHf/2XlY6vPbhfahuQg2/rtrleX13va1HBxgGM+rJFhLebpV8w7uzztxOVCMPp8AUp/Z3h+k4pQk2asCqLZr/v2/7s9CQP8b333vvK176xWCx2u50x5sGDBx9//DERISdliVP0kUNMLkROKTNKkSLSKcbog4Axeufbtu/75vXXX19vtptNWRT5+fm5nO+Cdazrumna03uP8mqeEzrXphRQ4ZCocLu6FH1FHNrO8veDBw+2+1r8E1NK2+1WOpld1znnptOJoKq6rluv10qpyWSS5zlJXyAlqaNLW3K1WsnqW8znWVHGGJNopTC20nQ1dtyohU+PwwwU1RNppGw2G1meRVGcnp5+/MlPHz9+PF8uiUhIg9PpdLFYWGu32y0xyc485j+ydUtHBUgRERIG4ONbGePBigL5rpVFjHG73VprRUH4AMkmYga63YqHwV9Y0oaxDPQFk/A4i7iTq8jKGvHVbdsK3v6zuccIb4Yj4O7xZJa/pdHBA1pbPhY5m/DlYPU0dGxkzOdzGBRKP/eCZY8S/HbXdY8ePTJZpoe2MgMzpHRcmCck/kzs8sUDX07lQABAllsoaYUxdjqdpQj4RR2Vg6QVAIiuFSEpAqspM7ooshRiSp6BR+wMo/DWv9Q1S+wrU+FlZ+2XHIcGzvD+iYEBPCat9dOLiz/4k29/5y/+04vLC1FisZomuS455sCFxkwJQTD1PjLE7W673u0ut/Wz7e6q9x0r0NYUVTmb2QyN0VorrYgUIRGyeCkS4E1uxpwgMQAjssKEgNbYopgiWJ1PQZcRMYYAbTCoEhADJuDErI2xebFr+vlyfnZ6tt3t6t0+OK8k3Unc1k3vepd6gAPWkAfqFTP3XV9NZowHzlbTNKL9sl6vU+IY43w+v3fv3tnZmWTPY6IvoJcXL14I4Ec6GAKPWW93TdNKx3G92SDidDpt2ub68ipF7l2fF0VZlNLDlYev1+uyMrv1Zl/Xiij6sN/vry+vrq6udqsNAihFs8lEkeJDAI3jrRsxWBwTi1OAjkwER/grPBo81FI+t8h9/C3eHiGGOz/6MtNsLE6M0fPPfsgXKIa/vKMCAAhQFAUCTspqs9sZrTVprZNWCgLBoI/KyCzTDxkJi7xwfb/dbPq2IyStNDMjkTKGgYU3KS0FrXVd15vNZj6fpXTQ6ZKGhkwn2RaLPE/DGTZ6lciZJDc9pXRycrLdboVSImtZD4gC+UeZY8vlUk446VZLsmeMGf3LQayLU5LLEEay/EiRkt+U0+vs7AwAptNpnucCupSRYpIgWJjTfDQAQJ5QYAZjhj+2XJxzTdPcOz+fTCZG0Ww2885Pyyo4J15sJ2enIFOREQjhhsnwc45bUx9uqNLyMyQUv1xAxAOChRGBCBPKcXEDSh7+3DwnAuR5Nl0ss0nVB7/bN947TpwgOh+7vtnVm6IoqrIyWbEweYoQXCqqMsW42exsVkxnS+9cUVZEZHKXAK43m91uV1WVi3FaFGRwvV5HH/Is2263bd2EEIxSeZ674H/yk58Ipq4oS+ccA89ms8lkkmfZdDJZrVa73U6CJKWU/Gi9XpdVJadv3TREREp1fb/dbjkGBNjXtbW2a1sA0MaUZVn73cXqWgTrSCtE/Pjjj0W/4eLqand52dR7IoohlEUZgv8f/s//eFoVBMwxAiYcuLnxsJyABxvNw2AQ76YQgsBUg/eodei9ImrqJjj/e//+d//k238MMSmlI4Pz/mD2AYfjlW5Ai3cFPEKCPvg6hu169clmRTFmjDrGGOI1YBtT7fs+hC7EFBmBRCFGiTALAgOh0kialGgIq8xoQ5KoaC1SHomBmWNYTKbaGADourZ3nmSRIiogifyMMahIEpTEEBkiQ0pJOiqJyIqSYQjO+xBSwkLgLBw5eESCtm6n80kKse/bxz/9yIQwzXMO0QW36+rL7fpqv+tdP34CX5TtD7I8d5rtn/eLL/15Soz0ktPh5fFSkRcpBufcZrt2fVtkdjqtICWFsFyeiLJIVVXLxfzVh/d/PK2UKJ2GLqboXXSJM8OBMTG4EJ3vY+LMWud7RErBNXWzPFk8ffrs/r3785OTut73zqm2XS6XeZ6Twuls4nwsJqedgKlAkRFktKzxVJYVpIRIUnYBhMzatm1fvLjIytLYPCZOiavpzPV973w1nabtVlT4pFsSQhDAtnOu67oYQt87Of2R0Gi9ODkp8pyI6rpW2uZFYWwWGX3by1QpqyolbuoaOJVl0XV4eXnZtG3XtcaY4ELbtm3TBk6ZyWbTmVbaWvv6q69frzbNvp5Op1VR1HW9XW+sNURqNpn2bZ9lufiTaK0PMTApIs1AIIY+CjGl4733pqMCn7mpiZumybRGQB4ExQER4Zbar3Bg0oC5GIOr9IWApvFwOe6QyJC8QuDNxhjvg1RJBLAg6dwBhOa9zOERFTbGNmP7Rep3gj07gGaBBeEcYzTmVqJyFE4BEWml4pCuiBuvbB1Eyhoz/CKE3ksWJ1xBqTAaY3JjNAcn0BcCBmaI6ZAUMCRWCCDOTSPiTQYdwTqPS8sAEGI80pO+uXkMwOyQ5aWIAz04exR6QGCjtJwBY1bH6aDcxYjRWBJmfXQcnLFqOcmmpbGa2XUIoA50zzHfkX4ZvnQPOBryvkbBn5/9gMN7ucOxs5E5Qop8MOfWiVWExOlx/fxPf/zX//L3/8OT9YoyoywXvZ9GOtXTimhmba7KzBoGy6AZM+diXTfri93Fxf4nF9vHLW6wVJVZWq0nZV7N54toLeaFyosMtUqARmVa674PwWfA1vstEYS+D12P3inuMuxCgl4ndbrssOop3+gsarAAztfUpr51XdNp9hZZ51BkVC3PdTHtXciKMsFBXkkp0oTB9fV+N5lPDBmNGgASpzIrBYqDRFrZtmujT+IC3jV9SkkCApvlb7311qhcPkb5RLTb7bquk1JZVVUCy9ntdvt98+MPP95ut13bTmezoiiKqsyKSWBcnKrOdRXPY4ht33vnXNcToLXWB+dDfnF57fr+3vn5+dm9Ii9T5KZpLq+uTwvSxH1XT6Yz55xHhaikK6WZAQ8FA1Io8tKMiTFpZfF2JVtorABAQMhI4lQqq27o3gYOt6YNQcKEhICAR8ajd86wY5Kl2EaNTxij7CkwBMfHe2WU+ayU0voAlzrArpQ+3uq0pJ0AAMdWqCKpcvOL98/ubfc7H0Nfe6O11SbPsshpUk58gL4PSJQ0hhgjKNRWARrSmmC33qbel8qAD/V+X86naHSIUafU7nd5nusBONRzyo3ebzaT+RQged973wvx6fR0ycxlmde7nTSChfSMiNfX18vlEgBcSNt637r+/MH99378I9TKFnndNCfnZ/V2Z5VmbfYx7dabLMsybWbVpMqLTBu0jIk1UggBDW+32yLLQooxRFFlmM1mWgSOkTQpRqqKDAAQUgoOOSGzMSYzWYwhAiHifr/XWtvMylqQoiAf4ityztX7rXedd52c1lmRy3EreREzC9I6xkiMkVlnej6fAAAhoeXVfn/2ysP5vdMnP/0kxpirjGPCo9Q6Hk02hNvOkNoeT7Zbu1kIePMjOHYQ9d5rIqUVkUkxhhgTMANH4D44ASkRcpGbsjiU1mJMsTtoUkUCq1VhMNMwKcuTxaSOGBMOpwk750lhE2MWw+7yMsSknLtMXE5ms/ncqLzQRfJsM0sIZZkjwuXFixT61dX+/OysqnKAnGPKbdF3/bQs7y3vaSLnnFaKFErX5fTkxGbZarXK86L3wbnGd13vnJCF1tutrJFZ31+tVi8uL/que/DgoWhOAGDbtYjYd/18OpUPqu56rbVIF7bOA3Nofbdr26yNnPKynM2XkdNHj588v3zhuq0mzHXG5D/85Ef/w//p//jNX3rLtw1wiiD1WWJIAjQ93BGEiMyJOcQYokKU4styvjDGuH1X5Lnvg+98prVz/g9+9z/8/u/+PnGaZIXYiaSUgtQySPaNA5teOt9GaRF3iVGK7mC0zrNJTNCH6ENwTF7wR/ttrjkzlgkYKTFHTmJmqEHjgRB6KAZHZq2V0bokpfCAOk5i5qiJxCsXOHmXUiJmwsTMtshQw65ugJTzvm73RMTA3c4DQA9tbg0qImYA8N51g+pGiMFHXnU7ERqAmLTSmdHaZL7jKltkCtZ7/uufXuRZFjjVXVu3zb5pGtez1kJTsdYeEwykQTR+PebeAIAMmm7WmhR/x5US003wwHCU7ktwmqTimhSR0gcUPgMfB063qssMstTQJKVJmTSdZRpoXkzazquyeO2112KMH/z4x5VRLz744d9+6yH5ttlt2zR13ne9a1z0IQYQ5B0xYgo+JU7JMLPKF85506QHp2cXHz2b/G9/YzpfLmaz64sXV5eXRZEVVW5zW84K5zsGns4qWSzOud51VVntt+voE3KKHJx3sW6N1dT1WilFtN1uqrIixMhRkTo9XXZti5zoYOkOXd/mlCujTs5O+q4DgLPzsxCZSMWUECCEwMAhhMv1ZjqZRcoSqOhBJR8jZ3l+PpluNpvteqUUYEp10/neNm2bGQg+BVd/8MOPwIXT0/OqqJrOBR/63Y5D4Mj3zs9d60Lw7HqLCNamlDBGTIxI0+lpZEQCBkggbowKlQpMHhiRCUHBgNeUyQCg9EEQDAE4phiTnNmJ+emTZ/Vqky1PbJkFgJhCzsagIqLeO2OsdOA757z3pFRWFC4ESunQxkmJGZTSIYgqwIF5AgDS+ZcOmLAYjkW6EHHMfBCRCKfTiRrUiukgZnDADgxSAVof2ZTBkc/JWEOURAURFYJIuotSv5COhrxFBe+lMSUOp9Ya76HvOpsVMcYUo9JKI6WQnHeKlDUmMhMAIRqlQOuiKJ48efLw/n1FJOHL7Yj+OM2Anz3GYuHPGMh4o9iPSDrPCkWEoL740cEHgVAphDzPJqUt8iwzpAg+20bln1H4+MxFSYdaa2FM/mc9dhyROQFDYkqcmJu+z4uiU+m7P/ir//cf/asfPv5pD6iM6XufAQAhKdRaaWJkjiH2DoJXQVFqQh9828VtHXcdtF51QB41kkYyllSmKLNorc4ya61JqFI8jjOFhSmbotCmIqeQYjSkNVFARaij0qAzUJCiCx7Ctg6uDa5PodfElqIGT6lPoXdNtFmmkNCgMRrF2IhQGzOdTiVZH+BnQ4MvwWaz6V0vXgEHf/SyfPTokdaalBYUqVQfd7udaIYioqiBaa13u50YcbRtG2OczuZFnp+enEibWCnV1k3XtIg4mU7zmHVdG0OYzyqF1LVdCkGTats2gZtPKmd06LunTx63+zrP7LQoQt/HZgMpMCQODhG1AkImUHSYPp8/hfiILgx3or0vJFn9Fxnj1X7JRs3njiLPu75r+871vdQRlDqoyltjGImMVZoiOAgxMRADGgJI+/3+6uJyv9vN5nOZiYzsggc+uCjI/ivt+LIs5/N5H/rRJFRSLIn1eVAgAQBRXxC4oGSJvb/ZWxeLhQCxAECy3BHqmlISuWQBIYyYXdmdt9utdMZ5kD1Vg8Eoj/JuiIKrFjTzWJOWBpEAI2UhNHUj+/jFxYXWmjG1bSt8myzLPvjgg7OzM621tGLSQIIcDVvKsvTOFUVp1EGNTfAJALCv6+mkOjs7//jDj8qybOtGI5lbBN8vqU14axwjG+88g9BpmDmIUCEiICZEBaBpdBwazmskJKWAoFAMmBASAhME77JkCTUSnk4WPh4MYYXYaoxZrVaWaLu6Mnm+3QVm5YJHhT54ZE4A2y1rQ23bhhB6H+bzJSmyWRZiMlpNptPVanX/3r3T5UmmNcfUdZ1R+sfv/+hAlUYUWLxS6vHjxyGEB+fnImX+5MkTmV2iGlfX9bMXz3e7HQx7kcBUBB3knVsulyi9e8TEvK/r9Xo9nUyMNU3T1E2TgNfb7dMXz330bd+7vne927b7FOKkLP723/5bv/G/+Y0Q+jy3Tb1T2o5tVsCj5hgLF+Owt0tvGQ94DJ6UGSRu2jp0Td123//ud//gd/+dxqiNZgwAKWFi4ghRcGssfQ9MCSlhSpgiRABIkIAYASpWUpANhBmRV4qBGIER9WyapKyLBwHomFIETgn6xo2N2kNTglkBKgCFQMMfbQQLfBicMHCSsrIBnegAr1JG3dJ3HQq6DJAYWh/oGEx1QKH4kKBLIYm0ZmSVogvekDLGKAS0tnE+7esI3HvXe88IQAjS5Hn5+DLs1l/A4FsR1q2vEXxKWlFm9azMq9Ji4hBib+Ls9Mye3VcHy+PKGnP/3nmRXGrWXNk6QO983bZN0ze9dzElGMKuzDIzJ0gJQojzoiJUu8vn9x7e/+iD99/92ldzm83nc+/7P//zP//VX/uV0+K0rvcpGqW0QjOtCmau+/Z0uXTOVWVJhembbjqbOddvt1uQz1VATSludvVkMmGg1WaXkJRWIabZ4sR5n1KKHjoHNlN915+d33PONU07qypm1izKbwgMVVEt58sQwm7XcooJU4oUQmibRpRzV9fXhggBXN+XZdk2TV3Xl1eX1mZny9PYO2IOwbuut1leVZUL8fryqt7ty+msd8GHG8MxIhL1Uxyq8IILZEJxfmEiYw56Xy54/DxYoKxZDgGJUJQqEZt9LRKJMUY0YsMtxfRbjz3udh6XRMdvjzvz45AiMgy10eNqux7ENkTxEgeg4xgSHEP3x0l4B514HD/crGIJgYjkJcYIcAyNeNCHBIDgffBeztBbwhUMnBKnRIBSZD2SamFEFKT3ZDK5f+/eF/moxC/nmciDz8v4br7MoxRRWZYAAtyMX4AD5RRSSqTYZnYymUwrW+RGoXRrfjH4bNHPfvLkyc/xWEbglIBZxZRSQsLJYvbJ1Yv/8d//2//4l392nRpmyCnjgBwEogba6DzThQEDAbz3fewtpRj6uGv70Dr/dNO/aHjjVccqgSZSmYJMQ2kgxRgjhhBUFMDorWu5gTUnCCHGGIWFyKwET0BIGAETEGvnuK27erWi5BP3GhNpyFTKwJGvGRFsldkKVQaQiJT3wTmXgPOyED2ccZFLWCmGj5oPmuIyKQWBekCBM4iOpxp0nIqisNau12sGFFO29Xqd5/krr7xyYDK0rXPx4uKi7/uTk5P5fH56eioIGUIkhJPlsswLjTSdTKwxwXkCbNq6breE7Jxr9vWnj59sXlzE4PVkklvb9ppJASDHSCYaJAUsXgzM6mUT+LgD+1nBpf/axtgylj3u57PKsNZqkRIe+vVa8gJOWukIQFonRZrTwTISlVIqOJ9bo5Ta7/fbzUZnVmUG2aSYUGskEql7Y4yIikgDbb1eC2NBLjgNfo6ybY2Ww5LfAoA8SnjPjx49ur6+Lori2bNn7777rnDc5/P58+fPxVpR+qXr9VrSj1GUTDZ3Ivrwww8Xi8V8Ph8FymjgzY/AWWFk4gCRH38qxSTpisiTC79T9McuLi6ECyGqOPfu3WNmSXhGy1Sh/kv+NpvN+q4r89xqJQk8M0tU3TQNIZyenR0qbTGC/gWEVMeT+W7lhw4ZYzrSmgOAxKzpVuP88OtEzKDQSpsnEvTBu6YN3jOCDxGzypq8KPI8z0vA+/fu7ev92WuvIeNVsfMholJt5/ouXl+l5fJktboWFenlcimg8/2+azo/m82ycrpZbU4WE+HzENHTp58SQ/QhxlgVpWSz6/X64uJCJOCaprl//74x5sOf/ET0P6qqGuHXUguMnIqiuLy8FAKVdHpfe+21LMsWs7nW+uOPP14ul2IZ4b2fTqfB+/1mG2KIKV5eXzVd1/Zd5MTA7X7fNNvc6sV8+vZbb/6jf/SPqqqK3vWh11rjESYbbh+j0jjlmAiAE7e7WiFlxsToMfi263JFzy5ffOdP/uS7f/GXwbUcAkNiCwlZ8OCJmZEFLEGHbJQP8tMcU0ySX5JCw8QMCYCYlUarFCMAUALI8mlkjpxCjCFFnyIAYGISeP2dROVIZYQGhbFjZOOdMEuqz4d2PVE8Lroxp1FHkZOPAUalI2HwS/k2pTZhTMwpQWJkRkBDynitifb1Vi4DFZFSlFsB3sgH+zdZMr+o8bIQiwEiMCFqrUubFcpkef7WV9597ycf/OTJJ//tN39lfnLaN21Rlo9efXW7277xlTf7jUp9N2Hune+6rOt92/Wt85FZXKB75/gA4gFmo5WOMYUQc3Cri+dnv/F3kPns7HS1XiXgi4uL3W53cXX99jtfL4oyhDCZTMSVSOoyTZP2+/1itkClymlezhZ934tASQgxK6dW2xijUTTVGRlls2yz2WirQKlqUijb7fd7ZapZOb/a7E9PTrJi2u+39X4nm4xUJfb7PSK++uqrN1FvCFJd2mw2AqfcbTaTqmrb7vmnT1ebtUCCsyyr15t33nm3ruvnzy5sns+XFQMhgovet11gCCHc+KUM4G0ipZXIfAIcz2ciICJSwIf98E6WItG5YBQNqdA775zWuq3r3W4rzEZmEOGNA//kM1a741kzFuxGbK2ciXeQTTBggsYM57ijIhUWcTCXI+YYVDaeXN57yZ3GLOV4kd6hsI4U2ZQSwaGGyMxSExwfO+LQaKA1yqmnbyvsjRcvVwtDU1E+SOEWFkXx9a9//YsSlS/VJ4G7QKgvWcFVB53s4dR/yYMI2CoInDTRpMirMsszS0gx+Ri80n9Tw0oJBabT6dnZ2QcffPDzPAMDcwLZzYGb0H/7P377X/7+v//p6qJHDsYUyrjacUxAgBAQoSCYKppO8ix513SIsXeubnzddrvOtR4+rdPTjq8D7EmxVplG1GAMWCvt9MMRAHinAJpGII9gekNIMaTgOfjgHHjsI9oInLSJRG0d1qvWN72hkBm0VpFFS1FDT7xLPoEywAFT6r1ngN4FH0KW52LjSoOp/LA8YwghMQOoxAeNf3E+ISIBR4o2sYR3Mq3btl2tVnVdb+smhPDmm2+en59LgbNpGmmthAgP798rq5KTiO6FFHxm9WIxXy4XohcTfYCUXNdxSkpprdR0OkXCGEJm8/ls/tqj164vL7fb7eZ6pbPS5B2kBCYDMkiKEKR2EV4+5Y8Tlc+WUv5rG+OWMQDGfp6DWXQs5GywmvxwW3USrQ+GlBIeZIpijKyIiHyKvXf7pl5vt3lZmiLTuc2NsVoXRR59EI1gUfdKKW02G2vtbDYDACISj/amaWQHlA1adLHEBRnF31cpRBQPRAlVJYcRxa2u64BZKJXSExcdOSEpStwPQ3O8LMs33ngjyzJp60m7TzonMiRYn0wmxhjRJRvzwDTo9Es6JK8lzUBRs6mqajKZXFxcTKfTLMvu3bu32WzOzs5E3EY2eukCwbAdKaXEJ0n4+hLJybVdXV9JMrPb7bI8o19E7fd2zexWna93ByNLM6CSDjOfGY5wL3IoDR6gRIkYkBEUAmodkUFRiDGlZGLE0PZt2wE31rrlYrffLeYLJFVNy2q6vLi8dhgZ2ff7Z0/388Xy6vI6s2XbNHXkzrnL6+uT01Pv03bfaqVct8+0zvO8a9rMWA5ht9mKRWlR5VrrpmlWq5VsRB9++OF2u91sNno40a+urqTVdnJyItoeNs/m8zkzL5fLGKN4k8lp5XvnvX/77bfrun7vvffW6/XJycnJyUndNOvtRj6K7X4fYwzOr7ebk9OTs5NTXE61xlcePPyH/4e/f35yGlyvFXnvNKEZYpGhwnrEzQ0RAEjOl5TapimLQpOK3qfg+v32R+/98I/+8A8/+uADjejq/Xw+t8Z2vmZIwCkxA0Q+4H6SAlQMClExKIGyIhABkSJEn0ICSJgiMBMPqiIJkIj0APZK0YcQfASOKUGCGBLAYQ6oQbl7DOkAQRxgI3NwbkTQK9QRxFQ+JeYAg6nT7Va2xE+ympzRx04/achSQgghJkcqSWk2JgJURAE4JlCAlKLRymoy1oLC4XRkFO7JL6bI+Tcad0Ks45UYNSZkCDH1gVGZXP/u7/4+TSavf+WreTVhZmVMNZvW2/zJk48Y3wwxEjLFvlCQlWZa6hAy50OIIUROMbZOc+KUQETIAFTf9SFAaWD7/MX6xcXJ+WnXtU3bfuvX/vZ0UhBgihy8C0Y3DWfWWKO6Nuy2mzx74FyfFVUxmYcQmMAai9qaFLMYOSYiRgAM0VpbEnZ9Z/LCupiQJlWpScUQF/O58971XWZ129ScWDOvV6s8z5cnJ1qpLMvo4cOrq6vNej2ZLJg5xsScXN+vr1fPnj+LMS3nc6uzTz746dOnTxeLRYwx+pDlWbtr3n7rra5zm+0+K4pqMmUkpY3ONZNOzFopBlTaEGLiREoL/5C0Jq1vhbOIQMSICtE7J4HCuB/eGRIOcYhWa05Jtpq+d1JiYwQ5gD43fjjuqNBRCWNMWuDz4EvyqLGcdPzMOPSKaVBMPWrRwNjfkNqcPGRkyHzuuxvnp1QQOu/kl++kN5KDjVBGqfpJxe3OxcvvjJVuOtIGkOUvuovf+MY39E1HCe72ou5+Ii9xP+Tb6ge3CUbHv8qEGEPiEPJqFuNBaEUuQJ57jAXHv7UmTCGzVBTlfFqVmSUASAeBhS+bSr18SMSc5/nbb7/953/+51dXV+L5iIikKYXPD+8UHZw4D5OJ0aXoFb7/7Mnv/+kf/9l733u6XXkC1Bo9MwFqDZqBGXyYavtoUpxpmmaGUqSgkwtN07Rdv6nbzb7bB3ga82vG2tiONCNmkBxw0jGCs1lmtNZaK6KEpBRIiRoQRZDFGIUIpDDF5H3s+4BIMaWU2PsuIKGG5PoeuO9j0/m27koh6BudZVrpBGGHTimLRXZmNDBERewjA7LJrMkyJPK9y/OMj+TtpGbQOUeKrMnGniANBhqifSSrYrfbXV1diXjobDY7Pz+fzL3WWpwu9vv9ixcvLi4uJpPJG2+8YTNrtX329NnV9VVR5Gfn5688OFdKT6qqbmvvfIrRaq2MQYiQqMqzErKkMXGKPhRZQQBnp+f3HzzYrTfr69WzZ898pKbeo7FJqT5xIowomjVDYxQPE2ysBd5Bdx0vh1GVf5i6OE5mxjuL6Gie3+r147FUyO3EHXGQiEVByL5kHMpCt3e0eBBop5SSsHKPG7Wft3V8zjfWWs8RHSqljNatc0REnJxzusgVKaUUMGutY0y2yFJKLgZ5dd85KXJnOiMkn9JBcVIpSVyl/+C9l6Riv9/bzI6hT4wxeC/VLyISMy/ZKKfTae+jRPP7/b6qKrHlOcBtkbTWoo3Tdd1ms1mv16+99pqcMSMdTkCGso0aY+LgVFWWJSfW5tA9TyktZhMaLIO0kgrZQetGdJN5qAGPGLb9ft+3nbSPdrtd23XLxWJ5chJTKopCHMcQUXT80ugbkGUS8gt5sW6awz5OhIhVVQ1tJVREfMty52hOfqZrf/z1WEdkZlIqDjr6iLcABmOtDo4kvxDRKHWc+SZOCQflTQamxEyAkICJY4oRgSyA0soezouUmFO9v9htgPnFaoXawCS3ZV6Uk2WVM2LdtCqzvt66ep8h9TUBUAqcG7Pb7Op9e3J6ypwadoXVxpgU4nK+4Bh3603f942tZ36qlJI6SF3Xoj34/PlzIkqIfd+LzNFsNquqqixLUaILKUpueXJyImDg58+f53m+Xq+LLJ/P5wJnffvtt+V+XV1dbTabXV2nGLu+F9FtrfXbb751dn6WZ9ZCnM2q3/iN//X98/O22WVGcYpKqRRvNBvg6CzjAQUh3ypUXdekGDUpTgkhrVer73z7P/7xt7+9WW8QUtt0i/k8z3NkzkmHGEKMdLDEYUIQ2DcxKCalSJNCRiQU+QskaoEBkYlCCEigFAryLAaf/MHXUwGKMBkBIFIiiCngSK7jmw0zhOA5Ga0Q0A81YGZOzJCYQ39QJSGUvkFMkZkjAvNNCVkyc4F36mASHUjIgBBCCDEMkxQ9J6EGkFGHorfSpDUpzFQm7iKsSFJwJfEfYnR+XA/HmyAzAB7rd8WRwTLwU6QRdTBuOFoCN8vh8JkcvgEpnN8K416CyL25DGQGMaXBFJNR5ivvfu35trkOPp/NUdOuqcu8mMxmLxC1Na+//vr3Lx5ziooSJFaIShNkiqNKyUROnKILhkghUowsXNq+d03T2sIUr7y6X63Oz05Unp2cnTJA17bny+Uvfe2bu2a/39cns1mZWUR8Vj9JMabottfXJ/cfotbqQE+CmMCY3BgghdH1bdvYLDtwtXt/fn4/hPT4pz9Vy+npYuFCZ6xF5+umPSDHmKeTaZnly8XS967v+77tSFFm7H67dU2IISTmcW9fzhZPnjz56fVqmlXBp+lkAUxW69zmsqn2XeibbjKdAhBpk1cTIKW0zUsdQtBGq8CKiIEVgjIGtUJtUBlQiAeUq9j/HP5jRO8DMR3D3Y9vOg9KuUqTd77ruqIoVpeXSJhlmVLqQCEfDmUAEHLs2CcZJ4Ya9uSxiyJlu+FMPIhAjk2McOQBIFmBHCtCix/LbWOuMhaL5UrGLGBMLUZU2B3m9ljmCyFouuEY386CUGwD5Am10VJdP/6sRt0wPPKNsYNAs5QhaJAHPD8/vzFgvi1b8DnjuG2S+KUF2ttPwrfSFmYGjjGklKzJz87Oxg6RJjXuF2rwnUkpASNxmJbVfDYpc0MEUhAAAKX0HejX8Yt97kbwudckmqF/9+/+3T/4gz/49re//Q//4T+UHDGI/vdLnkHyV6WUD4GUaSH+0V/8p//pD373o8tnQWMyxDGCC9qTKaij2IbWUlhk6q3l9Ov3Th9qNc0Jkskgq1Nf79v1rt7u+9W+W7uwNqmhzKHqOSqlkuKoEhlmjDjExDFGIFTaAJIUpIiAFOS5ZQallPeha/u2sXlhQmLGGH0IKeqMPLBrsXPNvuk7z4rIJcpRaWO0pZA8ppawYAzIPQNprciQhZysTYDOezVI6cnakKKj1hpc733I8lwCL8n167oWxfR93Qh35dmzZ7vd7vz8/JVXXpnNZiGE6WIpycxut1uv1977+/fvn56eElG7311unyLSa688KIoiy3NFiMC+b62iRMAxBd+HxMAwKUuj1G6/VZYQiYPv6m10Hpm7tvVta4jfefPNNx69urpePXv2rK1rQIVACVQEyA7488OGcvt0uTWvbncRbyCed6YY6tvB4lEWcSt2ZOZbk+3OSjzKPb7AtP74JYbrOKwpowAgcVKgxusbLuC4Wgl8e2krUkRkFHk3AGG1ZmBjTERsXGsVyUasjbHWphS3zV4jdn2/b+tpN40xht65ptNKNXUQQnyMcbfb8SAzfXJyghqVUtKh1kqPgFdpwYkA8Vhkkp9ut9vpfCkK2pvNpq7rFy9eXF1dHXrcNpNWjNTON5vN+++/L2YXJycnACB6x5vNRr6QjoqyJqUkov5VVck0lmsQnTrZYb33vesBQHBxspsfaDN9L+BaqQqLKq5k8rPJxDlXDGAYybt46BqN3XkYuvCSPjV1vd1uhaBPCCIn9eLFC0gp3ba2vrVfvVwCewyk0mDmO7JxaBA/lB+Nff/jPVO6arcTJKIb4TAhEycQOgCgQpLVYoCVxKuJU4oMbBCBAIBT9L4JbbfvVisgAtLa2HIyPT89e/vRw66LKWFk8Baq3BaTWVHNfEzWKqujAgghPPnkMTJYpQBAPkYR810sFq+99pr3/uTk5Gtf+9p2uyWiTGtmzvNcenqiQbRcLrfbrTJ6sVgIQUV4caKULfjv9XotBJvZbCbUo8vLy77vP332VOL1k+VyPp9Pqqosy/l0RsgZ8S//0tfOZovonFU6hSAyL3TkJzBWHyVACSEYTV3bckjTyaStG020nC/q/f7Tx5/8zu/8yw8++GC33ki8XFYTm2VKa2REBo59kiVPCMw3UPfAgCqBZtBE+qj7gSlGIiU3C2Ii0oogcARmIpUkDEqJGES9J8QIzHQjd0zjvGLmEFPb7MXoK8QYxdntMDUg9getXgZIwBEP+pwRAVGnASUiNkeS8EdOnhPS4eVijCnxcPkYmIlQIykkQlSkNJHVRsAsiAyKGG8qRLI30lGhSfLmw9cIIcXxR8e4GkBMCQ7WW4e66i1WyfG4CcvwsKPyEWnwViZzNG4SFWCDaJXqeqcX83wy/cM//g4U5b3zB9V0kRAZYd/sJ1W5OFnW6/mff/cvJ3nebbsi1zEEThGRtdKkFQICKAATQiAleokx+ORDTBgtxXa3CpdlTOntd9/ZbrfzsxMfgut6ZNJE0bmu3ft+8vzZ/vr6yhjz6JVHKcXtZnW52fytX//bB8IeYdf2RGy08V1fFNb1GL3nFGNKn3zy8fn5qff9+z/+0XP0J7O59365XJrMXF1dCeSyKMoWkEhtV+u6boqimM1mq/WqrmtOnKKXhm3Xu3q/b7vOGLOYzjYRGEhrO5lYGKyBRxVHjSkvCkalrTVZ1vsA2iAp0phAkUEp2x2Y5koxakZiRCDhMd3kJIKqHxian6MLPyYJQqbnocrTtK0eHIRJUYIECSXjgsMzoR9Et2DIDSSaklUg+62cYjJzvE9yXoz8dTl65Onk1NCDfa3EAM65yWRyPD+ZWaoq40YkL5qOTOGOc3g4slUZJ7CwVtMADL75ezIZ0x5OHDjwwIQ5jnzuvLpAEuJgcj9ma3cRY19+3LlJX5AVHI8QkyIFWd427etff1v0PUMIKXFm7po5yH6NHCelnlfFrMp9jDEmPajS8M/JHb01pPEEAN/61rdeffXVf/Nv/s1v/dZvNU0zn89H05/Pjr7vJfLe7XY6M+89e/I//+7v/OkPvldjjFYlTiwCjgwTpRIEl/rIfa7oK4v5r7/68N3lfAKpKJgD9hTYZ621RntjwWaUUyqAHHGOEACR2CJbZIOgEV4apQIohVqTsVqq6kLz7bosAfuQUgJkSMH3iWOrfeLeh7rptJ1EC4HAJ4ioMqMJDWlK4OvtKiGBMkjaVhMyFlB3IYWUFB3iMD0kwcNxy4U1+sgNw3svohCXl5dPnz6Vkvl8Pn/zzTen0yki7na7sixFIuzp06fMXFXV2dmZGFpdXV36tp3NpgIuFx3DBFyWmXMuJJ9iJGBjjCL0nWv2e46xrrcYduvri+12a7VRSN553/V913nnp9OFNtnMqOzB6Xab7ZuOEzEgMkP0IybgTpHgdtfwdlaPL/2RJAb/VQ3Z3UaaUHi5hgQRaWO01i7FMahVSuQ6wgGFiORTxMEBFzmZzCpEbY2xVvSsd5ktOWmtjVVCF5nNZs+ePavrOqVUlmUIwUUnPZMxRRmHqC/I3Zd2sCj/brdb03VVVQnCSil1cXEhDQet9frqWtovkuc8e/ZsvV6Lsr6QSUIIfd9rrcWzXHrNMqUlYRZmguz4oyrgUAk7HDBd18l2IXTtUV5itLNs62Y6m2232xcvXoiHTBpo+nlZyK4ty2cymVRVRUTB+77rFMKBNRGj976u66ZpQnBVlp2enr733ntVUXIIX9KQ7niMMdNYSBsP4C+/sR/Tkfn2Rsy30yU1pNYo1AOAhJwkiByfBGGSGx+jCz66lJBC311vtpvnz7SxD195LcvK6XSalzMyWd35vtmWkykwv3j2vG1qmRtKqe12VxXFZDIpslxbJTNqMplsNpu+76fT6Ww2I6JJURDRdrtt21bEPFarFQAYY54+f3Z1dfXVr35Vmi3COJKui++dJMwppY8//vj6+nq32+12u7Zri6qcz+d5llVFWRblZDJRiAoxOP/O199589FrzjkfQ2aVj+HQfLj90fLQwkopcWLXdrnNyKLv3er6Ks/yq4uL//H/+//767/+/mp7aax1EVKMk6rUecHauMTJR00mKWZDeCC9JCGLACJqE4lIayf2u8YAHpSLpmWlUQFwcH1KAYFT8ME1vgv5pJC0BGJSRKSp8y7F6HwIEcZE5famx977EA8NQGNMNnhqEYAtjTBMQorOex+cRFueI8ORtQIzD9MvxghIKYH4umltxnYrEmKKCIAMhEhIGlCTOnR3EBKCkp8O4ng/E/HlnRtvjSzzIRvD2xKJP88Y69Z30DJ3BjIYUtOyVDE6Tg/eeuPZvpkuT+fnD+bVwhjrXGjq+v79ewnAZtnJ+VmWunp7nVCJCgIAaIVGa4QIAAiQjAZE74PniJAIIicfvYsuYNNe9U992zAhaZ0Zw5EVao2oNZ2eLK+uLrque/z48Ve/+tWiyFar1XIxX+/rerMiIh/8a6+/vnFtF3oqy+31dWNwfb02xpycLIs8S65bXT7/zne+k2d6oo3rO2vt1dVlWZbr65XSKqVEQEgmRW72tXNus14/efz4QO3zvda56KOIExEzC7tVK5UX5biNaK2ljSPAXdYqyzNmJGOMzQDRx6SUQlJK32h4wlDjV1qLkyOICSuJnOfNfRGOIgyY4eNbllKCxCklYSwPrY/Yte0xFe0LJtA42+WZBQt9k7veLfnfeFjJsTiGzV3XzedzOQQlr5C2yWhtBwO0coSKSbQmy0r2NzmhwlGVQV6373tZ78YY33digideZ8dsFnldPjJgOX6Sz/0ajpI9iSqlFySFpJ8zUTl+YfrS7nUShRiTI/C77747n89TTJTRsa/zeLnqoKBMy7ktckMYCdIvij1//FpKKcF8//2///f/H/+v/+c//+f//B//438sIjAv40xLmbau677vv/f97/7f//W/uNxttNEMwD5oImaIDACJo/cx9jpvQQABAABJREFUhtQXGl+flL9ydvaNs5OzSlsdNcTkmYPutNZG68yapPKUJZ2UoinpCsyOyAWXhbZIUCTI+ItSM2VIG2WtITQpRWZkhhAiOkwUtVImAx9C14fWkwdCbbMiM6bQJoGNyfiIyASoKHHsXBuMh5S0AWWVVhqUQtJazHVCONCwiKR+Kbm11iqz2SirVxTFZDIJIVxfXzdNI+XMb3zjG3meCyfPey9G9QlJWorn5+cnJyfe+4uLi67rJmXx2sMHxhhhuQjQv23b/X7fNLW1hpkza3NrCTCA833f1PX68ln99HuT3DyaziaTwmrNUQWnfK9CSM753rd1F6CPJeus1H1E5zl+hqFCR+O4z3tn7YG+Szi7+c1f9Iz9m48xAftsSnBnEJERV7vultuaZDgDWwrZH0h1vvfAiThpQheC8773rmlqUBSBTZblxXzsSk8mEyGNVFW12+1Mfshv1WB0NV6G7LCyg6/X6xijaJjIVnh1dSViGI8fP7bWihWPkEystfv93jl3fX3NzKenpwezZOckhBKv4t1uFwcxuj54IY3IFiyJSowxy7KBpcxjxTeE0DSNpFuyBERfeL/fS47RdV30YbNeS3VfevFSGZHPU1ouIxnm0J9xjpg1oZwl0hYQkT1OHEMUFg0ixpSI/rMzYR5ojmNBSwBIY19lHHc2wFsZ+G0K/q3jZ/gCWXbzm2cInA79FvEPIRyCDPb7LQAaJAPIwEqRynIXfFvvP/7xD7SxtpjYolqc3luePcgAr54/DTHa0p6ent67d+/Z02d5nlulkTnLsul0miCKR4pUZ4mormsJcSSNlDcu3TNJX6W5J2A/IQ5JVHR5eXlxceG6HgBWq5XkvWKGk+d5VU3K2UQZbUhNZ7MyL+rtbrlYVEV5//XX333r7b7rQgja3hFpvHtTxgSSUyrzPPhQN03fdU+fPP2z7/zp+vo6hqCUns5PbJ4Vk1lVlLPJxJAyWiFjCNEUefAHgXJjjfhREBGhMllGooV80CdVh/WLmJxXConZuy4FH1y/324uXzz3q2vvDiBGrXVk9jFISqBJ+SRdDhyLr+NbqaoqpQgAMtvH8IAArLJSbE7MBXAF7Lzr+76PoW1dGgFvSo1zMoQA2oy7Fh2FfUSk48GqCBIf+ioAxAjicAAgPRtioHSTW6fPJIqfnb1wm0uNgPA3c1o7vPQw7hwix3EUMtiE3W5/dn764PVHT66u7r32qHVMoBRoYCCivCyVUvPF4unHP/7xj3/07mv3i7KI4BMSIyjA0Vru4IWEhKSM0SkljwER8twCgLF8/sorF/v9h+//5NHX3+1cX5YTa/IUmRFOlicuOGF5vfnmm3mev3jxQmv96quvnLbdi+fPnnz6ad/3s0mxW10prWLftvvddFYk37Vdfek7QH5wflJvV2+/8SokzEkF5xfLhXNeES1O7yOhUnq73XJMsg9LgWC1Wl1fX3/yySenp6fX11uBXEqBWAoQXdflRZFPqrFYo7SWaW+MNVqbLLdZFhIjKW2zxCBfCWtizEIBQLYCpRRpJZ5pYw5zPI4b0Xe2yuNERaQmpAfbti0NnRlC4p+VKI8zXM4jUS+QKsxnp9ABiDvwXkSfRr6QJnAarEjuvBfEQ3tEfnnURhqfU74+pq8AgJxBcmTIXZDDesSvjkMiPX3kIzmO4zl/p7Uo593Y0lHD+PkTlbvKal/qIai16tuOMlWW2auvvmZt3rVOKWWtTcHdPDUf2j1lkVVFNp9mwD6EIPBSIXL+nJf9Oe+Dtdbr9bosy9/8zd/8w//4R/+ff/Ev/t7f+3uLxeKA0ruFxzl842MEhU+ePvu9P/j97/zgr17QvrOQA+vIBhAYIoCIpzexjwEJ/ULp16vq7dlsoQnRU6HRRYrC6YtZZhZkjGWbpcqn1X5NyIDJMAalC12e53BaTJbVFCEdzbgj9BGIYj5pTUpRjEyaUGAkyKhYK2Yg1wN33vvEpsyLXFdVolwrUNqh8hGii2iIQ3TOuRA3sSuImLRKMQBprU2mtSHlah9DHJt0NAjVmWCULHgiHNAv77///gcffDCdTh8+evXk9GQ2mzvXK6O3+13XdcpolaK4L73zztuItN1uvPdaq6oql8ulJtytV4BAyKvrTmtNCAiwXC4YIfg+et+3QSP1u+v15aVGOJuYr37l0TRXeZYTIqSUIgdPwZkYkvfU9VBn6FNe97xrXQvQheiIPd4wRFFgqqL+f4cZcot8dWscIHDDcNF97q/9Fxxju/azEiJ3BiJqOjTHWOCFiIyklSK82ei10TbLYgjNriZIMfViTKOVSpw656BryGrvXN91VVWdnJ6K/tV0Mlmt11K0FidjMxjJH+9fcql+0GW31grloCiK9XotsWZVVcJ+bttWkucutD7EruuVNjGly+srAJjOZkRKCmPy9oXULlQW2UOVUgIE6vseAA5ydsyZURJbyPXAcKhorcuiOJS4olTUIM8yAFAH6jlMJhNmJqVslmljAFi4NzGmSVlZY4gohOBcj4iZtc1+B4P/10EWSamqqvIs8+3eez+ZTNp9HVPSdGDU48/KieWIZAROLMRCiVOZgUiRUjFxSnEsPQO+tKOCcKvUyHBLgDEe0nMEZDqA03ggbkFiEHwiESqFhx8x2ryAxAk4JYjMoe9d26OiaWaYIDKGrt63zW69fvr4k8n85PT8XjGfOeKmaZp6TwTe90bptmnzMs+KTGsld0FUDQjx/Owsy3Pvfbvfi5K1SIoJ5VSmxKSqUkqPf/qJqA7u632e59vtdrVaX11dVWV5eXk5m82stffv318sF1VVIVKXnLUWE+dZxpBI02a7fnD/3qNXH0k5k/n/T96fxdqSpeeB2D+stWLY0xnukPNYWQOriixRIhtwg7Dc/ag3y9CDYRttNPRgtxuw3e1XCZb94AcbDduwjIa74aENUN2m2hIkoaGWRYlNihSpZpNFFYcqFqsya8jMm3nvmfYUEWv9/++HFREn9r55Di+nagNelbh1zom9I1ZErOH//uH7rG1a5wjpNmKriIakiAoomZYFIAEkgPW+SV28urp5+sknFzc3L7/x+he//OU+S6RwRVkVRRGcYyLvXFUUTKwKHUhK/e7Jzo0mPRJlWfkcGMh4pc+lQpS2ZWIEjV2bmn3X7rc31/UnD1eXFx/+/h+kLu7bfdt2ScXAAMwzO6JqViBy5gtSNcn6FwAAllLXRQMAcA4cq9lQ0oFJEvZRWYopqqSyKGZVBUzbfZdTv9RUkgCCcy7F1LYt+yJn8yNhb0sN4dzMmJyLnpjIZf0Ly6qZQOO/Y2biYLzf1Zj5Ns43aYT4xwioHNml2bzNYkR6BO8Pk4EtSj0v17vdx88ufvKnfmq93du6LUIhua6AaVWvcpbM2fnD9ZMffuELX/rVf/YLtc/cJmCIaiAiCDnxTRXEEbNzIdewkqELoSxNebe9RoNmt0UwQsis1l2MRiTShsIt5vMQQlUUs7qazWb7/T4w+fmMib/73e+Yyh/8/rc2m+3Z+SkCLBbzEGi5nOW1K8a0XJwgUYrx8UuPmcp239Z9MJnWm7Vjt9vvqvmKJCFY27YnJyf7fVuWFRh88MEHP/j+D4uiqsrSuwAAvgiOHRKtlieABKEaDcKiKKq68t4HH9ixqrkQNCUg50JhgKrgfAhVOdRmMFJm37KckdKHU3D473CbF1UYtoBjj6TlVbCHML3JoNp2raNxIAH05OZ9FPrAuhyC2zkcBEPcww2aJ9NPqurg0+hbRhTZF5aD/1VV0VBYmEMut8NyEqwIIaw3m2n+iA21MSlLeQ4tf6AoChEpyzITYeSs5qMQUzVsiGOpycGDmnRjeqhpWxjiMMSc/zMzJHLD44Uha31iH0yoNvJDxSEFDQ5QEUwf+GG3DmBn20VAL8KnJw9effVdESrrOmlnMTExWS8mhoYOqfbuwaI4PT3RuEUgG4bCwWS+O1HhHlexTMce4a5tOPg2xfly8W/+G//mX/9rf/3f+9/+e/+zf+d//uill1JK5FzTNEmlquuujQgIhJvY/sbvfeM/+6V/+t1PP2pBIUkFRpYMMJolNQEURgW0ksvUPpL4Fx6e/Ssvnb964ucrLqtKCHabTpo2pRhKInJ+G2vGk6K4XO9FkLoGOpiZN6LAsCRGkF3XsAcARxEAjFyAvPdLYkZIdro82fv9vmkMDBhakSAGwPXco2Iyidp1aoK83jUxLF5/5z0pZ565ub5su43DCN1WoWVqK69FC3jd7TYzXj2Csovoy6qqZ1UZiibFnNNlZpvNJo9dMzs5OQF0m802g+lnzy6+9a1v/cZv/MZqtfra1/7cS2+81sWoBEq43u9SSlfrGzC7vLx85823zk5OnHcXz55tN5uqqs4fnjvnUhdjs6+LcHV13e73ChRjquez2WzuQ9VJF7ttQabb64tPP4TdzeuFe7CsCwZ2Z2ampiYqCqC5ogeZLaVdWbB3pGarypoK9vtmu9vvWv3u2pALAM/eK0CnYAIawal48zmzOlMFDiiGsqzVbVpzkk56NozRYz0uJdPZQcd1KLe/x8n8zb6ZyfA9WLBgUpqW7q4cc4QEpAiqkqRPaEQAxsNEHYSJAxwlGSHOZ7OkCoyFSKvpen0DZoUv9l0io5TUFwX7MFustrsGgYNpgVhhOFudofdc+tYAtvvi4iqlWPjw7W9+67XXX/POR+aqKC6fPbt4+nR5cnKZLs/Ozpxz0slsNpMkBGTJ2raLMXVdNEVEDL40xWbfIWLpQ2q75WyuqrFpz09Of+u3fuvLX/xS2zT1fLnbNRxKga5L9tHHT3/yz/8k+WLbdOgoV/OLiICtzk5TSkVd1XVdBkdE8/ncNK0Ws67riqIgcM6RCuTC4KIoLzeX+eGXRV0VtSUhImD45Nknzvlmt+9iTCmqmeVEA0R2LhQlBy9m3vmycuvry9PVarWchxDUdL1eE0CK0SEl0cura+yHGt1sd4rUJpGY6uAd2YOz1YfNtqBgw1Jsh2uvqiYZRI4RLclglxKwZWCBogoQ6oWaiRiyJ2RVJURfMKLFrjFV0WFjJhylt4LHsdJzHIfZlBTNaN8ATDMsGtLNBkuZAbJ2hwxhBEh5ShGTIwdATscIQ7NvkblgX3lSjWnftPurD598R4FSvaxXK+y29WzmfJifzF5+/YECRO4KrOqiyImFhXOm2u52kn2Tqg/OzjLEjW3b7Ha7zSYvWdJ2KSZoumfXH+USi2fPrvb7fYrdy6+8XNX1F37sS4vlAgFFUh+bYHIeRpOm61qE0/Oz84ePHhaLEg0IuKwC9HbqWIcAXBcCfWqOJWm7bt/sM7VD7BIAQlVXb775hbffIaZxuSDvxg2XuV8cMCPLacUq9Htzf7lh/WHiI/4bJANRM/FqFlPbNLzd0oOXTnf7+eLR97/znf0nH5pC2m9Kx96jpjirKw/sfUHei6kid6KdiAJsdjskr4RcBCVrRBGQAEv2lQ/b/Q0piiEKeudmReUcg1qMAg4NeDAnBp4wJil8qwCGiAgIRjRUmmTpUeG8kGUHDHEesSDmDJmQkBhJVZPquMQacuaQHGOktw8KElMvipfDzqoqEsWscB4AFHpr6eAZTpZeYp7ik8DOslFLCAjRVBKIaTKZWixdStk1nlLyzgnRyaNXXnvtdSVoGzg5eViUrfcenJRlURGHUDa73Xxxui6fXW2a73z/CYWaZBcQMfgMiHXYHQgMVSAZsHlk8pBAc+0KINiu+fznv/jh1UY3a7dYkTdzfk/Rggs+qNmDx6+DaUqdxi5GqarZdrubLR6cnp3+qz/zr2+322bfFGVX1VVdz0NZtGnr5ysAKMbgGNHLqzNGImXioKbOewOYLVdqtihLMNttLhGwKIudKpbV49UZAn7w0VNXd/WsAkABDEUZ6plzgZzLGj3OOWL2zvEQkHeOHTtkp+gScfDOsVdTMwuOHQdiBh5EigDQ9XrPRgSI7Abd1X5Vu32VGWOQ48xPNQqJSEqBC4WkmkAVTa5urhbz+fXVM0tNOT8JZRVNCdA5J9i/FUAkcl1KQJSLWMSs6bqk6r0PoXShbJqmjUJEIiP5jTqitt1DprXQBIBFUebsaEMk5llZOee0XxUQmRBAAaemCCKaQWy7XdNWRZFS0pRyPkN2ZDFiVRTT+xeRMgQ0K7w3EQDL0StVFUlTpB2KykZ68SETrG1bYhdTexulRMzp1tm3iI57F4OqmsUUBYyIjPBPSu/7R2rOOVPXNu2DB49m9XySoGxoCrkcHIgRyqJYLmZF8LFr3QtJzP8pNAP4whe/+D/6t/7Hf/2v//X/4//+//Dv/C/+3dXJSbdvEGBe1tc3Wx98KIsPfviDX/r1X/21b3z9+88+6RyaJwScuhfRLC8SBOAc+U7eOjv/yptvvH66XBYcvAMES+qNRUgE0JjIEQsBOUNHhilRUopGZs6FgpC7mLb7PSZfO+e9mTlDh0zIvRmgSohE6L1TCBDRCNl55sAcTEQNNGmM2jQpGhflYr46q5cnbnkCamwIew/pJmnrNDJz8JxiRIhojaUGYgA2EI+iKMDMs1lomiaP++x7zoGUtkvr9XqxWHzve9/77d/+7fV6/dZbb33hC1949PixqUlKiphiLELYbjZPPv64aZqf+ImfeOWll8Ds5ubm+uY6pVTXVbaNnPdIuNlsyIUowuzq+SKbFCZJ99vTWXn95KOrJ9+bs7368vnCo5NutZytN1sFAEPFgwYEzGxmRKaqjtFzCGyBta6s89QlaJvUxlYkeKgNVcCQzHkwQLXsaEGXWTiJ+nLJ5z1nk+zS57fDP9rInO6If6wzZG/HH7ED5thFSSa63+0U+2oKU2OiKd5n5xCx6dokUlWVpLbZ7SUlx25xehLRrq6uYtLK+/OHZx9//PGzZ88Wi4UulIiKUDx+9Pjy+uqHP/zh2++8k5PBMh/gbrfL6+DFxYWqdl2XSxFGEmFEbNs2lzUDQFZdTCl99NFHDx8/EqEoaTSiAXG73a3Xm9dffz0lyWGZUcsPsmiMczlZKIfCx8BOXt932wYAcklV7g8MmU3tvsnh9e1ulzkhIMvSmYKRqRIbmiVJBRWZajnFbjabOx8AyQCZfVXNcKAn7mJqu5j5J7qu22x3RGSAm+12s1tr0rqsCVikO3ASTUAnZmU7wDxGiXoK7rF8dPxkbPKeh7nyF02JCM2IUWPKg54MyJHjgaTYLDVdz0tkNiQRUU+a5wrJdJmWC8Td0CFMaeLhAmYaIzfYtGlMtFFVMEU0RALA2bIygJxwwQ58CNnAMCDgkK63612r83k5n9XIRT0nIos6O6tC6V1gcsiexkQCIiqqkPMWOHA5K23QAZCYmq7xzi1Pl967XCeR8wB98OooRwNooEEb0icgSTcClewTzYSk3jlo28MKntuEgGSDm8AggSmiL0pyvhQpyno6FY8CjJ/5dzhcHI4Omdxy/sBhppahWjbZVamwoqx8Ubqy0qZdkEcCBf3ow+9zxz54z4YEjDQLhXOeHEejqJhJcC3zJd12BLX38Jtm/ca8BjMxUg7LMpCCMoIb2HGyxTMwapBoH7Abgev0znBKSqQGaGaWMRvnS6sZ9WvvXele02dFE2aUsd0VWrzraR+0ied8CKb1ijbTxErXS23kmJKdnp2+/70Pds3+3fc+1zT7hy8/Pj0/vbi42Lc7wjHWQ875k5NTNViuTraXn9hmY6ioBJQHL2UMawhgt5TMODBJ5l9C4X744Q8+vt5/7is/idqf3QWPDpIYIzjnPRO28Ozq8uH5mZmVZbnZbSuAsiqLsldGz7fATNbJeK/ZgNaBP7drdmDgnMtTMovC5Vo8djyfL66vr82gqmYqcHFxef7wISDXVei6TgGBGNm5zB7BnpnZBcrBWWbKcMU5YkZmRkZiZAZmzNJpRMgEhM49xy/c+x1fVHhgOjxMDQFpqGEyMwBTSSl1eTjZwPF56FkHkVt2+z63aEjW+swrZnMrtl3ON865cIvFIm+Uzrk2xhEDHCV3jFkA46ExzyqT4OcAy7jrTf/NjQaa4/zH0fE6OqrwOY4BmNgeMUaAnqBlPMMoapzX1Zz7lyNC42IVY/xRAxUVSiDvvPNOWZUT4mJAFEJySMxYeL9czhZ1HTyrph9lNXJK6S/+xb/41/7aX/ubf/Nv/q//xv/q3/6f/Nuf/8Lnm6bp9s1sNtt37e9+99t//+f/0e985/c7NCz8LPhOZS9mBACKg5QJGpApmenN5uXV7Ktvv/X62dnc07IMJXDXpdS2spfmZr/d7YmUmASdICYwRdDOpFOJJoCIqgBJYwupEVdQKVnIjxypgvZqFmpaFM55LoqiFGljl0BDURCSqnV7UbXtJm427fV1p94vZnVRrryvq6ru2rae1YKibcQYo0U2AwRyCpRUWmg3RTUvgick66xJLQCOBU91XWfE3HWdmLadPHv27P333//Wt75VFMXnP//5R48erVYrJupSQsSmad5///2maZ4+ffro0aP33nvPe391eZnx98OHD8fMsTx/wLiYrcS2pfeL5QxyLlCMlro67XfPLi8//OB0Xr326NRDxxjrKjRxj4w05iIcwoZRB0MHaqO8NEQVnst2392s480mqgBbwBTYABGMTMhyxNaQzADVGIEMTfV2DxqmMUym7jQ4+0dtdpjK7O5m/bp/YMO46BwyI9/TmDmmlAvNuQxifbbYcwmvfRVgPmREi5OT1157LcvwFcE9eviw3e4B4OnTp6+8+srLL79cluV2u53P55nDygefRLJ9X9c1M3ddl9W4Rz7i6+vrzG8xXdHygjuSC8cYi6L48MMPlyerphUkyoii67qR4qkoCkkdgDVNs91uq6rKS3PWZsmVCdmZOi2YGTeSGONms8mZWmPYXbp4fX1tZvv9PrMI9mF3taqekesTbXO+/na7JSLn+OGDBzkE77xT0UzQnFOxMwsFAGw2m7yyf//73weAzfU1t/sqFFW5YPKtRrpNSsRMSpxHDYARQV9INFSG0sidRDSMWATbMxAxE2GSJGJISggIPKvmPX8HoqqoDJFDI1+EcUCp2hAwzISeLKZMMmYbE2FfIDG7Xc05hwOYmQgJzRipx1GhCN6H3CUi0qIA7jOeixD8UBWac1qLULjgETGZlVVZzuqiKperlbnCBZ+XqVGzcooxcCjTGh3nZjabz0fzI19xTJKcLebwWRMcCcwOSDxpyM/mXjxxaAcFOyCm469sjL4PjRKRTj6oh7VkGeh+5iHT43DrbZuQ5B4eMrEEiKoKiM4RhV5+QbsuAqZuTwhMdvHUQeoYJSCiaVmWzC6ThikiYEopQY7wxMNumKmZYk7ZIiZ0zjl2PLV1kIqCdcirGfGqqiKBGI6HDqMfgHYLP2yoG+6HnGGWiZQ7dBVzG0fFcE4bp/yIUo4+83zjO8pZX7zlZS3Peufce++9x++7t956q4vxvK6Xi4WCEdFiVlMvPkhEWFVVLMtHjx79yj//lTdfOs9a3/mE93QYJ2lLBmggTz69WHeWqzkA0BDrulZL25utIwQAAoZB3sfMQvCdmqpm2xoHaREzG/KF+teUU2dxoMT1gSSlJG3TSlFkYThBUjQ106zB6n1omwhgi8Xi8ePHP/j+hx8/+VDUyrL2Zel8KKqanGf2SJTJrGhSudQvKs4L9aza44SlIbtpasEPa1Q/FI+djnc3nTSa7stm+cbbtr1/YIzVI304V2REEfKcSLMNZLPNbpd3uuxcG9GCiGT/HQ4CkdmbNl5ragVNC0J4oiyZr8IDvcq0/6NTL88LotvNEaD3/+ZfDx/vLahTtRD6cQJDUUp2gObkhXwX08xqEWnb9kcKVPJ+sFgu33rr7ePBoEZszOgIF/N6NZ8RWY4xqcbPPt2fQTPCLqWf+ZmfKYriZ3/2Z//G3/hf/uX/9l/+mZ/5mWo+e7Zd//Ov//p//ou/8GR9iVXYd10yYXMMgICajVfUHqiAkhmrvly4L7/80lsnJyvvFoEDIYh2TbPbbtpn7eXF9fX2iguuZ5UBimpK0qTYqUWBTrFDwxhjTOQluSByuzPRwOTdAxXV2bw2AAQypC6lJnZJVMS6XQvQicD6prm+3HYtLxaL1cmDxfI8FLPCFSZWnZQwr+M2dDvs1vu2EwQrPAJGiEli2F9fCO19sSrKuQ+VObeXfa5pywZcHl5E9MEH3/2X3/iXRVE8fvz47bffRsTZbHZ2dnazXivh5cXFs2fPPvje91ar1WuvvLo6OXHMJlpUVSaKXa1WWVgjFyuLaCdgZBHZEyExmSIoopKJ3TxrP/nwzfPlw7OlZwUFM20lpRgDVTYsHTZUD+efbx1X2kuqDz48qmDPZfJGNRdNy5LEUAgToImBGeWkiZQUkgARsRJA4QAPzQIdSs+P9rw/zpg8+tYfK6Qy5fZFeNGVOK/vuX7RlUVq9jIIbkw/JiKOKdedxxTndV25kOmtmNmXpYi0233bNob64Ycfnp+fz+fzqqoyflDV5XK1a5pPP/00CxLv9/vFYpGNtlzWnK3GLAOaN7M89nJBc17Zd7udqp6dnV1eXoKBiJCDjCtyiO9zn/vc6ekpM8VORdJqtcq17zl4ksvS0HqbZjRhYdgDRGSz2ZRlmVlTx7+r6s1mjYDsuEsxSoopztw8wyrvPTLlTJK8zZRl2dN/pS7F2MboogOAJELOxZTartvtGwO6vl7nmMVisQL8uCjCbrvzBuyCQSIuEOPUarOJBATkyF8mfcq6f0hGZISS8wcRMj1QTMgMDpDRoWPmvuoMkMh5xEycgJY94pkE23BeL0bt2YzBCHvGWiWmwS7JpdvsmNkxE3o3mpXe+xAKNxwC5NvK5UHRPIOZRmQEKkeu6+B8vyXHSExFWYqZqs7ms/w0iDJE4hFcwLACGOSIDSAAEjETIHaScPDvqWqSNJZjwYgezNg55zLTd55f7TSiMuINRIxHKZ5TlohJbta4qudrpefMlOl0u+vQ4XUOFxw1s9tkp+kHo8Scbg5mPidK5eJDJOf96vxUNcVuD9Ztri9ZY+V9apvc0VxVAsi5EnCUaTrqBqkZZRGeHsUF59GMbDCqsk62Cg5anDLoSKiBGsqoKXyIVaZlBGgGmGOIvYZvXgfuX3inhixMIirTC/UD7zkp8elJ7rnEizQdqtGcc/P5/Pvf/97LLz8+Ozv98OOP6llFhDHGk5NlUZWYcyQJCamLsSiKqqrOHqxO58XF9cdjJc09XZresiFyWZ0/nD2an4Sqni+Xu6SYSxEiwGyWBcgBgZAyxeKQ6Q1t2zCjqsaYhrlpADg49AByxed4PVO1qNqrf7Rdgv6VocPMysOq2nXReY9oIZRd11VVtTw5Xa/Xy+WJD4UC+KJiF8h5ImLvDSCXxaFz3ocxH0wngP/oLU/DkqM7P8++Lr2QwTka5fn/p7IBNti6bdsS3TcwslLWuMvYREd4utPjUMSfB0m2uDKFzLjO5O8Wh6GY6cinQ1LHEYHnZSHPrOm3RuhydAY7zh+z0doB+Izplv1RNijTZ6f2CPAAIDuDMq6b/iVfMYvvuek1chT+aCEbb2b8efoXywHGO6cEIh6cighXJ6tHjx6KCPcbD4hED4CMoFLPZst5HTybCpiCHZtV9yw6fzxD8KC7ALm28qd++qdfee3Vn/u5v/3v/4f/wS/96q/8xX/tX/ve5dOv/97vfLq91kBd7JImNGC1Ah1EFYJEJoSCICam4okqgM+fnn7p4cOHBa0CLSqHElPSdr+/vly3N+njp1fX+42rixMKzmUFcYmqVhRNajddbIAQodDk1MRTUZc5wOe9Z9erzSCxc86rlQ6yhSAGXo27sNnuuq5NIpJis+uuL3ftrqvqByenDx4/frVcnc3mKyIMoTg9PYldcyERUqNuAQJd7AInRHME0u7aRiic+DCrvHPebyUhUeZ+RcSu67KExXq7+Y3f/JcPHj786le/Wtd1Zp9YrVbr9fri2bMk8p3vfOfy4mI2n7/x6qvn5+ciGoIPPmx3m8yt5Abq2OytEVW0gMSrsnQg0jVEEBD27XZz/azeXLzz0mkR2KQhBO9JlduuoyyupAcjFhEJycCQe0HxjKxuh7eZ7xP0feW49dB0INqJRDEmXhp6y9wxhgLUlyUjwsRncOStwYFuPE+qI8qLydA72N8PBvKxZ6wf5jYUJcNA2a52m+ZmAHCYIjKuhpgLQ4c2rWxRVTXNJCoImCwhUU5iiabZU+K9t5QAep+NiDjocWCfmqW4PH9wenqaV5+CyDnnTk9r79uuEZOxZn0MStSz+vHjx1VVPXnypOu6LEs/ildkp9FisSCiXPSMiLvdTkTm83mWgc9MwYiYoxYG5kNw3rdta2ZXV1e52n65XKrqYrGIscvjNsaIh7wlNvhls281QxFV9T5kXLRer7PvJ/9dRACx67p224kIEgGTC4GdE1MFG9FDJgA4Pz/PUSBynoxMxLI72tCSNEnWm30Tk0TdNTEUIYuS1MslGJT1Avd7Q4pRfFU7yas35JyrMMln6Af8ACbKUI6+xhC8D37YmNl5JnbeeecyOCDsBxaWyxkMpnNOLhhPv5ifYi8E0JM4EZNjR8jJhNDl/amfdTTUrToeE3cQevlRIiLknFuYO54f7MCUQ2cuDGPeiG+dfAZGDsUUEJ13Wb4QALrYgUHhfa4cGBLTbmeWY5dnLGbasaHCGgGYQ7ZtzMwhBxo8lICcC25Mhx29TyqEgZhumK8A0G//CgYTJSWbxFTQgG8r6w/oAe2IVPCwiaTJJ+88BAo5L79/bgY6kv8OVwEAM00ac14dmhlgXw9qRmBc+CDV7GS5OFktb06kbdpdRMKiKEe/T4Z8kG0UVXLehnwrIjbrt/D81rIuU79IDXwlZpZH3AilRjvGzEQh9V68Xjhi9Ptk62f6eIkIDNFsXOJG6+oAtY2FVcMYBBsoIAb2hzz9jwzc6Ts6NPumB1UVxui1CPShI8Axg/G5vuUFW4fkH/KBHj1+aCAASmQxNc5RVdei1rZtUTkRJSIfgtPCef/DH/ywfP0xIsKBsXv7eP1kpxjfXfYkIBaz+fzHfvKnsV41XfJltW/2onHqqgcVAquqqtlvY4xMmET3+9a5HPYEADHIETVOqZ1W6fSSo4gEGJMQY3bGZy/hwMGlRVHMZoubm5u2jYjcdRGRMtNJNZ9fXV8DoAEKog8F+eB8YOKyrgD6bLj+dTJDTi2kLCY0ea1DO7K/p1DhECHA8986emWIyOwyK3FuIhJ86NpGREJRpJi8meXcJ0LyLidLC1iGfDAsICNE77qOyCHebrK5A6POY36tGcXl/XF0joxdxUkuQJ4mOshK6sBPk/8S29YGVqR8dAy/5J19LCMZh8049caoyCh7PTIB6FgXx5x/Hvmdc+tdUcRmysxN07Rtm12QORiVe9I0jRvnzHRC3k7jCVwbEdj4ydHpeK834fYYM6eoDx88rOuZWa81a2YqagQmabE6XS0XjhHBiADNJMWpdMj9V7qnHawpd58DzaqyFLAuxtXD83/r3/2ffuVf+fP/t//o//EL/7v/TT1fmiPzLIF9WfgQ2CBtoxnqpgNEZRUWZQMTTF1w7vFq+fnz07dO5g+CL0zISFWarts3zdV6fXkVv/fsatM13Ka2qOoCSw+YRMzcbJEi7lrdgyKRESYPVPhiVjuPeVyOEDA7qACxRCBiAGpjykT0TdPt962axf1ut9m3uw6RQ1EuFvN6PndlmVS9UV3Xvqw6MyhmlDrXdiqoaRvTxjn0RMkiJ3O+DRgdJoJECK4vohIRefr06be+9a3vf//7N5v1+fnjd999d7VaZZsyJ/3napbvf/DBJ0+enJycfO7dd0+WqyqUSNjs9522TdNkjQsiGt0M3vusaeydKz2TmTZdICTpNk9/GLc3b5/NS8/OoRiYiamaGnOAHj/DOIanlqimfh2nIUVygEZS8ArUxEDUYmFNK7sm7pp96gwTGwU0BmJAZmQjh4QAZJOtlYYYNAxuleno1QOyiqlWq6pOD92OSTKb1sjqgVevTwfP0zMDld6MO0TtxwHogyrbo7zZ2/k8Ajkiim0LACGEJBL7vRdNVUSZHQ4ZNU3sBNgx5+/2VnJZKnIgUpOby5uczZzdQnldizE572az2csvv/zRRx/FGK+vrzMZfAgh+5AWi0UmGxmZE/t6g6LInpjlcpmXtq7rUpJFXRL3Gr37/T4rI2VasBS7vKrmGpWc/dWvp0lG06dtWhnktFJKjpOIrNfr7Xabk81Gc2rftc45SwhAYhpCIO+QGRJlmcj8HDJtbk5Ra5qGXVCznDelooacEohiFC2qeQP7cjYrq8rM9vv9+fnjGONicZJ228IHVTt7+ZWUMorrq+Qd8bjelmVZ1SVhbxM47x32wY0sDM+OHTtm10H2dThmxgP/n4GHMZcsxxUGhjFyoRjHjaqCAfe5TixyS8KZ0dLt6Ap+3BByFtp4yLuDITpd6gP524IoopGR2dCUdbxnxh6O+KLAXvp80o1D0pvptUYz0xDwNo8fsOc9NTPLCb3Znmai4/QpPbJZh90TMekt67lNroU9idD4rQPDd8rG95xNfPDzdIXRQz9Ivyz0pvFtDupob6mqZb4u09ylPoQxNsfgyBVhtlwsT0667brbrw2gKgoGFO2vrtJnx0VJpAaA+UpZRQoRAWxcEnPHRMVl5oRBOqlp2i52Obw5WlG5O/ukMtzLCGD6e5n0ltkR5rxrQM2y1FN+kdtPyoSSRE1tiF+ZGbj+9eDg5hoPTQfN0RCa6uQe4aLsHB+WaJNcODc4rW0ApfmHxWLRdd3Z2enLj892u835+dnb77x5eroSicjBTGPqUtSynmcwhIg+hNVq9fQH333n7bd///IjjclMicistzL7rhwa2ZNFXqkq6+UpcMHOh6JiX2y2mxhjyE6BfGdoBJbE2rZtmqYsz7yjPSbRFsmVVV/opSb54Y9PR1NSEWYm75GpKAoA6Lq432/VtCgKZoeIKsqOs5o7s0vJqqrKxYTEIdQzcm6z3XVJA3sOwfngfcHeGbgcyL31vyEBkE4MgOdf2XRDPEQpx+Bk2kY7fny7vX3PlFLKIY+8oHvvNuvOzIIPkrq8BaRBPD5fPccPpxY1DslOMUbnbv+ed7HBfXPLCJyByri/ZH/o+CsA6FB2QoOqr00CIONIyF/kQYlYBpk1HoQmR8W86YzITyN/YBp+oQmB0BgD1yFUknObRwSFiNaXMrJzLiub5Stmb6BzbrPZvGjq1/gcR0Q+BZQveBIiEolvv/M2EakaYraEgIkQZD6fPTg98Y4QslLTaK39oRpNfzoNDRySqQEBF76YFZuuOXnr1Ueff+vC2na9l67dr9suRhuXXQMy9B0rYuSUSFVj4cBFKcry5S+dvrWYr1ArVDYVhTa16936aru52e6/f7X54W63T4kMsZHzQB6x8EVRQANlWSMLxnankAomF7gIYdQTBgBTQ+6NA0Q0QE+GxCmJijT79vp6/ezZxX7XIqF21yoQgmNfIUGogqFSwH2z9Twri2qzb3dNDPMFgqXdPulOYufImQqjls6hinTruLv03hMa8kxVm6bpuu7m5uab3/zm17/+9aIofvxrP/Ho0SsPHz/Krus8PNbr9eXl5SeffHJ5cfnGa6+/8847OS+o2e+3262ILFZLBMzMetkMzbZs9vfMi4qJCJK3GAraXz/94QffdpY+/+brpTXBERFgIslUMORBzUDJbvlaeSK5Oi4xebEY0yJTSiqatntFQxVCYIayRCBDBOfhanMJWIDzSA5DQb4AMAAl5KKocRK6zXc9bsm3A+xua+meSfScBXNnzvQ0OnRoRx2f8K5DeUW7dVhODvU+i2GJgcNDmeUQEVOSYjE7PT1dnazqqvaznqawLMuSWU2ypd513eXl5ePHjzP22Oy27U2LRFmdPe+FGbjmGLeZZRfLCCzzYprrPcZHTUTz+fzZs2cXF8+qelG4XpUVEU9PT1erVU4mNBU3BCTHzNrelZtSXqxzqT0gSJKYoorud62ZXV9fE9Fms8mIqG3bLqXzhw+KsghlwcxZiYyItttt07X5BmezWVaiBIAMe9g7AIb8usjGmLgRsQ9MLhtqGdWYWX4IMcbUdVmqSFLK0HQcP/4WqIxuJiRiQEyZbIO593tlKUZmQNq2KdMT5x2XmUd24QRtf7KBVGmoCzgIxPW1JX1FCZkcjI2Dcc6DhH3OXhnABIIB3+o+5P+ybxMVHSD2eZwHNn+2nvrBb0CAdLtbmDLYIVb5zJ+zcXF7VgO6/fE2hYUMYMKLfzSJTO+cvzp5HDbxvKNBvPuE8mJAZWozwSFQGT/cWwy9O1+nZoqqqopYGuiDAdVwSJdRM1BRBPQu1OVsPtvNZrubggDUFIGGEI2J5EKVPsEdKdgkMZKdN8geJzOQERQRoaKCWEopdjGCjmr0Iye4iKhBRLbhdsYR1Yfipo9NVRMAiCICmHd8V5br9KGNqb95RWX3otUmdy3auYeT7YYgh5sAoiYRMexvZHT15g/kTNSzs7NXXn213V4+On306NFDXwRkbNpWQZmxafbz2TKEoApJxDsX293jR4++//vFv/zGN2pCIJo4s8eMJjjEaZLVM2KMiPTg0UvF6vzs/MG6y+op5pwrnEe0QZYdQA3BMh9aSklFyLkQfK57q6oyj6UYYyfJ420Y0WUJRQAVMVUj8t7NZlVZzkQSIjrHZiAisW1TUuecGTB7xz6b3OwCOq8Aig6bzoicD+y984V3LhkADvqMufUkN8fJOH+6bWoSA6Cq4WT3VxnZVjTvCL1J493RgB3NhqPhNPo9dQiDZACTUpIY84ZbVVUuvORB3Aym4pKqfbGZavblZcsqB2R0KL1DxCKELPyV9RyP0MhY96WH5amjGTC1r4hoNN5GayTHQvOpxlomeG75ymQ2GaiUZTlyMHzyySd/BKAyWjCq6kO4x9y5q6WUiiK89eZbZupdAYgiCQC950VZvPTwgXeEZt4xmiEAQU9w/Ue90B+7aUxJJDm0wm9j8yv/8jd+9u/87U9vrpZvvFTsOhA96aJ2MbZdikkJBAEMCykUQEiMxNqmBj1n/9bp2ddef2vpiGIDYsjUxbTerj+5uPj08vrjy5tP23Rp0jGjwRJg5bwr/AwLDGVquK647tJ112gEYqxDUftQEjueeKR6Ij6nqoDStVszaNu43uyv17uPP7385JMLVaiqclFSqAqkKlrVGHddo5AALZSBiVWx6dpW1XsPvkRfoasxJe/U4k4tORIPGuNuc/1knzrcrYuTN4HEzLIgdxZNOzs7K4ritddfc97ngF0WPLq+vv7kk0+ePHny+OGjH/uxHyuKIjMajxHJ4DxW4EPIbvIMV/KoBQM10thpbAy6/e7q6Q/er6x567WXZ15j24ESKKQuEnFwHtR6Gi44zjQdN87ME38L+YatQlHKxVwNxZKo7tu26ZqiCK7wc2PTvYh12qUUu24fjYwdUgAknUWwPvY4OjBoYN64a7DxNKv1GBccd3v8lawHBnQsCA1Tm/vIQDw64QHSmHxq9C31Wx0cpxJB73M9sIdEBIWYuSgK51hVq7rOWXzOuU3bmNlsWeRF83p9nV+ucy5rnsQYCZGdI6KLi4uHDx/mlTRHwIedAMxsNptlkJOBCiJuNptcfJ+hxXq9zv3Z7/cXFxerk5OcPDabzebzufRq9A0TmvV10hnn66C/xnhbz5NBkTr14s1st22yHysLa9jAeU/MSpD3g3HDyNMhxjir6jykc05arnesqoqdb6PqkEs0xsdz1MWxt0OIm4/GFCXrKPZ+/r5EOvd/Nimzzm79IdiSmTfzqQgRcEidRsQyJcAcgcz7ynRE1Udj6DaK4nQKOfo6DhhqBCafH5MpjhxOeaMffjGFW47vw8wMI8Mp/+vkyVif9WGZ28iyniQBWC4TvMO+n57+aDpM5Wim80ues3oOTn4fUEnTX8dvGcABB9rhhH1BoHLU+ecjKmP8wZDGn0cfp6qaqVgPHmgAKsOjMNVkCD6Eqq6bWe2LQETSdW2CygdTG04JjrkoCkWIqU97EpG8whGh9p0R0YTc+/gAVROhQdu2bdMk5n3b5FxNm+SAiRoGxjFhbGhEhIB+sormZcH66ZBfyWcXbBxEVAbXL9xbgH7Ujl1FejC6cEj9NzNiHvVhkkpSgSFRRVK/UOct4/z8vOu6V199lYhWq1X2aJycnX7y7Om22ZdVNZvNAKAsqxBCjBINtttt2u2kaRaL+Ze+9KXv//av20QHYxwhiOAOAVjuQAhhdf7w4Tuf2wqhL3Y3V6Uv2MCH4JwHS0o2CIuZqZRlWYQHm80mpgSI2eOe188xMQ/M/FSgz8b8KMaMKMCpgCRBdEUomCmJmKYYtyEUTdN4H4qiUBlBKQKxC2VQapOJmgGCkSEpEuHBbg4TqgyzF6rm+uO1qUkspqo6MnIwkcSYuWHMLASPg7wsEk3lMUbHgT5HUTM9lH/IQAUAFrM6c8xkYDBaHcyscPs0RgAsg8z8+JpgUhNFRKCa/WJjZsHYB+99jnKMMZnJE7hNrc+MO/lsI3dCDo3a4AjOdt2o6PL8XMuPSIfYS+7Abrf73ve+9xlA5TPNJcReASevASOavMsY+syWoizmi7Oz85RSVc5zdVzOQ378+CGCOcdgJpIcj0D+z7ZN904ESDHNVosW7f1PP/qFX//Vf/xr/+yy3ZUPTi7bvQVwgKEqg1aFmpoltESkCCwFABgqQwrSnai9Xc+/8tLLb5+fvvqQHHbBA1hqu269213crJ9e3zzdrD/d2WWbEjlQmTWy6GQV/MyRQyydm3kr2QclS+q9K8kV7Fw2B3J3zQD6ss88Dbb7RkT2u+5mvbu4Wl88vbi+uvKhqEq/WszLokQum8jQ+e12fQ4SJZ2cnizLpZGbe2aVvqp00QRDamuSp1E1tRvTFLybe94kSe0aACFsyFeICCqS0n63m81mX/jCFx88fOicy9TYXddtNhvn3LNnzz7++MkXPv/5V19+2ZKs99fe+5yfHbwHM0mpmtdJpGma+WxeFmWMMYRQlCUiNbsmSqvNxkHXXj8L0D48X828Qdo7T4hsZkYMyIYOUQmy3FUEAEPs1ejUokhKUUW982hAPbOwqdjo6UQmMgMjQyjKQExJpY1Rkj5czZtOtvt223aGxOTV9Ypiu+2+90kjxZiydchIiFhU5TjABp/0MN4OraV7RumhD/WA4O9582v0UtwzNw8ud9iN0XOjh5V5CMhEJH2aNUDPsEkAMUVDCCEUIZRF2TUNmKlaFCGVtm1FVRdLA0SmsqyIuKpq713TNLk+fjafG1FRlA8fIyLOFgsfgqi2MYpqKAqR1KVUqGRvmZjm8o+zB+dFUaYkTYyz5aIqq5iiERLxS6+8Jqql6DtlWc9n5+fn5+fn3nvnuCqycrHLUl85TSLfvvec73S+XKpq9u9mQ3G5AlWIsVPVswcPirIYTCIDx877rouAwEQ4qgUjSkyOhjC6JFHxzpmBqPm6MLNs7Vnm61HxRYGYybN6BKWWd5TkQzkvVo2IAmS1YxzU7kRF1QKPCht9x0ZdvNhrT1hGLzjkE4PZrPJwYA2PuUlI5nEIbWA/VPpX30GL008POU1oynTIKN+XMOTwyFQm8mhQpil96hQ/Rxmwzu2mk/uEmmlYrZf2QzXM6n5o6bb4HdTU9HimHJ6wbzSUKmT8NxD6IWTBk/4+bJhDfdTnHqBih6h+OvWOKtam3Xg+9WuMNt0DVERkemOQV4OMhcHMLBO09VPeFNTA1DTBEFGBI6BiggDkOITgvAckVUsxJdXCeVW1wdHjvS/7ZJIoCmAGapoEzAjJDMxMzAQUJZMUixpENVNtm6bZN5u2UTNmLspycLuqqKpBo73xxb1rCYgo+2yLCcHUOJtExVS3m/XtocFu6yHzNLCFRozM5B0Ts8DdPAaTdvy+cJLuSIiDN0FU0WV2WlWDJCKq/TZuqGY0YoYi3Kxv3njj9bPzUwA7Wc0ePn7wne98Z7acVVXx5OkTZHAOnSMXvPesInmaFWVxvZa2TV//zW+cF9zvSaMuYS4KAiz5NspBxEguGhRV+ei118NieXW1bVMCZh+CQc+EqblUL+dDYiaySfvdtm33RfAxtgAgZmASu6Zt29h1ItJnZg5zL0VJIj54T855l8SIfc6V0FwSZaRqohCKqmka50NRVqKacpjOzGEidYiIBGCa6wCFFCUBknMecGBiH14AIAFluP9nZUWONrqqwoBW8ozMbJMZVOStWJJKUnbAY8oDQk4azyjueQPABh+Wme73u8GH64qiGCJRjpl9CCn1/B9IhJMCjRzc2G63ZpajE2ODAcD0q8eQqpNzATKCzeXQMKRN4ZBONemhjZAj53Rl512+RMY2o88xI7FRNYWeq9QHAEmJiUUkp12KaEqy2zcfP3niYBKLh6G0LdfUIyJY9khYLiwD7peKlJdyYiTul8HPalOYCwCofH7+eFYtQDE1LZN5i6uqePXV81nFZKCpBQBEkKns3OG6/ILQ6B7LzyZae0ykIibqvRdRXlSX3f7Z5uYf/uI/+YX/8p9vLKmjbdcYgXYdsjPQRsXUjCnXaigSUZeSskiNFrB75bT86suzz6/i4/mN88GxYZLY7GOX9uvdxU3z/ifbb3/07MlWI1cWCq5nuMWixmUVSlYvbcStD/CgZuhmO8JFQXVdQR1i6ZaFz2AVidl574J3RRe7FFOKxc31erPuLi+2nz693Gw3zmRe6LKyeQhVyegVW4vE13EPRqraSWos5SzaAszUQl2X7qULdCpz6XCTuma3rskktmgQKIBZihC6TbfdCpAabJ49Ldm98t4Xz88eltVs32zLumSHbdukFD958sl3vv3dx49eevutzxnEtm0RCBxFTTHFnOpDwa27JrZdgZR2bbKmCIHJXe33YlpIwm4X2hvaXi7a9Wurmlik2Rihc2VO23DEiCiZIC6zvaCHW6J6U9XgA6uAWeq60d4yQyQids4RqNPYARgCOmBSYiYRcY5MNGFXOqyLYinFza7dNI2AAiSzgsIqJosxeQeWmYIImQARd9vt6OHIK8s4DnO2bj8OB3GGYaYc+ecmMpG+zz3NkeWD6RAT9JWLZGZTr6weco8cfGvqxx1WrrxCEUCSLni/Ws2bp08RFUGJjAiUrbMIZE23n4dFKIKKmiYHULrAzn96fXV+fo5JqqpG5tasCG65OF+uznLM2Tn2IWRQ13RiIezB3GyORCdVJWn0Q2MoPCIuibJ5XZsBwCkAACRRAPQAD5eLMRPklXffRQDi24f2uR97rw9wEQHi9Mkf26lTlhbVMJi3OCYk3X7rduFkdgBYA8Bokg/NVzyYuYbej6pQh7S1kNm9bruBOMKCwU7ty0Mq4KEnBmDOGIAAPAAQjT0czeihGzZhLh7qhnMzlX7pPx4aaHklzqAGsk7FcI4xrX9yvdwiHsQQps2st+dsjKjcdur2wR2t3jTdAWB0L5kB5sSqETP3vc+X0KP0rMkWO/0z2FhggLeUwZ+RN3IYyTlo0xjj/QGQ6bfwsEt6a5oYMY84cHpCPEQ+R9fSlMaRoUPVNg6oK/9PM2YZ+wDQk7Vb1nc/eDIAkj3zbUwxQRRTKq53N5X36/3GO0fOe0bpUoxRYjJJzsCR01B1sZNozjuLAkjbrjUzQGEEFiVERywpbdfr2HaMcFbP6llV1zP2Lql0KSmYmprhTnJ9UB86Y0Tq4bblLLPhLfQiJKaAiqe0SiqtxEaTgIlZilG7KAlC9bCJrUEMFTEigXkGRgPVYjYTtewezkBsfCDs7oy3ZEycAbaIZY3U7Pu3bMHkUdWnXoKqgip7n1Ks6+rLX/mx1cni448/8hU3sqvLYtPuXgrhnc99Lo+RwvlAjgwL78FT2+6saXW3IUtGuDx98PClNzeffvr6O6//1m/+lwUHTZ2pEjMgIxRM2O5jwZSSABKFcJGSluErX/4Je/TShkteuOt9szxZloVXMIQAAMgFqN7cXJXeVYXXuO/226tPniDaPsbZ6elmvws+FLPZ/uY6hMDOgWMFwqIc57IripIZELuuA2I1Ie+89yIpO7zUDBx5LiTy2eKEmGLXpSQciHuKClOJyM4xhEDJkoEyg3NApEiW5Qxyeo5znAcCCPTRmDzOkQ4K8A4IqQ/cIjz5+cgRQAg2yqObmQpknxMoETAxgKYoMQpzMCMAdq4A8iKC7FRBkyKz9vo2EpyzbNmnJDGGELoYM4fqxcUz77NWWJPznClvhYSrk3NVTZl+k6nwZZKsq4q9NCKiAsQu5uAGIMakKkKIJhKca5oGzEZHZGaQapomQxoAyP+KCCLUdQ7Um3M8zePINZ85lpItczPrui7X3F9fX4/5zNn+ydUsi8ViDDbmkEvOjgazLnbSRQPIyc9tm9bb7e9/5/3vvP+hG6fQ5P/zyzv4kx0e/eM1U6uqGQBksacU26qkx48e1FVx6IJDmCwPf/LrHrVx20OAjFPLqhIRcNQ4+OCTJ//gH/3DX/3N/0oLFoK8TecqSgU0ROv/paFvRiABoXR4QvxKEd55sHrtfHk2c4s6QHCQJRKirNe7Z8+uri7Xu6ZNCVLUm83NnvZlJ5KkAn3kab5wlZlAIoNANvOEjCVB6bisfFUHUoOMvy2z02tKqWu7pml2u2az3t9cb9Y3W0ni2TFJEVxR+LqqypLAcwStuXDu9PLiokAfCVKyqqxDCJJDcs4hsa+qGLFpuJideFXZXyXdezRCRRKEBLGJ+1TU86dXV47s0cPzh48fca4vQqjKQgV22+3HHz158uTJarX6sR/7MjMZunnwNnB4o2DWjijKQiQyUnO9LupZGcoogpTpRYFVnafNdn310YdvPVo5UkQwAmXKFY/HLxjN4IgyIb8yMOipnMYBhv3bRcxp8IPTDfNS5shAHZCYBUbJfkLEyqMIthpj7KK04EowYkSPDIhiQ0CFyKGMQOUo1pllCnPLU/p2iE4F7A+/eB8C/6NnY97fNKWqrvZtIymvRwKHQcj8436/jzGWRQkGKXaL0/P5fD6bzar5bDafuRCc92Vd1VW1rGd9BZ8pETvvsPf4IxYeJsm1B9k4dFAgOL3NNBWEPtQxFLnN/RsdPzSEO6aHjvzrt3d3aAUCHLy+I3hz1zN8QccKHl5r/BY+3w2bfgkRb9fmqYf+eDDcbS7roZvprkDf8bfkzkMHMt2H7dhSf7FrHZ/+jm/J3U/7BWeNAYB9Zuft7pMYHD7DPwpQ+YzOHA3+50+IdwMVnMJTMxj8fQaAqmAGqjlYc4iS8yEznXwdAMDQDE0N0DQX3TokAmRDjGpoQJZxLjEjGpAaga53e+d9oGLbNN1ub4Tg2DETExOkFJumiW2nSQigLIqz8/N5VZ1WNRMpWBcjIlVF2cXYppiSADoYUQqRJ8d9+YWxk3G8mVnP0CcCairKznlkl9V9EEHUoqDC9dac42QRNIbCFaHIYRUk3+qtbfriCSN5xzHLsvVmYAoGQz2YHSwwk1+Iliern/qpn3r48IFZms3LJ0+ePHv29NGXvvDhD7738ZOPHz16lDNFc4p1EQIwMoG2bbPb7Lc3+6Y5PT+j4Or5/Lu/981vfjuKQrWct9u1SAJEMdAkhMQG+/2+LusodnOxPnv9VVrO6rNH1cl53GJRhf1+XxRFTJF5qAgCBERRzcVuXUzrm5tnl88Ws1lmFZ/Vi67rNpvdfD4nsnx7hpBFbPM9EqHLbFGAznuVaAht7LJn3TmXsaABIJGagRrgyJcxPF5FzX4ZR4UFBQIwE4E/sXzNH9r+KElDt7A2pdR18da3deT3sGFgPNd0oOHOxSe5XFMnNFxAWhSFmg651k6fixOMOWMwWSJ4MEJyfYsNlWBjYhhMRGyzZC0cu2Buoys4pGRnz0BKUbU/Sc5/HjfWox122nJhfU4J22zWtXemllQUMEYVA3bhD779nc1u+6PTUUFDFT1ZLsnUMUhsl4v6jddfrmvmz3Jf/QiaAZB3QLSXmFIyxm/84Pv/r7/zn37zO9+enyyvdxsDIgMzQIMOCYDBcn6t9tQWBozmIQWDcxceB//GvH57uXpQzQovyOi8T601nVxvd5fXm8vrzWa7N8W6rh6VYaH4bNs+uX56/eyJXC/ncTN746VqVUm3J4CKGYpQWJx5XFVu4X0dnEXNu4+KKiZtGoNuu93e3GxvLq+fPb3cbpr9rkfGBlZVZV3XZV0VBSmBU/EYqtXJteByNi/qmXd+9PSnlJqmgZ6fjQirJu66CA4ccokYiZTICLksqQj1ru0cyvbmgkMdHHqTkqEqi2azUbGnTz763d/5HR/KN954s6oLRDCwTJSeL4SIy+XSe59iBLCry0sWE5HtfmugDtUcqclpGWJsri6evvnKo5NlqXFPbMakRAS3NEdjytMf2oaaYIDDnd7McLLw2SR8hwAUSAVYkEWZQ1mFfZd2TRcj7ONalQ0RRYEZEBXZkBCIKEtZ0POzdYpMjoBKSp+d137089EZp4eOrPY/XstlJL4IuYDy+Q9kHycTB+f76jkkDq6q65OTk0ePHs0WcxdCKItQFs45N0Q5puHpjB5kQlcyymDllokyczuyzALeXQLEt0l3NlFtex6Z3GX4PtfuhIv3POoXHJP3WLdH7Xkrdvz5nmFzZOwfuOFfzMh+7oTHchm3v7wYULln9B79OlUiuedb9w/4F0X4nw1U/pAz/PGeIR7e14hS7Lkp/4JA5ejng6EyMisP5st4hO46hMamkCTXt2QQI2ZREqF21kVVEhU1AVSDVqRLmkQ70+1uG1WQSR1FFYnJWjNTTB2YohqoOeayKJbzxWI2L4KXwcoXFXSc6S7VTEwAnSEoABkYoBEik3OeCWYl0lCIYpAD2pJiTCJ7UyUIREBUeF/54A2doTPsRKJ0+3a3azetJtGUBM2T92Gz3dpECOvQB/HZY8MQAPtS6tFZMK5wBy7Yw6rF1Wr11R//ynvvvdd17WZzfXJyOp/P/+AP/oCI/sJf+As5lyZHzs/OziwXHwKAWexis9tnfpHtbreoZsg8X8z/m3/xv/Vrv/wL+5vrrmkAjIhalaikiuvYOeJn62suivnp2SvvfD4F58pl0xmx977ITttcWTHeGBFnasScwGPIahSTVLMZIIbgVXW9Xs/n87w+MzMQKd/uyzhUp+QSCLC+IlxVp6TeMNRYjty709UseC9qZuacJ0dJIabnFYH+9NvxAHjhq3Vtu9vt6FC65PmmejD1smmU750IR0qJnInXb5VMNpmwz+9EA1Tv60nGn7VriahpmjH/CgbDI/NYjlWUiJiZNo+MlnxdGmRnxj5oX5yZP485zYwGNnx7TnhtbER9gQARpdg1G8nTh33woTRyT5588ju/+ztI9CMVfDTVxXwOoMy2WszPz07nswJBU4wu/Ogq5kcnkyIAYZTovDfk333/D/4vf+/nPr546lez69hQGSQlBGAFRTAgBTQAUkQFsuzQBAANEBdAj5Bf8+XbdfHGbHZeBucSIJCRRN1s24ur3ScX608v1xfXmxazCnSclbNQV9W8Xt/cNPvN++/v5yDV26+VrJ6o9OxUF66cF7QqfEGCikSsRiKiZqlttYtJ7Pr6+up6vb3cXF1dpWhE7NghKhKUZVmVJTtHjNkrQUyO+Wx5WlcV+bBYLpp92zRNL5FhRkRFUTCRNi1U4BSs9SBrAyOMTAkQr5/9MJQnZSjmJZ3Oy10Xu+31rCxIU+l52zbf+r1v/s5v/y6YvvP2my+//DilaFDUdZ1D6uNAz3XGgBD3e0bynqImRvSeCwfAYIrQbi8++uFqVpydLMw6coyEwMRIR66qF1y2njdoRle93mHCGgB7VhLKEmViAAre2DAxOIj72MZksW2NC8VgpMAekTyYIQxG9oHO69HsnbrDjw7dbYvA4Tpy8LE/OVCB4ak+/2Bp+E8BTGS/27WIZHB+dvb22++8/uabjx4/evDoYShL9q6sK/ZO1YAsh+CZeFIvQYRYIg8/3mpI5ZZLsz4zomJ3A5VDXRqzIQCd1+LpDU4f1EEk5xhcHrmh71YBv+Nj97SjhzzdpI8OxXRnzcN9UOfFIipHO989J0Tguw791xVRgbuxyouiFPizBSrHvX3ufLfGx6HH5AWByuFIPjg0mkTPT+e7DmEOs+TwgKqk1KbYdu2+bWMCkTb4QC4mBVFLal2SrktRdNu1oiqmzGyIopKrydGsduTIBXbOcV1W83pWhMCAOV8+e54FQLqosUuiScWAFPuVXgHABAUQ0YEx4jyUeKvFjqYWU+yAIomiJtOkIpJ2KcWmKdBV5AzxfFmFUJBfJY3btn16s/3k4mbbxjZuRG5Lm45XgHudGCYgmu/CsqpEjqvLwQuC6TJyfn7+yiuveO9jbOu6LoqCqC8PyPV72eZr2zaEMJvNzKxtWq6qFDtQCcH7wjddvFpfrXfrq/X13/17/2BecnDekNBs13T7ZE2nnVjct8xusTp5753Pvfne55ePHm5SVC42+241nzPzbDbLolKTMWBE3lIiAmRab/fsi6KaPX32KYfC18smtrP5fLPbNzEaknPOGSCBDzghtLt18Od7yZlCuYrv4BESjVSHbhBc7w8hmSQzc47JFV2SmERE/qytxucGwIsZGABt1+33+7qu7//k0dSzIScqxtg0+1ybPpvNculIzyDPzOwILP+FiOQ5rj8ZtIZgEqTVkZ3iOU1GVc1VwdkqG92CiNi2zfSTNCEZH68y7tc2EWMZfYL3RFTydTN/Rtvun37ySdZtq2fzeg77Nv78P/0nv/P73yQaxCVyhCYjJhhNnCMjaFKmk1IfAAJEAtDMK5+tgSOP1+TlefazqgKVwuODB6tZFWLXlCGY5XjhxLH9J/ZQ3tOYOWWuNDRDUMZNbL/+jd/6h7/wT7775EMo3KbZFT6k1JcYogFnJSNEbaM3LInY1CGJiUo3p3jC/IqrXmV7sy4eBlp6FoeK0jRN03SbfXe1bp5cbp5e7vZtagkUtHBBpEuWFoVfPn4Qd3V7dfnhk6eQ0juvrlazWeEsEDiiecHzwgV2aBZCSAIiErvYxJQUmi5eXV1d32x2N1tVZXbMnokAhRid80QMjsBhJoxCQFUNyLHrEIBOMLtMzGy/38WYvPez2SwlKYp54TzMyv21a26iSBtYAjtmbLs2NRex85dPr69v9k8v1s1mfbKYudI/+cEPN9vND97/wFL3xS/+2DvvvDWbzXLOVYxxt9tl5gcdiqtCCEUocLdfzOeY/bQqIfCsLnJq8eaTj+L2+uWXTsGiqARmIMzpB3qgfWZHb3mcQuMqMPFx3cZh7gnF3M4zJlQkIwYwtGQJUyQwx0agwh0B7Mya1Kkm41zpYcwhM5TArcf0dk1RnRbWw3QDY5467w+6dGRJ3+XmPzZH7pk0d+sKpZRc8F2M2TvSxZR/EBE0QAXLN6omKSHxowcPH56d/fRP/flXX391dXJS1rULuYoq5HQC8jzIfE9DK4CArH2NwbCsTR4O9RZYPnIQQp+6Wg4xgelxCMhGJcepWXm41Bwk6R9hjMmD0sOjRzGOO094ZAhOP3Z4Qrnb8D3EMIcdPB4Ad9jcdvjJqQYI3Dlsnjt0t8v/UIt9mgB+UBtz8Nsh/Dg8NOVoOgoV3rMdHH3sINf87lS949r3aaYdHF73YKTo9CsHCGH6FuzgkT4/8Wx4lM8bH7cnlINhfjghpqvBYQrZc6vc7VtTgYlk7fgxBCMREBWA7IUVlTZ2ncSkFkVa7Sg6MRCFNqWm7bqY1GwT92DmQhAxVWXnsiCSQ1xVBWfFG0DvXFkUhQ+gliCSJzBIImoSRZKmNnY+BOizdvvnJWpoSipdit4FE3WZO9sxGAgKGbBHz2KWOpWdakqaTBUgoSirMG23beUXtavr+WlUffwAvf/oG7//XXMGd3tv8dCNNe4pxNy2ralJzv0CQDQFZDSCzHN1+1KYKaVUFEVd148ePVLV3W7nnDcTRMxUtldXV6er17NNWVVVjlrkoyLabNcSO9VUFf5mt/F1CQlWp4v5av6FL7zz0ffeX68vNzcbTZGcX++7BNx0Iskenp//+f/Gv/ro1VcXD84pFKHrkrGp67oYAmZ0lCFENkO99zElAPChaNuWnDcV8kWrtGnkxHlJauCKcuZ8Wc/nokrM3gWkPvVrHEv5h5GBKpMjG4CkZMNQ1IEcLFM1Zq9/DjI4tpSTD4kzBToNOiE4SXDCXt0Sh/1i+u7gcMIdrRsv5ODIHyIi62sC4JZlTsVULUcP1DJv/njXgPlbAHaby80IpDYlC86Kh0P2V4dIWSM4BJ9/JiJDqOsqbyu5cn288Ri7DP1w4LEcn0zu2Phw8kPebDYAtyyX09RoHuQjJ7lekJO7xjc1RVlT0GJmIYSiCFnkkwjMIIeGaKAUy7UrOVoYQtjv9/t9c7O+IeJ90whiAvzlX/m1f/qL/4X3XhUPYOu0LP4YKgy/5jtRTflucfikjd6453S0x/8P7M9OVier+enJoiqZWQnIBimDcegcYvo/QnD/njZZfCG2nS+CMaWu7URcXX7969/4+z//j7735COeBSFwNBBbmlFf1gAOzVJ0mmriGjAAOBDRmLr21Murs/Ld0+qxdw8qLLRFIUDrUtc2cbNtrq63T6+3Fzf7XVTALF5mpEkJnTKSmTIy8myO7LYRPvr0xoTmhQSRosCCQulD4T2hOueTxK7rNttdJ6qATRuzHyKvLAjOFA2MEImJEA2M2ZFDBHUeCizYByJyyORzDS6VZdk0zWazzWSvl5eX3nlV7dpkok3CTl2FBSN4Fu+wCtq0+6vLZ/ub9f66ibt2f+Ounz7pdrun680HH3x/u2+++N5777337vL0lF1ICkUZRoMjxiiiZVmMlGWeXUoxlJ4I2n2L6OJ+t5hVH/3ww3TxyYNFUZAyO3akectSNCQVu0tlZ6TozSVfeTZirq6TW67RcWPuzedJ/tUYx0dEoAxSEJGR1Bl4MEpChEIQU+e8I4ewl6iiEKMqKbBDU1LrTeSjYnqiCekwHQD8qWV25JBgvtuTfTzkD5IO7vnkZ/449ETyujPuGbef1OzYUEsSnH/88OF7737u9Vdeeefdd+t5XVSVLwJ7x8H3AunulpDZbPB09DdhRNyXWZsd9/YIdE3aUaXE4bpxZ+ThaBm56+RH1u2h4Nv9EYAXOuGRJX3XCY8OidwBP56rUTm41mE37un8Xe3oW1OgMqYu5DbNL7/f5TQ94RF4OLiWHMC26Tnvep5Hvx73cEpccdRDO4Acd0Kpw84fAZW7MMzRMTqAcIeP9O4BQPfFfI5Zd28PfRby6c8sd6GsXs0ezCSlpmk2u93l9fXV9bVqQuctc2YBGVFM1sakpsRcFFXTNcRcFYVjN6vqqqoK7xHMgyHYYMbm7xshGnPGRCmJGBqygXXJfOE1kzeZYR+DMgVIqpZSBSF2Mduu2JeyIzMhOqdM5jtNjnnn3C62XdfFlNRUjF2S2OwqHz7/+fdOZws3m3Mxe3q9+ejpBToHR4h0aIdyqMPKZSZJ2i72y8NQkkBgCmBgbprFKn0G/3w+/9rXvvbSK68i5d0h1XWtFruuW61WXdcMHuGU66FHRzsRpK4lUwR1jrrYkjgAS5oo8C/+s18+X80hxqTGzu32bdtF9HUyOHvw6O33Pg9lWaxWLYBnMqK2SRKlxZYG8b68T40W/267zgty28XZfNl1TTlfPn6Vq6p2ofKGSS1UtQ8F+1K6Tg0Vs7hN/9xGz0K+RE7rzXrqMUaboDjUnjMq2zNj/BxzIT670VqAwUbPQGXcwceXMkbmb9/dYTWrHczr40lx168D9yHmoqdxjVVTGpZcAwDV7XY75nKbmWQM5pzmlLb8clXYIOfAZxMl2+7aS1GHTOjPzG7Iz0dEQ+zaTgdeRxqourIrQTVlL2fmHDt6CCNDce78CAVzDl7GJ/kuRrbiEdgg4oA0+wStaXTl+cU2lxmZKZGHATvBsB7mIhkchBZEZD6fP3j8SMWipCRydXPz27/3u/u2MTMAulVjuMevPO2N/lEUHg/OAACKjx++9PDB6XJRBQcAggAE/CMSdBxa7LpQhKzNTIj/7F/82t/6f//c9XaDZQCzXHkCdsA2hgZsKXXNST2bAxVtW6FhTJpakDjT5rX6wWsn9amj0kd2LNI0XVo3bdO0F1ebD588/eiTq6t11wkJQUYRmMNXqGAKZgIIzIpuL7ButdonSzonW4aSmRFZgdVAmmaz3d/c3Gx3e2DPPuSaKgOSXZJoKSoYgqGossFAOMXs0JB9SSaOMrcjERM3TZMFK/KCWNe1md3c3Mzq2lJKJt47X84lbi2JgGlsNKWSKUHU9np/cxkbCcyQ2k8+/L4INsaffPTh/OT0jddeC85BTklGAOgJJfJsYe5LEazXryAjInJISo6adiuq0G6f/OD9lwM+XCxdAJE2c/CDMRg9b1VP27hg9W/wjkF7NMfojpwrMzRXZFYZNEMgBjJKLgkxl2hmhMkMoY0QRSBrjHdCYWnWbzOjOyG3qVmpOl2xD8pX/n+k5SfZNE1M0RGDNGjGAELkiB89evTVL3/l8+9+7vHDB4vVsqrLalaTY3TMzgETMAGAJBnV9PKTz8+XANJhZOfAeUl3vmm9u25kClTuWdnuP3Ro0N/pyH9B0HJs6993rRcCKkdnuycb7QVzk+5p9wCV+6HUC+4X9zABTN9/dkCMvx5l1h35vO/uodz1LTqwZu58hkftxQfAwaE7Pnb06xHkuOdx3vOWj6Nvk2DyXdElHLxA+d/sx4wpNV0bJWvFg6qpITqH5BKgK6oQfFVg2YayKIqiKJyvy8o7h2oqyTMB9hTSCEaAYKAiJqLAapgMRE0NFCmTThuQmAL2xfSQM+VNVKSLUTgkM5CkuRSQUBUV0dCIySE7tEAQVSKlTKwmZjvDzS6+8fj0/OThw8fnQq5anlxst5/+yq++oPTGaBzHGNsYgfBw/QLNlvFzLyul9ODBg9dff/1LX/rSYnWy2a5V9fr6arFYPLv45Orq6uzs7MmTj5xzdV1/9NFHbduenJyUZZltysIHY9WmLYMz0KoqkBGZKy1n83rx+hsvPTj97d/89eAL6Zooyi5smvbk/MEXvvTFN999V72vV4vL3TabfQwIg806hju6rsurfdu2u802x3xEzXsXimp5xovTB4UPKTXIzN4jM4fQpZRlm9RMY+wdf4N5mbc/M3PcSx8+vyzkWTnyQQH0RnwIAcwywbQdhxB/pO1534QNpZWBWboupZRilJhkcIxmgJ0rf+aLBTNF7Z9zlMQGGS2M5SgAkOdN17VFUWREl3PhMoBh70IoFOz5DC4AyHoquWMZbIydnH4sA48sIpwT/r33RVHQIJYyfnH6rSNf0pST5miNyi9uxKh4mLmd26jikgv3U5qhw/ff/4Acv/XGG//5P/4n3/3e+11KzjlVcyOSvmcVhqEiaoz1/KFv9DPb2dn5S48eOSJGM0uMSJlF60dbTF9VVYpJHd3sNv/it7/+D37+HzUpuroQJkgRj2o3B0uVTWZVOK3D0jCgctNq15q0bPLyrHx5Wa8qdzLznpRciqK7bXOz3l5cXX366fVHH14+vdztIip7NURGRAUQMnCGAKZoRB58UOF9tMLztjVvWpWcRPf7dlv6aNFUJTbr9Wa326lBqLz3PhSuKIoYNW66vbZt0yIyWXY8DWg4p4MxlmbdFpr9nmnv3J4BzIBcAIAQgnMus0CUZbnb7TS2BgYYgNkwxESdAEnsrBXoui5qahhTwTCrZ6Eq22Zzs26erhsReXR+ymAA6r1Dz2TgAqMxTiQRs5b5AFRYUYjIyICx2e+899/63d8rDU/nZSBFACMTy8q5hCqHRILHLUvO58mAByWMNqG+Pa5ujF07Pck4M3NMFw1Q1VRzPArFEUvSCCCEzJic5JCuQooaW5WOw0LpgATj+ZPDZ1Rt3tlytDS3I1LjP9OW40sZWiRJKmpqCOgQl8vlm6+/8eYbb5wsV/PZbDafh8I777MFpKYmlitl3S2r7QFElEGbZTw0vfQLApWjJ3xPROXITr3LUn8u8PLHiaikw8E2/diRaf6CQOUo+fuekMK06Ytd6572nOF7ZwDE4KAE6K4T3h/Xmv7Kd8cDXzCictzDu8Nr/Fle8z/0Wkd74l3fOu4GvFAPczL6+KscrlHTds/ARjl+KbdA5e5llDLAMUCDoijmq+Xq9CTGaGDrTkQ1iUU1IEZ2pMDe+xA8CyYpnC/ZQ9K43aP3oCaSuAp9cajl/gkk0SRdTFzV0gtI3q4FimAAScSwRy05rmJqoNZ0bSozBAI0nVa4qeq+TcksmiZQAPBIyYSjolLn/PnjB1/9ya89fvnhoi73qd2LnC7nJ8vZs226N/7ct2wOZcJDBbDg/9CvAED2kXvv33jjjdzJbCy27T7GyOxooBJp23a1WoUQdrudiGR+p7Zty3KWLGZ/cWzb2Wymnr33VFRn5+e/+c9+eXt9Acj7Zj+rqgI4GS4Lfu+99956601f+NOXXxITIiCHQbgK3pT3sRtEPwwRm6bJu3PPiVqWedMRUQMklytnJLW9EEfe09u2zZaumXVdnHrlbKhYICKwXm0QBsHy8eFoTDwI5lpfUN7nd3kfsvrMnRkUP5L2mcWNiMjEqskG32gUiQNQEZGkfdYTmBFR5qAbYMZtCej49Vy4a6Z1XecqlxwhyO/IBU9MYIZD3fy0h13X5ahIRp4wmBbPr8P55Wba1T4Dvyjy2XLu3zRCldsINp5viCOhet+NMZEsm5S9evKQP5UjSACQGcYQMamTC12dnjx89LCJ6Zd+6Zd2ux0AiikS39bijB6Cnq7fjjuS/7PMtT51OyHArUbW4d+HrN48vt59+81XXn7JO3ZMAPojBsZjl51zbYpG+PXf+cY//qf/ZNs15tkQosTs+u/vHdEQrHfkmFd5vFqtiJaAJfjY7TtLKjGgfu7VN197cL6s/fnZouu2qiJJm7bd7/afPn325GL96Xpz01m0/PqBFRhA2RAMjbh3EhgQiJqIXO9aBtWOgoYSPIE4h6HzIkm63Wa7jV1XlFVO9HS+AAARuyie7fetmBIgGpkpQF8QwJS3EnYemBGSAGh+OUURXChMTTWpKFIfsmaGk+VJ27YI2HRNTEJR2xiti6TNNl4bgJoUJSNTPauqenV90zTYqLSMzjNv1jfVcplih2DJgJgL7xAxY3eYYGtVZWTEXmO2DMVssWyvLmrGh8vF6cLHdh/YB+/aGM0ATcEIplLWz7UcIMrT3uxWU2EYpNP01dsfQ1bYMAQ0ERVJQIiAoAREYIBZ89qhASoiIpCiZTVlBDMlRM+aoIuqqLJdX5GviqLwoQDMqR/9FKNBKhj7wNfQibuLRuDQjfFn3WziQogDT0unqW07M80+WkKczeqHDx+cnKxms3p1coKOiRkQVM1A0Ux6a8eI3G2g8jAYr3fbjnj06gBySAYAFT5j5+g/0afB5G/1ewH0icV3HhpPBn31Co7XOir5eEGgIs8ZiJ956MWBCjwHVGz461E8YQxY4SAFON5wPiNOrvX8wz14Fs99C6bfQsTJt0TvAypjN/L+OX4rQ6n+WkO3+g/T7R5ok8eBh8U8zwOVo/DK+K0pbDs6RHgnj8X0fT1fKnPbw8nXcHhQ02MHv91xrXzC3DFJSbOCTb/+3LlxyqHg4/S+noej4+oLeKezY1gqDQ0kpth2qDl7BxNBp4pRTMSQRC2qpi6aalFQzrJXdtpFQHQATMTYe4IyD7ypEmAC1CRdF2dlmVXH83zMu2/+t5f+sR7bZV5+S5KimPVuDjRBuS3aVrCEKAgGiLnEF4kByQzE1imuljxfnSaF9WZrYI6ZAfnYigEY1mM0A+hnFAIUzrex2243SaSazT7jnWKv7TM9U13Xb7755vX1JaJ5z58+fXJ6eoqIdV01bXN2dlqUgZmXy+V2txe15XK13zddTFVdA6GYOedT06QuEkDTNrOqkBS9c0ZAjh89evwXfuIrv/pLv+jLgIgsttnuvvy1n3z40kvAtFot1cSkRdCuazSJQwYzNZAkZjkigl0SQmUfuiRlWSFi27YGZklEBQHQcLfb5qpsdoAIhi5pF9AZskhKSZhhrE+A7A8lQsSYoiRNmEm80PuJmFhRgZmoilmKyQyKskoptW1b1xWNk6kfyTkp/0dqRD6/zmdoh4Bt02WoTN632ORYASCqQdM2PvhQFGoW21bBIIdQYseAbdviwO+SEQIAqCoxuxBCUYoO5EOIPviqqtMhV9i04aTddg8RDy16M8vaKTnTDxAzRIwpMWIoinGVlUlydSa1GVfslOK4viDeHsIBbuVzZm9IzmEbM9wyVoEhtmNmpvbwwcPz8wf7tv0P/s///rOLi6Ks2rZLoj54F9UMUJGARz7mISNtum4iJgNAAiZiSFEsrxd9/QOhGWSHeB5L2G9gmlLhQtw3Dvmnv/aF2iWnaJ1mth8ANBRAJRz1yO4bHHZ3nf3RGKKhcsYQHLv9blc4D0kIaWudevqV/+rX/u4//UcfXT9LDFni1RAimAf0xEjUSmxVmdkj+gRfODl9e7k4Y3Vto85tbP5p12mgt195/NrDs2UZzk7OkKmoi5i666uLi83N05vLqw5+sI1PsLipQwJfkK+km6fWJZWiQOw9RoiWMAKrOVMWYbiMO6ZaqxqrmZBttoo36ySybXaikkTOgicuZvXMMRno9dU1eNw0mybFup4RgiZNMUps0WIBUvmAhWulA2vYyEOLKAm4IkJJBEAInUaLkroO2v2iKk0TqOzX27je6s12d31h+6eYrhC6SOCDK8vw0mpuwp5npa+5gU13tQhy+uiBh06bfbveIjCGkFOK12m92+1OT0+L4FJKMaZMM7LfNwJY1DWIyK4pLM5Zv/7L/8XnXzl/bV6oCTuULqYIjIQIqlGlVTMuyjyHRcRUcQL32fm+5gEBIWcCm4iAgStrGyZ6ntsD1Z8i8uDoRHOEzjEYADjDmHkbGQBYhFLmgDdT1ZyFHGPa877dNzEmrLFzEkWlXce43aytU6NQ+LJCV7B3xD7uhZi9I+ccohrCQHtFFg/cGKMukplNKR1Hn0f2bE11DDO5+WR6TJ4M80EQKd7qjRw3JEBU1dliXtXVtt23+62ohiJ0ManG/fbm/PGjd994/eGD03JW0My1rLOiNoBukDjBvqgIEKDDg2s9Z0necehW+OHYfTL1tR/p+wnoHd+CgU1hilL6f6W3t+35a03jOkerzT05V3ZQAHCYZXSQCn+w5+52+/zeh1Db7SdzeWvuok5E/fJ6C9OfpxorSWG4q1sf3tDhI3hwdAg+6xCi4u0Jsy4fQEbdPDXPDp7GFJvaof+fhtzH4Vo4fOW2vmI813iSaTRA9SAXovCFqqqoqkJP+zJ8i3G8Vu/EHzo/sfSPIeLB+5JjcUR4zsbNY166lhBpCH72WQkiR+jzaAbgsH/ls9MwPLBH4J9tn/FEHz0Pt9F0SHpYmDf2EEEljVdmImQalkOLpo4o7RtpWpfMNeIizDlkkmJURAQhSJaIoCAgUALdtWCiab9PEj2TmknXOEJGZiUElL63hMxKwMHXhYe0j12bYmLv1TAmrZzTtjXEkfABDTICIsSqKDxgSqCAeaLgoMcnAmYWJea8alFtYtu0rRkYmoF0bcP+QdNtNgm9advGxiBtY7dLipZlrg3BOx9TTDFVVSVREDEQo+jpYvnTP/3Ti7OT/+Tv/O3L3UaJnLAvC0lJ847DtGubrmnqqrIuhsCLxfLVV196++03r2+u1ut4c/Okmr3eGAjuiahahHjT1It61+2SptfeeL3run0b69mik4/r+bKaLzebzWyxYl9Ss58vTxyzkUtRnXMQoSiq+fIkNrvf+8ZvV6Hartdi2pp+9ad+6nM//iX0hffzPZNXdTFSSrHtyNebpEkMEXPNICEzEDInSdfrPQJy5VGEyJkmUvVAgAqpmQf3rfc/Pjk7c+bKohRzvpg3XUQyzwwUDFGMNBkzMJMZgxEhbffJO2fki+ABcKSayFha1QBEVY0RzATJlUWoFs75JtOFAagkMCwLlgRdirElP0RyVKUHDtBXlh5MsIOZgnccOaixmyyTAEdJEIBZXzSlpJKqotyuN5mr7cknT6MagQlo1IjeRTDpWiJ0mevMjBFLH/b7PQ0cWTaSoAKwc3VdV/NFUhUFMUVUX5TsXJR+To/hDTMb+InAs8uxPlAjQHZ9Y+abmytyLgxi8+y9qJJzXUoPHj127IwQCEy1ibcl6LlqN78kVYipJaK6rruuk9E5Y4CIklLOcPPOMbtqNhORLiVk59gpYIoppeQ8E2EnyQg5eAGTFAGAAAoKoSz+r//3/9Nv/NY3kD2IMQdPCAouF+rnXQ2PqtgPF8EjO+L2A3f4fw2HKmRRRnrlpZfeeuMNJjQVME/Ix467P+029j9rg4QQOmuNqMH07e/8wd/6u//pRbPluuxSB73LtC+TMjM0y9u8mDIQIS6r6qQqTyg5FBGQKM7xbD5/9Pj8wcOT1awMhROTruvarumaTmMS0b0BLZdN3G+UIJTRUJMaSlCjUBoAG7CZIxCwzmKOZhQOl7P5o9m8cAyaes8jI2SCB2BCJWLsg6Fgg9BVDkOCgYKqSX6xjER5l80RgBwtSB3EzrygGLJpkma/67o2tk3qGu941+6fXV1WZWlde/XJp1dPfijNjceWNYp2xbxy4HwR6nkVKASu2Vw7c2en1W69cWTeYQieEHfbLaVUz2Ypdrt9bJoma5eO/gBEZCYkLotQl6U5h+3m+9/+VuXobFlbasmHSZSv98/kG/lDBsBnfcAgmyy9x7I3CPLPAIbPe83ztQ9NzGGRyGmjjhgA0IE4Z8FjJnpBw2RN1yIQqJhA28Sm68AFdJ7IeQ5E4JiZmDnTmSAhIXIVbiFHTrgac0anGGPqOBl6O+35HY/l2EN/Z1NVokGh0Uzz6By8OYjAiKvlYrGYV1UVilBUJbljtsRD++uFKgruP3TYDrza0wNyt+P5MHX/T+Fb9wGVP+5LsYFc5fhb083TbkX9bo+PJ5z8etSPu27m+WvdeWi6QWQb2u785Nied1f/odcygAOf2XEf7jyfpNtMgaNQxvRr+QOf2fn7X+UBhhkvMrQRCPUKSsMzf8Ed7/mPTQHUnd+aHjEYl8DnenfntcaVZLhBNRvwsKqoJpXYB78MULMIfIYGqAYKaoDOJxM0U4EExGikxgQEyNrnbBiAc86Td+gcExOVxB68mopJ0j7HQOHWiZ6/RkjkiBCD8857SREQTXtFx7G3mQVAzaKqmMaoSQAQjAiGiHnXtR2zd8EXfLXZXG+2CkNVQQZFKaFBXVbBhwQoXWdMb77+xksPHnoXTk/O/o3/wf/wP/zZ/+fHn35KCJS4bdu268g7dIREzjlkqkKxWs7ee++91157VTT+uXd/QqT76KMPVROaxa4ry7JrGzCVlMpQbDab2WzmfXF9fV1W1enZWShKVXPOl2WVUoLMcUCAxBKTGXj2hFQU5UuPX3p0evrrv/pr3vmui6sHZ6+/+SaHohX1zIoIgEPY36HzQKxEbiBKabsu5xkiMfZZSZrNUEDqhZTzVEI4PT1ZLpchBO/ZeSciOHDmqt7memW/mKqKaEqSyy3YeSSX/ejjaO26XNlCzjvAlFJCJO2TEHI4rU9kMjNCMAJCSLdcU3aPI/vPumUuvnG5zvwxGUy44HEo0sAhXyu3OBTzZGDQV3U5V9W1scvxh1zjLpKJg1BUp8Q7o5syD/tRo2bMeB9jvyOfECJ67zPJUM4Q69UejZIkAOCRcvOoygphFNwzMz9Jdxzzu0Sk7bq6rPJpcz3SmO0P0HPgTe2W/twGrvBN06oqO8c+dJ1A7zNGN9YmMrO8sAVzZC3d9TFEIObUJs/8hS984c0337SBJe1FrvInabe+NwPnHTvXqmBwxvx7f/Dt/+g/+dlNarkM+64Fxpz8CgiOGdTAQERy1Dal5Nkxu9msntf1nJNzBEZiGDWdnZ28/PDcl8oFuoJQrIuaYjQ1B67gQgsMYeE6wgiRXSMaOey9enWFD2zoxbxqieBAJQkzO49nc3++WDyoq9KgBKsCeIeqSMSV+hiTRlQVFU1JADSqbJtWVKiXejWRIdEXkYiJGckZOaJERKYW2z2GlkO8fPqsqgp2JG3sdtvLi2ftfhs8t7u9w/TkBzebm0tLLZggW0y47Sh29PKy8i6UZTmfzQrPINDu1ob7oky00Xa366p96hpLCV3IHO0Jkgs19eTcbZ5OeS557404OOeZyOF+vXvy0fceruaLeW3SHbzWwXpDRKS7axfubXQowzQOYDMAvNWC1EN6iefHvA3hV5loG+Uk45wA6kSMMCZoO+SoXcKcx4pqptp2DSPG7Bpxjl3vPkekbn9LXp7n+eglOqp5GP+O98qDHD3De8hPp01VQXvmxNvFddA1QyJmfvjw4fn5eV3XIYSyLOHeqowpUHlxZHLPCnNPlv89kONo3PzJv6V31yEc/f0FD+VbviWdu+PkdjeN2PEnD0vwX9wcv+vQPe/rntFldxvq913r7pcyTSA+6kYeh9Op+iLduGcS3Zuqd9f5YNzv+myQH1U7uuUX/9a4rIEpiKhZ7zlWaTXuLTYWkxkga84IMFAwFQXVFMXMGPuK4WTimRmz3HgOZty+MSRkIh9CCMEzndczA1NHXYydmhppBpSIGRmpARpwpqcHNEIg7GLLvXe5f1OqfbQrIUXVLkURaWOMktAxGRFSAJY27bZ79AwVCMGT68vvPvmoMbFJ5G00V/b7vameLxY//uWv/PhXvopmlxcXQFhWs7/6V//qf/xzP/dbX//tKGmxWCTVvDFlK5CZqvnyx3/8x7MRaSDM/Jf+0l/6+Z//+W/+3u+99ta7ZVnmIpC8a9R1vdvtQgiqkHfGR48eAQAiVlXlvW9iBMAxbSb3M+cUOOdOH5z/2q/9i8Vqud9uTx8/fPn115anJ51IWZTZTM5vFwyQsNewstsE6UxPnLewvNeIxBx8ICLMripTQAXA05NlvZgNHcj2SW+L5w2LJm20p2FCp3k0RPMEyTUqo7rAsOOTDWXr+Y+54IGIJKobuKD+60IpMAS684vIaOEWmQz4aqzbyRZ8zpLI+VHjE8sGPTEjs42eUOdsKEpBPHBH5JPoQA3MRPnXjG32+/0ITtbrtfe+LMtcvjtSxY4PGT5r5zpiGc2/ZgKAo3LZ2WyWx3DTNJnfM+OZ8d7zvWTCzz4PMMYxoQMNtvtmsVy98frrKtKlhvkWCLnRWLzHsnm+vbC/E5i5k7Zw/PY775Rl0TbNfD7PL4kPGZb+dJtNkvIkSVQxQlcWv/cH3/6P//7f+f7lJ+DYFJWAMphRMARyeS6LmQFSlhwxNHIUvAueA4MTCs4jzsvCn54tg1MgSRB33Sa1cnOz3m73+13bNLFtZbY427V2dubbXXrWdMkwkrZWEpgTZDMH5kFrwkKUFZZlWM3rl5dhXvpFCCVCSVAEcg7EOEnyPuy2+65rmma/2xWhKBQkprjebDMFXh8DFUHVPpWa0IiBmSibwmgmseuw3UMd20YcEQi1+93m8qq5ub6+ulhfX1nqqFlXlS9LFE7EnASvdqJalfVpVVdVSUXwzrmiZEuy226NNqG0OtCu61ATI3Rd45x3xDGlclZbF2FQ+clmRG/fAyQDM4nt1rbr66cf1YyvPjoHVXeQRnJrHzAzIL4gQ8tROwIqcCv4CHZvyvtzn+8nYWLOS0k+lFVdiciJGLQUxUxEFdEHIEXMrNfkQsbyCgBZh5kIwSGCSBzFOXJvx7l9ZAWOjqvn0BfcHet8UT+BTVVoJn6gvOsQIjOfnZ0tl8sxSSmmdERx8P/nEZWpbfqZWcXjt6ZfzMv6CJXvehpHWPqoS0f+qruu9ZzB/UKHjtq0V/eMr3sG3r3XuueEB4em3ZjqA3zW+YevAMAdncexyPIzeviiQIWoLx7NX/mR2VLH0PeP8q0RqKAlZ2AmYhItdhqjdI1FBXBIMKT+oRqKWBKIyUSRGboIklIkdKyIpiomoDpVvgIAZi5SFBVx7lnXBh+IOZqlXAM3xIPMLFNxZgCgiIQYU/JMpJ3kpKKDSnpTgMhFFI0xtSmmJApGYkRIQA5cirJrWjBuJO5S/O7HH333ow8jILkJYW42sES8c48ePPxzX/nqj33xi5JkuVq+/Pobv/v733zp9VdB9L//3/3v/b3Vf/ZLv/zL+/2+a1sjNMKyrl599dW333nbtvv1ev3lL3/5X/yLX3vzrde9D0+ePPnKV77y/ve+e311vVquTJQATc1EPbvCh67tZrPZZrO5ubl57bXXsu1b1/VmsyFmxT7MnhFF3mu6rst3+dWvfe2DDz4IRG++9975S4+KeibtXpKEgjJk711NliglIUxKppqpdIgou9jLssx2pJqiATMRAqgNKMUQwDkg0JRSkmQSzEBFDRUN1XR0ENigXpUt8kFgnQYgdLudZcrabEPDxFlzOyCH3TCbvESE2ed397r6I2tp6PNYbTKCNB1cHmM4JcbYdV2W0xnBQ46o9IlbZiJSlOU0cQOG50mH3pNp8va+2Y+imXDoW8mErllgEQaKjrIsx2KS8ZVN7+toYc/dy3Geo49liJK/XtWVqo4l9dnYy18UTVMEO6ayo4HG1HUdO8dMYAeOwZ6MaNgOaZoOfWhh3PmGzCzXuvWft0zM0WfMmKr3Pvjw+uuvmfX47PnFetyPj/BSjhyNv6pqjiJlcdP7XK14G7Uix0aQHH77e9/5W//g77z/yYdUFdHEF4WkmMPMagAGqoJqGbOriIICgKjGrgNVMnMoniAQUBWqws8rX7KWlRNNqUubTXNxdX15sd43XdfJ9V6wcpXH80XZWrNtU6eanGtBVZUBkAxQEaQyOSF4WPkHi8VLq8WqggKhAJg5DgzBUyidoMbIlWONaYPQNs12uyXvgLDt2t2ubZt2HGSUhXF7DO8MCMgpADtv0AIIaBKJ2DSdwG7fBEfXl5cffvj97dVFu990za5yXEIKqtBpTB2EYt/BprPFyflide54R6iSNCUxQyBhJ85b8LKcBWYIjGiSmZfNtI0dJb/dbjPIBoCiKDIuDyE4sygCkkzb7fXTzbMnZ/OiDt4kOh+mO9u4+5oZ5nztobAMh41qcC1MGH4R0DAHLsdHhAPR1tQWRKIjQ21yOZz+ZYyfAJiGgIS3U2BorIKspfqySGGv+8a6lFRBTdTYO5/BsCErIiAZMACaIRNmbrjnnAhHy4iJ2Ge6aRH5Lu+tHZ7l4OuHxo2ISIpJBINLImNoJXsZ2u0mL7JjYHfYMOSzTw4w1bs8sgKnPxMeVirfZ98euD8PbEc6WGGn55DndrVx5ZFDvb/DdKHJz3cDlaOj059fHKjYYbvr5HA3Qji6Fh1KAR4Kbhyc/q5rHUHfo0gOPUeWNfb8sIdTxHVw6BCBHweH4I52VLj/mTvL1FnYo4VpGjocPoIpsIQpWcMhc9rRJDpAj5D3n6lpMjYmHsfiPY/3QBnzUGN+ioqOcdrdUOpgWTs6yWd9K++fCIZEiJBSF1Mr0kWJMXUAiAqSNElK0qkpqrFI1o6cAZpz5jwSOSYkVDERUZPqpIxtBwDEzM4xc/Yux3aPjmISZEqiBkzstM8+AksJDbLL5HZVZKYIyEZgaIZq0Bc0iYgkBSiDGAgwYB53RsSEjojrOgDxp5dXZcW7ZnexXn98cbWNEV0o1PIeoKrs0Ey8c2+9+ea7b7/77jufI/LFbObLOiG89NrrQFiGsqzqv/yX/zub3e4b3/hGXdeuCKcPzt9+9x1VXd/cnNfzqipijG+++eYnn3z84MHp48ePPvjgg/Ozs5h0t14zcxIBVc+sInVZbtdrEZvNZnn85LrnIWiQuex7t1R2xtd1fXV1hUyLk9Nf+sVfAoS33n779PFL5XyO7Ji8iHrvY9fFGIvAXde5wjdtm0jZlWkIZcDAjG9mIQSRJKlzzhEhmJgJmIyrBzGmdiMiKqAATD6niKGCqmbNGSJKSQB6av7xdp43o/OlRx8/DmqD47ZChDnnGoZtxTmHyNu2y1gof2Cc5nAYiR0K8Q4mw10rBrxAUziY1wZAgxzKdruNMY6vrBz06XO3s+CJmXnv67oeieBCCJn/SlWJ2awvT83AIz8THnRO8jxV1Rg7EZ0GmkaDYXyAGZmk1OW8spEAOjN9Oeei6Ij9clUfDpkaU32HvMiPR2myio4AcnzLGT5NX/r4wPPthxCYKNOUxRhzeC+llJm4YzLM1cWEaBPBRzMDBJo4sO+DAQfr5u1y2ZdBDL/kuwrOLZfL8/NzAAghjP7mg7eut/EgHXJ7zCyT942XU9UpHLxrSBmCgSkA97TbFlWfXW/+7v/nH37rhx+0IKYKjltNApZBSm5JeoXHfC0FJSJTa9t2v9u1M6doBImNnHNAXHlY1kUIuN/vu043bXexbT663qw3bVHOtJyb2CwEEmpD2gcvSdZROgQjStmEBzEQYgtV+Wi5enWxehBKx4ksOVMCY6DAripKYGu5EwDP6J2T2HVdt91u0fG2aXdt27ZNNk4cOe89KjqHRASIBoTECua88z4ED/su3Vw8211toVr+7jd/9+bqYnt90e3XpcPTebVazWbehUa72DZtI0hNk4TrR6+/sjx9pfQF7z5KcbvbdkQ5EGUA5hwzaxWYkNFEUxsIQxGKsgizWS7sysq7AJDZu4uiCCF0Mba7HUl3sqqePHvSrp89fniC0gGIJDQO4wuaIgdTALo1mGgYsb0v+Wjw4u3gHHdizFHUWzPlYNkanRk6kSj6TD93vpc8S/2goZnnvGHnAR0RYmLSrrPMmC7CDgpQU0BFIXK5ZlSBDFTNMlXNxEfYd/JIYgWxnzt6KHD0nH07mR1wHB0Yf5xKvuZ772Inqk6L2+wvkX75a9rZYp5Xol62aVoVMHRjeukD6/YIqEwb3Wl/HzWBO681HQHHRttzQh80JPIeAIlDeb579q97/HlH+UL3fPIIIt51/qPcpM+EqfD805jqGA66ZJ/5ybtPcrAhHL7lQ5ubb6vGnz/j9IR3XWviZeoP3tXDo3EyfVCMvZ7AaN1O9vg78e0UcR0hhCO0cAgCpr1Vswn0lWRDROUYft0zpKaXUjuQt4c7hyjqwQkPHo7e3fk7gAoiKagCGIjEtt1sdlfX3XqtEhFxu1unzNEESkSFD3VVz0NZeFdmfVfniRkARVVEomhScSGscctExOR9KItC+xCIRO1ikn3bSEyddKooBvnWS3Z51Cbr3ersXdTUtKR1QRPgZ31hcRIzSJQFafO6hQamaCpG1pJ7tr652FwCaZOapkuCHMoagBxAitEMQvBEXFXVF77wha9+5SvLxcqTJ3YUghC7IiyLsm0bU9Okhfd/5a/8lf8vdX/WZNuWnYdho5lzrmbvnc1pb1PdLQBFAAQEKsIOW6ZhiZDhMJ+osEzTpBzh4AMc9oMd/hvWk6QX/gAp7Ac3pCkRFkURMoieAI0iCl0VCkBVXdzu3NNk5m7Wms0Yww9z7ZV75zmZOHUbVWnGiROZufZezVyzGc03vu/s7Oxff+Mbj998I5ZcIfs+BETs+15VHz9+bCAffvjhdrvx3m+328cP39pttmdnZ5dXF13fe3JQhAxiTJHH1clJ0zTV6j07O6v0UFqkYrzrI3ddN1tTTdPE0D58481i2t87P3n0sBTZDsmRZ5AUs3M07DKTiciwWfcn919cXZ2eV9ZQqQZVTQUAVOCZK1oArDKrIapCFfAQAOPK+wREyCDFjBAQgERLZTI9CK5dl9sx07wymN2Mss0W9qELgYiqhkjXDFH7IeocV93kunEdKHXbjUl04xc9ACm8PAUO7gduDdIfeyqgmkWqFb7b7Q43lOo5477CYgpYMHdd1/c97XHjcGAG1yvUCpa64OueBlpEprlQylxegntt+5nwo4LPa6C/+gx931WzpHpQ9WP15MRu7nnY56LrB2pWhJkrMG26yqv4jmfnJ+c8DMO8T1XboJ7Te5/yREttZoCoqtWkISRiyDnuF38DAKjhdqDPXVcOEVNMb7z5Rt/1r/kVVa2R2hhj7aZ5oa+VWLVHYox3gMcqCU3NHhGhIvzf//N/9PVv/sGIikiEKGZiMOWX6S8v7H/x4vm6hXvgW1JiCexC4C5ww4ACOZbL7fjRs6sPLrYfXg5Prjar0/Dw8QNiQYIO4F7nVRdqEC+vRkMMoVgxFQJdsHvUhy8/OHvn/OxRaEIR9CENKjk7o86Htum60AAZAg/jzhE0wRGTMYsqFEipxJhtcrtrGpwJzUyr+57FigJ6xwBSLne7PI4+KQjTb3z917/33vckpUfnq8f3Tt54fP+th/daT2UcysVQrJQYRsEXu+SWdNKfYNMtz88xP18/+9hgnTOU5Ps2BBea4ECKlEQIwugQckkQR2+rmrSqk6FOnrrshhBSStvdLo1RxvWz4eLy4w8eLNqTzge2EtNo4nt/6Kjc9oJs3+glZNcna4dLxo3T3jDC5kN16NbVpJSiWogFkUQ0eImh5CzDmEeKaYyiDWJAdo68ohUURYNa2E9IcI1auY3i9gZ5+cu9cfj7bY95tEbfDiWy6+TVpFxb87+zYzZ9xvSQHEmO5fmO7P6J/fgV7ca37oqY3PIgcKeC+1Ei59C5vdPLusuqfM0g3J3d+wm+dccXX7r51/K47mh3PuPxWHs9vPj381C3fpLd9RagonK7yudtru+dHfW6PfVy916HM+C6N1439nfj0F0Zxc+1WVFBKzlHBHVqjcH9tgPskdhOnaglKUWlbdplv+ic7zm0TJC33hH7hr1Xg5wllZyK5iKjKPcwBxl9rQ8lMuRV22eRmFNKeSySswrUfJRpSlMkyKyYKlgqOZUMAClfA+WtpnwrGsKgwABAYIYGjMREjpiIGHGNpiYiY7HkPPmmQzNCJjB2zgWq0es333zzx3/8x99555379++bGBqRD9gEDJ6bxhMBUYlJckGHy+Xy7/7dv/vg0aPf/8M/eOONx3/xF3/xzjvvtE27XW/OTper1app/GKzePZs9+TJk6ZpHjy854jBh5IyI43bnZ0JEcVhZKa2afFAsPzI01Y1vC57yDlfXl6aWds0FMLVbvvX/vv/vdX5GbYtpbzdbO6vTnfbYZfzm2+9MeJmu9uawdXVrl2ejePYxuidq6ZUPWGFk6kqInVdU9KYUmobj0gqCqiAFRZIgDTbkwgKxtW21wNh+JeWZcGXAMy3tdkgLkXmE861LgBQ3VDbf/gz2fc/WculxGE4OTl5+vRpmWQKp0Tu7KjMeQ+/bxNEfF9uPgOOqiE3BztoX9wyh/LtIGZ6uKocHsI9HKPWjsJx1Gb+i4gEH2aHrVqMdSQgIoAeVsMfRoIOCUjhOJqmB2UIdQDXHpi9tfqY1cuqTjIjlZiQSIqIyA3b4PN1VOriXFL64he+2B9wjd/dQgje+4uLi2984xvf+c53Hj58uFwu79+/f35+XuPx1U6qFGm3naSIEAAoIEAR+2e/8kv/8nf/FaxaAHVamUxNVRShEirXmpY7xvnm6mI4DbBYNcE3wQXvgmPUEndxV/Dicv10PXz49OKD55unu/RkkEse8b6eeiUoANw1fJ/7xLwFTMMwmClCIHrgF19e9e+cLr540t0LwBZHTXFnw2bAmLRp+rYl9A4bwxLQIoBjbIL3iOa8sRNAJ8D7jMoMnCmliJRh2K03m3a3c8vOk3Pk+sUij/GDJ8+/+b0/f+9q/POrgQJ/6YvvvP3o/N5J//h8ddqHOKyH9VCsaGikuOeX2+eb8qBfnJ4/PnnwwKOth/GjDz9S2JTc5eTg9KQ5XbZtQ5ZRtwhlNGaEwNz2/WKxwNDGnKv26jiObduKSAhhHMdxHHMpMY0PT08+/u4fpXFz+vBhw+AIFM3MROXwtdy22duU/51qNj6TFevQUTksKL9xD4dL5KFFIoIhdERkpo6L55RzDI4ax7nF55cjETADMAtVBJ0ZmAGRTVTFtC9QefmW7m52s2L+yK06POHrh/ynhzetmdyUc00cz6EpNRWRu3r+9mL6O9qdj3xriLrYrddyLwlHzN11o0blNe37OzrtxtleM6Nyx7fuyCEctsPdCO6Uc3nNduNahy/l5m3scU+81wh+nRPeqNo8Tr7d3vX0ajcYjh+5btivPHR3R71mXx1/q9JPTSOK8BqtdLdvdvzI1+2Tva9P3wyBPWtOANb58Oj8XvjSl9enZw6hmGX0Q0qb3XY3DCVnG6IL1DTQEPqWvMfQsvPe0MWiMeUxxZQ5D7lt21p0O1tvtZtVSyAObQ8dZdFcTNTETNVyiqYqYKKatbo9eUypiGw2w0E6y6oxBjULoEKArmLXGAhIqloYADUOHHO/6NyC0VARBLEAqKIDVX3w4MFf+St/5atf/erJyYmZpZQePniUx4zOW+PMMzgC5ha7QpxhNIbT09Xl5eW/97f+loL94R//0cOHD0spy+VyjPny8vL58+enpyf37t3LeXz69OM62mOMbdteXl4+evTo/fffnyXhRTQ0TYxRVUMIfMBtLSqiCjgFqsdxHIZht9vdu3ev2pNf+4mfWJ6ddmcr9GymKSU1a7wXLaqCiAgYUwwhXFxcTADsvUVb30W1oWs4nxidY0QzMLiOAiiCAtpkYBkQc3ABgAHYDAqZgt4wT2ur4a0a479DE8wOMH6wz9nORv/BdCM1nVOMr7k5fi7NrLrfH330UTX0dc8cMJfizKHPmd2rvsTqBtRc1hwQbNrG7SkNDoFVIlJynk2ROxyVWjEiIlW3gAiWy2XTNLXCvmma2VaZK+hszxs2OyqLRTf7G69fVV7TiXXFSynNk905FxpfXbJ63aZpKvorpWQiRJRLLkXQHY2Nz9FRQQOoHnfO98/vtU14zVBe5YP6jd/4jX/wD/5BHZTe+67r2rZ9+PDhz//8z//sz/4sHEt0v6JZFWYHA/jdb/zeL//6r9WccUoxcCAAMz0ELOi05Vnl3zMEPUjoI4DEEUoiwOB964NjRwhljHHcjGO52AwXu/RiG5/v4guFDfuLIm4cQ+dZigNlwq5x59TuAIbnOq63HnWF9HbX/+S9hz96frKiEsfLXVqPVp5uZNxsm5LDyarIUk3VBHQq9SYi5xiYqWkotMWgGJRchsv1hDggErWURTWFwbXbYbkbunFEbtEhGDBxYOo8dZ5/4ie+1i76L7315vmyaZ2uGvIgUKh0fhvDehieXQ6b0ZAXMcv66ur+wzMGWV9dPfn4KXNqWya0vlE7dcH1GDJIillEjFCY1XtkwljKbrfzPhhAKRJ8M5ZBcrmKcbvdNE1z7/wc83D58Ufnq67zDve0v8hOD4DtdhMvdM2/OSV7zYiIkO6I2NykioJZxevo73jQYMJ3QTXUi1xXASIAIgFMeMW6cF8PLGMyRgQlIwIiCAEcexEECjHjmIa424FvuF0YeABQNEAGrEzSSEyHhho5qhetnI1YMVSH6qrXM+DVGZUbS9uNEPLLtlTt4npoj5yBIkVUyLFz7ghUZ9Xrv5YpqWes16ug1kOw8I1M5qu/tU/A3/jWEej4pWc5FBCcQHTzO37J8Jufrq4C12fe3wZ+iowKHn5s/9Ebt3AYe7x56Ma3EGeBoDtOeDge0G7e4Sf2VW77+9EhrQI8hIA1dz3fxmue8KVDt35Myq2qr7eeHF+Gmb36a6/fS8cnNNgLTqsqMsJBdOC1H/n4lj9PX+XmHDy4Cw7eTJEdhcZ1PfQnriiqxJKe70YowgCNY0/okRyYpBizrR55713TtU3TZrUyRCIAMiMVMHAOnVcpRSr3FDEzITpAVRORosUU0IAEaoa2cSxGaIpGKoBaRC3nEnNOer2eExHzzMMPjh0BOmaH5IgdM9oE9NZJSVLNUNVYtUXfNo0D1636t9568yvvvPPo4aN+0a9OTpz3RcqYUtP0yKye1bMYoIDzDQMT0GZYb7fbaqr+zb/5N3fjsN6s+7brm9avFiIZAIZhd3q2evvtt4lwvb5qQhOH6Nm3vvHs2hDSOBBz04Ttbrvbbpx3bROIeNoKwMDUVEwF9jFp51zXLxVwsVyVXM4fPr7/xpvrOJyc3rtaX1Z631Jk0S9RxjiORNC0TS4lizpmcr4imGwPpqI975aqMqNWAJt3KY5Syo2QwV4wwEykWAIgMDZA8h4UZKpQNZwNXLsGKsNrjOo5n1DKBH+qc+rAUTETxarcAEer0F+KkfkE7ZVi6HV3IKJ2sYgxPnnyBA6WRJulIyaBGCMiYq6CKjOL8fyvLulgVkqpQY857TDFB1NyteD+Vdu1HbcKxOq6zsyWy0Wda6uVJ94X9IIBILM7DMLWAVCXrCpXPxOLHfoqh9GZGy6i7Stqqrs7F/TWH2acGzNXyjsRiTEykGOfDRQRic2QAKt9dpejctQHx4jyQywsHuKJEWaZNQJgNVa7f//hj37pyzJE6BogvP6HOFtjFUJdr1izJTHGYRj6vkejkmSTt5ur7UcfPPmDb/zht7/1p3/n7/yd07MuQ865MJEBBO9VZDI5DbqmHUvamXzzu3/+n/5X//lF3lLrNeYluTGX6oo4INB9oR0AmiWSCsbMhJkwiVkqqL5B/xMPz3/mS196cLJqCDkwSJEhD5s47NLVevd8iO9e7t7dxfcLPyfanXSJ+dnFc9bzt8+Wga3BQpjIgT8JLMsuF4PNl+6ffvX83n3Qsn2enGNqUy4fXr74w6dPO8QvdU3TNOxUcIBAgFBKNMfmuOlDt+qarhfD7a6MiIEcUjvGMacYgznHRh7Yr6NLL1J/sm37vg9tyZkB0bLH8e1T/8a903zv4YM3Hj968KAhKburPKzzsMbtZZPKptCwLTFJt+jvL0+8c3b10eY7282LZ08++iAVYm1fPHfnJ284d5qzE12XtHOQmCKbqF0V6XdDm6+I21MfgpJvyXfhJO92HnzJCbDcf3gKCFzEtldw+eyLX3m4YLBShgIEilrYJl4AINIK2N7LBBNadTANAIwAGK2KjhI5nv0bUdEDIJA7dNYRyEDNkARNIUXcx2fqACUkYDCEYgCIwAwMyA5KqcICpto7B2qKqjglWzz7GqUoOpGWNOyIg8tJtEguonJvQoLpLlqRFGMZB00FlFjbEwBzznVt44CxAoERkSDpiIiMzhF58g6cCmgWVSnO5kV0ho3V5oM/BNQeLjflRvk47vXOzaSA800pabeLKZXKkq+Sx5QudxthcK2PJalKKlGkY8cOJrcJ6g5WK2D36zsZXx/SSSXQDpb+yeYmpIOkB+rLBUfT/8dF4cd4vP02aABQpmD15HW8KjCEAIyU0zWDShXina91g3b5sHu1HCWvbtQy3NjY5t55ORkyd9QrbNb9t+wgZzXthPtDh4kiBYFyfcJj6n09rFGpm8cEGjaDW6wHRDyk4DvseTA9tGAQYCoMgKmG4vo2jpkbDr91yAeFiHyYKimHCaW5L/bVVvPgubFvHzyHaNlrOgJCLVLau09wDZS3adbvT3hD1fGwOKQmTWZM8kFdqersmgERUN2VZ5HHl3zp/SfJHcxKzce07PDqduOER28Zjnzru1J5OL0IMgDTuWYPzUwNC3jjxnWRxg+327BY7uJAjV8xj8+fq2aBAg4oeEImZEY07hVIssuKMZecRMzGLJsYL8bsfHcxXgEAO1ZEFRk2mzaEfqrO2xPQA4AUUgPCYorEomU9jNuUYsppzCLK4FuSJgQfPBgUKVXfU0WKadsuKtmGARiSEalZxZt680w0jAM4cD4Ett65t8/O3vniVxZnj5rF8gtf+iI66k5W3HjjidcfnUciYELEasopGHr2vqc0dE1fSslj7kLz8/+Tf/fXf+3XFsslon28vuwW3ZOnH/3Yj/3oMA5tF97+4lvvvw/9Yqk7fvbhxTvvfBmKktnFi6dnZ8tom75thqunp2fnTcO77ZqIMgqZQR7ydtsFD4gAVkoxJHTh5LzLRhC60vTBu1W/kmKLsEzj7vT0NGpBA8ybGCWLFLEhyy4WSGWxOmv7/uRkuV6vHz16sN2uiUAkqxbvGUAlmZYoImBS0cgIyExkpsrBe3ZORc3AINeojoGVkWxi70Bmz4gIaEUN0Dmfi7DzAGAwJV1FpPofnp0nnhQ/DKxIkqSqzK7myCprQuO8me12u9C0rfOAXHFSVWYEEA0REMMdGQAi228LtAeq1bkcjtib4HDWa40WVyKyImTgnHPoFAGdq2X0k/IiACKGEIhpG3PTNN4HM/NNqDTTznvnXL28EhNxUkNTQiQfPBETVOkisFoWKohoqsEzqIkKqAY3kR3nmKsvkWXCXJHjzvfMvFgtAcBUwdD7tnrdxQSQDCuDGJJBSmkYhnrnNb1T8zzb7XYuW6pswjVz4JxDu3Yda0GtmY27oboiiNfBGhHpuk5VqwtkEz7FnHPjEJkcIqoTy1Ao/MlHz+7/xE9fbbZpu4OkTbZeP4eMylHg08wMmhAWXe/oddNG9ZF+7ud+7k/+5E/++T//56A4e2D16D/8h/8wxvgf/G/+g5Pz09VyWUU56uC+tk1zBk+Xl5f/xX/1/3ly8VwZqjKKIhjzvLXX0vnryGPah8kJmKgxQ9V7gd8I4QsP2nur/mS1CISBUHMc0zjE8WqzeXK1uYjlcoxXKe+EokJELQoI9vF61zL7k+Z82XWMywJLYc64EkXyD1f9o5ZWRpTLkNPVLn7w7OL9i4ttHr33vOiDd6HxoQuu8WbG3iPluqtoZeEArqFVNESrTpch7DkazTIAIW62u/5q3TWB2SEyMS0XvecWuEun3XnvXdk9e/YkbjesKY7buFvHmJ9ejOv1gOju3z8/OT0jBMjDu3/27fWLZ8MmE/rT07PVsifqYpRhTOxESwYoiIpkhFpKtDhwm0KryDwUjSVDEcmFsBZjADEhoRe6eHHx5qMHgdATKJACEhhXradKygZHbwsAwCa97RomrfkMrJ87tvWOcgiHLjdgtXRsSo3Qdf7mkLC8bvt48NueBWM6M+kUW5kCFTCZ4Pvsak2p19RtpqyqJe8QwKRe3bXCBDHGUgwut5ssBoSjD40PxDVLRIigaETISIyMOpKhQyJyRAQHxCY3LBjZ89bPR6+f7OUUyr6JGLKICGB9aWXOvBcVdoxEajYrbk3xs6P0TZ1Xr7rYjUNHdwBwaJvdEmq2u1MZB8duXPaub91yGy9/4TVP8vIDvvqRP9Gh+r5ffciOPcBPVHpxo32Ck9y4jU9wobtOfkeq5c4THtMB3XBvPuM47I1Ou+3R7jj0OTcTkdohalCXv/l9qSiZEpInFvYA+N13v+e7BtCsWClqiEA0xpiStN4vfYvOVUlyKWWEUkpJKtGkFMmiogYq1UDUAkVUVXMR0Ni0wWrOQK2KLSBXcSk0LVfb7fP1ehNjVBMFBu6brg1hsWgqXVI13Cvx6xhjySWWtDeXQY0UpiwEGnlEzBjUuqZ/8PDe248ffenhw/NuseqW/dmjMUbn/en5+SAZq2I3EzBR8DO0GPZvtnZVaJpxHCtrEwB85ctf3m423/72t0Xk5ORku7siou12++jxg4uLZ7Ws+erq8ie/+te+8Xu/P+YEKC74PMYhDqVE533bnkjOOUYV2W23282mgmydY8e0F3vBWFQke+ImNOw8MudSmJkJi2gcY723i4tnK6eqYmJFTESRGJiK5Fxy3R1q1WiFmc1bwME4OZxtCGAlCwKZTbx2sN/sDKHtltMma1SK5pQI2TkHRIdrgex5WZgZnZMYbX9l1Wsmq5vjVbWo1v3UMasIEiLQDbX5zz6fAmazuQBT1m4mo6M94XLtwOqAjeMoKtnQed95V1F8s3CKc05UZ+EU2NsJh+iEfQ8YHCwRaYwVoDW/rFmYJbRTxfx8qHKstV3H6HCq80FiB4Q1kGQG4zikGMteCuYQSzLDDueXUgmuYozBTRxCcypmD7gw730FLlZvp+K+5hiEHdTJ2D6VB0Tc+khoTVg8ftR9wW8uLjfvfjBuh0Du861RMTNVa9v29OzMvfa1ZoKUX/iFX0DE//IX/+lqtRqGAQAqCcZqtfqlX/qlDz744P/0f/4/vvnmmznnCnacFo5qNwa3S+Mv/tP/8lt//qfonfPXznXWV8OC0KAPHZo6UwATVJXckH5xFX7k3vmX3+pXq2a1DB4RTZJZgbwb1xebq4/Wm3WBddKsgIABCBQKKRqu15cfSzxx59A6jxxMvCg5PF8ERW1Bw24nBkVtM6b3nl6++/zicrfjlpeNP131i2XfLZfdctEul1KyCI47mSZwZaQ5jqBdP8u+RFhVS8mlSIwpxtS2U3F2CB4BgLyVHcYgGePmYrfZmMowDOMwpJRzyojQMHkolqOB7NaXT598GLcbtOC5IeIU8zim4PwWxQdlMMLKI+6UwKygZY8SSIlUiKWIaWbSnOJ62CibMRJxIL28ePbO6dLjiHNWDqA+xRxCnzyEg6Gyf/A6vY5H0exxEB4h4G8fe1ThAfVjB6ukvcomqklSNCO9VjG7sbDeKF+puExmVpECGtACluAEyYuBQxmDimG51FE0J9VcdpQMCYiBGZB8cEjo0AgUTFDNe98Gz+hIb+fqLTiPCjsuX7lB8ApwnVHJIlAwlwKmFRceU6r/Sim+CXjNSXK9YB1e90Zy/zUrJeyGPN/roWXuuNbdJ3nN23jNQz+c7ZOVXhy2O17KZw5MunEt/tRGx40TOjw6dNQ57jOGud+oATvst5cVpq8PfbY3cWdTnRJiaEcJJQAIITjHLVsX5P5icX66+u3f/Z1vf/c7J2ery/XVmBN5B0hJipaC2jISoK3jiCpYtCbWClkGiznlnIsIkKsmkXOuhp/NbCy5DYR7hImYMrPnYGY5p8urzXq33cSoxE3nARHEGIjRWrMGwJsZWMOMzNoEXfSq8GJ9NW8BpRQpuYJtHOib54vlctWfnjx46/Hjt94+PTkN6KBo17Z9tzx19y7XV1lKCIGcMyZggmMdwykDuW9NCOsYa1mwiFxcXLz99tvPnz9/+vTjR48ePX+BH3/88W63e/HihYg8e/bswYMH2832+YunX/jiW8+fP/vKO1/abi/HcSyFDEpHTkTmGoP5Wm3bhhCs5OqoGCCAqBpO6P+mqO1227ZtmVwIfgew2+36vifClLKo5iLJYBiLEqPxbrhqxrxaniHibrerZnTFfYmIqtwxDg8t6XqHtOfGvbq8sjqODJmD9/tyCEDi6/LR6qjM1nDeOzzzVgKvWqyQqOY0asF6KRnJvPd0587+mTc8TsVUI36z2dhembEmH1JOru2rRkrlmwaAWgXknMM9MfQhEe7kqtl1tUn9ux7oM86fnOU66l/GceS9qlv9YbVa1e/2i3ZaZKbs01550ywNw6xtSPuGU+XStUS77QFdIpJzponr4nrHn3+tEvX1hLNjrwesx7AvSqyfp31+cpR0Newu45b8qn/j4cPHj/TF5fb588/ZUVEFwK7rVqsVO6dW/vLvAMzINjP7+3//7/+VH/vxX/zFX3z33XeJ6LCG/utf//p//B/9R3/v7/29H/va17zzYxyJqIaxDWA77n7lN3/jX/zGr68enD3frBmvUZJ3NG/oBYMZmXgWIu2dfe2s+Yk3z0+X5kgJiwGqJNFSJGfJqeQoVoDYhSUxoztBFqQK+Gj6VdDcIDsDJxLMGistg/RuLCgl6pgGUTNaD3mzWYPCcrE8XYW3TlaP7p+dnKy6ZR8WS9d3mIJLhjTMvumxowI4FSsYgjkmJiwIlQJsHNJ2O/T9QEQitt3E3S7HUUVpU8arpx6Qx5RyKbnoOMb1MOSYG+eXfUsulOFql7YxjuNuS1BUS0kQNSNS431wnAbwXkMDwcuDUybnmQkBUoppsx7wqeQCrqHuXoxJ4siIpeQSt+C8ZEBHm/VFibuS2HVQcs6iCkxQ2AB54pFCrOIYR7v7/o2qwVHK7tAiOGLNPgJE3GyIByEfNTtI+9pRfsVgD6+qfH4zaqQimnSfUWF8RZ19bW3olcVz8V7MLEo5WeCy80Rh0frdLq+HmBQFSdEbeyAPxFK0TvxaIkpkxKQMSHqdT3zJJLpT/O7mz/NyU0SMSUQALZcSc0olR8m55FJKt1zUZPQ8GusX6djKOu75V7jTL7ebXtZrw/pvv9bRb6/ptNy4jRsn/1wt9c+8HT3yJ7rdu1/KZ9sDN7Nen/7kxzcPN1eDg1f5aa/0iisf38Utt/GDI/di57DS/gKgHtL1Q84ZwRCImFHkwYMHf+Nv/I0n//D/+b13v4fkgCg0wQyAHQAWxCRiBmNJDtATOWQVySpCkErJuUhRwKnArxqaquq9j7EUEdNqoNU7QFQbx3Gz2ex2EZj7xVIAfNs450rMrOgRPVgwDaYG1YqiymssZGf9Na89czdFspkd0RvLxVtvvXX+6PHq3v2TBw+56S/Xu3FI4ltj1yy6E8/ZdBE8MCMTEAFdU8C/vIBUnE/VTmDm8/Pzq6urn/7pn/7DP/yDVHbOueVyuYfNuFJSCCH5dLW5akJ7crp6/uJZv+g3u6uiRaT4IkWlcs/U1AERVV57M2OY4KQ1bOe921ecWy1K9t5j8CrWdZ2UVEpxLuRhI6pFNItJkdAvKDTDuM55eh3DMFSy44OI/l2xmJkMag6lTwrrRP2ynR0VIo/AtfpIRHzwh2eAvYs+u6w6YfemKvwbGGYAqHUXlUtqGMZSgB2pKsPrYnY+k4ZEhFRTErrXurm6upp9Bu8r3NpCaK49kz22omZXbK95Xdvkokz77/XGWk943TmTwoEQ0Uy8eb3/7pN+dcDPGRLfhBSTmBKymeWUi0opRUXtAPF1w1eZhAf2E7bytdaRVl/BnEU5uHMzs1qsrwe6I7BHRe1doMmOrU9HRGi27Lv75ycf5iE5zgQDQXvv5OR08ZKjciPXd/D3I6j1XUvqtOBOmQ2i6uR557LovDLbq7iM6iuZHbuaPvu3/+1/+2d+5md+9Vd/9Xd+53fef//99Xo92Xlt+43f+8b/Df6v/5f/8D8spQQfBLQSMwPjN7/9Z7/4z/8ZNO7p1QUGH0tW1cqkJPOjGACQmjGic05TXjE3iL1Bh8RgjuDBsn9nFd7scOGBUFSiGpSYdrvdZrcbYyqqbNAAAztPfoXOkNlNaJ325ARKvte4DqBjaggKFAERM0ITwCw25hiTSiwN4HnTUOhWHd1btKeLRb/smr4Li57aTiGjE+/DYWbWVAGsjiQmqISJnslRXcnQTE1ss94wUa2LAoDdLu52KY5aigEWyWyACFRS2e7G3Zh2MYto4zk4DAFiGkssZRgkJ0IggrPzJUPo+0Xjg/dBNeVcAI0RUoE2BOd8MbEcpVxupND6StEvH4qabS4vyLTtWkemxlDUTDQOfeMDi6SoJoa1sAyLSuOpEkiL6mQRTZQa1zsHIs1sfmZmVQWH9u67HckIIL3CGiEiMDI74MVjmxn60VDyMF+CjWGWd0RQBKzg/oq/BAAEY0IDJjKdYhLznGZmQiI1JnbOeRMV8QLFmYIgYPAYO17FMArsku5KFJCsMWdowsmEsRIhz+wQQcVMpDj1iNchqOPd9FhC8RYj+zBAYggKBiK7ODau28VRVI2wiCQRJKpLLSDOZGuV8uslg+vQUDvc+a6lduFYv+IGMvhY9eJWFqkbobcbz0iEB5PmMMg91WXMDuT8sRudc8x3bIfPhUg3Tnh4H6+8pZd/PWyH4f8bPsBdbtsdWhnH+R895OwqZQ4NKhyJBh62Opd0v6UdFm/cmE5HdR23P/INq33ep+v0vaULpz+88tANFaDDu1K48SKObulwANx0xo5Ag9cADKwFlte72I0+sFf+bGaHT+boVkflxiR6TYf5jrFxRyPEOhkRAEDns6BZLhnBirEoktk4jq71q9Vqtxu46dA5K6qE5ANgKWpjkYKmUBxyS75xqKJFVNCKmSKriuZcFd/qalONXTNIUpE1FY5tOZUyjDHGFEvTdUBc0KJJ1WroXAhIDdGZo9Z753zF4ABYzmksWcYYHNgemMpowVNw2ATfMHtN66cfWU6B2J0/8MQhtKMAdz16Lgin987HnICwcu4SIhDp/nXXWXCUEEOsggo55yoW17btOI5f+MIXfv+Pvr7dbh8+fLher/u+zzlWukt2FDgM262EAKhtFxYnq91uJwBFIMXcNp33fhiGKghoZrVIYNm1gCAi7DwzsgvV5Usxha7r2q5awCIFEbuuG4bBRBBJSgEkAOv6Dl1woQkhh6ardLoppSpergfF04fjmoiYoKoLgVW9xSqNcq0NAgAiRXOq7PqI7Igce6m1E9MmfoRxgn1Y3TmHMIuPT3v3Pn81k30DEYUQqucmojmLqHnvK+i6bsT1Dl+iyXj1+LeDdMGNxZaozoP9RJsCpmgGNSRZ6zR0X9//4sWL2g+z0HsVVTw5OdlfgubHn833w/8riAsATMshNA4OJFmowt72l4gx1qunlJCnpJ9zrvq31Zz2IYw5GSg6RqKyrzbJJWsRMoW9H0KEzG7m7EKcPExVDSHUcaJ7YUfbsw/PmZNqnc7YM9lzSc/g88Nl1g6EdBxzH8KA+HB5On7r26nL1PcYGkR0dENH5YZ61E0Wobte8+FomErzDBCRkD788MOPP/64994FRjTcY9QOvzX/Oj/AvFWHEL74xS/+7b/9t3/u537uz/7sz77xjW984xvfeP/990spDbtvf/NPvvvn33nj7bdEimtCUWHv3n/y4X/za79yMWx50chQHFMti5ysTJoqetEA1VQMpuRjaSyuEO57d9qEBrlrukf3Vl+4tzwP6BkRLKcsRYbdcHlx9ezZxcXlbhgSFwlAhORREc17ar3vg/ee3aoF6hqy1lnryZOCkWq0LERAnkE5Z3JYOsfQk4gDopahJ+w8tm3TLHruO9f2opl8CU07ecmEzFwMmdk5jwCByTwSchM4BAcAwlTrC+t83m6GnBMRSrFhGFMEM/SYOQRin00dCKMyauPQvHOMAAmkeMugsXPa+WDIy+VyuTwP3HrXgJqkJDnnHHMpkrTv+tCCQ1IAB6ISyzonvRClkkvXdenyqZlgXmUlak79cuUxPHnyQS9j61oSMFUpQp4RoUZiamZDxdAxHrIZmVU/rS4w1QqtA7mO5evk7IHAguProM68LE7GvVy740fLFirk66XzxqRRsLno2vYmLFWot9lsghsRHvCLqyhUBgBQUPHCUpxIJfJLjsAH6BW7git1xWgXyxjLGNdgjGAIqJmK0MRkDCh2vfy9FAjAw2l1ZPccVEir6nXJOIIBZJWigjmPcSwqChZLrhvbfiFDVeVZqvUl9o/brdbpuOzz+Md/P+7jgwO3GfF3WGmHztuxNVtN4imjPX9gRjIce3G3SqfftKsPH/n1ROtf/1nuMkyPYknHjsrxKQ612HVyFGl6ktuK6Ylwv9MQ0dEZDvAJNx7k7pt/2f6efcTb9p4bT3zY8zcdlRu3cUv3zmb5hDI/hLcdXw/3pMPXnbC/0LGHfOOhjwN+h89yY089PIn+JR31yme5qWMKr9V0D/1SA6zJYJvulZnJxIqJaBnGHAdBTSmN40joTHQ0A8eGIGJWijPyjo1MUAHECqCBGBa1Up1BItkbLnOwvMabsto+n2IiJU00qdz2ixCaYqomAdg555nbwK3zLeK9xjW1LllEVMFMghsQHEIEFbOJHFbVigArmhGY5nT/4cPFann17CmRXz183D98NJRMnpTAmLIpB1+pUNCMppqEa9wXAFyrdtcVhKhpmmq31f+J6N69ew8fPFyvL7z34zjW9zWOY9d1pZRl7ze7LUL2zu3i6H1z7+FCRVKKw2a7Xq/Pz88BoPo/lfvUOZeGXb1u17ZJjJxn5xCxiJhZv+jrsGDmInmOwYOhGRJxKWnRt+hbdMEMxzHW9Xxe+mY7sm6qhwOKicyOKh7rG2THDTfVX8ol11dtZmAaY0w40XoYkqgAHiGx55PUamyVqf6kItBsz3813c8ebFyPzn7jUWyuzpfJrzmaK7fMgOl7r5ox1RudYoy4x5djpRlTxT38qUL+1ut1TQ0hYpWcX52cUGgWi8U4jjVLMScrcI95m213EUkpTcBIxkrsW6942OdFdH5H9XLzVmXHDa61pzUOgw/eO1djBSklKaI1o0I2516IphIa3EvezR2OiNXxmLwpNUSseobVdTx8oXaMZa03Ob/r+VbnFAUBoGQ0eHRyxrEwq2LKBck75M9Z8BEB1HS4vPzTP/3TL7755ic+z2azEZHlcvnTP/3TP/MzPwMA77///ve++93f/e3f/uM/+qM//uM//spX34lSC/M0pfgvfu1Xf/+bf6yOiAi8A8+qZUaF3WjzWtmHcM+nN7v27eXJvTa0zkKAVR/OFm3fsEgRLSmnYRjW693Fi8tnzy6G7SgiLZEBCoKguQB9S8vOLXvfhBDOF+yc82SqaEVLBlREISpcAAmcIZh559qsrVPNaEDMtnTUMgbP3AQKLTYtCVPIzk0s1N55ZgZg1SoJT0zoHTumvu/6vq8Iuuo3x1RUbLfbxTSxfY9jyhkQuFs23jEQmlhw1HsmwcIE5JKIpKIOHWobgHwXumXTr7jpvG8YnQqmMUrinDTFoqZIVlRzyiVk55oCInGMYxnGOGZdv3hxcrIAzI6QODF2CM52Ow3GJn1wJSfMO9Ni1ACYAiPRdrtFYmYGIiYknc0xrDWXAECEIlJ/hOo8VEzs/v2+7q59aGcfFtMDOecAr63/wxPigfNEQAeOFGhM81loD+FFRAUzxupNoTFo5XJlpMBOnCYRJVGv1hgZsCCmTONIT56Pok6KFVUrpOjIeQcNEYnOvXETWqwHh25Yt3q8mtiM4zIragLmgt/sdrmUMacxxSGOWSbCxFmM7LX69pO2u0zz12uzGf2X3q0eM9O/5uU+/R3+8Le9j6ezATEf0iPCUHj9csTDNsUR93HT1+zEu/3gT9Du9CQ//elvvdYPazMRGcciY9btbtiuxxI3mw0zFwBVSzmrFDUtuaBoQBZzyuaJzMDUyEDB1ExMi4HzDvesddUMqsJoqRSEa73tXIqZhRCarmubpmR13jNh0mwmpoKOGset474LjXfMrmYCAFBVvEMX/DpLEUuYChVTBSAVS7FY0Y60a7uz5Yp8a+SefvjBl++dexKRQbgTAiXAG1y8d76rag5WwYoaw7ZJIxi+/OUvb7aX4zjKXrS6fuDZs6f37j1Sk7brK9ihukDO+8Vy2Tj/8ccfP336tAqkwH5V34eoEQBC06CYwl6y/WY2gEMIWrKq7nY7GiM7J2IpZh7j6eK06ZcxSlGrpE3Veag6J9XlEClwrKCqplAjOGCplLZtqy6HqSnqjHoKPlQXsUgBUwDZE/8Rhe8DoIV7UNnhjlb/WHe0EHzfh5SLmSHgFLGsDvCrcBOfX6viMDHGcRzrMMA9/qpf9NUnqd7XrJoy0RPv0ymqNdeY60qYYrnOa+1jbfVFJ4kzwgr2GppN07RtazjlUg5BX6oKiEAoZlBKyWUcx3EYQVWLqGrbhTkJw8fCjrUmvuwb7BM4iOjZOefatp385wO9kDticLc1QxjSgE0XPFspZRdVUbKZc+VmRuWzbmYGCM1i8fXf/d2f/3f+nU92khhjXQLmAUpEX/ziF7/8pS/9jb/+1y8vL40RAcdxBMfg6Hd/93d/+1/9DjXOtFzuNsaEKoagOGEY875DCYCBHHENCXbL/u3z9iur5VdO7p0G7xnIG5J4mJglS5Htdndxsb663FxeXm03kTmsVl3DZmgCXpEAKQRYLvDsxHe95xWHtmXnUixxHIupI1ZwANZgIMZMzGDZ55wLW8xU14PirDBWxBMYkSIpekWWY/DirFRrZswE3jPXjMeSiFJKMcZShJ2qCYAyEzOVInVVQnA+tM6xAanlQIYNe/AGgMzPt5HACLT3tFosF6uTdnXWnt5r2iWwSdZhSNtL2K6TFvABay16CEEBYkrOQIuAZJQCJVLObOKzLZaBSCVequyoRcznjr3muDxtPWzbxpeCxsGIUpGSYo7KzlHlyD9CxVw7KlAZtwwmlAeQOgKdpsfLhvttjY9V5w7nG3uHc2TlKCZkWGn/630cplwMsFxXuM+BE1UV0wIZ6pA0gEIIzhuZqzwcWVW4VF9g0orKiD3Bou12MW8242ZXciEDNlGRVJCQ3Cv9KDimGrjxXPpSvkL2ud4CVExD114+fZKlxBg3w24YhpRzE0KtqLuRMfg82o2y+E/Q5o1tTjfdca15S7hhf7/+HR4Nm5fEJf+72+bMyY0Uyg1L4pO1Q86Zmrx4nW+9Jj3D67c7XiW9NnHlJ7jWjfTdD08rRcowDOtdurx6/vTJetg8/fipmLLzhiBakmhKKcWEah170WABMqKiKDmPBGaiWkALoOEEE5rDwMMwiEjbti+2G6tZJgRgYiLfNsA0lmICjQ/siLLEFMG0RbQghGxQ4aagJgZGREzolLw6ZywgQGKihmhAWaBoyQCP7528+daXHt5/qIajanzx4vmH7+Oyp0CGrSIIfn8VD3U76LpuWrKvpYe57bq33377W9/61tnZ2TAMq9UCAFR1jOM47rznudhgTteklB88ehRC+PDDD5umOTs7mwPqqto0TZrUu4GZCdlV5US5kbxV3GNyRNTEACEXaZpuuxm24wer83uiuDo9EU1wEAWvBquqminckAMWI5pqDBxM29lc1VAXz+CDqugEqAFiR+iqZ2VAAq+1otbVoBr0iHiYOK33WUUVu46RTDfbeoNEjEQ/EEelVhDVIqK6aIQQFovF+b3z0C1mNwCOS/BxHyWvv9ZEx+QPjLsqfV6Rb6pTKsPM2tDM23TFBFYGMEQkd+0LzS5HtRMheAUruaRxjDFKzhPiYw/ZqlGDPUXBtBrXgU37QoxKrFcXfMUJIlgdb75dYoVfQynSEIRMII+WBATQVBVKyWYF8bN3VA41caoMxfLk5Lf+5W999NFHb7z1+LZvoeEEjkYjEwRQZEEis9A0JeeUUkVqAkz590rD1/V9KnkYB+d91HK13vyL3/z155u1LIMQBt8KaNqnzwzAAGc91CpdTwgqhqqtd4/O+8cnq0cnqwVy2zC3nCWVFC0XjUlyGXdxu96t19vdNmWxftnff3DfYTI0BRaiIUawwgF8i03rzKkL4BhTVjABVRBDMRJrkYmISc08iqkqOjTJqGhJrKgW0T0fLKlJkaJWSilZSikuU8kioKVYkVxKIgJkDMG1jW8bj4hgokJm2nFTpDhn3SIQQYzJgFSRKZD3QAyT8U1ETMaEhszb5FSLJ2ub5uR0dXbvXrM4aU/OfNcDSooZrMSduQBg5C14H0JwwZGq5VxEQQ0JkRnbxnmGru1Ol+H0dGFWhiSYoGguu51E2V5eyMm90aL3IGJmOea02e2G3Xa1PGNwiOidM4RS4VkGe8XDKoNik7sGCICGhgpI+ySawYHGRK1ZmcpL7CjNVoNSM6OlHmAzLLBTVUAw02PdSQO6ZhzBYy0DDi9xoeqkh0hIAIhWETUMYGDMUNPtQbUgFSnFsTCiYxKRVFJUawI0jvqmbAcdo6VcUo65gF+sAMkqtGcqSsH5woSgtcsqLm5/V7PCjO3vUFWLSBFVxrpvDWMsKlnKGMeYUpbSYFO3ZJh8xGvexs+8HRqLn8yYmx2VGQN297X2ViO+5qVveD5Hv/4wGp+fpNlLbT50w8j+ZImCaq59vwm6TxC6+75O+LkmPW5kb35AjsrBKnGw3MEc+FEpKZVxyHHcDMPlepNy8aEZco4Ko1R2jSKlkAE5AhIsCMSFgAwMAREFSAwKWJIsBhWOHBy88fD+6mT57rvvf/DRk0xE7H2YgsHEbo61OQocvAdSs5ySqCRmaRp1OqQiRo65Ru9q0V6Wkq0oeUUrgFkNEB1Wtkwl1R/92k+88ehNqnnjLC3hbrd+8OhemkDrgDOC/aCbbnTWYSNmMKuR7NlaJSJEWC4WZ2fny+Xq44+fGMjZ2QmzK6Ug4Ga3DU0Y0uBLOF2cARATt857x7vNxf2HD4sqEqWcm7aVKkkuslqcyG6IMWdRZCaqhFFIxytwETkklTKAIiXmcnL+oGefBHLWVMoSUM0AiYjnec1MhFBqmWIVPAAzNSOwqoaE1DivqlVW3Myqmc7M3oLUHmH23qmiaNnvqgp8+yp68PMsuFFNc+/D9cfMqkGPiN5T04RhHMwU5vrM/f9/2cj/fhviQb73xtljimMccyneub7vV6tVE4J3jgDbpi06+aKHBeiIyM7ZnjRsTlxUKz+EpgkNM5eSRQrCVJfCxGAgKiUXxMLO5ZxjSkXFxM7v9Ujo3OQ6Thi8SdoJwUBFSs5SCsKUfMKD5E8FfeWcda8wU6Fl1Qq1Pe66fr5pmplw7MbGqnorCvXlFXVviwE0fkiyHaMCknOIZEgKCGDuMBKmpocoVzqqYT3amRBeDeQ1hFovTwakQABY5NmLSyz6T//rf/Z/+N//74ZhqPVOzIxTbTIjIGRkSsk7T8WevzuuL5df+jdS6Mt42RK7UOWBDsTpCIncNmUk6lYnYmqEScv/+5f+2de/+2e5IVExnADiaGyqiCwAKkLA9QEUzYGpSuMIU14yni/6B2cnfdP1zjeNKygIRiRKth2GcUjrTVyv0/pqVNXzs9XZ2SI08PjBWwIWU1rvdgZiQpJ0vCqc8gn3pAXQGhErOm43lxeXCNC3LXJk5xiRfYjFMXpExzy+eHblissZo4AZNRiCkmzjsBm2m8364iKOiYAdNWBMhI4FIIcGN2MBAEeI3hmjAaJ3lqnE4kzPVv3qZOFbylKGGJtipgxI2+0GBKVYjoKGTEaEoKJ56NkNBQSpYFO4S+SZiRyEgJqLcfGcAXdFrszZyWq16Dtm3u22mmUcStpGQkbCUkQ0AVtYMDbgAkuBHJOjbtmfZLFhd4VxC3o2ilczy3qybDcfv3958cJ71zx8CITFssaJm6/qGRMSEiqyscOiwM6QDbkORraCCggEQDVVPgFEES1OZXGGAIiGgExEVflFD5HeBxXeOJS6OjmgIzT83uXYf+4gd4FmxQa0a9yR2lQfoAYBA5hdK+OR2T4mpqJAgIFqXaaZKZGQKRCZdN6Hxp2etGPM203cbof1ZrczyaKmofqGamTGyI7YE5E3Ay2VOH3POzDNXiwIQJUwLqYUUxRVMTNTQjLTp0+fPn/xPJWSVTZpHDSLw3Uew6LzITTOL5suAEEW33jFG7UcR+24hmKKktWVUu0oNH5IeHAoL3ujHIQPUEY3VsCjoA4C1VIcU5UjvctJccdMisLkuprsF5qj8oKb9Q/XB91xnc/hfZjcTnVox4bQYYnCoXN7LDpYCalrnr0iXg6/dnDuo0LwQ42BmpGdgYiqaqI55dmXu/7kUbU3IOIcKqKDa+Eei/Lyc+EegVlblnzwtSNTIrCbLiOKiHywMaXb+/BQabFGAQ4OHv182IlpT4qKiKpgVnctQwS6nenIigEAT2zJVT95T19z0FG0B4tX6k9UOfQDjgtWDiuF1OTgJDde5dF9HIyN418Pw9U3X6VcP/LNc+45bvb0xAogIoKmaKmkOObxybMn73333SdPPry4ukpStjECN0Uhl1JUBFQRFGCd06bkTidJKUBAx8ispqUufVgUGzDvdXznzfO/9T/9qyfL/ld/W/7rj99bdEsfAnsnClqDP4TKGAm3IDkNrQmqMDGZqUKKZWvgOo5FiStTDuOUE1Yx3OZU1JQBgksppSJN06zX669+4Ytnq9NnH37YMaCWLKVsd9gvYMjovWLKYpSlUjNP+Bk1s+JcQDVCaNhpLTLcr6I1eR9TatoWEKt2XmVk8uZbv/jKl37k2ccv1hfbdE/asFh0p4TPPnjvL95556tpGLsHj0CAkJrQtG13td6gX5jvutMHRCRE6rox7xYnpynGQi013llourPdOATvYsz3zu9fXF4qqXccY+y7NqWxCW59dYmOfdNkKev1NhelFJeni2Xbo2++9xcfDCLL/mQXsyN2RgSiJe+2a8+udSQqUkQlS86KAM45dAQExMhkZkUklYyIxNR0LQAYGLG3Gh4CZWIfeD8ZcYjFAErOcICFrv/nPfeXc67WplwPZtO5fmOO6DvnsgiRskNVARAzKkWJPSIS8I3CucPpcLz2HBm3x6vGNDemAoFxBIC6fypiVX0Rg6Rqjj989jRKPjs/Ozk56ds2OB+8b9mL6mK5FJHtbue9byoJDUApZbfb4b4EpeYYY4whBDDz7NmYlMjYAbDjEAIAiKgRxpTGMZkpqzWhOb+/EJEUs3dht9u1pz0SbYYdMrF3ySyO41KEEDWltNmklBy7EELbNt77xWppZn3fzwiuPWWZqoKIiVgpk9WDyCGEqnbI3he1ouYB2YeZvY33stGqOmPepqnEjp0bx3F+O01oACDnbNiMcfu97z2RhOaBPYgVLQKon0NGZR9eBQA0CCEMiM653/yt3/rb//7/IjTh9PS0ElnMiEaAiZ8JwMjKxbMPhxfPz770k45J7kQUhL41sBgTMivjH/3Rt/6bX/5ld9KPmm3Wx75xewioODOYzSVXVSrRMTIjO2SHQKYmgIoIhOACcSFyUI1h56jt/eq0PzlZtL03APAorEoy7saxRN3kYbcDtLrYTVpU220ZB2ZWT+g9khGRoTMEEaCcSykxpzhEF1yMSQ1KzrLeKPBuM26365xSJbsQMW9IUA3sWt0FUhRi3u5GtSktG1PJRYN3zByCa9vQIIS2zcVS0lyMxhTHPGxTHJMjbIJjylPHx1Ltvd040uUVeO+7PqWc5LIMQ0rx4uLixYsXOee2bREJkJGYiY3QMQgBGBBg8KzOmWnRMox6gVhi2W6yqF6swWgHyC60213p2pBSChy+896T99/9i0XbPDw5ZSSozMuq84bKgGBGhobKpoZkqgamlVwTkQCMahHIXovKqp5ZDdvux4OZEV4XWeMt4wYOczJVXfKWQXlY2YIASDN0uNqOVbQSrb4xm7Z0PjI46MCeqWZFBS2RGRiZKRGo2ILbxoeuDV3rx1Q+Wke1IkYmzruenDf0BB4AVUbYV8hWsefr8wsimIIpmJlW4JqaGtA4jsX0YrvZ7XbbNGzjEFNKUpCounOLvl8tV40PVRnYXimp/v231z/JJ7vcp7/JzzXQ/nk33KOibc9cYnuikR8e9NF/p3t4bnYjK/dD2m7UBB3nVQxENasWU0NybeuZvAhxm2uGXyRJTlKqQ61mpaT6/hQg5jGPgp6YHRGiKJIxETsPCKZFSh4229VqCRzIVQegGDCyq7BmQjK1uUIa6+qOIIhilsQYAU2JiExRa1UDKBBT1eczYADvRSTFKKV47w0gl6Ixl7itFP7Oe9sTMTMSmKkIAiADEgHZDbJI3IOZXtGbx8XiMUbn/Mnq9OTkNKVRxZgdIjl2z3c7M2vbthTx3thxLSJAJCDwIbRdX9NKxJyLsHMyjgJoxL7tlMiFBolzTEUFedr0EbGIqMo4ZgAwMybKiMSMiqKWSvGEQNh0LTED8YPz8w8++IAdgRaQwkzqvaChFlNBMOYJGjRjimZWiZsuMYIWOdxhGWZzCxH5sKNu9NvcbKqhn1q1cWsZxoyAkklURCuBnFkNMh5ajPjqN/SJGtp1hacdF+kBACKllEII7Jz3LoQQnG988E3APTHAXATCzDWOVjMSlWvYzGYHBsw8B614dtyree9HHCEhETs2q6OVmF0ITdtYzXKklLIURSDAXIqoIGJOCdRSSiWX+iZwj4WmPT1XNVNvUEXXvx9ip+ciFmZu27bmYeY0ESLGOB4m3nGmmUbMJfoQZJ/rE5Faju9CUHIKw9OnLxDIxJTEQIEMzT7nGpUaGzYLofnzP//z/+8v//Lf/bv/6/o+Dr0UACACQ0YVtrj+6L3Nxx+/81MbdktgglsjXDBhupjQ83q3+We/9EsUPIfgit2m6nj3/eYylpJKHrMVBUxaRDJoQShIZqwCkjUJFO/YNa5dhsWqdU4AqfUk7EYhGyWWcYhCamo5OI+IdWrFGHe7XeXUbhwbGwAQEvM1hYiISNFxHIdhq1oAlcAqOzQBSJH9oKmBZ8IpOEq1GKvmnSsldL1uTqnnBpEch6ZpyXMLkJKu10NKcTfY+ipdXVymMbaNWy5DE6Bt0Xtu2mBMpWgp5fLyMquI6dXlJknOw24c43a7HYahaUIIrSqoosl+SqmRgqgSUdMGRBYpsZRhk7frIe7S+moUaMKinJyG/uTs44/SkD7+ya/92NUuaho/+ujFZiePv/D2+ZtvlLTBmZ1wXxFepw0TIKKiIovBRCNpVczIWPbTY7bMiIiIYconzhkVRAUAsCPY1s12uPeozrUxAAB8i4CJATDxnEfQg9XNDAjwMBx+tGrjYVZn4sqoWihqYmYqpmRmQDQFSjspQpdFIGXLWdSSCaqUJFEVXXcdXzci3WPV0Ajnxch0KnsFk5pTQSTnNtuNqA4xrrfbGKOBsSPHHEI4Ozs7PT2p8RIAsMrY+KnLFeYU89QDt8OnPhnK/9MXNty4w8P2w2Pr39Zwzzs3b0X1nmeC4B/0Db7UvT/sPXpX+/QVVj/Ahog21bhnAPPB90yhbQRxu02V9oeYyNiZalUnBKsCjCICpphMk4qI5qxmvQuEplgclQ8+fPaH3/rOj3z1K7toTbtUMyIupmh1N0QpxUQdkeVsaiaKpgCITIYopqKWk8hUPk3Ht103zGlBLqVU5XXn3HK5QCTyLnATujbmzEhhuULvKHjnffUuZ3NtpmZ6zU6rFhjsYwEixXt3cnLyxhtvbDaXRUoIviYnl8vlvhDOmqZh8tVIQGLR7Jzr+76ec64fmLX8uq6r8Bszq/RQxIwIJoWZc8pmkGJEsBhjEdkdJnm8L7kA0FtvvnVxdVVj3ovF4vLixdnpKsbITCLiCRgywiQoORexzCvG4bpx2AOqeq22fJ2xAwNk8rfxCs4vcS6ZmA+VUip0ajbla01IfUfXVU8vQ7I+00bMdsDdfDgkCHG33S67vvXBOe9D8N4750Pw5lxNXPNeLb6+9IqwGsexpheqVVzhYX/JfdQaIefq1l9PW70gE2XnYkoigo7NLFdaMMScspRSS+Fp33AP+qrgrrJXaKn9aWaVzqsWqNgEC6xVT6J7QurDh5qzKIfhsHk9R6IiwjNDACHIVBcaiLLZx0+fPvn4SR1mglYhMUyfQ43KYVstl6jmvB/HsW3Cf/af/mdf+9qP/fiP/3jluDh4zYZoQgQmvkRYX+QXT+XiSYHgVqvbTm4IjDTmvFgtXmyu/sVv/cb3PnyPG1+k+BDyOHy/d0sA26urjeOuTea8805QVQuKkE7Zz5JSiqNmMUYtJccxjg4aRKRioJrBBEBAxVRMcbteR8eEVB2VlFMcI0ArpRmjKVgIQQGzXBMaNiGoKhIULSUnUGEwMyFTVKM9pZ33wTlnVLMyhIgqlnNJKZciIUTnvHPOTKWUSDlnMQNEIiRDJKKSdbsZn368vrjYrC8vwXS5CMRK7FpkcnzWn6Si45jGmLbD8PHHTy8urxBZwDSmlHINEoBRHCUEYS7KIEkliSQtqZgZe9/7hlijpM3Vdr3d5SmBo92yOekW/ckytM29x299+0/++C9++VffePTQVL75re8+OD/hk/uXo7mioKKqapNPP1H8ITg0IiTMFRGLdXsAACCFAISmplNKo/p0pgTmpmW1/q86QRmN7gDQ3qD5oiOhj8OhfAjUsYoe2/+BEKZsRs2oGFjF0laP8zAodeDAmCECEQOxIbKymSnN3PPmnPMhqErTYCoyDjJGjQnGlJJmFU2ilrv9HSEQI9VgExoomqpIEclSqpeiYKVSNDAT8OX6akwxppRyFjD2zjWhD03btsvlMoRmDrSomai6T++oHOfi70AbH6XsXxvl/1Iw7Pvf3O406H/IfZU5AjrDjm8FBf2A2k1/6Ye7P+9uPwz9+YkbIoJVVjdNKY3DOJZcVIoBoJ8zcsyMyGU/nMigiIKoSWGDnn0xNaqSJliKStmJDDzKN37/mxdXuw8+epYTASg6dExtaAxZDFQEzBw70AiiRqqmM9RWwMQgZSW0uiHUhQMJmRiQimRRK7mIiIp45713u92w2W53OYJxLqQqStScnLbn93mxhNAAOjOYTS7YG1uvPwR5rytS+6eGjb33jx8/+vDD91S0mpjeu3vn533fxxhzLgjoHKeUU0pNt4i7OIfYu64zs/Pzc2bu+z6OiZi7Ra+qwYecc8opl+KcU4JSMjPHcfDe5WgAMAxD2u2C90RWBGKMStuz+x1577xrmmCmItJ13XZ9BQBqNiu1lZJrLuVQPb0+1x3rhnOsB71x4EOS2mH1yNHUmO3ml91COmI8u645ZOaS9wGXSUTltd/T998IUQ9YgI9MAsA4jH3b1ep/m2DepgAGVkutaj6qRi7muvndbhdjnJnWuq4bx3Fe/uz4X/1Lhb5X17FervoYiDgOQy6l7/uw6Or5pdaQOAcH3sXMf1DbXHY/V8gc7hFwENuqDnaNibdtW92q+YmqA6mqnukw/QJ75xMJO57KYMys5GJ7aciU06jwB3/8R5vttrA3MxUhBPKMAO5oGb1RI3w7UePxLzd3fVXx5CSXe/fvv/Hg4W/8yq8iACJsd9v33nvvp37qp2A/KPdv2gzV2DsVjrv84uMwXm3e+7Pl+eOdyKHgqB0bgUiEjGPJH148/82v//8K43rYcRuYb1g6L93vfhioKagoQut9zmW7kRe49p0V17ADY0AEVAUpUXSzGa+udsNOUjEsOCbZDsIuiTrFUgxSKSkVK+DAOQAEbTz5KsEDWkrxjNT54BlNS8nsXIwRmUWxvm8z8yEwU9O6tgkImuMIZgpOY9QUQwgpsarWMVALyAAAkcxQBHNSlZySeF/atgEARleKlKylSClqSEYoosMQX1xeXVzsnj672m12fReaxsZYQmPITdN2wXvfcAgN7YaY8+Vme3G5RiQBIwEVAwTvHJELYQSgYZeCc1AEDWMspWgInjgYkKiYAhADcUxxN2Qzb8gxpav1JY47IPf47S8/f/bxLsM4RGyWEpbvPllrHh8vUHIk4gqic857jyBmIg5Lw84Auq7LmkmEsNJ9MDoDrRUoOhWoAwEZqJVSrOouVfXKus4AwMTVS3NWdF6SzOxQb4SIpuKGlw4hHozSKjR5HVwyQIWa0FUyNDQjNKyA9IMQFOAcGpoZAwDYkSGqgEHlAJnuWdV7MfWBsZSSncVWxiRDLONYBp9SlqtdAvSEVF+BACsYACoggepUPS+KoGBZpEgRVfJhHHYvLi93aYg5iikQurZZnZ6cdIuu7bq+rwvlfiIj0x35D8B9p4FNuefDLtU9EyUB6YGrNjNxvbwj3vj56NejkPzRPd1cDo440K5bXV+PPjm9nepm2o1Drzj58aHjJ365bvv655qsf+UjwwEoopYDEaHZzSzfS6b+wTPO5VWIOIkWHsHArk+itz4XvaSMeXjDx7dxeB/Hxw4/ekSPdsMPPDj5sWioliNWIjgI772mu0gEInsJvwNWDNgPjX117k1mhVqGOhltx8B2OO6Z/ZivJB63e93Hlz46dLvbVs00qOvVUZ8d9fb8CNcp3cND1xOzgmet/nEKs4qUkqUIElYjmxANpp8ravS6WxDb0JpISikDopqatq7x3iM7IZeHRKl0HE4XpEAfPnkx7HLK4BpWEUZkRAVUtbq9gVnrAtYoD0xaUXViFgQ2YCMyAiOrYSK1rAWNhjHaZDAaI4UmOOet6G69+c6731s07Wp1ulydNN3C+hPoemgadJ7A6QGoaTaaqzFcO3/i4zl6J0f1D9U5qc0FV+dp3y/u3bv34sXTvb3oQvBE1Pd9RXyFAACQc25aI+Iqdj4rVlVBSe99KqJgTduuN2sryQXvuzabOPZMVACcczmXHAszm4qqIlEXmjFmNVHEFON0wpSapt1tN48e3AshLJcrBPHO4V4yyB9ois9+Qv3LrLM+r1Hzr2p1duxBH9cfIy0wo4YQae/zyL5ueaLDUhVVm/+yx1spgNXaZpglXPaAt0qACnYth1XN+8N7vGXm3Vy0jufX0SYFe2xFvcTkMhkQGIpWrt4KAHPeA7PCRPNDe24A3YvDiMg4jtXBmKvYzSyEUFk36yhXMDE1Q0dAOOHU5xlNTDWKy8wxxm0cEaDKu0xvxEDNoGiM45xSq6N6qs7fZ0vmJM+cb7eDlPvs28xFO33f457FNOc8jiMi1r0pq1T/p9KRVZ/KOYdMHhkQ63CqXNjMbGA55ath/JNv/0lRTZp906pIhe4L2rGjAkdL23Fh4nG7PUqkqmDAjktM73zlK/+rf/9/ef/s/Hd+47fWV5eLrr26uqr5yopNOhgLxRAJQdbP7cWTFdjFd7/16Cf/zZ2uDA+X76ONs86bAvrrv/MvP3zxdLDiuqbCT+9wVCZXZXpGNREhcE0YYt5EeqJJd0NLEckoMDtGVU1pW4YXLy6fPrm6Wg8I1BHqtmQ3XEV1rVezSjmruWCSVsiTd2TLNjjvkLAUl1PWSgbHhIjAU+0KiJJvmqapG7BzDWYLjWuaUHJMwwBmQF5ThJz3IsvTpCUi1FkQFEuWGJMZEGHXgeMAABzQFFWtZEmxODBDF8c07Mb1ercdxphyFs3FUgaXtEhAakKzYERkh0QuRWYGg1IEwcZcSIzIOedKgc16NKXdNiFi3/V90yOgWTg5Pe2XHaEYqagWLeRC6MDvwHlMCcaxhFwWnpany6Y/Dc5/5Z2vlpxKKWZiUoVC9PLD7+QoiDoMl2bWtA0CeO8bHxZeiaInlxWb4INDQEUlIIEiSGRUtU8ICSd2B6xU8Hs5PzxQ4jYTVTxAec1rtB2bs9VLtFnS6MAMNKL5kwig5q6Zt8DAGEAB1GphO0wMYIf2nL08YqfwTE27MFT8A+6pBdCQAMEcBueCJ21a60pZlDykOI4aM4mW6o2IliKoiAoV/zbFOWUP/ZKqU2CmYCry8fNnWQogxpSLim+axWq1XK0WTbdo+2lRrvEYM0Ricnewfx32J760u88TnI5zMjkXnAUZbw9R2zFe6LgE/cg8PLKWb/d86oJ98yqw91gOvYKX7uTwl+ODeMuRm9iJWx/5QEhLJxUtqhvKYb/Vrf3g18Pr1uRqjYZSLf63g3Z9G3BrOyTWnG2Ul2kozY49izsctaN1/sZJDqDwiHjwluUlluRrx+D4fm93W2iq+52cisPr6oRQmPRMj4z7fflYNYaP7taO1oppobgus7g+ya171PFt3DqSoRp2+1d/Y+qhvWp+vTSk5xp0MDM1tEn/EXEvhl1KySXlrKLEBAbIqMWQp95Wm8oHERGZkmZTU0J0jMooSoSOiJkM6GTRr075rPP9wrW9R+KzRbm62l5ur0Q056GIATI674mBHCAnLUbKFQ5gpYjU0SIKjhiwRoAAgRRBRUoRVWUjAASq/iEEdk0Ii6ZZdJ0SZSIJwa3O/OqUuhaaHn0AR6RsB1Hn/agwFWW0fR7bvdzbh109h7r1gMophPDo0aOr9UXFoRGRY9put33fM/s9Bgzq0cViUVlfdRIMCbCHVPmmGccxm0qVPWmatu+rCY/7WaAqcdgt+7YavkDkmYoakvddL+iYOITGUIqIc/zee+/dv3+/aZo4boNzYCoiYBI8mV2rAB86b3rAo1hJaifsFiGgA937eGY6E/rj9SpdoUq415ywPZPy/tfJ30PEakDP3VvXGNwHDipurU4gVUXcaz2ZoRnitW7vbRvHjXZbfKcCIHAfwZyZeVUVEPIQCbENoYqKeO99E5AI3XS7dczMsLH9a1I6UJEnohhjrcNJkhWBTIuUmCIiGgEzm1rrA+xXxcoN07ZtKWU3DGIKiBeXFypat2YVNZGCWnKZXxwzVyRhHee73e5w59UDObU68Go/19cBAMxYnecaW5/rW6qvhYiMcDh9YO/oIlhKUff+z3x+xw4xf/zs2fsffQiECKg2pc5AFe1zKKZXkfo8Tdu+/fbbZ2fnv/ALv/D3/vbf2W7WDoHdlPk6tkUMUQqYU91+/KSTeOLdk4/eXX/0nvvq4zvcJcccVTbD7td/+1+uSzQmnY3C18sAEhEZmVnJJYJ9sKMd2nPLlAUZfOvZEahYLuu0u9rsLq/SOJpz1I3oNIXxgpnNt2aKJmy5RzxzfO79eQitd4gFcSLnqr7wfsZirYQvpRTRhpz3DTnXdZ0qQhazgmjDsGWHgIaW85jSMIzbbUqJiGpmuqabpl3TUETHMdY1sev6OtvBkJnBSMRSLsVELG93cbeLJZeiiTx58UV1NyZAbhrZbrVt5fzUAYJqyRXyiKRiOechptYFMBAAdLjbjTGmruu6rmubk8XpG23Ted+dnp51XTPGq6K7nJu0vUCN3uNiSUwrAB+6vj87WZ2tumUHRmAgIkjs/H62qIDJ4y/+GIhUluoXL15cXV1ud9u0iWBDgOF0tXjz8RvPL7d917SeQ/CNZ8c+xYREzjmb3jEZTZ4BO9IpEUliqjaBZu1Y8sL2MeYpwHDLIa3G2LU3clSLikcl+FCJcLBWhFayr1d875j0p3oyk0GGBAqKgKgAFWwFiDVL4xsGw6IiYByQBLmFtmcpuOjcMMjVdrfZRRljFi1GhmSKYE4NKlQxi4hptT+Qacjp2YsXxXSIMUvpFv3i/NR3bVFBxNVqtVwsarDktSbbJ22z9Ql3bjavuQ99H+34jHP0aA5ofbrz3dVe85F/gE0PUNrz/6/KY7zuzd+YYYeH5p7/NDf82bYb3ojdfugH1uzIkr4jk3NnwxoQLFJERE2tEo4oqIHpNQBd52I3MGQERkAgQqcsBo4dEhGglvjGg4dfuHfWoKYyiKEj5xdh4Zuz89Mhpe12u9kNuyHFOCgAECrQUCoqzDlH06InaqpE0PoOJoTv5K5PVKqiWZKjaomx9/5kuer7vmma1XJxsugXy9XZvTdOHjyktofg/aKhBgGMCtregsTjNBoAzpe4GYR/KdhRzcRSCpiUksdxbNtQJc6GYTcMQzXDci5t2yJK7eHqFccYT++f2t68m9dYMxO10PVZZUzRBW9milO4SxG0FDMrpRBzCE11rb33RVVUSy4xSVJwTVeklJydC0jEtChpfPr0qWPqGn84nIuUGbqMRHzLoueoItCnXbVI5WWlOTb/ym/N0NPaZruWiLwPFXJWZ/2hozJ3fl1/SpHa1TFnEWFUxYlc8zWX6LsCATdvuFQk5JwQmLeD7XpjosF5X5myEYyQHZNzagT7aXI9Xw58sznnIHu1HDHNJYspItZn986pGSO64OoLmQd2RQZeXV0h0cnydLPdpnHkCuXKpaQEasB8uITivugIj/FdLz8yHmG3cI7a4LFK/ey0xBjNrG8bAJhELfeXSCmpaUxlDr3NfniVyPzTP//T5xcvOPSBQyzCzApIgPh56KggopQiyG8+fuPHvva1+jB935+sFsuuC02oD1NrwvZfMiIVAxO5+viDIJkts6Zn73/v5Cs/A+hvu1bKmQL/yq/8OngCIyFQvGHj/eV3S8yWSy5lB/Zna+ux9AIYs4Fyw+yRiknJ6nFIMFKjbYtIKIYRqBSgslEDQI+l1XzuYRdYWmUkQOsgGziok6q+5D0EM4vBPmOZcxZDF0LbtsweRHIaSxlLKdvNVnIhcNtt2lxtxt0VEIQQVDTnrAi55JRSzomYZ6HfuWauJvjatg2hIXKgqAJJyjimUjIitosmq5SCBM75hp0r4nY78S41YSCiGHPKSUQMAJGdYy626E/rlBNRMCb0jtvV8vzR4zcfvf3Og3tvhNCIaGhdl0+240XK63WKVpJvgsPFogsGgYP3y9a3Hp31LoiYKtABo4iqmqoU2Q5rKsWH4Ff376/uP3YupRSHne2eXb14+s0/+y6aLvuu9W7RtavVomuCgpHj2hXHbxxKKVZnCJMBKE4lIUZAeIQznLcrIioqrzzESAVurX4jvi57Od7MkBjnPeDman4r6tLI9kPceLIUjQDUKoTMFM3qVg7IzB2RmYe28X1f2o77obka4nqIu1SGMceipsEMqnR0LaY30xpTXW+2u+025rjebrpFf/LgnuvbApZSQoCTk5PFcjlX0n9+bS7yftk+OGw3bNlP4EjcfUJ3wHlPrydidfcJ7+i313zkH2CTA2XM+pc5Dnf4sde/+TsYDnAPCHnZRfxBdY0d5LUAZmnZ6dDhnOX/doXnDm/jaLDxJ9nrpwiOaslFpKiqVXQrgCoYoIioqJoa7GPhYGk7IAAToqFH7F1gJFYiQN+0Dxbtgy5I2jGjhYDsPDpqaGPmhigiY8rLZQDklPMQYxZVUVMtkJEs51gk11A3o+245QMh12r8VbkJjwg07YnL5fLBgwenp6fL5fLs7LQJ3K9OlmePfH9WmIXRGqdOTbKraYH99Dx8lbU3qoV6Y/ofjV5C7zwR5ZyHYVguuq7rhmEYx9F7f7I62e222+226wKxlzEyM7OrG3rbdsvlMuUjAobZWFRVNTWzxWIBACGEQzlwACh7R4WZXdOUNIBZ27ZjKYF9zpKLqup2t9vGlA3vPXhMxH3XMi622+1mfVVKYXf9aHRYY3l7k72nUTMqzM3sqNxBJlH7cLbah2GY0zV7cRiAl0Q55hDJ/qVrKXlCzrNT1ZqVQUC6o+T0oL00U25d2EsR29/t7KgAACFeXV6aaNM0XK2XatkzO+eKgB2Avg4dlbqnTLCoPZuWmalM8fk5m1R/aJomhMC+AYCatQsh5Jyvrq5yzv1ysd5uY65yoGJqZAC1sJmoZjycc/Ukh95vLTupNS03trb5LRBRvbV629WD0n1Zy4zjqi+9Gp+zlzL7omoaQoAjRKVV+Z3Lq6vf+8Y3xhSb0DER1qwmQsWLfMaOChqwc2UcleSNR48eP3gIqpqLZ9f40LTN9Zu4gagGRFVU2a0vG7A4DMvl2fb5k5M4QtsaIAKgKVTUCxCaAZiWMqj+6q//+iClEAhea/Hgjcl1HBa5/hEJwBQwq5rAZSqd870SqYkKmLIQiZaSTTEVFWDyDoHUhAnJGTI+2zETBcAe0KRQVo+pQTBhDIZmCHskOFWtQjOkmDNDUCBgBvLIDYe+7fsQmnG9FjXUQlZKituYEd1uEzfrTc7RBecDmkERkahJShUGduxCaPp+UcMaTQht0wBAE0Lbtk0bvHfEbGhgE9jUeT45WY7bOKi1TXhw9mC56Jm1dQ6N15dbH1gEpSLpDJidcx4oqBlTjVZ5AAi+Wa1WDx88fuutL50+eLNfnXsffPBt66/WzwuZRTJ6DjgQe9d1DJ1zrQuBOnYtk2cTKSmLQcAgCjkXtWlJan3brU6ddyklJJ4o41xYnAa3CI8ev7nbbsz0xdMn63Ecy3C1S8zwxqMHXpERFGv5OlitGCErJZkyEaEgMFeu3qqBSFyTLoYTQNBgwpMQwJGjUhsRISHoAfTrYKzhhJDB+VezaXgeAivt2LhBgMNkywRHqUgTMjQDFSRArYcmCD2AikUDUDM1ROLADOCqOtew3bYNOtf2y/ZUcRfzi/Xu4uJqs4uXF1ENK9wLnCPHuZRYShF57/2/2I6bDEbMq9NTdgGAgue2aRGg7/qubZmvCx/x9ePn30+bF7uX7dQb7diq+AwclZdP+PLa9f2e83U+9vqP/Lm2a1x3NVjnv9uErJuja9V0mG/46CSfBcOBHeSyDh28H6AP94onnZGB1/McflD3eEck++XPvupng0kTebKrKmZlrsARmGj+zSp78IQrI5UTor5tTk9OTvqVZ8cGhMSIhjjIcO9k2Xkes6L32HQFzAF55E1M0yuuCTomh6FjDgbUaNGScs45TtKEoGYgJlGEAJiIkLxzbdcs+n65XHahvb9cmE40LG3XnZ2e3bt3/+Ts9N79e+SwXaxCf6bcFINKW29SRKRFd20ETyjPmxkz3VO1Hv5x/plg8ppijOv1WiWfnJw0TVOkhEBd19ZDbeuD95EohEA0yYGzd92iH8ecS9lHNemgVMNULZd8urpXbUpR9Qf4JFEFxKKCRJ4pxh1XsSkiAxOTXLKgkmsBULOYqIpmgjEnAFj0PapUyOdUF1kDbWgA85Zl+39HwML5ZnGPqZ7bdecY7E8GlU7OJiUxM7VJ6PMgDzMH7G8MbJ1RZ4AAMDmBe9q0mvQg/D7CZ685U3SOn+4jVvU+EXA37NSMvatFb7VriIgcE1T2iWuP6MB+YDGbNDEQgBgMFEDMuOKszCr+zBCLqlNFRAUDQiBEpixlvd5IKU3XjTFud7tJ5KQUNKB9iYF3brFaVq0hq+TEvJeDBIsx2T7NgsfVPNOrrBkIkcrZAIju0P3YpzFDCFWWvWtCdVqqAzOv2xVQgkSME5OeqKSUDen5xcWfffd7wC6pMlilsIPpFaO7IQSmR/Jht748PELrwjxkDUBKapw/bbuf/+s/+6hfoppTYzItOUcCsL7vSykmthuGs7MzVTVAxbBCsRcf7C5e9P0JBo+Wxvf+WL/ze/Cj/6MBm7OmTVcfY4u7JN/91vu//Zu/+rWf+tGf/um/9s3v/fmLtMsdFyFQk11Eg+C9OwpxHSbBsRJSV59R1cQA2RWuMi5hBzCQUSCAMElmMgG7JAWcAzft2FZPYGYF7XRRNhHa3qV8NWyJCsfSrEv0cGXl7HTFLjvHbRucR0IjRmTJBMNmmwq7cBrw9OT0UTRA169TLsVqvLzIpmF0hLtdurraXa6H9Xa9WLYCXjH6Is4TIjikxrsdJe+p75smuL5t2uDQ1MCWC1yeN6FhbqogCZKZ5uTZzlatPEsPl2f3w73V8uxseXa6Wp2dLMDKbtisxxcvLtbk0fmOUABGVculMDvDpMiOObSN43B2du/NN94+O73f9ffIewzYLlvnnIE13bJV++67H19t3MnJO4jExEzM7NkxERIzGaqpC43bzw3nOKVECOwYqLC3IiOSEZqaEJuAFDNzoZjB8hzRzhZnJedSck5JSnn3423jMDQxhNA0LjTOe+cDM1EItRjTMXkiBsASlTk0bUhlAAQDh0hoBEAmWHIBAPB8WF8AMO1vYAh6PY3wCO0FUvLL1nsN2O1r5OuQPARpGGiev1SXgOtDbEAKqoAmojqV6qEqO2IEYIcBSUSKKMCUMfdclJBQvUEHdNaER73brfxmm94LV5fr7bP1JmfNhYdig2osenl5cbl5ImTbKM3Jfe5PwYdcimY5WbRnjX+wWj08O8s5MiOh876ZNHDh1h1izkrNueNKlcjMOU6hQdEyh1tqm/P+ddE8OqMcpFAADt/QIUtyybleMqXkjxcHvLFJHb2I45uPCQAcknOEeFxAfbuDdDgYVA1vqbibvaCaN2DFnHMIgQkrVP36W4d0c6YlZxViZsdY5FZw1Mt2/8GueUTxzAfMELLfcadCcJsHbB3DplpucBbgscbQZE7sW5EjVvrDdowqOXopmhQmfYQ9H/++HdPcW+VSf/kUN27DrKaD5oJpAMBKfacHlaM1jAX7ePkdJ8QDtqGD/RDwxh3e7sofA7XgpdF38MlDm3gP4agGwWGKrurhXrsrR7wIR9cqJlUMtTKMgFYWKCGz1ghSyTEmLdk0mYIoKChA8owFLFoRSGiplBK3C8VHfftXf+yNL771Zt8vCDmwl6Il5jjEWMroOlPZadGmRUR2rnHOzEqRGMdhHHZxjKCjilkmcqmkcUzIrRoAOhcIJ3wNDcOAoP0CEZQUyIAMVov23/zpnzpdnjCAkwhmY87rITWrk5NHj5rTs+befVksw0mPoYEQQMGpMiAyEDbkGyhiqlKKmtY6FQPQaaEQQjM0KUnK5KVPYeNjxqpqvQGA9/7qajOOY9d1TROY3YMHD7/zne8i0uXl1aLlk+WSVNvWidF2HHnYLggEJLg+S0E157gYJNGcc7dclVJy0rzLzvFuO5RcsuXe9+M4xl1yTWuil5cvEJWaBjnshq1zSk149vxDIMwWiQJC2a53w3rDYl9556tXcVwul1eXF1LysmvRpCIlVCED0MS0iUQCqkzAbEQwUS+ZVJiVGZqagABqt2hFNZcqwDPln5kqSde27xeO3TAMORYkqoUepmDsQtMG5ur3qkxlD4vlSXVSq2+GzAJiZlKsWFFFZud9AEWtJEOAAAS1RAtJAQlrfHwuzMMbWZrDBfbwQHWEqiEOpg6r/1YLgvZRQdPdbvjg+dPsYJtix2SE3XKxWCwQEdRMxFSkpLJXj6iJlJxLd3KvXiIJmBn6JjScc1IokmLdDkChlIIAXdcF1xC6IpZLWa1WBXAcBgE0dmPVwTTTlIyIkUQkqzY+AMJQkvMNMZlazKlYFABmx46ZGNjPK4fBFJx1TdU9UkA2gCRqBkac1XLKaBlMzKxIUdEYY+X8rGWrIOpccM6VMuyVIiePBkkdcCCH6HzTplxC21/F4Z/+i197HlVCR0ClJGCuapvkGPATpYPvaAjg2LXOP7h372s/8iOe2UDdHrkoIs7xdrvtuo6ZF4vFOI5N08RYcrGTlsbn77p0mXVw7IGI0u7F9/74i3/1Z0VdjpmIkHEYtv/Jf/yffPzBu7t/tP2Rv/ITxu7Zk/e7tx5i5yIbEnTALdC2pMMylXlTseNIQD1o+3hhXb8rUdSNHVHHA/vg4LuKQJoRJRUDKQ5QiAuKFMmojQM1Q7UiRdShkpGoICgoQU5pzI4kFdIVtcT++W7ouu7ZxUeW1h7jSYuIWCrtWy45F0QqormUXMR5N0UVKgbDsfNsoI4r91KVqkQmdJ7ZOZgk+cAMHbN3bKAOoQ0+dN2D8wcP7j08OzldLnop43bbDk+2RL7W0hFj37dIHDOYAYFn4q7rTlan3jeLxbJtOuc8IrN3oWlyyUjYNM0wjv/6X38DER89ehMA5uK2mRFPihYzdxeQxl75r1Ly7EnZ0QgpUAhN6IHM0gWjlCHl9W7jA7dd0zS+bUPwLMa1uJ5QvTdmZ4pIpQiIRiQwLUYOgQEITABAAZFerpayCSh7NCZuEPvcFao5rGw5/jvNFi0C0bXdY1g9AQRAIPYGgqCmiqywZ/UxtQmiMQ9TR2SIjFoBXmZNcIStd65fdZvt+MHT53/x5NnTy10eFcBZ0TSkZCCA4IKxT2JNoKbtyjik3fjmF7/wxqNHy8ViO+xE9Zo67eXp9Xrt0J6rRX6f5CwH7cis3KezJ7L5cqu5/OnbjVCrHJjmrx3hvtlu++IrYpafrt1MIr18xe/zhDcMgk+fXfh+EgWve0KYpjHCvkv/0qvczP/cMs8/jwTjy7cx3/zRMlRjvfv2l93KK1LCCCZFRaEoZLECKPvMmiIUMxBDrTAVVRm9pLfu3f83vvLln/zCg67xhkTkgDmlspNiZIJCxloVb4HBwMQMTVUll8pumqRkE52MoFxEwCznkckH59h5A/PeEyMjIFjjpToqbACijtiRW7RdF7yzlGKClC00YbFq2obbQM4DOyBH7KZcRSkiQoZTIoDNhHSfx4DXG7Pzi5hToLXzQwjnZ2dmNfqudQdn5qvLq3v3z0SkPraIuOAB4MWLF13XAWKWUoM4ZsZMZjYMg5l577cpLpfondeyWV+uYQX37t1DwM1uawTOuaZr47AbhkFNfWgQbTvuimrwoem6GPO43ZQMZrhdr7UUx1hKSTnnODKYd4SqFQPSdh0jVkJ7k6wlIxgREGLRqq5oYOicJ3JagVGGFft0mP9U1RiTWfTOj8NQe8Z7VyFj3oEa7GKeA/DVSJgZz2509VzIbmaIfg8Gu/muTAGu+as+yVw8nl838ajzzzHFXYxQQReTc4tqAGYkaoaioIZqCMhEiMRghg7ZOZ2j/GZmVlSzqMJU7zeh90WqewNmUkoqhRyPKcYYK7hdbV/Wr3sAD+0TYrXiFECruUEIRIYgZmBKwGIKh/O/pnpqJKv+ff+gdUpc94BOEH1TqwD7atGllBrn66usya46br33zjUG4gzZEIHGFNG59W73r37/937rX/0OkIPK2lrveMKLACB89jUqJaai8KM/+qOPHj2GXJiZnGPnyBGY4l768KOPPvrlX/7lP/mTP7l///7/4H/4b/3YT/6kZ/jow++E/IJAKJwJgNP84r1vfyletV0Xx9iyU4CUUoyj8wEtffOPvomAXWje/+APTt/5QvPgxHXtwoeAnFFm3PAc3vj+HmQPQLy7sZptLxrw0QX0DpGKRSXFQOzszTcfnC4XNbbVtJ4d18FsZjlGy5aLVZf7vY+eCjebFHP6yC6ftpROF+x96z0UUGImx8zsMQBMElFTNJBgX/iy5wGkacutsRDvPJEHc1Iw5+rjZJgycYIkPvBi0d57eHJ6uura1gcqqlmTkigaYgHUpuF2seqTDENK0TabS1VzuQBA23ar1WqxXPR933W9c66KlSLiZrP5+te/vlwum6YBMNorms876Lzo3OmovO77qthc7z0x9ydntR5frYiUrCVFWY87MF0E553v+7ZtWSwRifMOwLSUohERCJmoILp94g0NAUqYw6ZH8VRClesg8o3Q9SdrzHxdwnhg+Fae+Jn1qHbjHK4gvBZdguMoESKaoaoqQSkKhjXg4YOMLz46XYXF6vHjxw8+frF794Nn7z15MVztdBiTYkbitiPncxbvpXWMBCRaqUs3m40hmJlvwqd85JldBPZb0ac84Y2aBzpgIPlvs336B7nRG3wsbDdXs6gq4Gfg3R1e6y4B1Nc9IRyxfn3aG/xsxsaNE85IkrnUAQCqmXjbgJnzUbXd0U2f65C7cfOq5fBQNfimkFD5vjvNAERKNThk3+ohRVAjLQCVnKVEL+OPffHRv/VXf/Ke9yvyq7AMXXc1DhfrzXqMm3HcDOOQYuOb6/WKyHsvuYhIzHkc0jjGlEXUClpRyDlbUTQjU4fUON803kDZMTOhMAIwARkhAyuYCglAEQQIvskpD7kk0bZfLM9Ou+XSt633nulakQP3AhFzMsQBgruGNb5mXx3CQWuJcE2E9n2fcwaYjqooEq1WK1VlppQSIOWcOSVkz8wvLi5jjM6HnJKq1nqbSk1aBbyZ+ezsDBFzzl3X1Vez2WxKKU3TCJgKeN/kMaaUQNURmkHJyuRUwbkwDllVF4sVkbu8vPytf/mbP/oTP35ydrrq+ufDbrvdNo1nQk9MTEVUDUiAGckAkRAmCKCaTIk5I7NCCEQcQkByMU9QIoDax9f0gKoQQphJ7WdvEJBcY85PSiPVSpxVJg+7ug7pedEzK3uP5VUv5fsd9MfteH4xHO8ps1O63W5TSk3TzF4WHIi9qF3v0bgvnVdVraNvf9/1SWvREe1FS+b5O/dG9V7qhruf9ToLmNjBOJzjF/OCNif95hFbp+ENQ3fu8Jt54z132fSxYnMdRyX7qvVgNaNSCYt3u904jvW2u65r29ZM0EyLFTElWA/j95589I9/8Re3Y8Q+TLdHNyvNP3tHpUI7f/av/4/rq2Ui9o6YkYmREaHOrn/yT/7JP/7H/7g+4X/xT/7JT/zUT/9v/73/2fL5x2/dO4Vho07yGDsHRcYXf/GnJz9ymhGQ3Ji2b7zx+G/+zf/5P/p//L88NTAOzrlhtzvrlvn9Z2Es4d6prGwTaCzXRWY3uvv121Fw8ZYzEOijljy5DyUncyNCC8jBLxp31tnJSbdcNABgYH4is5qQma4O4WIJBLlsxs1gw/c++mjYbb7Q4xceLM/OzpYnviFRCcQpFiyGMUXRhIjMbj9w6yKL814i+zW8zgp2ruqMi0iMQ4yjmiCCiJQU1aKBM8iKRSzFDFlpfXX57OLZbhyzxOA4tM55apomFfMubmmXcxjHWsSfASD40HX9arVanZ5K29ZJ9e677377299u27bvexGp6XHVKci6X1ymefsJ3s6NNr/lUoogYl2kkAERyIFKnc6miom8WJa4GUpouOtDx2iGkItKRkQiJRIiIdoXChvhgTABISFT5fWv7sMckTA8Jtj5ZHXmB/Eb5Gu4EAJAMZsj6RXToQqktWcBwcDUFJEOUUcusCmaqjIgTRBrMxWV+2cnMafdmFsHX3rj/P75yaP7p3/0zT+7fPaeiAph63smX0oukZJJQ3Z6snzjjUchhPV6fXp+dpvS8Cdun0nU/PAMsxlRrc/Ptfa/7rKvvI1PZrXe0RXz6epsuqMM9LWvBccJ40/7Zonw0DsR+PRuG3y2iYp5sPGBdN0UKbxLQvR1h+jn7agc3rzqKw594u0P4P/P3p/F3JZk54HYGiJiD2f4xzvkUDnUxCqOYpNq0kZbkLrVBmH5RWoIMOSW3QYEQo2WDevBgNpWAwb8SKDdL/KLrLZgQA82ZMhQC2pJNpsS24ZYpFgTWXMmKyvnvHn/6Qx7iGEtP8Q++9/n3KEub1VxaDNQKOT9zzl7x46IHbGGb30fhCQhSkwaoqR0W1engCmqRIWUNHqT+hfPj//0j33qMy+c1qA2lkRMQMmnm5v1ddN0KfUxhpSqgrPVBEAxxhBaAAghdD60fehDDDEFVSGMIr0PKmCRamccsSUgSCklzeqP0aPAcHQoiAIKpCTNtl2vNqiYJG67HticLk+OTs65qKgojCFi7rsuSydnt593oA9CZJyK6uynBJ8841NHhXZKPkTknLtu2xxMRMSMALhz585yuYwxBlRi471na5M2RTUzxjRNU9UYdmOdbSTZqYB3XVdXbuxV1txo2zbGWNW1K4pmuwUAYmtNCn3XdZ4IDTsu55vNWpIiGhXpe3/nzsmLLxxd3azeffft6rKa1zMEEZG+D9YyOyakGIQRACgrgmXIlYioJGNpkI5QQUQ2nKK0bSsKyAy3NrGqwqjC8fDhZXZQy7LUHVkIMwOSIMcklDUbYPBnAOCgRiXTN2fbI8boXD3SbBxOit7KcT3fWzB9vwj3VbYmfux2u0ViY1wIqe16YpMzKkkUkiByVE0KSQGJyFgyBlQYU0px5BrNvFibzWawqYgAIIQwEP4y5+Vkneu9zy5NWZZEtNlscql9SolVpofC9L+nzs+YZRprZqaPDLtlj/uM8wfRGdkp2Wc82yjPkr26ruu22+12u805n51XqcwmxthL8il1MX77re/+i3/1L9978KBcLFoYgu6AKPs54D0dlUNe8O/3Wo5tfGxQNUSvvPzy66++VjonGDHX6zACgjGc0W9N0+QYQF6IKcVv/84X//df/Y0///k7/8HPv2pgW2iw4I0rNqqX77xx/OrnCCplBiFJ6S//B3+pb7t/+M/+kTO2Cz0QaoguSfrwqm093T2G49qWBnbhxhjjI1z+wwLE3bYyHEtTjO9+QGU6Q0SYg/cpJQjh9SM3mx19+N77XbIWykBsHC+X5ckcipLLyhrDKQ2ZSucKVW2bLvSiibquW/u2215uxD3YtN/67nc//7nP/ty//RPHFSwcsGwYgwMrwEWTrAui6ogzF3BRFEgKkJVuKdN/ee9BEoEUlm1RGGMMG0kkMRPqaaZEzDDkmIIxEEOKsW/bbeEqAWDggAJs0BiMRJxfD7SWiTQ4Sp5TXat2MWjXdb7vkbBwrqqq+WKeyjKKrNfrb3/72wCQWcjGwP/BhjIuobG+DHY1xKM9ObUYbmfqkY1nTBMPx8zu3RAhlaweZtlatEiqKUnoY+oaatRsyRXsnDGER7NKB0rHzGwsO5wqcWKVgXfFGENoJW/RgFEFdzKRkH2VIXvJ8mS8/qPjMI4BstnBwjRjbvOuogpABlFz8WfuDCChKhKIRErMkAaBA6Zd5haJFAhUmRTI5BgPxF4AiLhEr6jJYOr7tVN47f6sNi8eL+Cf/+5bF9veAmQBVYMQ29YYnN85m9WzlNJ6vRaE+WLhsIQx/jQpctCDTXD6zJMycZ2IGMIjtSh7r56qThwNukXpjNUTj7vX5CIisr+z6fS7WR5ndJSm0zWdu1299HjxA33Gw0zsZNE+vgAXdmXY44DgDkg9XfkA+25wBhRP7OnbJbRfLDV9kIz9mz7Lk0dj/157aLrpaOgjF5leY2/cbj+Ag/akLh328CkOwiOArMf/bHp+jQObz3Xdexjd79W0Oujg+rfIH0SkJ87y3tjsa6rg3pCmx8c4D9q4VY5b4vSC43eecoXpLVQFRFA0w34QMKr6kGJSyf+dF+QYslFNKqjJEX7qhXsvnxzNOS2r6uIyXTy8EKSm66/XGy9JREGBgFabLehIWasZshJC8CF2PkQFshaz/mwUxaHe1yAag8ygElPMwk6YvJcklKwzzjCriqIo4GbbFmW7bXpFUdA798+Wp2f1fIHWorXWWCQOIaQ+BOjQObacA9u5DJzoFnq62wWGlw53Ohi7oR4OLphYC3mfBoQxdG2tFYnDG60CAsvl8uWXX37v/XfUkIh0XVfP58xMzIvFArItHmJRFLsUH+RAOyJmJrFsF2Z180yvFGNcr9dzPg4hiSRryLAL4CWptW5+Mo++K1wdQlivG5XOOUdER0dH9Wz+4PIjSdJ3TQ6uIyJAYSwwsGE0RMawYUzBxxBVIB/jMQkSDJRlIl3XEQ6xUaRMKjsMSB6KPKp3797dbDZddys+OJzaOlAdZq8sW73ZRocJvEVVidk5hzuNGtjlNJwrS+t00pII823eY3wdEHFfG/Vgn6cDC2T3qx1XEyIMojXD1TabLbJhVxbVPAH6pFFRQkwpFWjIALEzziRFImLnkAhVGRWIZEeZRYQpDVCIPAKjCHj2UjJu2TB3oJv1Ji/RvCCzH5vzOWVZwo7/Tffzz7nIB3Ynte4cxXH1jqOEO+zi+PfxPBod+K5tM11Y27bW2drWOeLsvYck2+02G/k5zTLhX0YFbEPc9P3levWFr375y1//OhdlF6OYW3VRpcEGyJmnpzkqT9nYxhzWwR/zofnTP/lThbXW2CiqAEqYwYzeB2tYRIwxP//zP/+rv/qrIlIURbv1DmMi+69+9y3ob/79n//suQX2LTGGJsj1h9CtkUsFSiLO2qos/+Jf+kt4Uv2Xf+/vFlVZIqbOg2gi7TZbZ6lkomKeQNu2zQMU4w4tMwT5diR3E+FVVd0PgB+a1Af/nV8kVnm9skdn8y+8k7boFBkBLdvFrJrXiQgQ1VoDkDLfNCGJQNuG9U27bfXBxeaq0QaKD64387v3/8Jf+B997nOfvV9GK1uODYtjVU1RERJoAkXEoijqui4KZ60FTCI7jVjA7JSDJGfIMFdVZa0typLsPAQVaREYkVOSGH0WRCdCQBWREGNI4oDYlvOlsWVpNsX1yhD0+dWNMaWYMEXcqb2KpG2znc3alFLO7MYYmcgZ8+u//utlzrPfiidmGMywa/Aku6eqNJmFcevffSrjqzJuOsN0HJI63F5QhiI/ybrNu5lFVY2SAFQABDhJbJs+rQMROkM3fLOYzWazWYoJKTJz1jYiAk19vnIuK5agwxpBGMi+iXDn9GbUHaCq0AgYewqWYMScDGW7eCsTiQNnmWgSBSWS3ekJkJKmtDNdFSMCCpExRmDPjFLFmP+AioYMIWffSpFTn4zlGm1MgajxvgPs75+ak5PX3b2XvvyNNz+8XLFx86oSha7tXTl/4d59Y0yMsSzLgchlYkzvG6b7Nux+5GaEB0zjkbeXG785jeLgXtw42+KjA7x/jcdcb2d/HFict70yZrob7I/itEv7z3WwH+57CKq3LvoTTec9Cx4xez67gwHzuh3C/I/UIRw84+6UfaKHcOBlPbLTP+GRYe/Wj+hyTHu1N3tPutdBtuKRZfJEv2Xvrs+Qbnr0glNH5baXj8RQAGAq8ih7RWp7vSekcZYRcHqMPKNfdeBm7A3ZI3175DLDGtvrP2VuzB0EZc9F3Ju9bG6LCKiAJFTBwQ8jNoUgdTG2PgSBTBM67HmZChIBABf17DOvvfbKvXuUNg8vHm51ftE1H3zwYL3dkrG2rBQgl6b06fZJYoxhV6ERVbY+gWVFUpAQU0xCbI0xBoEdZWywD8H7mDRppnBNmvoUbCqKIkfrwLhO9KbtVCTzp5/fe/n49JysBWJiQ4aJKRKrSApBjSFhImBFRiIiRRkz/AcgQ56AxGBIYw7zayYk+ALCyKMdOXq/RKiigmqtPT8/f/+Dd1NK8/m8aRoiKsuyD2Ekjd1ut8aYqqpSSt532U4dKW5FJNcnZMzP4NKI9l0gMkRMqGSorualK4yh0hVY1hmbdHFxqQpnZ+cpynw+VwAfm6JwzDaK9H0fY0RmUepjCjEVzOocWkZgY5xKEkmgqY8tG5Pdj2y7D1ETEWcM7EbJe9/3fcZ6AUBKaoyp6zr/ioiyhoYCbvsw7uf56UbBx7irYMzny61BDBBjZGNFpOt7W9UIlOPNpJoVGm+B03uH1N678ugLtdsihmJRVU2qjLh7c1B1sAABoGlbAVIyRT1LKfkoPooBilETeKulSAAEW1aAGEQgpXzTHaVTZmfuvffj/FJZ5D2BmUdCYcSBg0tV82w2TZO/liVEUTSHhgfigZ2lmq8TYxz3meyU7qLnDuDWtZ6Ow23Ka/eX8e/55yEEVTVsMttYHpOPHz5cr9dN0zBzpgIbywHapqPCvvvgo8XZ2e/+3pu/9bu/EyxHEGcLFc3hXkkJsv20m6/nhNxMsbzj/xMRiNZl8ZM//hOzegYi2TVUImHKac9xnf3CL/zbv/RLv/TP/tk/a9u2qitt1j3ZZBf/6tsfrHz6H/87P/uJ2anvmpIx9Tf95oKPz5OoMY4Im01zdnr+2md/bPnpT/irm/5irSGg5cgYJMrVStreFFAcLzIzdF3XT3qQ0fke0rXP9vjjsaGqi6r8/MmympdHBd94zpH1ks3M8rzkRVk46xAtERKqJN/4EEJar/3VVlab+PCm3Xrapnj3zt3/3p/9M69+9tMxdISCxAYNq8UYvfdt3/sYRBV39ORDlo0IYIB+7dJTCa0pnJvNZnVdO+fKorLlUdeHGKNI5/vofRANlpiZoY+gxGydq8tqNjs6XSyWxBwlzNZHRVm17VXf33RtzwyaIPgYQwpxSLZKkrbt1ut1CB4AYoix77/yO79jra3rOqYnCow8X3vkOH/C+Y1Z3VGyVQaqCgRKO/BUAIUcGGJ2bKyEAKiKvN1sm/WVMevZrKpnpbWZegIVpC7L/NYxs0rquzB0BtG6IgeOCSFm9LMSqAKK8O0B9hSDY/oSjef/7hmz5jQJKIIK3NbZA9HU1mGTww+CtzHLYTRuv4XARMY4gLxUbaMeVUmMk2AtbrehaVvUWLvyx146Pq4+/70HF7/7re999NFDNIWIzO7dPVoepRg3m5BVeEeixkd3uudsT7bLDj/5EcJqnnbrg248uh/+oXTjGX/11BjUk391mOV4nm788WpPhZntP/T+pvQcA/J9vZHHtjHeuXP1f5gToQjeeyBSQGNdVc/G41JFCpSgEi2jYessgfW9GObT+y8s+OT0/ifOXnjwjW99670PP4pdB8YwWyTjJ95ULuDOAJKkylx40U3fXG42kdm6QjN1oSRI1MjOVwdV0JQiIhpiYPYpQYxFXd+9e/fVV1+9c+dOURQnx8fXF1f1bHZydl7WMyCKojn8j0zWGFXNUh2aHVCirMcyzbcehJ91h5wZN71nGUbnHIAMPgYogBDZTI60WX08XyxyTFqAomISdc6VbECO1dcAAQAASURBVBBxtVrN53MRub6+Xi6XVVVlIE0MUJZluytJz+UrRGTYIGJV1kQUQ+/bBhXLsiYCETXEhK4qq9NTBMCyqCJH771IPDlaEiKxUWI+OSFjQj7EJLWbG1Tte+97JVDUJCmIJImRXNIBc5jGszW3JKIi1tqiKLI9nRNBMUbnytEIRETvfR7JpmkTmfl8Ya3NwJAsG0KPq1HJ85JVQUTAWrtcLn2IKSVQpEzVpToVhPmhN92BrPq+VxHKFdQpIWIIsfNhUZQpxK7pXDFkNaO1UxcCEa0ZBLt5p/mYkX60k/HAXbojl/4CgO/7tuty9mm73bZtWxSF7Gqi8nBN8yS4w+DlJNXIGgw7XyVnY0aT8pHHPNxSdKchY61drVZt22Z0T+5D3/e5V9mVmqZTEBEAN+ttavDeCy/+7ltv/te/9qsXm5Wt5yJqyjJ1Yeg20QHq+DkdlakeWf7LMChMp8cnn3jp5TFHhkTAhERAULoy+T6j5fre/+W//JcfPHjwhS98wQdhUwGVN9ttsTj7N++t7O+8+xf/1Otn2i1MWnXrdnU1PyWvGFIyhgjBB//NN96oTpa2dF3hVg8ukg8WmQQghs6H7Udwr3JVVY0gvyesNh2LJolI5Jkg1FOLZFlXL1eWjFladsIU2SCUbOdFsaxwPltoZs1Dx8SSwmbddp2/XnXvP2xuNv7hdQdcLs/OPv3Zz1aOm5vLO+cnfr1GSIKaueeDxL7vQww6qfnLyw8QsiYs7v6eJaVOT08Xy2VZloPT7GPfhb6PfRdyTjC76cyUaYHr+uTk9Pz8/MWj0zvzxRFbjjGWVUXG3Fyby8vYbBvfBVSIXqKPCGitRTCSsG2by4vL9b312WlcbzbvvPP25eXlq6++mmNCz7fAntRwP4/3JD5WUkCMCKI556IEOydUUT0kgUG7KCWARCKW2RA7RUFIXdtdXnwomsrSzuezxXJWVUXbtjkmYa3Ne2subSQizeX3E2LK3fvGCrcZlQNb5FH057gO0xPsDd1/fQ9Gg4gmOr9TlJ0eVNJmXFBWwXEziClETykoGLauNH3fNz62m8LKWaH3P//JyrovfOUbV5vO2JKILi+vICVX2KZp2Bq25jYpjPiDVzo/Gh5+0keWfoRH0UE7qM6fbim8r8/4pN3mR92NZ/zVc9/rB+/GH692sNimTvjBR7z/0R75wbMVDh3+6tlc8N2xNUpt7vX2B58UV5Yvv/zyYrH49Kc/PaYRUkoaE/X9xWr19kfvP/zww1JT38eLm+3Rsoyd1gvTNuujk9PXP/PZi75796MHoklSRNrbHWRXWGXKyhG//PInuXBYFD3iuu+2bR9jij5CTAUrCBCSdbYoC1X1wRtj6rKal3ZW13fv3Llz/15mEwWAEKJhNqasyooMhyi2MMzA1jAzGU7pVg1pnEpEzHSZ0zEc99JxO802JT5CcfukVhSF6iAOiDRk82azWVE4Xi67rjs+Pp7P5z5KStK0nfdeAcuy3Gw219fXs9ks2+5N0wysBoia5eeJELEoiowBa7uunJm6cs6Zte/attMYJJX1rCzLYrvaSuqYOUYlgu12m50cYnJkRJKqGDai6kMEZDaG0C6qSoLvusb3Xei70HUx+BB7iXF+XDBgCAGBiOwe7FbVhzBIqlsLE2D29fUqr/O+77OjUlXVcrlE4ptNk1LK7o1zTlWzyV6W5UheD5P8YW5Epu/7fCPZWeXZQHq+Nf/sLd+o7/skMl8sMi9CfpGzY+a9F1XpumwIXV1d4U6FPSeU8vfzg4QQMm1x27ZlWSbQ8VTNa88Y0/f9erM5Pj5OKtkUyR0Qkfl8nk2UbPLl749eyrgVjGseJlKb4ysweubjMz7WdcmOCsPARJe97pw2ybi+6+vrrCyZ/aJxc1MFZ11P+NY77/zf/uH/46brzGJpXCFJYi4f3TXZj7k8rx1JgJlnWwe3TxWQmBCPFsvSuRQiWDf4Khkcg+i91xjzylPVsir/+n/81z/5qU/943/8j5vWK0jtTONDubj/337jg1dOjv7ci6Xpb9DY1K4JJbuwhrnTEIN/74P3RdVbiCfVrH7BP7xJl+sSWAgCSur8zYOL0ztns7KKKvEJ5/Q0kj0ctgpT5MKtrQeomJUvNAko5DKteMI0Sx5SqFRLAEQtRErUypqyoLKqg08hBNIsBERtr9smbdu09tokBLb1fPHyyy+98vJLxhiSdHPxcaE+kY8UiFIusIghZHgoc/b8mJAIKWcgEYERCcAQVqU9Pp4fnSzruiTkrg/B+6Sr3oe27freKygzG8uusMaSYRJ1i/np6emd0/M7y+M71WyhiL3vg4RZ34XQN81qpRe+j4SYQkpRrbPMaBm8jyH0q9XlxcUDZ+2m8R9cX734iVdW11dVVest6lr3h/MxUwE6snwefm2o2RvSrrvs61OjhwSqoINg0hAky/rzkLUABEAADRlEjiH4EHyfqAmoSRVtMe/7drXpfISmC87xC/ePU4oxhr5DyKUjxqJhZJPr25kJczRHs8yEqipMGcA1C4gNmKIpGEN2uT0aUm8wohAlQzMAhnQ13mZRdCK/gqBAOlBSZ80oEUCFXOCCOCxrxKgKkoiybpTaisSD+ND5TkJkssvFeWfqtt2m2LH3qTGff/3l2Xz5jTff/vhqfVSVs6qU6KvlHFUJ0VmrU2nCHziqe+DRIe7GKk+kDiCqP2DT+CnbN+7BR3/k9dNP6sYz/ur57nVwu+frxh+v9pQsx9M/eu7b3f7j2YYUd2239vbSXM88L7enHGbM1+4vxhTVoq5mC2bKYa+MNdKYatBVs/3Ezevr6xvTdUvCjx5+qM5STG1340O8aW8e3FwFwWhMrxJSjFELZdqdr0Rcz6qz87N79+4fLY9RiZwDw53qHSIyltkWxhrkeV363qeYjGFjTQih67vCFfP5/HhelUVhnRUR65wC+ODrpQ19X3BVFlXn26RggcnsOJSQDPEQDMqEKAioQIC8byFNrbpxdsZY9XS+0pOdFjaGmBExpUE5C5FKV1p2ahwbbtr+GKiqq7hpvfe+D4DsqmoxXzJnukXXdZ3vQ1VVKiAom82mqipEzGIP2az3IfjeqwohpBids6YsJMVsHLemU4UQgkhCNDEm5tS2LTOVJYYQFAiIkI1qFmMUBWTDBFAUZeGcVHX0ffC9912MIaYGCFgwJUVUGheSKtGAdAfVsiiyng8AKGC2pGOMmbW26zoAWC6XIuKKIlu0ORKfxzzXzU/XsYjkLFyMMaYU+3azaVWlrGfVbGHZZKIhYk5Pizs/R/rxELhLu3p3FZ3Pl733Iaass55EN9smpVSWZdcHaXsAMMa4ojDWZl/XMDXbdc5CZKcu5yVyHHknMYBIVJSlAjx8+FBUmVlBu65br9eyI2xAxAwd0hhzEX+OkyJCRqTjoFomMQkhxp1yZa7XGCOkSHQwLtYaGGSihu0k/zClJJJiTBnTNY5JCKFpGlW1bGZVVZYVEA7ipCklUTDOWvtP//m/eOf993Fei2rbtq6sfFKbKyXwMYEvs4fy3+2/KSVQtdOi2EkSXBGiCoCQJJMQFZQwggSIAeHFe3fv37lTleVIgI0DTBDBEGZwYRIk6vpwcn73f/I//Q9/4qd/+p/8k3/0u//try7Qd2wfrhuB6v/9pbdfP/v8J2ali832/e+e/diK3KIADp0kW324uXz35v0OghosqTAOjsqymVcXH3zk284gl5cddTfzxbkwbvo+mtHUAXsAHtmNCiKC6GDaYa5zUBng/xhEPcdCegBUKgtXrbvrI17/O7PTBW1TMD+9XL7x7XdOj+/+xOnJz3/q3uIEjBOuHTiJm9Rum6ur9cVVv+3opis+XLW+OLYUzuz8zp3z+3dPVDpLTrYdEiZ/Uc+wnnNhSZAiMwk2V5sYoDo5c1Q5LCERJDDOet/4tiWRAvVo5ozls1N2pU9sk5rrjdxct6gNEatq74NoX1ZQz4r53LAxsXV9T85RUVi2LpEJZAXJs2I1n5+pQILYUvTXFx9tths0tKwWXd8zo9rkOHTYMcSrh9/uNh8gmntnd3XzAZXLwAKmCEiIaAmzlOqYi0DEae0BqJCqSsrQ0tttQXdljAAAkDTllzNTtOgkaHIrzJKGKyEA862yZ8ZCp5QIC1TNxBISU6ZWVEhJIDkDykmiimK9MDrf9N3Hl0303YOHF3fPT2azumCylgjEw3ZWVa6qFUmAUxLVBEO2SwUVWEDbLKVMhJI0DYShhMjBewQE3mm1GmZDUVMIicgo3g7OsHYZUDElGNF/efnu4iIJU0AVUUUV0oSYNzoFhNAP0ppEpAoaomAi5sJyRCXntIh912lKzMYSu7Ko5/O23WDTBsFte32/pvozL7751jtd99A0sx4cHs0tQWHZOWOsYWbNxvpeJUMGng31FURPjIzQBHdJqBMXNz/lOM0IwOO7nFVKdrX3++7No7I3uyZPrg2YBpb2s1JgeL8KatLh4HeSlNmN3itfUcg8v7mLkzU/vfiBBt9el9LO/3k0d6EwlejN/hxn2T4F3SOrfaLNSpOs1MEj44TvOMsCjP/kA4zfXqrwiaXkg7TgrvPTFlPIr/BYr/zYzuN0OwCYEvIetL0ePi6ZuQslqjEMALkueTpBg7Tz2MP4xHvlmG5uWWlx/OdUSOegOuQgbTL9x9TGkl0F1BArxeGfiJggara4s7TSdEPct6QPgHtTj4ZBMpwKRFSBRrMTwFgkUmtpsVz0fZ85ElU1BQGh0+XJ2f2XQMWAdOvVe++89b0P3m82m7lRUei933Tk6jsvuhMvMaSURQDbtheVWV2fnJzcvXf37t27xpim7broLZtZPT+ezWbzuXMuxhhCTDE6JosgqpyJj+zSWmOstWxUgjWWiZMCilprSF3f98EHZ52HUMxKY5iZh9pcUJFUz6tsHQokIiSmpLHtmzagq2Y7YpRcs6JKiQCBhQbBbAREY4yo5lrhpmnsBDsgUXQ3R4C47bZsuJzV69Uq+uSYNRBDcX78wu98++Pjk+PQhgcPV/fu31dFS64sK2Mto1NlFUwKqiKJYowifVEUGmNhrEGyxqpq8qH1ARHrstw222bDKLWzXFdLRLy6uiLrNl0rmqpZ6b3XlBJEJQkSyJIPwUghyFVd79ZYBBE2xve+QxN8YOayLKyrbFEXIilFFW3a1cCGEFPfdt12w4ynx8eM0HZirZ3NZzc317PSESIb3my2KYmxVVnNRg7i2VxU9ep6papkHQCklLquy65Xzro455htrr/N0hy5LAfZKFCvsI3RuUKNjQAMgikACCR0RQmICpRkkOwc1/z0fCHaY78YYVGqSoQ5y5FN4igSfXDOIYBo3Gy3RVFdXt10IXQPH9SzuXMVUZGxOWy4tAUR1lWRsRiz2SxzVUsSn4IHKF2xXq1C1zNzWRQGKYFWrtAkalgUnHPzo6OiLFer1c22KcpyVrr1pum6zvus+J7Kkp2zWfkmKMQoZBwgJiTDLJhtKCTDjp3m4jI0AgLMee9XytUgoEmMMdY5IooxxhC2IRq20fd1WapI5QoEAE0a4XK1Ylcujk+DwPFyGUK4Xm+2ne+64JRmtsCkoe+Z2ValMSZKMmXxcQdf+uJXvvzNN6r5yTb0aAiZoiowqiCKUCYTwtstEZ83o6IAgIqoiLszZAgVKNy7e5eJspLjmHLK4U+ZbJeEmBkDqqr60z/3b/2pT7/wq3fd+9/60jfffjfeXCcort79eH1xTiVbMuvLB8ZvlYvIVhUI9fLyYUgJQMeKbDHklrMl3t1c3XSb7cxT2Hbrjy9n5k7BRiUNAeV92PEQlxUFUJGEj7NtFId8CuQSKiBQlSQG9LSwZxZQE0E6sfaFurp3tHz9/PjOcraca1kCGZOP0iTJh7heb2620oljV8/m89T5F1+98+IL97a+UzYhKUQ1Bq0KCmBWHRcFBVSwbAtyhLkMhggpxSQSfOhDpurzfVUUs4VxjlVj3/dNEz9+eLNaRYuZKKyc1TMfFMAjApKyISVFEoIBh5vzVoAIxMaYNBBNmLIoq6ruex99H1Ik5MJZVxBi2XaubbumuZGUymLuu40BRVMYqVBlQpKrTw6CKw2HpwLksNPjA/MImXZ3lIyZWjNjnVxOjO3HP0DzJRUAgQAVFRBHPpzhf4PebJ5tBQAk48qatSjee//Nt9957+7d87vnp4XlqrDzqlT1m9ZX9WzoHiIZa4xVQkTCRKCAJIIJdim7HA7IlSQ5kIFEgiA7lSUVGVJlu/U3fcp8TOb/jQ42IgIQEIEAoAAiIElKozGdNXZ0kPvchQbHPiMxszGskWkAkygisrHGRFSMQAa4mi2Y8KOPH7brG6yWq5uronDndG73oMAEPzAF7UF7dNH86AL4zx0O/+PbfuiPvGcf/+GN5wHa7b+raZ8fvOVY3L4vM/wtszMRUde1uUIvS0BEEsMFKSIIghKIK6wa5KK4urhalEdlURZlqYyKKAQxJp+iJHl4dZXJVcuynM/nRNQ0TVKYL4+OC1dW5dHR0WKxyEgna0x2AEiSsyZXV89mswzWz0ura3owg5BrjLFruwz2zsFsIhy3/SeJAumkgUBKKVN2TXMmOXJBu1DICBXDnRLF04YXdylhREkpiKaYmPno6OjevRe37fbh5dVqs23aPg8vM8eQFJMmQSzm8xoARLYZPCYiurOkASCHtnO1hiE+Pj5CxBgHUYscuQ8xSgqAmrIFP4lH5BQT0JBvHwZBRTWDZVJM4gqLiL3vQqRcbEDMaPDO4n7ftc1m3W43IkLGAKTed0wUEra9L4p49+69q6ur09PTEOJyeXR5dU07bZDsgWTkUt/3IUZGto4zZAgARsR+SkO+Ks8yEV1cXMQYF4sFmz40HSArYHpyZOrxS/4Ha2nH1tV1nfe+cNWY3swPyDQgw/veZ461kaVtvMh2s0HEjDA66H12GJxzSJRZgI21VVVttlsmGgnBYMflFWNkJlVAGkKfiJSNnsxphcwjXAWJeML4MVGXBt3tnCISRci6rBXOxkTvu77XJDnvZ63LER8iSkkAMEbZbLbb7dbGJCm5whVF4YoiqSDhcr68vFl7tV/86ldMUTZtb0sXYeD5GOwiASVFPaw+fh5HBRUBMsIjjaEuysJeiudn52MmWnbk34+d5lyRtl6vHalZffyJGn7yJ1//sz/12hsXqzfeerDQs/uF2hjQlvHmqnnwFr+62EIBEOeM77/zvdAlzvYmgBD4GNVAdXZM87JYb+G9m+1q9fDhQ6gLs6wtgNDtrW/9pd1+lKNl9LgVnMeRFIwAK6FiFIDoZ4ovV7PzuorYouqd2eyTRycv3zn7zL27944W1TwWJfaBVWPwqe/6EIJoEk1sipJdLEpE8+nP/fh2u2JmLquIrBIUBrYDEYgxphC8D95HZlPaOU2K6VMKKfgQfU6BWmvreTVfOMOowCnharW+Wa19D0end4uiLIoCMcXECnnhWWNYOEOjVFREomhUTZntKgkTGURGZGfLup41TRtERKGqy9msnM1L6yCluFlvVquWyRSlWW/WhUBlayzTD7tEZcjOjbDL6erKqljjTvGU8CdN6vOegjPO38mFKAj27O4LzXbzzvsP3n73/cVicXZ69MK9O8dHx4U12HvCIaWDKSaJQkhEgKzgYNfn/IVcIwQAhqwSMRgiGicARCDJU97LMUtLBwqGCrQv2jKmaHMqOd/00SIKQgSiXPSmUVDzEShKbKxzhSgwGFm1fQr98XKhoh9+fLHdruezWVk4lRT6ztY1gACQPEdG/Y9Se0pVxn9X2w/9kQ88hCelaH7Uba+8BB+7tf9J+z4tm84ZXDSa0apKmOQ2xaad96Dp7PzO8fGJ7322sgAgxCiExBRlKNJ48ZVXxgTRZrNZr9dHR0fL5XK+WABTZises+75dswsvs+ryDlXlmWOx4cQVISZc1UDEbVt27Zthuznv8POoMdHSEqn7XapEMYYUSn/NtsG+QrMjJJ2oJfbQsRsyeiTzxHcbf5MFAB0V15ycnxy+eXL+XL+uc99brPZZMjQfD6fzWZd71fbbUhpPp+fnZ1llFeuYZjNZtvVKvc539raoQLbe39yfjaOnohYa3MhisTEAPkWuqvLHePI+cuwK1qYNlJyzmVfItc86I61tmkaBK1m81ldd13TbNcpxt4na7ksS0B8+PAhES0Wi/zbq6ur2Wy+7QLvl0PkmSLDXZ945wHmZZCHN8a4Xt/QjuDYOXfnzp31er1er/OiyjxXXdfllfBDWPfP0Iiorus8Jtl9mh7KU2hopmnNsKhMHjBeJIYwrPBH1o8xpijLnFfcbDZ5lDabTUZ5pZ0M3ehjy04EAnZGC+30fIYvTy6ePx3/Oc36jkDHGGNMsSzKDFTB7F4KZCIlay0hZdAXM2evMqXUNI33fjmb28IhYoixrGvryiipaRq29o1vvPnN73ynadtiVnlJO2sXECAdJtIncIbnmyTM6HcghQQAlJEboghq6JbBIIuNPPYKeWKGfSd14pvab46kBY7L+/XnTj9dKs1gy9RsglbgL9742guvff4KUoLEhh988F4MihbzXpkQEqMoqkWxhS1MTZW5mbUSEt5Sm+Xn1n1OW9RBHENFOTu7Qy4dFIB2TigpmgSkREqQUFOacXrFlae1jUmdynlZvrqcvTSv71euZAXVpBRC6vvUNN16s22aRkSM4ZDSZtterzefev0zy9PTLunxolZrYugkqbGMoqqZfD543zVN0zZdDGIqA7QrpxlJpiEXRtP5+RlQdjogBFlv+ouL6/Vqw1ypqCQNPgKmGIUNEiKTtYYiCqIAikhMktnKFQlIsY8phRSDpCSqQGSsdU4AEI+Xx/WsmM0KY0EhFkXJvOn7IJKabS9ouPImRX4K4uT5Ft6YkZ8Mwrimxrf06fbW1FF5SsQ3X388lsCUi7OZkvvoow/f//jq4c32YtO9eD+enRydFGAI2bBlNkyGCRENoRKpoo4dtoAMuqtgiymwMa5wmrOEhEqiqvCInu70nzjCSXePP+w4CgAMMGRamA1biDFCjCqSY4FjDGY6PrjjsbHGJhMgDUwjgmiMMdYiW4wSRdZNF32sSnd2vMCtNySWBFVSjG4vIvPHuB2sh/9/8FV+6I+8n1GBvQz2H+BwPmMV+5+0p7TMLz+bzXCHgMh/VxAawnoKoEVZgLqoEZhtXUUBdIW1loeSMqWUKEURwQhDSB7AVeXRybG11jpnjAkp5uxEtqJyoTAN8PpB8DtHpnVXW6yqZeFGLY4cbckcrNmfGR8En7ywp0kSAJQYGU229cfdcocVvK2/z2XfOSbrnAveP/bisGOpytu1MYZx8Cuy47fdbufzeRZFybZsCEFBl8vlxdXV9fW1tTannk5OTvq+v7y8XNT1eAiOqaRsTd7c3IwlK13XjY6lsTZfmnekyWOkDyclNzolYxFRVecsom63m5RiWR7lEoYQPIDaLIqAiGRcURq2bb9tNltlI4CE9Oprr6836673IlIRs7EffvihreYZDzFa9tmSDilmFYSRohd2r3AGTY35iowByzbx5dX15bpfHh2XZTmbzaqq+sHX/LO33P88cSMdK0w0OvOiretZ5mgeOVfGK8xms67rMsJtmmkBgLQj48pVOkVR5Aev61pF8tTndyG7JXmufQjjgQ47IeBhNidh47QvkTlFrg6RiFxSElNMEUcVYxFImgmsDVJRFnndMvM0U1SUBRBmk4aIgiRJmOvHLi4ufv3Xf71t26zfkJnQFQczG0QGgPQjOS+zjyDOxb4whHj3P9sr1EsDmAaRVJMzHEKwgASYR011oHMeAw8AYJ3LGpZ5THMVkbUWUpJmg31P0GLoTOqPeB67mFh6VDVciq7e/s691UN7VHtNwnq9uo4xCiYlEQAhSABC2qegAMQwP1tUs4JiQGcTZ+FuSKiqahTHahxNA+sBiKKqJtkRVSPkHOiQA0cANoqkSIoiYJlt171Wns0ooXEUaWHwteP5aUlLC44kEcSoXeebbds0Td/3XdeGIKrOh65pt4vze3fvnW/bNhJZdtVinrwFQo59128LY0QwRd/3fdf2fe9T4hjEVSa/2JRUdzR/zjlVmZWzkIvu+9T5cHmx+vjBxWbtyxIuLq6rqj4+PlKIKYorLZElYiLDpjcmSyCO8qlJJakKImUZJmaHSMxuVi/ZegFdLJZFYYuCkVIuffB96Pt+s1mFyOxDflEBAXFwnhQ02/zjgTE5OQaM0ngIiYhIysxUjxpSY+RgGhU4MMEPOLV0KA5hREy3qX7NYCrdAcZwJ9uuEyqYvO8ownbdoKte/MTrV9dX773/wUffeuvipn3x/t17C7usy+ViXjjLqIbQOQtMqJo0ELFgiqLJB2vtgF9XkAQIMeREPALmup3c2wlL11gMN4AodxUFsmMJ2z01ERtRARUySISSH5lIokjoYKrftBsoBCBjUk7yIBCS4nBZQ5xhrEkUIM3rCpHWTUsxzksDbKOmdr06Pjm1TDutGyK8FbsdJm43U4/sKPvTergPTfGZk5qEHXvHdBk8oT3xo0d2tid/8ckfPpEa+5EOP+vV9fEfHQiYHHxtb6CmhT0H197XNpl+RBPF2/x6TX510OW9Kp1pD/fv9cSRmQYOHwk0DDlAnSzU3FIa1qSIHFxb9hVRpoVDuFej8hRA2u2brgeQAxzIIca94knPNR0YUYE0eTrd/0j3KuCno/HEa4+v7VDwujfLTxW3+X23THE8SBbibc52DNCOe6m1PD62pBRiSAJIaNgaa5EoAuzQOHkjJ1aFnUAUIs7KkphyGNUyYxqyzTFGQiJLA8OYKu24tqy1Y1xfVUHVMI0EStn+ztW91lqYDtQj6KyxXHtIHQxfQEDBCRnxOAKIqLvUynRqxrjYdFMaYlsASGRp8ListRIjJB1vd35+/rVvfI12WiKZarZpmrKqkeje3XtZCSSHq0WkruvT09PNzU2++MAktuuDc+5ms86DAADZ6B86Bpprlvq+z6btND2SBzlXY3ddhzsqOQBwjr3v+74lIkRBUhXJlXF9HzOtU4aIpxQjAAcQgD4IopKJRTnvfZ9UP7q4tMYsT85ziXnGO2QbN/t7zrnep/FYH43+vAYABl7dXKaS7f6qqvTySnaLJJMgj75ZHjEcpW92VYK79kRB1ce+QpRdtJQGMROA3JnM7gUwVLnkmRqXwSA1lhU8+z6/QUkE93c/nMDhhtsxSUr5Fmn3H9ldGXubHZXsJsGO4wsnamzEgxM4TvH0iaYMt2nCnppdnjwMDkGSdKGLMYKCxhR7H7xX1QRoSpMvnld7zu/lxdz3vvceQqgXcyAUVVsWiPjlL3/l27/3pjJa52KKzKwpEgAmUUTOiHbNMWdV1cF8BDB7Z9HuUTBP6h5nwu1joqJGABhoiFRUVSwipnR6fPLCvfs5xuC9z+NbVdXR0dH19fV2u82u3ujA5GElBN+3qiKKSAgqKUVjjIKIATSEvbd9e/3Gt5Y/90IgbEK63G6CRpCkKgIgClElgAIhMAHiNQQqEAonChGSIkaVoKKqC+Bd+YcMgP7d6kwhZs8YKJcly66wHgWIFAUQhVTBGlPG+JIzRrrIqKol6v2TuiyBuFNwKUHXyWbTb9bbpulyhIYN+CAAOquL2bzw7erquijmx7YoFGWxqIyVj958F32bqkLVhF3zPoSATdMBO1UElCTMrMREbBCLfH4RsUrwQZomNo33Poqk3nfRJlBythQN1uJ8ZgyTSgbgsXHquxSjz8g0kSQaRSXbsYWrZvVM/NYyVZlCTaQqaufYWBH1SJGIODvwEglNtrZz0OSWKUIlxjR6rfuvTa5gun17d6sUxh1z/OYt1mmf1oZoL5GyjwpLIkg7/eYY0sTCGzeWvPsw7MypcYmOHS6KIsMpT87ugHHf+97bb3zv3Q8fXLxwWt87PX3x/r3lsq6cqQoLrKKikqxltYiIEmMKQWIcFLKImBgBQTSFKKDIkv8OohomoEpUJYHBXQF2LLvcyHjg4eBes1JUJGZGQkhCSkKEHCHsvgIAOrAc5z8RUVSNMUoS2D1sjvwFiQWR915FVKl0rGraJoAhNLbxsWvW7eammM2oKFBUODsrnE/qwfKdjHJKj9ltHm0HjsoeC98uxz3WQz92bcBjjOy9O0y+tpcF2rcXD32rZ2wHmoxP/NrzfbRvLu/5FU9Dae+Z5tPL31aLAhyc5s/YDT3s1JM6+DTNRNzDSxw6MOO35XHwgElIePKrJ4/GI2f2bUhieuOhsgtGGY0nXW+v/iFp0lziNYQeJgMlg/n7uNX7xDYelPlJQ7wNf+J+HfAP3hARQEWF8DYJgDtO1fE7RLSjlkAAFFBCi7mcBAEMDemJvJvlRyZABbIcQ8zkRVy47L1IkrSTJB/iRGMgMaWUUu3sWCEzUgPLjh9piP7utOey1BUzR0njuB2wKUynIHs4u68hDlHvW774/BPdiVoMjjRhXmBTCv5xHY4uFk/uaK2VEEVjfgomWh4tcxAzPx0AxBi32+1sHqJiFHnhhRdOTk7yTfu+b5pmvV5bohjjyckJM2dlldlsluFDVVXl7mXR9zxKxhgm9DHlR87jMz4UAKgOhmE223BXGYKIoimJNxaNYUAR2ZGXMNAQymcRkUwfbYtqbpPEvt2KqiAxsXGlhmBMSqpt1y+Xyyy1kZ3J7E0ZY3wIRVHmGcqsxKOvwsxZSbDv+5ubm+12u1gsYowfffTRRw8+Bjsb8gwTyubsV4jI7Yu5v7Pv/2v/TXzcBrizD9CgGf+iql3XdV1X11XaLdcMksx2S/bHcCeTMpr1cJsqTHmmxi7togA2v/bZ1cyKCLBDi+SW82ayoybKof+8Gof3KA7KmNlHekpYhGi6o4rfccMoKBns2t57n0JEBQlhB0waLpKdk7x68wKOMSFoFEkqM6bZfG7LAgjX6/UXv/KlPgSwRkAzvVOuIctidwScK4UBFHZ7cqaveF7BR0BQVBQFZGuC70o287L8hZ/92c985lPvvvvum2++eXFxsVwuX3/99U9+8pPX19d5VjL/WvY7J2+4Jr9BlF6E0Cg7VSIAIRSgCJ4JT1x59cY373zuZ/z87vvb9oPVjWAYC64zt6CBDNMnRfQMCGAESAFFo6SoEkEENCXAJGPo7sCiJSIlVcKMChtbypsnICkAUoS4rNwZEaVtmzyLsQXMa+ZSwQQv2jbatOHmqlmvNu2mUdGyrARSn3pr2ZaV99t+c1W5anFy4pwRCX3TrR9+ePPw/bPj4d6ief+NXRf6JiaPQUxRcpISsCjLgfgkb/saIEQR0eCl2fq+i84WKpQE5/PF2dn5yckJEhgrRSlJmyQdhFQaxyHpEBTzKQaRCGABVJIiEhtXFLV3VSJkRjSMxJiXGfgQQt/3fd+llKzj2axK0ZnCWWsy+c9uK3xqPPKwaXZo8fuEzPfaAR3QU9o0b/NoTubga7t428hRRgBgjb1z5x6x/frXv/7dd97rmuOrVbfu4wt37xwt6lllZ2VZWCQA0w0p/rwBCaSQhUudy8zDu1shIUpMbNASK9yuPZGkgoii2VcxIvuhvkmPGUhBBIiRCDWBgmbxUGYY7a39YYrx9pxmJkTNVCDZJcMhj5w5cyxBYk2WE0T0USF537fRd0YWIpJPPHqmSXjONm7TBwbrH532fL7N87UDgqmn1GU9pY07ITw1rn/wXM839tPrP/UKzzqKo2n4+/jNH14bB3kAGjz5m095ltEmgOxSPKtM8fM0mjTYS4jl8B2AguwoUAkJyQBiD2Fn3QMS5rDg4How54IhtoaYiHlwDnUXQ51YbNNHph0kbOzYbi0NTkVe/CMMhoiipJ2HqfTkGpXplgKIJDuojOpBLOzpA/WkdTgyF2dskE5EJF984cXz8/O33367qqrFYnF6esrM2Uayrox9771frVajy5StptX1tXNuNpvlfTunF46Pj7PDM345G1pd1zGzKYsYo6Q4dnV68OWTLiszHjyX9z0iFEWuUOJpfYWhAVwUkwQRQGZT2MLuvLhUVBUzp64jY+ZHR977ruvats1QPe89G2bmwU8rHCIbZ/M0ZU62bAMYYzabTQ5wZ5zOZrPZbDYiYo0N8GztcP96nh8dfFQUxeXl5c3NzfL4GNjSrtQzE3lnH6Pv+8xFnDHktJ/Z24vH7f6bma2xyJnnTfJfMqYRAEQkOzbWWt3BHbOvrqq4f/1xYeuTpckefa7b9UZkje0QQwgxBINMo2WitzGjwRlmDiHEGPu+q5wLKSKTqDZ9Z0GKunJVOVvMFT8CyCRsu05OQ17Tzk/+97w1KoqqCEpKgswG7fF8/gs//VO/9Of//fls/l/9V//0H/yDf5DdkqIoXnvttV/6pV/6c3/uz5Vl6ZzbbrfjKO86JNqvGUJIiozMVhMIKUBSihGjosMEcHVx8+a3zE+cbiJc9j5RnAaTGHLmKPsZGEAAgBRYBjcGgQBAsg8y2Xan756klJFqmKVKcHCFFMFLsiJCCRKqwShpOa+OCiPSSQ51s5ATrFSN9Oq3jd9cdxcX6816E7umLsuiLEp0c7AYNQlurj8OVRH6RdesqSyU0sfvvnnz9pt3a8tcEIFCEpEUYwiha/vNRnrWBFbVOmdSMkTOWmsdAqi1ttt0iJii+l7ypo3IRcHWVednZy+99NLp6am1RCaFuNo0USAwkbWWPaiGmEIIPkYvknLpUeFKiBGND0REDGSIlMgiMwiqRB/9ttmE2IgkZpzPZ3VNEkvFAtmEEDAEMgMkA/cW59OaKowBg2e3vQ4232cvph9/pbpXEplfwhylM8yQBDIsAjGG1Mc0q6vPfe5zxpXvvff+xbp5eLN+eL06PZov6vL8eHm8mJXWHtWFMXKQyFZVa21GZOYbMjEqSIxEZNimySub95rhCogppV0VyiEobrzLeBRl70hBjbU51ZseERSKYccfgpiZkymHi3b5hF3ARg2TI7BEpYt+3TtCJTSU5zeKKEgSQOIfof+AO57WvJ/iI4iOP/R2cCT8SL0pBX1qFuWZ2siv8OiK2rvXgfqheZ6RPwBkPuO9nrJv8L7U5nN06Q+y4b4+Iz1ZrjQ9WU8zPRU+98NteUsZTfnJ9CmkAKCCpIOwbt6kDDKyKGZaRYUBTieaUlLRkHzaFaKM4zB4GinBLmtxYFRl2E92VMYM7ZASSYP1NjoqYwm+4lBxnvfMJz3j3paiAiKotzqPzzhQT1mHOa4/Hk8ppSwDggDM/BM/8RPf+973mqbJlncOOvoY6/lRPZ9ba4+Pj51zWUcvU6XdOz/Plnq2idfr9YMHD7quq+s6pjiifbL5mOtbGGG5XPq+y3odj84yAJRl6b0/eOIYo7VmzA9M54UtA2JM0vuQFMiQMgERMxdFmaLP7mKetbFkQmJs2xYRi6Jg4pze6bputpgjGkTs+369XgNATpJkdyuLpsDOPTg6Ojo7O/vqV7+K9KyyXQdbCj+bUvD0Vwgw/U1eM9fX113Xua4/Xp5kErNx3LIgY/ZYdF/OdWxZRma4PuJYl2WsYWvHAc+/TSmNGZXxJ6NvP9SWTDZYY0xGjs3n8+zpTZ9ruranIzPQSuWJ25UwERFqZjMeXkDSIVGTXzeY7O2atSmDhwA367UQ3p3dIyJRfeW11/TrbyrAweGRfZUk6cDsuX2Wx0zO920Dg2uWP6TQtccz97lXX/mlf/fPf+qTn2nb/jd/8zcNEyEwYUrpjTfe+Pt//+//2q/92n/yN/7GK6++mutvDq6HoWVISQKBMYSaEoIiJFRBxEjUbZtlObt485v3P/0zCqVHENIx6ZHFTxCRABkQgFglb5QsYIiQyIAwiIhaZJAhVJ7d3Nv5E1EilKFShRiH2DYqgKImEhBAIFSJc2dqwxLFugrUKIJq8kFXQSWkq8vt6qLZNHG9aTQFV9YWmK2Zm0q7sNm2pTXNapXCB0W9JMMXlx9ff/i9Kvalc4S6q1YQEZEo0Ye+DYmhrDHrhDAjGzKGbUYWCfatz0iiGBMRGTYiWjh3fHJ0dHx8dn7n5OTEFU6gu7oOxA4gOMfEgOgBRLKUo+yqAAhsVabUp4QxqTGOCweQQdbU+zalvu226/UG0JfOWmuoZEKWNO8j9Qli37MJnBUPVRQEYMcWibns+jYhto/Ggcxf/th3+4mr8pnPbEKUiQMwQrwAAGD0EXLtimT7nsjCwJtMCAggVeGQrQ/h0598/epmu1qvHt5sgU0fYjMv+5RWXVsw3V/O51U5q2fGUuEKIoo+MBGIZsAEaHb6ERBUkkpiciKaZdEUgTN6deeo9BOsCwDsCbhm3mbKHM4Zr65IrApIhgBSElXUIWmLCog6JhcBAIlwLJTJ6dgsz5ABvgYxqCKIYT7lAnDTBE0hpOgh4yTz7vcjdlRgF5PWHzZVww+rTc+AH6kdeWBLPd+9dH9FPd1/eI7rT9tBD590wYNz9CmOyhjSmwbj/8i2afD+6YP5lE+NeSZn7/fbNdhjwlDIlPy7TRJxx4q++7bi8A1QjClF0azzxMgZb0Mw1sJlhjAAkT4mASFiyvBUhZ2zIpqx+8MxfpsnwqyZmAOIE8sMEJkopnib98bBLM7/X5gil0McxLAOn3wyKZkjHkSy77W3uT51pA/W4bQNRgUiIbK1hdyu7SDx7p27d8/vXlxeZAzYe++9d3JyenR8rADb7fb8/DwH7LLVtF6vLy4uXvvEJ+7evZtpr3KSIRflqyoyqkr0Paj0vrfGLhYLUWm3TfI+xQB4KxI/CjbkkJa1tm3bg6i2agJgkeR9v8OM6TCxRIAoKcWYMmu+JkmQJAkSA7IoSlLiXBaQALkoql62hlhVu753qkhkrF0sl03bWkeGUHeigaOWJQAgQkqSp5KZu7bP0dsQIhg7rrX9jeJwq3m+l2USTwcFwJ34dIxxvV5fXV3VdV1XVV3XzhW5hCaze+UhVVXvw2hmHCCSea/AXWKSAU7Hxhjbey8AhOhDUN+HGK1zzBRTSiIpiYLGEFW1KEtmNtZOHXJkmi3mtu/X601ZVdbeZmKz8Xt7a5nWxDIhGmOzNhoAYKbVYTbEuOOXQgU2hmlgwVaAEAfGCzYWBpeyqqqa2RRlpQA+pFdee13HmdntN0Ni9ACsi9nsGMQmDaS9wPMeQHsauZkcAQhKrk0JVS1Edl3/mRP7771y9jOvfSYsX3/z3W89vHooqWMmQxwkhZDW6/TGd775v/1P/9Nf/uVf/sVf/EVVrcuy6zoFsMwSw+pqlQATwILI9m3wXgEjokSDsvDUY9FAbOPH8eobvzn79E+n2Aa04COBCEpCVUOIhArGEys5Gh4naRZwUcBcyIfrZovDXoaCNMXNI5hhC1aFGFUICJmIFGbSzUNSMDfWefVHfvX67CSyn9lT4CKBFWIbjRFete31zfr6Zv3xw6uYTFRYN+E6dHfvnd45v3NUlMXNDYSPie51XS99c/3Wmx93396s16VJixM2aX10dK8sGUTEB4gqUcrCpQqXs+XsaDFflMfHdVmjc8m5UBRFSsEHrxSDNF3Yeu0AcD4zMbrQS+2K45Oj2XJxdH7PJ+i7rdg+6CZPa5LeGSwLNdpCaCEIKhOXYKDTICVGz6aaxRjb7YasKWezpJFx0282SUNKUVKoHdelLZwiJGPNtoFtqwIa220IoZxXZEkkGixSjCkGYzgPMhIyMRGGkHJ2fgRcBd8DgGGa1ijkE233MrOPfjylDvapvUJKZiYSEWHKx4Sq5vhd3/eaomGOIiEGzGY2KSOFEDQFZxAAQCPbUhUkJVUgAAlBfChQbWF/7md/9rd++998+NH7aMmjrDVsLdeohqERf+zrom0XdVla6xDnVRVjf3HRLeoTAQIQRGXHxhkilOh9tzG2Ih5o8AkUJfvtCkiFc3lFJxVVTTA4eYoQutYQZwD0Lo4Ixhg0JrYCwMTGoMAuo5gbJwMQAY3hCJooS6KJgIod1PfSLdaWiIuqAJC2Lc5O1n2IjA7BEhIBEAlgSim7eYiY46WTTWUSFNivANlPDBwclgego1t+lRgnZDv51X3cNZ5aRPHE8ysj9XkntKf7pRHTn+3JvT1FV2G/H08JcU1ddN4pmY5wlOklp6b5Pop1z2aaij/ivj2fxb4kiaQhgi47Rsscv8z1tdbaPZKAp/Cx4tSShv3n2uPBnH40FQM9sCyzXXUQ0M2tC7vnQspBu1x7yszTk/gQF6pPXBzTGySZzPk+UutgRane3ouGTQRUk+q+8GgWYQUwSDDoJu8+0b1KePNkZvcYnpivQ9LpR3trA0l3tW37w4swMMcAAIhETUE1EhgiCilxLj8wFhHTrosK0AUhIhEN3gOiNY6ICIFAcOCgQUSQmEQECPvg1+u1dY4NF2wNqAQ/TigpWMIcOyciBUghAMC8Kuu6NjtCoXxqEJF1DhEliSJsmybGOFvMMzqIcokpDoVD+akzK9Eo0AGcy5oz5BWNswYxxgghSPRJGVVAImqCZHBMK7FJqgAZBnwLDUdQlPy+jEuXNpuu68JisdBImZlAAJwttz72wTtrQ/CFLaDAz336c1/80pckwfXNRlWTYlnPT49Pjo6O6rpqmm1Os9R1Za3x3re+N94dnZ4sjo+aprm6ukqSFsdHKkmSR9XQN87OZ4W9uLhY31y+8MILZWkDkapLKYkoDnFMSZJEkiNyxmybRlQzbZSxlo2JIViqQdVyYchl25iZjDHEJlOIxhQVxVpnWEWDAXHWhUgqnLFAmd8sn9cAQMwImJJ432+7zieYz23be0149dHH8/ncOVe6ioBTSs2mveyuQvCLxZyZnSu9jwlFBS4uLs9O7n3w0QNbzV1RIhkFDFFEozEaEzBLPZ+NC2CcxCEpMXnRJzBCAADY2zcmbwoqYmzb3hgDil3oBfGd9z8oy9nJ6bkhMoxgOWcfrCEACL4DhKquu76vZpWq5iyEddYNMsmubVtjTJ4OBVARYwxZJ4yz5XHbtcYYbRrf98XMVvMZIW222zZ2XDIAdL0XUQIAGiglhvMRySfpfCcqXBQqOlssM15rLEkaH1O71hhDhDEOBfGIWJZFDDEED4DGWGutNSbvonlrEVRBEsNErIDABjTNF0fX1287gMJVhatCkNmiXq19UVV9NMujexXbjKckkaCSZDc1hDzdYlUVRAEkJXhuwUcFwFxEQnA2n332hfO5tOn6gS/unpyef/JTn/3CRx9VhvsQiAwzE6qqXF9f/8qv/Mpf/It/8a/8lb+yXq9HwjWHqAKQ62ZUCdAyK2RZP6OiWfJQMWls1x9+d/byq+cFP/Bq0WKO+2KKIElREYSUVMTHMQQyviR7oyAiA82L7j/ZLg+VUhQhIiECArAou6ofiKGMcYaYBCIa4kLJAFKK0sewvtleXa1X226z7S/XN1zUvYd756f3X/n06ckpKSCXCTheXqtos7r56OptCGSIqCRnbFVYiVGSRYWUIEaVhGVRmyUulmend86q2tRza120hZIxgBgTeB9Xm822bX30qgmQEMgwgYWisNnVTpqJhw2SJVNo6kWEOAunq0qEFDWJJpWUBFVIksSURBGtK1QBCck4VUWJbISNKmgIofNYlFASG6YYWxUCIEmIjIyOFFCVyRKgICBqTliJKu50GXNyXHftSStvPL9zqCzjT8aQ2PSbj8ZWh+ggQJpcP6+NEeHgvR+iifs0dwCgWStoEnfMfEAAOKurT37yk73vrldXfeja0CXCY4JZWdxsOxFw1LdtczyfzauSekrJAGBcrTgXGVnWqEkiEBJltiJLme8hM5aMqGJE2RFjKGZBo8FLySzbSQ+KknedRwQmxYH9Zi9YjUTEubQFQUdTTSfG6KODWVinYCJQMoU1Zpcek/30+A+//fBCyD/M9gPG6uCpAT/dbz/0bjz2XuOMy4T15Ae8+Pe99dN79ewp0z9pv8827mm49zcEyvQeg3D13gS5ohyISq3LoJexafAAt6jEEEJGLmUQFMHgQOB+mmIaZ0KAvCnbHcnSQfI0L4kktwmTvDhwv+XNczz9ZcJBOr0YTMIf42PqyEGnWSQOUFR3IZjpG6EHEd6dK5izNDy9GwIbQzGKKiBqUk1y986do+Wyns/Y2a7vrbVIlDVPYoxN05RlWdd1Ll/JXL1d14316EdHR/mmTbNFpKouq6rK59rp+fnNzc3Di4vFYlHWM9EhlRdC6EIgIiTDxgDRwIpGQsYiIjJDFiAWGaINMFCwADKSRaShBDvlgdcsBJZAY0SRWyzcwTtbFFXbtr33zGa5PNpsNh9//PD09LSoS2vdarXabDbL5fLo6KjrukyQ0DQtW04pnZ87IHSuvLi4ePO73y2Lerk8am8nnUbg34hHeo72xE0GISNNkChFSSo361XXd6cn51HEWQfIIXqRODKD5cWRFGxR2qJ0zpmuizGyMWQsGcPWmRx4NcbsiMJENar2TWutnc3n3ntAbPu+KIok2sfeFUVZVX3fp5SquiYiYqMAMcY0cFEMMopZkl0BAWGz2Y7lW6oSpyUP2SdQFIUkqqBEmASSZrXNW8RFXmkKKqIJxDCADoTXKMpIzti6rCQJsyGm7bZVup4JzMkMdnxKCoRZVltlCBsPJ9sTt/fncVQUUIAA0TA6kBeOynvLqrl6/+J733jpzqs4O/vf/K2//Z/97f/dV7/8xcV8phINZ+nKWBSViP6jf/SPVqvVL//yL2fOiuPjY0oxpUTEQFZURQGJs1WsCEY6EEHgQOgcXz98Z/3V3yzXFxKIiuOcvyRFCpIwJgLPoqgzY3m3Cep+qQPuSC3g0ahe2tuLadcUMaTUKQqmqN6EsCRz7GZMVp2xZYlkfdKu61eb9uHl9UcX100X1tt+4zX5novZC69++t5rn0k+xq5VU5XL0xeK+WZz9XHsN6vr2KfSFoqOiKwtJIAYBVHx0LcSotazo+JoeXpy9/zeuS2QTRJoFDpQzKXz61Xz8OGl70PXBRXEjNUxxlqczeqisIiYGYcRwRjjrAtiYuqZJUN/Y4q5mF5j0OAFEFlS70MMhFzWc+cKVWVn+hBiUmPJJKMoq+3GRzL2uKxm7EwMAQ2z2CgewKiG0JPBwhgmvi2iODj2eF+R8ElrL/NXju9b0jQ9Vw4ueLtiJ7Ocj7fpR2knLPX7QpqNDUFD6O/eOdtsXpZ34qbdrFdrRU0p+Vk9O14mAQ9ghfqI0MYQpHDWsSsLSlF8itCLMewcjyWpCi0bmw+qqaOCRJIUiIgJiGiocd8BIHcL+1GbT1VxNya7BNSu/0yoCkyopJpyJVF2fiTJeOgevCnWWkBXkhFXs7V/YN6DPnNR4B9kS8+lmTj91cHwTi+iE3ED3cnP/RC7MW2qe6qpGZie3035EbMXPKXz454w1hL86LrxJ23arDF5p330oxwpL8sypUSIOekxTM2EsVREmqa5ubkBgLIsaQff+r7LyQxRXHv4NRxiMXnHzif78DXM8gyTyM7ObcjpuLyYmfnRBTQ+Y/Z8pi/d7r4IMNS6PL2aS3YyF5lPjPeNrKzA2Pc9E7rCKer9+/dfeumlh1eXQohEy+XypZdeEgREzHRe6/U616DnV3K1Wi2Xy7qut9tt3/fZh8lCe3Xp8qTk7i2Xy6IoHj582DQNmRIm0NmxuoAICSQ7HaPBk3NTObU+HX3ab7DPTDMOHbEdyV0PFk+MMWPVuq4LIWT23ocPH1prnbG5NDyPW14hGflW1/OU0scPLp1zxy+dHi1lPl92re/7nqt67M/obY7de4725Do6lRSZLZPxqVegTdN2IQWFbdOV80XufN6j/Kirg7DZbDI0iwYUQMy7fa67aZpmYIHbqabkQSsql79/c3OTIwKz2SxXHG232xBCXg9t247rCidVLmOaaPS3jeL07gcrVnZMp7SrEBs7OdZH5NdtzLc7Z1VAkZEG6T+yXLCprLu+uiyKkgsbYojb7ffe/6CaL07Pz994442QogoSUY6cio4LDOnJUc7nLKZXJURDSBXGY6cuNRXBB9/80vG9T9gf+4U24t/+z/4P/8f/4j//0r/5glU0lhQ0JW2apihKZv7t3/7tv/N3/s5f/at/9e7du3l9J1GDTMYoxOzqKaIoKKnBSIKCJqACRtfdtG9989MVPez7vu8Tml3OHA2zcoyoiiIpjkGYQyOAKFMP51TbNOOuE9T7ALTINB1IyCZCElBOYR7j3dKdzeamqLgsjDNobPDRb9tt71dNv1p3bYh9hMiVqRaf/rGfePnTP14s7/iuS2hrWx8jNNcPRLqyNEdH8972GiXLjcQoHCFFQIEU1fdJEtXLo6PFnbt3Xjw+O0VKSds+iI+x9zGmeLNqr64211erGAUAmS0REIK1zGzqunAFE6lIBM71bcbaQgKnKAAZSUXBxxi8hiAhaAw5Z6YhxBAdsisrQomxR9KkyF7BcYykKpvNdrNJrrTVrCSLaMFaAwYjaAi996QhOgGs2NrbreTA3Mz7XXqcIuFTGu2XxT/J1Bu/DMPWkw7+nvuT3ZVnue9B0xSJ6P7dOz40Hz+kLvi+6S/ixXa1xrZrlsu6LOMM2BRBoPGhSlCXhotc54W57iUN/gGgQO8DxZTZUab7LyBqVGRmw2yNIhLy+KI762Cyt05HQ1V3zDwZ6DOVm0AQRCbNSqYZ6YaQ08TjEB1CiXSAsOej7nlG7bnaAWDsj0iE/WDff8bVezCeT3FURrPp6Y7K83XjsVfIAIn8Sub//lFXqz+l8zIRi/gDyO38SRsbP8FLgZ2xO25QsDN3dMfJO3opWU7bWptFGKeOylNWFBFli/ZAOief1/leuR4g+x75UlObdTTH8z+zCZh7kg7Zum/5P8dNb3wcGWV2AGGyDp/Uc90VfT16zCEOmH4RYR6YoEIIdV0/+NY3j8/PXn755dlsBgDW2rquM/FuJviqqirXPOSnXq1WTdOMg+m9d86xsSFK2/myKpmZ2Fa1OT2DJLfaAEhUFGVVM+guVZLimFFBBiImNkCigBKj5MB87j0zMCsiTEZYd6Il+fQUkaIchPJE5ADEOC4nysT3qimlXJ9ztFgyc6b3HYPLO9F3M18smV0I6evf+CYhAxCRSYIWb6d7GpIWEeOex76dzuxeUQkCJmAyzCZJt940V9erIOJTWh7XPgRAjDFiSpnobrcYICZxgF3vBYDZIBskyokq37Zd35sYeeerZKoJY23mGl6tVtvt9uHDh6vVChHv3r27WCxgp5pCRHVd5yHK2adx4e2O5lvqDucKBWDCHffnBO/aydQzpwnfaXZUxiWdUeV51iREAURRVkBiJjJEWTpjvlwk0NVqtWqacrGcLRfzo+P3Pnz/1/7lv8wgalVFUMmI9p3W6lPIRcwBvuVJ7RFILmkQW7CTcFqWTkJtq7h++M5XfuP1lz4zn91ZRfyP//r/6u/93b/z9S//Zuw3USUpgWKGijZN86//9b9OKf21v/bXTk9PC0QBiAKOWFVCjBlCqAia1FklRS/QqUDsHPAZlT915+h72w/f6rZUzX2EFMQSc1RDGl2IBCEIPaHUlkVzBTOpTp+KAHRSP5enCDEnITgRlAUSBZvSHbavniyP6tIUJTgHlgBN1Nj6uNp2mya0QfqEQS0Vi7svv/76536qWJ5tgzLXYjT4ratdTCoirrCzuUOJkMx8WRdFAYrRR4NBVHJVFgAaa+vFvKhn7EprMQl2YRMiJElt16+23WbbhZDpPphp2M3ZkLMWCbzvRWNKkVhynVZRVNHb0ENMCSgiAqik0KfQSwwoiQR900sMTGhMAWxtYQqwbXvDqJJiSpk+UWKCEHXTyLYD47CoyBhGwzbFkELyKuoITSBiO5VWvJXFJSKJQfcFHCeLbTJ3k0NCRKbQr/yFMS8vu10y21iPxmvz/xsz0GHlM2AM5KgqEfJEShZx77f5j8aYKFI4bjvvDB0vj/q+19Vq07YqPvn03Zvt5WJ9NJ8fHS3a3i9mdeFsABarFENdloaICZkJCBSHgCQhjmLD2TbF8fZGjDUIBTNrSlEEmQaeWkKETG53G0fRTBnsDAHugo6AoKKKCIwUQwJCYgaQpKSKt7+blL1RVry6tZuTaiIyyDxaBwJ4GIN6ZDZpR32jB6iACV7/AI95UG6yvzae+NE0jzxwFYxT+YzklGP+TQ/vNbrTw1KcCHQ+pRrm4NO9Cx4+2N5PchsiZJPPnvYgT5YCfErFTl4iACBZAgz3NVWffOu9f+5Vczzi3067+KS+62M+HWPwe5bE1LvLQSjVwb86QDjulajsPci+W3igBHf7Ee2HtHQiPHq4vTzhXgf9GI314Y/7kw5PaE/1055Qh7NbRcP84sE6HL88/HnslWHO1J0wwU3lvaUoirzHZs2HtIvUqkiSwaftuq5pmvzlXBg9XmQM947d4AlGC3YZFSLK7B/jPIw7W97VaaeUh7t0yrg5KwDsEsI5wN933fBDGOlUbhXZiciYWy4y2TGG0cgloBn/o+OxtdtSdJzcjGQZfZuUokwaABDRTjpjyFdba+/eu9d13dXl5SuvvLJYLPrgY0qXl5fOub7vjbVVWZqB1H5YQtlDy1t1Vl00xpiiAIUoEKKyNQkxJbFV7YDarkdkJkZCYw0RxRgkJYliXEGKSRKgIhMQCZICIiPbAkQll8hBlgcyZExWLZuuXtyRpwFAhvTn4D3okBHNrktRVKPq92K+aLvWez+fz4uiKFyRsW1ZnL6qKmNMjFERuhiw96fnd1arzbtf+4b3EZEKVy3ms0Q0roFxbRy8aLArrRiX8RSPd/D93SmRpxXxlt5XDZCC9j76EG/W6/c//MhWlS3LarEoywoEknQ+eGPYlpWxtnDOGLdpG2OcYYOEbdciElqLgKoQxRMzWcPGIHOeH8xuoerl5eV2u53P5y++9NJisbi5uWnbNgtC5NxLRgNCZjS2NqWUM5zjujLGZH1JZoaTExWx1uYKfkWALHieZDyU80jm4FSevkx+nefLWTcSRhNR9D6vZ9FMujNQpApo7/uYWrKmqKvFcmmqarVtvvilL7779vcEFIgEgIbsZ96AMfdnnBTZvbyDnfaMwalDR0UEElriuaM7R3PUtvdhUZfx8v0H3/jiq3/6z0YqF+d3/pf/yd/4v/+Dv/evfu2fq2hK5JjzkHVdp6q/9Vu/1TTN3/ybf9OUBEgxJULZcSsMVSkK4H1C0UioqpBUJBYmvVzZn7lzdPm9yz5hIiPMGhFFiJIRFU6oRh/XeVSQSR1VVivZfQ0wTj4SRVHQjH8JCoAqjtpT5z61LD9592g2t1gwGA6gksK29+um37Q+CJKtmRHBzO+++GM/8VNHZ3ejkGEXVZWcsl9tu64PClpVTpOVYBy7o8WyLKwkwRADQo61iCRjHVlmawQhqhi2ShxBfIoh+LbvO+99EkTOxFERhUiZwTASQd832+ZmtjyJMVgrRGytFes6dKqQkheJCIIAEkL0vXifvEfF0K4xgWVniwrZ2MphUhN5vW773vvebzddDMB2DpSSlq23pkdTskUmy7ZIJiRJPgqBdili3xExZVGR4WjZef9hEjQF1b0o2tQE2rVhY0Kd/h2mUOMd1ePUjJgafDhE4DTGQVQ1fx9uBeByzZROreoDR8VaKyEYRCIxwKdHx977pmkMEqEBhd7Hq1XTduFytXlweXV6crxczuqqPu5D0/dnR0fOGkNYFc4JMgEjIAJPiIwPsueusgkgKKSU2Bq2BpXZGOThPBjDSzghoqG8N+UTFZlAJdcXMtOQVhTKWqviAUBgbwqGDZtZdzSLqoOjSMQyxrR2xsFTbNCxV7Dvlz5SKfYk6/bA1Du0xiZf40d/8n2TEgdNVXUHBz0wuPO87IyYw1894/Vve7hv6h/4M+MFEffoOHW/BHvfGN83x5/to9F0y2tvwMkMAOV9JtDpW3ngp+xby0/0OffbvrfwmB5OfYPH9kN3HnUONzxFz0f3t5f9pPq0S/u9fdwYTi3jx1x8n4jz4KMxUzRe8rHdeMpyeuSjvWfWR76Z1+pjPVUdonYZ0H6bLbHWZg2HcT2MERDaFX/qzi7HHGtXyeimXGiREyPZ64BJiGoPWAWAeKudhTuhybyTw+QVG5EneSPKWBfcHSdTc3M6iNlXicYM7gfotBu6QzwSDQ84/jHGoeSAAHBfJ3GCAshLdDCG8zXzF0YVS9mxBuf7FkXRd22KKcuJHi2Xn/vc567Xq29/+9vf/va3O9+//ulP/fiP/zgRXV1dFUVROEe7opfxItnxy3S9zrmYUgLIhfLEBEiiQ8RaVMkUw+wgKZIoKrAoJATHNklMAoIESNmOzHVCZb3IADDRAchHRECslCngDkvSxzOr7wdZ0iRD7G9MrYxUxYiYDesQQlEUKcS+7/u+n81mIlLX9YMHDxBxXs2pqnwIN5vthw8e9CF2vZ/PFglg03az5Zwm8z4mEw4yObh7N4al+0hCbHyVFGl0eMbTakg1MCeR1bY5OT3/8u98/atf+9rx+bmtGv/+B4atphzoTKrKxPWsrutZURaCWBTEqrO6Nq40hq1zoBpjdIzjtsLWWGNVtev7bbftm21VFKenp9lb4+Pj2WyWD6+qqtbrde7eLpYNU7HO/LW+76+urnKpDwC8+8EHIfiiKInIOWutjSE656qqMkgIMEjuGJOJsLO7slnd5AIzY8zJyUnWbFkul03TJIl5fwiSUoiG2TInkD6GTduWVUXMZV0jUdv1v/Xb/+Y3fuM32r4D60Y6QcwAsN0UyON20Tyhzwn9YmRxTpPMZ662JgXsA9YJZpiuv/PlT7z2yXuv/PRV7M+Pl/+L//lf/cnPf+r/9F/+X1dXG5RomLK7rKp933/1q1/9lV/5lf/1L/9HxhVSVKHbiEQGJAHFzBSLQZyiZL1FUgPAPsSFMT9/93Tr5YvvP1gLUXms4ECREzIAQw7APMbCyFv0RE1vHy8Up2Hdgf09xqhJDUDyzcL51+7f/bHTxf3j0s0JLRCZTdf0fbhebzdt2wex1fy4cj4h2erupz9zfve+s0VE1B3vymrdtKvLsu9jiERQFMYez0tbVdaKat93M1tIEhFhgqK0CsaWRAaAU9LYhxBT42PvQ+9DlzQAKjEQcYJs3QYelG4lSWzbbVl13vcheUyROb+zBIOwTCLIavSAGpL3oWu7jVGWmFoyzhhD7GxRsDPb1Q0xrVc3oYu9jzEgmXo+N0nRuTKkcttyWZExZBxZR0WJqoK+l+zbJqewO9v0NniJj+wa0/b0T8c2Wp845ENGsWrV37/h+OwNAYLvISVnLFO5nM1Xs0XwSQBjTMRlSrBt46btb5pm0/bz9awoiuVidjwvro+P5/XsaD47mtXOcEHkrDEIWWtIJnXMoweSYpSUJCUMwZbFAAkTUYCkcUzE577lcchBjrHDmmnwdv9hrFUQTQJCogHTgAFDQv0DQ3T9cWspiUi69VX+sPvzw2pDLHG3bH6Qizz63z/qdth5lYOPnvKr328bbWN5pNZCVKY8m0/BMzzq5PzhN73NQrAxNIlNPGUfznvsaN+X1mZ6WSKazWY5Wf2oX/eo2zbuXcO2lt2SjEXZv9c4ywS3+Y2n9xARrbXZ4yJ+YjdGbwr3oUSqSsjZ3H3623EYMpuMzN4DMpfGRInb7baoqsVi8eHHD6xzn/jEJ07OTn2Kb7755vn5+fn5+dHR0Xw+z4HLbDiNj8PMucyj7/sQw82mNdbmJFgOqItAFttMgpjT7TRIDSsQoCJphpgkgSRKRGNGFEFdWcItJkhuXTgR+2w09DpRT5/koIZjOnt0OfNWuiJ/P9ddfPDBB6vV6vLy8vjklKqarX3/vQ/ffvtd78NisTTOMVtjXVY/nAbpvu9ieLSHMEL9VRntmEwbV372VIPozc3Ng48vXn3tU7Ysy9ms6/3NtiHrVImQ2FrHZR7//IB9iE3b+XDRdd1yuczZJLzN48XRGM0AkMVi4ZxDgFlRjNjvqdOVvd/xj2NJUo4F1HWdTyXnXKa0zsVLokrMSSVTWG2326Zp2rbFBsu2waSS0na7FZHFYoGIOSHGzNH3WTY0I/TymFRVJapCkFRK68qimNez5XxelVXnO3Rme9GQNaYsQorbm+vf+ea3fu2/+W+avoNck7CDIOJ+KOjg4JjO4HNh+FSdYa8Qev/yJ18ypGTKNrHttcB+Vl1978v/+qde+JR2lApa1vUv/OIvvvSZH//P/87f/e7XvpITVX3fI2LbtsfHx1/4whf+i+bqL32yvFOhUZSYlJQQFUhQFaiw8w57H7fqg1NLRd1GCN3q1Bb/g5fu9tv1+qOLaySghaol1UAQRGm/DmEcgsF/mTgqY1AHAWDfURlDO8RYRnNkzMsFfGY+e/14drq0VGjUaDX13q+a9mp1c7PZdlFni5OiPg6RytnihZdfbrabkKColiEqAX784MHvvfEtB+mUk4RtaQMbLZ2bVzNW0tAHjwRJkyQVNlJWDGidI7SiFGPqoyQf1iF40QiYiMAVJqVCgiCQSJd3tLzKATRJ7Lqm79vSe7ZxF2ke3BURVYiqSQWTxBh81zSiGiEam1xtLFliw6aIMRHxxccfr25unGGJRhGralbVTtEoaELwIaxWDQDOkAnJOhRRlaBBVSDGkqHYzcVESumpewrvk64+6WvTU0EncKkDX/RH0WL0KQZETArOuaPFUd/FtvdJIakiEXNWmJImqF9vdbW5XK0WBV0sLud1defk+Oz4eF64yrm6KApnIUVX2ByPzGnWMU8Sup5z+pVZk/i+pxjZGiRCsml/mx43bpEnyl8qYSbbVASgQe0UmEAVwp94Ko9vOW56O9R/pGzNH6DpRJaYHkHYP2N7vkKvH7wddF73N/Pps/BeKm9foPPZsm24Lzy691GGVz5D44lK4O/LtPpRt3zqWWN4R6jwpJL6sU2t2O22ywF159xosY3n6fjIB1eYJhxGo3PYzycv2BSOlVPn45v4fR8qG7XeezMZeXgkqTgeJVPMMBEZNrCrCHz6ZI3bNU2KBHaJ+qHKP0O0M8SXme/fvw9M1rmyLLuuC5IWi0UOijdNk23TXK8Cu+U3pbey1rqiAHa8IyGAXZmQiOgEOTn2fzglFXPMJTfeZcl2ox11ssjHcUZQ0GfSYp56JjQKqN8OAhNRtpvf+PZ3Tk9PT05Ottttrmj66KOPmPmt77513fnTs3PvI5GpK8dk+j44x8tlZa1TlTw+UwLP77sepm30TETEd21O8uTyjOFdsNYQQYL1ehujfOELv/nlL3/lZr0t53MXZdN0r790Z9RXyFM/ZBGZ7r/44s3NTWbHvrm5yfVF2+02xkCEbAYoYF4qGdA1n82Plgvf99vtNicxxsxJjkHnnwxq1MaMk5uL3fN8ZZxYflmctYJgyDrncubk5OTk/v37xhgEJBEVbZoGdoinoijyYgi9m8/nY6LMGJPVYxbLZXE873zvu97WpRi62W7WbYOIi9PjqirWm60rinc/+OC3v/zVr/zO73rvsXBArLlWlgb+v+nBeQCgPXRUhozY/swNCCwFgIH8dD8ljoxc17Of+VN/avbxG67BbhuaXi2l42bVfPjW+9/5nfPP/9w2iYgY415//VN/62/9rX/+//yH/69/8c8367UrirZpyrJMInVd/87Xvl5+r/nFH3/9tftnFebMNMpOe2/ba2BAIsc2bGUbvBRF8lqouL77/N0XH4r53attlzwQJoSImgBoAi5WhSlqAeU2o6JJYCKkgoP6eP6VoIIxVDjryNy1s3vl7NW5furO2b1FXRWcRTVIY0yx6/q2afumFzHOlYvFkY80W54kgeXyuPEphB4hffjhh+++9VazugGDG+hRGqrFGWQ2zlkWEkgqRkGSxqRCRNYxkjEWiRNgUDUx9iH0SXrARIwW2RVG1UEPmFCixBgkhdB3pi6ZyTLE0MfYJ/FJEqsO0oWAAJREOfMWqKgGSV0KTY8aNaqyq4DZIDGg9r51znz44IOma4rFHAjZgHWFKxbItvO+6/sQcb25YcNsk2FBAmsgkQgESagUiIyqIMIufjGmO5647z+6vT72a+PpMpyI4zmnKqr4FNDJs7Sn/n4+q9veIzIkcc6VZWWs5ZgAIgAk0aSg0BOTY+wav91umNBBmFWuLoqLs9N75+fLqqqrclFVpXNnx3NkTikaI8QsIhYRQBGxLitFEIAQQkwJE7NhloRERcGQvQ4AQCQkUCAkRAKIt+8DggooDv9LkkAERDSJSjayiIg15YNo2B72p+ePikX1B9zGrZKJeLfhEuJj9Z7/OLZpuPq57ebpG/qjNr6n7+VB5w/e16dEK/Y6/Iz33UXNd3mA248Ohy49RXDmNpJyEEH8g22TIdwV7eSQP+5CPyOkZPwNjlE/vB15VVXR6+tr2HkpqpqNyGxHTqPXB51IqrlEOpu02YjJNtdUIGY6y1kRbmxPe8KdcTz1TMZu7B0xRJrS6KWLCAIqigCoKFKWfFLdN4P3QJH7bUAN5bMJlHRIeiNSTKnruszXVFf1+fl5fq4kcnp2tlwus63prD1eHi0WCwBtus4Hz2yYTU55JZGYUoiRmF1ZZexWHAqmUbK9k9HUSJrluhV2AweguZ4TFEhABBCQs2wAgvi2y/WIKoI8qHSxNYbZNxsBUiQdAGC37+L03cuJA8hoK6IQEwzOPAXvkaie1ccnJ97733vzu+v1drE4sq4oiuKtt99+9933XnrpxSCybTpTbMqidkURY3JlOZvNOYdQmWMcPORx6Hfv4LPmfPIiz75Ks1nnOpmc/ciOQVEUzpjYx5OTk5dfee3//Pf/L1/80pfcbN7FGJJ0fa9RSlfM57OqqjI99LZt/eomRUFzISKZ/GC1WgEAM89ms/lippCiQgqxC9EHf3N9s1qtTk5PXn7xRVK11lrrkmRuLYNGQAGZfUwpShS/3WyN4aIsY0iI0vXBWOdDijF0PiBgkiQpsTEWcNu1zFwUcbvZtH2PCCklVxR1VZVkGSkmsdYikioAZlMKiqoigCQSc20M89Hxcdt1773/3s07/dn5OQFcr24s2+Pl8ujoCBHJurl1QeCdD97717/xhW9841tgDBYFIkgIOEBAcTdBI+fVPuAVcNCuUAAAM8pRIQzQVd2dxrebvcIgd7H7vxiwqOefeOHepz/5+be/++VXaukE3t7af/WNd3/sk+4nP7381v/nHx+dV3z3dc9LDOAQ758U/+F/9D976ROf+K//6T9963tvsXMJMPS9JGFwX7xsH3757b/w87NPLHhmIKQQACP0oujKEqO1mkCiEqKrLrfye++3bfQehOeLu/zC6/TwQbvtOLYoKcakSuBo3EsmmxgCJIWsJaGYq+cx/50UoI+KlAgUlUgK1DnCeYlnJb+o29fvnb1wd3n/dHl2snAWuGcJ8vHVzbW/ubxeNddrm7iylYsUGk/1HApn5idNTNa5dnVz+dFH7c01by7tdtWF9sZfo8ZXX/4ESVkuTq2xEjshJUfoChSHMaYUkiRU7/1V6JOhNqRZSrH367a79mHLjEVRzqzhqL30jomrkrhSSDEFglBaVzgB2/f+WvS0LIx1hcSIrorlTOPiZvUA8r5k+pTWbfogrrvCniyP72E1nx2dOeeIhKEXbT768HsXN+/Pl9UqFmpqZFBAscZaa1m71Ps+WCk2qyhxM6u5LG1prKmkSWG79THehH4rsUJZuKI2zgISkAFAojAuVySc1q3uia9n7SxEZEJEvwPCAuQS8LG2hKIkRep8CDHmsi3dsX0lUAVNO/w8WSMIPsUEGqKoggApZhLxbKtzXi+KA6k+ENqiVNWQkiKF6BXIxxCTxCRkjS1dv74xpVlvtzv9JfIhbNuGiIgdIiIUbQ9tr5erj7/73mq5WB4fH5+dnSxn9f2+L931bFbXZVHE6Cw7a5xaY1yMgMjEjEyMAKKSFCERiiEPbNQCECMbVMMCHBAUuODpMBoyjJxSSiEBQS6qAwAkY7hMmlSjaPQYCAAz/5sqiCIgkwFFRYxCAqCgRKTEMhbtKI0MIgdHAiloTABgiQF0ipB5ihupT4agMe9RIEwNDtqv284WCQMC4lRI5xHA/p7K7fSkm8Z/hk11DFdOD8T9C+51/qDAHZ+N6X9/aMbKVETMwPHbHh6UVEz/2zyRVY/3BQfykZ8RL0+ZFJpYarp/wSkUbhKJyBd/YsxsKqg4sMKM/5wGySb1CgqQVa53RSk73pgkCgATXljc1/eZkh8ADC/42KsnPXJ8bKYoG6MTIcuDWeYD1oFHmAAYkHO396Uhn9SNqarjCJca1sMe28HejQluS48AgcbRRiUCQEESEEFCSRiDpgignBRmZQkAIcYcuPVdl2EnjISqKQWJykwCklKQlNY3q7quiWgAriDt8ZRknWlioKHwOgeG+75nw0TMgwyGIR5gSrZwvvfjFSD/HCDTzGeMhmZl533vpyjtbZ4HgZmQ2VJB1oz8SIhDPiEv1BCjLQtgYiJjre/70PYoknwAAExKltk6ZqsASUVABZKCQo52ImOWtMp5IGTryhyYh0kaZOcFYVIt61lKSUSPlkfM/NFHHznnZrZwxO1ma609OTsyzEmkb1pCNEhQzhQgAAQfmdW6oZae2NyqpiqoaDa4B9edyRAhagoBQGlXTo4KFXIQSSCGSUEk9DVaitJvth++/b3rm5uEenLn/PjO2eL8tAu+rpwH0HJeGBND3K5v+ra1DM5aAg59z7S3i5bGGWaIiYmorL0PMUYkMEUJAF1IijQ/Oj4+O//wwcOL9XesK1546RPVyQuznn73995ZLI+MnQdPoCkXRqUIvo917VQFFQkYFDSBeFHHZBmVUhRbOchlOURJdXzrERQntWMjyisvlZw8NMaUZdm2bXZu+75fr9fb9eq1+pPs+Mtf/fJbb7+F1rq6rmYLW7hZPavKarlczufz5XJRlmWMMcQgSVdX6xhuS7aqqsqcAZtNkwwQMyKEEEMMPYBHvNq29ba1q/XRcjFzhaSUYiRiJZNSIgVGvmnWVV2Lc+u+b6Ubq7auP7pwrnTOomRXlIUlJOlCQA+C0vU9U1GXzofgk2+9JvXr1AKAMaYkhiTbEBtpFouFD2FmzWbbqMp8vijni0yd9+LLr9x76eUvfeNrH77/cd/388UcVL/5nTfbtmXmWV1rTB998OH777+3aRpkzgrTqoDGqKoSAmNMEdJtBhsBzJ7BoKRCRAyAtF+jgvv1GwdiTHn152YMI8af//mfKyq3OFk4XCdVC+6t1c3Xf2vzcZz97E//xLe+8+ZryxfWgrP56c1mQ46SwJ/79/6HP/enf/HrX/va17/+taurqxhDCBFieH1pZv6irmTb3WxSaCP2gD1CEgVz5VRLTg7Fh4Bl+mAVfu2r33iw7pKZoSvQGY+aHGtpkyFgZCaENJZA6KQ4G/cfLXvf49Pl4AAKKCmIIEqBNGNcGnq5Lu8dlaeLarEoi9IQKAhGkS6Ebdd3Xd/3PgVjDDjLtijAWoO4/vhDJGq9v/r4I99s1ffSr1LYpOhFRJM++Pj6lRdfms3PnNFECCqCsG0b3dWupZSIxFrjfQdA0acQQu9XIWyAomF3mxzBbMEjIDKZnFgjw8RknbOOc42D5sCBpJhCSikGAVDISrySILYIlaGQUiq5QMrVjSnFFEL33nvv5NCfoFEw+YZoDFnDCK4sRQR7VO2il2DBWQUiZiwKVYWbLqikFKjvLZExSEgIqkQ4FVJ89naQbNn7iIgMEKilPQHER+Os0yDftB1+9ykdxEnGgcgVrqqqwrk+prquQw7PtANFRo74IKLcGr606cKmu3h4s377g4+cgdfuzBaL6u7ZnbPT47osnOXCmrKwbNgAs+HBN2Q2ho2xaAwxx17BGAQrkKN2gkII/PsJ1OYnGf5XVrWmGGNMMREgE2UOJ5WnzVSMcXRUvm+k8wdsYyj6R30j2N8PYRLsgedYuH+U2tS6e0ra4Y9IO+ih7oLlP6wFcAA/+H0BSP6YtmxvqwrcYqzGTeC2HSQKaLLsu7YjImfs5WrddV12VIaLfz/6hBELhES5ih8Jk6QDtavnmOUd7cdjOjBmVETksUs+p+Apc2gqaCb2UR2G6JHfKMJhCu9xbTxucopp8ojAzCkmZ52KZiivNYaINptNhodlFiwkwmHnH0BfOKS/DO3T6+s+BVYeOSIQOux+F3oAravSh9h3nTJ/fH31ja989Y1vfce329lyGSVtfVcv5j//3//Fz/7450PX+xBdMUsMgARsjLOEEFPyXe/7zs5me0ONoACZfir64GNIKZHSreQHMxuzWB6/9c77X/va105Ozx9er196+RW2zkfpfXKMSdQAKgzn3/g/3R2+iiB0ixQYCTnGxXMbkcFsNes48ryTilJVt5iP/51Bj1mrtGmaqqq+9847L73y6rZpkgik2G82N5stAIAo5IoZ57I3miF4hg0rVVW9XC4XR8uYUtt3UVOUxNZEEUCIMbVtu9luMmL/3r17VVWnlGJIWTkRcZhZwya7ncwmxeR7j4De+5RS1tWJKptVi4hVVRZlmYNZIoICvt1mSBwyCSEgqsG+7282N3HbEmJRFPP5fD6f12WZFRAIQUTrWZ1XTy5cyfYLA7/84suO7XvvvvvRex+0XXd9c3N9edk2jSpA8HmRcVXRjgsuz5ICkAJpDv0qTfaHqVlBhAhIgKAK8nw1KgDd+vonP/2ZP/NnfrH2D9WST4lKvXNUzir4OMz/yb/5+hsfX/67AevTF+68/tn1+qOEWEnd9tHUZVnWP/On/q2f+9O/ICIxxRACBk+rd772//0XN+99Z9v69WrjybZCraSo6WZ7ZREcJUdqjMUiNFBW914Qedgg9bGXrjPGaEJpG2Qmw0gcrNuJnh8q00/jjiKSdm5cAkBJgpQQBJUwWBBkVyIurL1/urx7PD+e17PauYK8973ETddeNav1erteNdumlWiSrk29PZofl0wlQ4Xx3bffvb66tJZBpd1smvam9U2K0vdRIkjoZ585Oz6+SxpCZwgpRWMctV3Tdd1msxHRoiiNsYh910r0oeuazq8AfVWbonC583qLfTJIykw5hIZgVAiBNEnyvu22RZHzSRFUUdR7LwrEA4ti0iQ0bG1FUVhrkDSl+P9j78+abUmy80BsDe4x7L3PcOecs4Ys1IgqVIGYQbJBEOxmW6tFk5F80LPMZNYPsjbpH6ifJOuWSD3KrMmWKJP0wBbJ5gw0GsJcADHUgJpRU6IyKzPvdM7ZQ0S4+1pLDx4RO2Lfe07dvJkFFCC4pd3c++wID3cPH9bwrfWZxvXF+b27D3zpEJiI87jSkBkwg0oJUYGbFpp2S86YFTE5IldixbyL2WoRUmxj5gFl8ESELE8l7PElrI4wnE9jXpcrcPM6LzaJfXyKJgGAc265XBZFsWnWTYxZARrj4WjAC03XZdY6Mq50Z+nL24d1XZ688WC1rE+Pj05Pj49Xi2snp4tFJXFTeF7Ude1LT+yI6rKmsnRF0caOnGOtzJI4D8iCbOgI0Z5qpRdFoQkBQMzIgIAMVURMFS6X3w4G8PuqP8iECvBgAvxlecLyZxVS8nTF5jEhhjCdAO+8/mnlzH/xtRTIXTbN/16W0z8XmhSYWytSSk3TNE2zWq1ygMSTBI2MfpJpqnoiUtEkkxAItfEtwxNvKdkriD1Ib/ZTzsEK+wSPj6+QiJzzOQuz5bRdTKoqouSehvjc5mFUB7/m3uXj4cb16857Vd1utymlTI+4Wq1WRyvznoZcajYEOOXKp8TWY+/yGQ00Gd75CvJ1WTjX7drC4Pjo5Gtf+eq///f/vm3bD33oQy+99MJysbx562aS9J3XXvv0b3/6t377t//WL/zC8ckpY6FEjFSwawFDCibCjhd+QbQPtB/tgABgIkIz1TSXMX3Za6+9dnZ21nRhs2veeOsukmPmmFK3a3IeKkSs63qqMF8x2przxQ1jux9wHDxgAOP47KvSPTjQzHJeLCJqmuaNt+7++m/85sc++aObtvVVJUjIDMRIlCSBQTKNbWM5oz3lDHgACXEIX6GcoyKH0yCyc2CWM4XGGIucwM35s5PT6y+9uCyr2hcxpZwNOokwc9e09+7db5tWRUIMORiMmNfuHBC/89brnJMo3O8HWVUy/7sHzgNuhMhEzEa42+226w2FyIBVVS0Wi+Pj40zMCgBEWHtfV0UOXDk7O3v48OGDBw/u37+/Xq+3bbh/797m/BwdI1IKHagCERBnRxYws7tK8LB5rNqB3Xk801X16bJ+4Uvv/cD/7D/7O3duP8cPW1dWJVYQdkUVXrlTfvXBhhYnX797nn71t8436Sf/lj77oQ+a0e5iHbF6a3O/KMso0p2v+1zWiIRUHt2qnv+h1197HS10JEFtJxJCm1Qedg5EQQJIEt0GOU+uasy3xp2KIppYaELGbmUgqSKkZa0TRWW6rUwVlamzBQAUzBCNAEBRg2cFrn1alpaWBVeMDoUsilqQdtN2DzcX984ftNu43bSbXQATwbZud1W7FZW22WBM27tvLcty1zbnm3Uy3YRuF6MJ7jYtJjp97vadZ15aLq+jdB32s3q9edi27cXFxfn5GhFPjimWtWlMKaDZdrvrws6XVupsp0MGVELTHFIigqoCoAZi1pk2RGfRXFm2BBia7fb84W79MIYICDx4FJAp5+TOvEt5KzRLBnJ29pCZy6JAKAAZyXHmrjKNokSE7NiZK13ThhB33CKTmkpVsWMgxqrmFLNlJakkTQGRwexJbFGPn4izfWomqOTIs3G7uayGqVQ92lHGr0/RJBFB7lMxtm3bhECZucb78ZTqMfQqo8kyqYhpXgyIhbpyJ9CdN3cvdtX9i9Xy4XJRHa9WdenrBdalP65XR3V9VC1W9QLEO6g8UEhbLpwjY1LQpMTmGLggcu6p8vtptuLkbBKqlkQ0j5hdES7MzESHuUe/T0WnWa3/PDgEfgDLbNAO4G4/eOVgYeoE+ATvxgSY2j6+3z66H5CiptlaA3qVmtI7UkYhe+7xyJLW0dFRliP3P11ugaIhUr9/g8PGiIjENMUWphTHt/zkLyXX3KtV81lNQ4x7Lgfox+llyIajnD0cFmQjdcTbK+Ph8qiiko3ib7755snJSZIUU2q6LqWkpmVdnVw7Xa1W3jkBU/YwcUbZBNI5ibcFmCADiQho/+4OlkkbuhjCka/uv/HWb/7hH37lK1+plouf+ut/9cX3vqcsXVWWElPN/MM3rn/wgx/84he+8G//+b/8a3/9r7/8wQ+rd96zc64sS0oQYyCkwhPEAzKioZEA7AoywiFlWX6bmSLmlVde+Ymf+IkY48Oz8/sPHvB6Uy9Wi8UiidVlKWCGQEwCFlWcShRBSSX4IUBheNzwn8zzB0x6/Zj0xDDo4bFL04HigVFEVb/yta99/Vvfrler4+vXN2++KWpITN4TUVmVYKZqappXSQ7sAdEICQ0VTE01RmubcVmgASKZqoUAZkH0YUzdrrl48NAlKV955Wi1im233e3W6/V2szGw+/cfhKYdX26SFEPMUbgCumnPqeeOS23bhdCpZRwiWhqWL5Mias9+oWDGSU0FCYuicMzOewQMofPep65loqwD55wHMYQUgoggF0xIgKkNGSwHjnqOAl/kvNsZKYrT9WVTX+18e3gkUf44yd3UC3gA8tQZ9VW/h5gZsfvZv/oLn/zUTyvAsj4lt0zh/Ng7pvCTP/Tc57/zrW+3LR0f/cnD5ru/+Jt/+NqDv/2//Hsf/MCHfGcX3YURP7i4iCmFlEKKlhNIEDTN2sQ/oEXTnKXAUSRKZqyXHdQRLEWJUUInQSHYdhdMgBWViAmcgYCagYFmHzZq2EcPp5QwTADQBzvnfszACIEQCQ0Spui8+uRc7BawKB0gCqCIBA3SdN16vX54dr7ZNO0mtp0aMDrPZQEM2815TA+InHaR2D18+LATTUgXTRep6hCUbNdsFkX5/AvvvfPMSxnBR1yxC2DCzhVFsVyuEDglIfIqrMgAEGPqujZKqpdlpqplZgBUDQ/X592uCyEQk/eemAGh8FiCRzPEeAHnXQJ2a0Zqt5vd2cNmdx5hVyqWFTmH3hcEWBS+N08imhk7CCntduu23VVV7RyqsBIxOkMH5EwkWSI1BSQuqLC6PlJNMWx3IIDovCGqmlZlGQlCUEltMDCDEknJoU0B6nlKzggTxhNlnIj576POPUovZvM/TFK62SWSx2ByQ5jkncwaxegWeKwANDphpvVkVtp8rHahRey1lOzYoUl2zjnpFBgCMw/kBSVk7JlpZxa3Yd2Eew83ROALKJlLXyxccfPk9NbpjWuro1vX4slqUdTpuPCShJOEGNk740IA1NRBdTAwo7sDCfvRBjOQJKp5/8pLEwkAiNFSSvuwYDMzMEJEQiImIzKiYaPZCzTT6BFEhMOE0dNTZDq0M9zddPBzLY++iKvFl6vkV5zPCt1/VlDQ/Y55tbp70MKxm9NmaU4TjUOdTyZUG9i0/tF6mn97wnKV5RinH59U+Dqoaq7tHFQyO4su+2kuUsCjfTuYwP1dw6n06F2qE7DQ3CA1zE8Q0aFJj5VZD6wVhx2Zbkr582PgjrOBeVI5+6rJBo8sB3xkBj7yoL2LGA/qN5uEVucZO3p98x6IQ6LeUZFQVRw2kIzvN7Nskc2Scd9IG1aRDTajQeK3/EYmgC4eSr6AJqlsYbJLXzWAw1SY3mi9eWjGBkhDhqiDpe2Ye9rcHMg0HILT96KqMSYGsMysjEQEImkSwNb3fpR0sz42qExD3nnATJEBw4TM8vpisVBTIzSFZOKcW65WvvAJ1Ey9Y3JOJ6CmPPhElFJC7D1Fo1KXh3Sy9/ZQyfmCBU2aLP6H3/70d1977ROf+JEPfeJjVvlyuYipW3dNWZTMbIC+8J/8kU/eOL32P/3yr9TH197z3pdTjEzk6tqLi9GpGRHE2A4zKjNgwjgf+vYMFJyZrGNQ2/TatWvf/va3nS+rxZJ8kf1Ip9dcTClKysHfXsUQDRGYnXdtigRYFkVIUcDQsSdQhJiSQ8rOupyWekwrBwhYFDkcERHzKxg9HjSZb/llxRjNdLPdfeaPvnC22ZD3yYx8UbETIiMyQHIERgRAZmoqpgCZPRMrX4D22zjn/cByogODkBgJELQsMqlOivHi/KzZ7brt5tvf/tadO3dE5OHDs3v37rVtI6Lr9TqFQEMSbSLquk6SEFHb7oqKJMU8HwAhkwDmfVE1x/dSRr6pJJAEROi8SeolpdzrfkdUAM57wv7X8bnOqWgSAwDnPSGqKjskIkAM1rO0Ac7OV8ucGKJqKVc7ihQ4WJ0QEaBfrWNxs214fgbIJF0JoqlCXdfNZvPhH/noz/3Nv61UXmw3R/Xxez/8Y2/8wb/3obvG8JEXn/k7P7v6pc999esPLlopEe3zX/ziF/8P/8ef+emf+U9+7he4Pt51sWnbTlIT2ovt+nyzfnh+tmuartnK+n64+93m4f22DZ2qmJh1YLJLO6NeASZy5siAzBMA8nA0oXkzS2PjERwdQMr35cCjMr1GMQc3ACEtXHFr6W8eldfL4lpdFYVHMgBLSURSu+vOHq4f3L9om9i1SujrRU1FoQAPLh7y+lyDFkXpXNWJBpEmWStmRRnVEpWb9TYmffb2jfe85/2r45N2swYjA0ZiIKdm3vuTk9PV8jhGSckIs12cYtc6511RVVVZVVVOXQeAGUfXxK7pWiaiEFUMCb0vS59uHFWE0qWLLiZD9sS79UVzvu6atbpNiKRWLBZlURSgyOwAIKUYQ+y61ht03e7h2b0udETMVIqBoVMkAURARTLg3pTDgKbVcgEo63Xqwo49+CLrfrYokDD70E1jG40IHYE3NlcWU+7h/MZGsX4v9g3n1PQwnsK0xtMoHxI63HW1dXQ8BafWplH8Heo/lMxsSBWSp9SwIUCK0Qzquq6qOho475l5DN/cP3Rmu4UhtzgZkmJONwyE4LKHD9RABWCz6ciELJDBN1+9X7tXb51ef+H5529dP3n/+6/zoiZRAzZQR+wA86akKqr9yh9Ohb1uNu5OZigxjRI2jSR/g1LT32uQU4IhAOY2MxGi9OMv44IbRbcpZmOCCpuN6Hx0H/+mDgy0o5yRpa05c9+TSfEHd02bJKC299hMDTdXienzbtJMA88D22txj0fHP1IORfNJlx87Go8t+yA9PCT8I5wrzE+m/cz1iitUuJkKetDAq7Sb+bOmUuasm9MJcPDoyR6iBxfYuLfAIMWOUWrTpMYwV5gf09p8V5Q4Cpp2kLD4ERVi/Dq97AkVGID5QplsbOMO2asT81Sde3sK4Fz17d8QIiIhiMAEDJPxTpnxUCe5v0TEQW+Uzb7rMS7lAFmksGeVQcyBHr1sbYPHY4QQ5w+jf2Ac3nF//h4jg70S1i+9wRI0HgKjup73+fzQqRcdhy70Er3ZKHBDL3bnl2uGgMDIRL2BZqb52WTHhAlJ5VhD/sk5N2XqAIBr16455zSDzwtHJugcF94VPcY7mnnE0SEwaomjgmcTc57NXTeXubg9sHP4O7/16S99+UsfeOWVl977nqOT49aEmYIik8+7XxRjA+/8Sy+/fPvZZ770R1+4c+d2WZZUZmpO9FWZnyMxgQ1JjTNx8viKBrjXOJeyFhdj3Gy2b7zxRlmWDx6etyG6smJXeO/v37/vq7KNXZdSFSvnXBtDG8Oua0OK106PEZFLn8AIIUhyMYaUYgiF4/Pz80xKZgNGjoiQ4LheIPUK+ZhEu38phOMiyoPpBuTIvbOHbQwJUZGM2JgNcxoK2FN9YE8Z2X8zE4l5/hqNey8CANI+QQszA1ESyVKBALz++ndef/21/vwYTS2ZFucRs25fCGPT9Wp2T5Y2xs+SSYIR8SYKpll5RQsCY5zExICIve4AADA0Y7/bAIzR3aKKzuUpmiWhcehwWLp9A/P+IzooFzbNT6MG0J+2OSusjHvFkwJCVLWnp1UtymrTXkBVesILocXzH6jf/M69b36muYggD99zrfj5j7/8oQ1852H72lt3BSWk9ad/8V9+5Q//4G/+z//+8vgEHb91/+69s4frZnv/7OHd+/c2m+32wVucOg4dipmvoTiKiIQdmgozeVd475yPKcUQ+mECwNSnnbWM2rJ+VNHAWY+it0luHhh4gmfZe4bdHAHIUEAJceGK09rdPqmfPapuLYvjwgNzRGyjmMSU5Px8ffFg3V602lnh67JeurKMaLvdzsyYwDuoPEWIoDF0se1SZ867UsW6bXz44Gxl+Oxzzz3z3LMGiITKBNTLeRnIyFwS+Rg0dJLTi5hhVeFyWSEngHa27yCISVJNIgZEYCGm0EXnQlWka/UtAmRE07hrziWmdtO0F9u227pFJ+CcN+fIuYIQRvlbVFNKarJr1uv1+W63dc57VzJQVM5WjXyk7NNzmgEpeXOlL8Oya7VtApEiYOG9cwAG5hGBQiJViaFFcGWFAMVlc88e5ygfp+X0GJuqKzTE0o0WwcsqH1WOEQKmky/jB7icuC2fDqrZnac5PrMoiqPV6nzX5MEc3Sn726boqXwQMnMOl3RltmsygQPFfT5p9TmluAECEGAQ/eb9B9946x6TfeT12z/+qY+/9MyzoU2rRe1KcopkpIAxhLwA8pF22ZGPE24QQjQbVA4DRHTssLfJZu0RFSArQaaqqEoKMzfsXp/sz2a18X09eZnJxIdG7ndcnlg0f9L6BmPnoPS+y/i3d7n7PzBl2q93pY9TUeOgwrxKR5fpEypdV5TMs5blrSz+vsPG/4CUlJLzfkqiMiKmkF2MsWmalFJmuIOJiv4klesQQZGzViX9M4uVyj0SkZQSM/ZpaYgQABWAelPXI7co9obmJ93QbGK4ISKZZJ/Ltv/j4+P1er1r29ofo2NDzIHmdMmM0gE7l+ftHkf3xE1CA2jDtml/5Vd+5YUXXvjQJz9xeuuGAiCiRw44ZPkHAFM1cAxFubh24/pvf/r3PvWpT965c8fExFRxL+TWy4WK5Nhrypb18XETnse8SYpICKFpmu985zuI+MEPfvDf/rtfpM2WXOHLqqoq8mW9qF3h267LAd/VoiYmUWlDt93tVDXEeHR0BERdCIB47969s7Mz6dp8+B4dHV2/fn25XA6YLuy2W+tzX/f0iFldcc7tYhjPwaIoYozXr1/Pib+2TeMXSy7K0xs33zg7I0RFlIxQGmbBII72pc8WBHubx9S8NE1srsw4svQA1MvreULGlHjQqHuZ5CBpoe0lWBRmBYCcTiA/ygCQDAyt94LmRiYjAAQzBZ2lyJz5+m2WjHFuZyEcb1MCmNm7rpxyk8uecJq+DeR6WZbrhw9dVf3h73369ft3P/SxH3nhhfd+7AM/9MJReedTP3d33b369S+SSIj3Q2Jni5NV6apb7bbZNml5dOOc/D/+J//YFaUvC0FoJUSJir1uiUcnXrUyReTOqBNGMqaSMTmkBBoU25AQEcsSzRgUARJOAnEyW51BrxzqPgcpEk4BrwdkmNORIkOVxIBlURwvqhtHRzePq9OKKuZWJQbYxaApdE1Yn23X9zcYaekX5epkeXKMpX+wOS9UCuecmoVYOUQN4CQVYgYl8XZ34bmK64sa8fT60QsvPX/txmmUQIx5HiUQsXR0tAQTVRQB5xxTBYaIDEAiCVEU2pjQzfxhkLM6OlcwOyavghGFuVjUR2W5OFqdgMNE2rSbGDuRqJZg0AGcc0XhATCG2HVdwkasXInGmDS22816t1vH1HpfIDoVYGIbUuzPZgkaYCIHRelNl0iYwjal0AVEUtUEkPIe4BiDSOwCQuu4gPrSiWfT/JvzGPcpR9jUqjpVVOB7CR8HaslUOZn+dAXDtKpqD/M2YnZAMbMsFSU2bT6ZcoDatCU4zwSQ34L3npwD8oTICEzACISGlhOZQLQmT1kFUDOhHPXinKPP/PEfb7v2vc8895H3vu+jr7yiHQCriSqCFdkCQuMZuW/8VJJGpMHGiWZRQ96KyMDld5ZvGVKJAIBkDhY1Rc1gjunI4JwXDwc0zvjHK97LWKZiX5I0D797pxLhwRzmJ6Nb/p4VDiciyeU0Gk9XZvmIf5BYAt9huYLt6+kKz0n9piUvangcaPDphrdtWxxgNvAXSJl0k0ACHFwKfS5UkEwnl3etcUU/ed/H7ejPdg7nh/fOlpTQsVF2tmRgOkBvdJglys8GLexreHuKyn5zmPw0eBpos9lEERcjI2SvSz749ldO9rysqIw7ZIwxS9tX2OYOuw+wIP/Nb331/Pz8Z37ur11/9nZyZCZsGJuu8JyhWyJCiAaw69ouxW3sRMQkn3yAvSDXW+8dsSLCJD3A5HGTKTTQCOaZ84lPfOKVH2o3m81ytbzY7DRJSNJ1HbBr4zK7K733mZfQzLz3ImKScqi3mTnn3njjjbfeeuvNN99cLBYf+sD7n3vuucVicXJykgnXB48KkqpIzJaFGCMiLhaLo6Ojsiw1xanBbrvdlmXZdd35+fkbb95Vov/Pv/gfHl6s1QCQBDGnsIK5k2McegFkx4Nzo4dW7pWTGeZ979sngE4iMhL7sipEJYj0Goka1SUOSuF0vWG2yttoU5Bx2hiAiYweDEwKhDl6Ba6cJ8z7+K7ptmwAU7SAIWZNte/du73/udH1gr3KN+FJnF+62+3AOQUgpjf+5Guvv/qNenX9f7z57HteeOGjLzzz8fd+iCK+/uq3v7u29cPm3sO3GjZl0y6YVpuquGB3tFoimqACY+ELR4UxIZOii1CrpBA7TWJAzhOTFmSOoGkUgDNWHMxIDMEIAM2C9S3HnEkQEIcI+njgcGfqB9FmOtzkNeftikiU1Wqi64vqmWtHz5xU1xwsKxdiRE0qkrqm3XWb8223k6pYHC1Py5OT5empsMFm7Yvi5OgYQuzsAtHa3UbMSKBAUovk+a17bxwRLhbu9s3rN66dFo53621dcO+UGwKfEHqXqQIZkOPS+5KJASSEbRsDcUkkWdPKRm/nC+9TEiViU4hJRJC5LKuFASIxOAKNTM4XHlUwFUxKBZZlWVVVVS1UoQmh8y2ZE/Ob9QMXXZLmwcO3drstAiGyGoQgsFgAIFh2HuAsPIoACdmcLwkRo6OUtiIiSVPsVFVVLKf1B0wpIHNpcTq58ZG5N7piASCp5HSHlrNRIXB2viOCKhACIBhk48S4tKbrea6o9l4QeyRDcd4+FczA1B4TZjrWk2V1M1TTJKmLyQDLqjo9PQkAbdt2XdBMFoY4WhGMcNJZzD1BNzhVgBwjIRAAoSEYmgFq5csxNW4G1MUYkcgzLqtn1k335a99nRM8f/uZa8crImYRRfMlG/URq/2APNqNYaB79w4CJDAw6jdIJCJgIyUAQOvRq2amppmQKH+Y1jiKOL1aMoElvI2j9HKc1TuXcB4Rrd4FRSWX75MWceB5+AujqMxf67vQqdG6b48AxsYF/ugMfLrhzckzRnv5X5iXUpal9x4BJKWccjX/PW/i2QmwWCwyhGkKcHqSynOO3WxTV1X8U8yxZo8cMf2EGMg0cuQnEiEYKCLTIYrRzDQnT82n2ZM9d4LAxIz6GYbKO4+EMcZds+OiSCpojhDJMSBM3U1uXuEIGUBEGZB7MMYYTxwdl7Yqpq996ctHi+X1GzcEjByWVVUAp6YxRDEQ1bwYsm+dvCvq6trpaVEWWVFhxt4Sb2CISQ0BnS98cZhVxUQHmKWGEDJ+BMCcc9vtln3xsz/7V+8/OPun/+yfO1+oQRuiQtztNuR6Cve6rhWMHNd1XUoSk9VyJSnK+Xnbtnfv3jWwBBZFRPT4+Hi5XNqQaNjAMvfEer1mIud5sVjkU58ZYwpq4pnR9kdzWZYhBOd50+x2XbdZb/7B/+n/rMy+ruM4lxCmcmU/u3D4B3ECa5+OOwCNRIY9iHr8KTt8+uOJiJlUDVTBIPM5wIh2GF0TmVNj1ImURyCrmAFFBEUDAjBCTQCiIAAqgBPaMewlashIGZyIzHO/4ozmduijPSJjH5RZ5EUekCfYLZySQD+aYKJ5IDJ+SpMCIjABEQAKCHhUBkUCXADSLrS717713Tf+5Pc+4zxT6ZgdJQA1SifHAoaO6JQNKBExEuDRuD/kMzwbZkGN4gVkIDUDgpglMWjFUEgQwHDIsYEGCEaChgZscZT7zCzafstgV/SjDqaq4zpHQ9cLs5BPMTFEX6AriH3oIpMVYf3+5elfee76y7dXt09Lx9a1Oy+0udhtm8YMQrTzbXLl6vTZF+vlkSxdg+iMn7v1osXUdbsmhoS0ldQUxxISolSOwXS7XS9dK4xFtbxV1zfq5e7ew7qqOZklgE5SG0MbtIhF4RAxhNg20YwXtRWV94W3uEvQgYQutsiwWNau9FF34BEFYhNAE5qC0qIoSXwB1VF9A8ulFIvj02tcuPLo5vb8QWjXcXmWusYvnHNYeEZhS+KIzx/eAz2/ddsgficpdSHF3QaS1YtjoPJi21WLVUo9dXEOWFBNhoCgCJasVAFAxNIRgWkKwTUJQqSwDatlVS6MipC0ATZgRIMYbPNAq2rpikLMmJiL0oaVgJrM1LIoT8js8xRXBPIFAMiU7QsJmBDAUjI1QMwIKyJQSWagIq4ou6ZF9tpnKrdkkNRULRP6qvQKmAEYUPbNdTEREbMnwpRSlGBISoxIoAggWQ8mgqKks/VFURRF5Z9/8aUuxG9961sxRu8LERmOOyTK0F5GysnNmTkHIrnC71PMUw/t7pc2YyBEQsqhoDmwGgzQbFGpR/AA97e7f/Urv/ojP/zR97/88vFqdXS8iiGCy0nv0RinqDNKmbhN1CxjO31VWYyx6zQmQkNiHEJmEdGVBSKu77ZdEnW+qNDMVIQKAIakaZq21HocXH92IgkAGIiojFt5vzAnu17OfTZ+TVPed6M8AfpvNvWp7imRAHpmycmVE0fcNNpkTzkFAICT1mdALRhYEpuF2R/ixeaNz3NRUhKYEyPyyP4nYPAY1XffZZuhOqdRNLNM63mCjP16hEXh8Xdx5rnbIxKnFboJT+I02+lBPrA2NNPK54nCJ21HmLoiUzpQi/df5vblWfxOHJmvEQFmYfEwkThHc8YYnmsDWnrkCszFMYKJGRACmEnPlg2IM6gDwGEg9b59B+LXNARo/l51UqEq2MSBSZO3fPAqp5UfyP044a40NZlcWRauHxHLrI77GwVmrd33xSBv0yICaqhKkNFGrvBF6gIDOu8dUopJkzjvDVFFt10mui5xyJmxl6tmrUXAkbHEUojjOxqZQHLxzquqJhkVhqEGKMry0aHOJUl4dKBywDDSfiYbzlKaOcfeO/auazuJkSwBKhqQmkfHwJYsJVFTBgIkcgU4SKGBvDalf162JuZ/DxwFY5wPmDnmrm0VsSxLIjLVGEJEpMJ5QgSUmEDEuzJAPL52LZocrY4kSVVVHp1GzfMqL8+9KdkMzJhIRbq2dd4vjhaIGCQgIWauDDCFhAoO99tmH7iVdwBRITh/cP+5k9MT8gvvA9lG2sqodBhSyi4AQgIzNCMD3bXf+cY3rj9zza/KTsNJdRRjL4lh/sc520vQBGRJRFISUYJhS0EDUgAFApUUJWp03ly1OFocnfhqERWVABwCIGXJXaCT2DZhfbF96817169fXx6tVqfXgO7m3MvL5fLO8y+VZUnV6u6bb96/d/adV1+7c+f28cmJqJmodx6RVKVaLJkZ0FIMQFDWhfMMYCIRxBxyweyJnHPrzRrIGmk/86U/iuSK6zeRiBGNiBCAyBMBoc6ydfemyGEy7ks+RvfTEva543AIWe/fUS/B9uItGAyUI5h0lnFvjKUzA477qA/iPd4AASTSiOlCAxqcWahqm/NM6k6ABP3pm7XSSLzXJCaKiiG4A9PPlDveLjkdAYLGUezJ2tjkQhrB4jled4QIuoklHNB6XWhuwEQwQCYjAiYkBGQqytHXhYhGlIjAOSJqYiAi7IluMJoZgubNChnnp7P17ElGoOM7yZts36IcETjf+u2RNsLERtIH/+z/3FusJw/FAUNomVNGxUxDglggOkjPnCx/6KVnXnnxmWdP/PWT0ig1TXH3zYsUUrvtBCBELYrqzrMvXLt2IyRLAstl5YnbzQZQqqroxDWNnTexc0dJIsVYmpDEGBMTFAVXJRWMIDE0W1ZhBE2txgYkgiYwl6KZxZTytDa1pBrVMMamC22Ife7d7A1IklJKuY9ZuAbrqalMURXqxXG1OK5WJ8SOuKx8GZtFqMoUd+TMII6iVdd1baue667brs+Bi9KAQcU5T+SQuSAmdpgGW7oZoA5+HTVAAx6EOCPny7oSTW3bhtQV3gcxTEpszEglmUEKUeKWsVYpENg7Z2YxdDYIDY+Ce0aCJzfJOq2qdnC6ExggaA63MDISkSyWGg5IzAke8+DDge3DsvRkijoLg7Y83TB3n9REoceTJJGL7dnq6Pja9esPHjyIMRFRFmRG88MQt5b9GJQX8KzMDPNGoIhGSIRUOOeYc0AeISzJGNQDMSKDvPHWW475g+9/JXQRq8dDpB41Z9jBT49YCvMfFosFtKE1SElQZOjN9zTePVF5cvTIu3XjWOJEKXpyl8g7f+7TlUflwmm5rPFTQWrMOzSt80kePdfNrhql7+vg/NmMOwAc9vqdNuTAvfPkPpnLrnziYb/qsnEBmFlPGJzD54e8Q9/zQQcY2hH19OjiOoDdPmFfnsJ5ZQhqSkA23G7WS0ympmo0ZB+imf33kUcP/x60YHQjf89XMEpDOFgWnHero1WboiM+Oj1q2zaGkHlpvPeeHTN3MY6PGP/txxeMiJAIcwL5S55vQ+AWIgJjRnOtqtoZaNMxlYomYNFAsD/aEaD0Pmx2y2rx6te+vv7u3ff+tVfKulTVZCqYE/4Ojgg7eFw29ufdysYjtyy8CDVNk/Wck5PT84utK4td0xA7AAXofRtT1xMYRJV7Dx/cP3sICPXxaVGWi8WiruvFYpHMbty4cb7ZvHnvLkviqvT1Qom57YqiqOtUeE8A3KOXNcYOHQ5BQAbWi+KSBBXapoumm2734OL881/8QhRRQyJDRGPLfjbrkV4TC9eB/SjuN9gn3wzn1+FUMPdlNa1wbyUxQA3T26aP88X+rowYVFBANVT0VZZusp1ub8TIgz+O/KNzffLLk3dqfJs2maIH42Lz4mhQEHAY7XGA0XnLubeZMGsp2btC5IvqoG15YStAtaiz9BxTYu+Y2bIJ6HDu2nRXetedvlewmIlGGIy5iICgzhQBCbFUWbj08p1b73vhxjM3VjcWfLzyKbWWGAiTWIyCXJ4cHy1Wp4vV0tCqyi+LBWiyuCs4Bm2bmBJaB34r6a1NCCFCsy0sFSk4iHXFdVHVZb2sSjbtmrXFwKAqXddtJW4hdQkhSUopiqScvy9JEwWdSEzShZSSuNI7z8gMhGZwgITPOBzNwrvaYnlcL47r+sR5Z8sjW61is4rLZQq7Lp4naULoYgqqqeu6rhOuiy40m7UVC0UqkghyAQBm6ovCUBHJQEUMUCHnl8ChBZN3yUyOSlNR1ShRTUIUwORLK513BYNBUOtCAgsx7gCTL2tk7l1nagCAeCkL2UGE/fTQevTgz8LZk4dGHJRc+RVsx7mIiIDlhqWUHj48W2+2XddlMPdoQTQ8XJk0L3uPyiw218iEKCcFw8L7wnlHzEiMsPTo0ByQQ5DYnV9caIzP33lmUZfuMereOypVXSfFmJLOfQvvSjnwBjzdXfxU+lJR7JM6PPlUuYy16vtd7ErCrOnqmHkG+mT/fbTSVFGxx0V0PLY8Id/I073KH/xyOLyarrj4ScqBzvmE4fgHzTiocOaWeapW9bm/hsgKMwshhBBijFVVjT894ZxHRDckgX0UIJdSmmop01+vCByaDtTbW7A0uOAm/jEEUBWz3iP3dFyoozevH7cnNnaIiCv9crmK2wvnXAgh446apsm09LlJbduORwNMOGFUNYlkcoLckCueNWIUCdlfOy6PV2d3HzTr7W2jFDUBCAMARpVsaGYFjWlVVpt7D3/zl37l+uLoheeed4VPKSUVwDEOHBByOMR+NKaaKqiMjvQ8nWKMzFwt6qIoklz8P//JP/nDz342SiJ2ln3kNgvvzpG42oPIdXNxgc6t12vvPRF9+9vfFpHdbkeEZ2cPVreuLS8ebFJ389o1IMQWpQugtlrWSUU0tW3HjAUzIzAzKiCTZX4Si10XgunR9Wu/8Xu/97U//pbyIod0IvWJjya9nEAAUpouvSnhzlPLHtNl7vwUUzDzjmrSUbfOqndfg0EX2vEnJKLCQZ4GIn5RgYqqmqglUTVEoKud/t//Ms4ZM3M4AM2yowewD+Q3wGJRZ+kJiAxzODcBI+S0qfMIm0FT7hPI5ny0iMiIew/u3I0+bce7rqhcNiEMAUyznpLTNHq0inlRcMlw7OjmcvnxV5594cZqVcKiosphp8CmzI6cL6rlYnmyWJ0UVQ2Iomm5WnpwYJpMIoYUmk7iTui8i3cv2j950LZtJ7stS6pJjyp3i08qXCotjldHhXM5HZNoimGd0kbiVjV2jTRN23YNgHjPZeVESJSjIHBOt8VFWRV1SQ7JIfnugCjXMveQaqYgYl85v/CuZueQAJ13CGwamdpwPrwfJEYzUQvOoUIkWoGRKaSoCGKpAwNflCF2RJWZqYnpAIodJvXU06mqjFCWpaqyqQSRoAZKjlQQAUvPZIqghDGG0HXoQ0WuNCBDBkAwOlodXfaWDw6S6WZB88h1m6QOe+rjZ5yuV2w32azVe1RSato2bbaIOMY4DtXNBPyplXFEsIwYiamiwuYQgYkYkZHyf945R1gU5NAcoANER4mw2e3W6/Vzzz3zFP39HsWACB0z+EIdv9ui6GyEn9Rac/Be/nQVhunXPzVd5UoE2uzsnLaQmBh7pMrV7pQrOjJ/1uUtnL+UP00t7vtaDof3HVf4dBFNj4j7k4YcjvxTtooG6o+M7+q6zsyyUJiv0UfzGU7KmAQl75zZX0yTvPPjlSOtnj0S3/XoTj4dgennJxQEVZVpjPNG2ysq+3wt9NhsMU9QxpfSuy6fWOccNDRom0YBiqLIKQpoTIyWUtM0XYj5UHDO4TSJv6qkBOCMFJmvCJsZRz6ngm0l3nrh2c/9/h987nOfe+755wpaGWoCiA4FDA2cAiuEbfPW+t6v/OIvKdmP//RPLJbL7H8WVc7hHxkdYEATEudRYTPLESL7UB9J0USrokRESfL6g+9+7Y+/dffu3dt37gTEN+49gD7gYja3xFRTBICc0r9YlBlBElIyU6+F984VHhDu7S5+6zN/8MH1xQ+9/5WirNgVVVGV1cJnZNAATJZkKYpjJiMwRAemllJKSboQE+Krr73xm5/+D4LknNOMuSaSDB7tpwceWBZmM3b69yeZCo+bG1csh71HBWBMeAMAkMU/AMgw5qmIOEjtqIgEzJWJZHSEGhgIAGjOo/xntGEfeDJcj8TOSA8e8MkIBuTrpWVECuWQAENEIwQksT1khoiJOackIoPsBGTijGBTMzTL/9rkVB1b8OgGd7j10iPOgsFxeXCuTtHBhxwFkxoJQQHAQMFIhdAWhDcXdFoXz67KZ64ffeC5GzeO/LKkqiDHFCzHQFBRLlZULZbXiT2SLxcFIPgCsekKj55J20isgLbZNWfr3f2H692m60Lo2p11cUPYSGWVFqlc8OnxyU1AYHaYuah6ZTaKBUkUQtxutkliVTmkuiicSIqpJat8Ufmyqpe1K9l5Fy0uV0ddm87djogyMj9P7DwGRAzAhg65IPaZq16MgbxzJZiJZNZYBRDvkaguay4Kl01gRVmdbXbOAwAQQ8/UAzkMxYYpPyqumYqphwDl2UZEdV1XjtcPY0oSo9XqMjyTidAZFJhSZypdF7e7C+LC0Kkhu7LwZVF49oVzjph1alpBsGlEARFNOMJGt/h0keefspPKDHqL0hhtPwGaj6tk/HuO0BjNbNPr958zJl4Fh4S8khJAT1Svk3gAg17GtAFgCo9TV8YMXUM3DIEJgZGYCA1MlNgVznnHZcmjouKoiISNSHbmMPTBvj3a4UDKtP1w7R9H/bCoam6GGSDuVx8hFYWDshDvI9FAWUPTl9IfvLPv4+dZcOp00efQzcf+dFBGcacX2ady2pMdCjlt4/g1yaWm8Zl56WB3mY7nXLG6LPDge7RqkNVU92R5Y4Mvvw0uvQynH3FsT37QvA579Mq+htm372FcMrP8D+LewY99WgXIguh0k56fvrPOELlhiT0iiM7nyXD+2jhL80KGyVcAwMNaHl8yS6CIEiEzP2rgsKHQIxPAhh8zfiqb7wxtnmPvUsXyYKo8jYJ3eMvhghqapwqIPdkUAOTjepZpACdxPqPphHjAzPeWzb1wnzfY/JmJyRFYj87P5ste/xkSmfTEKfN9e9r+KabXDhbfJAQfD9xcV4wN9NHnzOS9E+c0J7CaQE7GS8eSDfk2aC/TVzaSxBvYjJhoWMtuyENgpgA9jSYompn3PiSBSa5eVeu6LrtT8ofRtTUSp8B8u86Ve+ckJXRuyKpM2CdGQZksn7yT93cRIrqP/9inPvsf/uC7b7351nffeNa9UFfHOxBRQ4ASOG13cdu+9dp3P/9Hn9923Uc/+fHjl55lZktCjgGREGPGyzF1XVfDjNQlFyICRE3BDVzAIAbScxJ2XffwYfO5z3/+zbtv3T8/71SRCYEo5+ZX3Ws+exnAbJi3fV8MBUxTVAR2zhXFOoQ//OKX7t4/+8grH/jAe99XltViQVxUQaKmmJIaO89E5HJW1RzUQ0idqqh1Mb1x//4v/fqv//E3XgVXELseiY2IAIw4MLsd7vmzeSiz2TvdsnTqepor53th5pHNKqYJPhmopyjFfgZMhOx9MKYZMBXjGGZKSjMwJEQwJiBGZnaKzBJjXpmgZqLjBna4C82VsQMTF1xS8uhNlYFBEOp/Gh5kUwXBsS/HJ7Fj3suCSDmgGTKPQx8r3Y/OdHdgzrh/hMyuvYd15kPCcuLngU2p/0n3kzifLdOezA7meSJnGJ3a2QUw/KSq9she/Lhi4BAVRAlMHbuFx+tL/+LJ4s7p8tlVcef68a2VX9XsPapJ26bdtt1su5hkeXS8hCoJGbiiqovSibXJutozkoJGYiqKQjdpt+sAcbVctkE8K0LZAka1jaBv7HqqrLx269kXXVVIiJICMFHhVTGBBomiFELY7rbb7bqqPOCJ966qCkJnhOxLVzhfFmVdlIuyDW21WMao98uHzIwRsvRNaPl89WVhSJChq45VNIqoqZiZqSGpqkg0EACrF6VzZeELds75yrmC2aekHpEZnXcAmr3lWZaejDVm1NcYQYRgCAQgAOC9Z+9jiN3OUrKQgIORacFUlVwXdL5JySXZ7XbbVswBuqS8WBzxEa7Xm2qxYGaHaIzDgQo4lwJHI9yBAjxOp1H6BwBmzrbkqV1QVafAtXyCTr7aePpm499YxtMrn0kmNsr3WVLrrYnTgOOBh2l/dAytHUOBD7KdDq+VCS07UgCMED1z4Yqy9GVJY4wKgYAKLZciEmPk2k8XxYGENG70NBBRExEhKWL2yw08x0Pjs05CxM4ZkSER0Xh42gGVyiXrEA62tqeyNU3f+EG/DkTaK0S9uWh+ebm8hXPx6EpV4old/zgBkMyaNXWhzFWJ2YPnZpwDGNg4XI8eP5eS0+MjesvlbZ90QgfVIAuyeQOfcB5PWgWT26Yh+Ii9+JtP7cs0Xxj6MtVSelvDcEm/SKeNx8u73MvoavYYj4FNDH7sp9bK/tyebkT97mQThrN56598YjzajNmjJ00/kJfn3QLYj4YNJgUEQsoCJ/cpNMaZkxWVkZZx3IfhkRmVLxupxy31mNuUUuH6NCF5L4Zh5ZoZu0vJEg6UtmlPZvA2PNgBLh20bBzMg+S9l6KQlDew+QZis7mRk5vlzf+gwkMldjpFh/T6+S5VQ1TMvVBBA+996kKK0Q3n1NHRUZdiPqRCCFlJHinnASJMGFSyvyW/l916k0IUdg5JAThHPDIj4cjdNw5Uv/bNiPDazZt/6z//T3/t3/7S//Rrv/qhD/zQhz/5cVmWUPnN+sIla++f/fHnvnj24IFf1j/8qU+88KFXGtJbRWEGqNiLf6IG5EsHaphsFDSnGm8+v0Bk1zQX63U/MkR1XTPyrTu3f/pnf+aPv/3N79x9KySBooJ8Nlmfnn9s/fT0sgm1d05ZmY1xYpqs99+9fvfu3Xv3v/WtP/n4Rz/2vpffc+f2bVeQd86XBSkbWqcamrb0rvQFipJZDNGMtrv2n/6zf/H7X/wSVyX5yiYaPhKNOWkO2L0OdpQDS9C0+XKw984xjf2ml7eTqXozMQUqKGrPMEFEYjoYDgCIRjw+GphMa0DVwRZAJKqIgODIANgpe0sJUgKRbDUcpaiZpfHg8yW2xYN9E6HPNjOsLhyjdqeKis4VBOfqnsAiR2nIBGuo2eebhaq8mQ0/+XJGzzfWaJhDcoYMZf0ZlUFW8M5LXpbD3mSIM//mEyLFKfcRCRAc4rKk04V/9nT54s2jO8vq9KhalQ5Rk+pOVKLudl0bpKhqoEq1jMmAPXGhKCHGpLEsHJIpqCFJwmYXQxtKV925eWyIuy6Q2wK7EKIKiTKi825xdP1W7V2z3Wm7AwhIEcTFDoNp2253zfl6fbZen+92HhGrsl4uj8vCsyskYwjJFdViuVpyLACtbTrvvfc+Ru7fNyEzlmVZ1zU7YgfAaqjJkpIam4KE0KWUJGXFT33haufLomIu1NxyeSzIF+tNjLHsxzyL8gZgA5avd6T0ikl+35eU5fKIwLZbbbYbDQJLKD2wd45xUZEpOE6moeuaEAHQE2HhHVE1YAQVHicxfM8ynoVT7Nb4eXrluLc++tNBhQe1jV81k4oM356whaMSNbpTxq8wuGIynJpRaQB9EaF3rnC+cK5gx4SMyECMgKqLxUL2+hjaWOF8AInyC30MpwQRme4R6tNf1YYskzM58OnLZTLrn/fyF6kvT1gyy9uo1cuQ8vVAV//BL7aHx6A+4uIYl8NfpFfMzA7ZD6Uoigz3yrEEZpbxSBmSdFklRVGMHJFt28YYRxG/cHt4/ehCyXuLnyPv5xrI5VaGiVnkQIm9WpkeCxEx9Y7rJ4+3m7bwex5J4yqYoX+z8QtwlGpSSlwVdV27qtT1RVmWmakmpZTjUmCwZNmA2xzjHvtrDDw7E1VRZjZVUUgxKRhXFQxUWtOzCREkRlf4H/r4R2MXPvtbv/uZz3/uM5//3Mmzt269+Pyb3339/O596FJdlB/84Ac/8JEPnT5/pyNouub8rftHi2WxXFjSEGNSSaaakp++YgBTHRPTKVjNDpkcc1WWGcmWUgpdt2u7z3/jy7eff/G//m/+m//6H/6D3/29PzhvWhhyLeLEtDAb7UxUsNdh9u/cEEBACRQhIRDRq3ff/PYvf/faycnLL738vlfec7JaXT+9tqqr0rvau2VdusWi8L7dnJ8sl2DLzbYpqsVX/vibzvlOLYh5P/Nsj16BA0XCwA4MSGM5cLYcTJIn3Elm2nhKeWJlQFofaNWPNuowbn06gtFNSDRJmQySMmAvOxt8togaMUjC1Id9zPvxLhWDbCQdw63gEopeR2Wf7DXDSpQwu1AQEIwxA6UQEMBor8MAXtrqlNM+5vRP2W5gQFlRecfROXtZ0AxUedKdg45dfiJmyk5EBDRSTZKkIn9Su5ur6s7xqq69Y0gSY0ymJkFFyflFVS7Xm7jbNQAVqDW74FSCtsyx8cpKKtRF7VqTAJ68c16cX53e0KbdGbEYqYEmlLa0dOwpJiiK0tXsykql2e0idEVCjKpt2MS0UeuQQFVDSDGiJKfqnCuSdmKKzM57YkfigAzJ5Zz3ueOiRkRFQXVdL5dL55mYgMxQgM0hIXrrsLUECETonCfGouS6rutqYYZdAABSsfv3HsaYNcCsn+T0C9rbXg0BGCDHqOQVeOkBxr5wRc3dLnRobXAE0WnAYAxVWatiu3AxFYDJLCYRTV2MYeV6JkvHrHQF8vbScqBX6KRcoahcXee0hqydjEVG+f3t4JtHLYXmJXtpaNjhGGiEfjni0hWlL6qi9IVzzhz1wfRk5AgVwHsfQljR0ViLzU2SNMltc2AXJCaVPb58tj+qqoIi2tyT+dTl6QKHfvDLn1Wc/Z9hyRtRJnvOEm3TNJvNJoTwvW8GgMFaPKnwcjrY72fJ+vnoGXhUjc8fzA6BD3/ey+iCLopit9s1TZPt+plxL6ugV+yQo59zjCrO4vXBZXnIDiwgYw1u4mCZPutgxw6TNH2HL+jJiFmIyHnXY6vezo49U1SuxroAmNmowI8/iUj2e42OehBGx4i4WCxU1XuPiE3TZLrDPPLZwZJSyv4WM1sul8zs2YWmJaLtdrvb7cY3RUTEHNsWB7s7TIaREFgsxchl8ZG/8smXX3zpG5/74pc//4X7r7959403q6I4WR1de+/NH/nUp1YnR955iUk2u+7s/MGb93a7HVfFcy++cHz9WrmqF/Uypx0zmdj8J3g8NGuaraaYPXUZ52ZmWd3aNc0/+Af/4L/83/1v3/ve9/7+Zz8HzT69J9OMiHdvIwC4KouFKhhm0vRds0VmVxSvPbj31vrsM1/9gme+dnR059bNZ2/devb2rRefeea5O7ft6OhoWbdte3G+K6vFq3/yjabttCyiqoTkirkuPWpgc+fwoY967jh9cvPlZWWWQAIAVIfs2El5mnkIp6nMQWbtmK6NfdsN0IiJiCmJQCJGoUsop96tkqc0EsmA2n1UGHBpcLsoAjIhc8brGIAJ7nOAYTYi5c1Fk+xp3Wa2pezohKxvwtSkkVWbgUdm1og+AdflP41FBzyrZo69yYw4GEdD69kips3IbiHkLG8jGaI5hrrk68vy1lF5+9ap846cRUu7RkKIqDnFbnFv02Wg6Wbbhqil+BpYKQHZLnaMjIG7DtRouTq+6VcJ3Tqpk5IEwW0NCQnAlDR5SJVDIAfIgGaQkJmcM0ZBSyYiHYCUhSNcqDKTB3OmpEKOPVgLZowApikGSdHAUkrsHDMTZbiRAgAze+/K0rEzZstuHyIonENXptYhE3OBTpHEOS4KXtRlvViogEJqd10UXq83WBSAE4JSAABB4GGCK/Zaih2osNmz2L8NNDVBIkcFY9Fsz1LXlrxYVJVzHpl94ReLCpDZReLQdEoEpjF0DXnyjkw9eo+O0SbsQuMbH2fg+HUggTUzVZOe1dGGzeIxJgybF5hXPtavGV2d9Z8BaT36VnSC8p6DMWC+Jia/HBYgQkDLNEraO+uh/9vgIGUm58g5YkeeyZFRn7kYCmZIyRDrug4xDKcF5ptH1QKzsUovQQEhIXKflnkOHRn6Snuz0jsrV2z0f67LwQz7i9S1y8qdO7e994tFXZaVcy6E+ODBg0wC/YQ1HMhz72558hfQT/EhqPog0dl8yfx5VlRwghdX054zSURks9nkILeyLHvyxx6YcZWwpQP7QXbCZK0Vc1jCI+M0DuNUj3VzZh6YjPJIzdQ3+O3LTwdCBfZyEh6Ayq4uo93XRszb0MJZ5cPFOmQjmAGAVY32yFu1LN5oVF2sFhfrdVGWzLzbbquq6kMrAbKIn+U5BEghbmS93W4vzs/f/M7rKcZ7d+92IRS+KKvy2rVrN2/eXB0dXX/mGWI2p+yYMvVHH/+AbFAVxUVsEc0tqp/663/1k5/4xL0HD06vXyMALD0e1a1E5/3d7775+le/vn7j3uvf/g6XRavJmL74lS/ffubOhz784eff8xJ4PgD5z+DZAFSUnZopOGJCcuxijJKk64IB3L179x/+X/7hcy+9dL5eG+A+HAXnxBZTgXMmBcyLWOYAVAAjNsAYowKUZRlFAO3Bdv1gffbFr3yZVE5Wqx/+yIc/9qGPfOTlF5Z1HRHX64t/88u/JIRtiH61sjk00eYn3xPOwyQyBRdNBwe/V4TVCFiZHiJFWeb5ICJJBN1cOT/AeA/zMQcvjfUKGWRyCQAixGzRxgRIKNEGOmywETYzaRDAQWYguHKPnb7HjMix7OkjMgC9JHefw9JDr4bA1AaMAMbch470SKLhMUY6mRwGs0Fd8AQVlgU4NGM0BcpptnIugkMJEffdM9VBBkUAsInOrIqmCEAEQIRTHXEqIaMJKpqREppDBVUFNMNkaHV9HEOrmLhQ1nDtuHrpzvKF6+WLt5a0yJBctuhRKwZyRSYK5yVc22y7Lp5vmvM2dNCS3/iyKtgzs0cQ0gBgYhDZwaKI6Bmcbu+nsAm7rUkiJEHaiSVflSc3CiooqWdTSzGuu93d7fkbsjsPuzOC6Ak9+ZiErXS21MDSonnrztdg0XmLu7OOA9nSIT88O98+PN9eXIQQzFAFJWmMSVLs4roNF5Ved84AxBEDsiQBAXLVanX9aHF69uDN3eatymldsmfftXHbRMDKpbJrwvq8Obm93Ow6C7HsqrpelN6ji6BRDc0ws6mDEWRHGnIOtCUDM0RVRAIjQGvX98DUQidNlxqNks4wLItlaFJ1QkBFtSDDnYEy+2XiFEG0c7ylGKFLZLWD2vs6AG9jIFcA06jfEhLmUDg0ABNRM1TNmcHJEA1Nsz8USMHESMGSppBUxAzZECxnHTQwQp37CpRBzDQEs5ynjLLv0dSMQQAEJZhFACFSBUUQonJRX6y3ZFqWhZmiAQIycz6bspuiqqqqqrz3rsd/o/eIBIQGIEjoiAgzJhZJnSPw7ByTd+g9+gJ8Yc7DytcODYkYgVTUzFF5vt3cfOZmm6RgR0hBlIGZ3Uz1QssxZOg8IZkZAdbOoaNNWscUvEckD0QqKiqmlmISQyDL0SkiQr5Qs5QiTwnpDnXBKVkhqupoqTXpJrvBPG5kQm8F8+BC7UG29OhdM1bHAxVstm3MvPQ6M3/NmyHzvXgKNZ7ZqubBITw7ew4ML/vaCHOA70By4qZuvalcSPMQoJk6TQfGWqyqKvs0ZkpCpm97XEcOujx77pyF8+CIzf8uFovFon7+uZtFWRZFAYCSrCoKE12fX8SiFE2Gmbs1WxEmfZkQasrEDI+IBxrOtMsyhHfj7OwFAEhdO3Q3w1RHM4JNUxPmRE8ZRVOWZZgR6TBiT63jnJs9d07cNhvCAQyZh8iTNzNJIqpExFOChcldGZM5WuJmwzs/+P089mRa5CA8bIxJM8ib49BCzQELDgkQVboxRlRUGZnLggnMUrtLqlo4v1wue/p50SRiZuzd6Kmmgdyw/xep67oUIyMhu6IovHO7phGRo2W92+1CK4vFIrsIiqIwsygJENuuFZGqqpAoqeydzIM9HQHM+viS/Cdne3aIJCmJZKcDIcJs35gHWInvXyKAMgMQugJciiKUUllV2Y0WNc5UMhOYp8cdf9EU9pHKhJxBAAQSk0oi5sq7brftJFFdI/bZO0W0qH2KZuxcVXchSJe898uyhigSU3DsvN9ttgVQjQ6WCp7VpK5LT+gRuqZtLy7efOONL3z+j+6+8da1k+tVWRVFUbha1eK6ffXet772R19JMd6+dfuFl1/84Ec+sjw9jmjFslYEIWub5tQXoQmeGAj96clOgW9fv3PrOoIJw6ZtVotKH7Rf/eyXvvaZP7o4v3jhA+997kc/ero6rU+PN6H9yle+8pkvfulb3/j2z/+Nn3/+fS+7VR3aFvvs571TZ5iH2jStskNidM5S4sqwVFVdVosuhKKsvvPa63fPztWM2AOijalkxuE100l4OtM+7itzwSIiEwMgF5wFVgMjxlF9Srtda8qRvPPOM1eVGLzVxX/3u7/3b377d+/cuHnr5s2qqu7fv3/33v10siSDThMw6KDL5tnEkzwsIgrD/B8NHFkhTPNt3wxABUTBTIZ9dUAeTi4jQgMmNoT+2O2FcZDQjbgLMBVRAEAmByRJiTCDGUVE4n4JOOdHRWXQrK1fVcV+T8mQEGCi0iMAL2qNybrWQgsxmigaZLeNgMsjb2AA0tNU9O/IjUODhDhxeIyHVP87oiImMxTVrAYxEfeZNrJ7BczcVL/pz5vpYD2iGX1Pm8M0j8Fodcip6Up24+I+cIHljdImd+0tKG/ffNLfZWaWZ02O1xE0NYButwVTh7JwdquuXrx57eVnbl8/PfKO2JMBpCipExNlZFBLMRmKqksphti23TapMDtR7YKwuBSBUBmBUBShM2qhaNAl886kBKscBrSo0sXoGAywcEVoG3BIGEQ2Ka1D2EoKYAlhfPsIRiIWQwpN3G0bQixcpSjJpKOkFkJsAd35w/XZw4fb3a5t2xSViBEJQURS2zbN9uKadCSRTRAVyZnzzAS2ZCTtYlWuLO6860BT16YgutklJi6QLprOgMmXIWrhChO0oKIJJMdXMWZu+SGECyCHvgEZgGXSHQZVSUkspbDTGNtd07WtKIjQehMfbuLxce3VERsTlmVpBoQudJrz60nsEkAKDRmqmiKq92rWB+Y+Tnk3gOzJGWZU/g8zJGt6JREVRZE96UQU4+MBSKMDoie2zNSP0E9stUwUZgdOFR2n8sCZtS+jMWJKfzYmJkYiAMIh38bkM1POXkHcp0nMHPXEjjhfCUgITARMoDnJRB+7P+VXehK7sgICE3mniNKnj0MiQrMUoyVTMxRRexpf9ribf08D7V+Wpyi49yXOckK8vUqezP8jKky8WCxu3LhxfHy0WC4yRsgUEmuKfWg1Ecs75ht510vGmFVVBQAhhCswPE9X8jx/rMfy4LL87zvxuc2s9Yc2gicqNIS6qqomIfajd2v0GecWeu9H4OsVFWa/ioh0XYeIXdellEYyEADY7XbOOVf4BXlAyN4bAIgxjojXlOa+uMkYTdE4kCZZg97WMGIO9KYMoZl4x590AGf2DTUgw17uGV0C+3j6sTBRhg3nK6bNUe0l3aqurl+7tjtby1FEq0KMzLzZbOqiLMtyc37x+7/7e9/8xjduXLv2V37sRz/4kY+XVVmVFRIyOwDbbrfr9aZrm9/9rd/5V//qX3/+S1/8+b/1C9fv3N60zfVbN7N9ztQQgYksJ28ky4gYMkyaCPHN77z2hT/47Nf/6EvP3brzc3/7F1a3bxRHywJ9sVqA54/+8EfTuvnMb/3Ov/v3/+4/+c//s5vPPrM6PYbRRTAdRgP2HnI8JFFV10VZNk2z2+3aEBaL5fWbN86/vQYAZi+j9X6uZF41+IMoP+J3bOSKtH2uPwNjQFMLIcQwTbeFQHz/Yv363Xsq4ouCmQVxCFzI4JDHPDo3cG8nnyTveXQ5I4IBZc8ADiEaOMfjwdDv/YSYVJQTXuM8kcz4aFRAE1NFM9p3GdT2IzU4V4Yq91H32ZI7sQsAAwCax94lEfugI0OiwZGBcJAk5Oq193iZ7cp7Zs6sA9/T03mzp9jicSjHlX/ZXQdH6fRKtbd9ymI2KOacVmZshABoOZ+ZxhCXdeHNbpXl+24efez5Z9/77LPXj72vgJ2LQUIT1ufblCzDZJEUEIJRSq1KBxAJDRFTiiGaKe42XV2Vx4tFuSyNEJICGiokVF6tnEK32zYXF5ISi0AyCAExORZCQ4imXQy7dreJXaspwT7ztQGAqcWY2rbbrHciQhi4wKKkBNpGobZB4odn67OzhyG0IXT7qYMWYrtenz98eO/WnWdTe6SlI0TzhOSIfUkkrhBbV9XC0iJnBFfRrk1dm3wBEYJb1ZsYrjOxdwAASUQ6I9ICybFjci4zk6SsLBsCouSU0mjgOJsku9h2KYZu+0BD6IIaWFktFeqk7VmrvHDYhLJ0vuDCV4SeKZp0rXUppc126zgEF70LrqhKMaprcwURPeEUtXlcyvSnbGzOZ+fbkucOYlR6iVBVM73lgDC7ulX59HI9Zm8ficJEiPuolVGZIUBPzASFc47JM3pmR+zZec4mI+trACTwkmJ23Dx5v2YtVGNm730GLeTxyVLAfhBSgqdSM/Iaz4bqv6gBKn/mpQ+amuRuelvlQPC99LJBS7l9+/bx8YodZNoHEcUugcmQvO4HUR21gWGpdw6825CzMbjlajCbTTn4rowAuaJM3/I7gZWbWUopIRWuyBuUDakOxxa2bTtufXmXuKy2nHgwxui9jzHmCZkVlbIs89r3ZZFExqCLaYCKmWXVZezXzNH3CHhmVPmeuLdg0GcQtknuh3diPXn0uMn1HwYBDjH0Y+jIwa85/cDR8fHF/YebzcYtqmBaeO+JC++/+uWv/OZv/IZ37id+6ic/8qEPF3XVEfuyIO/NLAMoV0f16s4NM3vlIx/+7muv//N//s/+r//ov/25v/FzP/ZjP7Z9eC4qZVEqIjBTnz1lkpbaoPKF7brf/eVfffVbr37iEx//0A9/bHl67KtqdbSyqIJoAMdHx9H4P/5P//aLL7305a9+9cM//LE0oXTUyfaOmXN5oIDMUytzWdYiP/ZjP3b7+Rf+0X/3j7/zxhvo3NPJn5eV6SljAJoR8qqgmmO4cThtd+s1ec/Oxa5TZro8Gd1lZXpkAyFNnPa9eW7IqYAypMl5hFboQP14TIhXnudzJCQjmar0Xo7ZEGYMSH8Z81SDehTUOjwDMGdARgRmdWwxaIwaIiSxMUfqo7my3m2A81xRmZvQnm6XOwgexQnZU0as5q8HuuahKnnZC4PvoVvvi1o2CwgoAjAamjoTtFR5uL0satMXjxcffeb2Kzevn5a+8K6oi5R2KYbNZvvwwcMQ1PvSla4sPHnfxZ1K8g6XdRklJZOYYgghJQ2NoRgBqmlZFd4xATJFVfVIVDk9WkHXrml71rVpt5Nure3aZCOmpiF027bZdO02htY0e9BwiK/APtpNLCXpunj33m51XB5z7R2pmqaIJCIxpVBVRVFwCEkt5TijGKOk9fn5g3Z9PyxrZmYxqoB8gVgwezJIBtkiH5NKiF0KZxfb9S4VNR/duEXowLtiuVQ1MgAxsSRmSYgLR5XHnHNzDCftNXfJn01FVLtmu11vu26nzUNVZS4Xy+OiXvqqDCnsuvV5C6ZBVRELdsSMzGbQxhiatk1Nx+Q8NcxFVa9W5IpMxY74dhWVp7MyXlHhWOdMaRk/XymZjf6EqaKCfQ5i7PN3Dv8SZvAXOmbH6JgdkWP03GspnpiACI2ICLM3xVQSPKXBAQDAENg7Z6ZmUZKoYO/F6RehiJgIiD7FvpSP8B5iEeO7vbP9/31BGA+/lFJRFN/7lkfrmJsDL1s7y+Xy5s2bN27cWK1WzK4o0DmPiCoGQ1B1jDGEMI+J/YEo2c7ddV2vk7/bzj2dgNPg8jEct6bHJhl7wiKPwBnedskom0xznlI1pL7VSTqBHt8iadzxrlCDxxRVmPN6aR9QnrNUIWIOXwkhiECeJ6OXZr8lHiDgp6jLubyRlY1+N36yHmeRDoeM8LkBow72tgavr3B+HGRRJ6dKO6iQhrzDOfhn+lMe5KZpxEUTqet6s9lURyso3G638879y3/xL771rW/9+I/9+MsvvXR0dOTIiSmXNRTeHKtaVEFRZmbHTLzb7G69+Ox/8V/+b37j13/jX//Lf3n3zbd+5qd++vrpNYRkjm1iEZsugbO799749ncefOeNj77yQ5/68R/z146scEycRPp5EmKwWFVV27Tvff/7v/jVr3zr69948ZX36mPPXDMd1NH80vfOB6KT49WLzq9WKzOQmODtawhXvpU9qNUALCUgImLynomhh1epqnBRqKqkhMz4VGaLmaKCeOCHwQmGQlH6SzOHwQxnOFNUpvXz4PfLjqmxiQhgMYMoNEdwjwvTEHSan9pmDoxZ/RNvJCIQMpAxEzD7ojBNsW0itxaiRcCJO6vPspSH991mcJ9PhQPlYR4qNFMeZnfNLpg5Qya8SIg4EhWNT5s+evqs8Yg1m8fqzjWVA61lemXOfdAna6McrJA8SMlwuqyuF3CzKn/o9un7bx7fWRVLR8QkKjHKdtvuts121262wbApqvL45Lg0brtgCo6x9A7ANAmaqiSJIsJtl0SbNsQ6VotFVTiuCAzEYmJCPCoKPH5YgI+7nQVKG2nPNtu7TGbaxdDstg+7biupI9DSlVG0NQkhMRXLo+OiWORYRudYRWKQEKKvSiLK2baIrSgdgC4WNWIXQkIA4pxVHBDMYmh3GyoqBkZFVy0w52hOSS2pJiIzlRC6s4uLh+fb9TaVS1re5IttU62O68UqxGhJAMSimoKIgaD0JFnjixYA5JHQV01UYwjb9Xq32aXYksaiKJbLo2p56quVq+oSNJ37tl0vCUOnRMk5JAYR6brQdW0IXUiQkjK4uloBOd91vFgWdBjGnY8EG0Ibs3tjpMeamrgGbCTCcBYSUT5K80E1SgnjdLX+P5suhPxZRDJBYV48o3FhygvZH1FEU1vAyJdCA5I3ayxMOftwT7bab2NEhMSInpkJHLFnKhwX3nl2hJRDXwgUsY+4z0KAmUnq9+BxWV1hI8jXICIA5hOLHDv0qiqiYso0Mr0gAURVUKW8yRKzc3bIdX7VYa9jPjGbL/MnzA84nQCgMNvnZ3iby5qhptky0F85dWDDbIYdNGhe4XQrm+9Rl0eAzNvRP66//qC+2YMva8Os4CBxZn34qgoPvz3RyGdZM8+x6zeun56eLpdL730WePo+meYQzxBC27YppYL2NBoHe/tjhd3hTJn9bToEYzcz4BsnL3068ANH8zC8kwpHX4p9b9jVJW/8yrJv4aRH3/NKvHxGTc18B/3UA2TdHnEzi3fNW+R4EfbxqWZgpIBM2XZQsMvpdLNRPLM2j/sDTqy8nPkf82oyUO0P+nEjxSGL17T7WS0py9IAuq7zRcVDGXfsvo86hdq7qdZNE8bD3Kq952eA05gZzCmgRWVEiVlP4TDAbof5gIiPCBgwVmhms8lymIYkp0MEymRTZr3BfmKfQkKbvMqsJ496GjOVZXG22+xiLJCrqo4hrNfr6mhZsPuN/++vfemLX/qpn/qp97///XVdI6KgVWXVqkKmeTHwwxNBVETJOyVUwk/96I++56WX//l//9//d//tP/pbP/83P/6JjweGgomZm65DIjBDJCayGM7u3v+DT//O+198+a/85E8uT0+7igUtxOi4EDVEZEA0EBFyDh18+EMf+vVf+7W/8+ydHMK0PwQBEIAxZzENOe5LVeu6vnfvXlEUhhio/ZO33jo/PxdJSo4GkdmGwRxn+XwJPWZBqaohIPFkzk8O7swwk0HTOPgW+vATzLnRMMe/zaeZpUMrfF9h7lv+y/jHrJ8TIrs90psQhyTRgD1dac5lBY4I8tzLuMH95MP5BJvtJ1nC7fV5FE1AiBnDN3HoGfbEs33mBqKpcXEaODcNiTMDRJc9UEY5KxITATuGKHLeqAqagQqiERHmhW/Zqj1WggcrZb/1XGFEpZ5ELKd8mGX1fnSxTR42Ezh0dn73ckCWCN084BIH88y0zvkhcvis8TXkw4Pd5fCDaS1TOcfAIStCVlgMAEAK0qPCn1TumaPqyNPLN05/6IWbz99YnNRuUTtkaNvQdeli3WyasO304SZumzU6vh5xWYeayTvn0asHM1BVIUnsgblFEiNRUnHaiGhzsqwWJRNbUYIh1Q4XrlgVi+Pi+ubc3zimAptmd5fITGNom6a5iN3ONAGC9y51ZIamsFisrl+7XZWrqqydZwBTbZK2MUhKqSyYHAFBVRWLRdlpt1wtiIioCyGZSVG4oqhWRytEC11HbYPgtVPXdqluHTNqZItiLWACFLMUQptSShI5pS7E3a4tisqQ62WVumAxqkY1MQPV7OTpqE+hO7BNK6iqRDFJoevaXdM1jSYhQl8tFquj5eqGL46QC3IlES6WopJiXKMpQHQeRcJms33w4OzifBuCBIVmF1BJjqCol9mxScyqNpW/ptMMhgRxGdM1TqdccgD+qFfnP+YrnStgwihytaIyqXOPRM/eUhxtogYAkBNKMjNMDtQx/JQGbsceBobokAghey9yHAoNB6mjXlFhIsc8EBYgGhTeY6+bZ/ajHkceU1SVqWBxtfIwnN8gWV1gclwYGKaMByF0TMxEqIACZHuwLBDhLB4dZmjSg/hjMxjhZFcs7ZmJ5FBonSsWcHjlY73q05JZb8bBmdVwUP3lJq55w+dC5oHp51I9ZRLlNZeQDlkdn8zK29MVD7CBqzgN5zLxtMxGft70jFph5sVicXpyWtd1NqYQIVLKv+YSui7nJs4C6PSAPxipaeVzyX766NkAYM8gaQYAIjhhH7L5uxuBZ49OtvGWq/0Ys+eiPaGusjdqPvLi7OAYnZr8LtVTQGXvojlQVKbXZTan/u82i0+DQ0UY+/3KDABz9BsA5GB3s+wX7wWbcSkpGE7sLEwDP52ZyYRdKkcHIvbUK1NiXLOpLJuDUrISMmopuTieQdqm8PIpSGyU+Hv9fHDmAGR06nRC9LS2AD2CYZwDNEQs9LrEHNBhE0/LgdBy8DnfRkSOOaWUgVVqpin1lQMpKA2KGRM756b+nLIonXOh7YxMJJnZbrerj1dvvfHmV7/8lfe89PJzzz2XMZZGyMwC5olJszceKSeJHJovhGoWuo6Jbt269ff//t//5X/3i//m3/6bmNJHP/nDCwRXFsTUKyqAANB13atf/0Zsuhdefnl5fMSlB1BCdOyyWQoMSKHXvhyp6PHJiYR49623bj/7jJmllLz3GcMmObZBkpltt9vs5i2KYr1eE1EbQkflH372s2dnZ977ZCOlBYCZ2oSZHg7W9uEyHPRIYNs7Dg5MTpz9EGqqCQellpCBYSRAHXeh/SqbyN9zyRkYZ7K5TYwsxPspSgNlSG4TunzogPV6RJ5vYjYTkvOEGCspimJUp8cLVFWgT9eTG2QCNlFUsupHj4uH0WnAh+GYawQNDV3eXo1BTMDIvEdHIOYSQooSokYFVTNBVRwwZ2PtB0clTt7YFebIvBTHbcTNt7l3ueQtbL8ZTewij8y2S0/fWdLo+f51ecEswioZAKlGIjharJ5ZVdcqfw3DnZPly3dO7txanh6Xi8p7T1ElpnR20Z5twv1193AdH2zC2TooWEu74yN74WjhkXxReF8ROjNCYESXHEZw25CCiqrrogZJhK1HtyjdyQKRLALvUnHzmu9uLnbro9Oj49Uide0DQJMYu3bXtVtJAUERSFOIUcCwLKvj45PTk2uL+uTo6Ng5Vk1te9F0F0l3KapX8szsSbUWVacU2OVFJ7Ix03pRrZbHpydHRk6RoiKG2GmC7SY2RV36goCKpNaqtWpd0katIxZmQFBKFprOkzMF5wtml7rQGSpGA1GBFFU1EOGQxYoRUVKUlFJMEuNuu213OwSoy6qoSqq4XBz7xQlTCVQwOwCtqoLsRM5bldg0wZrYttuLi7PNZtc2SRS5qJgZkfqUWEiDjwEfpWw5UFfGP44/qSrSzDs/vVKHDDZPPNP6+i+r8Ko5ipgTd05lDsrRKUCE0KsoY3g9EgESIuXEGIg8XOCQaCKPIhBpUuqF7xRTSjIVEy+TuQ86MhOYDcZg05x4AIwckUdW53SgS3tEBMQRyArfZ7KUA+VhVFHgiYX7vyxPXnqzlHNHR0eZVbYsy6Jwo1MqW+VDCBcXF2dnZ6rqfSFyKevFu/CK5tGlZAeSw1+W712yOdk7570vy1InvFI8KDB9GWT9UbJ/kmI2Q6QgYt5MiCnEmJPF5YD76SvL+0Z+0EEw4aiWTFuY9aKpvHFQRlNU1qj3GLOnCuW6uuTRywalvHn2U5TI+UsBmWYGZkVRmAgqAGAIAbwzsy9+4QsxhE/9yCePV0fOOR18hJjTbiJkJgGawHJsuCA7I8qyeO655/8Xf+/vbne7X/31X/PL4mM/8ondbndy8zogppgsSZTUtd1r3/4T592LH3x/KshMyYAE2AABBMENLIFBJaE5otOTkxTigwcPnnvxhZxEYXR/tW3bNbu6KBaLxXa7BYDlcnl2djaYFexLX/ziZ/7wM03TUFGOZ0nevt910RQmXpnM99kPFILxXuU4EAOmrjx9B0lKxmc55vFZNiTjyboiTGgLD6Sa6TE9eiClT/410RAc74PpsadTBCKcmIH6X6df5q6LnJFYMNsbAAGVQBWRdHntyEIIbRsbhGanIQH16QvfybA8trgnDJd8upI5iUZMSxf3idIPBcrJKz/Y+A7e0BM+2jErgDEpAipV3l07Wd48Wl0r+Ka1z904uXPrZLl0rgau0Ei6ttlumgcX2/sXzYN1e++iudilTaeKdAQllyeOyXPhXWkIpQdVclx6l4JSqpfxfNs1XWT2aGJNjBqDgINVza4AdX6hpEQipV5fruqVd7ILjYGlGJvdtmsaMK2KAkgk9fFsCMzknSsWi/rk5MQ5F2NASAqRJLETAFBTh+w9V2WhRQIzEa+qoSoQ0ftitTo+Oj1dLm+4csnVUpFLAzJl6TBGLsg0KrRqnUEn2qp27Bw7AFBKGnetP1qAGhEZEyMUjixpbNscASQyCAYDICjGNqUY2y50IXYtaCqKYrkoq9UqVBUXCytqNY+GqkamBXFRV2Cnob3YbJvN9mKzPdts1jFGUybyzjlmIWLnsyMBKesqRI/ikHVIV0/oDv4+yt9TdsZHFRVEdM51Xffkk011X+XbWkRZGphiwPrkwlkhmRyffQF0SESQsWGM5HDQUohUNatuBKZmhJSRGzGGpmmO5Dgn3slulv1KmcetTkYmp/zvuyOS8r0xxhCii4LoDHFsKGYHvQnN0hPDn1oI9YGcMRpjHqXq+8vyzssofh0fH2ezLjPnYVYVVWvbdrvZrtfbBw8fNE3DzPZI8tzp+0rvODhkNPlnAYLhL5WTt13Gc3m010xFotleIempFZVpxE7err33iL0fxjl3wLoj0OdrHtWSgwZn6T8LG6Nt4gqdY1RUpl/xcSHL77yM4ux0oMzs6ghLUwWzqqokJkiyWNQxrLah3W63D+/ff/bOndVqJSLOubxsFIdUTpidZBnQ1teWecfBesqcruvEOSrc/+q/+F//V//7/+rXf/M3nnvxheu3b63X68VymVLM6gcCakhuWeGijA4lxdJ5VjAEGVqPGcDi3EW7k5QevPaGiWYVFwBwyC2eNbSmbbcXF6fHx/mQzZAH59xrr732i7/8y5/76jc3XSDHKsplJSLS06f0GT6/Hy9lfB39BwRCp4/8/ftUZC7cZp05GyyRJ0m/5o7TnMdivD7rwJkRO07mr86jZFX34TGPij3j5/m2jCZoiEpiBghoxGpgBKAkYACOoCwcCUNqAUSgh03Cu7v7uh6LMlQ7dgChd/zAlE4eh8AzgHGejr61Eds2obbIJi5p2wgG07Qg2WCwr/UAKD8YAABAZrjAJ4VQG6Jhb84t2B2VxbWqOqr8kvSFa9eef+baM7evlaWRU3CQkrRd2G2b3S5ut2G9i+tWznZxvQvo3C1gXyzKgr0jRFJTBPK+BOfAiSkeuaNNMhBFX1FBLE5sJ6oqimTEyA4JWcwiWFEXR4uqCwFSMsv2IY1RCMAKMDMVAUMzEEkhhpQSADF757yIZJyCQ+cLRoySonoAyDR/vbkdAcrS11XtfVlVy6qslyfXuViyq5KRc86RpnbtUJwzg2AWDJOaJBExIfJEYJBQJXXt8niVMy0qIbqiKEoGbIxMRSSqRLOkYsCAxgSmKUqMIXQhdobqK+e9LwpXFUVyJXCBwKqGCgDJLDGpJ4zISA7QEbuqrJnJVB2XviiCWOEYjI+PFlXlcqQ5IxOQDRnhhilKBipqqlNKib0FAvrEiD1OaX7kAWQaAWbMHCmqeImBzSb/AmAPBx0gKON/Vxcicuy8yxEmQzBK/gDIkGNUsM+znv+YEQM97yPhPhsnEpBIyseHgjIYExI7Q0xi7a5JIQIYEXt2oyvqMY1UA7WMbrSJR0UVjRARFSFKspio56UhAEAiyzQgoIRP4QJ9d8qjAtNjcRp/Wd550QHAs1gsJjAeANCYkiRpm3a3211crDfrDQA455qmYXcpuvjpyqMH4uQIfzwy5y/LYTGAYSRzrDMz59zDE33fDuT4pIKT8uRPG/zGmN0jw0RC733OvViWpXOubdv9PaJmgDkOBmmGz1QzURMVSaq6x9YaeHepqjIqM7mMfpjvxzwZNas9TK7PnXJlFjgAUCu975jbXeuQVkdHGDwxr46OGCnEyJ5DjGOCZhvUlSyK7QUyAENg3ddM3N8YVP6jv/nz//T//f/63Gc/+1N/9WfBMzFLSp64IPbO5eCQddfcuH4ntB0ZZEVFeWhk9kKoEmLbdr/1G7+xqKqbN27mALac22BUcU1SQMxuli6Gi82mDaHw/kMf/ej984vPf/1PzIIvym3bGiVgNzxBpwRcY49g4jJ6tExpxCdjun8p42cV0UlCsEOlaI9TBVEZ5d5+Cu2hZVeVy9jM4zT7xTCcPHAVjHUS8zQb4QisHc0Eqtq2rYLxsh41YGJm3gvdGlIOeoWBs2syGtNm9Xja3GKFDOcHwwHO0dOdQNN0DEbeOc/IBJ5T10Hbgci7Ds9yXdrzrB2YuCgpDLDZPa9L7nOMowFr0sF8rQzvdqCVGNTuKWMaiuBEgpk5dlKUPqCwD38Zp5vpAYj88UtdEVpWh5iarhC7fbR8/9Hq5aP6eqmnFT3/TH18TN5jWZaEEKJ2bXux3Z5tNuuzdHEh5w2ttbgwjQwr72um64vKl4ho7KBg8uY2odt2sQFVx6XbXj8B4eq8sai04IVTCNo1EV69wKpE0E3BWhZYVq6qa+UIBTrx3c7aLWs8WZbXGRJqC7QjBjAvSRBRUmjbza65ODsrVssj550rXYmlWEIKRVESS2qDqhTGAiUAJkrg03J57HyFVC4Xp/Xy1K9OiFelP/L+CBABIq7aJOcxPvQmzsN6011s47ZF5CMz8i62bbPdfFfCA4weWm8lUVGZK7I6UR2fNNtdSomQS0cODFLYXNzdbdauKMU0qkQDX5RlXdeF46Iw0EUKIMBoTCUAIRigmoQoqTUR8lQua4SqqhjFgThCRDWnTdAQlVxL3nOx9A7ZGCNZagdIJIlBMsxKigJJiJbpWlNCxBBiCCEnV0miGYiJ5ECTGqohsTekGFPbdZISMYH3syw6AgpgimqW1ELOQqAmpgkhASaDCJgAompMKcQYDUUNgU2x8BX2ybv6M2RZ1R4JxbzjwhfOOxoApOQY0ZD6yzGzF3OOG4kOmZjIoS+c894554rCMaMmonwcejNTsCYkLqoQQrsL0qXVagVolqKZZNAYEEaJYJk02iQmEPVEYpAksduDWckIDEwNBMioQB+jJI3ABRikJOJInQdilX1O9dF+k5FCGYs1RA3h9Ehwbn+ZzTPnT8P+DqD2U+JCgzk1kw6UdkwHVliYQN4RcYz8MzOHM5/MLG/b5UIMXe41OoAtzO24U9BdnwCtbVtmdm7Wr1mXnR/t0AcV8iEUciqpXyoVzZpkmrHymfhiUa9GgzohTsIFLUksyzITZtd1nbNQ5DzIu21IKXadEPm6Xty+c9sGZP/Ds7OmaXJgW0auZ5APM8+ONpx1uZjGP4DRbAxn8TuQ2a+RgGfA0ByJtB/DqQFCQfHxr89MbQzyycTq+59wymOuNkGWHhyj88pn83DW5dmL8DTX9uUxLtBRf5j0f1b5dHVkG/7kwYOz0ZSTGgABAwIXzEXhyqqoF8GMoZeH6nqRmekBoG3b7XabYTCjviEDV7qZOcBcew9NcU4HIssxpH5UD3a7Xdd1rvBVtWy6NhPaMHNd1zkBAwAwmimKisYe9rvvSelVoknyRJiJ2sxUkpk1UbOvT1WJ+7jB3l0MAIRGaJkdjyivJS58mfYsLnC5iovz9zXbo6z/tZ82qrHrIEUTTTG2u+b66TVVNZWkRoO4SW6fH1lEvHNk3GzamspIXb1cbnfbk8WiWi7U0cm1a4lsdbQyQjVTEQfgvJcUFSDjK5mZEEXVOee97/LemPtE5Ioqz4Of/tmf+c7XvvE7v/rbH3jPK8+/7z1aA/giqXHSRVlfv3bj1Tdef+ubr904vWFijWkB5IGgE1hwZ4Les1q3baHtvvoHnzt74+7f+7t/99rJSR4QZkdE+djtdk0MkdmAwRgJfO2Lm889v93tXv3O67/2u7+/SQbVohUgX/WmLxiwX47G3AU2GLn7WAziAybT/YuIYR8OMddC56jAmbldwkRMpX1IiQGA832UCVFOE7KvUPfSbVYfhqr3cUI9jqqnECBEnLIO5lg0AzAxNRNTonzSZ+L5fVxWZl3sHQHWJxdAIAaQTZMVFUMg59Bzr+QQ5nB/yDx9mE3hvZmA2e83I8SxTYiATsDA9QZwUFMCzHl5qsURDZm+lAJw7ZaQQgdtZ2cPwDET9wbcvDP3dHaHatHk2yQUrbf1IpEDAAczvWpPh4cGKvsYmwPLMx0GOE7K+ATokR84vLDpoY0Hu/RVLrb99js/v67giMlRP0oAy8KdVOVpWaw8HZV0svTLRVlVRVG47KOIMW53zXrTbJv2wXnz4DxcJMiH7PHq9Pbp6tq16wZQH61Ao0lMGoJqVFQqkMmhi+22LuqbpzW5EKKipBDjOsYQVLbmKGDaHFd0cuRXir7CEskMRFSSOlcy+NIVni3G85DaFEMIIcQmJuuC27VnfuOIwKBzrlDtRKKCEqmpIQMhilpKKbShC52KsKOyLNiXxKX3DhBFDEkRick5dsQOCKIE5q67OE/RpcgpkmhGnxqgAeq2XcfUds2WtwUVJUFOqgNK5lzpygrB0JKlLsQmdW2z3TVNiOuGHLuy4LIoqkVZ146J2TNy0ggAkhV1Y0BBSkhikIAdArIJkTEWpYPKQ8nETqO1MdXJwLDoxAtqkhBDS2TEYJijI1DE8hGUM/xk8WA0qOuew2tiJBz/1MO3eod3b5PA2QQbbx3JHBVALNtY8NH18LgV0pv2h4NpsKwhMhEB9ogvHC99ZF6jIebrAOlQdB4MMeOOPF6NmrTdNVVRZn1gDwJQALfHyPTOGUTN+SJiH9SLiKCGBoTk2aFTr0rIyE7ZCQ4mhcuW4w9YOfD7/yCY20ePH87TDzz2SnsCAsGnKyNNe84tkSQ455aLOgup04Y1zS6l6D2H0LbtLsd3DnMbmdl7R4RVVU610xs3b56fn9+7d2+z2WQAQ66zTzXx57bgPEnGXBF6GiD79MD9PkGSJgUfhSHl7evAZzIK+qNLZLqFThtvk6wJU4XqMLJ26JqIiCoOOUhyCqx90HyKOJo7bYrDhwzknbbhsUtifC/Whx33Ee1jg6dXjkVND0jQn6L0se3Yp5yHITkBO3fQ1NzIvPRyW8kAc+5mU1+W9WLxe7//++vN5kMf/jAxN217Upa57xl9PDGGwyh39bvzRLGeKtkG8BM/+ZO/85u/9eq3vn39zq3q9DiDJ7IBfXF6bG++/nu/87vvef/7BK0oiiApGrBjEl0sl7uLza7tnMHXvva1z3zmM3/zF37h5rPPTGeDqo6pzLz3ZVEVhSfnRS0kSSJFWX3lq1/7yle/ZljY/O1NHBE4fUNj70aXTv8sgpllaXIbXjIxHvO+pgfZBPhjADGlPD8es0VP9uIDkKRMh8Ns/M8API+OrmGZjA0mBEQFy/b5UU/rXyVO7hqbYPsuC4DlfKcowAiEVVmpqsSUJHnvnPOIZJRTFkxsGHYwUnupnYgYuTdbqVns0xkpAkLB3iOiFV699w7CdittB8xoqCLInEmqu6cSExwk2d84sUGhzQF0B86yK+Ac04j5g+1DLtUsDrKhP2HrryhZ1CrQjuvi9unyxsni2sqd1njj+mKxqOu6zlq+qjVNd35+8fDh2fm62SV/3sWLFjv0CWlZ1Ndv3lpdO0VvVFUQLaokoKCajKO4ZIzMJmFRlFXhner5xXbdnl9sLu41GxMAW8Z2J83ZrdPig+977uTaDccL5woySHETgnlXuaL05D2p2a7pIIQUUxfiLoZUFNx2zu3IF4AUvS+IMElr2DnSwSxFZtZ1YbttutAB6nJVlWXJvmRXEZIkaZptoa5wESmQQ2YDAgUzdSaVSTSpVVrTBBYBMpeLbLdrVWm7na6ZitKZUpmcJeLK1YUvPDNa6oJ2TYjb9W5zse6aVmKqF8ujalFXy7peVkVNBmDZEREAkmkH5ntbNiuxIaHxitgX3pGWnq3yUDr0zjzjevuW896QFQkjdgGla1pZE8dyUQyKCknO3DVwsfdcyoONU+dlNH/O/3oVSElVtTfZPHrXE83YvBSyQ7wHlTqXzV00LVdWNoqD/MiFhIS9R4UOZPEYwsXFRVVVdV2iGRL0S/0RuYGG0EYRjRKA9gc8ZCsdkSf2JIDkiRskgcke+udBWZluX4Tfj9i/t11szIhK30NROSAQnBnU3z437kEZJcuiKKqqunbtWlVVx8fHy+XyYFJtt+ssfwBAHw9NRJPQ5GwenvZOVVdHPu+/Z2dnDx482Gw22R7/g6ArvpMyhX3rPMq2eCrx9iBenObBV0/bzLddaIgMyS6vbNfLoREjK8ijIcXTKWpDkNigxO4vy7dn912M0fuUxXTIW9kEIXYgh0zX77iZwxNQauJAlpJs34ADYWaib5OJXZVB9cnKuDTMgJDMLPOHuAOKTNuTQsYY3TC8SFQURVIty/L+/fuf/vSnf/Znf/r69etZgBm1lLz0rtCleBK3fVCeee7Zl977ni996Usf/9QnQ9tSXRgSEgPSj/7Vn37j4uG9N9/62pe+/PL73iuGrixiisAO27hrzsxs8/D89dde+8qXv/zT/9Ff+6FPfKwLYRoeqqo5O4Kq1nVdL0pmNgVNoiZNG/7ws5/7D7/3B8ju0dQ4jy2HesL3cznYlCYSwUxtSGB9YCc6CPYOYR+PzfOUCfv5hoje0+Tv06V9sL5mc3vivzvk/BjgR4hgZpKSDady08Yc3euJMJlppMEMKXiF0X9ScCIhgJrniZ+XHBExY/JSOqNULorUBtlurY29btkbP57gQY8UN4VjTZFaAGATW8LB7njVsw5yeT1Z6pWDn97xuZVRReJBTyp386i8sSqPajha+WsnK+d7VJ8ZpKhdGy/Ot+dnm/U2rgM1CdCXJ0c3fLk4OTk6Pj71lTdI2xBQVQ3ESLFQ1RDTtoti6fbxMWjCbrewDnxUThvtztuu6aRdNxqamuOzz1xfHJ+4okKiFKVLURLEIItjX/pKQoopxqiSSIXAsmWcAPJ6EABBEkAJMal2QImcqBJAv/fFEHa7XRc779n5lXMuq/4i2sUdJKoFCudLTwhBRBBTSE0MLeMxAzNGpkiQ1BQwKyqWYmJGVenCLnQ7JWBLiApeYyyc8+wwCYhhF+P5dnex3qXQXVseVWW1qJfL5XFRVohkAiljiJ2YRZU+aR4iOiUGInBYeCDyWHqqGRNCiBZTkBZEFIqyYOeSWqGoBF1sIKFzgmw6KCpJTRQkcx0BUB/bvS9T/eTg6/DZrpjZo6Ki87vMDN/O4hvFOJ6XvZ6CAJerTDS4npEQDz0qvaIyGjvHn2KMm83m+Pi4KByaMQxn/7zhfTRM7qBIDJGY0AzZQUZSERMRsDIkdJ7IxZQC9AlnwOBpqB//1MsPoPHehrRF+L2IyVVn2WnnlbzTZuSp5b1frVar1er69VNmV5aF9wXRFHIFdV2mlHcS7APpMfv0MDctI2qoz73WOyybNma6laqqyrK8d+/ew4cPs6n1+5oR7vtdporK4XuR9Ph7rizTxXsgi1ytx767ZaotIGBMMcY49U4ctC2X6RQdjZXDjJ3JA/kyEYkxiYp33E8DhtGtB1NEyNz6CRMdGB/JOj0tGU81TsgZL+T8Lt6ngkc35xyUFODtl73aY4CEOmZNnJfMoZS3phhjWRSDNEx1XV+s16r6hS98gYju3LlT13VRFDHGGOOYo9KuzI41t2jAaFIyhGpR//TP/Mz/4//2f/+TV1/94WdumRgxKKECHt2+8amf/PF//S/+hy/90Rde/ea3PvLDH3vu5Rd3KUAM3MTddvvW3btf+8bX79+//6m/8qMf+MiHN7ErqnI6oCLStm3XdUVRrFYrJIyiTdNerLfbptns2le/89off+MbQPSk2xce9GUyGd5tQ9kUdmsAmWaaDhTu3KhLmnRY4VQ3RgTZy98Hd9EcMj2rf2qitBkaifZxEkCARKhqWWLJor4RWQ7BzdGwzICI5eRAxFlgz3RKqajhftXMVoehEjpHyB7JiFdsRnVKVambRtoISWJSiwnruX7+ZMVZktn8Hee6geoE+jUZRgSYBhkf/ARg071oHzEPs0l0QKZ2haT35OrNbE6ZgIoHuVb7m6viuLSTyh0vnGPLN8aYVKxp2s1mt9vGZhe3u+68pdYAiU+OT2/dema5rOrSDMVAN00oHJoCoS+rImigDprtLiS5XntNLcqWLCxApYRNyReFawR23cVJXT7/7M33vO+FZ567de10UZUcYwy7mKKkpCGGqqgAYkxdhhGpoKkD80TOc10WdVkumb0KBI2qnVhLJgWyc+gc984qsRhCjLEoHLNjZkNCJFUJUQg6ja3GbehQ1SOpQUjSaoyUlmCld8u6iqLB2igWich5UuFkSgRMaBIkgIEgisagRljVRBRjE0PbhdC0u6iS05Uul4vlclEWJZIDzWHijpAS7rTnX4kAwMwK3mGRpRvnPJkRCyFoCipJQ1AJnoFqVxQliwKYJAldMAVV24GhK4goiSqQsRtD5AU0B0mNR+mYn3emusyDrMz2aASdIAr6G3rol45/VFVRIR23HgDdAyRULWNaRixBvmtUVEZ3yrj9ZY8KIyIM21PPppKt7UjEeAniQk3JcDQcju0nIud927bn5+dVXZalU1XuEdg5WSEg5pQAggo0WJJUhPoQMclDY336ZgcO0rCEswnZkEHtgMBiHDXIHrQhqPTRRX2YhmX2XnD2ebp1vp0U0vtKHkkONvn6+FsOa5hrCFd8PZS+7fGfR92SpnxzOZmBPf7K/ussEOXSgbIDtNj0bJvQBTBzVVWr1SoTOC6XJQ0ARedmdn1iM3XZCdnPUOhxh955HGS9PurUgBHNoCg8AFLmVRDpuu7i4iKEcPV71Gk0jsHI0JdXyXQpTN/DLEIDYUqCdGAmn6bzV9uPPA4gI50Q813WwrHyA9n3AN8zrYRoaHxu0azxM7knB9o9tg2zWXqVmWA6T/I5n3mfkJAmVsq9YD1qI9jb9fppOT734I9jS2ieBwynZT7yeZfMH3a73ZIoqxPZvZADnwCAh+wmAH1km6kCIhFlDw9M1LmxI6NzGBGJaXyVAADsxp4eCoiAs914Mucj7jOyDGPVD+xMWBw0u9wcHKKfwSzbpLJLKtczIDs0hJCPgxELl1+6gXnvDYCIHj586L3PlETMvN1uy7I0s9HnlkdvVLRg2HWTCCEPCzSzwYxDZcz0sR/+2K1bt775ta9/8GMfKdyKHKppQjS093/4g/9x/Nuvf+Pb3/z61x+enz33Jy+ddbsQ4+Y7b24uLpLq8y+/+PN/4+dfet97qPQKxt47wBiCiJhB14XsXsgv1AhjiGfn629++9V7Dx6WVb08Ona+2O4aZDfO0gPb3yjZj/NqXAtT0xhO4s3QYMa+QkaTPHAIs81hP13H/0/O674GBBqY0GDifB7HcLxrfIO513GemxSHHhkAIspQAx1mrRyZlw/LFMKhuB8BAtAx4tIAiRhJQQSQcrZqM0uqmZIZCQgtCSAa7ilWsi429LoPo5+0ysZuGs+OUUQUMENQx75aSEiGXBYVFIu42WnTpl1rohACeEfOaY5egdk73UPa8vgMz3KQJi4Vm4Wq4jz566W2uzmMbxZXOoeTwqTyA/ngQEOdiw6zjXjGaTVrxuz4YeYC7Kig2yeLG0u3dLIqufZkEkDLGGOKGkK6uNicPbxomhA66zoRpNXxirCunF+V1aIsCDvSZCi71rD0IOAZCP9/7P1Zky1Llh6GrcHdI2LvnZlnunPX1I2u7q5uNCjSCEEiJoKkgdIPoBn5Ayj9JelVkskkM5EPeiBm0EA1gCYIqAdr9IiabtUdzj1DDnvH4O5rLT14ROyInSfznnvq3q4qqN1uncrMmDw83Jev8fuIzRrvyHLq2+dP+4p167X24Bg0uEfnOyHfdPnChXcfP/ilb7zzzfcfPX602e0CgkUZoqYhDjkP/XCoAyMoQCRWQDXDGE2yY+YQNlW1cS6AUUrZzBS7nDtiDXVAYudYREeyICJiqqrKFb+sK/y+piLMgpZU+hRVBAnNUMAy2CjoR0DkUcFFZg6ITDWwxJxq35hGNEI1jWIckyqkngjb9tAe9t3hKqc+eNo1TbPx9Sb4QAYymjlMnp0zD9bmAl0HClD2/hJKdUToHFuOCOYQBVDFRFJOMfa986GqamZXAUCNktLQR03aZXN1oTU0RQQd1eJSX0hgNuHWz1sOLrR8OwnsI6iOSfO6iMYcf4ajbVMW12SOHOdzOWc2VLII08hWNPsmi9N6Nldg4bkkIkRjonnh0EQFVQ7hcSWbrQMD5XOXbW+pzhIRO9f3h5cvX56d70I4K+sPsVT30yjOzUQURZF55MpMGZUKDhgREjOKIgE7Mu9SPxiQlbQ6ESBFNaAlQv3pMh+Heerb8tCpqvp6Adx1sfuJSXP3VbqSUWuayDs7v/z5RGW859CJZXJKKDm1WQDilKaIEzFOUcVvnznqt7g8tNy0XyEqjxrk4sSiOZkZEVVVtdvtHj16dH5+7r2rKlfK2pjdLTCcJQoNLuubp3SG2cCaJy15QDNU1TnvsfBm6Bou9qTNrz9OaQPA6V1sLICZnrUagWMPgYzMZg/lYu9dDiAsowGjnXLUfdc9XM3rk9Tl1dzQOw/h5DQt33HZq+WGONtpr3TlvmZb9n2d7g5ICIbH+PCUH7WM2i0xdmFtpcxXHZW2Ncfl0k45WV8lbFIO9f3gQ5jnZynWn3RcnP24xaetE0ziCsVY8vL+c24VIhY+SpsJ72d19mS1rg2VMedt7rA6nQimbpnWK4E13XPcj6ikTZoxs3dOUl6CCkwTePQUzJGoskxE1Hvvvb+5ufnOd77zo3/0D4v9VoyTAu87n182ovKXuStlnB27uWPz5lDMJ0Xe7na/9qu/+vzZs37f1rstIknOxJizOuLv/OZf/tp7H7z1ztv/7nvf/d73vtdZbjabBw8e/OI3vvkr3/m13YOLetMURwASFVLg4n0ouZ1mVl7q8vqKnCem6/3h3/zO7/7O7/7e5c2+G4ac1fuwrOU4NVREoLj/4ShFiWh8k+N5OLOPIIClxdJTXGFmLNbRag4Ux8ocSFyURRvCXOdjiyjH0lyfN3FYWs5r8F+YV8oUKtSJV2e5/cxYU4iziJum2vKVCXHGlCrKB021PeXRBjhSuc5vujQwwMCk64GZHDM7BEAai8YNAJfAM2v7btmNcSjG9U4CBt4DkIpxwzX76CtlL8Ng3f5I87wW+Se77fJDOJzqRmz+pzz4viwYOFFG1jkH60OvPnCft/JLaWzgQC+a5kHtts52AWpnRMmMYgLIJBn6Pl1d3tzctF0bU1I1QgLnnScfEC32GYbgxVXKDPubRMlqTwQQDweQVDs6a7Bvh8vL/dnWb8KuqmvnELMiV3W1iUmbr7//8Gzz3tsXbz/anZ9X7LDtuy6mdohD6tQygMvaEQg5Uc3EiqSSVUcqHwIwVQE0YlQTAkVS4jHjqVilZW1sN5sgYbPZjN4a0Zhi30vOABhzijl3RBGS6gj6BIROlWPq2vb65nAZ00E1GxqRRzLval/TR598fE4Whw5JRYkyIzmFXtibWd93h8OhPRzYctM0Z9vKeWUWg1R8T4BBDRRAAREcoXdOAdQgIxAim6JmxJyJSSSaCnp0qGpiedDY92nwbV/Vvq7rKjgmkqyWYjf0UTgDA4DzAQCTZDUsG5rGyLS2SaY2S5Z58xt/HcmcT/LBdPKf3edP1fkOd8/k2Uo5qUu5vVne00SUebJLb6d+4auXUsrZzLqu2+/3220dwjFoqzZWzo/mzcRKFmOMXS9MIQRwRt4TTzX8AEBITMaMZpitiPNXQAp82e1LFxRfervVw5+JZLgpBeuo8S+PFq2rkKI8evTo4uJiu90yU6gQEZZVyPMlVXWM4N9jtq0nhBJ701EPnpXXcv8vPfXrZ3+qvGZbGrG37KWvpJWP4pyDW0RVr2w2hZImW+K1rKl5RhUpWMIORTDaFCWYzJsjltqcu/+5bTnn57p8O8Fru+OqWTLfPmF2LS3ttOUJszFz+w4FKkNnm1O0uIRowVqzDLOXRwxd3Gyam8Phgw8++LVf+7Uf/vCH3/72txHx/Pz8+vq6XDUWAjkPCw/L8uk6YTefOoUB+jRs2H/7l7/9D/7dd7ub/dmTRySiZg6hCqE/tMBu8+TBr539ld/8j/+jw+GwPduhwf75y48/+qjebtS06zpXhcBcous3h7brumKoPHnypCBNX1xcKJgipZy//au/lg0PQ/rd3/u9632LxEAMbyQBVnsOLrhjXqEJf5nNpvDd7aDcrFHA58X8y4KZrcd7njXfxwCY3bHAHRiPBJWj22XU3tVUVNEMTNG8d8ty9GWPJSuoqiBYtoXFBffWy9JirA2O2VMIULAYC70BBkbHzOQ8U27sGnLbwjCA97Yk18IVIvPJkDrLJ5gEx9gIMt2V87gGalwtVFuXRN0lU072tnt2KeY3mWxpiJ5y47n20LBtA1cOHKiZDVFEcehz2w5t20s2Iq7rWrnaQ1BUlFQzXjRVFSymrr25TDk5fZCTeh9qz5LbauOHlN562Dja7g9509Sbs22z3XiikHKVdJskizy8uGgCXzimnKznyHh9M1ze5JuDgCk79AGQBlAlNmIhNmZwAbJayc7K6gMUsecZgdmx88Ra154I1QSBisdot9sp6Ha38Z6zaT/0+8Mw9JYENluIiVNGJAYUVTEFNQVFTH3f9d1wM8R9Sh1gJgJ2hMSiHNh7dmDKDCn2gGiIhlBxNaiVHNkcI2kOlT/f+d02BI/EahBzFmBDLlYKqBG6wAYASgSqXIwsU6cG0u4xe8m9knFAtAjSO1Mk6BVSSl3bI0Jd1455WweLqqqomHPu+z4AArksNteopCF6NxYjzZH60k4skEX8wwqCzO1DZkZ3YGHDwlCxew0VAJitlBDCsdrki4hTVS0pqkxLQQEAwMQG46bFE6VaaYjonGvbtkAtrW9YXltnpcFEcs6xH9r2UMA9q6qCxVpWVXCUNJfSIFVAPkKO6FdprZyoyz+D7bSH7O4+98+v8cSUNyeHzIfK9K6q6tGjR0+ePCml83VdI1pRe+Z9dOFdfkOTNGcxHdNaRumR821V70tpyz3li66yn6lWpMSsFn+lLzIruMVQkZg+95LSlqLyNeGxlm9ExISSUqqqESZumcJkWXBRl/WaNu1yzpcfjje8+6p7DJX5DsWmWiIynwzF3P/Tj4WwzCpDpTL/QwhN05S7bbdbM5OpjqXsKVl0t9uZ2a/8yq/89//9/+uDDz4QkYuLi91uN2NqmRksKnZOKvFmQwVu6cSuqjTJg4sLybnvOs1ZVQv0pTN0zoHjTnKGfObD7mwnfby6vPru9777r/7VvxKRd959N6V0aNuvfePrjx89cs6dP3zAzG3bFhCOYRgOhwMihrpKRkDUP3t58fDRf/t/+D/+43/yT/8v/9f/Wx/zK0qdvnhbvjUCgBx1xxMd4CdvtuBnJCJZxPZnzWHu1103ERGYnDX3PGsZSjUAvONkAzDHMFWqmClkISnuU8V1wdXSxnAEc+hzPFqWG1O+W86fQqhPTo25ZtcAFEEIkFgR0JFX9SaJuUwzGJ3Z4xN1bT4tZ6k7JiDgHAAZfy9qx+J1YPH8WzGaxV0QjpnVuPBFn/LdLH95xRyaunFCRLD4meYNE48GEhqQWeV5B/Zwt32w3TTeBceeEAHULCfLCsMQ27aVrN55qIiRnaD4Znf+pOHttt41ARDEVbxptgBw9dzMxDuqA5sPVc2XV/3D87BpHrZD5Z2rQ137UIXggFKMqR9ySheb2hGyggy5tT6qXl0f9jf90Gcm9AxVRc6ZSUYDJEVUIK1qSllEZEjXTUYFBGRkQ8QsknJks5zJeSQlwFJpwFXj1KyqKyTMw9B1w2Hfdl0GoLoKlp0mMnLEgKApxSEOOQlJnWOU3IJF02yQmJiRiV2WbAZN7U3z+cVZymk0ms1MYo4xD1GysJn3LjR+E1ztkJwSZwMo9Y1Ao/pqJdqKhswGkjMW8lwwAcM4HFCc5KSkJMSYUZNnclz5hCo09MKUGChUlfdcNz5rrhT6LDkKApEDQzIdoyJZMqGjiYpuPdeObTZIAMDW1feT6VJ+KUzCJW5bpiFOy4TUZD5rFSk+bWMgpCgBaIoTduVYwlX+vTeYaaqFcxkL4+MimxKJYJ2MMT+XnfNWmXUq49ItXK5oAKqmI2AiAzBiNtWiSQ4RRZW4fFETLWlg6tiUU0zKkBRUJyPuz8WFvfyaP5va56qHP8V+LNoyS+FkORS1r67rR48eXVychxAKsnA5OFZyrTdLKNxnq5S5RTLCCSbPcUukFBMYlGq6FOMwDMVcWSarfFntqzB+fiptNlS+Iovu9rqdxZTAaxkqS4laUlJf51suX4cJM6JpIZVFWZgEAGNN0he1Npdz/phs8nnha1y32yfM03vWRFX1BM1Mp1TG04hKuScds3BMVQDALIRQrmqaRlX3NzdYhkhVcq7qOkomogcPHrx8efnZ02df/8bXu64vRJliCjJuZCUyQ1Nx0bJXCHP+yzG1CgFUJISwOz9DpMP+oCKgCkxGaGpxiJaRvQem68N+66offu97P/r+D1+0N65pLMbPnj//2te+9ut/+S9v6vr3f+/3fuu3/vl/8B//h9/59V/v+15VX7x4sdls3n77bWY2A3K+HwZy/unTZ3/4//mtf/Evf7u7uYGqPvrgAVba5vqn283WW+38yiWVfdaZcRFPNnjFd30t2Kvl+VObclBffRTXQZ5lK7MTJpsYRpE1K9LHdoL7F5fhhKV1AWA0oXwZkDGxKzYTTpGLlcYw6TEM7iTH1TF759FRWgBILJhGil9y9YUWUw3QRhYEQ5OiazBZ8U/XlfeeQjhcXVmMQAxHObDC4kE4yhGnNLNIjjro4kxdHLJZB0MDyjq/LhYzYZ5guPz7+DeY1sPCZlkZIIwnpy86sUBNOeVzFVUE4THpBAlZxBs82Z1t2sO3f+Hd3/jaB++d7862XHkQzfEw9EPc9zqklFNGwIor9BSY1VNjeL59iOyqoN53zD0zek8+7Jyn997yIskhbhpXhxosb8+e5JRVc58YRx4gdAyEVDWV7bwZpL5LYEkBBoUB1ExT2pB6D8gaPAfWKnhHPuesJuTQV9wN0uw2IpJV913PoXIhGJYk6x5QiTGl5HyBpnbB12fnvu0Ogf2Qte+k7eKLF/vr66vr66sHD84e7YxycopOayTuukPXX1e19x44DQMMObVxOHgWZnIO1XJqe8dh2A8bp3VFXtsmuBA8Iopa1+fekMSMEJF8cNtdc3a2qZsqcgImZiIKzAERADKaogFbQlADBYNMmHLO+SD5WlRZVVpEAkVM4KVkSSLsb9r9Adn5mEwUfOUdUqjwYlMrX71FeGj15qCxi+C2rt5UVRBKfUxNvRVVFTUrsc+jXkXMWVXNspkCjjgYZgCmomqghgqoSAJmJeESYRBRQCn7gamIpqQ5q2QFZAADQtRit6giEfvucINTEWGpkizIJyEEyenifOuJHYFzXPRHJvaeHbnYt7Tw6o0U9YAExIioZBkEcmJBJiNDICIWEzMrFQOGKGOtf7GeMGYL9Wa/Hw7Xw+7JVodsSZg0e3HsAkI2hayqmrpO+96pskp36GPX7s7O6m2DVAE5Q40iWdAARRWQyblCc2BYKg6PvBkGJ1L6JCno1SYHGq4qB5ZUBoC8iFHoutpk2WZo1FtmG/ipNmB0PS61jFfteePtb2fQvuoQrDX1lPNRx8JVJ1f3PymwGV9fzQp94XFIva/uumoJT4zrxIdhGGY3+cl7Vc4z4ztPHu+ayrM1FTJFRuNCpHbcaFcVBu6EQXJxy+VoqCpNIEs5CYgQcuqHzz755OnTp23bMWDlvIhw8PM7nlSWnwwvLqomZqfaXNo6n3bipCyHyh9LXcTooQfMkkugiY9Um1p0hlUR2/LbnXy9e9I2FukTpXZu/tWhg2m24EQXPfrp4dUziohE0/Lvy8nGy4+yHrXlNjpr4cVdYkOPYMwIgEQYgjs/39V1EEkloWismgBbkmZqlsmdoypSMlg8O3RoC+qIUpsLAAoKADitu4KWW8rK67pWVTbt+r5jrOs6q7SaXRXqbd12HRIhMxBlEVWd6qYYES3nedDGKMVEcbgs5CiBC5zq90rd31zarguSb3RclEsd59VUeIBYhRE7uNxNVUuFTFVVbdvOcRLnZmBZE8nHlBBC8q7aNtJCm2NFoCkPXXt+fiExtW17dn4WJb+8vmoPB+1yXVXeeyUAxzlK8MEFb4aVq59+9PTJo7eaehvqSgANi58OLKXy5WfD7DgdRErGpSNWMylMmgCA6FxF7A4x+c0GgCybIz+gdTmzJyaXhlhTtb8+xBT/7Md/2nbdO9/+pf/wG1+HwtJlYDmjGai998HXPvjaN/+7//d/F1W+/vWvuz547+vtpt5sYow5awa46eTly2cf/vhHP/rks6eX1wPSbtN0hwP6MC97tYJ8SlQ4jMvsLQXWJW3dTFQNQBd5ULD4ZIyYgbOOmQ5lfUwmELKjmaTlNDpMDqH4+g3wCOlpCGbZjsvhaI7AWigVuVGWmJmppHkRFXfo8VFgIGqSi2Zc3JZMDEhJBI5XwcxwaAjAI4RS+by21LvLImYayRbLNCiHumEqyLMp6IfITMiHoRsZD8iNiwhgADVVnLjtDUGyiORFRCIuAlY2J3EZAJsHgFJTZDCW/SCAMfZnNWTRiqtNLfs27Q+QxBQIoeDYiRmzJ/JmYoqqBkaF8HH6TCf7wfjQ8dDRPWvwCvvTTv7/5D7HC0/++Ipn3XFnmF568TuhAakCAqLsiHe+OnP+rbPNB+89/OY7j7713qN3zjeNE5Is0Yakhzb1gySRkh7DDpkIPYAjBvTbil3wwXnPzrNz7AMH79kxh9pMHVLlPTOAZslJs6ilkGbcd6cKklUVlNAM0nA0kUu2A5h5JkfBIRKhc67o5KVwiNl5D1VNOUvf9wXarwhT7z0REmRiVXPOYWPo2BE5U0NUIBhi6tq0vxlubtpnz5637X4Y+t3ONc2jUBmTIqiK5ZxTUuKEhKaQchzi0PUdAAQMJVlKVE1iFilKdlPXRfoDgIgMMRIru+JqxaqiqsKqoqrmzcazI+cq5zyhB6QCfIKGcQCYMklKFURJAlFVk4WvFy1Nf786HFIfYjzc3MDjJ+d1w843zjMhhdq5PjMqQ0awlA7JEktABjCTbKN/QqUoAvP8MxE4epdXjJBaalRgpHRczbtiKE5zcPxPR3fAkQsSpiDMpB/PjSYgHWbmQnoyri3jSeHQLAmVcNVevS7GInuYXHiw3JxsCn2VX/t+YCLvQxr6q8urh+c7R0RACDahgZiJ5JQs5aEfhn4Y+r5rW1ENIcxOisUqnATHVBXzCkfQz2o7+TRf6bPK6BWQq/Lpv9LHvUHLOdf1pqqquqlLRmIJphvYGhj2zZvNNrPaoT88f/78xfMXfdeXbQVLHuP/f7TXnG/3nLacQm82e1cmzDp+O+tbn5teZcv2Bp243dQcsUlht7vTvXF/l2CabPcniBZLdS4OWWRjraACZrmNY+F+BBjTaJf24byuP/9zIBQYpaIfj94LMzM47PcxJSCsqqqq6344mJmoFBsJEE01p5SH+I2vff3jjz/+td/49bpuxLTo0kUhW24csMZrNgMFVdFsGRGXmHiE2Hfd/rBn71wV3JQyh0j90EMWBoxd397sf+tf/osM9nf+i//84tHDPiYAEzU0I0BQ6A5tXVWP3377N37zrxgAsXe+ClUVqubQ9tvt9k/+7N/+o//pf85q+/3+hz/68PqwN0Kugqr6pk66/NBoJQ+5yCNdVC8seHVO1NCyD06fBolZURGhQG6MH+COa38qbakSAxaG5lkZvqd/Ry9/mXLzqd778u1iSrCYkAiAzh0HsSwQREBShKppSva3qKjpDI+mAM7x8VmEqwT4VU0/2GtQExgCVBU4JRZwEqrG1dvu+QsYkjGVBHrIKgLgENlhcRWZuVNU0DvSKv4cdvTXabZCP0DAYIBskVVq1Lc2/oOL3ZNm887F7lvvP3znwfk7j882Hh2oCl6n4dANV/v9ELOIEVEIwQDQOyZyzEiMgZihCug8MYP34LwFr+yYqgoJx6pSy1IYcVVLCsSkEc4xagAAVWPmeSLOxD0FkTBwmIsgir6eR+crh8CIOaVERDHGvu+LkeC92zbBeUSs6zoDQIkvqZpkSyntb7rLl4ebm+Gwb1+8eJHSECrabpuz8zpUwXsyk2GQw03b9l3OAdC8DX3Xd103DMMscEuXYsrFUzVnjJRfY05DPMSUsiREIPZITKTEgiiOkBEqNu8xeMfsS/E1GHauGGMjGHm5YTFIDjf7OXO9eKpSSl3XXV9dpegOhw5RDAZ2mfghu40ZB+/rhnJOQ84ZZehT3+6tR/LMzCpupLRFRGYknvEiSnbY7UKU8Y/w+fvcfNU0JjhyQS4uL40WGc+0ok+hESphSnWlCVBYVQMvSMfuUwOQief+JF1RHOiE/VV+JSoocPry5cu3Hj88226894gj/8A4+DHmIQ2l9cPQD1lFVUNVhbpa4p+riAEKohgY/cwp3/e3E0K6r/RZcyijrKyv+nFv1rbbbdM0VVXVdUVUwCrxtfXDz2+jiEsppXx5efn06dOXL18Wb7pN1ag/i+PyZbfj3vB57R6Ddp1Zt475vF6zRRkVmi1T14u8mvPx7rnJUnh+KV9vDLMUwfVmJPBTqUyRpXel3MAay7iqqoIwBgsTZQ634iKyHdtDWchlZGYQiBLDgaOl9Lq9PcIKq3hyIQQFY2ZRIWYxNQEgqqrKTf4vNPjOr/7a//D3/t7QdjfX19uzs3KrkeZvsd3AGioKkMvGujTJSov9AKJ/9Md/fP7wwaMnj9l7K5nARHHonQIjvXz+8l/883/+3e9/77/6b/7rBw8fAIBmUVUQVVXJGQHbrr2+vn7+/PmDBw/Pzs8ePHhQhhcRt9tt13W//uu/fv7WL/zf/x//z9/5nd9ptpsYI4dQVVWMUQmcq5eE6wBzVtSE9/X57Si1DMGx48X+vj7z3xN5cyJSSuJf0alOlHYiOtLeL5idDSyESk2LN20pHE5sudP47WKN6r2wjavmHLCSYxTDLLV3vgqHq2u5vop9BMnAjl1AZBuDNwJgK1iP00W2fO4CYOjL3MG+YFt5CBCUEMGcmrP8eBN+5d23v/3eWx88PHv7wflbD6oHu822caQZVPsIRtjHeLk/aNSCTU7MBRvbBR9CcOwxNI5dCN75gnBkzjN777xXQnaOiXKKKcacBs1JRUSiaSrCAVELPrMWfnRbGXshhOJeLW/hkLLksn3HGFMq6UhaLgeAEr4golItVzwcMWZANgMiD0AiqgJx0GGINzeH66uby8t93ydV9J6dDw8fnX39Gx9sd54dI2jO1HX95dV123V1HQABJUnOKSUDVIOc1QBNLWUV0SGlISVDHFJy7Igoi6QU990h5ZRFiKiqghogOXJeDNkje0QHJGikY6KCEQI655DYOcfOlRQUKYtDhIlSyv3Q40CSJav0wxBz6oauvckiyg6url8SJx/AB6gqX9XV7qxRoGhinLPGrj90nQgYO2fqCByxQyJ2ntgbjDmCwEeOkaORYmN5y1QWf98cf8WFMxfk0QhSVZ1tlFlbLaisI2EjAAAUyVI0ttG9ZwvkjbsbEeIRHMbAlqJknGbFLDw7O8tpiDF67/u+67put2nmM2FSJWWqyilmGxJq1r7vkSjUVb3drEYAYMlN8XPUdEFIB1+x8TAnAPwsOHpe2Zqmubi4KHgJRMQOS32jmf3kXcbJrSsiWXKMcb/fX19fF6eMTsC7iCj/vqgO97QT1eGeiXfPbLkHCvm122LN3spaLKGGV5ISLttsqMzxyS/ejdM+OXZFijKRfvFVuRTp93eJFuAEk39wlNLB8ew6hEl+lkPF6VCGpYjxOZNwySD5+vrRLL2LFYLTXpBiQqLSh1BXiGgpZ5Wcc9e277377sX5+e/+f3/nbz342977etPMStxsqOAt/Pf5o4/4YAtfe8XVJ5988od//Ed/46//9d3FOTpnZqDmiIQYTc3s6dOn3/3ud//a//Z/8+TJk5zz/nBg8lpCbzkXhPGXL19alij50eMnZ2dn5xfnn376aUpydb031VCFy6ubs7Pzv/bX/tof//Eft31f17UA5JyZGXDNY1j6RwQFg1j1qDTfvWzmjzVuuKVEuiSGniJK/3sibU4kQIyx/GUOrcyHkshsqDAzlQhGUVdsRH0sxLuzhLltqKyiFwvcLFqTFN81uAaYrNDLIANmESYM59uNd0MV5IYlRohZ1KgwUo6ZXOpA7w7YLNO9AGCKFZbldFeu170BNbvzt3umzdJ/pFb0uTFeaoIOEcRLfvfRo1/++tvf/uCtd8+377/96KyiyrMnkNjHmPqoWaRLsR9Wlt62AAEAAElEQVSSpUxEznv2znmP3rkqVE3jQh22j5ldCI4dq2WRjJ7QOyACICPQUohFBISGUNQ6nErjiBAAs4zcHQaAi6NlQukEHk9oki0O2nXDMPQiglTATxhAylQrPANzUm9JKQ7eh1AxezNISXPKbZvatr++vtnv22EYAJgdbXdVVe/ee/+tt956UFWRHEuCrm2vrq66tgcgEVMwEyVgYiRgM1NiZmeoJpZUYzIRMRhiLlnFlmKKMXUplbwf51DNDMQwCwyh1aGLIfimkbpKdV37EEpcwwDVe3YFL1xBFQkUwQgJ2JhAkJh9CIYJE3PlsXMueOQUHDGjWeqHdr+/9gHPz8+891VNzbbKmtVSH5P3sRt6S6LiiSpAVqGowBx8tWEXAJwhlvItWGQvTNutIsy07GMa1cIagWLDlJW8NGaKW+K4YSPMpRHO+RJkH8Mok8USvEMiXItcnNLDNJUCyzH5deZVLMHW2TgwM1WZAxo4FY/OrwZz9GDiyyp8Am3b2qOHIgKgglaMJmZWZsVc5l7xzSBijBH7vuu6bc5NkUdUiCZGFEJEhKlwsfw4d+YLeBdPNikbzQkiUrkzunWPLjIrwbdPWwY3TqT5PTc8OfSa5o1jV9DtR76IewEfX/2sOcW9KI6LI2VqzdN4eVGZk4tfRylUVvGy2KCEU2ZEVDyWC345bTKktTA83tzc9H0/+/PmN52Xz4zWP3+auwpFAEYqkvnMJdmLiuKiLU+b/zJHJBYm62t91kJ8sujH6dG7rlq/ymLi6UiY80rbYznZltxBZStcHHoj9etWWKbIvZwzA8++DxWd3bTzeM7ra+72qBoeew626DBOGrmZwVpS4URTC9NHx4kbftK8R1Ezr1xYThsEm4TG3JNleKSIVoS5TGUaNNVilY3CeZ1Aa2bFCJEpYbjI9pRSCKGEC+aeH+fVaumtcuuOwdVp1McOiOuHAbnEggA9M47V0mONjerVy8uXL16cXZz/Z//pf/pP/8f/8ccf/uhbv/SLBZ3JzJz3pgqLMvqSPzR+G+LZfVbet3hCEVAtf/Tjj3LO73/wAYdgBGbGgJaViTRLzvLd7313s9l885vfjDGCZDCTlEytoPflnG9ubq6urs7Ozh4+fozOEZICA/mPPn366NEjX4UmVJb0j/70T//0T//05cuX9XZT0qXVLISABHFOx51RYhAVDQHQr/G7VjrxgujbbLauETGrjksa0ejIuIEAGlPJ2COistcsvtcioQlpltg4Ub8dP+piISyRfE/YzG1iGcJbzseUF2AVtmSbRcORjAUmLzjOx3BFMzPfExHzMEz9Ot1/dSGwCsqRIRRAn9lWh0lJGIvwEGWRGoprItrC7BdCOAZnZoXq2LtV9rAhJDQEslI470BABjOqq21V2abqD4f+6hraTnNC59k5MtAsblmzWrr5yg8GajNHkhaD4dXn3WeorHq8loz3xK+XfKLLC9AMbfBANeYHDX/t7YcfvPPwyZOz3dbvHjYbIgcAmgRBVIZhaLu2Hfo+xQ35EPzubPfo0aPNxXnd1L6p6+3Ghxqrx8yemdmjqogkoJJNCp4IQAmAKRAZkhEBAgKpI6TRl+1MwTQXEiomAmKajpVPWP4vpTTE1HVt27YxRhFFhFLKaWTMjmiUNUvfv5ltm13d+LquHYfCp5OSDkPqur7vhhgjIoRQyATDo8cX7773xAdGRBVs2/7l5fV+v2fGqmmcI0Ug2BCSqJSoDhEiO7CsZElTUsuqJAYCYgqAMduQVdQxFx4qT4gGLOK7Vlvr+yFXLtW1VpWv6sEHj4hUylbrihyHELz3vE7zTSJJRdA4eEbwWjWEWQUAzrY7hFLJK94TIMaYcs45K2cLwZ+dbdRSzkOKHCMkA0LzARA1pjxEKUGhDQf2zpDEjmbAPLDFHBEZE8COStJ0yBREx/DobL1MW8JC5UUEwHk/c8xF/BY7c65R8d7TRKsEU5bz/MVXcdupYNpK2QzNWaxT9qEWIUiz2nr0iEz3z0N2jMw8Vv5cX7XtQwAIweWsjqGY7iaaMRb9YDZUVLWk4Q19b2dn5SWd82ogNnFujagnOOvYs6B8TdXphGF9oX+8odI8PxnXudoAMGsetz2vuBaAywvvOXRPK2rltMWsXnP94wnF2elbz0Nxet5CSpwOlZ1ePn+qpbytqmp2D4/q3nFr/tJaGbGcc9d1xYeKa6fvrK3Oheq2rK1fvNRKvweABSDsKgd9yh5ZzqLlF7ejpXIUtivo2ltfZfVGq26s1JQ7dzMda8rHq5bq8qiSrWrMli/yyqvK8xZnLm4Oq9183Y73wGISzN2YMMrLwmca5dWs485a0XJ9nazTU4N52f/J6WAzzsfiS02/HpWeMcI8vmRR9XD2xcBy2kwvVVwzJfgPkxlQPH145M47okHO2ytO9TmzRwmmdJfy7jM+RzktpTRDpMy0lTTxBb/yC5WNoPitYeKCLOHr8sRimCERAGIYlWsz897HIXb7w9WLl2Dmvf8v/s5/pghXLy9TStWmcd75pkl6VBXmTzPGGdjNCW84adjM7IivPrv86IcfPnnyxNUVV94QC5QLinrnRO3mZv/hhx9u6qZAJBNi3/eoxEgpxqub667r+r73IVRNk822dfPxx5+8/Y5H577/4Y+ePnvxG3/5N7JAn/L3f/C93/qt30LElBJ7R0BIICJqoKWWlJgmb9dk8Bndk128nP9qAnJc3bQAAtE1H64cU6aJyPljlqPhq2vADEeY2fmZy4WwhsB6taNhtlVeeWZBET4aKrSAKSOCxZxctuI2xUV6+Xg3HX2T85nL9Dmd98SiTsgRGQ8mpyMRGWLF/iQfbzk4S+N8zttUVV7vlcvlgOCOI0gIJb9UQUDd+XkIQUOVDwe7OVg/JBUGYia3Fssno7sa6Z9WneyJrlBGh4i847MKG4dn3PzCg+23f+H9D9569PjR+dlZqM5qS6wGllExJ+3aOLRdF2M0s2bT7DbbR48enz98uHt4UW03oalCXbvQUHgI5JiQqCRYmUiSnMykChWaIgCZpeTdQDm57KKICyQF4wEAYxSzPGmlztc473xFIIpIYdu9vLy8vLy8ubkpETdmJpKcBRGrZjvvr8VnMyu+Z7sL77munPcOAXNWyZaTSh7nmXO+aeq6ri4enL3z7qPz84ZQHTZdF9tDSjGHQne/3fjAhuBcA4alar9t20JUn0uUREG0RBJA1JCYiHyojNiDc66q67pp6s12s9ttR2CfLJoHx+wce8foCRwREzMhUzQ1wyTZENhWbq0QvIIZAjOXtMUYY6iri4sHNTOaqYmZ5BxFEzMhUpaMMXt0Ibiz3VYkxTikIQwghOyr0ZwOSbshpRhjyE3Fjl2OMq+otR2oMcZSkOi9X9okaqaGr7xqvScdHfkFEGZcj5NxMn1owkIzP101f259/VzPN22qen11/fTp03fffTdUu+UhnLYoIkIk73zMyUoEBqHebra73WazsVGrAJoMla+0w19pe31b6LVtrtP7v/Lne06D1w5EzfvfpOS9Wgme/nB0Ep8coAnXCL/U0pQ/h7Y0PE5eeU6A+Sl17eeyzRYCrZOIZim3jCS/2f3nn8utijwspYlok9ZuYDpy/njvZDg6nme76LaonE2Fu5JmbSrGcy68Tm/nRLhxmr3q0KwgllfTW7UBJ4bKsZNIaFiIqtaZY2WURi8VGDCzqe1vbtIw3FxfP3v27MHDh9vtNqu0Q+9DuHj4YHu2Y+LQeJlcXUzEd1QZFXgeEWmaBsD+6A/+4Ecffvgb/9H/qtltrTjax8xkvLq83DYbALg4v7i+uvrBD37wjV/6RTNtmiYdYhqGw83N9dXVoWu3u93mbOeroAaHvr+62b/z3vuA/OnTZ5988knbD3/1r/7Vpml+8IMP+77POXsmEZkZ4q1ER7EkaCw8XuXoauhxqaviHSlBVkoQF+98vAQAJOMdcO3L8rDXd0it2trBsRREt1l3XqetdP11TH52a46z8J5inpMtZvEz3b0xxRjnwZ+rs0rb7XalsHlO+YE5SH5rYU4/gYlB4TcxIEQgNAMjAKMOMzaVd9zsdmnbdi9f2PW1JBFHr0tGdmoV/TmqJsuU3DkHcbPZPNg1f+msfuts86AOb22rX333nSfb7VlTN5tKmVP2zkyUkmiXcxRR0G3TeOcfbx6dnZ89ePSw3m1DXYe64hDYO2SqAxVKQwAtZq2AGaGZM8ICMgZgDM5DAd4FyoDSFyeQ6ogHV75oCNUmhIkPcGT7LmHcGGPXdaX4JOfs2AEf9wDkWFTb4soqOm5VVUTU1A0zMhMCiogq5DyX4mcA8N5vNs3FxfmjxxcXF+ehwpx6gpBizEmralNvODT19qyuazYixp0ZppTatmXm/X7ftq2WLKOFLj77t5xz7B2yr+t6t9ttNtvz87MCuQsAItoPB0RDBCRjB845V2gjmQQbmlx0p9JcrfiZikugOKs2m40j3FWVaam5TzEO/dDlnHCs+IyVsfOWUswpgkogdFXjXUAfRc1Ao0NMVrIGRURG6vqjvTHbHmrGzDrlWS2bmY2c97facVMp7zEtk5TS5NYZiVMKz+NoqyDyQjzMbsvSn6+0ON17H/v2xYsXFxcXZ2fbFYwHHPnImMh5H3MCgMPhcHVzHVWqut5sNsXQotlQ+fnA+np1wzXZ1onZuWwntQGvef+TqujXtFVyfi1Ku9kjWKSiyEpEL113xVV3IsbnHo5L8ueQFXFOuL9dfc4Lvr85XPkX7f62dKzSVDIHC/vETkq0v2BbXjujy8whi1nClqSNUvvhvT8xVJai8rZ1CrcmP8AchP5ihkqZWjHG8iBeHyqvoKre+xP7bdkr1by47ggRRohg6Jzr+z7UlR7fHdQUS/+t+LtVYrq+vJSUh37w3vddZ2bb3bauKivhqZSHfjCy4mgrIvqu91LVYRjKDzdXV3/6J3/65Mlbv/mbv2nBR8mo6JAAkICazYaJq6o6Pz/7/ve+9yd/8icPnjy+6Q4AkA+x77qr6+urm5soaXd+hohZJVT1y5c3//pf/+t/9s/+2d/9u3/33/ybf9P3/Q9/+MM//uM//rt/9788Pz8vWXNIxM7lJVYv8wzag8yzsnvKv3ey2PEVm+/8qy2uWn6UUhZbxIKqFt9xaW6R+vP6bqyTHq7CJpMqdVKqDl9kH5mvOtltS63v7OjM9zGnr7a55XQlvpMZ0/tVRKUomeOj2Zd1Mb/a0ee1RiZcvCZCPCImEwACFnpKRehSRCQXApjVwYfKt97H62voO0er9ICTOPLq58VHB7iXLX4GqD794xvtFDhmrEKpS0GwwPxw17z/8MGvvn3+rbcfPdo23vTJ2aYhZFMGyzFL5qymKfcxD9nUwHl/cXHu2L/z4O3d2W57dgbOUXAcqlIuT8ROIwAYqJbKahAiYodI3OWCUA4ICiYlOElohphjNjVRFRmzhJHYueB9qDb1hA0ms7kypNj3vShU9ZY5xBSBGMnD6EqxYRiKamsTk3TTNKUWn5CBTMGSjPq0mGYRMVUBM3TehSpstk1V+5IYDwb7Q3993R7a3rlQ19Vm1+x2dd14ZFZtVBEHzqohZx6iYS8GACimYqYABbHXcEYvMgquaartrtmdbZom+Irrxpec1yGygZipgTkHofIh+BA8O5ckIPLsVTr50Byj5Dw6e0zY2HtXh1ATquScMWVgx+y5bduckgikFNWAnPbtTbffD12nit65pmkEAFUcC5M4j0YOgFLOYkJUSOzMYKqeNzUAMw3Bp8nsk9E+MTOTAj08XVX+Xq5SU1go+6Il9GJZZK7WwCn1q2B+0Yg4CUtDZXYTmhnQKxYLAuCUpoGnR+j+iKeNF4MhhqoSSf0QY8pJFBccRrhoQMgTIcAQ08vLyyHLW4/f/oUP0LFDJCsYd1DyMuaQuH5ZmLbLzs+B3yndBABgGQ1+4/b6W9HtQMRr3v81r3qDHfHE/33PDXFKC7zt8Z1/PdXtfh6aLfK7YP2NcJ06+7NpqIxzGGGJR/rGe+VP3mYX8qxzwCI/dj5BVRnfZLYsP9Dy242faSwVVCjiWBXuMPXnS05m8tzzk8l8zJ6d6g9fp5WbjLheS/f8utvzCrpra7vVw5LiSDh6/Y2ZRXIZXAQwtQKnXyRzzjkWcncANOi61mWfcs4qzXbTbLeENAwD7m82uHXeV1UVfLBRu8WJgnsed3DMwfkYh+dPP/u3f/AH2932l3/1V3wVrvuWgjcwASqEXHXYpBTPzs6evPVWs9l8//vfb3bb3cV5TBETPLi4OL+4eHF1+eGHP7549Lje7tq2f3F1w1x9/PTphx9++N0f/KCP6TAMlNKffPe7f/Z//j91h97X1TAMdVX1ccA1+i1YSQ60E9pjW+uTxxFe4xUBooGVPGQESEvXEiHhcbVtNlsVyVlyzoTofZgOoasCTg8dfZFzN055HRdPXui9pXgfprssBdEMOFnaK4D1ps6vQnITWaeZgQItCuTMRp8yvsI0tbFnpVurUAzOZYpoZdzW7zi9qeiRE2k2pMczNeeYMASAEUSICMci3ekli4K0KInEylezDmOmJoql8BuBmhoR2IzMJCaqq7N33h42Tbu/cXlZmYerENCaR2Id+FzB3q13YpuQ8hBmE6Pc4rUx5laNkRUxU5k32Zm8vd396oPmm29vf/Ubu7cf15sQGKxqrA7gcqIbYMdDbgHZRJEcYPB+++icLGdCfPfdx1VVOR8ACywxQhbLYjBAZVP2YemyJktZxdSUkQi5FNKDkQrllPtDvz+4ZJK1T6nt+zZmruoHT55UFw+a7RY9sKr0fTzsVbJIbLubPh3UqasbBKwAttPCSznllLPkq5eXVVU1TeMVmLmqvPOVDzU5ypacc8CsACI5JU05RUtRo3e7q5fPYtc+vKgqv3OUAzeSsOvyzf5w3R6GHHe1Z48AmpMkdt4jhgxiikPWPkkvlhVUDUTk/GzrXYE6UQQhFLAEpojI6iwpZAjoAwVnhAJln6lcrSpiIiIIhBTMnCgbs3lTyAgIBiUqLTkjkXOuGwZiJOIUY44JVdjEsmWTwaNIlixZJCWJUVPmmCTnLBqTtqXez5h8XSERkyfvg2+ubg6H7qaPJOaIgiHJiGwmqpLziHNVVp8CGnLsk5T6PsNC9agISiBmmk0NxFAUsmgu5SwGBpRSmnKogZzr+u6mbUe7zjtCZE+h9o6RwWqmwMwGMw0VFMfwnFSKIKil/p1Kcq0BITIxAXgEh+AQGJHJkXPgnCErsGc2VVnwl01rEtRRrwaqRpQTcrW7ubp69vJw8RB2HlHVVEAEVc0kSTRU9GRMmS05a3O63meH8PJpz1TVddh3AyADEjGP5VSkQIZkKec5ex1OROfdgEUnOSEKhkwGkFWMRqlpCMsKgBL/Wd5hpQYtHou4rjkuf5riyat08mU1tq5q8cjf6YV9XVMH1pR5C1frsmoT1jbDyfaw1NuWgYIS8Dx2ibBAkW42mxhHLuOVIbro/OQVy+zoNvTOT9IQqcQsASD4UG/rh08eHvpD27ZmVlUVM/d9X1WVxJUKO2uxMAYnX91ceWUzXWMZAcDs/CMiNdU8uSQRV9/8NCC4BN0c8ebLOC+7cWv2Hm+oViBXJli5RZjrhMnyZMOFY+47qC34GdddXE1lwLvM9WJVzL96ZpsEHuLxwYjQhCqnWGZLVflt3TShqn0gItARhRYNUE10FEoF63z1uMWvjAtKVlvKOWjqRmXEenTEoW7qUIFacL6Mk2aJQ/RV5ZgBEQ2ySAj1wmtLgAAmBiYqS3MpzwgoZjElLulYZt45EbVST0/knSvgSOUDzbUrBXqRGSvXiIhDAMlZhMHAVJKU9CGclggSVSEgYtt1xzoBZpoCPmPZfdZFD805V9XbYi8ZqYn4umqHvuRi1QDBe48kfY9jYBvZ8U3fDkPnve9TR+i9rw9dKwqb7RmRYx8QMQ5pV1Mh5swi5Nj7ioMXkSENNbNp1pw8URoGjOnT7//gj/7wjy4vr/7W/+5///Ctt/bDkMUqRcfOzDIgAfSHzhFn1F/9zm+QC7/927/9w+9/+Nbbb3/rF7/F3jGHiulB38mPPvqX/8vv/CfNWc7y448++sGHH764urnct5eHlr1XJgPo9zc2A2UEd5AEvtCJYXnNbECAwG70+62qEmg1zxd+KwreCqiMmhICgACICRiYIE/BpUIJjpOHKwMgOvaOfKUqWYWImBiIBlCculVqmeZkwqR2tEYm80NVQdTZWCFn47qmkrUBaugYEcai6aUwRyg4XKObwo2mb9ZsaqRjaAInyoHxjc2sH+aRKFxq5SWRKEMey6roJH6OvMifIlpnuC3VecdF3JQrTY9JLjbXjBERYuOrHrucMjOTczkLiKlkQRj6AelIHLfcpplHpLEROcDD6PgFrAyKnaGA6pwxm4hW3j966FZgBSeG91oewqsmyngIVoeWYGFH8YXwGoQwp22cFkW+IwCAY7fd1o8fPHjvrbeePKqfPLyog2cEUlXJmkzMMHPKEcmJgsTIiJuqrgsLOJNzQGzIUrQgnQLdBqCp1cltrWgKJiOFH4SqESwk4WigYIo5Whosx9hp1w+Htt33g7LbVhUSAZGq5sTBB3akub+57q+vb9q+F0Eif35Rz69ZYt9933ddp1F84JQH6+TMndUh1E3wgZGsCKCUU5GDI+0UETn23l0NByNyFZNnJcgm+64demnb4dNnL/quBwB0GX3OxkkpCjk2cNEM+z62bew7SRHAvHcUPAIMiE1ho59Bq0pUIKWskiTHnGOKZJpKZY6pJY2zpuG9RzDJSTIjYx7GsFjRNYu5QETMTgkcMQJITCkliYOlTEjqOTtQtZSSjOQ1ZiKgBkYiCQgVQFTZhc22iU5zopTzvh1uDm3bxSGakkM/cswaQPENLpGIb7eZuvH4r04ulsnxN7d5sRiutFtEtBEjwdFc/jFl2NwTDxhjNCunyrieTnwtY5QFEABiTISAiCUV4VhSX1yJMNaosnOacsyyP7Rt11XBB8/MbIAydXvMPPQOCcdkX4NuyDc37eXlJYULJjbkhevHvtLahmP0eTFw9hXnnL1+sOVnsdmRhd3W2Yl/3v0AgGJymHnvHz582Pf906dPu66b9eafUt9+yu32a39lAzEB4L7C5T/GiuFWFKXI6ZWYW3b19YqvTtpap8A5LqGq88peirifZEDWIvp1pdNJdK5c/spw5elY3fKVzGe+8meAUaCXC8YiRufGomQrifxqhjnnYRiqqjKzGGNO8aZtd7vdw4cPq7omopJUDAiSBZHQkyNH7Ii56LoB4enTp4y4bZpPPvn0cLP/0z/5kz/8g3/78MGDv/23/vbZwweGkHKGBSGGgKla8db7KoSm/qVv//I777/36aefxhiruq63mxDqLg7vf/BBEvgf/v4//O3f/lcp5+9+93sffvQjF7wPPquKKRKN+yOs1EWcyzQL/aWtdc75O949nsdhPO4Ri/sTFrwvPDFz1jdQREMyJJk/oQFgAT+7NYfm+M+S6IzVL0wpVcsqMyqPB1pUo6438HlYYOVGgqOPcQwFLp0OK13cSsjGikcIcATTAyAwO2Yi4OoOt9rCCtDVYrkdLZxbygkQfRWKvkGc5+GVlEckPkQ1Wzoo1TkrqK+mjl0B+CkcFU1VrT5KiWURmZk7qRy68z1OM57vzILA1Rje6XR5/aZok9uIAJmIiSuqGlfXMUlKwkiG4MBoKkIwgayFfxA9mmrWPJiIgQMGqpA8EIOqqggs/D0pKhR1E8BKgcqIBkepEwQyIkVgBgLLKdrQy9B3bdzvDzf7tpfsmubMzgITI6hKU+9AtG/765c3+6suRUFztfccVgw2AFA+VoyRiC4uLvq+R8Smac7Ozuq6DiEgokg202EYymkhhDHblYi93+4221293fnz8wdVaMB4GIauj0NML68PpuC9j4JdlKTJJ+ujMXPTbAEsJ5bMIqhCCMH7kkrrdrtt6V5JhSxwPSEE5wpVqBwOVyJ9XdcGmZnMbN9dE2EhNETyVOpJMiKigBWGKNMSALWchQjZOQVw3jOQqqQh5j7mnBkpOnKhIMqrZEVkAJSsmg1MvW/YETFkdGoKSsyaogxDen553Q2x7ZMosw+zoxSnYqK5wuT056mwfuKnLz4Qs/tqVFaT3CYMomLaFRRLdo6Y/YR19mZr4XNWiigQFPN1JJ8sXcJiZo0wYUQsYMR8eX31ydNPK/+Id5sQQklsAxidwc45HwIRMWLw3odAjrs07Lv2MT107NWIvvyX+BlquE6GFvk5e9vS+eIp/+n2pHSACavKHj58WBbazc3NLMr07tKgv2hfShORskvPpTuLQ2P+0tEDOuWdo9EsIU9E1usXX93VZh2oPOJLn6NL8f5KY+OVbdY+l7k6ONHmLjs/V++c2NsnD3pNFas4AefdAacaGAAoFaQlpicifZ/OHlw8efJku9sSEU/Vj0hUu6p407q2peCdBkiJmZHxrbfe+he/9VsfffTR888+++EPfvjW48d/42/+zV//znfU1HwYcipx+IJqUFTPHBNXPsYME8pZwaJt21ZUf/HBX9qe7eTGDm37zrvv/vW/8Td+9/d+//f/7R+0bee9LwaJc66U5k8pKmMO6ueOxknDhQ2z1EVPDNBTNXVtTtz1uCLnJwelLsOeq6sQcWlyTJ+JiIB5qfkS4kzlrKqW8smzjnegVyvSJ721U+7O1SXHqwhN1V6FgI92X40l4TLYcppFXIaU6BhcGuNLQyyTFiZsvbEbCKGUTr3KxbFclUX4F9dqCGElAQwMraidAOBO4iGr0Vm+J96KnMyHTmLny0E0XOFJ6xvs9KYFcRkLdh0b4WGITy+vNhWFzGjQVMGZBWYH5gEIAQnUk3fs0CwnTRlyTjENRsjcMTjHRJhzIgDHRzoLQinxckMQAAUDIiqVz1qCzoQESAAIlqIOg8UhxmGIfdZUhcBEYOoJHYDlHIeuuznsX16mNGya0DScNLFnDj4vpq+opJjYUah8SokBAYyZvQ9VFZzzRJRzLjH0Ml2apqnrugQ6cs4p5ccPnjjHdc2bTUUMWRKq+eDJ+a9942uFoqqqK2ZGQmZyzjG6yleI6L2UeEhOIlIQxrSpq6oeSSoLzULf98zcNHWzqYZ+6IfezJDUIBuwAampwQDI7IL36D0AZitmv4FGFRkj/8ViGFO/2FFwJMLsQA1SlpQ1SZFPBqpqE2uqIZAqqoIax4ysgIQi0A+9ZABzwyBdl24OQ8w5CQBzATekSarNW9fKZFkbKmqmMPMhqYKZ4l1XrRwSZjMi7bwIq6oqEVNmNwqCr8BQ8cEXzICSo7IUiMWtXl4MTLJIs91cvbz80UcfvfN4s93Uy1SxUa1kdlUoQouZkXkwuewOL2+ufkHerSsWQRyjSz89f/1X2k5F28+VoWJHlmLv/U8vaHE0fQEoBCDi8/NzADgcDs+fP3/x4gWMaVo/fxUyP0dNdUTAX4YLSjM9GiqzFjJGEiaQmNsKx8o7CSv14DUV0FlCTobKlzxHZ5E+vsvrrYHlEM3mWfnjiaq37PzSUDlR9ZY/30PDYAuSLhFxSMt9ahiGYtV77x998Pbjt9/y3tvIrsZQ4KQk7+ptwdDPItJn6zsBCyGEqpIc3333vT/7s++++94Hf/Nv/u0njx6fX1xITt3+0F1fGeJutyswPwXxRVVTij9+/hkAnJ+dNU0jKs9fvCDH7F0/9B998nFzfbPb7c4ePBhSfu+D99H7Q+z/6N/+Ude1gOC8rzcbIEwqy0DEajTW4/HqPMbTKNTJTRaHTqKFJY0BCQu01B365/i5FVRFR+0PwabKBYOiCQIhzkDZAJoFzEruMyDGxXOLVlZ4oMFQU74rpraur0GYNt9Ty+SWz//kFSZHDxpoyVwq/V2tyiW3+4nOvvA5OGbn/fxrsSXgVYZKr+KJouSUEhiwm/jcAJz3ulgXS+txRhSwCSVv9rbLIrf25FkO+Gh/FR1sftgSuxrxWItThuF41fKFp9Gabwiro6cm0/ro8YYLIxYUdCQIMETEJHZ56D96/hIgU0/PL68q5wLTNlS1Z1dc7gjm4Wxbn1XOUg8imrUbZN8ObZT60SNAQDMEI1BHGILzzIhAejQKDQt/JiETITUswXv23hgVFBAsZ+ljf+gO+0NMiQkr740wdd3VyxeWNVThZn/dHfbSD5vKVdsKEYy0hCNTDjNgvKom70LlzRoARFXmkdZACyYyURZipiGPNmhd13VdF1LIcagR61B57ww0xk4GQG91FUIIj6udQam2GvNxAQyRmJ0Hj8ApR+fBLKXc9fE6p8jAxNVms9lsNgV9hZkdO2IKwTtH4qkCP09ixALpnRCRGdmh96VMWwFAsuSUISEomCqZ5SwpRRFlJnOycYxZJFtMaRgkZwEFIZBkqCCiOUMWU1EzMaBS8NklUBCzbJCG2OcsTHXONsQ8GCgFImKuKFTEhbUTxjL4RQXk0kpZTs9JsZ/MFYElg8rSxViiQ2YmojnnnPIMWznVz7Pz3jmHU+Yo2mni0kpkERYVYTIBjgdXu+CCcUJVgXieTjRhy5TGSDZGoTSKFBwkYNof9oe2ffTwIqU0Ow6Lh5udK9RrrOCQ+jS0acgeL/f7mJPLGdARIY21i6U8dOzSyhe0fMcTt8jql4W3kggLq9fMAbe84d0ek+WQismcWAITN+J4SI97wAgJMDVdMVHcp9nYJO1xHYq/fdqy769JBThriuWvxAsMmYXD7NYUWiUVLHWsk6DK8sw8+QDgVKivPt79at79qulcWVkslrquAcB7n1IahqHrOluXQM7W/u3e3to1lh7OE0fbMrh/T89XH4VeZS/pBBo7zpJ7pwaVKpJp/N/MJXEX384rbnhP6fbyJFrXw0w3KeggiGhqS6d+KYEtCcezbFze4ihCEdfpLLCEcjp5+flWPPFKFaEKxa4ogQsAUa3rqkjbnLPMIHiThJmF26gaTHbUrNnMlsOs/+FU+05Ehf603HA2YyYXHiOic24G+5ojJ7O1s1SISw+ZGWEmaZmc0Eyza2x88SmZbvTiT33LOReH4DzaMjkli6P6cDiUZfLue+89vHhC3g3DwOxCCEysqjFFNeu6Hid4fc+kCAVfHhGdCx+8//X/5r/+VlE9Yxwu9/vgfRdzlwdyrqRiFidXscq6YWiHPnZ91/fe+yHGy5cvHz15/OSdt9tDm1U+e/7suz/4PjnXbHbkwqMnj5HIBV9bjUyIKDmXiIpNk2EFwaBHNOeya8yzCGlVs5dVi/6Jk4E43WCcyUQzuMtiijIV2VzqtZdlDsVXWKxAhMIICYWLeqRGVDOV0mUwMjIyKDi683cv2dRSIFIrp6UE0VTEGKdwihoRHgMnCPP+RQCqgotmE44FQIE9GyearSWbLmpKEBYZaAaOeLzeVu4DBFiyZC7xOhBAJI2bIKFo0pSPW+KksdikrR7NcsLCGC6qjpnWqGI6LcmTjzIveS2so3VtZkPfF0rveX3NC7lc5WyVvYf4yiRBWElDW/w7/uUo9VaJhgawzAdczlGDI9vdrbZKrTNQMAIgMARg1dzG/Nn+AKzaWuVwU1WNd5XjwOQReJz0w/tvPX7/yVmNxiJq2Is+u+k/eXHdf9qmlE0zkznAyuFuU1UhEAKlhABWoIscc/AFVtY5erxtNk21qWvn0CRLTkPXHvY3bdsOKsDknEdQR4ym18+f525oNnV2luPAalw1IXConPNsaMm07cFspFlF8huoCmmUc85NzGWIpfJbmSlnyTndHHgW8TMvR9ld2HNdN8w8DAO2ThFJXFXTZtNw2BaC1zGOoTkVsAtmTaaazJLqAJiRUpZDlgGpQrSS6IVTGjHxmBsgoiIm2ZSUiAAsxpRSijEa5pw0Z8wRiImJETGmNPQDC4OWYlOLKcUhqqpz7LyKGCKrWtfHGEUMiRwgI5KSZdWcRLLmrKqj1QpAxlWMQ9aeWAwEDLxTAAYO4IyRmRyQI/LEDAjFZ7U2MFaOt+X8LNqSTWBfOR89AWU05psUWSIiufBm5jT7A0qsHBEds3eu8CIDAJ+oFyvnh83b4LTWV4ZKQQiD9X5pZimnhcq8srsckqCRgZQpBxZzYu9E4n6/N7PiSMMp/UNEkLDgnjEgAbZd99HVTTO0v3z5wZCii5EdATtAKwqoTa+xXPMGawtk+dZ3+4hGm2H0Ya0yLooKf/ztxE2yDufOYSIzW1HCr9nYRmNgHNb7HH7LNp9530nrF5vVqelVbvdibCvdiJBXPiO687K1f65MgJnb+66LYowxxhJEhbXWvjY5T8zM5Xut3/PVJwCYMRc9cCSG2m63Nzc3Ja1ltfpshTpwT5R+Zaesh/c12+lHX+WC4/K2syqMt4ISq0aLuWF2oty/drfuPHLbM3jnDRYihZnnS5fDNGr+RKn4mOaZZkcT7qg/Ld6lKCvMfOLhhluviasROMYopnzmEfzDJOvE4Z1TAmiKDRBjtDwZEpPcK4aKqhItQh+4wnlfJvwwO0SYyuU5y/hGOPHcz0baLHCWz7IFMOtJ0Km0+Vmz1CUa975iJ4wxbbMy+cfy6MnNV7A950VqZikLTwx6+/3+2bNnJamh+A1NJYSwPdux9wJT1g1C3/eliBkRwTEwDmVjzrkJDdeOiEOoXl5dxpQM8ebyGsCSCIgMw4CTvC05ZsMwZJUup88+eVFX9fn5ebVpgLDZbkJdKWGM+Yc//tE//Mf/mF1Vb3b1Zvv973/vZr+vq8nogpJIj3ONylJ8zSrvrKbP84bMcDIKDEBo1Mhh3JePCieYwczWvhBthiOdxHQOriQn0VSjOp4LiAUAkxShVOcf8TysWDoIesxAA+CxOMYUTEUVR2fP5H+eVhC9OlAkADYtIljImWlXX8p8W631peNutdEj80SnWPwISxfMSmVf7T4xJsQR0qD4s2kE+sBsNgEOKSDCQqlAIikGoHeGuMTlsgWKscIS9Qvmcnwl0umtU0oOwE8+tVkxm69yp4bJXVL1fnfaHT/f45TEuz1Ns+w4dsmKHcqEjEgpdy/bbkjxkmLt/baut01VMTkogEjEaB4TurCpq/NAAcGQ2ozP9v2Hz24uU9cNQ+o7NPFkTXC72nvHbLrlelQQcUxfqpq62jS1d3HfNVWom8AAoKk9HG6uXqpoFfz5k3P2TMjjpDezlIb2YJIkgEquHTPWwVHt2dceCHMxxWd3vpqoEGOhiK59KL4NEREpAg6LPlHXDREV+wQWWwgxEpuhilJMOWWxkl5sYqA06t2ihTQxjQmp6C0OqGrD0O33h+vr6+ubq2EYRGKRrcMwFEaqgthrZiEEkVDC0yllkTF0IJLbtuv7PokUI2pC4i0WuWg2k1JFlHOWJGOA2jkXfGCPzAGAUraYRIyIPbFHdgImVvKA0YyOULtghSJT1JwDYmRmZE8Y0JHPVOxbRDZAMcXSDTXJUpa3TjSaizgJTKlf85cpa3RlopzsxPMWpWPsfqS+mcMpxbhk5pI7WDa6z1Fw72jFnXTib7jdlrrjDHOJBbkcEYnQrEA+7A/7GCNP5NPzi6hawaIiJEZMkp9dvrT91Seffb3r+6bakR0RRd/gRd6srdWvN3VXrxMzZu3hnvG8fQfEYyrgSbzi56uVlJKUUhCvqm8Ezfi6zXtXhq6oVoUv7Ct83mu0E7y1nPWek9+g3a/E/4y3kzDCG9zhZMESjAHb2+JrqeuXUFsWKcWQrwxzfVntxIlbbJKRgHIRYaYFQ8vc+bJ9FDlfdsnl7jC6pKcLX2cAbWJ6QT1ybs6sYgDgnMtJnAtVVYUQFECzzmbAYANMqryrQr1tyvYNADlmAzRDX4VQNZ+9vGyaJo/GHi/TmctblC1+SD0g1E2z2+2qpv5L3/7l/X4vIucPH3TDEGr85i9+6+/gf/73/sE/fHZ1LWrDMNwP7rqa/ydrYaHOiuQ8WyMIUFUKY/RpyZlYtJ97VtTSrljrugaEaMR0tBDKn3E0Nsbe2ugZLZhhq/zE+YMigsQIxdZlhwgqBoU20+wkoe04Pb4AKe1q7tyeR+NOpCsHKJHx0tpZ3m59OeOUjl7y32AymxEzj07bk6tsBWBw6iW8R7Upy6qqqrqu52iq8342UeZluByWFYozrjMEltwub9bwVsrB8UXu/jbLQwYmaACMyqRMQACG7KOlOMToyJvemNQ5Vp5rRwzgQR3BzuEhUa9UGyMAkTOmAet9ws/abohJYmLItWcyRVOnQtkCbUqqtAGYIgtKsjxokhwPXR1cHRyAaRqGrs1p2G63m2pTN5UPDoD6rm8PNykJKDhX+cp3CIR23tQNBmdOs1WC6FnApOjLC2aDYqWUYG6RVoUUEqcEGFVNfUfEJdY8h1bGr8uEaDnlOMgw5BiHLL0hMlPuHAiOpIkpFZe/9z546AbMWbq+u7nZX11d3ez3MWYABNOrq6sYU9u2JTY9DEPJaHLOAZBzgZBUC5yvDkN/eXm1v2mHKIXVkUYQes05Fyt9hsGbN79iqHjv66aQrVQJSIyQncMKuCb22dTQgJEMiRyTm1RusCEzOcDKeSM2RHVcqaKqVfVWAGzEblNVUCkRSZWcZULkOAIUrw2VUQGfLZa1oXIyY2fDxlRTSioS6qqqqpLudYx6MaPBbKgIvAlvWnF1LN1vdy2iY8wHgO0YfUZEQgIzYEKim+ubAimjU1Xo+KamxbMSihXsHHoXJXVpOLSHh2ePVMtI/7mqXiciRfRNZNTt8tb5476mNja7Hsuu+VPXtn+S1vf9MAwppZyzmf8cp9SX1OblXzRC51xKb04j+JO0E8zoL72t8RjehJf6p9iWfJonqsNrtpMFS3qszT05czYSZoz14+Vf8dSgqRWtsZhJOoG8LzuMC9lbdHpELLGOk4gKTFmXS93r9t4xtzmHrWz9DGhTWN57f3FxUQ4555q64eCdc8MwABF7B5Oh4siNPsSc+xSTZvY+pRRT3oZNlBxzqqTebLfnF+cvr6+rukZzDmbDRMpGX8jjEbEb2qZpvvGNb2w2m2EYPv74429961tEpAB9Sj/+8UdPnz37J//0n1xdXkU1RK6aOh66ZTTgpK1KL9bT6YTf5jjZEEAVShL5IlZcXrmg2M/f8TUFuNkxRrf6Lrbm3lgyLSIqyCufhQCMDIgwgbUBWNH+kcgWhsqJl5OYi51UQmp3df5UkV6HkWdNppw63/0E7oKI78qX4gU37ux6Q0QgFJtz+08vvutur9/m4GcIoWxAs1PgRMNxJxkXt1O85p9v9erVmQ+yOI/ohGVmvMbWl53ceWVyA0z8lQCEqoYI6D2AmUhn2GfY58jd4BADASM6JAd64eFst30/6cW2AQQg5xqqqsbVjQ0ZAwdfVa6qGJ2nEIjRkK1NuayHsYYgDRQH1x4cwsOGU+YhOjBLQw+azzab84uHDx7svLdQBTPoO5Och67vuyTZFPlGhZkf7jYywPBAtpumicLBCUK22V8vAGNOtg+VmQyifd9fX+/37WHoIxHVdePYgcGhT0zkHLMbXQtTsYq7eLxFdnGw66v2xYsXV/tLkT7UuNtssK01Y5KUs+acRQXMQghVVRtvs8jhcHN9c9n1B5VkhuxIAC4vr7tuaNvOOVfQxvq+zzkhEnPYbs82my0CpiwxxsPh8Pz55fX1vmtzSdkq+b5qmlJk5qrygOqYg/fsXBUCMREpsiPvsxFZIK4JHbF3oWFf+6pxznsVQ0JgACxQXKP9bjDEvZEREXnyHojJFCWmISVutlBMFFSZCrvKYsw6RVGmgpWR0dJMR3qTgke8gC6GI7yvzekL02yeuSDVTCZARpoIv8u/BUyHJtfaOir7BdroeChxEcQ5VHLiVjrRKhBQ5rOmcAAiAlE7DDlntALYPL2xgikgIgErTqlmTAY89PnyxeUHb39gI8Zg4Twfc2Lt/hygn7i9pmPyc2+y/HmOqNg96U13d+Me5ePnoqUUJ3xIGad1+YQ/8TjfbqoKBUleJKXUdV3RCEMIPy1D5UR1WPOPfwntZLJ9uTd//XYC/brwhN7XJXvNbLe72+mCLaKruFsWvmQEQKKiI2qJmxORGTl25rL8pD7TZTt5h2XcYzaWipd2tjTmt1j+XDaR4jGE6ePOgrcof7DI7FJVhDW80Koz0+WimoWITBWJCdA59/bbb4cQrq6u2rYrzGPOuayCzD74ybeNja9TzjBEMUs5ZVEXxvQ2AYtDtj7GmGNMjx4+6WN6eX3lva88qUjKWUoRfkqHvi9a4+7ioqqqFzc3bUp1XT98663rrnXOO+equvnu977/9//hP8iq1WZDWftDG8JZTseCNyuJWYt3NDuyVJyUxeEi7bR8k/KzAqgaYKH2G/+b77giflpXfupyj11Pc8QpsZhQ9QjdW/bIkQyw1N+bjR8KV3MHcbXnViGUvI88eZaBRnVfFk83WyVGFw7Kedu9x1BZi5HlG4/JmWPwRwjmiFAxk5aLfaFzLztPCGqopmgmORfoMCIutM7ANObOnfRqGo8vZLHMDr7inxo1C+aUUgGopFemfiEfgyolm/B4R3es/Yd1/aAtoj44lZQCFHG4MnCWkJ48YybgWpEygNUcXYNmFOucyzIuH8YQPbIrRT+O2Iii2mACZZIBXcfhopNfds3gPEr0qhazM9mybVzGCj35QBjIHBppBhNU2A8EwVvtISCwObMaoSYMAFBJb9L3SaMy4MW2efjo7O0nu92uqmpvntrcpTZmjClLjHTTyieXly8tbjd18/L64xcvPnjn8TtPHtd1zc5vdrvt5nxoD0N7bdIHT65yQNznNHQtKV7fHD57efX86ubldZsTPDx//OTiLceeyV1116FipBRTW4rXm2a73WzSUFdVFQf55NOXn3728sMffRyTOuc9V19/8D6Rd5tNnxRclVICS5vKq3klu7q+uXz5THJUTSrJe/TAbOjDuYjsb3qRzA7MpB+6qgrbXVNvN85XBEGFcsw3+/jseXf5MvaDZGEipwZDSlkGX7nNdmOeBk0VuT7bNgRG12weVlXtfABDEaubM/a+qhoXPPuAjotgyIjBu3mtzSlZZW3zpiarVCWa9L0W1A4VVAg0TODCYmBkpkOKo0Qgpyq5rBYDAxLVLCYiiiQ21qaogRoUXsisEnNxuksJNywT/Q3AiIMLV8+f7dvO1xWwQ+ddqEIIdV1XVWUAKWcqEoBIEZ2jRXbWWo1YiE4ALNVEzjlHqKYEoCBsiKqk5h0xkmOOOc27AvGRoEDNDiKqJgCKBIBJJQ6p72PKksyur/Zfu3iS4tBUbhgUo1NRFM4xq6sGSsD48LzZXW5Tp5991nncoMomuKSWczb0xqCGimi0TsglomUV4EL0jHxYxxMXUY7ye2HIGiFXZsmDS7uA3YqEcaVIIQOAGiC5k7KMW4l7JdGTAVYVh7iWZkirzktWAGDn2DlYVzeuPF55eWixLyOIHjfxWwlIo2b2CpEdFgN1koW4yqpYveQ9MR8B/fTZp5uzze5i1w2DmA8hEJOIOFjmLbyumqqrRJ2VEeCJ9jddzllS6g9te7NP/cCAeYjLzGsko8m7bGbMfnFo1OdkpP9baXrLjWM9GVZf5Z46nzVe6HoMXblKv5C6PuQ1W+WqRDjhovTixLOwfJHloWXB0omTntbk08v+C45zGa2solnyQBF3VdU4FxSgFAiImIj6iTlbdcR0OXbjbtRdWwJXwKjkMDOiiZrjMJ8nOWuW4HxUQ3KglkSHIVnKHPrN2c6AtrvzxH2J55eCq5l5k4hMdCrjZCY2ASl5/+iyCgAWIIpihwOOJb8KuQw5IYpK5V2z2wLAMAxOqTD1IiIC5aw5x3GsEJ3zEyJWMkPvK2YGwKJm5axlrppZzmqWYsybs50iGQE6BJTCDqFqAIZk5J2T4LyPw1D7oCKacu28AzQFzYKIlQ/Nk+b84YP3RK6vb16+uBYFQNpuN8CURLqh77rOeXeFXdnSfPBMFLNI2zvniLjXBAyklmPPoD3I2w8vfu93/s2hHzLzdrerq7of+q7r2rbNKTnnD127Oz978PDhgwcX0KWcXmy3O++dD2G73b54/vL7Hz0b1HVtKyKixlXdHjoAUD5u2TBxGo7/mh4rkMv/0FRzmZaLGbVSfj06UwMQU4HCjjLOIKB0tHwQDXGxPeixF8VnuJqiCqYiAEzk2JXd3UxFcqk0WONEqK1xw1IarECpOkfMZaaX/aqoqSWyBQDEflG2fbRGsLym2WhfFXSnYw8X72FouiiOAtFF1nqxi0pYT3JGOIqUwnJbOl10RVhY1EeTO+fiaGQAx0QTflfZpMzEQAzBvCPviiMLAfzxM4AVfuqp/uQQ47H36/hHP3TFdeuITJKpEkCOvSPASdrYlLoyv/Iq9esLtBWaNMDCPXziMLjnuuUfV/vISdLhwgK1lVGLgISAhaDGAKxskAgIJkhtylfd0O58iglj10e96bqU5bzQypAhooBFzVk0xZiyiaFTbIBrDpvgasJKxZsRlNwhsQyg4B3VTdjums1Z2DSekJNZFlVDIAaWbLKP6bIfrjWD9wAUhvzi+oBEdV2T89sh02fXMvSaD2yprpxvArnAVUUUDvt233WX++6qy4dMP/rRp4ebH/3at3/ja+9+4LQHUGIrLDGzSSqSr6+unHN9n68ur54/e/b06TNVrqvtxXmj5pvm/MFb7wtRVmvbA4AEVu84Zum6ntAJxJyyY3TIjhw7HmkZy05ghqje+aZpmmbjq5qdB3WmFONwaPuui0OKKQsyIgMBMrARKMKQRLMY5EGSY95sXah2od6F0DT1xjlvhkgOnffes3dYqqxw/PhLmWXrNoe87Qg+PHpcCj+j6TE2egyGjGxaM+im2QTiIVPwZMr9Mlj6XKdpbisdAAxQVGJKUqokJ8gBZC5JcDgKvBKz/LyowHr6n5w4hmTLPXHE96BbEZU5hjsGjgCWL2UjhgeYWlYb+kFyRh6z16AgM+volgEiZgreMxESDlFiH1VUTcGQDGhyz3yhcMrrx0bu8UnL3VT3P/vNOT7Ksq+45/cYGWWOdF3X933TNCI8Bq4Rv8j3fK2GUyJyoYY4HA4xxlHb5p/j9Lmfr1a8+ke75Y3abaze17nKZmijtTJAE1IQABRN9CiyrSD1+7LAT2byLJznPqw2iPm5J/X9k/ic2+vERed0lJOb39/KQL3yfCsLn5CYQURVJYuIIKDzXkwl5yyCTM67YRgAIFTVe++9l7KaGXvXp0g5H/ru6dOn5DgJmJlzrnCvMbOxgQKxYUUISAYImIcBwUT1bLf7+//oH4WLB4+fvFUGcLPZXF9ff/jhhzc3N0McQl1ttts5Mfjs7Ozs7OxHP/rRL/zCLzC5P/uzP7u6ui4b6bI0ZQ3MuM6psVsHPm8gESDHNM8W8g5mJNx1UfjJZctnFWKE+VdfLTxcZjbzjI3JmZ//cXlSvcqmKTgaDMWPMH/u0u25J8uA2utL/GXYZLx2yj1eBvpg2rFLGe8yTd0AUhZy7L0vLrlRKSrwFssqD1lvuM7NOo8hAqDitHIXwedxPRmgmoEueW9O2oxuNwONvvK0k+X5pobKl91O3DOvKQXm6GpJpV0dQ7puu4+ePd+QbEAgS4y6VxMXgqEARMnJNJp1om3SNsIgGTluCC4iPQSsjJDZDBWLCwQsAxo0lb842zx6cvb4rfOzi8YzWk99SkNvwwBRqFfci1xLuk5DC7AxUuAh676PdNNyN2TDOrTWd6ziMDcVberghsChQp+I3dCnLuaoaC6A97i5+PEPv3f1u3+Yof7ld8839YbdWMU+pxTFGGPXGmDXxsvL/TBEx06JQwiPHj95+/2v7S4ePXryXieawS5yUouaBpDYv3w+pCQqMeeUs/MeHbvgvXeKDDmLECKoqnNUVX7TbJu64SoAeFEW0Zy1cOE55wCkbrzzHpCzakyaxFJWy2ZGKUas2XGzac7Pdg+rqt40W+8rRMxiNqIu4YQDPrbljjib2icJG7ebTYUly9qSqdrE5sDMUZtXLeAUr77K9H7BknM+HA45J+89T5hszjnv/GxMAgJNmBqvImV6rTYiw5ct896bzP0vnqAZ1xwmCIdyMGe53h+GIbkGRUVtrOYxzQUu0CE5dnVdMxM7bLv2pj3kQrgzeoDe5GVwTX11j6Jwj3BYu5NfN0H5Z6QR0tIJ8yXbBOt2kv+9bioi19fX2+22AB9NWB1f/mDmrKqac27b9vLy8nA4lKyYL/1Bf9G+6rZael8GAsMs0ploScKgqo65iIuU0isNFVyXjpTEElnCEN0KMM6X0IRz+Lk9nItYPnf3WbYSHb1HNDGzY86iOeVSKoIGh5igYCUTOe8RsHBAswvOecDRUKk2jZieXZw3TfNn3/13RMfKllnJKz/f3OwZ0QMF4sr5Xvvctr/x67/+737wg//pf/5fhphevnxZ6lL6vi8dQ8Ku7fphQMSyTl+8eFHcGU8/+siQnfcyDORcqKqfvKT5nhZCKKKyeDCPQd7XFlG20NoBYA4awDQ3Zu3AVObYzj17Spk282SQlJAZCsfliVX8Zfh7dFEqY1NuISwtoltqc4mxjJcDVAYKJiIFO6fUh4hIKcS9i6h94UsDK0BEOMa+dUEkv3QNGAAtDp20JewEISHf+Qnn5fkzZKisSllOQut3f2Ra1LPCWhaQ99dt+4OPP7MUzzyTQUpy06Y2JhLNWdqc+5wPWVrVATCqS8ameBDrcm5Zr/fDjnDLuPEcHNdkpLppqkePzp88Pnv7ycXDJ2dVsDxEidb1ab8fDp20nV61ss/WkkWPBHXY7OrKO0wuBAx1H9PN/oBwaEAC2K5xhA0Rq2LuU+7VAE1zVDM1JAbSqmnOHj24fHH4wz/708fhW9U7F85jqAISIxoRi2gcMmMhIUk5KwI752PEnJVdePTO+xcP33r45N2rrlciAwMd+u6m39/Ezz7l4A+H66HvuWRtOmbvXWD2lUsJ0QAzAHvvm6ZyLqihM69GKekwRETe7XYAWtXBLDYN+uDYcTaMSdsu3+yHOIABDdAFX1XVtq622815XW+rUCOSmRKbwJi5WIAFj99/rZguDZV7pL9O6IMre6No7Tqyo9jihOJPKdXhJ1eVQ/frbSKy3++RqGpq4iPYV9H8inAZa+tGQ+UL+ORO5jxNN7rn9csKn185DXF+r7UBZlF0f+j6lDZVpaow2mUZVEqqLhM7x6GqkBkJuqE/tG3KWUR+ojKG17YqlicWz9L869KG+fmyUgAgy4oH7Svt/72TzUTk5ubm/Px8t9sVmCAzQ/oyNth16/s+xtj3/fX19c3NTdkyC7LTEt3yL9rPfvvSl94s0pEIi/40GSrsg3NuRp48uUontF+akIVfEVGBVxsqiFhEdDFU7n+RE0PlNd+6aP/L5Ptjr6YiFnYsaeRazjkDGRsgkJkBooKhIyn8Kn30HA3IOVdK6tHUV9U3vvENX4XvfveHKSVTzTGZKBEys6SMTAAKREzISKAmOQPj0PUPzi+effbZ88tLE5l3JwBIKVV1nVVsMrSKO5iIhmEA5xg5p4Te8wQs9lNpusrpXFSDnJyHiEuI9sXcKJ9+NlTADBfa/11fubxycesAotkIJRqHofiPl/04+qPeyP0z79owTdGlLbpUV8ZYSqkNJ8RpkTIAhyAqkkVUSry85K+Lmb/bFSh5rDo3BFRDPWJGQwjzefPSEJH74UxjjKXb3vt7dqXZxp4MlcWwnTCznJYfwVpduGNzXfGRnRJgrp+1qrFbJ+fNGbQApqsk79t0b7QGPi+nCVgv8On1Iea0C94hZ9EhSU6qOWaxQXTI2qsOChlZwSkiGnVESfUaYoOwI71AfNw0Dxq3qagKvNvW5+fbi4vt9ryp6gohZdGofOjk6ibeDNZFbIU6gwERKu/MV/UGWT1T1TRVVYlYTInZAYFzHHwdgncuiGGMuR1iTKli5bqqXYhZKwcXu+obH7z9cHvIXXz27DPP+fGT3WbrmNlMzLQQmDgSU0Bk76q65qbWGDtC70OdBMhX6KuGK2A2MLMIhH3XZVNAiDkbgg+evQtVFarKB3KeDRSjmRkxhRC8r4hYM/R9zoJpABV0ztc1AehmUyPlqsregwsemUWp7eT588P1dYzREGyz2VWh9r4ict4H53zRp4c0FCb4skrmXFAzmOGqb/sM1rbE4gcwUZwxiFetiPvp5OWFMOaN2bjedHm0ZIuZjfUpY39gTJeHtm1zzqGqEJGJSjiFFgRqZd3hXHC5nsPzBEYsXDeKMK8QhJlpDklVCEvtJnGpRBljvgaI8xaNhDSRtYkKM5sIwMhZOVVOlzN53/cpi5YqMsdqic0YoWJufOgxAiAROu8wakpyeX09btVgxDzXdRChEd6jcK5iyuvUVbx7q6MZrPC2P4LW5RCrgojls1Y3PHnUii3kbqF3msNwyuGy7MirXuN2u09OH3+kV5MQTs9Z5bfc86zVzZeDMy+Ew+FwfX1NE/mP9w6O2V+nfV0VgKy+5KtfK+cson0/xCHt9/sXL14cDgebCCjmnoypNdP6H389ybOEcas2M9WM87I5SchcOQlhySC5wsNBWLOH3Zkv9Jpm+T3l6ScMNjxrrnZaRXN61fF9T5fJeoLi6qrFs4gJRoQ+Wz4NDZDoiLIFePSM3n795ZpaLL17xoWQiGnq2AhcUQqjdSKRWHqRiIgRdKoqEZFQVTYy8Ez08LO6h1C2j9HDte72qcJ0srQRy9NnHav8fen3RFppRLPCU3o7p4EtHyoqKlrsHzPLOaPjWUwd+2ZmZuRGLdM5D0HzEIdhMLOUM7MTETATAMiIjoFQRLJotauRXAjBjxUSpGCI+K1vfWt/3X726VNkl3JGtOIIEBZi6nVgYiOn5EwViG76tt5t33vv3XrTZDV0bh6TGCMjEpNJmpW94lAIIZQPJ1mruh7aNpv5EE7dScu2EsurP9+XkbpYlXEYgCf/nGOkCQEM1j5NRFsogUjHr0djhrLNm/4y4jQ/s2DyA94Ri1u602e7GpGYvUFBqxNVUNMlRS+6k5ce/26gc4dgXHiLd1kNxzjxRA2sTK3yCiW3fBQLCOx8OdkADFFxYiBFUsmI6IL3VIlIFmEiKE4BkUUp4jFQUB45GjRmJsJmRKRgphpjhIl4rag6xWVgYOqOCGOFAHfeZWZ8s9KWZT/lvaa9fhz88ppubY6e2Cl3C9wp2DorXvOhJQP0qWg4USMWtq+t8BlonV24CEvdKoOFV9pLCEPKjvk62pCjp4QAZf6ogUhWA1XLBmYkRmZsiKgECcRh9gTIvcUhJwr+sXdNszmroanpwYNmt/NVwy6QIeYEfcaXN+2nl4ePXx4Og6hREk7KYkbBV1g7xtqHbU1VcCE4kaqqQuV9jdZ4quvaOY/IKjb06fq6b7t22+AWKZxVNRI5qmvaBHrUuNRGVuu69nAg52tAQjQRGYZhGAZBKfV6zA7ADCjGVAU0ha7vU8p930OomdhQTRkAuyGmlJNkJKpCHSoXalc3dagCcSmHKCvWCt0SAqqQmu33N5IJzDtXF46hEAIgOw67rbGzUDEHh+z6AbyvvGv3+z4kv93uNtu6bqrCdkUTcJVILjVxhQnVdMSGVwSHY0rlPNfndosF5WioqKLBeMKsl5fzsuhSYK0xQ215/rwJ6YQ3Mm+H845lZjHmQlpXCjfZjXlfuKCHx4KDhljWvJqdpH/Z5F1DhKxQ9uxSOgeTZsbMRyGCsFqD04IvXSIggRFuUlRcqHAanPLHedCSws2+3R+6auO9dwiGlk0zImzqJifor/c5pZwFkYqv6cXVy4LDk0UUMYuam8bkZPGu22qdrhftXY6rk6E+PXMlEOz2Vcs/LA4t96G1+XGPp2b12BOjZRUAfE2GHKJ16tdSip4K4lcHGO3kne91UC1/PjH2ylQvVkrBfoCxhOb4hCmq/+rbf66jUET6fhDRtm2fPXt2fX1dcpQBRhq+oofN+QzzTgYAsoBkmc2PcrQcOq6C5TZyq7btzs692k65fdZPGjdAwKUjb8adMLBTp96y6bjSX+G3vrXxHduazZqIYZSHMLLX2dQnGDfxecDtDkfy6vYroutbW/DiyKwSjF8BkZAExFQdIjIViGqzkbmPiZHZcKRsLyJr6ZKQhe8yeD9KOZEC9jo+lAhlscxPrd1x2szGxtz/8sT5JrffaLkBwS1DRUc4/jGdTESYaQ4NjcrZtFUxOlMr0x596A9d13UAoFnIhwJEKaqKAIwuhBBCVTdVVRO7klGcc9YZSAvha++9//zpZylGFWVEjwQGlnPOYDRWX6qJqaGZ5gyqlQtgsDSlSv8phFItMxaCFqNrYkACADNIKZH3MJFjLIZ3PV7L+XC62F7LuVIMCGYmZmSeWVQNYQG8vxKVVsTCdISQoLBdF8V9kfuHRMUVmMzQlJhm0XEiN06m+FJ/wOJUNSRAU1u614mO8utEei+Th6zEOBa/H587rUrRAi7C833Y+BhIXOTIgRl7j4i5sPsxZRVARFMQMDMiYnZkLFk0xiPCgdGKir3YEjoGmpDIsTPVCJZzxkWMcYa4KO6D1ca82LibptEJ9bF4MebTyntNOMvHa83sZyX1yxbfxWwxI2wVeTnxIN59OxQzVRDkCGhZcwnsqgEAsyvgUaA2AtSNhhKCw2wZJKMT1KFmePfh7mtvP35vu3tQSQiw27ntzodABtoPqT/0l1f9h8+uP728/vjlTZ+MMRBSEkUgRxQYLQ2b3fm2olCyyLhSOUeAEU8sBMeEQCp5GLQ99NeH7vIg9ZB3GartFhA0p4oy1QbEMDgAiDEOAxJ7IijsVMMwKAEiiMAwaIxJcslk0hiz5WSSVSIIIaGCxKE9XF9fX77Ytzci6qtQV9zUvq441MF5ByhgQgwhOLO6mJmqYKYiur/pVYkQqsp7R2qaczZLQvrw4tx7a2ryNZHnpkFmduw3Tf3ich8qMsuISmxIqjbkVIh171QCbgdMlr/OP983HRanFWeALoItx7tBEeDHQzDFhU9lyCKr1cz6vi8OtuIocFPqF34ZqdtY1P85BjqyJ08cvapj2AWx5LPhVF23kokn+W/Tr2ImZll0f2gvHm5zl1g19X1OSQ2paUA0D7Fvuzj0KWdDzGQvri73h8Ojx5qSJs1C4Y6+/0X7Etqphr2eiK95kxNDZXmo7HMFfJyZD4dDVZWyscAggDbN65MoyivM7OnQaYpFUSVTSmnIL168ePbsWakM/vNrd8cr7rvoy07Gm1fu2N6IBehLb7NveHaO0h1UJ2/Q1qre605X7z06rus6xphzdoAF72vO75qF/+wUX4rE2amx6MeJa/xNviwilpl8lyFXWlkvsiabf2WblBBEAkNIObVtCwBo4JHENOecckbHvq6IqKqqUNX3jGLf9++98+6nn35aPNylGyIiKorGiIzESPWmGuLw8OIBBffy+fO7jPg3yk3+ylv54qMDlYqVPx973ZuU6TSFKcZcA/jiS36eijLZq2U3nseuZEwtHVJf6P7zU8q/dIsJcXazjnOScKJvGSMtMyiR96HMqJLC55kMQQ0MINTVwlBZhW2HlE0VFLEApBatRpDHkv3JglpUiRsAscyvPCE3jpnwszdkGUsvbRZEt0fgZ8VQuacxHctt1s7v+xp5D0iClEviBBkgGBkD2QAIhihKQoTEoAU0GxI7J3FgjWdM715s/9KTh7/+tfe/8fDhzjFxVItICSAOUUUzWP/yxc3Tz64/u+k/ub55et2lhBVp5RxQBsaKncWOKgeaULnxdRPYu2oTfN/3krIf9cvihinBa1Twn+4jxH6X9o/e8nUdUMQjNE3lK7QQVPOx/NsspdT3fd/3Xc5IpILDYG0vKWUAUoE0RMlRUy85AqKZxtS3++sXTz/59OOPrvY3AFI19WYTmibUgauKGUHUUMU5rirPTKpI6J0LZqCKwddZwBQlq2lKaeiHNsuAqA5kt3PMdbWtmBWZzs99IWp9eS3D0CKaD1zV7BxNN8xAdzLNLRVrXZMSzta83kvVt7y8oHHq2vKZbZiCJr58EMwiYD3vlkp/27YiUlXVSLzpxvblGCoAPFkpROSc55GCAApzS3lvQtTiMpmK1JcrRRehpxNzxblgErthAMIYo6WofScxC1F3E/c3Xdu2XdfFGFNOhkFUX758+dlnn7399jtqqODI4V+UF3x17WTnWMWeX3tbfU20krZtnz9/XjzZSFh7KtKXb83ko//stt9xgSZcplmBmmjb/sVnL54/e7Hf78vW9Zqd/8nbXd7xL3SV/MQlOyef8mcEQ2AWdEs385d186OLFAAmYM7XuipnRKyqKk7xFppamW8yca3SAv5oKdyW+8m6G0D0JpoP4ghD/LmnwaT4eu/vkY0iQiXFjBhYYcrgd8TDMBRVj4iqum62G/LOzGKMlT92fgyzF2UUgJi/9a1vAcAPfvCDohqOqQRgXDua4APK+DRVjcH94HvfU11Uy63e5A0tuq+0lR1ujCEhpDdia7V1m//4Rd0Zs0lcvjJNlaNzn9BAdEnSsfbpvJ4MLHJjXp4ngHs6IRQDYM4ZmV4pWskx2rhYVgBFBUR06tRSQBkCBIdmJgqqmnIGBUUAE1PiUpxzKx8VQeVYhG/FWJtQfFJKBWqo1Kgse5LSkV72pPNvaqgsRQCAzX95U0l+DKdMS+74qGk3tjkEVozWMgAnfpPpkA/egARQgUwUTIEQCBGIPWHh11Ap9UGFxsIAct6jxjNPv3ix/c57b/2Vb37tl3/h3UebRlJMOrT9zdCnNPRpQMAYM3369PrjT18+HeLT6/2zq04SnjXnF5uGHBARIwHhxfmZZ6gD7zahctA0vg7+2uCQewXNZpYF1EpqjfM+1HTYD32re4y6kQvCGtk58M5VzC74YegBU4lqFuzgnCWmFLsO0YlAP0jKIAKAaiY5x6J4gwhSFslDdzjcXF1dPX/54lkfex+ca0JVb+o6VIG8QzQByGBAiN45RAZgwsDsxFBBd+dn/ZDSkM0IiJAZiEEQDD/60acPH23ZP2h2AUkVgNGcU2apAscsYBEsSh5ibAmVKTjnskwJ0CXdBOdEE1wyLRY6xakUXhHJJn5GHMMIp9jB5ZZqpmCldGyZQCbFaJmC4lZEDxwjMPAqdfBEzA0pqikWZ8a8GxAx0b05Ma8V9cZFI0Tmyb8NJe0eEUdvYXHczGkwy6YjWcLYdPrPzIaYoY9X++th6GLuSLKkJKJqdn19uNn3h64bUk6iKkpoYnh96J6/eBljZPbsCZkFYdK7fia9cD/nze6OorymrbJKzLjlx8IpWT/GeHl5WVUVEXnvw9kGALgUZgLYosxjGI5I+aa2qgBZ0AirmqiklLq27w7tJx9/0vfDK8ykr1gdmt14Y4dfz9t1ctVP7mE+2dHpbsSbP89mNkdURm5XKhqqvn73iqguPyKWlHscdYPCpDRqlscf58uOP8x7ek4pSt6dnxVDZdYmcZ0Cp1My1TKictQ+TxIyv4wAgU55aPfYcjglNE6i+M7nmppNWPPFvVX8EEjUp8jOe+8r73wI4xsyE63qikerDEd98MHZ2f7m5tHDh598/HGMMcVYLBlPjICMhFgqBmy72WawHOPv//7v65wYd5rbtEY5+okbfp6q+LmHcLSexl6N+Z6zAolHDXC60yodZ1ZXS1hMRUAVcCw6x2O15/Gadd7a6mdbzDcoO6+NWWnLq1R11Y2javO6Yzs/haZUq/lKtZKWjyW2mFIipWmpoC1G5nA4IJdJxDAdKotU7MhVJirH1EoEcl5Ny+aOCClnYzBVlVxRgCIUVZe5ToaAkudBZOaS/ZhTVAXn2NRySjklZl7yp6kZlUDutGzm7+fojYC/ij9CYUqtXcxmXRi4p4IeVrbayng9jsxUWDj9CuyWattcrY8GAGMN0LhQ4Tg9c9ZSkl1qk5HIIamoSMyBwYAEvTBmJPACmNCqzWaINw+9/NKO/5Nf+uB//Ze+9o23H108uKCmSQb9yxfB8OVNf3h5FUUH4+f79OnVcNnjd6/SIfF19IduoO7yHaJ3Hl+Q9gEcEV23cr5tml1oNrytAqgMg4DyPgdCcRA9xOCAN4RqeZ/62GGKSfHTj5+/7Oyb73/w3oNd1tylwe2gqdPmzDneFIc4AIlAe+gvLw9ZMASiksHJ4gi9KFA7pKvLbth2CerWpUgMIMPh6sVnn3zkCALR2fbs4uGTerNxjlRjFzuPGDhsPQBiFtj3kjMD1+YaIh9qBwq81WEYDvt937ciSQyysmYht33xYhjiVY71W28/9BXlPKR9r/3BYgzEgcBiO+yJxTgheIfs+iQFw0StEHRANhUzMyFiQ8sTo7yBZdOUk4osYets4osvs0NFJnZ5zWAJVEwVVMFETGw0d7JBmhV3MEmlpsXM0IgByMyyiIGN1C5lDydMMRITEj777Nlh6H1V9ylzqOvNrgp15WvPgQkrYoSR115RCoA/MxusCGLmlWKlohSBwAiNALyjxnvHjpmYMA/JMTnnRraWUvBWFgFicbnNG7lNKBxdSiKSpUBJi5hEzVFSzpJE+9z/+PrFt+K7DcrQ7uMgfbQh64ury6v9vpXckrsaFAUaD67avoz9Dz5++h/0/cWOAWUQ6aKZA1J1Koh3Itu64GdXqK3xWlY+zrVOMQflX6GUr1W95S8rpsWTC5fMXyXMNrXgFz08MQmWPxPgwjm8ZFUvitP8q64ZBE/aEV8f7gSbLjXEc69WRYCw2hL5Vs7V3O5BXy0jbwYixuxjzB9//GlKUtgUvXOhguBLZ42JRDWlNAxS2KxVtCQl05SeaNB7PqadZJG2PTx79vzly5c3+4PhOP7ZdCysQgBAQHaeUh5prW/lsk+9xdElXEajmlmJbRrIqeXl0OA4JuUqT3ciVp34PlfOyyXTy3r/KpkPxdg7cTHi0uN7mi+3LPO4sxKp7Hjlnie+xpKh9cobnoSDcs4jcQoiE4MZqIkImAoKOgTUnKOJw2wqmZAcsjq3uuEiu0Mgj32cyvLH+hDDilgNE2g5A8k5JI9EgAmzGWhWLOXNAIBmgkbogGJKOWdyjEzB+9QP3jlCTGlAUOecqRIqghbYDkPrhp4dO/JZBBFd8FmyZVCR5QpFXLFhIqL3PoQw/zrHYaJkROTgcarMxomUs0/RCDl4VVUsaF2uFAICgiIojmE3InJVMIA+xbqu5ylRnjsjw0rKhEhAhJTNfL0B51NMXdftdmfgPAQP3nHd+CoAIRIDEgUPANmypuTMee+RSXKOQ/Z1w55iGh6/9ejy8tLMsJR2IAVXmajmHHNC/v+x92fNtiPZmSC2BncHsIcz3CGmzGSSLFY11d1qlZVMsjbpTQ/qn9f6EfoDeuh3melBMpZ1t8ykKlNVV5FM5hAZcePeM+wBgLuvtfTgADawz5AnbgwZJNMj7No5Z2M7HA735Wv8PhLmzevr/8ff/D//46//wXzAB+r18KLn6txAej7+ulwbi6+lOP9tsZN1EZiclG6cUZ/jpJqP3yRiEMkqGQFSsb0ceUfsGvKKJghpSDIY7AAyKDy8ZWOJqIqUTH8kTiaGgA4BeFKLB5f7XDjMjSIDSzO2SoPpBMfBXai2IGsBADAEMQCkSTiAWQFXQ+QuDzT2WEB05lMjs8NxJEQ2USsjXswvEhIBkgETkxGIoRVQB/Lkiv2GgKCmKjrIWMgwxAb3bV/yspxz5BhoLKNSg64nREYiIqvqhFFEvHfRNLftyTkxe822rMQzISWEgjxmSEYGVhR+kSwTFyeh86ymUZMmmdf3wsdFVKakt+nXxRH+dDL0C9u5VT+T2YtTBOEZWplZVwZgdLIeAYv718gQtNB4epdykhQvUv9f/PyT//2/+OK//Vc//8tPLy+r0FxsxQXM2u+dMLYq911/7HOr/P6Q3h/jbZ9vcu5EDwA9ERG2KvsU1w4V0HIScSomBsc+9X1MCQ+HfDjm2zYHB+vK0KtHQgBkJAIgAOactRNI+6N7940Dq16tq1ApAXImskLAIFlT0r6LKaWygEVHHkMAAC2L1yznlHJOKSYw0Zj3+93t3W2XYlJZrTZNs63qVVWvDERjHrYnIBezu3jgAUS0j11dc7VuCBhQfVU552IXYnc87i3GmLPmLqpk4rzbd6E+VjXn3LVdLzlfXjaTMiP5eNhr8lJ5cdXGNw0yGViSpGZlqxTbQ0cwjQlGcHg+XKD12AMlw8axlyNIp7jKPLAwZHyZmj2f2jFfh8WTZ2Zd18UUDRCJgIgHHBY3PuYLqoz/YBspUIgJVGHpyZvPQNmIJ5vnDHlidGdNSp6ZGWKBRe9SzDn72kFVSe61z0nEh+C8w6yCqIBgQGaAoMgpS5YskgBZXeFcfcYd9kdoLw81fJyYeupe3723P2KbslZ2ux0AbJrVANc5wFYrIuacY4zH47GADcYY+75X1aZp1ut1ASMq9HwlH7rruvfv39/c3LQjP8O3bWfa+bhyf0LzXFbR3L36R2kPJ+ol3zImQBO2DBJNQIlQHRKiDjC5pfMSOT81XPgTx9fBBrDv0AxAEUARBRMiIRAjunVlYABMYAV8cZBbCKkAu4iAigsejHQs4Xjh4w+Tb1Oy+3ysi20+B/uyMcX/D747Wzac1QFOpik+yJ2b4uGP9zhbz3VT100DiM4MnQOmYgwBog2nHQKAmha9lkYYSRzkr5lZqELbtVfXV23X2gmgBXPMoKpZcs59lxpP1031b/+n/xFKnvALp/iJNmUPlvZMPtOC8HFGPPrMxXaG51fOblFAATUkUgRjBARkRkI0IAM2sJzQBusdzXjMeAAC0/MxnkIxMzgYHbUOGII5HyNzBj2gRC0GUB4CMwPhRbKlzV1mz7yR80EMfZoB8EBlSogkZqJSTGgDwBnIy1kPjFSoCEZg0xPgKWYlIhjgBhCnoBZMeUhTn5MXw1BOu88RutELWaIvp+jS4NpQUzNCrlwpxzUqyLSnzr//GpWPo258pj3jC/yIhoZeCBSNzAAoOF85NcWuZ0v/+u3m3/z5J//mX/78z3/+9s2r9aqufVW32VIbE2oHcp/jTYy3h+Outw9H/XCI90mPqp1BJjBHhnhM/aHjelMbqIOMGmPujx2LmIgcOru/T/eHY2q7i5Vzl9UquMJmOlT2E2f2B+g6xNj38d37mvBq7X3l6uIXKq4yg1yqQ/q+RJlVsQQ0pyzeUjEmIn3f9u2hb5yoA9DDYd92Bx8COazrVbPeVM0q1FVOcUT9UzAjplJPbmY55z5rVOd97ZiNAzNUVVV5nyrfeTbJXdclMCRw6IgopbTb7Y5HEM2qyRAur2ofHBGnlPsud20be41BQ5LaE6E3A5WkCAisQy2JCajqUASmM+Cv51/0YIGoTtbOUHwyED4uPxrSvOwZDkWRU33YVOCx2+26tisOkpJ2GUKYsInp+9HaizsObaBlejLlYF6d9swUTZMJRbswA7Bj2/Z9X11tViEwdQI9uASEx76jWJiVF52kFGNKKUYzVvo+d+j31c7YJJ+aDTzLiP2oN/a9C70/blPV4/HY9z0D1nW92Ww2m42N4YhinPz2t7/NOfd9H2MEgInh1DnX1HVZ/4X4om3b/X6vqh9NCzhX+4rqMCX8gP4k1t5z1MM/YltM1Cyd4/nmiNUECnMXgCtgo0iIZGqzoJ+e0JAQCN1J4ZnlYKMBV5WZMqqYIqohyoCwjQx5gLpDPdtsWXIpVUciIAR+DOXsD7V5Dd7cpXO2zZ1zU6BycFpNlS3Pdj6/cko8mz6alM6zFVsuK4GUsw6n1TLpOTHGEnUpe6rYVPNvldyzydaaf2RmIYSmaaqqKth6MKqDdViZDWcqM6+a1d/8zd/86h/+YQ679NGt+ONPI4zfJ1QGjmFXMtBi3qjK5C50pIwAXOIKzEwGCMAKKQ/VvJPEGDVjdLYIPs/fO80Sf0DEFjHVU/XdyxtRgU8cXvHpXojzQPrHHRrzwSOWXPvh7woms2L6eaHM2cqZjPaytqcyYDQAUR1zHc/8ILoo+lp0qDNlqWiPpyvdaQ5xjvqIoDLC1w3xpVP7/g2V+XDniWsf3b73U5/L/AMYiljsjwfM8Zr9n726/D/99ed//edvfv52dbWleu249gqQutx1bde1XdenrL3RPsHNMd33su/TMQkxOyN07MmZaoqxb8k2FYCta+fZckz3u4MaHqLsjvru9nh/v39Tg8faLkIIwQfOedhLSNQj9YBYV5a0z7Lru/e7Ox9W6/VqqoAwM2YqMWsiqkLV9iI5q+rEjVqOT1OJ/SHFY+orFRaVu/vbu/t7JERiChU7z+RGrGADUwQlUCKaqjXaNkZh31wScxZRTRNzqPM+hFBVVVVVlrNfrYggVK5uKgXr2040Oseh9r6CzcZVdZWTdq3s93l/n2I8Glh/m31V+SoAIiAZ6GB9G8iIF1za9B4Rn/HFnAyVqW7+oaGiZjOS+mKoPKlLzYVZmXMROR6PXd/5akVEzrliqIQQBp7H74PDrjg4CK04tJ/xVtGSkuKpy3RBOzBAEXZtG2OvqiYZALxzlZGAhrZiLnH8xWSn4k4PDozF/SSUxbN2FuV40lCBZULOR0mbhbpwhoT6j6rpWLUMADnnd+/eee/ruq7reqoBKNAdu91u7lqe7839yHM6MfThU+i6L2vzXT9pk4Oi+dMwVOhp6uEfs32EUw8BaiU1YwOXFbukAoCUiQipcuHk/syz3YFoXNncUCl9GSiAY9RSfguSUQGAi2VjmCKQ4YDUhIg0pIlaKepEISJkUjMd0GXseTk/b5PJ8dBZcJZpPhkq82+93FCxEeZIxxLnaW3Tg2LlGGNxY9mDMKAuMWDK8TGlh5VBTkxcZ48Jj0WDy6+Xl5dE9OrVq+lkMzNmpygAYIjBu6pp/t2///dt34FzwD91UKUJSpsMCqMZmNiQgujBaEhzVDNQLSaNAgOIgYqoKBTHHKEQEyIDn8ImZnOsbZsZKhNnGpR0MvLPp/A82phIrRRFDy/OQM0ACbMInIxbXOAlvqzzafUCACLGrkMkYjJEINSxTgwAlrkYtsRJp+GWolZyw0biaxQlRFNTMsYhWlXCLzYP0czLxbHM2/QgtqAsWe6x+d7DIb0UmclsxucC4CZb8/kUiPnOL1vkmSvnv54d4fOf54RciC8y6880gIVRhIZPLKLJ+QEDtDaZKkBmErbcQLoM+Fefvf7f/tVf/u9+sfrs7cX1db3a1q52ShqjdLHtu0O33/XHVhKIUNvDodfjUUTQU1gr1oCKTpkENYvkGHOMvGlWHlaeyeB4zPuu/7Dv3x/ih31MfbryFSI67713jknVSq6QwYDuVk740NQA1nctqPcOC82IiIAhInrnqqoqQRUcn1RVEU5MQGZGqH13vL81F3zSfHt3e+xa533VNPVqzSEAkQ1LCp0jD8gIViorVPu+77o+m6cgpio5c3UieJpUPWZm75znOvi6Duw4xi4qFMQwouADh8rXddCgzikiadbjoU9ZohxdDFVauVAhO0AUoLJERGEO0mUzjgUzmOeFz+VyMTwKMmOWPDdUzGa+sXlpPZwOOV0Un5sVlPPFWQjFtYyIJWJbrLUSV8ExufmZxXyWFTZb2UOQGk9Ig0Ma6yjO8GxVD41PyQk65nepqoHJQHF5OozLKhpBFSHnfDgcmchz5V1DTqmLSbP3nplEsmphegIDQMS+7wsFsn6sC/kBvezyxJ3PzDLL/9wV8thXygPOdYiF3TKTUWfOFBVFhEkp18UB9mSzRYeLC2lx9jwtG8/acmUUf8FDKT0/Kh72vxziyy6btB8EtFPu1mzH2eD2HlOrcczvn3ootBjDrrRBI1XVnBK5hUr0cAGcpMr83NBTcs40wj9oEpxRhBVVtfhunknheNjh9Ozz1NCz1TvJpUdu/eBWswdZ/hHKUY3FX3T6CE5PjYgwowd5UPSyfLNPPOV09hIRKVjfOwQA6dOhvdvjWJIBppWzqcaKmNgxEjIxIgNVcFrbwwjN1AQSkJgmMmXIlg2U0dis8j4iFyLazeU1oCvzOPpryYPHgg1CxEyplKx4N7c9zBYrYT75Z/bGnG6FRvK/EqmA0ZUzidC5LT3faDhGQsqan7/ByX54dDzTrVNKIYS+7yfbo9jw87emI6DFdruNMYYQkIegCs3V2OL5RphGPplbOKI/AUBd1yJS13V50pLdAIhDOMU5FwIx3e93MSUf/Isl0eIqWhRHnY5OA3gmlWAuDxXUnsDsOpdRajZmZxGAnUCqzApAvw4Z0qZKRcAbpD5CqUsdqlPBDE1UAXGmftpSjOps2QxbDxARS7rW9GJLutXpShGYLZv5dSCKZqSAow2ECoAj5m8xA0CBCOlEQ2kjGgQiAi6w4R99WcPbV0MwFQFCIEImoKEXmvFdmp0oXNAACXE4TKwQDppaKWOzLIYEAwy0FqeC5oyiJjbLkctAJaJFAKgzIwNnmjnConbUhrkq6cUgx05woIcri3/aSm5a7g+ffHH6vtjROD+xzo/V8xucfsRnwCUWduCyynChfKA94XmZRBgREZMCiCWG3KCtnbxd+19ebP+rn7/9b37x+hef+u22WjeeHaYU25T3x7i/PXTHLh0O6diqWMrUJ2x7aKOJURUqn8WABJ0gmQdBM+mkT7xuAkMV0JE79ilF6/t8OPZRjYMfi5dcWYiIWKKapkpFlc4CCpt1sw68CXRR+3WgdQiglnMW1aKmV1XlnFOL04SUJ500eANjVJW2PcR8sD7nY3vMpiG4Zrtp1ltkQqayPrzjYC6YMoikpMAiUsDsFTnGlHP2AMF74iEzdcJHLmXcamSEWtQUJHIelIxcUvLcALAqIJIP2KwwpZwlHdujJIx923XHqm7YV8gekJEYiLOizbxZw6IYwz80UqJO+vcUMSio4bl4VFSmipRSpzK3UmCUVjM7ZNnAEAlnlkzOsaASl+xSRJwMlZfirp6dDvOFTYRgRDQyqHB5oTxzujxU1ObDXthsZjoW+UyuvqJxJlElKkmp+/0+5UzMCKSmMcY+9jlnlRI6P51MiNjH2McIUPLNPzZ5YK6mLmyO5cwsYyOLU/VMfM+lzcI+OfNlnmmIc0GnAMPxf+ZhfeY0fyZWcC7ZljbX7M+Lo/lRivFJI5l/tJTMT/uP5mfq06bK6Yy0obtpd8DsFCiq23zvLO41epTLq5rMmPPUr/OXPH86m39cHGxDn3BSBczsuWz4+bIZ/xvu8jSk6dmzlAkZOdGXtCez8U8LABFfwps8OLnnJadlzkcMqMVZNpkKg+H9tBZITya0LJ4RAMaQBhL1musqhCqoGYG5ghwKoJLb9v0cAocUGZ0DZnTWtzgD+hORlKKIMnB308acFKHaVESAmuNxf//+vYp0iD4EXzf/1f/6f3P1+i1hQIKimFDhpDTLIoToQ+j6PudcBT/fifNTYDrZRw0R5ztxrgQXe8vMirWgNqs9QJyslPLv3FCZoouF+Wea1cl4gNmamX44kxWDqQAnD0hxEM9NHRhNmrquAYBGKwVxQJKcDBVfnXirpsSw+Zino2H+xySScgbRpmo4eHB86Fr0zN5rYQF9rD3tPnokZD28mifX3YM+9MVlVEWYAygCEjHQgG0DRdc3ULURysAAyt9SN89AO1W6oNmQsjF+Qgt5O78xmBkWXC3EPC+wWDYtsZFRxM2fS1OeHr0sw3ITBUDioXAFxmVc8mUKUcy4Qs728lKyDf5TAAAtueuDZwsHMTrkyuBAhVf6EpsHX5cnKpmBDXOookBgNkRCEAtfm4IqziZD1UTUMSMgMoLqLKXNdMZfQA/Cdzg9xSywUzxBZUmZmZuy00qPi1PwH3mm9dQmiTNse0u1wxXRqxreBPcv317913/2+V9++uaLN6vtm6quA1XeBGLb7fbHu/v7/e6QY+r7Y0opKmRyPbrWuNNcLFMkNMRCvOeQAntHsOVQK1XBgncI6JCYmMkFokCZyJxjHuHAz/QtNvUqtYoCbD2/XlWfbJo3q3Dh6OpyG/vcdV3XxiK8abQ+Ac6dNDBQSknf7WG7EdT73b5NKZl67+vVqlmtyTsEZ8gKWrJinSSniQyyiE1n8LlSbSKDiXLc7w+7++PxGGM0zS7UChZTKoGAqm5Uh/C9JB87IEAX0DmilZo1akkx9/dJRGJvXXcI1cpVDXFF5JBDAoRZ1ePZmy1PWly/A8pQzqfAiE6ZXXaKqEwhGtOPzdLB8uwAAAbz6hT6aK392zdauhhUTinUQ1GamYjoaF7N3Y2zb4mZSc5t2x4PB/Me0Xdtarv2/u7+fnffdh0R8VK+xBjb49HgNT2dVfV9tbMT8YfrHABwKQ+fufKfjHict/NH/qhO6Ok5/FP7iDaZcOcR1O+jGUL2pKtQX11ttptms16tVqGqjNBMct5NhkpR1wiJmRjZdYYCNgafD8fD3d2dqtb1Cswfu6OAXl9uVpWz2H3z29/8v/7vv/6f/ubf7mIkDpvLK+fcf/Ov/021vaRSxTLoaMVdhvB9POYL5UZZoo/KxslKKRmMh8OBxzYFOmBpHz5sxaqfyk7K8fRwVGpKSCXkEmN8huilVIVNPYQQircuhKAjSXHJzO37vrjS2r53AdWMaOD1LHjiPlTIdIbE9cK29O8s5vCZ6Vh862V3xZkgIgNUQBrqVQBgiqiYGoACoqiSmonBmf9r1nRuZM9uQAY6L6aHAYXpD/P/zITeeZv/8ewCPWf7mQLKNgYc6AExoj3xc+lw9MyBmiCbmSEZIIIb9f4HKQb6MEd9CEMZIoKaoYqC6RhFLGla86efHmCgMMK5Hbg4SJ6AwUQAHNl8DGDIWTNFVTBzU3jlYRXgfHYm58E/xjZJQSJCgOtV06C9qfjzlf/Zxv2rn13/9S8/fXu9Wm+cf3MBxClj7nJ77Lq7/e7DzaE9mNm+P+6ztIi9cy25g8IBwMAiaCIxRFQlo6C0JliH+lW9uq7rKkTvuXBseMCKqHaYTZHMO35YJ1daQ7R2jMRE+KoJn6ybzy9Wb1bVNjgece6YaYpRlqq7tn3cUBHVtt0fdvdKFPtohD640KzWm3WzWrEPYAXX1NBKupVoTqYpSwIazIMzv6ABqEjf94UNMKUIAN57JhdCyDmVxFznnPehrkJZZil5VUUgdgxmzLi9qNhtQnAi7bGN+9zGGJNknzK75ELFnCN6mM6xx1oxTspZMlksuKg+GUyVM0PFCrvOR7W+79u2LXvS++DH9mPS2NnSl2+zWs/JR1hMytPjPziMcxY0E9XyKn1xv6Wccy4MGDkXX+BiovquOx6PpsrEH8W49S3aD1qq/mBd4SQPnxnGw2n8p9Hm7moYMTG/bZufKd/f0P75tvleVlV+WZr0yxt7Z2DJxJiQWRjNMzlWc2MRKwJYSXbTQpZsSJsRY1fEO1dfbu3qEgFCVfWIlHrTTARJIkW3eXPx9mevV1fN/usup/7+9sOvf/X3f/6Xf3XdrBkZwBnSGEUmBfteDJUXYqBNLi2dFWiVVnTEQvJoYyopjDkLk6HykmGUxIepN++9qi5ESlKDRbbqU837GaGqWdd1xVYhouKfK7fo+37ICUfsY4/OixUdnxSt6/suRqI/cK9n2sPdreMB+4yH4+NkQsk2mXh9sEQKhijCQEdYoi1WQnJZQPQpKwUADE/wvwgnTVoQTGAWDQCYwrvPLslJ6BUQ5Lm2fPbIC1NtcfLM47CFcGiIRJyfek9b4CZD6c6AcquKNORWjqUy+sgb10XpL07ZvDaEaEQEzBSRmIfI3mM24OAQBRA+ET5OMb3Foz3WFrir4zisGCrTxjMzsIWAOLOYF8GWn4bNYoA45tuOMdfBjJ6A7Yp8RTQCcGAO4LN1vWX4fOV/vqn+4u3Fv/zl288/vWg2rt421jRZQFPqu3jYtXcf7m+++XBoj0DYKxxVIrhE1BEdiQ6AhugQjpbMEE29UK3oHPu63tb1ZdMENmZnQIiKzCWFgAmJgZmIaax8gGEfIKHZytPaExsx4WVwV7W7asJl7SpHKUYRQyumoyIoFcbFokcuTHdVg7KDY2zv9zfgPLKrm42rat9sqmbFzjlCMzU0LJyHKiBZc4ScFAQHoPNp8QuAESiYmIrknGKnIswOvIYQvGNiSLlPkhhYsyFzHXxVrcBA+mwikbExnyURwKqpvKPArj8aGeQ+qeScpJfOeTAw9TZwJjOVFElEGvAPp1e+NEhEREXRQMwMUEfsvrHBxJoy7KrJm/LQP/FgwY1RSkg5x5yYGMCcc56dZ+edO6e5eLJLe0by4biWF1LoQU+PqMvTQyIOXpnZSWxTqtCsxk5VCwR8G2PKUpxHhACAIVRIVCpaYYbsY2BRtI8JDank7uMzT/pd28eFeW32w7hSlh881j/M5eEzl/3Tbd/dAMPlHP4ED45/XG1K4NEHhOvfSwuA2qfubn8ASm1LzlWrxgVvBuD95B9HAkQcqSowQxbVnFLOGQkLlAgRFcYKYtTUH+9u777+8pu//9Xdb393+7vftvu9qhC6lPpvvv79Yb+/fiPgRiYNIlBBIgSdQwvj9M+3bC+XGzY/HpY92AjlgohN05RfJ2dQac93XipSyvyUcEoxVMxsUZprUGqonjdU7AG2RPl1hBSj4QjMmRCrqnITZoAqqFEpc1Xr+tillM005cInAt9WgtvsOJwSkMxADR4ymY4K2XiWPHKvs+/MPfLwDBGFqiGbKk6hEFHIAiLIj7shbXk6nI1hcSMa3ftjBGEq6z/77iT0YKlI4zAts4ce1FUERFg4+cq3DMBOAZxpWT69xhZOZDMbH9AG3RiHP5uiAulQPjG9AgTQWd1IKTVBNVQruWQmhiX7BKGkwKMhEZ7ljpUAejGVcQ7PPXuzBnBWlTTXlhYcjCqIhY9dwdSVLTH5BhaGIMxGsiSjUZnnnHHJzFERMJuniJzNrmSBkRXrzMw6kynznT9/5jMFQm2wtAHMQEwzoAECqK2QxCCVy00r5zZMr1z42fX2Uj+8cv4vL1/9y59dff7m+tX1dnP5ii6aREjqu9udHtv2fv/7b7751W+/fP/hfnezu371em9WrRrMeRW8c65TvofKiKzrL5pVjLkXEHTsHG/q5vXGbyjDcQ11POQIdtvmm2N/UOhdFdGRmTHCwE8AGUEETGmIjvCucZk0vLm4+sW2+WLrX2/Z107I5Zh39/u2bQu0FDKAh83KB4bUQwuxix0yZJU+98jEjiPE3Kd9OoRms95eEjYhuHq1Cr4Cs5XtzHIqOYeSUuogRukT5BiqzAjssArYRYMUMbUQj5iCN+4O+/b+LnWdZgs+NNtLMIx9B3pkULQuZ1EA4+3WXbNvzFhT26e+3UubctPQZu1qR7VzqxXyK+2b1Ydq9fX7/aGVqJZTm6FFq5gvUAHNsAR3yRHVgCukkFPhm1PJKkkBjAHVIKXcm2W1kgomOqV4MQJGi2Ygaqanwt+yLLs8Uj0gqJmo2Pivc6FrO0RUwNv73f3hCEhKvFpvLrYXF5vtZrX2yA7JsSs5nghWN5WNNTOFrLRYAogIp1Gd0JbK1pCYvGPnKHjvkBjIIfkCi2OqAEPerC2EVAFUKKJWZYgsZRMFBcNigaYsSSSpZFEByGjBV/sY682rD8eujxoMc+wwo3c+iwIysY/SdrFHxpQiuyojHX3ddkaZUCHUTp0hoyMm51Rp4ZKa72UDBHyYpQoAOnuQsyKKxXnw4OyZVIdzByeSlLdMdEY+w+O3bEhPOn1UwkcAA7MgzK6kmVA1eOSgHR5kfJVF54j5lCd97luSE/U3nTnG5qbT8iSaR84dOaDZsyynZnGv+RlwNuLZ8zMR+dPbKYn141WLJ16cDstGNpTRn3SXqZPZzXXEdBqUM0kw8KmWVXM6YiRmRPTMDzFX8tPnt5u/L7Mldd3Tp/5jeSuDajjXB9QMT4OfV4jCmerwQFeaZnKuj86j62ZLnHQtcKzASKXOZtH3E8doOWN1ANVQm+kLVMgm1EQEVXM8OuckweHuNse6qiqIvXiPzqUKx41piEjMzpXKchVFVZAsokJEmbXvUl3XdVWBgRxj6iJGSgf5zW++/v2vf/v1b37LwFjVse8J4e72/X/4//7Plxebt5//UpHFFKoKRJAzZjZTA2L2u92B2TX16nA4SLD1eg2eYp8l56pqzCzmBKMj1QfPjksxCRHlebR5uCCEqiJmlQUjIcxUIFc4HEWcc4UyaCp8l1xU80K9y6YIRkUDrJt1wRdBHCZ6EubBD7X7JRer4K+MKCxawiPluyUgv1ptUtYYM3tAdt55JJJCeW6AAISzSBGigR3bPmVdNQ0Dprb3oVJkTRmykAKgWZZS04kq0vXiTZHeff3BreouJR7zCnDEucLRdy5LCtEzPW0OnAWqhABIyGa2rOaayXNLPbuBZAkBFuDIk1Rd2qYGYGNoVwHQtKR1ldWv5MAUolpMhc2sAGEbO81DhfckyU/PMv6IMNSVzcgl5yzSg6tlrFJbbHOaBQfKPJERIIGdGMwNwLl6epoB3WYsOpyXoi1hroCIhyGpnokQ1IUomnvpZerCwDEPHLUGZpD7DgyGs4xoZHUUUHR2OlUJFQfwUwKE2B5wtJsQESyVh8sAVPmFN3Cq1CIs+20OrDcNdyqOGSqP9TR4dKfpENWBFRIB8aPhiT/OuTi6H17i3njqo/mvVKxHA0U0QwAeEmoRBEknpIQUG0dfXF1+WoVPV9XG2k8u6p99evnJJ1evXl1srjbNulZ2Ktrvd/sPN4eb3YcPN19+uPnV1x9u7g67+7bHZnW9BXMI6okq513w0IsBGnGhAg9AteNXm+rt9fZqW4UAaHjfW9tJMtt1MakWopRgxAAOy2oZfN/jOYIGSM6Ry5TIoXoC74DR0FQ1t22nqgUwtOwc7xhUc5bttiEmOEqfegArBqSowVByisjsnK9CWFVV4ygwEChoBlMcoiYIRmAOzCmM2kY55FUMiAjQck79cW9d1+UUESwE31RNXTWqCmCaEicyBVFVNBHt+x4pIei6qgE5ptTHBGhM4lGhkgC6bqrKYcHUu9v1uy51yQSLHygaAaoMjgozA2+QzVhliN+qiOogHLOImKiRFRDwkwAYXDMAaAUXBAcQmOE4z2fidbn2dFjCknPOYoDgvA+BvfNuSOPDMrwhlRyp+MYew2sqXc53xrg/EBHc2NsQqBgVn4c6+vzXKZEAAQyyidkI0DyPKQ3BVLAyOVlEDQUgCd7s9m/qoCnvO71t87Ft+z7GmHLSEcDRDM0QxLCPUbM6ALESwXwKzOIHbOWJnpjej/HfPxM2eWGoYXqVf/D6n2B04Q8K5z+179JGw9jGRfKj3YtsptDYcu0xkan0Xe7a4/GwnwgxzCDUc+IIY3ahCoSoasQsIillkQJlTIioVaV1rXUV+9geD/3hcPPhpu9SF+0YxVTWwQERmkpK7776/e2HD59+8edd3ykweYKRlHbpBhhCSU8FPSal4pmlO8mHP7jCC9TYdFmMcXAzIbpZptYzgmIpzHGqMXi0Bma60ZRmVpByQqj6FM2saZpSfIIT6teD4hA8JQcCEKoZ4OBBFpOiqs8nlZk/3N9b8ZLjOeHj2c+TFMVlXcKcbtvmPwPY+eTg9BVkj+ywgFDZgxy/JybViOaH5eJbdDLBy1qf+V24GHb2IAByftPlfR/GW2z56yMjBDA8edUX/vQF/EnxhAx/UcmnWyMCjf8/s7qmqMzDMSDMLI5THc70xVEIDIMdO9LBuJqecW7Rzb0ui9e/WBtzz90zoIpFzTxfHKPVmfNsNoDnd/tIQ+XjEvHPWLFeGlF54p0VRGcy0IHZlo240GwDQg+DscyqTY2frFdfrJrXDi5J3mw3b6/Xr95er1+t61fN6mJFgSSldOjifne4ufnw9e1vvvnw29vdb24PN8e+axOt9WdWAJ7ZoW+aelX3vG9NhRB6wQC8reh6xZ9fh59dhcvGo0kb4eubfdv2RCiqSMAIDVuF5gAYlRAIiRkIQVARFEEBIQEBuspzXVd140MIxIwGlsUTYzXEvpxzVVWVGYsxbTbovCJ53WfIqECiptnETMkhMaEPPmxC2AZfEThNZmZGAiyGBUbMwBmwggcLqj0oqEy5p0QEqhJje4x9TNnMvA/BV02zqkKdc1a1ZIFc5Vw0Ie+4rmpEYlTvgsNg4NQoJjm2vYlqNF3xqqJVIPZ4VTV+5cKK3X13t8O2F8mY7QiIyAZa/FRompAZCCRnUKdgWfqcxQwQMatEyYp+UZ8ymftngpEGcImBW/fpkpUp1p9T7vvewApCSyFOKc6wKf47hmhAVGm5+B9fzOORRkSI4AiZnqzJme+UM6fs7KMF95mOQGcyq2NRVTVNOZkZKvUxvb/b/+z1FZn1KR6Ox/v7u/3+2PW5xJ3OZuN4PKacAsCzAvyHbVNl3fdVGvRMPcwLs6sn1eTs7fyjaPanwpIfstkMooqIngnsfN/3Qn36tRKz5FSc+gW/sVT9WZaLUM0QiM2xK0QfpnJ5uZKcYowxxa7r+r5DxKqqQrNqGduU2/2hbVvJcntz28aIvmZEs0TEIND38cvf/e43v/71n/3Ff5GM0NXwdA32JLIerRyblIpnBOZcy39+V5ZwynTNhJQ44RpPHT5zr5kwx8kR9tBQYeYpr6xcFmPsui7nrIbOu6qqVDXnPJXvI2KcxTnLOAvXiqiC6GQXFZT8knVGNMFkgSG4EN598002ZVPgBa3nvH386rRHSxjAENC7wpygCKZ2OnCX8eDBXp1+GV+tlekd4YnRgMg95ZBi72CyGb59zvC3ajqQudCEiPjoZbgsiVRN848mRhXAJ4EJ7dyMX7SnzsGX++yeVSp+WDeWzbDCdLm/PtJQOdulLxw9LVmxnmrPTcfMviu0UYIwmGSIQIhWApwAYIBIQDWlT1brX15tPm3cF7X/7Kq5vKBXrzdvPrmqt4FqFjZJ/eH+eH+729/cvP/9zbv3919+2P121/5u3991uY8Wkn4OCIhE5IjqEJrKO0SDhICKVeXtakWfX1Sfbdw2KFo8RLk/xP/07rZPsllVF3WoHTFIhUqknsCjMYEjYywl7MUnbWTWHqOKrKpwta3XmxUHB65SAxXNktmFgg1SsImJKKV0OBwAU4MMVqlK20kW6NWyZMmmAb0xk69cCM55y84i9lFVtb4QoII1Z0ZgauDNPEASRVBTHRLUDJQIzTTGLgOJIjPXdeNcKFK0HAOI7PyqIWoQBiZZSSoRncuJiZz3ldPc9inFPkVBqJCYMHtPzlvDoOQyuF5yHyWrSOoRAdiAmdgpE0FnBsZqBdIKQCRnySUvJknO2YDHWMLS2Xa2sAq/yGCCOhdzgifayVCRnFIyA+99VVWF5bHkZ9MMoANLMqcmHcnp4Omdcm6oOKZSWTULhT+2UxYdztFg5hZaefrRMDkhoZUPUs5gaEpdsm/u9rd9DGD7tr27u93tdodj1ws8YqiYHo9tqdT8I7rgp3f3/PS+vD0j2V4eUSmdDILuxwOB+37anyIqP1ybBNGwYvEHtGOX94KnM/UABtGPBBjYUd2UgjY083ZSOAmRmIkwp5xS/P3vPqRcTJS+7/uc0mCo1HWPKqJ9TimZKPZdB0AQakK0XpGdicaU0v39b3/zm3dffXn9yReEzymIS1H2SFCi7DV7wKg4tclQGTIzn6XNpRmW15QV7Jx7PqPv7F6TXfFMMKec3ZNjqzABpJQkZ56RoJtZznnqcOGtnwlAETHVEIKaAgJ7ZwiiQkbkWERKgbUCsHff3NyIKYKV0qDz2MhYlTH3mp9HHubpR4vXN7nIH5scx8SuJB+cI23PfjlTrM8iKlPExmBJaLRMGnbOnRjYHh3NE+387jh4w8/V/Vk8oUQKiJmYgBZJYnNILVyGgziE+cBKyuDAvC1PCodnrI4zNPxl8PFJC2duFprZnKwRZ0nJpqfpfRgY+e6N3aIEf77O3dnGXvz6zLtdXDbgWRMPhHOzyxbZupMoefiEC8hzsPlqW5YKLfJLMgKWfFsDMym7wMxUTRBBNQBeOPqk9p+u/M834a8+ufyzT66h0vXFanu1djWJadd3KrC729+8v/nqd7+7vT1+/eH45X335TF/3eldm0Bw2+esw+BNJXj2jA4zkKGZgF2v128v+e2GtgHIUi/+/b773c3ht/teVCOzr2sP6EwdGEtq2NXBV84xEYGZZlMBE1CRnDDbtvLXl83l2jNDBDtmywoq1nVxvQlN0xQ3SfEnMXOovLYRGerKX16smVPbCaKZgEhm5+umbpraO0YTkSy9FkZHDSYFlRxYQQwYgJGcmS90gCXQgohgIJIAIBuib0S04Fw5dmbQtq2qIhK5KpDz0BAhkiECMziPjrIoY0lZJwZyOfOhywhRxPACKgCHBKjOmw/KmNESqqJ1klUTIDKyc0FJ1byJJgIHYKAqOYuoAWazlHISATtRsM/XvQ0bcQigFioVnLXpMBwU+pmpU7xffd+rajEVi61SV1V5HZOzZFrjZbXPrZfpFg812PGEO4UbEREQaHbUFWkzh+GfHHLTQWgDSOCpTY8ypaLZEGARAEMkVQN07/ft1/vj1uN9fzwc9pLFzAhPWP4wBN5RssTYl5TrnJJkcVUpwXmOROIZ98YUhZjo7eab/sFUDa2c0Kf5WnY4lYsYLEoUZoIIz07f+ZisJA2O2k/BPZtpG6evLRAUxj8PTzQ/YZcjfMYp+8JW1raN6R9zY/K7dw7nr2hptuFCRL+YQnE2abOUmLNzb3FYPsCcXIzq/Jx/6r6LRoSztfZRR+64bIacnD+UCDQtm/mznLPlzNviGF0oN+fPdV53ft5UFbEsUR06G9RPG9QmVVRgQCAmB965st0REUymnNGihIkoMhLZsd8nsS5rn7XPmrICQCed66NnU1MEYkAz8syigogxZ1Z1QMQORNT05sP7L3/3283lq1Wo87jxSyvq+1AuQqdISNnRU35auaY8ZinzcM7FGM2MiEXE4CTBZu2UCmtLF/Kk+tPIqVKcUMxsungLc7fUJISnjwaGtPG9Iw70qcNkEpWRTwMqzKqHw6GUryBRiWsVWhWbwTnqSApX7lumogReiKigNCJisUlcXXV979gpGDlnYMhMTDe3Nz54Iypke6fdTABIhiO3n1tovjq7SuYGAsH8QDuTqgt1DkmQtWRAEQyHYUG84WUNfhkAQGECgeW5Mr/VU3tPhggSAj1rCOMynDPbYOVHNQNCJLK8MB4WsocZEAupZNnn88vm68YG4QNgBiNDzpCiTUBEBqB2TthyZvHOo02LNqdmmn2MAKrDEi0QXtMhCCMVzfCt+auzRRafFSxoQixFlbgUPXj6EWZFQYvTuXxpfogWMVwyypmmh7Tloy15gl9+tp153RBxeqn5SdfNNO6HGXhnlsmS2Xe54mcTakRICKBkyiaBaV2xZwKzXRctpgbwDVefOPusor94c/GXn1+/vl6nikNTVZVDtJxz2+XYy4ebu6+/uf3N+7vdIX69j18f9JtO7zO1yjUzsMsDp7mpCAM60FBemGkV+JPL1ZstN0HYYS/6oet/d9/9bhd3RoDok2xSqtlVhIzkECsf6uCDZybAUgGSM6oQmAN4e7W92K5eX2826woJjtn6fWITUkFLa4CSblTUzaI3M3FJ+nREq7pGc6qdSvIOiXzYNhcX6+3FKtQeCLJkM2QkRDY1ITVgRRgBIYbFpYI2YN4SEUnWvu+IkpKrXD1GGAAATDWlbGbOB2IPQGiGYEhGpAARIUvOjlwSjWqqikzAnDPuO8lZas9iENQpSowxxwgaHSfwZpolxdSJGaELkkSr7CQSM4ftQDNuIpqzQjbLCkaoEy97KQ0c2etP68fMwAho4gKzUSXViSdxPMbMDIEKCHIqyMshFCCXuq5DVTl2DzVmNWUinCWLT4KmLPT53sCR0ot5KK4q15eA8mwH4TD2mdmDow9vGi0sDuIFLNrk/bLhwEMA1ATE9e3x8Pu7+/Dp1e1+R45ebV6Fru+y9rv9ISXEEqQkVCjApCnGGKOkpJLdUFyI81PKcJGwunhiWIiRyTM61OS8zGNyFumef2uyfIpBMi/+ngmi8w7nKstQyzPOs8MT7eB5cvWSuW/xduZe8zPF/zu3mcAHeDYc9HLZ/pRJcHav5Xee1PXPdsQZSACOqEq2hIU9Q1OYr/+zMSwOjqeTo8+GQRMCwaAJvdDKesQHV4bE9CQS7nxXnltcT6/sM/trYeo98yrnmgMRjJq9mSFhSVkvcDOIWi4mKH5pIAA1oFEjosLdhgQFTUQNiwKLxFUFoWrqOqXUtV2Mseu7vu9zyikllVhxUpEkZqYMFphyzhVDL5rFwIwNmZ2p3N58+NXf/uc3bz+rqgbopOUbmCTx3peaDV+FuTkxNwnmb1ayFA7lAgKBU0EsA9HATD++gmFmpljNNG86qwaZbjf6aBbiBWeugSk9rLyvyZQqxkaxQ0rpy/QzzGR0QRPe7/dt2wJAVdci2XlfuIzngyk9pJSKxtm2bXFRlSTkbNrnZGrsmJzrUq+qzvuqrtuudcEDQLWqybnd8YDOCVipOD9pmSOn8KBHLjN/JoldEuyfki+IDE+L/aHYkVx5J6ZmqGCG4yayspAXi3m5vxY7YB6wOFE3GoIWJzo/LZ4ebfP7lmL0LEaEZ3ZUKfEZ74uOy1DUCm/j8tpZ54gFZVMHM4wAEMXAUIkcMJmpZJ0DYuG41ItjLok8JTjOozDjKIrRMgFZTd7bUeGZTynC6HdDALOZyoRoNKyQKftu+s4814mde3yEpYxnOOhHMT8CcUE+UV4OuSVjc2dy/1vYKk+0j+vhY75liOgsC5pUZBeertfV6019sao80zd3R0mxVn1d159vmz97vfmLn7/62WdXde3jakNMiKKx11aPh/brD/e/+927b+52v7rZ7Y/yYWdft/pNm/ZmjK7xYe0DTovAgEC9o9o7irmq6PPL1WfbZlMpAUag25j+4eb4u/u0U85OLaej5mNMG4frQMyVZ2hCw0gMQKAmZprNBEyDdxeb1YroeltdrgA59eDaZPf7VvrkTS7quF41AFAcLYUMXkRSTCZoBgQEgFVwTaC2Td7buqrXV81q06w3oao8AasBEBkyokMEQ1VAA1IQNUEQs4w2ekxGy0VNNEdEQlbRjDjk7GYRBB5cXEjeNyXzFA0QBbBHUMSMoJYiAgOCkVgpCGFWg17T7X2sOyRHZpJyyjkGR5dXHtQO9+EApn3uUzZFMZDcB3GuqpwLjDURVYGjpJzFgIAcFabYaaXMlXWwF7A3PbbczMwsxiiqJfWukDxWVeV4EU757o2IBvTzASfs8TblDOAIfD4/eudPPftBRVXGGntAMFQ0BmNFO4r+7e9/f3G1MkevXr169eaTm/v9h91hn7Lt9qrKTEYEIERMRDbU6P8jq8R4afvu0vDHbT8RppfJO/D8ZTYa8PSA0exP7bs3hIXK9VxYEgnQFJAnx0dh1iuOTAUSMAPRDFhgiAMT0+ZSZCj+zjmX+pa2bXPsnB0lx66PbeyTCoBmkGgxa86ISVUlIVpw7rjf/f2v/u6Xf/FX12/ekgs6xr3PhN4k0L7Vqp6siDP7cOrwoZUCAOUgm1spOFJtPoCef1EzszI/k8kxGeeoOJGAtW17OBwAoOB5JrF5/tjDRysTvtvtiuVzdXXVrFfleAIANIo5qdl6sykDWF9swZCI2Lmu7w/tMaaIvgLPMEPmQ6Rp2dgy3+nMyY1P13MO/AGPzsZIAmAAUpRbHqLVUwSguHkmQwgBjOlURH7SSkYIxFFnnk8UPtTaX9jmz1UWJELJhWM3F7Boc+fXwlBbWEYL7wyVirHB3QioCkB4Srez4i9+vMYHYDLzvv3JVCB/aOQwXTihHo8nFVXptBcRCVVxRM6wp2u9eMajUnbai4aYsyEakdLAfDp94ua5dFOq93dpH3dYPlML+1RxJwJQBBBYOf60rj7fVp9tw6cXzatVqDwfPn2VuswqV1X1el1/8Wb9yavtxUXjamfVSsXyftfdH9v98ZsPd7/+8uvffXN726df3x0Oie5buOnxKAyOVxVvg1vzZD8WNGferJrtpjke5Wpd/+xy9WrtzHIb86FLv991v9+lDz32UKpPJGU9Rjw6W1PwAJ4qciPYpomaoQ5F61VwLjR1FV5fVpsVtJK/Osr7ffzNV7vcy4Wj6rWNcW0iouKYSSn1XYSMCAwETITE61VtINnUeb++CPXKVTUzowIokKJH8ojsqKDdFmGlYplUzCJaZhhBWIwQ0UD6PiKyq9CLEvviy5GcnSPvAwCIgCKZjaCDhaCFMmI2FEAGYtDijFEgc+RykpzSzfEYHDNzFgGQuuH1pqobcgzp9fXth+M34X63i33SmEUksZOqdpazkXjPyC5IiJqimIjKeeB0VrMBBh9lURTdq+s6FWHvi+uuqqq6rp13jDRGSx7GC791WxgqT2+gsrmK120q1jyzTMoRL2N8SVRFJasM59lJpKIigwvf3N/9x7//+39x9Xp7sanr2nc9EZtZTklE2TlgFyExD8/7B0vO/vG2yZM6tKeThn8iTV94HvzAbUpoeb6udAzoDYHEPxXxf79tuXot65OQhkQEYKeY87wTAxgg/YCAEEtGABFzlKQA4ICY68Y1UFd9qPsqx0RppTn1qd/k2Lbt/rhDQYtAojFSzEmyuEJRyLy/v//Nb/7hky9+vq3WugxlTK0Isilv6oUzMEctf8ZQOftoyqSyETt7upjcx9T0TgGTMpjSVSkx7boupdS2banzEZGCVpxzJvaTcxmX+fp93xfAg67ryiDv7+9jjKGuXBXKXUIIzHx1dQUAu93u4vKSvOu6npkNoU8ppQSIznvyIXVxmoL5sjGAZ0gTn9bZEJ8wVAxOiAkIYGNWeelqekYcR4Ljt3AGaHn2Aw2lNKfxT/f6iHPYHhhgZ9G2+UfEpxDQC9t8evVjfXwfx0YlpmQ0rflFBHvZ4SJyOMv90hmXCT7P9vNxRxESEMJjEmARUTmPrnybF3D61jKb9oVi5SUG0hzuoBAycBavel35z9ebX16tPt/4Tzf+unaeIdVV30fKtqn82+uL11cr71BAvK8EIUvq225/uzve7W/e33797ubr3bEjdxutTbBTbI3M4ar220ArBwEVAG3YfuqJNk11uW5Y++tNc1Fj5ezY2zHb17vuy7t2n7kHMFFyA1BvTNJFaTF7xuBZgImAxvwXsyHtyjFXPgRntQdPtI/W9nJ76L++O0I2WlfFyWVmaoJjsnXxyrA6wIKRT0TWrKrQuJRTFqk8eS4UFGjAgE7JITkkBBtMegAFE7CslqywOgKUjICBQdMs54yo5Cs1YTJmLB56MivkGGKaVNBAjdAAzcAUzQgFITOqDe6G4k8xJIQMSaxro2dGIE3iPTVNtVk1l9fBB3Kw3TR7ROd8u9u1uj+oKhsGoqSJwDtwxK4OLotmlZxTTFL76rRyTtUppmYf5RdDBSuuKVENzExUbJUQAhPTKU99mZI6ZX8unYT4UI6OrIloBaIQaeBYe3Ifliea55acAinlf9WSvKclDRiKZ1RFVUtpHBBYyVAqINXs6uY//8Nv9L6t/qzCanPsYxtjF1MB6UQauCwQyZAEUYBAkZYP99QkPnQUDVxvP0lL5zxt6WP6MBif7vwwsO+/HnGu658N/sdsNivGeOYImNbqo7rpT7B93IH4x2oPFsCkzp25yI0AzMABISgYqBoQUCmHIzAqZxMQErIDwgwGkntSQyQmANRCClWxcxXXHlsG1drMIPdduzo0h0OovTt2/W17JyoiWaDqUiLDru/+4e//7ue/+PPVm0+AvZqVDFIrIzVEwIIFMthRL14qk5H8cB3ORSUs1Y9imeCYUls+/ej4JAKgmeYsKQNCEhERZi7J2/u7fepj3/Vte8wiRV8XkSzSbMKiWnHKxQIoqPFQMmcRs2jq+5hSiDGsazAgYjW72+3+3X/8D6GpnfO3XXd5fZViurq6btYbMlhfXvgQVCH3PY4VIAaGSAuI2/mknU0vDVXtNltYCABW/vzEa8L5+lMwMKLidj0Hppu/6KHDpQoIJUd6eXqcV3A9Poqn2lkccvjTGPGYj7AEFqZL5hHLs4ma5HxZajb+//DSl6+wb7sWEUCyoCER5SyI6NxkjuKQD3q6+vSGbM4VA2ilxgYRCE1gOb82XTZPTkN65Bi16X1O/wOA94OnohhCcJo4N+fbQZM5k+MiWIynMRmUyvXpoRbjUJ69sDHfcfjojBVr9q2sj3eIBqgFnAIMiL0nQOgzGQSile+vVtXG2ZramviyLuBatq5cxn19XZmaY7nYaqgV2WJS2ceD9cfDXna79zdff/3Vh69u9++O3YcYv7y77/P6rot3ubNA2zq8afCTdb1i1Xzf9atjz5okiZil10xXb6/u1845NmvvjvEuwte7+Lvb9raVTBAKSUrvEC+M9ZjlfYto5hq68gFMCuufESkiOoQMQOYI64o2byoD19Hmtu+/ur379e8Pt4cDmV1uQy/C3htqkp6cV0xR+kN7vD8c2aCp6zo0SOaYmDmJeGJVSInaKN2+Z+dCHXxVkQcmJAKSAs0rosAqDqk363NahWCpQwAicw4hikgGIMKA5jYrh85Ejsx1qGpyFbAHdIAqdgBgMgdIjhzz2ozUCCxZBjEBiazZae6T9plEQNVnt86mKkJgzjM3wddV3VSV5yxy/Xblamy+vnv/zpjl7k5zaweJr982kFrSyD5U7Nlpf+gpCwPHdILAGgjZEZCJAfqUFkgmy3i2qIxMkTIQPooYWMrQtn2fZLVeq5on3/hmXa3XYYWacUi5RyqxBgJGIESQPDnG5hu1FGoRGjMToid2xITI5eTPSgRERlioA0tpmgiAJzftxJJ43XdRVc0AFdTAFMxAzJJqNhXTDCqA2SAZJkBBNiaRnM1EtU8AmlWjmiFhjj7hq/94k39197/88pMPIrI7tu/v7vdiVG/M+QTgfOUN7qOlzZvotsFtDL0yGiEBAfFJ7Jmd55yc5LNNNYw4areDl86ek/vzxk8XNkxRx+nnuYSBJ742z8mGsexvKKIwgJkf0WYf2YIbd9E9G+ApGrvwBxsuCu3nluzc5CiBtfkz26yug2de3sV5sPQ9yzOZP8vD/DnX1aL/J3MdCmVkSdcGWED7u9llzs0yvuwsbWMJyTA/iJYa52IBPP3I8w4RwERh5E/8A076JboCPQEx90wP5VXi2BafPa1zP5NX88xbpllqynIOsaKqMDyCqWkCyWBiKqaaIYNlywmzBDVCVABVMcTY5ZyzghEzEpkKMhUSPQ81wAAmlnMBXYSS6JCYkbipVhfbK4dwd/fhy9/96v7Qx9xttk2fu33KZM4hsar2/Yevvvrtf/pfrn/+i8s3b7sUkV1VN55d6iKjY/VRWmTyVUAmEdHRDT8ZEqWRG8rTq6ra7XY4uJIcEU0JzOVfNYwxFZuBaEAOGJA5gMHA1CRPc0tlmSXJp8sIDWHaic45m5HWG0CBkWTibt/mvteUmNl5R8zee19Xh7aVPkKWitivNslEVAv6JDlu1mskMqKsVtVVyunu7i6l1B7brk8pDYNnZmIOlWfnjDDGvK4azCa9Hnv9v/7f/ocOtdluV6v18e7uz/7iL/7sF78kotv7u9ucoa61j2G1kjGhalCeZ0uPnnH5IxXRZuMXR08dAj/pCyQYJg1KNPVE2qPz8AItN8tUVnmyMUcP1zICiHNZITowjGPJMXtqjy63iuopjGRDyMeBgSZzFKbLzNTybOsRPVXh7sbiFoOB4pAIHTMi9dFAwbRU0TtCAgUCAnYx9tPghydGNDNCrJyfFpstk2ynUs+SbYUjQDYgKnsdUs2cwVAPUvja5izzZSsNAUxVF06PjA5ITVWzCGTjqhodjadZASjcmbgQuNPHgy92iOcUntDpEvJhZtEBIKgOQEAfE8r8aMfSx0EyDysWwdBUshqgqkN2CJuaL1a+YQseNPV9f7SNB0OR9PqTq6oOquqcq+saiLJCFwWlvzu2x/0+7Y+7XX+z676+OX5oZZewTfShywdRc7Spq0/W9Wfr6nXtHEqK0PYtHdAzMsOW0QdnBBWGlPUg7pDhtu1vjvGYVKCk+Uo5Yc2o/JJQe4MEGAFS8QwNrxXRBuxH59g5RlQz6JO1fT52MaakakyGKsyFoBwBTFVyTmOOq+ScnOMaaue4AJUAQFJV0N39UZSINNQkyqrmlYkYkSQLAJkiGpFRCfYO8ooG6lUsaUiEI9KVD8EBETMRowEMMqZUlxkWTkAsDhMFMDRjU2FVUVFRLcqzKULBlSFBD2AKWREzcJ/g0El1VK2BGchxVfvtts45m6EZHA+9qez3d9v1uqm8makkj1B7jmIgGJ+oN3smbPo8QrmIikph0h2qU0JwBelOzXAMiQ5etGEOCQd4jEm5mbkzZz/OvoVg5QWXurVnAIXmkSIb60VO4RQwO1FegkzYAOWdAKqamAGQoWlBzjMAICCvwD3Yv/vbv2UiA4xZRNE5qnwgdlrpJmwvN9cCmA1ZgQvP7FDL+JwX69EJ/t5jCz+dtkhLWH70jPg7i0s/ddnLpehPv5095g/3XP9E5gsAnl0bDxpNEMVLB7ApKIEhASEWhtjiGdTRilNTJBrUtpImrAa0kGATs7chqJpjB+wUUAyJnHOeiFUMQImQnSumRgGV7Lr2q69+/4ub22a7dVUNnomo5O/iEO0faExwkebzYDYAAaBo8M65BUQTjv4qswm5saRIwTKlp/w8BahfOMPTxTjLXhMRFe1jD2reOfYembINyWYIVocqEwNA1/eAGEKgUkjgmdkVAkFDaLt2v9/vdruS7pXykF3piEUt5ei9ByQmRkCwgoJaCNqo69o+xZubO2S++Xf//v/z//sPVVWpSCrcLCHEvudQn1gdv4UkPguED6/mrLLlvE3oqXgOqvSHuLCWTpMfbBs/7PlEY3+GN2iPX3beZrKs2LFTvuvyKwbPCr1p9WpK5euO2c7SNc2KP0WHNXb6Xx9/s+fn9ckFxozOzYDuQEW05EMGjzimx5z3tohqPPz1jLJn7saaUitxfF5ANQQg/Fhm+o9qc6fmC2OphTsccVz9KqaZAWrnVt5fr8Pri1VFujJh0ONh9/t+//Zie/HFJ02zqmpvZoPMyrnwKInZzb67v9/lNh73fcxead1pv+/izTHtgDJa7cPruvnZevPFut44zNLuKP/meLdLh1cXzavQbJpQV4TEzvSbu90+4Yc2f73rP+z7NmMyApCSOqXIhqoECBDBepWjYCvSK9ksj7NYAgPcbQgONYnGvt0ddvvjPqfeMdSEniwMlgxOdvYUE3dE5WFLNR4AFDzElKQ9HvveiNPG2DkHqALOwKungipINq4ENEAlAzIjLKiASApE6ByrgXehqivnnCEPpLYlMK+5nF8IhEpoiAZmJppMc8ESt0L/nnPWLKqqpoqqoIoCHowUMlnaHZLkg4oCuVdYeY51RXUdLq82zvmmXlVVuLm579rY9t16VRFRFgUDR7SuvQBBgtRG+16135xTSqn455qmaZpmtVo551QUVAosycN6epyqTYhenrdZEC/+YIH+tACG3VSK5ScvxKwupxy7pUZFS97X8JE+7LDA5mQRCCGpqAKyq4JbNavL7WXTbJhxvXKX1drMCvzX98O2+Kc2thfyV9qSn5G/1wX/I7efCBLAP66GZ7nm36kfZkdZVFKSyVBRNFEzNVIo6KsDdhjIPPli+bJUhXxwjs0MEJhdCBURZxEw885V3k86PRHFnL/8/Ze/+YdfrS+3r95+AmBgMlTGgAGaqZbDERGfQQWAceWUi3N/ToplZqWqs6qqQjkfYzwTs5NEfVi+8kybM8/amI6bc5aUs4hjDt4bIjIB0EDfrDYVN/cxEkIIAZmdc+iGOHDRGlNKEyCYiADw9FGBYwaAlFKStFo305Ccc1VTEwgSEnkcxXt55BPxF0BMP1552DRR9EDE0dPR0Z9IO8ut/YhvgSqIlHwJHTGmSzsT5vOGYyxpAIsTKZH/Esc7u9e0Dj+uTsRGotgRoft8SEVTZeY+Pkk698J2Jr7OZuOU9Gj2oxoqsgRieuG3Cm8eICAaArJRcLSuqotQvVrjq01TgUJ/qJg8AYC4wBeXl3VTV3VVIipZpIvHru2Ox2MfY5fh/vY+9TllNFf7TVVZV1NaKacMCnrh8W0Ib9hdIDrVPsk+pnddRxHCyl95JAY0RWU2aA/th56+Ocbbfd9lzEZqJXfS0NQQFVEJADSBdmYRqAPrVG2BDY1IA+egDx4pq2oX0+HYtrFHxpUPK6J1CK5EMcYQdvlKaRerZrVaNU3DzEgkOZcavraLBGyaDbN36hjQsiQ95gRoq9W2xEt5xJdCAwQFBBzgy0vVI7AjDxi8q5tgiooGJmoIlImdqiKKqSIyWDEtzUrwZEiPUSxl3EOmmZqW3F8UM8HKEAHIwJnA/aFTPWSFtg1vLgEBVivfNJVjX9dNqFxVu/3++M17U9Xj8UhMAOS5apizQbL8vbvpS9yqFDuWGvqmabz3msVUbYbSP1/bNNYMPfzomTYZKs9Lw6cMFTUbmB2nwhVdEj7CqaZlPktFtA3UY1mxCjn1mswRb9brt9ev3756fXXxqqmDOFlRgBKx+VMZ9PfdFuk98KRudv7RP4ZKj6faYqn/I36OH7Xhw6Xy7ZuNNUWMID1kES01iwW7veDyy6S1j6VtpKds8OVtRUq1LgMM6rhzjghVBBUccfA+j0LDBe8Ujl37m7//u89+9sX28pIRFAmNJogjAChY8PC85oBgesrFgrmhggAT6a1ZyZF7VLrqTGw+dc2j35qywqby94Jl77wvJlbKiRG8c5Nkl5yd99VgNmUbp9IMUkoKw7Mcj8e7u7u+74tk7noBgIKMj4giUsAn2bPOcvJVTQsf8oirXpCUSp8F96lYdC95wO+taSltegS36ewc+TbRwh+pna29l0fbFr8zw2OgEc/I+ZKErKqgCmYcBrTuvu/P+pmvw5frG8vR8QCSVJC1Z9mk7Jwb/eMFAfw7trNs2LOE58mMMbMHaMfzB3vmLSwiYMs+5mbcmO5SYsZzC4/waSVsObsy/MXAjEwd0zq4bRMuqnBZ62XF3kCUarbLVXO9rj9582p7ud1ebZhZRQwgtceuT3eHw/FwbNtWAFJO0SwC94jmqd5Um8BvArg7QdULb688b1Ap54h2n+VG7F1Gh/YGObPPgJQEkbpedsf0fp92CaKYIgEyWSkUUDAzFBuLwASsV9lH7bLLdRVTsqpAUiMCEFJJVASgLJgEjym1akLO1bWpNN7VPoxZqYyIE3tJCGG73VaOq6oqPFMiUoAjSzKr43q7qbz3TeUcZUM2LWU/aECAXEAJGckUHaExgiZmBFQzAdTgnSGaOubaOc5ZFchM1MwHx0xqojknLSYPUaEwSkklmoqpmGWGLCAppWxJDcRQFUvxiBqYIhihGaIXSbf3h5zS8cCbcOk4MkXmQIxVxZeXa+dovakMKPax7451FVyokaRxQc1ls7sjZy1ccjYtq3L4UGG5MnvIojCFHIo2Py3RnKXv+9JBCKFpmqqqBkEw+h5gdAOcZIcN4meqzoTT5jSiIRN3wiAeb4fjYEZY8cd4YADA1GQcsFkpih3sEhsTvUq3onl++tosbWwKtozfHfkNkZQJDDzD2ldvX7/9/O0nn756swqVc67D6IxTyi7LdJfiStQFLdrZzl78ik/H759iXzlrcxrHsyA2zpMPll1M0cjydpa8e082migpH16ELxrtg2/Nf8TlMJYS9kEdcMm6xiUj9DPn6AtHdfZ4z53Etqy7eNmBiPMTYdn/vGz3zMlwxhq8UM2fuAweHEzz9bBMPljM2jMRzGmPP/zomYk682surnx60s7ewqL38yLjFw2jHMGP3rS8Q5yALsbEUVVzrmLEAvaiJWxNZKSApJan9z+mjQ5biohKYB8VwayoPoUcnMwCu8G9YkpI7BjFLOuHd998+OqrTz79ZOUdqBSGlwI0wyN/4vD2ZxVNc6GqE+dXcfrSKb/f5MReb2axS0WfGwsYFhm202VgpTJ8eAOlw0F8z6+bjWGyUgpVZRbxwZtZFjmxywNKFksyOYbquta+A4AQgpl1Xcu+VrMQQtu297tdyVUrwwtj2UBKqa7ruq5LuL4/9lUdVMQxs3eciR2zc4YDkP3E3wJmgDghwKoKjAnKtqyjo+VyfUqVHk+VaX2duhhX1qAEItH5qTC2s1L1+UcvDbY8OGBgPEYfv34a4lzCnAUintb1F58si9mW1ynO2UvmrDhLOT//jR4tlBg91DDw5JqpPoViiqNQHbi/5peVfQoDpanMwiaTZj72f5qZKeg9OEbPUImemmMri2BoCzl/Zqg8EJXTi3bzOT1/Ic9IvXnitS2isQ8tHRv5XPBlcEuTX6E0NTVUMC3BMURw5IKDQLJm2jAyIFR+W7vry+2r7fryattsVnWzTpJFLOV07NPu0N7d7duuOxwOnWRDL8YZ6JhTZ8AVbTz6UH3WrFCkxnwVsEYz0b3qh6TvE91Gbhx2GfukCQZK+mO0JJT6DpEDY6nCMmBTAGUgKR4WRTJUUBPNKWlWAHKIuUjz4MlyUjUY0H5lH9O+03d33U0bW8NEzrIAcTFqJkEskkQyItZ1Deak74qJoqpD2UqhyyVi9HXTNE2Djg3EAIyIyAF6YA9AQIyAjASY0QiNNKtqAlIiCJ45uAoIwIEFBdf1JWcICzQ7EqjmLCqqpuyYkVQl5tyqZFMzMTM1smy5RFQUwIDHVWyg2ayciIqqJqIpR5bY+d19p1nRwnrtnXdEwOyI0QenFva73YdveiIMDoUQK0YGRWw6bHuJMepMsynmB3EoaWjnKuAMxbgEH0pJq6qmFFNKznsAaJqmrmvvvYgQERM5dAX2ykbf5Nlinu4y2ACn4h8r5xbRQk+dH4Wgis5NRXLzZC0dITsHVP5Rk9bhmMxjoheUCNbsYcfOZ0id06FbvsTMCsbkHBIzrzfry8vL7XYNIqrJyFQEch7EWTmpSvbtQmI/cBvNPpp/8PQvzynZOqulPNf1cSGjForvRGUwlQe9oE2v4BFJ+aIOztvSGFuMcG6APQQJgEF5RVg+Juj5wF40xGe+9IdchpNa9kJfPi04SZeGyiLTGh5sh9PPCyV+1vkZu+hiDs/B5pan3vzQekEV+8PBv7CdeRD1aR3ovOunbM6lyoYLyfPIOynmxPkfVYcHKsAdVPgwtTixwADUEE2yiulQTI8GkG3muwUY80tNvXPe+4FLwbTo90VXRrDAbGaJs4gAgkLhu8b7m/df/ubXn33+eWjqkq2uJqAmpiVlwCZfJ54mc1o2NIL1F5OGiNixjvFeW/pJzayo6UXiTU8xWF3TCwIt9u3gezqn/T61KWY+9T+IXgQ1FTMEK9lWOkaogvf9oSuHSFVViiCmRJRSEtGYWiBcrValu6qqyoGuqs5XMJJJqGpKyXs/jURU2YVhukoiEJ48U4OnAAAmB3aZQ0QaMYIXa4pftMjPDJUz9IspnAUzUBMzO99CeD69j9/rCWfB6YvLDp8zbIbLnjZUliN8sOUf13ttcgqM/ZckJxj/buO/5x0uD6mpt9O7m0yI2a9PPt0ZvP75CEFxMOHmonL6Y+l/LqOmvLLy6XKqz/xEj3gJx8PiSStg4YFavrUfNvXr9D6IzOyps+cFHRXamQyWwQyzB4nIBlEouyowe7rart++eXW1rddNw+xSlphz1/dd193e3X/z4ebm5qbruv2xvYsi5oArDitBFgb20ASrCbbsVIqMib1hzPD1vvvdvv+yjTkzE0uXpG2ZAgKaUWBeNfV1PLRGh4yUiYyiogIBECiYimGpblNVkSwCmERzHgTlOA9TOBRT1n2Cm2P++r5/f0jvY+pUWfUyIICf110UHo+craqyKStCyYOa2HymOCCzr3xo6sCes2rWIkxYsQA0zUF0jVARjEBj6p1H512oKiMSQFOnwgKubVOBqwRmAxCVEY9OCQBBEQXxCNiaZbMCd4xiqiBlfy5kGRhIR0amgCqgmVG858pBYPzwfte3FVhwrin8JYjGjMSOaBO8S90xS2S2qnZUeaeMLBepVmhjjPBAuXm4RIefzz4CAxuohWNKxf3mva+qqhw5I/p7AYU5Yd5/i4U9zQCWuvkhXfqsk3LGz0MipxEuL5tqVHLOMadyWJ4lZtlUVa/nNSpnLZBXUE/snEMiQzUqX7EnayV/3Hamwv4RR/LPrU0mCjyrN/ypfbRA+I49vLzlLIyI5LjQuDKTaQmQiIhl0ZxBScHUjAZEpvPRTsa/mlaVh6LW2DkUCAMCknPOqwcANSvwI2jQ7w+379598+7rizevXAiKYjnbUOk5hFMmE/fRNilY5coSjihMi2dFX6XUsAQZhsD1GBiXpwlnnmln26G0Yi+piXPOMaOZZGmPx67t0KwKIcdUoIq9c+i4jX3bdWZWVeFwjGBwOBzati0mSjmJVBUwT0+aUooxFrBj73x5gVDyvp5xW5zPGwE9vpd/IlvblnbAH28gP15bHPQf9chnBa756fXwg0qbaa0Ooa2P6v4HN1RMh7AXEc3JFv6wmXu69ES+QEiOwDkITIGQVSqCTeUrF6426+2maZoaAI79MZN0Xbff7w+Hw93Yuq67P3TvY9PGmE2qBprNql4FTIaSUPK23gJSb9RH7TvZ9XK7T3e73Ee6aKrXTbgA3YK+rtgTJnVVFZTwNt4cDV1EYrIEapqJFBygWt8jYEE2YDBGJCRGplGYFgw4VHHETE4EYkpJ3a7rb9p008uHLh1TXCHEmmQIQQxtiq4MMtcsxlh4o3A0tRGRmVCRgZjIOSQgVlJlVRYjATIc0iJEMxT+xdiB9IwwfL2kJpW66TzYOQjM7JA9AOaUDIaYGWpCBMJk2AF0ZhkUTdGUsppiKc2EoUBsfMeknRmAAqqiKmOqA6wqCoSaeb9LKnci0HdptW6aJjjnV00wAJW83jTtQYN3TV25VV0rs8cr812y/X7//MZbeNoeXFheUIwx9j2zm6joq6oqJ1/xwBWm1u9iqAzej9FQYT696BPkZbE6nt40k6Gips8I9lPQxMqp/8SADVCMFNAUSqgGrFTZGn1cMvz33z4OSPBP7bu3yRs90Tv+sUf0E21nS/TjvvWDLmzvPZmZWs5S4COzqZopKApJylkyApfIACAwMy0hjqbgRlkP3q/MLOfs0J1ZKgXZF5gymMGQ6W4IhsaMx/u7D19/9dkvflavGkXMWQhYLFfcjPr3OR4rPBgGlNQLEe+r4/HY970fa/enK6esJxtdNlNO/MfV2823w3w8hSQAmQCx7fvU9RJTjhHUJOWpjl9VkdA7143Wzna7TTLQ1ReKZ0QsD9L1eYpQ0Ug07r0nHrDxbYyxv3zwJSyuIufZOA/KBj5qer5r+2dYBrlglfkoAftAbjzZww8qbQZz/cSa+jFL6AcuprcBEXAIjBZ6ICyfLJyyEyr2En0QZx8ZgQW0FfOGcc24Yni1Xb2+2lxtL5ra18GV8ERMMUvMJoe2u7vf7/f7/aE79nLsteu17eGY/e0xdX0XOlhH28R0ceE3Kxc8Iyb2DOyUnABiIh9wU3uu2JN9tnLXIV15erUKgTgaRvIu4G/foRNQATGL2RIAgAoCmG6ayhAUUBE8Y4Nw6fjN9uLNxbqp27oKlfeIKhmKFWZqSeX+GN/v2nf3h3f7/iZJlAyMSVFH2PLT7CqYmCmAWk4S+5RSxoLvbopDhTdLyqpiJmRADISYkIqvCgDACIAMVEVS7DXHHJPmeLFpiAEAVDWrxmw55RwhKQE0WMBzCcXUVAwIEckQMBMYQkYQsAyQCoSYmQ2IkzhUBpSHADAEQevNrER2UIXIgvPBIRM61xzb9ubu2CftunR5tbm62mwvNt47047YvHfJY/BYBRcCB/DGsM3u1iOhKRggm5lBqf4834XLGMW5LV1slZyzD77kXheglelEBLQ5BPEYaT+t5xnf3yzzygo4BKAN6cGnYvwxE3U+klNq1tMmwoRKrGCIJ4oJBkz5FAYxKLl4BcRcn2IRBgBJqpqByCEVppbyIDYG4AZooLPhflR7aDCNIb7n2lmw+LsN4U/tpc1medKntISfXpvCxPPl9SOzi57NzAtX6fe/sG3OnwbTNBhCXVeQsvYp9bGPMaUkZhlUTdFYTFUVBNRUTYnRTHEpRecWgplNxIXs3PkORkQmRg1MqSwhKHmuZqK7+91Xv//95+++Wa03vq5VxErlW7lmFIOIQ3GWAej8BmUYhGqGAJVzxV4qCYfzKS3Bk3kAZP4UH9HOtsMUUYGRB0lE2sPhd7/+9eF+d7HZ1lVFhm/efMKEpTDSmIi51NWnJIGHLCnv/Xq9FhURzTmLWrNaDQAt5cgtgSywci8cztZF+tHzT0U0pHzArBBiaGcer6fmZ6BeHC/8voXBP0fZvkhwfTIQ8XBeJhXRhrzvsRN+oO2PmspT0ubbTvqkxp8n4CECYtm99FGagptTRD2LO7B4AD5br+MnpWzrtD0QS7KpmYGeUr9sIHAc7RCCUpdjpqgaiBix6zrLurm83h07NPUo2wBb0mtMXwT4q1fuZ29f/eKzt01V1cEzKoGipnZ/NBEDvetuktihi7tje7dr39/079+nJNzl+ogk3iGYYNr3fVJMUidZryrf1D32mkENIHVZNF1f8faKVGFjrnF26f2nr66vLi9DBb6iTuOmhZvbz758f6hYtxi2fT7mgkNvCA7NiIGIHGrNWIvVim8cv0G8rl3t0ROSC9RssljXR3F2ZPnQdV+1/W9j/H3W3giB12gCSUA4NC6ssiKSyzFCNja0Pre3+5sPOyQARiMV02xaIBDNFKWjTpk6lso5zkqtsnCDjioKzgUmFekjSgKJZhzqarPynkxSyjF3vSr0UY6HhOZ9tUIn7LIjNBXI2QP4KiCxakaOIjl3KeeUOkmxsKQROQYYMOxjTloqM5iRyCFVzrq+SzGjmiNG8mqAtA51vctth9RnuL9td732ihQqDL1PEXJky6+uV9sNMVOoAiGIZlbt/N4u8/FO391LxsrIGahBD5ZxNPEMDJkc01SPXoLs5V8AYObi0ypH2HpVv3nzZrNZg0k515xjRFAQG2pRkYG4mHCFplHztFeQqISnmIgAPSEhEDESEmBJBi92Std1OGM0K+kBA8HTbNuVYqSS3kbMAiAAZqA2ksWbqYKoJLOkJmLJLBkkRAEs/5KpDXbLWBJbJgdNHKugAZBKThnFAnhQzDn2KWd0YsCEVdnLRmhkhvMqFbNFBoKdFwAs5eOUfTgTRGhnlZQwl5/PVObNMe/P7LuUEi4hEKaP5syzY4HPMIBYKO0QYKrFR8BCmStPp4vME56XOoDivNxITEf0esQ8Q34sjHSz/hY9Lv3VT6f/vuzYw+X0ztvZ4TBMFCERl9D+aRSzWsQCPzf9+pD9cPL+Lrx6S7v1mXSUMyaCZZL3Ul8aXWOTs2y6bgGnYQsXcvEFDlCwroIn2nxIeAYZ/PRHvPQRPOkxGakzh1E9XWCDT+tzZZuDipkiIvqgKkQKmrv+nnLGJCgZTQFMJBWSx04iIKBHQAMxQkBTy0lMgRzAgCYiqs45VGWA9XYbgvcuAHDskqh5BpFBriq4CqViJYBIeJ+U2G2263zcg0fRvHv3zd1vv3yzueCLS1/XbhtcFQhQUpacRcQIrIxCFQCaZt21XRJzjh2zFakoYqacU6gr3wfnvQvexjp7RHS+6vu+yAHnq1IDk0W7vpMcAQAQyDHCUPpc0rIXfv1xqierDKYQSkpDzToAgAWEmoDY/aff/vr//W//5nKzffPXf+1U3r/75ni4++yLz1+/fSuKH25uq2Z9eXHx/v372tdVaA5tq0ljn1NOyVRNmZ1vPGjx9hUCBIHCa8GcRYIoECETeHdIfS9ZTIMPojovmJ400yFjG9kQEBGYz7lW3YnvD85EA83UOS3+san7E5KYDgIH2REs3QTnzvuZ3DgzGi32DxY0DS9lkdq8lGyyTGw+2x3jazVY1KXgTIoui1iXcuM8UWF5r4UgQlBRFSzPNRXzIKgNYDwlRDaPojC7aa7UzGbPokxQUPUIaWkXnEqAANDNlXvI+URXOtj8AAKGZiaD6S4iZlC4FspDaN8BERAV4TWvghOdy2EGPp1S3nsbSfOy6YCwxVgiDufS99Tjkzzy3yKi8kJnw0JXeFBIO/PoAJQXj6PhAkPZhImQc+tQJ8qQUxMcW946fBXoTag+bfgXr7Z/+cUnn7+53mxWwQXnGDTnvpPUg2ZQFbAu5SjadunQp10vu6j3mUQpipFzHoBImIAJ2cxi7u+PyrjZVo6QnXPeravKOweIxkyAK4GKqPF0ua6bpvIBXEUgKmaX69WhzdZmMgL0DZEiACiCEmTAglELHqgSWyleNP6ycVeX1ar29XqFxIp07CImEU1Z8rHr2pRiMlFAYk/ImMw0a1KrVS2lHPsoKUlK7bHrjl3XJ1GjcuoSFqSprJpFVMgh9wRNppQIALKaGIgmhORASaNKjrFN6WiaSylkFdhyB0OJJEjOqU85CgIR59V6FVMvElerVV05VfWMZmKWYjxqYXYXJWDvGItmDtgPNoBK1mRqCEVVLzvHBAiARqwxVUhZtOsTQBJIAqC423WEWNeBHTUVeyJ2jlwTmoJ0EsyoazOCNg5WFdYBHaNB0T5GX8Ms62zuAHvotimwaUW9KOw09AjCRnE0DaoFjsscTw6LUeeGMYQy/lqCEXgWTXjggrQRTRLgXGmbby6xwQDT2fOUDK/T7WEoRtQxVewpD4cNPJ6GBoWZxURNtdARM5CW6lLEQYoNUA8IZxJ7IQSe89GcuDDnL+gH8NQXIfjUS/+27enkuW83JBjfNbxY2P7zbC9cUc8Qt72wTSvkj/s6vounf+gBbPz3JEOKR6MQeoCCqpIaAjINadrEfAIhnVmwo35qp6RuIhgJFpzj4uYvJMCI0zQWNmAFBAJwjM4554Oo9X0CNR88ZGuPx3dffXV1/cqFar1akQHhJLrOmyH0fW9gzjvvvarmlOb7uiAjz6fx4WTasn3cDD/zxWIcdYfjb/7hH969e5f6/u///lfr1Upz/ubuGySsm/ri6urN2zcpq4qu1+vjsU8xH4/Htm2ZCKtKc0LTUifpvC/Gs45gOYMBxkiIXM5TxCySbShu/N6X7zmr41jY/UO1h52/BHv3mSH99EI0+GAOH4ebmZ2SuDwrYSkNH01SKBfMjSIDwGdou7yftvnZ2HBeaLy8U0yxbDQXvC4DO3mZTLhA25ubMMvZeKmhcjbQByQwp8bEJ4Xjwc5/ZHUYoIFTGhU4Mk2IGDwTW0Bglxu0V95/VocvNuGLq+Znn1x/8fmr66uLxgciBJG+t6wpxx5UCsRYG6VXOBzT/pjvjvmbNn0Tk4DPGVYIkNGZ84QMiqrWS0ydgO4tV85VTfAAlferJjjHznvHFHJyAJ5gVfkmOF8x1c4yJku1P5ZxqGQUIuTyVAjaOBOkDCTAOUlOMSB48k3wzWpVN3XTNMSswAbc96nv+xxT2/W5TyrChgDkARiBGYghMBMaaM4RU0pd293t7m/vd4dDl7ISkyfEUSiL5NRrTpCIwUJwhEReUYGiZGVgQ+33QGQg2rdgMTD64L1nRxhjC2oqxUeVY4w5CzOBaex7F0IY8bxLKlRR64/How2UHsDknXM2hKKtj1lEY9Q+SVZRMGBELvTrKAqAzjnvHFfeNXXjiUUtRo29xd5ATVMElcvtqmkqy27T1I5dqIIPyEwIJAIIyTBWyGvh7br+cH9UUbBsBXtsuQaHI3SMqCwXpvV933VdOR6apgkh0Iis9WPqLmYW47DzZ766B44APTE5Tg81SomFf1rnn9GTQmq4QEFHaEtVxYJLWwpqCugbEROXEhskmgOUn8kNeSby8CO2klAOE27jT+DQwhGBethQH1XY8M+hna+ojyI1e2GzWQXOYx6KH6kVP+hsWN81X38u9AZgeNPiFNeZgLQHDHRnKSI4si7AjPcgVIGZVbSwqYCV1KaBg7ZUJ7JjBKzrZgPV4XhMXeuJnHdi6dgdv/rqy2az3lxfXrx95Qgd0TPmaOGhL8UbJbw8t/nLR1Nc9NEywnN5+FHtGY64Io2T5N3hwI6j5N9+9WVwnhABzdfN5vKi2Ww228v9se9i9FXlsqYsBSwn5ZxzUpWy1InZhcJahpN9WCJCxDi9BWBOOUkW11Q5Z3oOdvt7aCUa8wP2/6Dz0fjVZ2D6nikP0/yTOInm7Xybz+IVc/lj+D0JvXknT787HjH0isU73yA0U/XPmokYUXHsnrkGsjw5+Pnjf2RE5YEf4mk/1jyQPlsdNvO0lsej8V2gAZmhoSEBGFEAgpQSY17X4dPL+oLs01D/fNX8bLv65NXm7duL7atNqJ1TBcU+96k7pu6YUzRVVVEDy2SKItwZ3Sd73+v7BJlAASVlS8ogihyIuMCYgCFaLpUlfZasTa0VYsVYE1aOEIyKz0l6tDWiR2QgBwh1s6mqxL2CSNIckwgagCHK7thloGQuKXDOW0vbFTehvt7Q9mLTNKu6qYmdKIiYYzbVlJLljKYV0cpRLwK5c5VVHlcr39S+8r4E2USk7+Nuf9ztj20bEdiRkREiOXaEJNmSqYikLIgYvCenGc1Akygoglq7/yZ475zzpB4pVN4HpyAq2QRMi+O51OUDMThHzlPBCbNS44KkJpJS1/d917ZtO0Q4AYzRAenANoh9tiwWs8ZsAgBEYIjGCGhipuSIkD07Yh988CYac4zJUtQUFdQY2XEFwCkZQ+5RoOaaXV3XgGoKzhNx4FAf7/crc5s6rHgvErM5ATRQXTr856eU2Tk0eIyx67q6rsuZUQwV+HF1x5JyUDKtCwzlU1eqTahfi4dSM8CFyJ4+ev5BJi6W4sDLklWEcDgdgUpa1ul0LNnY82yn7+4M/iEajUDDD2fgjzXWaaIGpGl+Minon3n7MVfUNO0jb9WPc9tH2tJC+K69LQwVU9Ti4jBVE8mF41yhUIKdZZvj2a9FS547brz3SJRTVjVGj2gnbior2S+EBEzchAZrL4qHvgu+RlVSzEmP7fHm5sOxPZT4NT+tiZbbDXSKKfV9X/JbpiBPMVRijDADnll4ggFgRvKoqs/e7bkpffTn4qLb7/cfbm72h70L3jlnhEmzqr5+80pMb+/vVrc36IMY9CkZ03qz7rr8zYf379+/D1UVmroiHGCavU8pleeaapQLNkDhLyjPaIg5Z1ENRCLykVhLL27PZJN+P/0/tuVNBMyecbQtsnuej+b/FNryIRUXhsoUXvh+pvnFhqWOLDQPz6CFqr9sLoQiZFJKZ64BX52SCc/OX3wuojK/+3K5ES5y9ZbOhsUAJ2tPz0ZPRPNvjZVeOFgphimVFEkANCRFUgBmypY0t9fr8Oaq+qs3zQXCZ6H52Xrz2aZ5c725vLpwa68Ese1zTIf9/nDY910nI5um44DAqhazxWyHrPdZd0bJKGYVUFBxoLVaY84TEmhDXHl3VKmIY5RMBpAq70NTORUPZAQiGQFFNKYEjokxicYkt4fu5tDto97sjl/vjj1YUsmaVFWrOpkTFVTdMlxu3cW6en1ZvXlVX15t69W2rmsAzEn7LqFBjkm6vna0crxxrIYYe5P+om7eXNZvr1avry/qEglSzQV/uU9tTF0SQkX2jnjIwylsI5AgSxIDIOeVKgBgM8tZATs0yypslaOVc+yryldBwTRrSpayjYSCompE4ByF4ELwVHtRyzl678w0Z1OVlPqYelVBLD42LtOVs8QYs1iftI+SRICKjYdDmiaQiRAQgDMkUcyibddLTm3Xtj3lZCIAas5T06yr0KhqFtq3MQmRw6quXCi58UiAq1Cvk+Tcbeqwrbnve1FBIARDxOI2nCL901YxM1Ep2Q6ImPpU/HPMXKyUciiWbM5p+9nAfAfDP8utgXRS3KdvERFCCQE9rnid9va4k3Es1oSBDWag4hp2pdkchXj+ldJ7cWdO5TfzMruTvl5mY7JgbGI6MxHpuy7FlHP2odJSOFkmcbxaB1LLc3atuXxbxHnhTPY8/vPDX5+R1U/d68w6nU8R4rL2b8FW+WKd+MyHM8+7frqWenGOjj8PNb7PHKpzYb6cirmnreT74dimcM1Acro4whc9PnnbpfdsXjVxVimxGD3Cwptr524CmDFpLvpfuO7o4bceudeL25PcmrCc3pEibFjbOk3n+cn96Kv8g22RpPAsLd1T93rmsvkvI6SHzaMNw4MYqCmIWqFFElVTEREwtIWGYSNAYknx0kJ4NWtFdYZ5JRKUQoAxOwnJUImwlC5VdVXXFylZe3+nCmoCjlzlosT7+9vd3W3OcbWq0eRU82AGhsWqKGlddVWXT1JKse9lDO8X06W4lpgZl4l8KSVbkp9MEfUSQ5uqxaZ3PZl2U5b/wk+cc6F+d86VM2XYd4ia0+FwePfu3bFtxQy84yogQiDyITjvdof9u/fvuapXm0tDIKa27wndmzdviGh/PKZUSjpRRFLOnsMw/+PwcCAhQB5Lqurg7+7uygC98yAwX9l4ttHxSQnwwDQdfjiXp8se55P2jAA8u99yE9HIO2J2Trk1QDkUZpIFd9BSiuCU3/tAsA10itPx+uyQJrbK+UTRVNwySNdF7PHJo610qArD6kDAcU6WU7MgJ4RTZQsAwMxbel6WdpYVMh/wzDIhRHDu7FtDwScOqejD4ag63Wt+aC4HdP6YEwieqeKZn2V2MA+zOhstzn5eGCoL6sbRET78Oqc30oWhMkcKmhtM9PCFz5cRDoxcWL6lKoBgpYIrKzhBMyBCQ9BNRZ9frX9xvfn51m0R3obq7aa6XFXrVahqBibRLCJt1+32+9v7XYyZmHOWnFPTOHIgqn1O+y4e+9SL9Yo9YJtVPaIJg9RKEagCJJFI0IBvhbwBpNw4yGZVlS8MC6hVp9BFqYlbtTobKbCY5sINbjGLKCSBpKZQDJgcRSOFPgqKbj1dbeqfv9n+4m315jJcbqrVel1v1rWvchawTEil8BlEarILj60nNluvw7qufvnp5l/94u2ff3b1+dvXHk1Nu9SlFNtj3/WxT7nrk/PkwNUnQHdkIgcIBqIKYr1YZa6iisCQjSwzCA2BdSH2zlfIPqfUJciCmhTM1MAMmZkqCgGDr0LtlGl0ZIxxfTMzMVN2PC0PAzOV4utKyaK6qCBGzJ4cKZiAqYgpkjkiBiRRICJR60shTkp9LEcmESMz+sDOk4hEzV3fOYZs6ptq4+sQPAIYQlU1myRtl7dNtW38Yd8SYgSISBmoTydDZdon0ymVUio+wq7vCuyj975pmvLDwH6zzK2cGypniaVMNG3hc0PF8azqfLlxJkE/inuaUCwnAmbnBp8oopqJnBeWT4dEqeWbkPjnrJGIKHlh4ZwoVsAAHRGVeErbdX3sY0q1D6oKRPYgzQwRVZfE4WY2000XfMNLIXWeTzz/dREEh6fbk95fUprbKpPKwsxIuKC7eoZH/Ol2pvguqhuf6WFp3kwmBCI+w2/zDE3kQuiPWsK05MwGktOzr53rIs/YgYtK2FkPD7SPRXfz/m2xNqYB4Iy5b/7RI2M4U0Y+zk36mDUyjffUNxmOaatmQxU6P+aJxHNp8PgcPrOccJlz/8wM0NM+/8Ucwnw9mJohzPWM0UGLSEiD2lHsxqI/PVYrdWIdYTYaBMUQA0REROeciCgoABIxGKiIiRRke1Ulh8Sgqorimeqm2WzzexdifwAnnoiD0z7vD7sP77/Z399tLy/QFkV3ZqYGqgMLJDOXbNjCdjWUZIyGSjFaJlSSqZvJAzVoYxM/40haNc2SzWLUiJhz5rGwfj45BcV+sDwXW89UNcb4/v17AKiamr1TBDNzjpNKQ3TsOt7d1/dbDvXbTz/56uuvDvtuVa3rpn7z5g28f3/o2oJGk3POMZInGnghJYQwK482ZC6Pwsw3H25KggYRaV6UqQynApz96ZG2XACn3wiXQCbL1Uo843U1gzOx/1T3cy/5QNYzMefMdujMNQhnZ4qaPbChdESKm9+MnbOJKPlsw55ZXDj46WFpdBUzyWCIKy4OjrPNuwzslKyHogTQ6P+x0VE4dABLZfoMDPcsDXXp/jv9eTmMM3fPme23sBnMYDw4Fti8o/VERDA4fKcOFnbFKRNy+Xc7WzYIcxb4uWQ/W4/PpX6dycrFS/r2ASibDikDKH5cNWZmKMQiIpgRPSpCipWlX7xa/ZefvvmLTy8/r7VGe9VsrjfrdV1zHcCzmOYkh7bfHboPt4f3N3d9yuyrQl+fSBrsxSCDxNwnSVbuq6hARzMD42ICGwiAJ1aAPiVQRhNpu4vA5lwdZdVHq1zq4p1ZjNQwVgnqbD4busKAZ5vKNQ7vjt2mYnAXPViUnDUlhTtd7aVtQH9+uf7rz67/V19c/tkVXV24ZrWu6ipUlfcBILXHvu97EPXOret6E7tcKaz9tqZ6vXp9vf7iTf3Lz7efXq3Qchbt+3Z/PNzv9of2eGj7tot9EmBXcO6nk8cxe3aV004NiI29cTAO5HDtiC0TKLFnx+gYyCmxgutV20yph6rAPSADqfOOmcyQ0ANiNpmWsg5LZYAWds6ZYjmWAAhsNFoQlJh9KMwjCiioOjoi0NCADdEAVSGjIuQsKUl23hEwIjFiU4UQGEAM8rFt33/T+sCKuVoxkhFjXa/YUQihrn1duVXltxW3jTsKHQRj0qwCSE/VaOOYDBpjLGX0iFi4U0o29qD6v1yF/ShX65nKMv91bhjA6OZUVQMzhalGZfpi+W3KBZtsi+GnZ3hiB71HQRVNc05930vORbL/1MPo/yzb4iQe63DwJVWn3+ONv806f1l//2TbCy2Tj2tzZRQBn6lsYcekXrJCQUY8Ac7BQ8kzKaA0gaCMevmjnY/XFw8yFKosQC1qj3NhvdrW9erQH8UEETwSEaQUb96///D+m08++9Qx9TEVLieEoUR4IkIpdkXf9yXvi2agwyGckkxOovvBdpjrqaM1Olg1OF6gqrA0Ws48Gme2EJxCNNofW0Tsui5Jbuo1MCFTliwIzvuikrZ9/7d/93c39/v/cr1ebTZv3n725a+/zIfDZrO5vr62O0wqhsDMdV07ds65MoApAUxEsmg12l455bZrc4wUfIqRwT1Ty/GDtrNw6w87iB86Be0HbcstdF5ZPr/waTfTT+RcnpdsMTHycpDTb8t3tdyWi0+fM1TOuH4WlS7wkbWek61iag6pqSvHDCApHhlIjMisJvpic/mvf/7Jv/nlZ794va24RxPvHFdBAqfACJD62LXdu/e3u/3h3e397f2h7SK6jtgBuURBMaH3oXJV8MGn4F0QA3CC1FNxPpMSKTl05BABJInuFUCQzDd1Q5tLqagDdgJtd3wnmGLeOg4hEbcppaZxaqnr+9rS6xXGHgilRpeQM5AYicJFYgv1NcMvr7e/uPRfBLj0zpEXqpIZSgaAmGLbHmOhpHV+0zTIdBHpcOkEg6vCdsNvr91lJSQHVTC1lGJOKcZUYO+zqhQw9mL1EzMaKiBR5UOuELMgMaI39uBCVbmGK68RNGVjdAE5GLmYMWdpEyYLSmh2AEBmjwRE5WSinDSmYwRE4lIsdbYAUkoIheAYmT0ClyIHQ4PknfeAmFSyDZAzQ9QTUYEMyACyZcmZMGfJSVLdeEZkdo7cZlWHigFFNe4Pdze3rWPO0gOmGFvRV9fXzOSJMgAEdhfr+s3VRU5GreRe9lEkyzMorjBWdMUYC+yvcy6E0DSN855G9P2lY9WekQ9z6saXt7PSzDN1YWqLXwt4z0MbppCryHC+nsgjT4bK0w7aQsqiimoxpr7rY0p/MlR+su2hs//k1/wh22TeD8PARUbTR9z9rMMzpfCfTJOn4Ti/e1vOodnTADgFQtrMYGLSeGyE01oqP/hRNX/+7SASO/beVVVV13Uvh1FgGgA457fbuqlXxztOJqylNhwly/397Tdff9X+xV9sYsyJFUcLBIyIfQjMXCI1zFwMlempH05mUWCe2g6nSuUSZR1tEhizRUqIqe26UgODE832rIdyNKhqgSce4wm6v70Nld9eXqzWa19VoakUwRJTcOgImao6INLu0P73/5f//r/9P/wf/8//3X+33VwgYtt1qlo3zcXFxa49ppxoQCvBOZpZmf8SGVNVRw4RU87ThICIq+r8DALSD9rMFuC/T5eUfPd2Jjd+Kmr7y9p88AagtIhmLJxQS2iE+Uf602DGXLyF70OqfWREZfDXjCvB7AT7/gyc6EQHQ2BV5S+bZrte1Y5QU+UDGBoEVrry4S/fXP/XP3v9L95sripGF/uUksaEaqCApppjHw/H9ubm5tD2xzZ20XadZkrswDt00ZzPq+Drxq83TdNpfZSVqANvmMFMmBjAO/LM3rvAbCJZU6uIYCvv1pvt5fVFQFWHHcCH7vCfP+xykgvvo2KX5dWq2kRmS7FvTfCi4bZ3fe4ZTJ0XUDU0gwuy7br6bO0/3/jaeuxSXm2TUlTjLhn0Qqnv+q7rUoxm6hxXwa3WVczYW0DXGIL3cLXiigUk3+1vEShJ3/V9/v+z92e9sm1Zehg2ujnnWtHsvU9zm8ysYrKKlCDJJEEYNC3Cgg1bMKy/aRiGoRcb8LMBkbZfZEsiqAdTpMhqWJWVebtzzm4i1lpzjsYPMyJ2RNxzTt3Ke29mllgzL05G7IhYa65uzNF84/u0xYHkl5GxZ9WxcwMcaGORmYQZkIMImRCZkCSlIWMK9AbhhMRIHJSqxqyqQMGJkGI+wC+RKEJVFYHnue6n6ikRs7t1/HGv0vb/5nkRTsMw5FySlBPlV1CAEUkmJm0VrMvVBEAEhmMwRkAEdp2AsEANbIFrpkSYBEVwGFjSgb54Xpal2gxqqChgEZxyKqucQh21GgKsSnpxt27uaTJ8qkocc90vnTy+r8oRvex5rK72BJWqqmqPxLrIY4dan/KUF49DPEs3whUm9eIPcfhOnB6g502cv4y4gMicHkU8Qy/0KpaHOxz5egKeIW0AdlRHOahAXgLKnzeCV2Hb8/zArQOZMLx5W7Sqm8PHwPTw12x1+J/U+Hb57uxW+XH3+6HK4a9dz/ldLKqc8YgfAH6HFe3XnOr5mfnBj/fiosTBOl/gOA6K8GGqoOqqoHrgAnrGgFyXdk+ji9zGERP1oWmYqbVaa1PtVQR4ZkmGEGJKY87FESzCDpNEJtK27B4f6rSr895gBOJeH4QAQBRmJHJ1N08sptZqY6bE0il8r4J2PG/Tel9F5XS6emvugd9fVVU7XZmHa1NThd5VBSFnKP+UBHrPQphqm+Y5wns3YBC+fbgHphevXwEhMgcC8JJS6viHcVghkwMFwj/7f/+//uv/9r/53/3n//v/7B/9k9W4MrNp2pNIFnZriMiSVJ2ZO/bM3dVMRFISZg7T3mPQBSKRWFiMWsqpzR+OVL/Vb/D+cWS5Pv3qO43rPoQzlnB83s4Pkvo6ByDh+3Lo71ckvPzoI+Ni8nDI+h/PyQXA6bSE/6UbPJ/8c2UPvqU5doHvQjxfpxEvH+2/8rjEd/XdfYQv67Dfj9wA78XHnvZ1fv3j8iM4OTqXIHoxCzgK38BlotTPNhIOdtE9eSFMQ3ICQAeE46WszPEn4NbAMcw/fXH3el0+W/Hvv5KbrOsi5rTsFq7z3bD6/OXN569evHi1vbvd5iJZ4unpsWrbT7s2TV4XZlat9w9v2Xe5Ke19esS3c/56WYD17/70LskWUJFSKXB3UxYlhPX41N7unhj0JlzR3I2YszCKNJS5wsO0PKr+ZDv87dXwd27wBU0K9Fjl67f65T3/QsfdtPc23d7rH3yGf/h5/sxhK8xelFmLywZXTjE1NWJKgUKE2epnGX4y2jpNkHjG+GJ6eDE4z7SpL6xatXmep2naYbQsgZlubm8kyX5uSzPiCJRAVqOvvok6WZ6fMrtRW2wOxDLmYYnHKdpcB6CsdDduib21qZTSGwIVqRiT5EFkxbFm3yTOQroo5TXNc1iohk4aXIQlUCEqQF2tEkV4HHCcterT4+MyqzotaON6xZwJU22t1kVba62ZqjsHM4AgSue2U1NAd7Bxc6tBFs7CgNFhy4AQ4SjmiI3FECiVpfHjbo80rNY3hW07pghdb9N2W9wdSGr13V5UGwDOe3wbbZ520+7NtMuvP3m1GjwBJRRNy/o2fT5uNlMrbxF9gmWCAfe1Lq2aE6A4kLqruVuAAQM93j+1WRPnnPKL2xeb1RaChnENgNYLQBYWB/kkBiwAFMEYCL2wz0h40KNyJziTbhQuZQCI1lRIjgXOLjtjAKGqGLBKCcJOtRE8e6rDjRACoWo9yDIe8LPgzTzAPSxc3ZqpmVVTs9gt1Y6QBQtzMwTgQ/KbI7CjdQEQgN3RA8GdormbmqlVRfpif/9qvt/CjdW6LWsEQAzECHdONAy5i9RHnCuiXBi8qxAuPuDfXKEF4KxwfG5S4Bp3e1lfPtfGJCLAOGkLEj07GQFBZwWrs+UBO9T6+Ktzv+SUmj2inC8P4HJROf/V5TJ3FSKeT/hi6bhoovhwO8RF5e2ov9ZzvSd9RgS8omE5L48fgY3v2WDE5eJ1hjW2ANXniyIIeNTTRPBz0BFnPp20uNaWO+9mvECan+Prr26AC0zBlSblRxpnLnhh8LyoeJWAONf2CQIIdPDAIHxW4cTLu5wQr2P/5wn6xcrMdNJZM7eLp+MjjSgfdn2uYOjnJ8q6S3O4iEFhEQ5hCNbFrFbjSmFZdntEJERdWtW22qztDFzqEIDgCAEwTRPgoXbRy87DMDDz3GZ3P8BjA5llLGnaD9092KZVDkoDayQKIoNwe/XpJ293b754tzSNNJScnM2Wp/t3v/rTL/7s9WqAcvdTVY4AZEppSEShRgSZUpK0zMu824GqGzrQmLOwuJuTzHNndeeeznGP1qxnoOKIEOuN9QDQe/jQQlvT8K6FvdS6aCOmnPOixsjNovNdLFqPTYew6F6EHH1pOum0r/v9ft97RRa3x+kJi2w/e/349GThhLgatoSEmJVEgzPl9c3w4vUnf/zLP//mm/v/0//1v/xn/9U//c//N//bf/Kf/qclZ69zQcQuJQy45OQRnZMtADgLEBkCmhdJQLxEJJG37+4FU50qSn6qjc6Eyc8fvYBLYrXLoNOOjWkHue7zh8PO6yR01WwAZ97qhdmjkxw6xPnzEBcW+7n+gwCIH7rpe88D9gZWwp6VO/wuzjiIEQHp5PoHAkuKCCA68HEfTwfGRWwRHgGBiClnRGymp7Phfbsk/SwBdb2fsyilx0OXDYeH5g9iODzIZ8bWn23qlUrJ9ZnnY+qhixRddPfByZ+/Sh+4X12vy3TS+b769/v/EZ+uF4IcEpinU3zZAHbaYDP90Ed8cX7PJwhxNOcREB4I0P0oRPxYReVDSbL+/uz1+Z4+GNgh9EQ9DCyvVvkPPrn9g9eb339VtuzrgtNSbanJYFvG29Xm5nbY3o7jzcBFOJx1odmRWHXxpRKhu2tVygkLBNtk9jDPj/OcxjS7zlZv0pASOzpCJOHNmJtL1dkiMBf3LMglJ3OYqs6u+6YL+N2Af+vl5g9vy+sRhGOq9s1j+8X98tV9+9rbtNRwqwrw9QNg0GcvaFsyUfWqATNxk7wPneYJAoZh2Jbyeltuh0gJlHBf7VFrymk1z8uU2lwBqLU6TdM07WpdiLAMOeeMiA5ErBZg7vtpuX/YP01TNPt8YCkoWTCPLbyFHZ4+BySWlJEIKUgEmYgE2ZAtQCMCwTFMCEsSZjLmAKhLDWQABmQWzAMLqAGgI8+I3onwsba23+/3+/08qTnzegXmEAHupqa19uwRBPoCAISJyRO5AAA5cwgHWXWLriDpZm5qftBARxZEwH6D1rlVNQxhFMZMMIVpypSFGJ2IAlCrE9JYcqvqTeewMBOgIhnMx7G82K6IPWcqw6poSqUxJ4jIOdm7CRyjWvOwCPBABbDOSETNoTk4csrDuF4N601ZbXIuDs9t8YDHJRoJARzskGBAcIKuM48EDkBdIqcnehDJIJohAgf4Wc+Wn9KzAJ2rGQI90OMogn4c7ocilAc6gDsoYNeWBz/wd4V7V/tUN3d1j/AGAKfiCh4TDQFwiEpODasQgYfyDClioFqAo1V3dQwipJyGy8c8Ll//uLnw38Vc++/8+OFP2oe32B+MH6+Yc7nn32wBD5+dCzz/44+hS/qDjuck6DFWOf1LSIjExCCszOFORMKsh+6S6xpsZyqXdChTnAiyemnlqkngZFU6Num5+oTH+jAACw+rFT0ka8vSGgckUwB4eLj/0z/+o08//wzGF8gDiyAR9w7M7gZGuJm2prVBADMTYnS1YEA3w4OmHLr7siw9HxQRKefe13HiPOzgMVNl6OocVLCQMCdKLIiIBJ0cTU0pCA7VQgokjEAGJ3C3am2q836ZqjV3hzB1B0KPAEJJcgKPdZ+IJfV6Tyrl7vXL5c//xIWHzfD26eH/+H/5P/9X/+yf/hf/h//iH/6Df7AaxlKGCLeIOi/A3LkE+rVAQALsx27hIKRmJ8Wtk87vaZxnsq+kG68z5R+5tS+cwO96/18652d//x4PUJyO8ezAAi8TRtd0nMfJXM7n+mt/hXk+m4Y4++qPZJ5+QHsTf+kG8fnFleX90I8+7gR88FfXibGDjDZ+HPp1JZdzERVdKrN8ZCPPXwtIwSvBF2P6vRfj3/5s+wef3P3ei3FFMAjtpokCEvGY82oYV9vN+vYmrQYQsjbjIl6xuU/zskwzuiHism9LYs3Yii6h+/pUWy3rFScH0tubYRy4gu8mE9KhyBao+uAwvwMIIHDKnhLxgst+enrSBuD/4cvb/+Szm9+7WUnUfatP+90vHx7/7N10v4eW2UkAcAn86v7J6wLgFi/u1jm8GeJMsqQy0/x2nnya7tZlKzd3r18m9glxrv5UUYNf5CKQxGm/e/LAWutu97ifnhBjHAemRCjuTsQE0Zo9Pj29efew3y0WkDg5EBBx5iSC5qKViQkRIohoGIYukJUpCydmEbEkXsRQOIlkkSQiwgjurUX4UhsxsiiJ5GJ5aAbeQDHcFwcAM1NttdZuyms1NUQwdONwSalDzcxsmqZWmy3oTUPNaltEAGA5LALupBHUE3RZRAaGrjsM0ObHiAhrjhDq3HQEZsqpKiVQtXE1piSEwExLc12qAA1DjvB5rlYtQpHco83zbr0qiV7lIps8lFURRXXbejJdiUjD8k7mt0p7r0vzasAOaG4BM1htrbYFMCSxCBMxIhwUY06WLXoa9ZCA8aPngucvjo6Aw4H6ghAs3FvtaVQ3e14trqDhERBnnSQXKRNy6GUT9LDmbhEWAA6oduo86TlaN1Mz6+L0AeABHhhAxxb6wDCyCAy0gF49O5C4QQA7gWMo9GZ8cBIQUEwpQ/x2BLPw34/uhR98fET77AffIB/bCexHAExf3QDxYfmwH37Xfw3ikV9n4EEOJbGHpQYAEi5mAgf2v/OOuKNGKoQ0oujg2E408t7LHRHdzhERXzYHRn9+KUouNzc3w7th0tbUGpIwlTIsar/64ou3b97i+Mm4llIKMVMHfXXEhxl4LMtSa+1d9T3kMDNibgEUlNKB2rh3j/T6z3mn336/f3x8rLVGRBLBOCiTIJMgAFPi5BAe0V3/fm+fwrMD7zJYl6CZpun+/n6e575HdY9jpMTMp/7+nhEKAknJERwh5/zTn/4M/8U/z8NYhnGadrwev3y6/y//7/+3//5f/8t//I/+0e//7Pdutjfek2uqblaXRZiFuevvMqC7ebikobbWeyx/vPEReM/vyKAf2uj9zfhRx0d69r5rReXj8IPvOA8JXHN6NabPb4efbNMnK3ox5AExs2REkVRyTkmklHGzSptRSgKEZlHBJ2tTXXbTtH94AvPEUpvuzQ0Zc+KMCX0t/mqUF+t0s06hc13S7P60m592tUHOKd+MyazsZp/d902XtiDRvMzTsqzWw6e367/3k/XPb/JaoCoq0ZPFl/P8trXK2RSCECnXcAB6szT786+r+d/6/OVNchBRkGBa3bwAg739cp3gxUhEU3V6qvh28qfFi6RVQVCERSfcW8Q8z0+7h2VZevW898arWwC1qk9P0+PDoy1tHDKiUGApSRIxYaATUSLp7PQUgEQpD0AMBCxCRERCnEh8HIhE1mNZjSUJdWTQskyq2muFkikXSLkRWUAVqOBRWw3V2pbWZo8OhE3aAJACgiCIgQhYpJRShnGzuTF3PCBFEY8d59RQGhX1VVDvRzFHQAO0E3oqbcajUw7qbpYAwAEilJDclYVyYiZITG2pukyCEIwpYThHIAtGtHlSJosYpyUHptIgGxPGmFkYEXJOFFBWLKzzQ+gEtoQpYAlQd22LtoXaE7OsU9kOuB1glZzZIuaz8mgvJCMHU4CgIyJ7dBw0ByAge9ABZoGBAURx4BE2RhkkXxGvnz9FHgEdGR1uZmcaKYhY3MEg3EE7nXWgemCEG0agBVqEOjQDNWgOZqhBHr3U3nNaZ0iVeNb0jENLPvSvuocFOKA5ImLKA0qaqzJJ+i1xyHy7ov0347uMq5P2/ZftS/DYReKQzvQ0v+de3rvfC7TbD76DD+03Lo6T8IdB1f8uDERkImGGlDXV7lIzM4M305OG7BE66q01D9D9xJJyzhExDMMzQ+ul+9q5haHrBRNd6GFHdEaVlNNmvdlutlYbqAGhUSzWAmz3tP93f/Jnw93v57IRJOx4QqIAcLMIxIhOf38iQent9blk4AQo/XBUdb/fz/PMzOM4ekSPNFJKwzAsy9JpfHMpbtVM1RXa3MAkCaVk4dqaukaEuYWHiAgIEREQAvhS3X2epqenp8fHx9bRZe5NlUTKMEQEEeWc+3NxwNIhSE7WtF+GTz/7dLVe06pYQGSRlCHgYZ7/v//9v/hXf/LHP/9bP/8Hf+/v/Z0/+MPbYUtEjMRMx+I9cRAiNqvqkRFN9ccOVD7iH/6OjB/c6P3N+HHHBXPxxbUTOLYffZvY7YJRHv/SmtgBINv7GeLYAXxWNQIhFsLNmLeZ1wzrRANjQS45pYQp5zKOnIVz4iFjQgttaktdzN2sq9xRbd6mVhI2j0ndIUTSy83KpimivLrbfrJKmwG1zer+2ODd43K/n5FMshfBVzfbiu1N1Dd1fvRW1ds859BPxvHvvnrxezdwKy5Cc6THSb/at2/mOgEGYaiDd6cOkdkj5t0+vn40kj94WXIKYOSgFafNzQbS65eZXm0HZntq8OXsf/F2Xmq8WuPrsbWZGwPx0syX2qMFj4hlae4BAEuziGjN5mkBjyEn4kSd440whEgIGCGwFCo5F0mzKOeCLCyJhFkCidQjSFLC21sC5DHnkoQRtC7aqrWqahEkQsMgZWQkdXBG0zrN0zJPi6uZV4Bnsw6jBMiwKnkYhnEtSVIZh9VmGFdlGEgSiMaB7ceJCBBMdVmWVvXp7dtwhwBiYuKUUhkKE0dEEQr3XgVAxAhvrTXVeVocBVzX62E1imub90vb77GpAKjbwFRWCQ8QWSemJChoZgtLBoTWGiIIoTDLOhdGChhFJUrBebfzOUdr7o4ONBo3G5YtMtNqHMsgJTcRIGQPBz9kBJEAHQGBgjAo54KB6IiBFMzg1MWXCSGMAAmYOh0bBFMwBHqAnUX+V8/SodXDwT1cjyBURMRw6q0qvYUeusqPmoWbh3sPVLA5NkcDUhAgUGgR6IAdb3ZRtO8cDNHrjP0JdjBwD8CobhXcGYZSIPGuLhutBXJCwjhrGOj5QT6I1p+aCj7SSd3NxNn7yy9+N2f0Omi56gG5OJ0IJ0Wp891ebv69LR+HFL4fQO3n5eWjcoKdPvhI38hH0j3Xx4kXr6+1U863cH4pzykYro7sw4v0VWPD5Tjf18UWrs4aHM/J6ZY4Z1KKs0/hAwqPVyftUovmbIYEEODh580278WYXZ3O74xNuZzVxQzpbDlDxIPmKZzSDB2NhHGucXkCVR4CgDPWo4466ox8VyJmxz0e9nKuAvRtctLvArE7bR0PN9RBjgICkRCDIoIARMRUu7hWuJ/wWSeIFB5koEBVA9Em65iu48kLAkKi8DCz0MAAOWhAHQu1gYd7od8kRMg8rlZ3Ny/m3TzVh8ZEAGoOATAtf/bv/vyTn329Xd8xEgCGezNzxCAEoGVaTixb7t4LI+M4ppzwyABmZk9PT/f39yeKsJTzqbghIre3t6vVapqm1pYAQwJAcHREU4iu5qhqiy1whpDtZhOdMNCs1qXudrunp6f9PEWEhnVJ+AQdInFgY+nYBGZGBGZWd2ICIg2/ubt7+eqlZX6aZlKo6qaKksz9m6fd9Ef/9s9/9auxjP/r/8V/+tPPf/IHP/85EWtr6DCW0gF7ZRiiKou0ZW6tEXUyHDy5eZc3zvOtfN0++L6b7fqjk6IX0VWu4hLCc2k3rt6du6bvn9+3xmXHPPYD/CvGSue2+qosf7EVAoIzI3PV5nE1q7PJx4dWIkICOsEpP3SUh2fzcpxWlqusEJxZgA546+YzKAifyeiu93EO9js76Ljc10Vny+VhnnZ9nPP10ub+LJF7dmjXZv/95ut4gfq/8rzdb0UqVwLDF3HLB3gzTgf2vOezKWo0dYeIsAiL7vVDQi6SJUmSPGYeC5dEzBFQl6Uuy7zbeWsRwJKG1YbSdP/mKVUn5n2oupdUbsa8/vTFzTjcvdis71Yypv1c98ZvH/b3k7dI7pHakkVGKbcEM7QvTe9bbRhEuhF+kekToU1ywgiWp6n+xf38i3f7d5MpJAgvTAHgSA4UTOoRmN4sGt+8W+GLF5u0XlHyBnXacrz69NOtOHh9U9uvHuoffzX/6u2SJd3kFBFEjCweZt76tWQWANSmboBIc10iwgwQccg5AkyNASWxmqUgZKLEFKgNC6eSc8k+jKtggdSbtC26kB2xFM48hEcvmyO4q5tWQhAEEEqZS+GS0VwBNNzrbnl6ez89KkSIwDAkQFc1IkqJANNqc8Mpp2GUMkouMm7S9iYNKxTmkazLYJr1xFxrre13vp9u8spdETGlVHLOueScUsrElFLysN5AToSqrc0LQEz7KROHNtMZvM77eFrul/0TqjIgo1MmFhEhJkyZh7GsV6s8pJev19vt1i3mqboqMQ4lDYIyMhOuy1BoXaTuJ1InD+KUcxomrSfAVC/qH+7iAIhnfUZzP/IAGgCpxymRiHDQsenIAKsVkYCo5y0Ru4YLOiLndAgNetfJ8zNFHWbivfM7zjqGA80UAyg8wsPMTQ+C8+7myQI1zCOaqZrFkTqDgYDC7KA/eMYGBD3v3XFhh/QcxuEtmbk6KDJwZo021V3wrRRG806XduwUjL5i+QGM/rz9Dw28tNMf8tL7ti/fvd/Xv9rXuWN9tq71b35wXt9OE57Z2YO7eTKszyuHWVwufs/buGwD/VDIcR0vXX3tQ6v2lVk+P+TA+GDX4sVhXiCp4uK73woDz0/OtTLm6eT4sZn+tCKcPN0+2X6Krtan8yl5+EU3/QXXJVqYm/dpn5bh0xU5n+75/L4jjP76Pjz7FV8BCeL5hkDm8x9etM8eo5TurV65eqeQDOnCW+zrwkmrBP1iz6fXJ1/h/aQO58dyGajEcTuI0L1ZdyeElJKbsTbsJgsC4lm7CY+S7XCKoMIRD6wTp8sK2OPVMHMGRGQ4RLAG2FuMD9eGiJDJwLPIdnPzMD48PTzOTTFRydlNrcX+cf/Fr3716vXnrVbGnm1RZwYhQqy1vnnz5unp6SQn0nmQT9AsVV2W5fHxcVmWfrrmeZ6XZRiGUsrJE2LmzWbjMe7nd3AkJnMEC1M17cQkupzukXA31c7rDBHqOs/z09PTfrfrNFzL3FR1HIYE0AMkRBRJKaVaq4ggEiI1bTllh1C3Yb26++TV7GrMj7ObaTAD9gKlT9Xm+oDw8P/4f/7Tn3z62T/8+//gH/z9v//6xcs6L4Q07faIuLndIKqZ7ff7ZVkO2udEV9SOF5wZ3w5ULr76wTvqcO9fZiVOH33o7cUnl9bmcoZXvuj7JxVdMfCYJrhuzv5w9H7hf1/FFRdm42jhu3n5sNLilXt8Of+zB/agpnrkbT+PHy4pfT+UMkPEc6bpzurxbAGeCY4DHVG+JUZ52vzzaggRZ6whl/u6gGNdHfLx9SEuuowX4Gj6rrhb3suF089GZyY4H3FMb30M+vXDjsDY6S5Jebvb7/Z3S+O5oQJFZlrzqoychIbMJQERRHhtbZ7a074+7FSV1DMnHziN+6f2y+XxaVxvGwAwYthQ+PXq5rPbzcsXG9kOTbC+2y0P9m//4uu3E+SbLXY4S7M670tAQWMytcXdk+Ddani9SrcpgGlSf1qmP/7q6Y+/fPerd3NVYEFGEFOHY12JCDkZ6N499u1P3kwt5GeSt+xDiler9PmLLZnd7x6nGl883v/qXd01YoYITQycJOTAZghHMA5AqHpEcwA1IyImZklCZGrVl1DzalHIQxxBiNwBAQhJiBLzOK6IxL2Lk2B/XLrXzITe2yX8wFhL4JnJCHMeyiDMEVHdm6otS5se6ryz/dOeGIdBIoSZetqso4pngyTMnCWNWNZR1sbjFMkbavWqbZqmZV6IqZQSEXWxuhiBqql7iHjODjC7+ziOq9U6hLuDSwGI3uoCYUVSc8zTDkPBqtVd3U9al7BG4IiyGjIyspAIpcTjqmw267u7u3E1YI4k+WmeH+6nMM+JyGO94mFMkmAcWFIMAy4aRBklD8NmHNdwtL9m1rRpe+7EsPn5daetPL7D3aJx0rXsejYEEEiAPjMdHvDulBwX/cBd3cNzJvJcwQAjuMcKceDIf9Y66LivDj8IDIpg9wBjIPXmQRJu4Rym0NtOgIKCABwcuybkM19kAM192+F20PXtrfZKYBBkoRGKgKCzt+R1gjaDVvgoD8e/b+OkJuQfpWr9aMzxA4+raXxsVj/Evs4Xrb4Yf8RL+Ms3eHmevs+mfsBB585MLxm7q6qFk6Tu718t7XCUAjzRuF/GZh8TdPqNjX71EAEDkOjQpi0ipktzOHYjnHx6dwdETOjuHQ98lbLVUAhAJBGhD1+7iPAI9HBw9yh5WK02eSjTtIumMmQhDtW21HdfffPm62/uXrxY3RCN7HQAxkJErfVP//RPe/Kr6yGO4ziOY0pZw5epzvM8z3OvtJyOt7YGR5/ppDQPACz01TdfEyEJI3MzrdqaWWutX2u4lAbqOaJjpugwENFb6wKUSMQk56nl1WqFB+IBqhrkrqaA4Asi02aztTqJGkkii86KCV3sqtNlRbyb91/9q//fv/nTP/7yzTf/2T/5Jy+2t6ub9cDU4V6ENI7jZrPJOcM0/zi3zF/78ZGaz4e+Bh9t2/41p3EVBnzvtp8f3M5fbPDX2vivd6JOz0t/dn6TgQqE+Iz61f3jr1ZPP7m5e1jb+saYbEgBhZwoCBzCrdlcl6f97pt3+3cP4S2AEVNi8QIyji78xeMDL3VY3+QxG9h6lVcllYLjyC62M6NhePji/qt3y9c7L0rjmm5XGYFQVQRWq/yK1hPi4zxtE7/ejjejINZvdjY3f7Of/+0X93/+ZrdrAcCMkszE1RDBoRG4IxACoQXszf/sqS7xmCVefDq+GsuLQimTOoatHx/gqZW9LRaRmbZj2m5LGnJDFNSDQG9np9VQ9dZUzfJQcsql8JBLEmlLi6qLz2aGKRsc6u/R+0sQhSWJi2QzX5bqASxAhOFIxAgYbqbqbmiMKQkjAVLiBOhZmNG8taXWWutsy96XXUArRDPCIZfGwJ3oKsLdbFaPjAlzTiPk0bhMRqre1FBrrUtfHty957dEZEirt2++0NrMjJmQKMIJcS7LbphVEglnliRkddo9PiBYFtZlLjGvBy6CtlRtjSIYOWdKXCwzpd5gScRAhGZtt3usbVqsbdbbOnub3VVtcbBFMDMOiQsXJuKUclNQJzME4gAPD2YpJYukpq22A8wXA9Ndp6xBgIADe+ChTNrwOSFxSsD0igOaH95EqKmq9oJNeCy76eSOET3DJxwR4rD2e7ib9854U3N3D+vruoU3t+oKB5JHhIXAQcMjQsM9/NDKD2j1EOicFwT6mGo4oB+a8A9BmiqbR4W0aGthQcCMa+EVWK4LTTsab/+mjf00vi17+t6Bv0EmgKt94UdETr93FHC+r4joYM6e5Psoruw7bRAAzpICv7Vx1ZHSj6611lpTN8eKhF0u/Soa6c3cpyM6D2Mkp9Prc/f3Nzxqq3Fg7wXyiJP4+rFC2Km9To54RIQHJ1SzYRg6hur8Zm7aCKnLmZwDXK/HIWPjjh4RGFCGMm42c52amwMhoUVblvrlF1+++vTLF69eyjAM4wAABqFqAPTm7duHh4cXL164+3a7vbu7W6/XpRRierh/3M/TNE29h/7kZSJip9astR6uoOrDw8OXX3757uHtF9/8eRnKerMZ16tcCjI1MzU1d8ZD0eZYv3q+0O6eUhrH8ZCYq3W/37fWRESQu358P4e9q2e32/UG/eYGCuY+a5PVUIaBdWHmJBLmrgYegMDMCAfC28kaFtl7+6//xX/3R//uT376yWf/q3/8v/z53/r5ixd3+8dHcGitff3114+Pjz/ePfPXfXxHrdWrCPyHb8y8qKL8AFs/D6V+kPXl+7OwdFN5evsdQ6n+wJ58kh83ULms8gUO2QPfPU5fP+7e7eaH/fhiKaOxgi+mGI7VMFSbtt20vHu8//qrxzfv1qsVs3Ah4bS4USIZxl3Vef9QFNc2Ds03svExY2LM5OxNG/DwsNQK+G5azPQ1bcehDMLAAZnGQq9zQUpvIAby26EkgcXbw+MyLfF2pl897B+aOSeEYCT0digzQiCEaXNAEmQSiHhqhvcPn5SafvZ7dzdDgqpWazDkUQput/y6yjLt7lb4cjtsVyMLexg8lwtRLeal1UWX2lqzF1KcgYhTSjkJhi+M4a6mHBxH6vBel2dEQRDCgFBr01wtuICIyAHPR1SnxbS5NVNCdKZ0hMxSxfBQb6ZtmeZ53re6kDcSLqth9KiI7m7RG8UBHMICwpCcAhNydkxu6A5LW2qt7emNa+trABMLhEI4E7jTUrFW1AZEZkYI42rFddFl1pQlSZRMWcQdEc2CW4tatzfDOAiB7ed9V79JSRJRSlkFiVmEmEmEkElbe1jeRURer7KoG4VjBLWlhpmgYxCPCZmFZCgIYMt+eXia5mlRi2GzPZEBHDJYh+ZzulltLrg1TylkCM/PgUpKKaXUVeLNTUbxcLOeaRMBQbXQFupbplOOVlJK8uy1IIgHnPJzcKzhqKlBCwjz8Ah1s14bpaBAXnoLfli4gdsRaRMAGRIc8SdufgZNoWX28J6h9E42ZmZNVSP2NMyqzQ0ZIywT3223L8ayTqzg35IBwQCC6z/+ezGOKJoPLninr/2olY1v766/iI8uD1do6ufOwrio/hyAFSeUxeWOTuO031NIfIFh+ACaDN+3we9wiL/BgXBAgPfT4n7QSazVTGfrdil1yfDzKGsxo+Ng4fMqyvkxfs8a1F9tXO6nzdUjxMECGNB7AKaqqv3qnEehPcfpEUJgrr2aDce8aURAoKoKJ2ZgJgA/6i4gnHdRHWgI/dDPat6WxiRDGSWXNpsHIJMD1Nbs4d3T/dtpt+t6iyeYJZi+e/dORFarVVNdrVa5FBJuqm1qT/vdfprmaer1lucZAgTE0uo8z09Pj+/uH77++qtf/vKX9/fv1G17l0hhquRkU5sNXM2amboNOZt502ZNA4KJcpKUMhGnYWAmh6jaELGFTXVp2sbWclJkkjjwp/XzaWYBHkAeph4U2Jrl3pwfEW5CZMiKFOAIhEidzgEhOKW220XK73a7x93uF3/xy199+eVPPvv8937y03/8D//nKeeS87BacUpR6zM38Rn9w7G0dHz7G3zU8LT7S0nBv5rS4tmcf83Jf7hv+4PfxAvdd0S8RoJ9aAPfnjwcTj6ddawdwMrf71pcmZTv+KuPnMNrDN6vG6v8VWd1LPJiT5wIdxlW128B/IDO6i10vtjgJVbvMkF7rp4Wl9hrXoqhRU5ftadf3H/52Qb2X1vxQZrDDeachT18afM8PT093T8+vH2Y98vS9PZmI6jqe+QkpIjkWPa1vfnV43qYPr/b7sEfQG/Xm8mwtYoQv3rz9eR1Ip0zTU7z29kC4251O6YdSLivqW3X8gfDrS9LVjVdPVr6egffPO1/+fDuTW0VIywwSJsbsEmxiN6zjEjMFOrmgWG31H62Gf7w1d3rYbgbxpHG1pwVEPgm8x+8TJ+msuyWuyH9bD2OgcmxSGm6AwNtsdvrbrb7p/rmYa8GJaX17Hfbcne3TRnMlCDyZlBkWNrNlkspAmIzugMYWqsAU862v/8il5xWoyRho8Qiklpryzw9fPO01Amw3tzkzea2rEqSBM7qUK0tT8t+t9vtduaWcy5p5ILhNrQEQCceKRQZNoPhvN+3ZTIakkO2BuELYg0kaC3qPO2+YcJxHCFimp7cm9sokjx85wslSFkYkQI4jGMSo0Q421KkZNPYOwKWiKatSHp1d2ftQZ8WD6fgXNZGOnJa5mVuLYIzSSrjMA6IYG4kpdchvNruccfEHt60mjUNgglq6MruN9tNKauIoEyFhoHiAXSem06LWqg21UaEkgQJCYmQFMs5OPbsJo+oz+9rLBcN00cMvYfHZdJ0UlPViEgibI5wImlBxHxgYY9gJjXb7/bLsjiYsqY8sBRtAJAR0KwxBTM+xlyGgoStNnProk7cOUHNMYABGKAzU5ymITd8jk89S8OgHY4EAxE68VcqJRVhrvvZgnJOhCgiLJJytkBO+aMkrhcNFXixWHyk/n7++ytQ0LmW1sVXz7scDhhcRCIBgNDrBM8zxhfPVg7yc61BIo+zcT5D1Xq+tYtxVsoIuJDNPa9yXHmpFxb1Ei7GlOADAy+EDC/seW3Pme2rMCDlEhHudpROu4Szx3EOV4DysypHIDkgEPd1t3XAJDESH1aKHv1EANHJTYGI0xLZRb1PG/SI896eK7g2InbxzYgAc+i6pcfi7+mbl+nPuLyNLtevs++da9/1Diw89NtEeIUuhmrBTW2p0Rad59pq17FwYSSuAOYGADnlVPJu2REnyYklS8q5jGUYgMj9+bb59kjdg/HDKeLL9pXz1xdBcnyYD9rjKKIdh/AwAAMoYJ1yned5XiCig6Bmrc17T1F/OvoZxN52QsQ5JY+WBYfMCK5tQZReRUGiIa8QACNcW2JITOH9URIV64SUAowp1XCG0GkhjNWwERm6sORf/OJPp2Upq0IlAdVM+zdf/Mn+m5/uX35SZRxevwCKF5Iev3pjai9efQIkn//0s1KGqro87pe6LHXJm2GUMY3JzCgAIswMAYTlfn//5uHh/uH+y6+++rNf/Pn9w70D5CGXnNJWtttNGVdV275VC6geaq7uChUpIAEIJ8RwX3QxsLGMFgaBhECMFrG0xiVh4q/evVncbm/u6n6C/TTmstnoehiHMr55+0bFiVCABRgAvXIBmN7dg0eRoEIYVKt1ZeRDZGQFTAABAABJREFUK0YQOsu4BQAHUPfq9q+/+OUff/2V/A//8l//4ld/+2//wcvXr1a3N7TZ1od7YARi4I47BICj2uO5FT1/DRdW9NwqX+upOvT+JggIv8AxXkoQXljLi26r873HRwsWZzrlXZ/03B8/X7/OH2a6tBuHiXV5ZDkT2Lii3LzAOiGeCWVedLZ0mmz3MIMISueVhyujcjwzCH70v3sv/imGOeppnj3ml6FU/6CXJi6mFNCLloiMePGrLvto7n1powtYmZ83tDHJt9fsK+8doHMgHYqKERGqQJ17jnouFk6tiXqJrLsISc8xBYemRUIBBDo6AV3YTZsdbhH+KD3xR8Z3ZZQPwOONiIGhgUIAqOBzmx/3Tw+PKKQBYeo5ZyYK9elp9/jwsHt4eLi/n6bp7u5WEmeXjLlrwOQiKSVAe2qtmoPd+7LU3Qhgc10HzA1j34ZZQSGWsEbJAr583IkYyjoxCkRGKIIllxCqam2anib9i52/naY3+2XnpoiAQJ38A5BIMIjQIQh6LI1ESAL8U2n/8c9e/ce//9ltDmpNSiIWBCbgn36+mpdl2eb6JKPg3WZYjzmLMKHbMNVp2uluVx+n+jTNGoDClKQMKWVOmYaBzWEhQBJJg6q5P/XWpPAw9VpVVSMM0JhZhFKSodOoIbba4VzL/eM7RF9tuKwyCWrUMDC11nxSf3f/8O7dO1Udh7HkjJyYCTxAFePQdoWIXccQEAgw3B7v78NMb2/LULpFqK21ukyPD2UcJHj/8HT/7iHnQdc6DAMxa7MswjkPWaJVmyfvizqijCDoCQyOSLWw6ghhzMgBGG7uyEwylAD2ICDzAJGBpTAXIqReL8AIilafCE9slrk1bK3t9vM0z61BBMCWiBIxEMSQxVdD4vzusYaptdo6rX5KpZQ8lpRSd3GPz577syN1kLY9vT03+4nB3aJrEdCZHUWIcOxUOAh6zuWKONUnNW+tNtWul9xUCZFFxs24LJM+La1BF59XUyJPAphY5j12oetu0Y6wDdTnJYeZLgjm5dm2MTGf6a/nw2sCoIMyJ+DcGlQDyHi5KsThm/gDYIn+Zvzg48zZv65XnHKu7xsfsvMfSYx9PGd2uUE8/fHcJboKlkx/eD2WX2N4GLqFeqjrvCzTvFir89xM7aBTjae4FwA0Z6m5RmXxruJMxB05hADukM6D2B8C8v7rjWWarTUAkJTcvet5d9Nx7vfgWa3MzAAw5USMcSAO68DgCAfwIAQ6dDWGH4RoEQGB6RD8+BERe+ARiTDfbjZSqOksLKrLtLRNFuEhgy/T7usvvrj7/GcvP/mUEad5/2j28O4dCa9Xq3EcUdjANWy320VE13VBgN5u01rb7Xb7/X6pNSDe3L/9i1/+xTdv3zw+PVVtyExMnFMas6wyJDIKJ3QKdXAIBXcI9QAMQqRARzL31gyALWI8kIwBhLuqaQ1TBCACDV1saU5CRIFSCdHntlio6sKIAAwgSCyehiIIJoQs5IBsTO4OHo4Hpy46VcmxMsHsES2iaYNW/z///J//mz/9d/tp//M//AMUQSYnxINW2W9HBegvzaB/J5rvD3RKXCy832Ea8Z1JNf7Scbxzv1Ukfu+Xr83t+z/6YUccO9GPl+D9J/q7n8NTku54MgG+g7AvfiQHefXN8yn2OR/yWL9uoPIdRy+U9yCUHSKgsAikBFSX+vC0e5NAddrX6Wn3yMyCpE2Xednvp/3ucffwOM+zWgDizc2ARCCICOvVehwLPMxWyhxxr0G7mSE2q5JSYvZgrBrkwpQBWgA01/t5yk+VxT9fgTCNSTZJVoJuMs/L027e75/ePeFOPYCK0CozM1MARedYjGPq6pCoFpaUU6b4j27z779cvR7xxcDbQkPKgbnwMBIPzLUtdS/tpmT0bU5DJvIIs9pwt9PHh3k3Lc01Cw/jUNbjqpTPXm9vNsN6PYyrZNZSUm2gg5vGw8MejzdHb+MDAGbOQJJWqQyllJwzEXWqk4eHh3mekXAY0nY7rtfrcSwsDAEKTdW+/OLtw+NTrXUYBpGCKEwpSUIIbUuXBnUM7IEZASMJRYYK5lCdlHLXyUIU18q6i04aU2FZfJ60mVMCRGBOyGiuS52XBta8NQ4AN8BIKBSOphDBiOFuuiiGGTGgGbTWc94a4fMyL8vSqjlAzuGGZpBTIsZjxiQ6HU0HB3fQcKfSN2utoqpH8Hq1SSkhUs4DIg8jPu3fmKOZ1UMiy0SESHLOAHr2RPuxvwgC0FxPMBnsZDknlj9QhvDj989zC0NJhKTqROGuZs/d+Q+PD6cNEgFlLEMZhmEYynqzFpS64OPjtN/X1poZAUZKuNRq2vpuO18sEPVcsgX3xxEgLJ4z7wgYisfkSvS7/TQNr/V4yN3xEEIRESYJ/Zto5K/TuJLo/f7Aqo8JPn7vllPEiwTt70SY0tOZqrE0bFaneZmXpXepmNbWiQDtBKqGjgItWQYR6WkIQhRiI1Vyd0fG3wnJvJRSHPtt8MjWeqitfUvD8YDoAyCkVdkclLKICOnouRn4ARVDROGqPdsKAABMRHhkAOvQ1gPANYTl5mZ7y+tm85df3Ty8+XKal3VJRILR9tP0Z3/xZ7c//dn6s0/zZkgB1EV6PXprUNdC6f0n/Vq8+/LreZ7vHx8e97v9PO2Webffz61CRLiqKjPnUjQ8CDnJMI7jekiDGEFTNetaumYQHubh2hwRkRiQAFA9pqUB0DBSO+vO9yNLckqJGc2XZQEAKDkTtyefa0vWWrO5trnnOg2ZRPIg4yo7qKSUMQH2JQ8QzCwOifmguHwg8EgTDB5C6YsvflXWq//xj/6tQkgWQ3DoKLPfDpbyqkj764nA/iDikn0anZT2+28t4kDMCt8ZA/YbHnFk6jsmHb5vp1/HHZw2CIcUA5jZR07p1Q3wHZeD/qs4Btg/YqCCceC14kOuNZLANqeMuBZHj1rrbiYMjNDd0zsmhohWtTWtVaf9fve0W5ZqnlIZRCjljEAIPI55lTNhqGTw0LCGuFd/nPV28TEzgojSiGnLeYsTWFOCJOyqj/fvfppTxrRmuimSKRQ8r0Sw7Je6tkiBL6ikTCUnpiBw9uDwm1L4mJ+WJDnnUsowDgPz52vY5Hi5zi/GUpIgccgAaQVSGmhr0lakS0ZtCZzCdZm16tOTPz7tdvu9R1uvyuZms7m9uXlxsx7L682aMSRRSuyemOuytJjN3ZiPrN6d0O2IvvXA9foWiJnZ3Wpd9vvdPE9EsF6vbu42pfAwllzEI6w1U5+meb9vTedSUik5JWFBYhDBlAgBlTCAei4QO062wztQN6mtN8Pdi/VmU0QcoCJA5Va5DXIzzxWxvdykHCtEGkdMKQCVyIlACJkCjVFKuIVRhAljZiyCEeDmqot5I4Nm0jRMvbXagwfV1pXuW1OWog0h2B1bMkTsHRgRPgzYISInZeKOHXenurQ9zcJ7BC4FmDkCUkoCNIwlMGYhOCpDuINZmIWZPjv0SEh4ils8zpEkdCqrI4QuFU7Ir/AToCUADGGprdYKCNou9Lk60qM/0UiIAIyUgQvKyPD69Suh1S9++dUvl6/qou6GBO4EHtrU3ZMkEUHGTqMOhEbP9KmIF2yUZ0YWhUXkfZXurhfZm/PVDIN+5BzH34wfdlxhl79/oPIR7PL3hzW7x+9MePI8zKwTnsTStDYz9aMR7pRQ583ZEZFzTiWvb9Y5R183mJKzugpQeGA9IxJkETn3xn6DXuVFl/yRb+NDgcoJJBkkOWdmhgMDKUHXTgEEO1RYCMkDXPVsm3gkjwww92NVGTBWm2FVMhV+/erVJ69fz08Pu4d3TVdIwWFufv/47quvf/Xim0/H9ZhXq3ma/vwXv9wp7GsVZjuwgBzIiKf9/stf/XJe5t08Pc1TCw8hKmm1Wa/W6xHHZZrM3cINgpklpVTKsBqdtJlWNdODXe8Eb+HmgYwEQsSAga7WahWiiCCCMHdrPVjVpkRIIInIbbGlhUfBFaA18yCGrjmwTI4UhI7CkcNX4yoFqEhhTIwh7h6gDhB+hKbgOTF4f7iQuQs8j2m9Ali0dal7R8AIDbdLMvHf5EC8Ngi/1kYu8L6/Rpxx5l73Ysj3PiEnGt8Df8b33d4PPk5Jog7H8u9tUE8n/kAZcgjW7MAj+qGr/AGq5Y8PPKNQDgT5CF0mnpV1zqOiU7H26svH9hcIDwjAiO5TW1UiTMwj+pbxppQ16U3hUpjIwbHNk1kFQPdoTeuiy9L2+3maZ1PzmG5uHV4WdfRFQXg7jNv1UFIiD4O+M2rm+2mZl5ZTYY3B+Qb8k5SmIT9oGHkSFtYUdYNxm+Bu4E0KwQimABwSoUB6mYIoMQ1JimAWzD1+8lbCmLALg3Qmq5zzMAwp8SA2ZFolESECDBJII+YROY2u3lgL6yI6zzpP1lxVq9Vpnubl0XxKCbcbef169eKT7cuXN6txSCB0cFUDkVICMycKJOsVAHe3g0wYdL1b4jSsMiJ7RK3Lfreblzllvr17sVqv8ijMiITuMS/LsixqHVxdc2FADA/rzFBAVSGwEaBBEBxiIWZ0DyEXoiHxsIXbO/jkddpuM4t0j3ie5/3O5gXnhK22wjFIcgdJzlQDgMlTlpJASDDAVbU5dp6tUaS71wjzskyoIkDUwYB9+QwzV7V+0J3EJaWScxFJANjOkprujYXd/VmI4BhkMjNYtIa73YwotVoXssw5I9NqVdR0GEprDQIO+jZq06zOJ/++M+CfgLEYQISMByo9OKE/EcCbP6McerP6YYrxbv/YmplqRBAT8aHdE7vSmrubm3uPiDwac8vp6bOfrn7y+U9utps/+/NfPu52talDYKCF11lND5oVOTgJB6I5IAaxHZG8fV8MB5IAJDw2QwNGOLQFj4PCj26FZc4komrheuhJAFbV1JmVo9M9dRzIh5elyzr3RZPKRwzRBzf3rY8+zKV4sZJce9IA71MhPFLrHf54agZ4zzQ+fMh+KXp1jt6+mi1e/uz5k29NGC6CjecJm8f5JC9Q0lc5v2/FFcwccC07eGHmj3s73KXnCdp4nhIi4ll7iR/RQv1UXmz88qJc7fd811eiZnB52p6v0DXLzYdXxI8Rkp6/O0zK3U/Ah6NT3/Wv2CPMniVEupxfT6mUUjaI8zRDYM4ZzK1pw6XfWWbOTNQL9IQYoO4ABxTSR9yoj9xsl3f8BcqFKPAItTo4Ft0qAlZVOCatVbW1FhHnj8PpDuz2U1U9QohyziJSlwbQRDACkBCASJi6toNbuFsXs3d3dzVITMRERHa6QIir1Xi7WQ2Z82rYzeNmsynjuH96rBYYMCCSULP65ptfvfnyk5cvXow5f/EXv/xv/tv/7ptpBjgAz9RsWZamDQKYqE0TEAZjGoechUumIclQSMSXurQ6zXNzI2Fi5pwkJ2JRNzXo2ik94oIIRhdGdmREAWQAQkgEBB7etM1pPSIyQ9TwasbgREToWQi9y14F19rJRqLWMIdwNIvolJPgQOaNGFNig+CcBLyJojE0817Aj25BAo5gu+4gEjMLM/JsykSUxNxqa5xTHEAgBHDWmnLZRBF9O92In7U8IaK3I44Aj90GhzaCYwoN4PgcfwBZdPnRs0mNqzv0Wxb7TGrp6nmNixdnMIWjx4zHB/L8V+fEeh/xe68928s5vefY3AHxvPXiugXIvTdyXJm16/ERWFocCV67NT1vdPzIgRzPxOEp/nDZ53paF0C1iwwXHK8LHJcCRHye2xnw9eRUAF6exMuNf2j+x57CHl6ifMQLOC4xfrxXnuH17n7Ox3qKVgMRIYACzSOCAFw9VIllTPzpmG4LvBjltpTbkW5HWiUcwclbeDS3Vq2qLXObpmU/da5zmeaYZjdnVQgMJGdJN+v1dpVvQN1wFbgV3gqPRYYiw1DAnSGk0N+6GVaJTCQEiTyRC9hdzjercrMuhb0IMVM1Xyxu7zY/4UyEA0smXAkPJQmDmS51KgMxEYswswhLkpxSSllEIoIBiAmRgAlIIGWSzMwwWQQ1Z/HU1JxqtaU1q83m5Wmen8ym1Xp9s8mblawLDykSutaFUMKxVlU1D29V3R3Acs7u0MXs3T3gUPhOuQCig7u1ZdmZt2HInU99GEvZDktddrtp/7Q8Pu6maYojfZckcTuoAjCAe6vVVBdEMjWESIy5JGaKMAgQ5JDYrmUoKMlyAeFABGYIi8pKqLkEoEFVIkBAJCMEJBzEcuacAEKZOIyWGZh5GEqShHRoKGEK5gNKCoMT4jwt3YSmJIjAjDmLWaRcch464WOty7IsJ/HD1WrodqEjuOZ57tgAM2PANrVl1mk/l1LKkFercb1e5wKSiBhzTqUUVUdEd2hVzQjLcNBnxAA7f26IUSglAAxTu/LG9KBl3GMYd5/naZqWpdquuQe5ywFrAX6iDzZwCEKAACRCj44lAOF4/fkqSQnAr765/8Uvv3RkREImYCA74X1taU3kZJSjFDyRrNBZlIWAYxl64QUP3X2AhIyMgOrOQoioFmDmDtEMkUV4Mg8kNU3Qe5/DPTqo/SOMtBdxyTU496MW/PlLV515Z2b06kfnm/7WEvj8UcQhZkPEK32ro5U/amn9OoFKH6eAOT4w4atoxD8cw5yibjxbFc6OBXpAfvXRdRhwPrfnmOd6XBBcImBgwFFd8fJy9XN1SN2dtXRTBCDGkb75akeXcer5igjn4pJ0vArv++bzInUFtv5Y5u4jofTlSTsFJxHeaoXWXNVVMYCIhcAjeq6yf7k7+j1WAYBxHK01lxzm4GGtmXWBdlD11VCCEEXoSHIRAJQSFYkPPw/X5/BDEfjl95AIo4M0oOcW8FBcpe12u398rLX2X3Qy6Jzz6YT35b+H3CJSayWicRwRsXMRAigiI3QtSO4KdKrqGowHtRnol6lZpNwjFTv8pTHi7e3ti5ubYbWiMTGEiAzjSvLQ1IgZMiGBhT0+vf3mV7/4yetPhpT+6N/8m3/5r/7V23mJHvcQIiAzl2EYx4GFy80KkIDJGYORSi6rEbNgQJtmYDIIC0ciSsJJgLDXWMIBgsgh3ACAEboW2YBIEAQGEQQQDFUIwaPNbd4zCyEkQkdAAkakcCbKnBGAAhAAmzERATVVrVUSqzvGQbAcgkSo5OGpKRc2IDZhD1JD884admg6RwSiU085IgaiYWBKHuFu2jHbps9rQP/X33Nb9QYxP8YqZymHQ6d3/6eno06/omuz9P7b9co7Z+bjs3xIjLz3V+dSgBDhV2bzosByxgB2nCEezONZxuSK/vsDrnPfytlHlwvHOYTp+M0AiAi63OClmC8QkYic2tDfe8hXEzn/0uknR6WmyzzGhyoZR8N+cIRczz8631GnlHue+wc2ftrgYZtn6yZ8yy6dZgvxwcjqI7piEREOQEBE8HEdlVO59tuTOL/1LvJkiAdOdHcIN4VQRY9S0jrnz29lZe0lwyebYbvmknyVYnSgJk8I0UIjXL01W6o1i0BCEoe0n+3xcSlllQfRcHfdrIfPXtzMuGPkNcOWcZv50xebzz65HUYxVVgguAxr/j2HPI6UGMk4DMF98ZJozDQIlMzE1AI1QAOMPQFlwARUmLtOYnPQYcUrOjDld2lCIhZOQkxIljsNsHcyY2ZEIGjonS7EQCMUIgCC3KA2X2Zt1mpbWmvMJJTAyRadHmrl3llNrfp+t5gBUkCoQ4uwkgY4hplEkFPGzCklljQts7U2z1OtyzAMd3d3veyDjMM4PO32X37x9puvH3a7JSJSQknCDNNU+1XsACS3LkxGhIhoER6JpAGi9MC4q6YjJneuS+x3lYgRgYhbUzVS7Q+jAQYzMwsREzIRSMEhS0rUV0ltBkGEnBOXxAjsnY8uEVLyw7PDnKUui9pCBCIMCMTsTuGBTCkhcydsdiIPcHRH8Ka11jrPMx15Ko6mCplKq3PTZZpm5l1Kstmuaq1lKEEJwN0VEYTZDd3CyB0czY9d89GJwI4PAFCg27PUwOmjADJAg0Ow1LQty1yXOs9taW6SIw4/MbMDbbCDA9Zn+BiEurlpcyLKgMG5ms9P8xdfv/vi63eQSiChMCKMnM+e0nZmZCOxnjZ4njVHgFUZut/bzcqZ3YEAT2lIIoclzDkAhTkXYvkg99TfjPNxClHg18Qs/JX31QOVjy2H3xuJ8d4N4lGc64fd+G9xdKNhh6FhDVU7yQ8iMBESsjvZkdmvFw1UW2u11q5Bvt6MBIgeEG5Nza01RUIAXiCYudPrAB/jIuqCJt8blH95B3zkqozDEKp92n5ZlTqlgft56DeYiEhKq9XYKdOT5HO8KBzIDwIAHALQ47nphc/7KxCw1QaIt+txNY63220ayq5NHp5LXm02UoZ52mOAMguCodU23X/zxf2XX4TBH/3rf/Pu4QGGVdc0AyI1c4eBKQ/DMI4aCkwsjMIkTDmlnJHJzfxAac8E0T/tOsvVNJpGOKpTJ0gIY0ICEogBnY8hAoATeksAEAl0nnY5l5QSYiBEuAUCBIUDl4SBnQzVWnPVIWdiDmDBjOAExJBzGrMMZTUi5nBzgEDknDKSBXjQMZ+I3j1OPPLwHcSyADqpYI80AE5syIdLKXxMMUT3H04fdR8azyoYp4Wg19lOP+z77VEE09lHf4WW7B9xHCKroyH6UTvAruOlv1bjioD025Lw32X8Jk39x+Z36pvpQfDFR36Rd4z3BSroHoGMlHLarNZ3N6s17V4k+mxIL0der3MpUdiLKjG2OcwjYukZmghiTkgsMpbh9uXLT1+9/uTurnDy3bzXBi9fvaga43C/KnmbUyEYBe5uVy9fbjHFvFSLSHnYWgGUnBNEoDdwhQBTAbNEXhKKYCAUJAVyDCAnjxwkjta0zmpImHMuZd7vmAnEgBEJgyAonIKQo9YI0ECHQAJiQAhCB0CCbApWW6vV1VptWiOcCGW9umnVnp5kmeDrLx/3T7bf2jA0ZnJaAFgbzlNzBxFiAUnOcoD5ElE4iBAmZkoR0Vuxu9XIOa9Wq/V6PQxDRCx1+fLLr7744ptf/sXX9++mVh0AJUHKzIxuhMhECIgpYVs6xiwIcXNDgb0v4QAAoOitR/zmTZMUjw+Qc5UkTEyEABjgTc3D3MAdEHtdNIiR0LMAmAMBAZiFtaiLM7uwrVIC0PCwcERIQoDgCAGoS2WJYRA4JFpCpE8HzSElQowwJw5iCAg+tGNgv4d7jaULULbW3AFQWvN5bu6KFCLcu+dzSWlYBdC8TKouIkFMlLCXF6ye0sgUFM99KYgI1KPQaB4ezwSHuFPsHkBT3e/38zz3xFUQLhYWHQUWiBjMjhToHrFYOz1vRBSAToLMkOBp0adqiDapz45gBCzhSIS6BB14R3sS5bRKheFztQWuTMzbmQCZ+VC3Pfz04JwMw2ooAxGzJKZEJMOwGi1e3fyWejP/uo1uPOPYhvij7usjgcq57B5edTd+7/32DZ76yPl3Q3D9+4/eFd2bT8yUsZEZmqP35upwgs5octXgcX7yhZh7F6+5ui9L8wAUTlLCtbv4zwnsQ+7zBwhU4lKrTj68wVrrarVKKb158+bQ930c/Ubqsusn4paUUi6F6CBteUxoPv8KiY4ZfA+H3jVIRMx03s/r4Ri+Wa9evrgbhoEIhEBbw4jNevPq5cuHd/dv5wUQe+O7oy3Lft493H/15f273ZuvvyllqExxvOfhCE7rTF+VAoUxZUnSwb3HpFWwsOTEVRyB5CB9Y+GtacwNwTECI4QxSyYEJkgAozU88GBSBCHpNoO5IzSP5EeEWz9dPW4HggU6fSgggCK62VIbM9NqNcoA6gCUcsnDpqT1sLljShZLq9WDontCKUdQ505zh1pneK4iPrOXB4CG9ZuJkM+XKACQnE5R99UN0FEhPcyGY0m2GxPFQ+x6+hUdFdiY5Oqj3/44GqJ+98OPGapcWVF/X6nqd2p0YdY+zm+DX3veV+KSP2oa7mOByglI8G2MwVkr0pH5uItjUwQ4eDg4hvey9prpxZg+GfMdTz/ZlJ/c3G4GloIyRGbP1SGIVVA9Ano2npmBUCRLHn7/b/38D//O3/67f/iTMsB+927+8peC7S6vwnwjeLteb8dB0CRstS43dytFRwEnTHnIZoyUU0KPcATl8FgW0VrRDRG6Kl8QRWeSDo3ePO0YhkuDfVt0qiknm/cdCMosXSYcCQkRkFKIBTR3i15qDkIlV4hY3b5SjVZba7V305gaEUvKNzkTSQTfv7t/93Y/lN3tbduut5LY856ZAbLWCEdJnIFIiIGI2CwIySkYWTgB0LIs0zRRQoAmAikPw5iJEQla02mZ/+QXf/71N49v759UiaUQEfYEjWHiAVG66RFhFjkk1ymIDcAOfR1EoT1zEoDx9dc7YhGZe8dOyhkQk4gIAXkAdCuK4ISG6EyBGBkdAsIZApETYWIKpkQ0mEeEqtuhFi8UB94reto/IuNqM6iqiOScEA/K8GrAlBCxmUaMAGCmzTQsEHy7Wa3Wa3cz1VyKpNxqjSCCXJdlrOveFeWuLAzI6rDsdknyPM2mMAxZUkYURAakxeeTFD0gI5xRGwEHoAd6dBmvw0eBsa+tqdXaaq3q6ozarGlrFpBXDuBwlHo+LhXR602njTdVU3dHEe+UoJSa46w+qyNCQGAgEJRgeo7RLvpB5sBTlHWN9zUkQA5CQjM38/4/D1+WZbWi1YqEMzMyQxJYoTvBy7++2aRfd/x6ZvgcmwQ/chbquSB28nrhzIv51qze98n32u/hMP863Bkn+YKrP16gL9xcm7amraq2p+mBPNicLBJxSskRevHk/OEFhN7K2F1zxAOyxsPdova6cxIMJBAKCJbgg+pRFytBj0vK857JhvfM+MPjPF7C40bwhJQ5bDIAgPgQZK5Wq96MftorEXWHph9g98yEKIuEe2IGEVVzVconGLmLpG5lqJN9Hg1Pb2o4JUzcPCHe3t68fPlSGGtdSEhbi4D1am3m6/XX7755R5JU97kHRap1mb/81S8eK94/PXCWAAKiXudgJhFGIQdvYA2DMRIBMrKQMBJGMwtvzIQIzGSBzMTcYyo1MNTK4QhBAEXSmIQRGFHA2ZyPlyAgANGEycEDiAQB3bwui5p1ajN3C6SO9TncWsLNrM3zahxfbLcjj6aOwCnlUlbMZTWsGTM41aU5dOwGI5MkcQZ3x0By9TAAjM4ejREEiNF7DAGJgLGL2R8CRkCAVIq5NVVQjEu3mgjce3gJLJJEiIgJEGmvBqdQ5NgwfYhjmADB3AI7YOz8OfoNmYBruO8p4Hc/W4ffMz6kIPldmXQvcVB9A9/1l+cbOf7oGb32a2zlu41OTHfY77FW1vf4fZa20+sfN1BRMziJLRwDkkO0kBgOjtShKfmAsXNnPtyLAUiciKQjMBHiJvmidQbtKtkv1+PfuRt+Nthn6+llTjfrfLvBkikVTpkAQiMWj2mn+8Xmah7ATG4+DCsi/uSz1z//n/3B+PLlu1Rut3fj699b8Ua//MXNyFvxd+wIkBKsV5thKES0mFtEIlbXmIExIYAHMaJqWHNVr8vUzdqsHawvrnFIhJlXdTNEKcvSpmkPoRiKEc0ZSZiZSdWs1XoCcxRhD1Tn3lTFiJk8YxDa/eMvAA7iZYgHcRxOJIMstltlhnHLa3jzzeN+XrAuw+3L7csXsLojAvCoS221MVIeSsqZCWs1QkppHAZGpF4rQIrNdthPb4aCeVNSHh1kmue3j4/v3j7ePzx98fXXaiFCw5BykZxzTqmULEkckFLKKaeUmOmgb9jhXHWPaIfrGhpkkMFU5zZTjqVNteJ6vXZmQ0gpgbiBU4hrcw9mLMIlc04MEWoKiZt7hA+rNSKrwbhekSRiqdaEBgbwVjGcENzN1NwqrxKxpJREUkqJhfsajgGxEAITcxB2fBkgohABcXBApzPW2pqZvkBBEASudTlQ9NTqESIiieZ52T897u/f3T88ppRX65JyWq/GXIqpzfM8uuznpZnlPOZhIJYA1HAzB5DdXCklRFF3c1TVqqbmj4s29VprbdW0KygSYAmBaX5OXp68HDMLiKAOFUCAAAt0KixPT7tXP/kk5SSZ9k+61NqaZcEkAzK7e5yJVXXMysnZIX5WS7nK+AJSAGhAh15bhJrXas20RoAHOwSZm7srReMxZU7LMuVUumZL1YYAzOTuaRjsTGnxygqeL2ARgN/NQgb41fuz1+dJw4vDuigaXCJaPhItXPzqqJbT/2jWADo0Gzv++dlUnkNf8EAYd5DZAsCjQOFHsF8nxHMfSUrfwmHi5xNmBMSgE5fK2UfE/WRdOKj9k7MZXi2x9JEF5rqzJQ6P1xVC/dCFe6bD+PwRHpJYgRAXEHkmwjP5sJ7WPcpuXlwIbctp5lfbP+kFde/kXPcj3E73SnexTqlibfbs/OMpBc0EmIgJvTWd5r1Ou7ZM87zf7/d1WWJRbx7u0iVOhYnZvSuX17kuc5sNDAiCAhg0dDfvt7AmZAXTZTft6zw3ZuHwqSquS04oHIRWl2ZmzMw0pkwHKBji8VRgdBqOiIsUyeWzTBdYcDgvbYV2ll2NcDAj8IPphFgNBQFaa0GUW8u1TtO0m2cWAUJEIAgGcPN5t88pv3r5spRMGFiXgjzkTIyEgRhM4AQkIJyIxJohEGRIOadCqVHClBBRjT22w3Bzd/fq5naVM2h1KcZprqbqOeXNavv5Zz/Z7aevv/yiMM/NUi6ZaVran339hUrOdyLqGdZVLY+FCN0bCULGljRoLqk4mNki7mbWaGEmjbbYhCgeDaCuR8mDEAZAC1jATXAuzCXnQRKCEXihhOGmioDIDEQW2AwVJTArhmEsDZanabVeoawUGhEaIBiGQfihnNlpklTdnepse30cf3Yn65SHAQ2GYb0Zt9Do5ebF//A//vHmk5+knKjj2dTUAplYkhBTElOtbWm6dNG9lAXQXS0FDUNZrUYmNrPWmpoxEafE4wDI5jbPyzLPbZlBFXIeV+M4MrEY8KzmDpRkzCLo4F74Zr/fa11imcEdSxlLTikBIhbeT1MZSjKZpgnwACEz1UKDm6mZq57DzAKhdYNGR7NxZs3P5WpPmB0EAIQ468o4UgMcNnjZR3ewikgMdLn0XDUv4GVny7H1Ea/8b7gYdB6AWZwL1X8sNIvQ1g7gul62OrbzCaB3Ox+OTM7P4ssXmpbHiVi3pWcHFnDZd3RWRLpqFo3L+tJVPumiSeXCOzhbKY51yz5au6L8eP6IpCM/j3wZ57vC9xfzESAMgbBXKQDRj9coHOS8ceojUdEJY93TdXDYxPPV7thAwNBm3ixBFEmvt8Mfvrz5w5vh80yfrvIgthqHcRyYiQUIwN2b2tLsoGznAYAigugl83q9/elPP//sp58O21vKhXNOpQzj6h1AXeYEzoKIREKYBEQC0QLDPSxc47j6xzLXzhfZ/13q0nkyDvDxY3touKOFajRgBDMiSAksQNXcHYkQkAmZkzBnOd3TRAQsmEbhQkhgHm2KOoUuIuihBmZm4cHgIqUMWbKweTMLBHMsw5pp2G5evnr1+vbubuEJMMB9med5N2lrQpxSSszsjvBMMhPPfFaRkwzjmFKuzeZ5mqvtdsvDw9Pj49N6NQJASmnoYhzlgA3LQ3FCYumhSs//9YoKI01v36kuy7LUutQ6qwUBcWIxKea91yFn2qyH1Wo1DAMRmfnuaSbgCEjCQ5Yhp5wIEd3YBQICiZAwD8NKCkkiTswc7okQAFpdXBt4q8tsqqa62W455V67L6U846EDXLn3OQJRGUsZhj57JGo7jVD35l6XNmtzokyYiKRkMdPammqrtQEEIu73+/K4qvs98oxMnCRlGVZltVohYq3D08MuwLJLGfKwWuUyEqfmulTdTzE3M4tAVws1m5ZlPy1NtQareecshTMjGB/2WgMgDr55YPROYo9AQu7q9rtp+uabx/uHh+eaeyAcWp3PH/3Lbtr37uyj2ZQAgmN6HgEIQwgYNGxxK04WJzKZvxk/6Dg92t/K2/0lsd1vRdPtu4/rSs7xMH+EXV2cp76HZwzeVX3prJbiZoCdZNBV27TfPT4+vHv3bpr2CcQtELGUcurW6MuKemtmfqZa0Hfn4bU1JEJiRFJrEd6vUiftIEIzjfDO9sHMyzKPdeb1Fok6JKn/GxHggb9uwQqP9RM88VEcPDPvMsp92sMw9KOYpslUFcPVzMzV3O3k3VAAY28C7+7Ac0sd9Pphn6+f/jsQEnT3gRCEiFiGUnLO2NsqiLxbOujRPeacx3EchlF17nxZBnCUHYaSZJUYYCDzUhJieGDOwkzE2BfQAPMD65KwoGqdl2mpM3tGhFLyMGRJXRE7kIIiIDQRp8TM1JkBErMZojtKUffavIUHpRBqCMbkQYDMhYEF8ECG9Wzhj+CsOBSwCPq/hA/73Seffra4fv760xHLKq0MkbELfy2dpEHNWhgx9+Vbcn58t8MujuXmCUUoJQYIIxq5jMOwWq36DdOZshGRJHnOyBLuwgRgajWAUpaSZTUOyGLIUN3MhDkXyQTgqgRLxQADCiCURJIoFwHCYMolRYSDIx+ym8QM4ACIQOAGhF3n88cbHxEfP19hr1bbjySMfpMWtBOB9iL4JRPGX2EjF/bzx6zYX6c4v/f47pZfvmP/ZZxrx6D02AyDDgYQAhAoPCBmDXJcS/7J5ubnLzZ/9/X2p9v0UvxulUpOOScRcdcA64RMdWnT1ImQmnkDAGYUSZvN6u729tWr29vtRsZs7qEVNIpQFrLmSZhLQQAphUsCYXNTd9Xmpm2Z45ir6+nqw5KPOG42zJxEeh7Uo+NcAtwRwBwNhcvAnCJM2+TTzlqjoSSRnHvlgZF78ZMRcbc0TkMuqzSsENjqUneP0/27Nj8uu3tTODVMR0SXIBQR5zFay4m224FuZL3e3t2+urt9Pa4GTxbo2nTZT7vhadrtTVWQSsloBuEdGG1my7J0QhUAFMmSMgDP8/z4+DRXq81F5PbuBsgRaRiG7WaTS8k5rder7XZbxnFujZ6P69RUTYSEm8087e7v75+eniIM0Jg7ngQdgtiIqIconV4MAJZlcVdwQJCcU0mcGYnA1NxNa2BnWKG8HtfDakQWkQ4dhlOg0papzvtwU1UjWq1WksuJEvoUqASAhyByN/qUenW/FweZOcJUdVIDyJgBmUvikVmEybzD96x1VmP3EDa3Mg7ztCei4xp5MPqllFrnQAGgYRxXm1Xv9axN9/ul2mK+W5YlkPbTPC1VPRzQA+a6mD0jg58DFYRe8XjvE9t9AgCgAKJOgWo9X/X0tPvmm7f/7s++ePf2XTh02fj3moBzCKn9WuYlEQkSEzAShQlAZuIAq1UTMYv774Ri3f/0xqmhpV/E89tDf3uSCN9/XMGar+TDfuy996ACAOTDLDKm6njw8Mwswltr8zzvdzudNbxnZ3K/Iv2FmgEeCIz7MZ4YFNx8v5vdwA0Ruev3RXTcETJTRPTeuW7Ju566uWU6LE+pq8Uf+9HxO8s8/5VOCxL21o4eg/VAa7/fW6veeRTN4BKFT0hdHQaJ4tp89Ql7dCLDTlAZ7u6McDxFIjmvN+txHMOadP5Wc1MlAAggxHEcbzbbebfbvZ06O28KE2CEEIB1GdJQJMZFe6tPALoIRdihUSTIQjsKL6JERK211qpq8/QIgCe1ShEmAmISgEBIBxkCFiTpDlIzBVSMaZ6n1hwRyQHYmXo2R0JykX6BTvxOB8fj7Mycgth+0799+/bu7sVnP/spBo3DakijBaScUs49cxoRtdVqiswo3IuNKTNSACYAB5SUOCVGDFffjtvVOA7DcAqhOy6RWCBnOvD4V6FAbx4yDON2sxkLkSSDhOLzvBBiSlyEyEmZ9/upXzMiSimVUsZxJKaGQcL7/d57jVGkHzgholK8j/D9Nzy+TeH425rJh4aZdSFOIv71ckx42SpzXlH5wc98nFEvXu3r1xtXk3f9YLPTc6Dy7ar61RRPVhgRDyD6oGdxhoBDPpeFIG7K8Ht32//ws1f/wac3n2544LoZUvjBNNfWuo9l5rXqMtdlXlozM0OkUtJ2e/PZZ5+vVuvNdsyCQqAQBM3nBXW62ayWnQcoFwFAysIll3Ekwta01uraOKJb2JO+eDfELDzcbuXomgeAmkaEmaMHAVogSE5lJTlDeJ2elv2jLnOLKimVUnpSn5iOlVheN0cpnMeUSgTqskw5SFT3GDo18FrrqRmxg4A9wglqtdaCkFer1e3tzYuXN9vNKEmM2CE40LkOuUTTSXs2CxHR7JlYpvd6djD0UHj3NNWq+/08L1rVqyqhlJJJHAFTZhZYjWm1Wg9DyVmEcVMGYik5yylQ6WS1SBrVreWcUxIR8WAA6oFKADArIo5DGXIah7xZjxGBYSmP4MZEpWQC70QCu93TfrdXxzIMSYYkKfMhqhBGQrIjZS4zNYCI6GaRCXsekZEEiQBDT01gCOiAPR1IFC7A0QUXMbKwY3Q9sd6eyijIQQB1mQ8slOFZWNLQtNV5EuGhlCcRBOjlm+4rqNlcZ0BHDkTnHJyDCw2rjAvOtQbgvLSHx6cArGrVLA68A3BivGE+kq4cJv8t8vLzx+3oExyyne6OB2HKd28ehYcvfvnVNFWicv6jKxNw9QB/yAR8ZPSoj5EYgRwEoBByWNSmmYUzcPwumv+//uPAWsP8nvX1t7bu/wDjujp0tqbA9xck+9h+IeIZYCnpw4GKGUDPLGhrbZ4PnOYeMU1zrccUNZGIlJw7+osSHVxbkfPF1N3neQHAXvmO3n6JQRREcHKdd7tdp1Zn5tVqVVsV9ZTzOI7jOOacWeRU7P6RHL/ei9gjotVq1U/UYgp9zh6BdvX9Q6CC5N+6rIf8YBxDlWO8QnygnCKUlNJqXJVS2q729bTDnHqQR4CrYbjZbHZP67fvvjIACtBDAp0QcUy8vtm4Z2mNWdzV3RChNW2tNdNhZItDy2trzTzmeXb3lCSBHOKxI94Iu4ANURqQAA+UbszMAhBOzQAflv3UbHFPw0hJvLtBTIgkIaUMqkqIxNyR4Qfk6EW+G095YUIixq/fvnnxyeub1bYTuyPzuF6vN5soAxD3DpDQLq+DgBDhOQkjYDiCEEHOkjIjgpuPJQ85j6UwMyCYCSOaGxLl9ZgkE5JaRlfwFhHr9fpms61112VZxAExwg2cKIAJZCzd4+uUmylJKWkYMgmju6Q0TZO7p3QAfEQEYRenQGRCiN9mm/nVo/K7t1L5QTqJkdC/IxL6clwvEO8zsD/YuBIH+N6nE7/tqHxgyKnyTkQejo5wcIku5SD8UKOPCEB0pK4SRF2lOw6M49j5wwHXY/r85c3vvb797OX4apuG7MKhs2FQbUvUUG2qNs91WWprXfC3AcA4Dncvbl+9evXJpy/Xq9Uw5t3DO84ZIoQ6+YZtxoEhzJouwcy5lFTyuBpzzofUVGtdzLWzOfW8XRcpJ6ayWUvOXVX3VG+JCI/wpWVKnMc0rojFTQkNwVyoOUniYSj54NOziAgzMut+liFLye7oDixI7AFqXtXaWTKMAKDn6hwgDSsPUPWUqGuJlCKSIBeam4VaW+oyL3VeTA3c3aPNwYhN20lWbFmWbiZUw5XmukzTVJs5kge6g4c6xDplcAdtVgl8JYQHtCxAAGO4QYCbM3X3iJkZpRv8fgIBeocoiUhKIgJtUY/IjIkxMQoBszCuWsxhhgQ5JQpYzJ+W+eHhYf+4D0xhtF1bXwkYuvugQaEKgBgRrR6E590UEVPKARDNFJZJTUSAyHt+EhmBEAmJeo9KZULpHayCSm6qNqkttc7hgEU5AVA2X9zs0JXEqIi1LtO7+/nhMRCG1QgBBjG3io1R2NyXZZnqZOYs4hgohAwBBuQO8bjfP+72T/uJmA0oANXjIIoCeMTNXmSYerPsOQ6m5x0hoK8Z56aAWbA3trrXGu/ePd3f78CJU+qXC4m8A1rweYOXJuG8o+CyCH72tofTPfr1CMAokgUF3YVCIsgaoiOAthZDV3RFoI6+BiKCuKpEw+W+LmYUF0mk72RSr7W0PizGcr25y3aLD27/Ixu/OCwMjK7bEBF4WeXoW7+CCL9nX5dvz9PSdHYPxBlhKJyzm1x+dJVrv8J/f8d5XKM0rq/X8e6NoEsZ9Yvuo/OJHF++92wcpt23ebST538/QeDg6P5e5WjPP3K4urfx9KPTKXpPlrcnRahTDJuqAnitdb+fnp6e9vtdB2XN8zy1pS1tXmZVlZRyzlNbkiRhySTd0U8pIaKZTdPUVzR1b81bs1JK1+plZkvMTp0nar/fPz09zfPcQ6D9fl+GQZ6m7WbrtXltvlrlko8LDsCHiyoXiH94zjxGBB7pZU/Hfjwh7G5A0hmrkAjdRWS1WjFzdds9PbXWCBARWVhE+kNvR/UYpGsPsKcje1EBIlRtWeYeexOimwuzWnQWFneXlIRRWJZ5QY8wR0RBolw2681qXDlxrZNw1s6O2M1R4pTTSAkbubtqbxx7HqoKx2BKVUP15Als1mPvPe8MXe6BGGYOjkISgApd/wEdiQibRaNYQKoUpxS5RJKDsggCAKSuBo0A0HXiS6giBp7San21YT6VcRBRSlpa/fNf/sV/8h/8R8hYTYdShtWwudlCTo5sZsSYPFFiOQBSEjFoI1uWQBhKSlkkMRGCQxYSAkEQRmYyxvDWmiEAg62y5JyXijoW0NHcVmPZjmUmNcS5gWtzbRCGISVljHAwRCBG5pRLHsZUhpRLYknWWm2t50lLKT1W6Un3Rt6WauEQHkBw+bidP7oXj+vVs/uhgWf3ecAhb3665y+WlAtD8ZGF6WLzH9FRuerZ+8g34dwedtWFYxtM50c9ewwP0yOE8PdPrO+rH8LlQV5Z7I/4/ddx0GVD58W+ztYU8+cG9UP+9AQGP/FZf6sR5fIiXKxfV+j08/N22manp4jjdwNADtmsEy8Nwklm4WI9oO6fHN55r1cFOrggUufFC2D0DLFKdLfNn3+yffGipAJl4FwkQpNjmJN1Bd82z/PT0273NO/npVc+cs63t7efffbJJ5+8vr292Ww3nPKMgKGJQDDAzcMtjJkiZCxjTlKGoZRSUhZJvV8zIe4QiYWIDvaRDhkvZGLizJKIIcA8wKPnvrBn7omSSGJR97osbV50WVpdUgIOAPNQQ2JC9NoaagCEqpQhgVezUIu62Lxv+6dl/1TnxY88Zv1Sufs0Tft5CdylXABjHIf1eu2uam1enlhW036Zpvnx/uHx4WGZ5jAnRAZsNQjg6MkvcUQyRERr7e3jzgPc3cINLI64a1Nr09L1+MLgER60tg5jI5Y0Fu49Kl0UBvHYKCp1bk9Pj/v9vmf78ChFHBF0v69ItVUIc23Wqi4zD0NOjCAE0tfgebd/fPf09ps39/ePuiwsJQyHMgzDgIipZOQOc+bARIjuXpd53u/qvHNTEckiDKzgulQ4Jl9VFYmSSDQjPPTQQxdr6VyTyL5AhEVUj1pbNfOFhx09EorqHBGHUiITIrbW6m5n0x4Ix+0m3D18qotBACEAVlMgZuJcsuRMktSiTUtr+rTf3d8/7Pb72pSBHHoPLwIQEqM/e1cnP6kHJHSmsuQnzSIEOOsk7t9gpvBARPcgTPOkrTogIxAhHZiFu5v3bMAv/blLc3bh0V4GKq21nkLud0vPOnJ4Qkxo0BZ0JGLT4u5yiFPwQLlMFJdNehiXccX7OgeO04DvMq6Xoo9s4fL9ZUh06dLDh7544RNeLwlHWwkAcQatu7bL13LpF1t/fnk121P76XE5xGOB5ayT9PknfS2x817qyygrpWfdm/PK3tVxXZ3eS5f4gGnx9x7R1UU/jitRsMum2Oe6fxzd6NOXz1el01MTPZ90dsn47KPL3G2cqigRgV3d6jSN9yV53d2aqqq7TlOPUvataec3r7XW1pprc6vaqlsz5crDOI4DbvKqo2I6B253iA9Ar+oLqTbrVyGCzJp78mhqbZ7naZpO5OlxrLEMCkMqlYUApZuR5OSBEpHowxDt91yRwzmE51APordkdPRygMWhanTGTdcxCHdhCLAsyzzNDDjm3GFFKSW1ioA9N3E1mMXtgH0Cj2VZpukQqCCBuRFRNM85MVFrbZ0kMRKi1gp+QGcQU2K+3W53t7eb9fbNu9kdjAAIgQAzYSZIkIVBYJ4dzAIj/CCuh0RqdoBRsESvqsORkI2xa+ScEpXuYSqETkOmAIhwBERQD0ZqSJUo8oppgHAUcgTzhj1VQwRIhoFyQO5Rj8mYCQD8IsI/PMX9iWUCpKXVX3715R/+5OdqFoScch4yl+IIahSg5IjMnCUlYiEhAjMASwSroeSciIKYCJCdmILQhSEldkMlDIAAA22CXgRdIwts14OI9IZVZqsWS5u1LW6NEQihpITgu1mJoxRBpN7SU0rOWYiIjPpt0xGDHaIC0Ilbm7pZg0AEgnPQIJ53Z19XPC5ef6y15bTMXfV2fMt+Pb8+5neOX/xgjPH9x7cWqWMy5dBd/Gz0TlFKf//MNH2d4HteBb59Yi6N+dVuP3Bol7m6C0aa44cH/OqRCAo6n/jhfic8qpI8G40PhU/HfR0Dnstp+MWK8Iw0cY+jgxQAknPugM5TRfu9x3VKRxEREJ469xH6b0KCBKkwEda7wp9vhhcbWQ9YUiRhIQyHFnMXZ+gEJstS56nudtNuPxmIiKzX6+12vdms1ptxGEtKxAwoAogplMB0mWttbm6KFlEkJeKMJIFeW61N1VRbuKkpOfpRfgsARERVSTjXYoHQzHsfpB1zKr1qqWCGrbm5T9N+2j8sD/dt3t+92DixJzdummrnOPJOpp8JapvTTg3meVl2u/npYbl/V+ep1SWOlDgd/jvPc6112k9fffMml1ESvni5HYYyrkpAZcHdfrV7soeHx7dv3uweHrUpI5ach1xEOMLV2qlMBEfgoDZb5mYOqqrRHNDx+TLrTOFBxK3ovF+I7nNOKWUWAWEW6RkROWhZYscQE+BSp2VZ+iUTxm7aiGh6mhUD3MxdEawlbVWYkMgpUk7u9vT48M2Xbx7e3s/7ubUgyAQcFm1u024SESnSA5UgbiaE4O7LMukye6sRllKKnEifk8105PUnoiSi03JoNmUOQiAkZkoixEVW4OZhDsoEpvbu3Tf7XdPmCFbGMpTCcgQAAJi2CB/GwU7y8HYo4CCilLLZbgiRUk65SC4W2JrudvPbd4+7aW5qgXSgczgEKng8/RcP7GFhvFze+x3SoRd26QgenLMDMT+oBhGEd0lIOuwFf5i+hThqL/TT4oBaG8r/n71/W3IkubIE0bUvqmYA3CMik3Wb6e6RI+f1yHmdh/P//zEiIzLdVSQzM8LdAZip7st5UAMcQGZEJ5NkFauFypSgu5vBTM2gl31Ze61aVAtcAQ5LjyDKOo/Srr/Iff/eflu77nPDCvwTdvo/vYnw2AE2X+WvCT2/WnVb5WT++aiwb/ntuK6iZt2sree3t7fz+Tx8kxF0z8xRDD3+66313mutg8Bjv99f4cQAxs+ba5NBxJnEzLt9TlMZ8zkz397elvP69vY2bjeWtfHUMQC+rXUiK6PQj4IYIP51Uqt3q83grc3NJKf7aIIIn4/nUUa/rOvtq5lq/e677wD84d9+b61dTbpvf/lxUdSJSGttbHkXg+Y2bTh8Bhm9ba252UD5EigTwvy0P/zj9//wT9//Q1/PSk5prFqK8lxoFkysAmsg8ky/xrhHCIryVhLkKjrJImI2BE/C3c08IockMRHNkzg2uiBhcVbL7MSuk4CSHGlSxN3SA5EpkARd1LtGYcrYU7QUlAKLYYdc8f1jqWfmeZ4t09x/+vzTT7uP3z19WntjZVaZdlMSzCwR2eBIZrAQc9p5aesihFLLVMs818ERyaBoIURFpaoKczOjTGQQUBiI7o3gXRDP+/m777+bajXziBZpCE8ziihVi3BVQrIITVPd73eZWWuZplqKqDIx5RIX2PlWvjIGv4i8vC19ZNMIF+6DrRUpw+7ecHF/1QqWvz2s10Mb5nRmZmAQRP7yeZdc+jW58dfr0uOe8tdsDwPgGzfTCx3kV12Ua7vO+SRmUYA4gzMJyYR5np8Ph4/z9A9szyX/y8fDUwlFFxSO5M7eM4fhOBYHs/AcadJaJyRr1cNhP01VREaSoPWA8fnUKYK9SawR3j1a6JocYE8rzO28MUUSyDPCPcM///SZmSJiwxFFjLw8My/nRVWF2UaZYGzVfoi0tbFUqjOVKbHVs/fTm/W1vb4x86DUHAMGW20P6owkBhWHruvaTmdfTr68eW8thTZCfbkmr8am2Jp3W0Sw203rup5Ob6AGWK1v61l++unLy0+frXdEgthABqZMnYogpmkaRm1c3mY3O+yfl9bNTm0xQ4Cv8Ft48Ag1uaHWVNUIimAxBDvYjm8rEa6C60QE0FRk0BuUoqUIs9Km8OXjWQYB4rUidmRdsqCt1lo7vbXTcV3OZp2ZtbISAkGttePbMRE6CQTEIJIsB8aWUUnvfDHci2jcByGukT8m0mlilVKLqiYhAFaRosxCyYmkZAotKimyfnl7Ob325vvDXIWpqmf2MCFRVd1Nc5Fg3UZDxLA2RmSRmYVVRFnUEyzqgd6X0/L6+ra8Hk9rd9aykd0Qj6wjANxQ6+Zlgd4wXveNiEop7m7tTnMtE5mRESPF0buLSASQeh8KCXyDN/7XtWtweuz0ALdlzXlXRApSg9g9rVmCZjP3ssWE/tb3g/9VG90rLbLKw6Hrr6216898H1z8le2Cz9oM37/qV54X1Y7xFP71Istff8HbMtC7ze5mTR6BrtPp9Pr6ejodW1/M2nWPeLgmEdVaD4fDx48fn56fhDedQXcf2ZXj8dha8xBgqJFEwoGZCCyI8HWN5by+vr4ej8dRPlFrHQX6fCnH90sbiZpBifUrH/m62tw5Khly76iMMP84k++ZPwd7+4cPHzJyPZ2G6d9aC7Np/mqdzxbAi4jI1trpdBpo0p85KqyqoI10qy2rd8tMYSaWQGakCO+m6VB2FZrWUahO07yrOSt2ikkErDGE3zOHavSW5yF+p8QcCcscd9Qi5EZI5kGgQ8gRe2WABotrAkEgKcnSrAdIVQpXsCtchFGi1uLu4T3CR33LeIdbHK2UsX30pcVFi+Yaqx72QKllKvWnly/PzD/8+EOhkkXrbn56eqr7XRJ67yCyDIRdp8Pa27ouogNwpaVoIiIsM5m3lNGtuh8AUBZBeuvp4TYp7/fzYarEHNaLlm5JCLNGoKJShEQVGSw+PNgxqucNoa644NhHzup2Uoy/D6tq2Eh8SecyUFnzUq/rf+V4xy11x99mExlCQxnh+DmG8tJu8wT/Do7K7Z6Cv6aw8zUwOpp+3YDRQZ4oLFo1I24l52/zT1c3a7ywJBpprAxEOCGfav3nD7t/ft7/f//x+xnrYYffTVPNgPXsHiDvAR7cjMP4AoFqrU9PNE/+sq5l0kEyeF5O9DnOSxXhyDQriCBbKVq4e1JLaSgOOgiUMALq67ouy3kAbRAJODO5x9LasiwePkodRfR//OvviyoB3SwiQMi4BNHNiZS1Qkok0nt6J+sI+1KGSAcTUwaIMNVap6kUFjWP9GRwcQvvDX3Nvoab11mSuF55kDMAEAvrbr+38IxRiVF2u3mqJYKExZqFBYF308xE6aFbvWl6t8jc9BWSBr4rEu7OUqWUaZ4hsrS19b4F2pPckZ4hKYZ5rtO0GxhrVgVzt60YZft6CJlBiVKZKIoWAmopwpKB1izdmZkw6Aq6WSckM0U4s2QpvS2tNTefd3tGCQsQVdF0S8pSVYqyCAkTJwkRUVIyEYbcgbAyE2Oa6jTPEXLd3tZ1bcu6ISuKPX3YixJPLFWSQJmsNOh0OAXJkUBiWZfPr69vyxJM02GWIlKEBvVCbyIy0cTMyVRqvTBppohoKcybAVK5ljKBeWndg3qP43l5fT3+9Pl1WbvHpn2S92b7I8bogr541HFNEG9sp49QUmwBl8gIcDjoEnG+y7X+Vm+BNmJ2SsBHx2g44UIJN+P0yqoZSrF95xEIt6E3ltc40N/dlb96e4SpXdoDmut66PpruSkfvxpMf1K7CZNHZhb9lljwn9kusyR/m091vcztBb92El1OiAgPN/e1t1GX4mFbOuUaWKCNZJaFa63zfvf0/Pzx48dpmoTlGo0aHssWyjECPMKIIErCGCZyRqznWJZ1WU7n86l3G8hJFhbVoqLCKiSMUe4RIu6ODdh/fSd58wwPD583LZKALZMTVzXJkY11t3mez+fzWPQuNJIAcNgfeuu922632887YY5uvfccSgLv98ZlCbkUBsUGeBq1lr13jB0LQRgpnc2qHrCRzLRuHh6ZA8G7qagP9RgP6xbp86Q0TTRPOQlqpcIMIhteRsSQLBlDPxmx+Xt0ARcMvICKMCOMKAPgTDIED1574gSNr3js1ACNXTuLCGkmZ5IKh1tCRFlK3SCSRJnkyNO6mNm8m/eImlNV9Rsev0s3WES4aBKen5+b+8L9ZXmTPk/z9PR0ICUQMWWELit5gAlCJERu3Xrbl10dFAsYiPjIDCURziJUdETEneBEjoQwZQ5BX6+11iK9rxnR3VUYQgnycGCDVIgwRRJRKTrNxYxEWAtroUH+iUw3ZyJhzohwC+ZR0+/ubtuUUdWyeU1JCU2KCxcrPeyPf7YI40P7bUvHz2bXV0/bhvu3z/tmG076WFJvWTLuyk2Ba0XGw6r+F2yXGXK/p0TSX9lRuV2Zvxb9IkBdlJgHYB9CeQXHA9xzCLeH+wYFCQQiKOiZksghGeDmn3b8//mX6f/9Pf7bd/lPu9O+ai3KsEpapSzndYkFmR59aF4XmZ4PMpXJ3HrzCP8HcdDARPflfGxtDeIEcaIcV4ocUfQABWmAZZqmae4SLdzc3H2UJLrZvNs97fe+LiIC5tXj5bS8nI6reQAsxZsP5UUa+OZLpC2InARYKY+MQARHFKaqwoLFf2ISoSqsylpVJ++7TA3hYIC62fn85hYAhUc4ZWg1m2eSSXVSUVnX1qyvPXqQYQ3kvJ/KVNxjeWscJCLr2V//+OZrr6lFVBiQIASRZ1g/USYsIzIsI0BcJo/gw153CosZ+/PJ2x9/FONdLRHeerNCDZ1Fdk9P8vGj7A9l3pGoJwiVzZJOa/vc+4I090Uoiqr0mhkcjIro6KeEJVFExNuyHE/rYpGkKmLJx6VD6n6/o5wPu/p0gFnzWCkByrGSt55MwkIkUKU6XFOhC5G0RzeEE2NQHhctAKUzs0ZEa02rqMnb5zdVeZoPu50yJ3PnDCQEGT2jIyCqO+FCSF+zL9nP2Y6GRC3TR92LaTpglJ2c0gOhlKA1mnUzt5Eyq1N9fn5Oj+PpVfazt1OQOElA3s7r7//4w//93//tj19eF1cqs5MwbXHQzAxvmbC4LACgQEZ4JnkgE3QT7xHliDgezwBU7rAdERFgARJoGSwa4SJgCWYTTSAJWnUP9+tMj4w7IP5N3GIwu7wvDm2ddrOzfD4dj+sKEZaiXJBUbZ0YvB7rPidxt3Own9PeWsu+1MyytqfuylKmKYSa2a5OjhsZrAeakG9Eg7+1J3x9rbzTprqr4r791OOCePfzt+99c/mvV1Iyv4sVPtjE33ri+6z37fXvaJQue4UjkUlyw+eIzAwQRi7lbg/LOym0h9r3222QbhW4vu7DjD9foZJ33njkbcLh51e4vpyHHt4OjtsXdc08D6P59l4s7/CzzOy9X78+4jupTQqndw/+bghZvtviTDyi/w6XIsuSw5QmYcotzD6XWg4kOC+0ambWOtU6zfNunj89HT4c9vtpvsY70338V0QO+/3vf3y1bsQgRllZMtIse++qgxZfKZnC3ZYWLbPuDzui3czh53BPmSO6kRKCR8f6SpvmPV8ZDsb3xj+LtF5MG0o/DZsfHiwsZZ5rVZbMAPna2ihjbb2/p56I2mLMOk8HN4jwPM1D8mVZlrUtFFbAuzoNzE8CgFNg4qelN2ScluOXly9Iez5M4kWZtIYyky37su+nt35+++4f/rfl9fjy5csPX14s04jcPN1JeG3tw6dPn3/84f/6/f+9FC91fhP6UcT3+8PHp+mwp8Ke7BVdpDF3DaIiqhlkPVhQa5Eia2+9n4liqhWUCBcnGMMiLCzSRahOMk1aSqn7dV37oDwmWZfmFvNuZnBrp1KKas305skkQHjisD/U3dybvb29Ls1OS3M3B3lQLb5TfT48ieqYgyJyrejQeQokhWfkKda+/Li8umU/7Hi3m8xsZausaXUuutsfPPx0XhF9NzFlR3QKTiMGevPT6a1UneYikwS5wVhpfpqKa3j2TAG31kopdX+gUmxkoIhflvXltLy15mB3696JorWjgApXQ3KIUgpxYZ6KmLW3t9Px5Vgo3aMgK6FmzkK99+V4Xl4WlrKrBy067+o0FSCJkxJvn98ygUhEpkde6A0xwHnX3RJ3Kr9xG0C/aOCOOZD5vuzznQwtUnhLpebGNfc+L27Wm9zKs7ciwIuo4i9sO3ZbUHFbAfEYQLov2JC7TeD23Daei4lJQKPW83LO7YqdSMD9kha+00y8e+THFNXNsbivD7xdiikuz5pjRAOAgMAE0ky4J8AsW2mPewJJsgHS8LON/g6rmzwKa4ZKcWa/6+BND6/Lcg6P6VIVT4BWlWtWCbe7VAI1kcmQvA/XMSHcABlO5VTL98/7T0/77/fTp9303fM01TLphMiMgHl3D/eI0MIQCAsJSZW6KwO6mZ5zKUOAtTs8KYDITSBC65o5CCQYQHgPEAGeOWt1gyQyUhgqI2ZkGV5lTqD3WJa+nPuy+Glt3QPcVtekgSsYQlRXulssmQAkgzMr86xSmItAFK0ZUTIgiKo8zxkZlKGOMqruuln3dW0RIAizEHH3LubdsptHZu9mw8lIKnUmYJom1SmD1rVnJBEoMiNpDIrBocQcEeYdnsKTmZ/XZWlrEKSUUkud53lSKd5bEIqHz/OOIYQY+S7zBGud9tPusHv68PT0XOoM0fBkUGZoJRI7H72tPZFMxALPVlTrLNNcplmvIFR3zDllBmWa+xg+KqIiKvz9P/xOSyWkR9/EvJEJzxxDlsawjexEmGYVoYxsq1m3Bc7EwlK4KBchyaTgEpmtx+nceu/LYt0ygdbCVhAlcxL5VatkNKVVpRBRa7Yua/vy6m8n646zr7IULcRs4Z7BKtqchN09hfoNOcw01bUFEXrrX374TCAHB0szvCz9p5e307l5MJGC+EqrcztH8avbgx38cOz9JyaAb2IrW2TnEt7502I7BAgzIi3sYtduFf2MVKYqUAbCPH28mbPZqffsrVn3oRdz6cS2y+SDx/D39vf2F2t5174FgfiVkcC88mIRgTHK8A7PT6riXayJEKUHIZioiFCtRLTf75+fn3e73aePH5+fnvb7/cDBjmpPXIq2x95KvDldbV3Je7oziCIc6QGz7mbu5gEeeYTIDB9yI6UIjyzM9ZEuFAFEW47rPdR6A8kbMe/t5HAORyYTwBi5A1xSHyPjMzDSeATMbHCj3W4HgEUyWbRodUJmOl2kLS+GTwKw1qx1i1Gjb6WWSfd+/rKez9PEDMiGcknP6GZLW87Lslr3RAyGUQIILPLj55/+n//+3099iYypziycqsbsxLkRedBwKokIRMRgoqQkysEqOYJfSizMDEQfoVEiEINrVWR2IqlVRlEsk6gOzNKAVTNzLZWZw2MorkTQ1WMHUKd5nubIxTPX1pZ1zUxiETEAX3784cfyExEdDof9fg9mCHNRriUvrywJJGxhr6dXZt7tJ45kopG3fD4cWo8gWta2nE5tXUS4lFprubLeu3tioEsYlDHeIhMnuzsx4sprwTxSQJf/htolDRXszJHoiAz3xHqOtna3DkSpZTdNQry0tpxOxNg8Z04SBOK8npdlOZ7OXIpKkbJlBkkkEZHOlKVWYg/k8NCQm0j8oL74xUn77y9i+9U73sWPbvbrn+WCfvON3nf6rwtZfuuCXz9055n8LC3zt7Bhf+NtqLRhaObGz36xkBLoMgYQgeXWhyHkThQpAHPiWfA07ff1UEoR3ZVpLlpYND0imnm31tu6Wu/7D9OFfotVCzNt62zyxNUdvffWHUQgDgxWgVSaMj0iPeGZ3bJHqGrRMom4eWtELUE1MS9LjvytSM2g1lfriZRZD+HK7ElipThRAnFBMlwembobgEjwsL9InDmYNcmNKTmTPJInhEiyOgsTnY5HUJjFcl5as41kH5WZMyicMyiDgyiDCcJUhen56UlF5t102M/Cuq59PZ8zwQB8ww9k+mqWCPce7qNT7jGExzzce4PwoZTnD8/Nj0gLZ8BrLcocblpynnWCaCmHDx+fnj9++O67p+cPUiqBzTZSkN7laU/tg1o7hDdhiHB6203z4XCY51m1DDUVdzeLD/nUWz+dTqfTqbU1IrToXHVXdZpTSxCRO7vVgX+IkIgc2WQAmU5EIlxEB+ChJS1Le3sbqmfqxq0NQt60qOFY1/Xt+HY+n5d1bW0V0d3U27JFEIYdcAUtEPJpV6qKiJpF73Y6npe387r2N5w6tNRJVGwonU2VZfGI3h0s1tzdiKmUUmoVfRugifV0HIMkSFbD0n11bz3DVURjizT4bwOr0H1FwS36gm6kGzmHzlqMspm/QLFgknBxyxZuFkgQggCOIGQtNBUuhTzcvZl5s348t9fzyvNpOZ+tHPIXGZT+3v7e/motLm0YVX9mu7X1R2nB09OTqq7ztJ6P64kR3lqzvlnwg/Pq6enpw4cPz8/PT09PA7U/cPyjBD8zNzZ8XlXEOty9t7akhzIyRYShpLL5ETnwMkkmZma9r+sKosGO+LCejHKjvNTKX+8lInkTqbni9CICAyBA4ASRKA+rndIjw1/f3jJ8vIRhml8vQlxHeec8z+OaY5lihjN72C+m4Mw2x8vchWU3FQ46lXI+BbEKgZlTOCi729rb2+n05fh6WtsGZmWCMDyT6d/+8Pt//cO/gbmUstsdwMmim229LYc8ZCiEoQSiFB78SVmIsptnEiULGEBkWDpFeIoIlcpShngnqRIrEbtvpfAj8nV9vXEpkb++9kuAd5BhFuaWFzH47SWYMWiapvPp/PLyMk3TP//zPz8/P18++2jcDpzhPM/zPPfzshWp16rT7rza6/E4aLKJaOgRX0tVB11QLXUMRbqUMbxzM4zgKNFV6ud+DoCJhFhVlHme51qnUhmeQ+W5UmXGbrerUyFKs76uZ+YKBglIkIQWbt2WdVmsl91BtdSqqqpTYWWPyCD3lKKDaPcbydu/2Xbrw/+n6/9v6Pw9Z+d/ZNP1y8uo3GMeIeGLo0LwQqCtfvx2tSSA3JFMYM5EYTuty3F+VTqoPe+iWWP06MaUkrl2W85rawtpiEqtlVFIwGAQRIRAzR1EWVgLMSuYAR5VB5PUzPQLj5lnWncSUeG5SO99WVgLzFgVopmRtQhHgrnMuosalIl+4HpgkTp9gfom/pUePspURpsoE+BMyRw63FW4MCmzayCRRuk0lbqbyjzpblKdyLknuVCEFyYGKHNUcEQtO9WiWkUqC4lQKVlrRur+46eplmmqUy0Ia8t5Xc3dC7NIFq1M1Nwjk1VLLSTMzL6aWWBdUyidB2EZERUt0/5jq82NKc452PudSq1TrfX5udZ53h3KPO/2h/nwJFoiYDZkMcKN1hnImTLcVyGoSrdlnutUJwCJFBEmIqekLJgmVklE72kOhopOUoqq+QmsRGI9MimD3cPMw4LSR6FlpGdGKcVbYWLPfHm1H398+enzT2bGxKpaakHCIs4mBDKzZVmGOmdkquSyhC09fRM9dh+0KiMsk08ftZRSVEfW0nocI09t7ZaOqRiXOoQwSBCgXHpb1saorbmbs5BqMPcRtSViX08jxxtQJ3ZQ0tgphZKZcEX+/DZH5WufuguEgJkpYwtz5p/vqAAs2nvvzdKckGPOMkKBypiKVJawbtab27nZa7PXtev5PLS04z/VYv339p+9bZmUi6Py51fLXvfskQCptfJUpmlaa3nNsHWhC2vIiEFcoTuDbGNYiq+vr621QTQ8dBtHXIeI+cI70joYIaRxIwILgqqqKLCaGYkOftvj8S0ya611muWeuuB8Pue7BwIRyWkSZmG+9dxywKzHaRmCAIFIBou70IW21mPLRWxEKXHrqHjEeCeDdjkvVUPMFMzd2pUf/3aZEhGmDS6+2+12Ey9v58ycamUaAZYhvgQLX3p7W88vp2PzGBKzABeVHu4eX15eIvPp+UOp9fC0X/sSoCQO4iGqKyQMEiIFJUgAyQBgFFNqNzc3KKWjE2oVmYqIgCkJmbSV7DDDkRnBGd5HdXhr7frs49erZPMgMQMwvALaOHk3T2BoKw03Y3ucWspUSbj1vrZVVIpXdpGi11D24BvY7XYi4m6gseEzMUvA4nzZXPD8/GG/n3e73Yj6AoiIWisxxrAc4w03RdgA4I4LgcGDo0KZBKhIYfU0RIS5N89RGuRbbkc4EQ5OpmCK5GQJRyQjKMyjuydT2e2cVYc8ZBEuAgJCokdSItIiRllsbDVXiP8kBY53qAe8h/X/U7R72O1d17+WunnP4v5HN43jEUR+SRzfAc2EQRTESRuN2uUALZcoKiV0qq+CP3IWP0SPUqRwMoHCC0Ey+7r0tUV3OfeiiRRKzTAZYkzCxNTcNuQ0ZWQjH3oBzMQjvYtMphwT1zZQVLBIIQGV4fcTZSLcvYhwZGSnkiwy7abuNQilzGWaX1I8MNjHRjnwuCyY2siCIjWiqswqdYhzENbzgZLT2XuGBTKYYjflNKvsPhLBLU7ntbXemq1rywAT7/f7aS7zXHa7iRillHneHfaxNt9//KSjvF9IkGFPy/nobgycl3OEeyaYtJS6m6d5rtMkotF8OZ2+fPnS3t4ImEoZtFQEHA6H/fwUQVVmhiynNyTVSXZz+e6fPpZap92ulEmmqopgD08tyWD3YEB2JZwRHTkLEwtrYlw+cWE4Y1IqUsyOMM+12braujYAzDJKD927h0WQW5xO6/nUzLK3yHBKG5FD8x4ezFxKFWEQv678ww9ffvjhx9YakEQY5AcsRacDE2du+QotlYVJNJlaWF6Jccw8fMy/QGTnSlmIMwDinnjtsTgFmGUm3XGpo2hy8exurYc5Z093ymRKgiUwAFHEFBySyM1/FiHRBL+7GJljf7qSCI0JMnYsDK3xUSpw1YW418W7r1j4almZmakoHpaa0bPbvPT92nMHmaWhLTUYWxMkZuFmzEIETihzJSjoaadFMrK5N3Nbzd+ava392P0wdBJyVElkbqJ5Y6r+T5edX2jfUie8wx1/6xJ3MNmHD92+3vu3e28H3tG8f/1mD/fajN3/yaPTbXXQ/ckPoOFv7A+33/I3TqS7M/lmcAym62/3dLQrod/PgEXweDdnH978L4IYr7bRe0XF/WPejueHeN/DDpsXSYFLWcoDHmw7evd6LxGE0W45Y/JeopSZB6TcdQBXlK4oqctFxrMMH2DQHg5iq+GlXO8yIvHXM62nCxHz4ASbpiK1mG806MwCdDNb1/V8Ok8pIJ6mqdSJpdYyEZGZ9bWFm/VuvUdkIrUUIQ7RBCj9WkQf4RE+AGCUiHRmJk4Gb/Ag9/AI81JKOA0Vl/Hq3jl/qCzLchUdH1+GiBDXc1uvr2IcYpFRbahCpZR2XkRkN8+TRDuNPIwQDVIvdqCHe+bL6fh6Pp17W1vXUus0FdUyT3A7fvniEdO8Q6VS6yiEC+TSujbT6lVkYMQLSVUdcCllZIZkcpgQwCCQZUSEhbAnEXHRBACOhCMRyQQEzI3MBuirtTYqSZh5qEtl5kZfhixaxq/zPEcmtjLLHEm5kYcZum1L66Xo84cPpZZpnoNgyO7GJktbx+4wRBTGSHN397ig/HI72vrl4hviCzfhrc0rZgwJhAvBGi7pLwZAFFc/6ppyEZG1dSQEVETnWhPlsJsO825fMjxs4/9JFioqQjm4c+Zal4ipkBZhGWDhBENYi5TFnBVSRgoviTksBiyyn1t069YjgoQhnAPjlEEk14lG99P+zsgeK8n9PvvzNWRM7byqkyUG9d1od9Koo6T9csGfQ6Te8w93e+79Yv/w21egYA/PdfeMNwt2AuEOHoEOeUiA3LHo3OnI3O1e9zvAQz/ui3no/si7kuPdyn6VWPylzhPobm2/vSBd4iD5TbrI28L9h3spbio0gPvt3OiKfo+7lArZ5RfOfFvO/2M9rq+fX14+fdjXl9NrlRzV4wXB6TCjcIS/nofOYCtlHYTCoqKiwgzJ8eUSYpCBKPMQYUUREAYwLbJnEmEQ22ONiaUQRLgEJZOoFqahqNQIyYlSaArpFgGqhUrl756eI2gwKPbePJxFytDiKJyUnCkZihRQIQiDAacC5jRtS7O1t3V1W+aJ9ocy759A1Lvv5/V8Xk+ns4JAXOv08dP3tcr+UOfdICgRlSlCugVKHe+QMhiR3tu+rOsSZg5f1yUT025/+PC8//C8OxzqNAMkEcfXN5kKVz0dT+E+TxtjYObQikniLIVoXwgyzTRPdd5BS85TlAlaMql7biIcFGTewjoBQpQkIqLEYEROFult4FfTrGemivZmdubzafny+fXl9Xg8HjPicPDFMJ3X+GmJ8N7DPdelLUtzw2CsRw4vxd1cpUzTJKKqhaT8dIqXt/XLyVuzsUsS0TzN01xmTuYUFi5FtmGjosoMKj3C0jzMjLL3iBi0C8CCBBPXQbNr1iInKaXqdDYmmbuUBCyj9b608CCiYpui0ZgKmXldE7KwXqYJCSmxXJYCGnvAZQLdMe7hKpw0do6buWc31pKH30Go7k3z66pKCTMrWq5nXTo51pSH1eeXL8jYqt8ighKRZJ7hUGVihnllnkgKYyqE6N5X8+6Zq9lxaUeLTtuzX0hI/eqo4De3b/gpd2jgb3k09wV9dy7B7Yfu3ba7y/1K4scH3fdxwbxWBXwj03VvdN/+/auOyv3Cf69o9i2X5mvSmKMA9as9vGlxLXW9dOX90E1p5kM3bkfyte8P3svF6r252a9jOLj6hCNYTJse/TDN72opb6XExglXWKZ/va5UROiy3avoVOtImzCze7s15XEpROm9t0sDMOLxl7A6Xz/CsknX73a73W43FeGiZDFQXoNpLyLWdT2fz3udpLV1Xeu6SlllmiXCzM7LGq0t67ouS2QOT6AQCyiFp8KJLcU8/u/61igCIGJQQpiVOcyRyUBcsgG3PLMDhiRKETGC9CONsMUjeEOr5oUvfuTb42qOMLu7iszzpLBh7ueYNERgCg+zvng/nfvL6a2HB4GYtZQyT1qLt2xuUrRM1SW5lCQudV5t7RbL2rQWELFm+CgfUi0pCWV4wig8oUKiJUGJIAKpJmsHzdO0EXWBwiMTxBqB9FEik+PxrwbW+BXA+JZLKTrr8Gduh9/tfOFLK9MkzMFdStGpqiiJBKGHr+fzGCeDnHqapqE5kxmSm3pYAkv3bpujIiLuMXiBrxPzQkYcpWheKSgum87oUik0aIvHt3xdsTNWBoRl0hJTZuakpWpRiYRXRtDgVDIuJMTdjCLmIuhWJwlwQoKEiSK7OTJTlKZC0yREVEph1gFoXM6rrT1H4q/qGEMZMaRaR5l0DL64e1P6a/bxt9v18QHKwS5DF3L229Xlnhzkbh1mHpvs8ELv4AMPTtHtdvCwut4tw/e2/sNZV164scDShbTu65TERPc3eAjwfL3w9d1ioXtH5WKuDBwpP4Q4/2dfxBUVeftgV38PwDf4jvmebOe2w/rwqesRSkjev+GbIDFIkkBIjkjyc4svJ3J6+3zWoy2Tyod53k9aIuArh0kmJUQLmC7/2wBnY4HbVSUEMwtyqmWupTBEVQT1uRIFMxjEBBmV2JmUcG+17gbFoTu5ww0RCE7yRiNjwyKg5ASoMConZ0siCDJzr6JaB3CTRIwNlByQTKUsTEIQJiYsaUGUnRZmV5lricjdTg6H/TQ9Jbi1riyI9N4xT6pl2u3micsk08zTzCOJXHRGVvOIyypDCM5M7+uir2++HC2is3Kt8/OnTx++/27//Fx3O9KSmTsRrdUiPNMj1vMy4nP73Y5VCBTRW+/mDUhVzHM57MpuqixSWCkR5jnAyYkMOp3WtjZrjUFAUiYlGJTAm63dY3AXE9GIKhFwXlo/Y9SorGvrvWWifDnP06uoZK6RET7gWBsRoXt6hpZdBNw9AiJRzFVIhCH8+5elWXaeQxWXmRdlCi3n7rWQTqVO00hbj0onIphwkHqaQ7thyYwgM4+I07Ic9voUUUslEk8uVSoJl/Lj51cN1k6eYZHNsRpFsvBg3ridwO8egnMSEskA4r0+5NGcoptqkxxklhco89fWGvw8VvH1Rhcln4HH/DUf+UYLwFvPALMigQhhLoRJpXLCW8Qa3tysZy7NTtaNRctcax3yoB4Rf69S+Ztvdxb818OQD4dufeyHQ99oD5ott+7rg0l3+6nfNpRvOJN/xvh98+vt0W/PGlUlXLpHGLNsGIVjQRsplGG5jvzJSIOMvw9XZES4h1FLwKjx2E11P9fDYbff7+d5nopAOGE85B2He3HJh/TWdUAyey+9995Z1Mx6a8cvL+uyrOuamSLirY/i6K4s+/Iu1PSzJx1RbwKUuIg6iBMBWPSvvIwLpojoGqTf/JCk3W7XrQ385zjzykFCRGE+SkceHOnMTI8gRMba+/F0euu59A7K/dOTStGpsoq5n9va3cCktRCTllpqdfIiFHAHrd0911oz3RBZmCCkQCEOZHc+jYWJEASRoqrQIqUSc5nnDdeSjG4ewSwZidi80OF6yUWM8rqXXZ9xTI2RNsGNJzP+8u7REYmKiAzWlnJJ0YAokMw8Bsm6rnxRTiQid5fMzVEh8ryIt23TKa8/3jEf0PCK3+00ugjyEFEpG3328Bi375GIWZhciUWkloJELaWIFCbzGLxaFCBOQiCc4EJQpn0RJDtREhuJsJgFARH5dKjzVOd5JmL3XJclWqdISUIp1xnLl9xIjFL6v28jt43pF7NGf6V2vUdkDt9skOLSV1y4x49fFoctHnHTfludy0PAVx8qbL52gwdvMilHQBUUIPLM19bPcZQTf3njWmhfy6HovvBOUBBKIFAv8NjE4N08tkwcCDzViUeunKkqVeGhtKHCUomZirAypiJFVSiZIMjiuZt3u91eRIjSzNa1RQQxTYrcyMV98KtTchRKo/C+wV+IVAUomQIEB/FOiJIoOC+BwdwSY7tdyZQOj+5Li4iOdE6VwbQe4W5ma+tLt5YZzLUqTzOXiadZplmAbu6DciMp5/3zxSKOtOY9RaPb+eXtp/N6ZtXd9PT88fnj777fP3/gUoPZzey89PDV+tJWcw9k94EWUAoWknW13tZlWbyvqu5ZvNekSkSgFSQxdFdy6OrS8eVza72vA/WW4Y4ICgTwee3dw3of+k0j683My9pWo6v4TAJMVCevLVVkFqFkUGSOtNVVjldeVwMYyZFEwRwQgQ5y+N1zJdWI3tvamvUe4cmakJkDwoMshUTGBPYMA+DFUyzEw1ZgBVn05j3cOSVDs7MmiBDBiSkT6GgBN/TMHt7dultzI2LF0HS5jH+iW+bWu7AFURLonXToLhLw4KhcN5VvOSp3cWvc0pc9tNsN6y9So7IubUikZSYhhVFUpyKzsNtrRjPr5t48Tq2fm0XZz7vnw/Nhv9+PYPNfohd/b3/ddjuiHgJj3zh0RR1cI8d/6n0jI/3Rf/hFR+W3ybJs9v0vXdDvK8t/paMyPKlRh2B9UN/7KIy+8nqt6zqE519fX8eVj8djXMo5RuSolNJ7X9c1L8br89Phw9P+w2H38cOH/X5flVfrI7UTWyY4IjF+7N1181Da+JdY3L31fsVS4KKsN25aQptiCLSPzlwXIgIK81DdGmJPGQkPRH47h5iZ07Shzq4G+sioZO/DK7u+3t77cNIi2b2VUlIY9ynQiEhGxCCn9bX3tYUhpqmWaRIWMEVm6xccnYhSJZZSq1ZhEhhZGBJr660bMikC6UJQ0cqkhKDQlLMnEznzwKtRrSgFUkg5eSy2zEmSBE8mCTJgy58MPN4VtWtm3XpGbvDji6MyPNJMdOtXH0ZVx0Z58RN0fGQUNU3TdPUThuT0KIXf+FE2oKCH+wgUJw36A74EvEY265127H1b2cJq7+N8tAvWa5t646u88r6IMIGUqSoTCTJr0apF0IOIeGCdgSAAmw4cpTD2UgAOYgcZVJColFVJWA9cS2EW9zgej8fjKTILiU66sr0DCy9jLEbhav8r6hj+p2s06sguc/nf7b4jkkTX8Qah20Nf2QLyXqL34dBv6MZDglfj9po/82mvXYxrxh3ARY5mIEjAnCKW1Lpn96WhUBZeKuPDXJ8mrYTCBKaTUjMfyc0YSovbkzOXmVmGEiAhGFmZtJCQxtoLc1VRlcJQISYqDKX83570eb98eLZaSimKzOGoMGH6UL3nuva29g0OnaiarWVvo2Zvo6JnbpeMCmElQjLAGVVoFlbCqP/TSE9qq5/e1uW0WF8BZ+Ki3ezsTudlfXs9vr2dTucVAUax6q0tSSLqTE4CYU0xEmJiegd5h1lvy3lZzm9vLz/+9EM31GnHhKnWkaMP9BZp3SZkRJj3bv18Pp3fjm/Ex9fj53kuh1K0ZNDx9W05vllfEuvxRK9Vf/xjS7AnIuEJD3imjRRrtNbW3owSwoJEpqdHBF5W8xzaH3FNc9dJwTntau+9nZZz60iq00TQIhOXGslMSQRGeK5uK4iYkoh7DN1fJtIEUaqkRhak8nwgKe6+JBFJmXZDPlKKMrcU6kzIDCRfxg2IItQizOAOC/SkntyCutt82LU6gQvFQCMgk3o36z2SJUEezdwiuqc5mEH8M2XU+wzm+zyhcT0A4Hz4xHvDln19b1+btL9+JWIi2fIvdEnu3kJb/+TWzSEMIWQgwQSlLJKTxtJ6hFmEZbbI1bxZcKFSytP+abfb12nSUogF+PM68ff2G9uAyyYABt5VCYGRYk/agMq3A+9hsH3j0Jayv4j3AXc3eOzK5ZCIXAfBsPvfPzVqsS6Jg1837L81oC4m34YWu7vgHU4jRsj2CsD82kXdLdystbaura3dhqvQeu8Z6RZt7QDa2j2j9x4bjeGQiNVdjGQ1RaJ3a2ZEyUy1lt1u9/z89PH5adAZFyF/e1V1ulSxZwRAQ2IizKNbdIvu3s27uZi5uxnCc/yXGW6cI6UQnJHWkJnhGckiV7gEAZR8zaiEu1PfZPnMH5ewMZTA4+0Oc2HT2N14eUmY0jsuJePDr0MkJVS19YhwqVMKR9hmPhOS4Imx7TkCuQHFmKVMlYUx/LTM1fpq3UahJwszq7AU4eRAhKfD3SwzJ2FGCoGJhSEswuDhvLA7cRAHEVjG2AiCgC9OAAKZm2bONpr4klG55is21/rCTHDNe1xTbcCGfxt/uR7dfhBmEY4gYS1FSxmKiLmVa3oCZaoAzuuiJh7h3Q676TJIiYALC3/yyPONKzMifRATDyK0QnqbUXn3VIXDbIy00SMAlDnIvoiIGSqZAIOqsAg4iEFC7AAnA8kJ8uTIQXa0Ex4DykhaJJBaC5e5TBXFE7De27JWQjkcuodZuKVnRFJkUBBiIJAHGTU5/lxH5eKi3f7yn7Uxb5bO1QH4693rIZIEZCKHuDluoqG3O0U+4na3tiXhH76EzD9Vu/MW2QhAnW5sM37HtBFuCmnGL/k+DK62UQJ26c443IIaQJ4EfPGsLcduCgJk6NAhooy8yuV60CmAAPrl4XMTCkwcaqFLV1REi6pI0VI5fzqfv3/K3at9OOye93Pa2s5vSK8qx9M+bYuEtdbcQ1SLLiRi/P7FaNFrlAjETqkiU9FaRAlCwZRKxISP8+zES8/Xc395O57PS2H+7iN9/1Gfp1h7++Ht7fefX47LGs6a5anK6S0/fV9r4bbr69xLEVVe9KwqImLHk7Akce/Wuh3Pyw8//Phvf/jp9eXE6fqRyXx9eytSdDJIYSmFKZbz8tPn1z/88eWP//b65eV0PLsx01F1YkUVFkJaS2+s4ImWFsfzmmtLp9V8bb3ZyCmPMcNSCvGA4UEYLLxpk3PUAnenQlImFpZS9k+HOk/EdD6de8/PL+ff//j6+rasls3RMyvlJFq19rVJBkuNmBFJlo5ckVp2XMpqniRaptSSWknKjy8v865M875+2I35MMJKPXK1tUotUiiI2n0wuLuIgqT33jra6q0xaFdmjVrPwHlNwImZQAPsliK+dngHkDTkkrnIJCKMFEC2HYZvJxoG9/9l+g3s4vXQbeJlgARG5gPXopRA4aKlDIPG3RN3GhBXtMZllpa84GIHIm9skHUqSHO3AY3sxmUqTEKcoFAquH6KIZB8B9e+R7LzUlW8rO10Pssk5gbjqdRdoYPmU4lKL9Fb62/OZUl+7fS6xKkJqz7t9t/t5k+7Z9GJptqVXMDMGVGULDpIrovbpkh4fVEPFehf20weah4eaQNuI7T3oOFbm/vmED9Egm6+u0tS8OYiN7/crsX3AOW7/t5y7DxGkO5DQffduOntvZNwWwGSl7rYERk1CyCTktIZoUwTZS6tnU8pTsKklaRAJlCBFCIF34qL/jxzfrP9hOO+G8PRYeLhW1yPGd7FuQbz3vVBShLiMtg2qPD7S6NLkGszHGPLzHZ6v/pjDzNu8V3vR0fEYOil8Yjg+LgzIjTj8mgXb8Y9HQmiUt8HGAGMkfA0swmc4X05n4+vr6+fj8fX15efWj+ygFMZhIjzcu7XemcgGcxDx1YXzwxYt5fzwsyiZSL7+OHTbrd7Ojx99/HD07yb68TE4QHmpbfX0/F4Oq3L4j1EFB65NNU87Fh7FEuJ7KfFeziRuYN6nYlFTseTwDnt+NMfSrT540eEEqUCADEgROu6rssyTROmSbSUiSdWpfC+9t4AsLCwLMuZWdwzDJSSPvCemPcyVd0ddn2oVDF5RIPDcyey0Tdmuhk8plInLRLo/VRmcvakJKbW/ejtlOHCZXcoT9NcVY0dh1yyksosyei9z7s9qp5s/XJeztkxF2H4suwrlQmY2JASxVrG4ukkxNm7lqKs4UFcIPXcrC1owa/gnkGgUmqdZhUlISIhsK9UizJRN4swIJwgBfsi6xIRWeddmSawEDPgAbKIbuuHj8/MPNDhxGzZw4bkfBQhYyzeEcaIsJZCWoSI3WxW3c2zIG1ZzK138/Czr1CCiiHcI9LHrCLG6fgqIAiTMAVbptuKPDNsp/t0j3VJye52bmcuLMoipZb5kpqLEcXq4b05GjJ5qMgPXSAVEUecVgoPdk/LMEmrwjNVamu4p7lljQSTKFGuLaxJRkkwZM6+3+9Y5XhazmZBGSQqUSSoTBbRktp+1zzWyOZolh7RPy/rskY3ERUuCU5CkCfj6AtwKebG3bJ8txA/7A4XDZMk0E15yKNdf1nW/MJ+dj3yAE/FHe9I+AVFSfRQz3jnOsTXHaNvRIIeat/vm28LJuFnvGhfrQWlG3v+igq6dOMmc37ffea7shoiRgLu4d96LuHbKyhfIlk5RHKuXwq9v9IEvNs7LIRuS2DuSkl9rCqXpo8UBLfFNzfj4/YSeY20/VLvL5rK29vtNzuuIK5ZvwQlv2d2wvPnXxSSkOlLuzliwDr4oApi/jj1tFL8i+XzahyW3YRCOfnLF/eIcLOBJ3ZmFlER9ht/b/BF8UaaKC2di05FpqICCKcKpqJFZCb1pFPLL+f1bWm9mTA+fT7+7sPbniIzj2Zfzqfj2mFUeWpTtjm/vPxYCqap1KmWIqIkQlpEmCcp8zyVaUcs56X99OX1hx9//Nff//7l5eX5w3NIm46tHjp04RaRFJ7IOH7+sfdzb+18PrV1wYbKC/cIQBJM8G5XGGsKJ7yBLbJZdCcSJtIgJiBBYLmE/ZEXPkoRIvBuNwGDNm339OHp8Pw873daCoC3t7eX18Xyx5djOy9uQBIFYJlTmbJUYhl4X6iFeXp4Bnn2ZA3eHQ4kJUAsylJShUSTOYlFZftStFSeALQmzczS9/u9uZ9P5/fRYDEwS621gcoYBn1vachRvSoiiLwU2Y+Y2S8N3DFEh54i6CKIdjM57k6k2z88gEy+evW7sf2rzvrKJ7cQFN11Ywh1/XK7pHfeUz3jbTAPXalkRmEUJmUQRYZFrAbyzB6yui89uuc01cM87fdzLbVoLbVqKSxyiVSMyf7nc8b+ddtvS0b/Vds3surX726cUFgGCmPjQXeLMLSVbS3eSJXSKRHEzoTkQaLNNxvRtx//wW273eiu8+EmMLUxOtCN8zBCctcnutsq7uthNr9uYyC4YX946GEERh4m8rYbGJH+97PGaYGBB0PwTV3lzaNk+ruXxcIjchwZgrS2Wu+n49tyOrbzsp5O67q21tzR126emcHCyoTL7h40RnwSMiPauo61t07TPM+7Xf3w/DRN09Ph8PHpw65WBg0o0bq2QXp7deZzQJXduSglKDLcrfUMKsTJjAwRRiZ6AjlKZoSoqlSVrJVlK5wQkmGY0kA5I0EJGl9VBuJigkTRwipMkiDyCE8Q03ab3FBwEYkkkk2QMbNvXCAj3sWkGyg3kcQ8/h6ZPm7ELLUIQ2qVUkmEkzIFLJVrFwuKUXsa4a3bua1Lb0WUmGspLMKiEGFK8kxG8lBDvgw3QhAMyIAlGbMnUnSoOXOSRxInB/HwuB1OkRc4roiALnK3I1tNREQj6nRtoy4wLwAq5qCbIpAtQrRNlEuCJpOYCQwmc1/WFReFlohIu6nMyFuFv4x8t9lHdJuUdaogrbKzbh5xXnqQb1lToiT0CAIFKMEEQhLltihH+DDPg0bxJSUHMDIaFMkIRlJ49m7kjHTrvpxOI0IuFBIh6RLBSEo/TLwjJyIuXJMtMjKLhHIsfWViYSpMwyNiSeb0lKISqrgoCmTwZV/+7RmDdzP1Fl3wq0UYH9fer6x/v7n9+cmQB9A4y1cdld/c3t/V/Xv7zV/LL34pAOhCWAcg7w9+413rbajtasSMxvdf2Df8wtt2Fxe8J2UfF3nIq45m4b/YTcpcw6+7IBERU8/g8J75P17zzcDku9c+F2L4JCwcCtJMxAXBnDGAQsRGICG/vpOLo8JDrjUYalatFk9EUHoRaClVZD1HD7wt9vm4nptHJGV8eG3fv65PYaISTOvmEyV5O3F7Kcd/+Fjd2C1675lrpqvyQJx+fH4+nhpwamavb8cvb2/npR3P5qj/4/PyGnXll7euhy9nUXG36JbhvpyW5W1dFyDn3bycewYyGEBGBkWMkC6TqkqR4ACRpZx7W1YP4qLzReSKAaQbhnoyAwhilKJFRYSfd7OyzPvd0/Pz08cPh+cnnerAgH388FH+7YeffjwO7bAAGJQR6c4EYU4RqSIqOVRUzMxDXdxTSt3tn0iKRYyqkBD+L//1v66tHY/H0+nkV7V73dC9pRR3f319vR1OANxz9GcoYUVEKYVouGD3cRH3a0S20lct6YGvfAyxXK7ytU99o/jkb6Q9lLhdXwiLeBgRlFGFJuWiQQTP7D0iyZKa+9qtm0NknufD4bCfJ7m2C3/rf6L2UJXxH9iTa8tLHcjW6G5Zvta/RoSqjqFJiHTvy7ktZ5xPbCZxoqI87TAFZVDNoCE0zQ+KI1/bgPO+hDHvEzvXTyUhwm8TINdPDR/pmlF52FN+Xg9zkye5m0R3202+l8w/9DDuF4Traciwm40j8V5jOUo13luwD/s6Irr5+Xw6Hl8+f359/XI8vb0d396Ob+u6RuRgnVBVUYUwqeDiqMDt1qg1s1G+NU3106dPz0+HWut+t9/tZgGF+bqu5+V0PB6XZbkVI8ohXNutFW7dQjqtLXWlDK6iMjNzEQ3H0ITvva/LShfag9jvplqY+cpUdglcPqLGb1K4lBlAgDgzRtiVBRJMpIfnQykyhlx3s4E5i0Bm86QEEzGBZeMcGA4Di1BmBHnCMiKSRHfzntNl5jLVopRAGJHwXCcmWqwRsSN69/NyXkc9JGiEQOKSFh8JPhZhFWQw5bhjAEHoGT26I51hGBCB7UmvOc+BXIMTMPYO4/vdgJmAdzmUdxHhAZC6vMDBVkyXWpFrNcs4Pkb+iMeLVBUB0MyW1kbhbEYMTS7OjYMRSMrNbyGQgwPEsaVaEwQqrFwYyOqO1lfqlpwknGCkIsXMKC8zLjPMcTEZwz2JRukDiCxyqDVG+Lqu7t3N0vokUjA5AxFpXftRmJRIeeDtWYZ+DfCxSCEI+KnWrqWb98gB0GdHJ0qgEVm37MaBdM+kqRQmIaLzeTXrOfhXI/4cR+XPbI9r71+6J9+oA//V7V5X+W89EvitdiWd+9M+dbuLPGwq9xi0e3/nG7v7PSTmVjeAhmbsEEYhuk2xyTdsR9JbwrHxkwMB/NToTEBQkUbpFP60n4owhc2cnFenejBDAwAjCt4dFWQOkQxhJsaklUici5B6WmtBGZlrJhnVxentnD+++am5u1PEc+fPXX6nqJJgduvhTpmTcN0BRcbnPQ22gQ/G6iRCb8clM1uz1+PpeF7X3odIY0/+w7m/+PrafvzDy2k31SrMcCEgs8CIbNDIRCShMYUbM5UgV2GhpBQVqCoLE3MgDHw2OvVkJeGqdQfwSMg5TlvEllOYtfA86X6eSpFKUmt9/vD86fvv9097KVWKRoQhDRRm63npS0PkFcsLD6xBFJwJgmqhWt169pYe6vPEqlKDCblZY5mZ5sZmZiLy9PQ0ylXHJpGZmT6uf6XcuY4NjwTIrJ+XJTzmed7t97VWUIZ1M1/XNSKuol1bJ78+R3iEv34JEvqNifWwEv0N+i23jgpdCDczU5hHsZgSquQsmIQoaYlcPQ3Sk7rn2i2Ip2me9jvVkhfbcpgAf4MJim+3hw7/LfgqWyT22u7y3NuyvPEOWYACSIb5uq5vL/b6Jc/nKbzai2rF/gn7RkgWcaJkjlTJ9+TbNzB3DwGph5/ff827eZQZVwxejorbC9MG7l/vw5vPOzjizb0eepiXVMn138tLcr+RUd/OjeHX3F4z76c9Wb/m/T2RracqIszM1/X0+vL6+cfj+XQ8nY7H0+m0tN4ywFyUN0dFpipFr45KtG4+WIr7SJLwxk45yuNj0LOeBqDCfFmWZTmfz+dBFzaYlOnyQszttKRoKQlnzqL7qSjTVJWFKLpnDtGNuLBRrb0tfZ2taBFWqfM07Gww0bYLYPyXQCD9gmlJ4mZr6yvxULdyEIPAShRcqibQ3VklmdyGOEsg08OZSMAy0i+cRBxMBBAzAkk5aBUzkljLNBchlCiTCkM8zFlFtVZkNu/JFEA3W1vLCGXhRLTeW3cqrswNzhGUTGAkMQ0pwQSCkQnPyCDD0BkGJY8CxVtHJQc3ro2EeZo7RWx5iG26yZCkHON2RKxKKRHusUmsjLkwKubHZjH2l8vwfndUIoKESTgi2tLWZY3w3PLhKFluCzPoUlEWwzAhDjCBtnfOiCSCrN3NI5JYeEu45EiYkVtn4pHNAOgd/ppw75eEOie2IvoEyOOQ3dMjPdILcpdciEEWsMOehaiqVuGRdBuJXM7YSwpBOEVLgNZu5pHEzFRqXTxO3XtfxaNQBqFwIrLWwgJ3P50W6/ae/kwi+Q9ahx+Wm4dl+M/eHR72l9+wXRLx1w3k/2RNVd+X/cd0y9c/xXc4mDtAyx2F8oN+3H0B73uV/eO3kneHmOnCerb96f2Ct9C6902FcpOuH7+6j8z05mCcqTSnTKIAJ1PmccFIKs/wS9xxbPVbbxgoYTJQxUwiRbe4sAiJjJTwim4JSGAeoWdLfO5x9nw5+ZcFq1EEE7CatJXSYpJAdPKG6JPQ06fnD98/f/d8+DBl9OZmni03mEO4O7ucTmckuefS3QOe3Lqvqy3uKbvFOd7W47nNlXdFhKKKVOWdxocP++fnJ5ZsrYdTbOAHFmakZ2KEuUWkTtUpyCOFgnqSsk6QCi6iNUFunWWidGKIci00FdrNZb+batFJpGjdTbUWUSYViFK38LV//vHH189fzqeT907b4gUZMZ8eQmCRAEUPqFASWChFZFfLzMxXZd/xLzGXi2+QmYPA8YbwcRroi8gAISKuNCmrOUZtaESZynzY193MzBlu7kTjVahcFBLHDGEp18F2rdnA8NUG1/qVmPVmKF+3qKs3/+jYXy549+vG9ZcXo23sQNstrgcelq7x54FB2GrCiAaMnm/ABg9zPG44Sa8ieOPMW3bRazolL3WkhfigvFOaKDi9WzPPntySTqu/LmYBkbLb7YdwMotkRmvtQE/bc/GFN4yZmOJq195TFz9KXH7VXr7bOe7M5UcT9iuW9C8cej9yffM/3zXuC2AQt2bEXZL6rvNXP/DnF33kTrwZHsT3Pbysn3QPwcWl0GgLdZgRAxnhqy/nfj6dX77k8c3cOE+6mz2TmLhOodXBTkzJcY9yvnu9N19RRGT88jscYeDbM2+QWjfkvwnc5H/oIqyxjZPbt5vbCjCGogqFeWaIKG0VQTnKW8w7jVKaHMXPaeYY0h+EGAJ5BGxzIzLdzYgjIpl5besISo/oeCkl13V0hgBOCDOZpHlvvbfVljXWvp7Oy+l0Pp3Pp9XDWLQWVtV53s37WWoh2ep2Eogi1mQBKAPBRiGSTMn5zkOwrmtfV2/dWm+tmfXzcr7wGo9lkLxH7x1JRSZam7qjliemUmuptVYmFg54xjlzw6SFE5FltMEOSwRmEmFVHzVGwo4UIhbWoqwSmU7phIhgG/n+NUffc0CAt+oI33DamWEjlzKQD0lk4QQoS1USFiIksUdGWIJZRSKjNQ+UMs37fTsfWSLZHIP3EkSkIt7Nw5Q5iE/rslj3TFUlILr1tbV1VaVgUiIqzELMLEXH8hJ5gQUSRcLCuicxSSlTkVzfUVgjUR8RQBQq1zxeYlCfbT4GXWZhXpTmxzAuRbNvY3WQwNlF24QvELKLc/KoCkoX0cbe21XDhwBDKKsIj7G+DRYkJWSoEEaMOpNNZouIEOw0ENp8oQSAj/yYMQarspIDkZxDLXt4P32AHWQQx7gzOYOQUahLARViKBOKhFIAGYJ9mYRZRZSZE+GeY0yRTpRCxCxJCECEjSiSAgPYzw1B5pxZdaiRFk20iKH2qKqm4esv81vSHRIUD1sdfcUyvbdf7y3MO6MVGXFFQj/Uw9yVTdxv8Q9Z36916aEfD3vMbXrzwfi+bffVjA8XfOjg+xpLN/lBwm0l/H0PH/fK+wf5da7ZnVDVTWd+/ix3n3q3hejh1ne70iW1OJr+/P28/3S7kT6cdWPD3cYCN1vs/RDdHtqWUWDbsG6ABPc0LDeAZ4KzDIB1AqlMqdfAoIENIIzgCTNpj6QAgRbQFaA8RFvGz5whBmUWZSXlZHZWiJAU4k/MPrLfPYdQSQRFsCF/aH3p8dr85BRUoMQZJwhbSm9PhdnbTPn90+53nw7/8o/f/eM/fnzazxPa8fXt5WVZ1xUgZoEDDgKlEYEimVUZxAkp0EBhfZoPkZRhEebGaxqnewGAp0lL0WmaWDIz2+pEw4gJZLq3yKxKzDLIEEMSzZjjkqFWVZ3qNO0PEVjbGp0pXDnnSXaTTIV3VXa7MqlMpfDQVLPWVkQaWzsty9vb8Q//9m9fPr/a2ggkDE9QJIOKlOIqQRDtHrZ4KjaVr6ROhKSJi04c4XGR+yXmWE4eOUALuLG5RUSEdrvdYHU0s1ba4EhI5LE1EtF5ejrsM6K7UV+JGPHupajqAGNcDfc7WNel+JmImCkir4XxD15IUQUwuB03h+PizzwAWu6un++Q5cvx7Se+yKU9wO6B9y6B7haODH/nDXyogLtZEK8r1/V+Zu9SCSMxlZf6gVJ0FszMOwlBDAHh7uGQ5nlc7bQapGid6jTN06RCRVVZBiPnIEgdXcpIVhq69xtKB3fL6uNK9LXQ0tcdlZ9Fv36lo4LblW0Em939YsPc3fraAvdW+0PU7Weez8X0ue/Gffvatrd95OKFPhItvLsBW+g0w7w1a2usZzu9+dtrepu11SLwJu4Z4WbBnoTUgY755e3j5+jc997evo13sND2sbz51O067xcv5Qr9uv7Kd4+f7y8tglVGbiFLDstvOxoD3YPIDHceydXW3V2IVNL66ubMvL1FQm+9tSbKGSkqby8v0zQBWNeVmGk3r6c3wpDShoKrKsBhbm1t5zNao8zo1pe1t+ZmEKl1OuwPdaqHw2H/dGBVR3i4mXuGp3NwFM6QdN7IDTOQfjqekJimybuFWXRbz8sojDz3ZVlXM/Or7PKW6qSzaXKfmLmWeberUy2DCZyysqydw3zob0QEqyZTMHFRKgKhZHARBLFtHJ8pBBUUCaZR0DiIgLsbRevezINJATILAu12h/1hzyyU7Bf4dAwJs8zItPSINATAk6qwMHN09zAWYS7C4EhJlEmFnEQ8MzNs04yhzKREWxdnkyIGHM+n1Q3CzBzdbG19bbZ2qhPSwT7QR8pCWtLDIoKVQJwg5iQYBnRNSi0M9UvG6W5sZ6iWbdGmJIrIvGZUMkxERxJM73CtNAjBxrAc6bORVLkGia/Uw3wRRYkIWxsRWe+2rNH6dTFKAIJkJNjchwNzoYLATiqBEwjKSx3OsKeYg2UgpTxUmIF0z3CkE4XUWjg4E4FCxGAdNUMzEbEQyyipZxIiATPxxJAL5b4wqVzNMSpMBJKBl0tYJ8sOQFnmqkWEWJu5J0RB5q17drMwEHECkd18tewsRohLkA3DoSZmjkzyLUpz136lgsejrX9rmn/d1o8ew7z4hXs9OBJ3S9bXevHYj9sL3i6bfO/5fKPz8bA73Cy9LA8Ptt0lMx/yLo/phZsL3q3zv9I1uW+P8peX8CsR3Xl091v2g/TCVyOSl2TGuOBXyetHYOGraL27rMkjJ8NvOBQPN7rzdvhaL5kPfvY1GJ2UBB9fdQLgEe8ZTS58fAAoOV04ISCK1IAIcSR7CrkhGAlwErqHeXgiIj3jZGv3WI0ih8AthfnZDWmcS5G655xn+cffPf23//27f/rdh+cPVSRr7sw6HcVG9jlpYK4ACEYtBYLYEyQQllmlgCeeItONPCTdrCcIyST+OPVwiRVlZPMm6ZUJl9IOEWGBCRgrE5hCOKvKPNV5qh5JlFkU7kVyV/Wwl/3MVagWLkww90xEECW3JQDPOJ1Px+P5y08/nV6X3juDGBQXhn4CqJYUhUg6IjI8HBlIj8RUkkuKIFhZ853X0k+9R2JsDNftYVg55/P5auhcuerN7HQ61Xky92VdhiTlNE2sUgqzyqHstihVxKizH56biKB/VaXkL96usfaxWn3DhP136Mb1NV7zSMysCqEo7DIqs90izDzWxNJjtUgIuIgWLVVUx06jqha5rmuqfkP15X+ldreM3vtYV/Pl56i/u/3g3om1r7+3+3vdNSLQuJd5tNXWxZeTLyf2vk5RvHNERmoyQjgEIZmav3ClX7rX/QZ2Sz72+HRfUSnBMJtuahFvvTi/fz9XeAwim9vIA1rrdKljHv8qb941EZVSMnMY6EQEOw8n/Ap9JqIhYKLgyBCR9e1EFm6+tnW32zWP83IiJCc4oaAUrazhHubRW1oXRGUZ2FkptU7zYb//3e++2+12+/2+ThOULXxtbVmW1ru7ASFMUy3hFm4Z3tYlM1pEZvbe3fz0+np+O3nvRKRFjLKZbcTH7u6Ii2bCeW113s2Hp6enD/NuLlVFiYUoQQHvZmsL88y0iMokqqWWaZ7LVLVWVmVVBkoEqzBz9jY4u3yLIOQoi48M97VZcw/mEFELb61rrWUqgzBv1N4nQiLcrLdmbokcwr7Uu4iWWkBDZVyJ1UEJaKnEqpWar5GUEU6egYJI58HIidQqZbF2tHZqawLEZO7Ru7XurXszPvWYkig9VSedJp11Ss/FnOvcPNwiBQIurKoMZgb3C2UwXehD3qfeNXBDAxDnVxESpnody9fR+/M2PJmrF/QOfr5Y1ddwUq49gTCLpcFs9IeZiTAXIc6M7r3xiM1lckQEGJtgOBFEuQjHJQKdthJIiYlRJItyOkCIpIw+E0/El6oSLuMhCPvnCcjhPzBBQEIsxEx0kBLeM01k8A1dgXDprTONfDmDJTQbUUQwKxchLSSqJQQcSb72jHP3NIMRW/dmOK92jDDWzhzg5DI24re3Y+/9m8H3v2b7TVK2f367DdDjYUX+hjf2jQteHuGhDPV/0u7vdec7/Q0AoX/evqWy9e9W3fRwo9vtPO9YRkFEfEMFS3mNE2deUBrb1eQ9HZSAxXu+FaIjwE8OSrAHKIicEws1ogwwQJ7wJA+yBNLV1tyguwIZBTZUhKpy4XJ4nn43l39+nv+Pf/n03/7l4+++32nx1vrpS1+XWNdYl+x9YCcGRT1qcYwkKTFIWXTSIkWZNZzNYu3RPbtJ75EkxAW3+oPb0+RwVNzdwwjJWob+10gmhKRG7KfSa0fUqZairAwhMMMZdf8ED+HcT7SbuEowDG4R2Zfu7pEpy5mYLKK7j7r43rqZjdwfX3gXhmfrc0lWEFakZ4SHYWAG+LB/UtZEmjUZOlIiqgpk9+itr+t6Op1GjmLoW4vIfj9fDcERxHL3ZVnOyzm0sGzV9qWUeZ53u52qImNdV9xsKte6UhHx/whHBT8P+f87ttGNgaa7OirMzMJVqRA4gtIRPcy6e7fsyafWu4en6LCDSi1amHOw5GX3kcG/U0f+X7d9owT/1lG5GkY//9Qv1j79qfcaOc708N76uvbl3M9nPx9z0LW6a3jNZDAglCKpGdKiJ/3y2POvuxyjGPf6jHGziubX8zB+ySxdz88Lek1u/LSr9zIclbQmLGPuj9Z7HzVpYW2gPXe7Xa11OCruzkTejpkxavZGxmE4Kt6NhrStRC7NPE+nU+99AnfCeTkOM1ACE6uUKjpkIpwzitBcy2E3GZ6gZTLjUufdtN/tD0+Hp6enkeKh4LW13vt5ObVluaIpRih9VKq03u10Xpd1mibrtp7O7Xy21jNTlHkqfYjcD8ezu3uKCJhKnXZPT4ePHw7Pz/NuV2oppYhwRvTTejoe397elmXpvQ/VZK2lThMLXxFH10jE+HcEaK98U8MD7L1HWETrfXUPIpvqzAxmeNh5OdVpP74gz40iOkfdC8TdLXyEVdVUXQMR4T0sUpqbgcBaSq1FfMS53PsoEKWAiZmt1CBcdTqeTsfT6bwspDIpXxAUwJCksWBKVojkVPlDnZ93c1Y9EhpxX7utaxYNFmJVVges97gYFj+34da1bVYiJTaQw+aoFOXrejbe4eVFuVljIwBjWG5gV6IBVMaNo3L1UpiIIyWJHBbgZBFhYRUVpom9iKRQT43wi99Om0TqqD0ZBgLTO7OesAoJsyrrCDYTpVMmkvNQcjdTEZGgAlKQEgljmkaeOyhzwB9kdDKZjNNcVA7zToS6tyF6Q5mJ4CQmZiQyffOoE9TWlJKQjZwiLbBmdJCTdENHmsMczfLs0diMNCmLSnhmpqqKhv0HiTxepWzD/QHf9Vdtt6si7h0VFvkN3biaN9s0/3WfegiZkdwty/9RVso32jcdla/7Kvfu2ANm7rccur/4rZzLmJ08fsE4RANKlHzDaew3EzkB0Zs6hMy8YOUJYK1IXHW6xnEAyGhiQOYAf5JcivEA5J6IAGViEU9EuKjsp+kw8cfC3396+pfn3X/9tP/+qVQOoXDrp+Px8xd+fVuP57626C1z0AImAyB2AgZZJEsykYhOddZasrmLMyV1SjjAnqRSBvkK5S1xzbVYcKhYkpZSp1JqYSJlcUrh3E3UJ0VGnepung77ed7NEVARqlNGFMZcWdjd1kiL7EhvbaN755WJ4BGJBEO0lCIj6UwZF65sBJETedFgTmQPMkdmeuYQmuxtpUq1aJ1rWPNuGLLNKtEtL3jEUYk0mCWJcDydrsVXIhzI4+nUWgMNZjMdtfIqoqUQkbkPDcgrOycuIQdkjpvSZTTQLYZny8n/cmb2t7Xb1NBfaPpfsbYDu7XNUfo6tzoAYbaLuHhcqpyHdqRylkxFcGZGWrhlWmbLaBbdMwgDR1c2gEdgk7eGqu73+6lWwjcTsH/+M29508c//jUW1HcC+IcSy4fv77pGJd4hX7fo28vHLjAKRNx5yMS3z3UzCpMewGp3G9hmMnqEu5m15r1Zb5lGrj2cYnAIXSS2kgCKn/f//XqXpQR4QCHe+jC3jspAm1wdn7u9jTZHJdzjUhB1HXXW283FbQgmDuPJlvOsVZnX3pZ11G701tbuRplmvZb6u+++991sva/rahHMgJ0JWWpVhmNg9zfol3YMno/j69s8z8vpZGa+f4r0dVlAwQlJSJlSFRgWJ4mwkAS4R2YpOvW3ZXHiqUwEFBVmsnDfhNXXt+V4Op58OQswZAE4U4n6KKAnzlIGTcio+ydmj+jW0aEUEYMjAZFpI3wAAbB/Ojw9Pz09H+quclHWoaIDEJ3bejyd306n83np7iS8QWRLCaS5dzMxEzNm9kssCcwg8oju3nszN3e3bhlGYmu4exDTej4TaD/vpqkKI3qPCEN6Rk+3SBCJKhPW82rIhKeTeCeTQhJmvZsyr80sqUyTFq7KjZBIy9i+tdx8bXJTSWENz76svjZGjczBxivCIZISAi7EBVRAO5bDNH3a71JJzH46L9n7el7IS0qBJrEg07tDCjw5t3l2G/EMvxDqUGZ4wC6zLYUdSQRy8nAf4oxmFu7dVxHORO+NWYoIjVVUpLeVmRBOmUIJkBAIIZCZiLawIAWojMiaaBFSb1W5qIZwRgzmufSMxLl7UA6HIRnguKJHpJAqqWplYQQiMigBCrDqfipP81RZ2FMyBaRgFrB75iBD8KplLspDTBM87T4dzydzA1dDNOcgAg0RrCFfwJRDBsDOzVpzEHWNmlyCAPZMB8xhJF60tTRgTfRMS0RyYPxHkrksy7q2ed5l8ls/JYZW2C+gv/7M9nOG4qvs4HuS7YK5/cve+qtd+oYb8Jvsg+u+8+ujYLgYJNsVHgHJf3NeCgD9lqjEDRHLQ5gwb3Zcwl3pp/8MxfX+4x12/0445Q4MbRkYsidCTHwl6cpb3tgkgtn7SNzKLK+Xt1uQXL7fLpEjrUmXG+f1e5IYPFTXM2NwmIBSI3dbIbSjMFhVROY67efyfzxPv5v5n3b8qUSNliudX/L1jD9+iR9/+nw+nft6FlCZxJPPPd+Wvi5WF5q0zPNcp1nAYQSdNXcltOdLBxmXEBUCc1BY5ZiQM6iwKFG4I4IIUnTeS6RASpWcK7OGKOa5qmhGkMVO1pi56I7m57J7huyDqhTZSyWVTJCHNfcwzki39LPBjsFt7bY0ydgVnSdVDVUR8v2sGdXdgJWMmKvXudWppfrpyzztSymFCY4IKJVSlLU2X2FBUmutUG0cLOTmFj5NRVXci7u3tjLKXHV8zUF8UbIeFR1t2u+n/Z5FqugQxxHVWisTra0hs7DwfJFLT2zRIyJhYYA0kRfssrAgicEDA6wMUBIiQlnKFcOaOC8LmAb98QhL4mLJ1RuvGEyEd9JV4gAS6YQM3yjLmCgZvd+oBBLdlqYhfBgfV3z/ZS6JtaBJVESYsjdgUuEksd74ZyHzayR7rrqu/XRaLDISQlSVK3uJ9p0wW0/31cITjadT9C+2vrl/WZpKmfe7Dx+ePj09zaVQMEsNyOv5pFJ677a2QjxrVdEUTiF4IHP797q9bv25m5WJr/z2sFjmjcdAm3dJV8P6etYNHxQA3Ohb5cU3e7g8XWLP75/yjR4rRzz1xnMdRHbboYtO5PYrJHNIVNDFN9huTFdlqe1K7zxXqpchOkxJoszNmaEkIh68iHlxhAiIhBejCFADmdtqbfF0Kqosk8BPp+Sa0zlOb8naOLtaRM18r2jKjRkrMgKRk9YRLc1Ic0/3TTaNSG9QW5TJmSOf6e5hna7qopfCJwAi0rpFpJuZD6ALm5ube9h5OV6DDr7Vd2yv4/X1x3+o0z8e9i/n87++nNae0aPFumazNb33fjz///7P/3N5+cKcX95eursW/lAm712fnp4+fDq+vRUR670dj8Tc3Xvv+/3+eH7Vyuf15O5aeVkaJTNYaGQgCnFhnUYmdio7EWkWeHmlZYU2S3hkEX2anyaeoudpWU5tPbblh5fPX15frXftNLEA6L1zAlEoglMJ+PD99/NurrX23o/Ho6WF8YYoNvKx3Lq3Zh4xzdPz84en56d/+sdPnz7u/+Efnp6epqqoKqrSWjsej3/4/PnHL19+fDstrWfG8/7w6bvfHfYfng8ftTCJOKh5+LICGDlPYokxANNXb91Xc3M3ixbhb2+nFmkgKjSVshdNTokzLTaXnSWN3amFndziMmDflvNq3cxIeM72AX6Y5ljb+e0IyIf9k6xrnL5Mz087eQ6J3SSvS8M0LYCkUFEpurTUaO3L69vn49t//wNXDsSJPYQZKLNMOQnTXHe7eaeSHz7sfvfd09NeZw3LmPeEpZ2X19VsUCNJwpaTEvYiX46NwQxO90yUpMjwyIysF68lhoQICjZcVbTlrKIUSqG5zVZPD0QwDMHCXGYlABlFACSjzcWZwO2FmauM8odUhVJ+EDHrS6xauqpUAUffKeZSap2JIEICpcC4S3pk5rmGZ1jCkI4I4qAN/aURROBMGdapIoMyJZOQUCdZcy5MkRnBzC3czvZhNytXVZbCIhze01OYVuu2LEkC4ddmkW6RPQME4gp5ds/ezM262brYspiHg0R3O3WeJpoKAdkjVs+ze086F6x9Pdp6dFuFICrEgATodO5r68zazJsbVw532FiuvxU3v98Q3ldsUb39++2hR1bum58jAgRW+TnXL30dIJD0Vc3EkZkZ2dTHtMldNchdr6S8KzvnQzWLvBejPsBub03nwaZ9fXb6usRKPmhB3hzyO1nHRzaB259vf72zuC8kFJtq/G1E7leX5/8iAm08+K8dGf+e7RqEzvcSovfY3V3hPh6irN/yBX+N+k9elquHjxAQRNedfhDmAyDmkcdN+Nr728lRaFnW/sfXL6f+dl5Xa+nGSGHJzGa29uyeRoSQUXnpBlWupXBKcwpKkISMIU3pCXKyYIIOBvJEehBjmqakAuoq4SkppTLmip1GkdwGeRKRFxFVazkIPwTERIWJkjh5y4FScph3o1GDAAJxyY6Ap6MRmAJEJZMAlYGCpqIkgc6UxGCGjIrYY2slHJkpPOLwCmC/m5OJkNbbFeM7YnsDvMvMzNv2cP16A4zM8IgMEq7zNAw4Zh4ptZFhH+YOAQMJ1rxdUg2XWZLvv/7Mor9JUvzSsCGgTjUuhhq+DuW88lT8/AS+4YYaV/4NKYgREroO01GmRdcjX5kCQ644N1oDEKVyFkFloug02EoTltQ8mnkP7+5gHrGBMeroIgueAa5b+exGypdJmZ5Dxe0v3O5mbuImkvCt+opv1Nl/41NXed3rFW5zGe+1KZm3qzSNMEkEDejXfYHgjZuV1zvm/YHrpneTpfC0wd9Ig5txhPwtOnuErdYX62vvza2nuyQ2ElGM9Id5X43VmCIh0Es1H7Dp/sXwV87HxmPYIs36LUGc3wAFR1x5iy5HZBiujMlbaqdlpqoOgOFgvBgZlfHBCFvW01VkfnwkLuRLazvGfs/L0+fj8f/54fPrydOz+9qoRReJ/LDbL6ezIJF+Oh09Q11K93Df7/frsowCtu3NXro9MDkDSvrp06d1XRMY2h3Cg8iVIcKliColSDorc5KoYGR3zcwzE+dlcY9kvC3nl/Pxy+ntp9eXt9PJrO+gpoWZ0x2eFAFgnqdaytPhMO9mVW0iY9iMVFGEjyiZD9J6ZhUptdZ5muZpv9/Pu7nWSbUAWNe2LOvxeHx9ff3xxy9fXl5Oyzkiaq273X6e97VOqirCY6hcaeKuQC8t25ecwm2NpS3jS4uI5rGYdxASniQV3bJxlMxTdwOvFAvlAuq4TIhMgJEcxETcPU9Ly57ZrK2dbDl1p27o/Ryu8OYte68kJ/Mk6j5AATHpXOe5t1ibCSg3Xz2Dxn47OORYhVV4qpir7ufpaT/VKa0ROPXtTZg8o7eVkyaQcDJhlK3khuyCjTeR7gFEZut0qYxN3tQSB9ipSkoGp5NnZqQ5MkadyqQ0LLERvL6u8JxZM2RgO3lDf4jQgGbVfqqIonFQIoLAlLATnoQtjQBJ0SRlJgIcIPKkAHuSJDSzExzkJGPFUabBQUxDxQYIihwlpEP+DRS5iX4H2BBrYoVIskMEzIBlJIWB1yAONOvderPeI1IoiUAU6T3TA27u4WbWuq1mGclCOw9NCjQPViFnMiaHetLaViPmaZq1cMjZczXvzZu5B5knc1j4TYgo7lXaH1vcaUzdB82/srDja3vht83Eb+8p32gbaCL/hI/8im78BS/4rXv9ho/8ghX1V2x/o47Kbe3vrdxKPkjz/Ae1a98iwhKvLWEJM1vsyM6R5tlcVg/3tYpMpTKR9TC3tZm7shSqJbmEFhOFajIbcrUuTkUcxODCIskZ6EQQDilEsqEpVLgUTYI5IdNTHFyESsmiqeyjkIA3/kRh0gDSQe6UkAiAM/J0WjeZr3RY50xVqawsoqTcwtDdwyIGSXqdihLXyt2zaqnFNUISIARxEvfee1szGkAsOk1SRKElIuapXs2Uqw002m63u7ouyBwsPQASCIuRwRsnDFAIABH5eHi6Fp/QJYkpIlqKw685s3cV5j+jresKehcC+9racVdhdX/O6OeFGvjfFZvbrZtbblACEkJhmpUnEUSPhCU8s3mu3Vv3tVk3YypXoDUAj5ArF1O+P2O+Ux4TRchfU4/qG8Gqh0N3GZVf/an0h1zODQ4qvlrLQZfrxIWQ93Ig8woyuTi3V9PfIpHv+WFcAGCUJBSIgZ660N9t85klWrj5uvbz2dbV3TyCR9BEaiItktZGrWd1WM+uhG5tudxr6/6lrBqn04mSInJUwftFqzEiWu/X57pWjFwm6XvF/MOsPB7P4/xx8rWNKporocOVtGrL2EjUj89z2A+vb3/440+nxRHs6I07GRfi/9d/+a/MjNjuNTjPe3QChiAsXchkr2HIUXlfa3V3Vf3uu+/WdRXV3X7Pm/YfZSSzSNFSJyIkCauIuK6dlwaCwz08zV9eXwC08LW1Y1tez6fT6bi0NSMkjWvWWnkE9plrqU9PT4fDbvfd81A1WZZl0IRcaIXHk18YbIlEpJQyTdM8DxdFsTHyR0ScTqeXl5e3t7cffvhyPp9777XWp6enT58+PT09jeqdomMkvrtng5ZKVKf9TjVFyDKb26mNiLYhYlnXpfvikUVtMs6qKRMpRcxlZ0BPd0b3aL6xt9MFiTGCCBZ+WpaWC1tks0/1wMlTnYP4dDqvbelptvaJyzFXjwjPdEewygSh07Kc+oIhoDmSsYM7mhhCJMQURbKITkXnWqapTJWcEOGjkmLUTQRZKbUoI9OsG4VjSzNnRqRHxFBaFG6ElG2+MYQSCAIlJmZBUBiDPYLiGpbKnTAjmZN4VMvSZcJiBxcaxXvbixFlVVJCNKPMKoNCOSlTKfeQmfIUOeRDmECxyaGMeBJRYQJtbGRjoRg+CYKBwdc1PM8MyxjRA3MPMDdPuIAoM9Ja76e1nWkSETWwpugmQFQRvWfva+u2rsvSmkVI1TpNAMxjgQ9E2pjslt4oIShMkplhMPI0UgZLB1uKEfWBnhNVYSSFwXJNDLDqpj9zlR/4Ve32TOY7CM/PNGR/7TW/0h4tzPt1/mttky0CxkL0Z/YBeOfV+HvD36yjMr6hERZivlPTuzvz37FXt8FVVhkAobU3XvCvqx01+xRRAxN92M373ZRrX96WXS1TLZXJzV2GlBSzFpkO09NhiIexSFK2C6E7ZdZuLCKqrMzCNKgXCSwQtrEuK0Z59DAF0jN7EgKC1EiuG1MHRxBTd2/ma4uIptydGyBGHJELOJLgiUBaSubMxFqLUGEFh2dbPVp4RGqhXTCRSJViUauUIsVgTnRhXUvitXc3Z1FOEk1ogWgMDDYu1I3+TsvG9ynaG4AfNtxBbsF8utD+4FK0yhdRkVIKgBEPHiTC14zKLyZR/tQ2II55USb52eC4nDbALsz4ebT+8lDxzjf779TMtgAWMRGgBBVMSrNSLBmRAXRki1jdV/PezbpLnR4eZzOuiHrvFGit9dYvrtf/n70/a3Ic2c5E0TW5O0BGZFbtUVKr2+wM1vf//6b7dLqlXZUZQRJwX8N9WABIRlaWqvfW1pHZbVhZVkSQBDE43NfwDRHu4f6rZJm/dftwSZ9/fgZxPZLCn1+K3/bSM0/k17s3tp1+ePa/H973MUHaQ3NAP64UHl4+97e6harbMFMIF+aSWt0UpAOWxW430MFIzMyIpXBPvoevI64riq822qytAZcCdze1CNiO1Twg1mUdXW+327KuQzXVDlXVPMz0MRt57Kis6y3BY+5hbjkSAIKZ11UT139AGo70hgSPTyEiEvqGQjMWNAcA9oAkwyEyYjADBDDQ73//e9jKEFKsAGGbSjFkoh9++AER3V1EMgY6ZgYzm+f5drtlQJ/CD/M8H2/QMQCAauGpEpF5J2ZB41pLq7IWkc1J4+39faiuo686Vh3XZbn2pasiArWpFJ6mVoQrSZNSa319eTm/nOXUamuIUJjDfOWllTq3iYm/XsfBbjpS3K1vNkZfx/W6jK5mdluW97e39/f3ZVnXdWQv5fX19fPnz6+vr+fzOXl6hSIr38c0mELkxNzBS6kiZGGruUYYoAJG4DL60sdVXQdZhBBU5AtaiEfQABwQC8XqMHwDQmIQk1AgAGFQgl27GlkwwOW2hPlpaj765f0rMACBhpW5FrQsG5mFuQ/Tn9/ffvrypZshExDszxEEETAhUTCpdjOBbAOG2hBDsKE2dF2WPUMmIGLm1iqZmRuZIaSTZgBGI3AMR2f3uUnmWGlpn13pfJ7Z0gwS0DdbyRwnjDgREgQxAlEEbILCAAQ+oXMEAVAiPBHEUdyISFnysRmmRFSIw8ExzAGQEJACAZBrLVxyCnXALz/fDECT5uHQwxwpgAJDKyFutQmMMA8d3ruq6dDeOEal7sBICOARt94v67osSMRSmBlrK4ARaNVgjHFdbuahZhZm5hXpVBkRF1tRNtgFIkSEC4MIMzMVt2z/OEDo0OHqWAaCIxmyhZuFeiRymwCF0EtJBOZe2PqtsfgTHOvj4vttW/pv257BY49Irfh+lZx2s4H4hqb4V27usevU/++MRR7jJXwO/f++ql/P1/4RFoc7+xk24MSv7OPh53hWLt53EhEBz3yY5wTntzByAwCFHsmtgOgRiw5zG+6dvQZ9qkXadHp5aaUhr6ZWRSqjEBlzoMmg1grhRG2upxculUtBwmGqYx2qHo4Aw5EDMZzMCkVBKMTJojhgRRFhqmNo731d3YK7QwhyQAkQYkBwdyRCZPO4rv39OqBK4xnEiVWQPMClbigWRAf2wAIcBMAUyIBi3AZAhLpZGf4p0DxQohRuU62LtYGG7OFhRhxUWgQNNCJxRI1YxrBIOqM/3heATY84QSAbjugR+LfFidubibYVUViQMFUOaVesz/pSKcXd3QwFsw5ESMyUnCXE9MfMzvYmip/rkLtvqkFba3mrTe6/Qm0tYBNYw2fRjEd3iGNc5z4w8AhPj4J6jilmOowR85yPy3K8Ex/+mBcCHzbCRF1F7FTg3bkk7hcuIiK6mqq5GyELUxVsgoJBoequ6t1sNb8Mu3Rdeg+HlGCS3YZhG057BQEw0GGMcbvdbrdbYniIiu/HeTwoEfdnmR7j/o8Jw3OO8UQ++ZAtPHQ5vq9Y9YglCH96yb9veIJPBp1Pk9ST3WHEg7cJMKY2dxAkD+ew+UNVhd2vM6Fj+7eD6djmrAgWDkRVQwQhgtCNIm/q2sHNhUAkmIgoVKHfYKygA8OZmQiBqZuHuUeP9Q0W87b2UoZUIH6dJs4smjBTAwAwNTPvAdfb7cvXr18v19utr2P0YcPMg8ZYju7Ko2BURFxu749XIwsmkVZ3yPuHUrAcwsPcIUJYIAjSVJwQ0gIjgqMQO0nh2tp0qu023AnIiZH5dJ7Otf3pT3+aWUJ7hM04k/A0t9ItGwuZPtVacTP125qrZjZNk5mdz+d5nvMJyrfBXlZAQqqChYnFDDxAQ4GptFZrnaaJCFX961jXZb0ty3DrOm7LMkyJkJlfXs8v0+l0OhWRScpUay3lfD63OlETkYIALlZZGLAwt1KLlGu/2BjHJc1jc3dVH8PXVQFWxL4uy9v717e3t8vlmiWYnPpqra21zM1SEywH+pYWpkxV75GVBcIGUKCYaVdLMBskB9TMPNRtMXUC5mAskxR28rGqw2LjFj6QgISJmYiAptLAMUCBySH66D4UNRjIQpkIMDrahWOjQwificw241CPQObhdlkvl9EDgxkDw91tOKREbhgEIIJ7d2MmQXQbffQAA+1rir9lHCClcE32HjPhFNWui4dDuBAJAm0JAZHjRPeIwwk8wLZJIpx4I6aYU9pCp8QCwITORIik7vmsARICAQSmNlYCq2jrqhEyoqhIB1u8r9EpqEEphETFg4EdENIxfgwHXfcGUbx3AxZAWs1vqt0tEmBKUPKBDwzNyQOG4lBUx+G8uHVbu3OThHjFdfhlxE/aqZQaSIQNrLaCwL6YO6yObmFARBLoFkzBLIJTMTOEDWUGCMiFJHM/QgZCQPDh2rstwxd3h3CR1Q0IIGB4ItEIAIU5iBNHfCg7b7WtiG9zjKc47ZFK/WsOXM9bPC03Tzv/ldD/A6XkSRnl8SgA4xAAwuP5/Xa/v/JdfjAk8UBUbhsx+y+tUMd7n4/lFw7+m7Xtw2+/fF4ffiemI0wCvC/ZW+H+jn4Gwo1Ug4j2IBf54WZ9uBrP1mq/fHgAIB/z0ceQC37559++fYjnfkUEDZ+/94hs8q3wi+/7cK0xHv3v6IEG+vFzz0nL4xH+Si/yMbH2o1Aa4epmKB4jpE3n02luRVphPFWBF4iOGGBBiIpADDIJ4IxlKmWWqXEpgWCju3kHM0BGQqoDKBzRTdBnQmIyAkNziDzgMUY3vd76+/u6LqZOjgxNGhcolBG2mXGRBL6uQ29rF3bxJBSQA6aOfgR6wuuBWIQFREAYuqOjeNQOCGjuy6I2FHUEs5FQa6WWXgsMwHUYqUpDlzKTFAcHtAgNuK5r9lzowkeQnfNUujEesI2jI3xUGR+Fg5hZQyMiJYlba0ltzwTDkyDBjIj64OSADERi6CnGYKq9r6VsorpHozYzpadEZXeszQQpK24fhvQx2B5/PYZcssg+hMjbS0iEKZ5k25Dck5PHtCRTjgdmRCDSY66y7ZOORIWOPRxXIKvbeU0JoDC1gpWNQr13H2bmq+nV/KZ2Ux3miNykKPFuT7E9htukvHvCmNmyLsuyZMRQiR7n1m9zgyfCx/MM8PTofZie7empfHzxOVGB5yn7qZXx7cEckJvHnRPQ8dLHT4XCL27h8eDaBEfLwj0CLDYNENjFYe/f5XocL0NBxOg9IJz5ttzW5dbXBVzBerhOwlFEmEkYPOx69eWm62JD3QEjhqYAbJia6jDqxtfO3IkDaVQR2oCLW3BOZGbrGO8O75fLX3768tPX96+X29vltqxDA5K+cVyrhHJtJwgwYiDtBguwsTMNPDwo89E0i81rSMjEgRDAmxLf3gjddxhMLqVKqdN8Pr10J4OgQDXWiuWf//m/vLy+0lAgcFOnKK3Op8ak5/M5jfYQsbWmqilhnKWHlM9O0fN85Espj4LaXIsUoSIgDMJIMIYqAArVqU19GrqWSrfbWmrpY2j4MFVViGhSptM8T+2Pv//daZ5fXs5ViiBVllpKrVVYzAHMU6kAzMCdHCqRRRSRviuGHwPVzJZluXIZwy+Xm5mta79eL5fLdV2XiADw8/m8AfBwG9tEBLuGh++qa5mxjDECsEot4oDh5jY8DCDlGgiRhQAAwvq49sVjYLRKLSJeCqnFTcfNVZFFABELSqHSuJmApQe5qVksXW3pGDC3aZrLoFggFqFuPtalRdEVA9QiEqsIhBredQCTmSHhxk70ICQRitjy2wkNQYkCQ027drAIG8sYK7HUUng4Edda0xezoBTmGjB6B1MhmAoLY+ryM6APxdh6KUAYCB5u7haxoliCkNEAItkoDIAITFiIHchdVX14MtUCAVaSAuQoTpSpEiAFUZC8RawYC3InQcSK3FAGcgWiGDlNBcAw8wgp4uE67OuwAgKMi8PNYjh6YhYCJmchRkDbYWmGqIxGsniEqgUWFKIaEBbRJbrhZTUmUiMhMiegQoS3cYUgLEVBIwKZEcADuuMEpdZyu1wQU5Eew4OCIMxTp3gjxIUrjLCb+rV7jxEca/RSqghrHDMpEFEBOp9OAXi5XHLM2wctk337QMD+xfds7/yO0Tt8k1c8pQG/kqg88cUBvxMTxv6NR+cWtuokfviuj6nOL616+M0BM3OYxSbJgx+i/ccD+d61+XgYT5//fkT/nAfiQ9sAAQ8bykiRw4cdHlkKIj6nH9/NK3/tJYzHQ/z7Qr+y2n38+pioZOz5d/3237I9oozgVxOVD4P+MXnqw0yklHKe5/Pc5opzwYqIRqWex+j9tvZ1VQ0HRJJSG9XTPJ+5NClFw1cLxx7AhghIg9I0GTAo3DigMFhAECHSzhTVoWNZ1nVdlkxUSAQjTntNibamNREFEARtssa0aQUSQkR2LjZJH0IoTEJQEEVwDEAst35dDYmqqg4zNVAzAkaMTc2TnYZjOIWTO9dSkS2wu/eIiM0jJdzX2014d6J8GBuxtzWIKM0cbV9lLVwtDrB1AuWzpvhtwvC/etOPKshft5/fsj3GxPCQwxChfXes/dXfdXyVww4xeowvM04twoWDAdDUx5qsxqGe9ys1IhiFWWIH1wEAINIxExFlv8LdTTe/CzUV90D6cMrHkWwT7r59SAO+93P+/nCOv4LUevqUf7/Zck+Dv33e/Z7ifvgU4FPm83B4TqbHSnLk4emPoY6xD7CMGnFjR0DVYMoWGdlgRAwdZj4ivvz0U19uy/WSUgcFvDeZaikizCXcta/Xy9tYF9Nuax/hLDi0h4IrqMV11evQQazEgbgwFpFWa6m11VJbBWbwQDUz7bdluV1u71/fv77//H679mG+MTiO883O5X4pwMwRMAjct4cXmXgj/d/rEfjI2AEIlONJp2c9TWafz6/n86uXdrqpoVGQkxr1T+30//nv//2Hz5/7+4WiEAYMZJFSagk+nU6llAQ75QgXEXfP5mophR6SoswEaq15TJ6KRCLIjEWAmVmCWN3ZHYnmuY1RVQkD+uurBVz7uo6eKW6t9eV0fnk5vbyez/P8+vraaq0s5XDRCFjel4hIg9r3t/e+rBCB8Kzytx9Y7/12u5mZLpo0m957732MkVoFxFgK276F30sSqho2zO6ZT+Y8qsosaIEKyIgj2DF16hADwOd5htGvEeCmpt1tdV1cqiv3VS266zCPBA/us3R4cHAisLrq2vV2W/ttAY82zYYUSJ2xEy4II9zW1SFObXtCgGmYdVVNR2DGQyAQI2HNZhBmhm61sjAQWrjZGIpBgKPrGINTgWC4IeYdqZULAhjNp1AEHUFhFawGkLtkatamfLrNPV1xAski10O2AMRBZOYGERmOAkBgGJIhGvLAWCEs0BzAkaVyoIRwMAehIVFCQOUnHWvAotANCKAETgQtsATCUEBP4qC5O4KYJ0+sA6K6mxvgIBkIDjCyDe1RgpjYtjSTXdWR3W0dK5BIadFmkxLuhhGIAWyXiw51iIkmElJDhlyDAhwMEQOIOMV2BIWBMJBIEFIyEz3cXT0op8ZVNag04a2rArqa34YPHDwRAkKQh69dzbaSARHOpxMQE1G6AGW5JLlS/5Hk7P+9/TtvCPCthOa/3/b3TVTimaj6hKP4u37xb94+HOFft20GE8JFUBiEvCAgqqIRioG7m6mpR0BhFmxTnc5FJuGCyBqGwBAcIBDuiAOZdiWnCF9dJ8MQAsJaailZwicRmeZJDRFsGCpgKSVb1Vt2m4slEwA5Qnoz7jZS4EABjugUARAEBqFkltYo4URYAemy6k251hIOq2JC2AXS+xZK1nYiOMAgCKJIlTYD8vuyug6DIAqyCDdbr27Qe89Mo7WGu3DCuq5HH+BYd8cY6qaBibpOpmxE5GenaQL9a5QV5vkE4GOMZVnM7CDu/z22bxOVrfwZaH/zwPul7/KjURA7SH2MkY0RIpIitUgRY/fQVftqg0agqvdwjXDCYCEqhRsIisheTYEt+mJG3zBrCb3OKEqHursTJuvjFxOV5x719zsqHzKB7/uj/8qn7PuOhLiLPn+bjZjeu3mPJX+AJxeUvKrb3iAafVT62pI3t+vSD3HtTBq3YJpo1kXSC4iSmAvh0Xtfev/y9X25Xpf3dxtLZZ+rjCY21VqrjzyAfrtdwyxCtfeIYMGlr6Fg3czitoxb185sSIExT1VKYYJauYKUiEIIiILQqwzzuZRaGIn2SlxYBO+TNn9jRjbP0x6Nb9nLvZwWWyz7oQyU5lRHovJ04wCI4/X18+vr5+jr62IhykFGw8j+6Q9//NOf/1yBCmCMzoywEnISQ+L19bWUkh3RzeXWPfe/rmuiQ0VkmqZaa1ZJmDkAHIEAiJmEuRUsjCxEJfoo26NEVEVqAXArtIlv7lvigpiIiTddsHTVIEIkM1vX1dXe32/ucbvd3t7erter7sPyA03tSFQAoPfeqSc9N6e+I1FJN5VHiYJ8iYiYSfstWynZR71cLpfLhZlbmyqVQqUQA4urIDpA+ovEy/nsK4s76IAAYAomEAqmy7KYgYYPCCTKfn5e5BjOhGyofVyul/fL+3pbrA8KoEMLO4CIRYoGuamDLmFBiFgAuQ9fulqQIwFTKCAABUSAD4sIEC61MJaXU5mFp1KEkDZLAgMPDCwsU2vN4jZSI7szCSCAqXuW76Ayz1UmoQLODAg4VIaHuapjZgiIgEyA7Eqp7RDZU89qMTCmxjyhoQxSlxKE5pSJ1lswB0sIA6MjbuLiiEEL4uq+IOR8ccglWcTqGECOEAjEwrVqEXNXVl9XM7dwlGKIw6L7LmljERyFMYBICooAMKKhG8XJRzfkDkCAyAKMyCwkzN1sA3gVKfl4MhXEGMPAnYgEqDBTQAESR3IAqk64mfCEDqCIjdfX1bBwIRGuXBHEHdfVfQRU3/0pI2XcthUBiQ1Lum8xc6pKJI3KAeD/fZmk/739TVvsYlf/7sXfX0hUDk8ceEgn4lfpK987qA8JFv5nSU/u22/OUrLUA09ei+m8gfFSeOKoEBAOZsipsKjgo682unoCb1LOh4rIJLVmWyM80rpgyyIAkm5jWc+AUAgMM+C8zKXVUoAZNMIsmImYiYCB2jRNwiK8dSApu3EZasQOgUxNXEqkOECQO0TYRiXwYb1oOIcTg0yB1FWHowCYxWBQg9TSx9iEI4mCNs4iQCCLlFqBRMzQlAFQWApFoGG4bSvrsizLsiTGOqewAAxM2RO3CI0Y7kPNkBLImp5dxCyl1Nbmeb69vX+8UXkF95v2rSZ1AAwdhJAr7i9/cLu7sN/0v162ISJiYwdHIgXy5jDhAMdfkkX+9e+Kx/d/bHU7hEdkYAwO4R5qrmrEwgCMUDEqWsMg8BFqNka07p5mEb65CmVCsgG0PRccQNohcdv/YdMS3SwZzMCcgOIu0viEYXtuTxzJw9ZCf7TDfMB9blSh40Q3c9Pj18cb/NBIxl/uqGy75NSJdodwN38EiblZkswzWdnpMQgAy3q7v83N9vSJwoevBJ6nYO5j6Dq0d+1m3cPCTd3DE7lbmEvhggjWK5GJiNAxxm636+W2rIvertfr+1fry83HwrhORU+t1opQCFBNl+UGEITQxwAAD16W4WY+3DXMAhEkax0Qc5W51dfTdDpNIiLCpRZAHOHXrkypBIssMk2zk5pBMCWmn/eE5I7UQgDZW2x0BzFvIExHZpEiIsKp3rCNckRk2HeV7bjjFjHHdDq1eZoJ2zxVUAgSkCD94x/+yMyh3lobEMg4woJQpAhEmyZiTj8l2nuAWc5Y1zVZcEeisuG+8MBablSWbEAzMyKHeFL2tRtubCmMgFvva1fzQCAmiQhwtGFjHQQTIiRfxcPHuvbe12XVoWs3U7u8X758/dLXzsy1FAzEHFqbbQ9CQLjb0BHg6tSYiERSQEGOHp2ZuZObpWxi6q1tZQjE0a+RaF6PoeNyvS7rmtC4KrWJNBGG8NHDdvIQRKutmQkSA97UwnShuApxEA6PYIVQAA5MEXpGLsy6OiITkpuv19vl/WJDCVBI2Ekc3IEDQU2X3m8LjO5M5cRASBzEpXcdwwAl78ZGMs2yF1Obap3bdDq1Ki96rUytSKksjExISMFkzkwspYg4qvY+HMC9CAa4YnQKL0y1FqwSBIEcGIjUnQb4cB4RmshnZkRBpO5gDhpojg5bbzCQEWNlYGJHGgSGBMihYeRqcQMmIAHhSLl2SAsXIAhmAIesDgIG5X/khN15s3QEKKXV08wiWeewFW3tGsGlBYDGsIg1wCO6JzoCIbkzLDkbA9J0Oq8LebebGnEUEWQGJBJqpfboRFi4NKlNCjGC1gAb64oOBEgERMiQwYNDUBAAERAGsqMrgAOmuDSkpD0ysHCBUhuJA61hYbFpS3ugE4Ogmw1V96ExWpuyz5lxrZnlHAL//7H9pwuC/6rtY2S1xZfbusnfRFZ/4yb+EOwQ8eHJGM/ZyBOeGAGpQISnxIE/OcTjN30T3FkE6XC3vfIUtwQU+ngHEUgQAB+ZJx/e4t/XeB2muZMtTn/e831/iE8wvgeseRZcj9W3sppTd7LYPZb6UhheC/z3T/D7l/nPP7ycWJY1vrp3NrBbHzf0Egp9+KK8RFE+yfSJ2ymkrYU6QwB0N6UNkCQOgHizhR3FKSM2D1yGKiGTEFeLEeCQzrc9ghClcUiprQiVAsLADGa9tdljRdTCwWhTKw6x9pvMZ43ovRdmW9dAjBAARmjEhKTMxkwLM59oOrf1y7UvnbEr2M8K6DKvWCsQQW1QJvN19I7LKED6D/NktTDTTGdqra+6dmWmUtu/rNdc6Ug2HtLSBw5FxK4r98EXVrdAiK3R7B6wLtfsL6XeLBE5sgUODamTqUppRLSuq0f4RponCheWVMqNpCIgdB2AME9tXZfeOyBILXmj69SKSOWCsA3XDJ6dEIkdsSJFhCF9E3ID4/dBaFQAwsHdPXZAublFBCMCotDme5E8ZSbwCBFO4n6GHccjkLhkd9+0aIgiid1m7s62FGYstKgtXdehfVUMlHqqYZPwqcRceg2FpY+xDh2D5Nqmr0u/9N7VsNRWGqIwMzJzoKAYGEUaBoFbd/SCBEbMItSmOo+l0zBeOnx9b6fTO5rv5MIsngMhEhOELbe96LHxDjcuhz8QzPAokmzOia6+JUYJfMxc1t3DQHKcROzkH9gnKwqL4zV3D08cLQCs2sMjMkUJIMBNvBR8wDBXNTd1cIBAMzc193A1iEi/9c39x1RV3fTEy+9e5woGMdzj7Tr+53v/+WaLwTreHcINPcL6KISvjT9N9U+/+wGcVrVOOM8Tc/pgj+V26dfb7W3p62LrEmFOMQyuQUNZhM/zZyYJDw1P/rqHu5l7B4gABGESKDtEI91STqdamZgGubMzWQEzQ7GA81RXm+fTS+tRjATkPIW5egRNn4Hu2xOlhI+Mlp4TZoI2ITGnjkcqW8dh0vnUdzqWBoCYYv08n15bA8Dzef6CiyPTYv/46cf/65//GQFQ2AKgtXVxnl5YZKxrqRSl9ABn6QhIpMQ8z+u6uI5SpNayrmumMGYKEKraI3Z+DZEBBU3SGMVXM7sQgJiNPvp1AaO5nt97qA1dQdfoS6xr6PCNPRYFsY01utiNh3Vcltv1/bLro9n/8/PPow8fmvpBrOYBY4zb2oejBfimnRUEOMmUEl488XyaW5tUx7KsdIMRw1YNcxuGThTk3fttXOE6Vq3lJsLBZuZphnNbFjc7nWZp0zAfejHHoXY6zR4jwi6Xy7quDl5WKcJ/qq+yxjxA3ewaX8yWSUWqqRFA5VKkokl0CArHkEIePhHh6LHeqtvqWkqZ5+rgLIIRf3j94Y3o8uXLra8s/OV6+Vw+IQKRMcZY++iDkBiJiAq1aW61MKEXwWmSUqg1L6LnOjNiYRaigjiW67IsjAzmBSZB5nBVNQIA+NoXAkNQjLUwT1DNwowbFArMlLyTD7dVYx20dtdAYmIhZF6QtxRfYFfqNjP38CZzrkEegcTmHhTT1PoYQ9UQ1A3CsnaIHggOgauqpx2LkUf0CJ5KT+5faaP3YUZEgS4lCgsGuMOQaRmoqgWJWcjR+w09CGkxRZN2LmMMvS1noFZrleruDfQsk6ma2iDmUgFAzboZ1GbmgCC1takJkRCVGXV0Ew/AIHSgATgQAKIwtSon87UPM2jzSdp53Ojt7XLrPSAaml2XcPr966dzO0OwhYfo+9C3PuLmtcp8OglN67qu6zrUw8OGImoEqioA1ToBUM4E7g898O+zFz7yK/A5Tn14JR4EKAmeGPnxaNvyYTl/BAE9q37583cBQADoA6j7lw+YGPeiRHg8qrwQPqmZfaCeICccBjYpyX0S1ifWxNPk+wE48Hjwav34mUsh5hzZEPEhr3jcY3ZIiH4h7HmCSAQAZq7LQPzcn3g6wieM1W+mysj3BN22Cvw9/7gf/uOxfbvhd/4OAFLvBt4feKX/Sbbn8f+IsY51hMVR13eBeKn04yyfK/63P5w+n6bX0zwLxxi3pbsopWy6mSlkz8QRkSSYAxEIfVcu2EstxzcHBeR/ADtZ7/4iBhLAkWAGJKYCttAwy/dIJMwiZIBie8kOEH/h9gUABQIEeZiaA1FtMk3ydh02wPuiy63WRowIGI4WGIbukIkt5xRPEQph8Xa5nIgnmYZbCqfUUhCREFutasTMj4z5iACE3kcWpIfqra/DFHbS+Hl+OVwXVdXUa4B59DF8dBuaN8vdD9ILwt6dyV+fcSZmO2Xim+3DeLg/BX9tS4Wy8rXv3bfybHLR7lEbbhJe6Ij0695XsFcv8qY+tClTlcPd1ROontVgYoTKVNEFQ8IIzMMCwh01oEf6CiKxsBSRCmnwiIjAB7Ifnqnw+5/dzNZ1eX/7+vWnn8x0VoOXF0iENkKEx9552DhW+z2JXetiyyMe8F1bR2VP/0KzsL01drZcLz+cgfqDbMbxbwyDZ3zX9hJE72uEQfZNzFwdUhU0vEPPFMTUs/FomjyfSOyN7zaCh1ZvWP9cB47TiQFtDNO/vPf/8WX514tdLW7vP3mAObkHIXyaG8yVz9ON8eX0iuEMjNaFhQSMMJSwSV8wjMMoL0PKVHq4Ki59MOWTYmPs4jkRET4XgrgXlY6zdydzNwIzdAczQCSMRJHgOlwNggRlqid6qafkYgdA1HO6t+NOTzruUWmy/+2JmBoATgyIgtsH0IP2MYp073Ji+jCOUVhO0wxLtKlO8zwAipQi6sxkXEUK3UMMRCgi7i4iYdqatCpEZJYTtee1Qggiwk0KYpdEv6dVdJfrgXA1G4oBiOg6ImJdltv1Nvpw997H5XJ9+/p+Xa7XdVn7uvbVzDwiDWWW9Qb4w7KOn79eN7XrCDMbY3jEl7fr0BHmgkSAAnhDcjM1e1+76nA3Jqrz1KRMbZrnuZXaPk9tasy8rmimvZMIqRIgTHWqU5NakMnc1tEt3N1ZMQgsNv1oNQMATwgAAhVBoSBwBIPopsPNIACwr4PM1dSHgnq4K3jEMMBpKm7BSEJIwCKlSEUgU9MIgGzbWiZbuDUtg5AigpiY2NV0DDMjZkBc14WIGNGR3IzCCJyRMXzieqr48jK1QkwmDLVgLSREtVbKSTJrUIgaoKHd7H3EtVs3V4ihsfoNwRCMwE4UyBjuXuIGthLGHsf0dTHz3sdQ1whH5khIA2rhY6Ib5haBxCSFERUoVcUqMxElZqnWikQOW1yVy9nWgKYUkZBIHRyIcHMED/Ccx2BfzQEjwNQhkImEg0vBYW5pontfQRDxer24e5snAlTV5XZjolqrMLOjEWlWEHiz+MzBLyVEC24BQyo5p4E0vlJd1t5Vk101dNhWHjKEbASjuWEIMUsRcjdTD/JANRgKKADIUgp3xjEgMMJ12FhHrbVwDQEbPtzXZQ0PezAbSWgDIvb1O2ol/8HbN9nI3749BdK/IZiIDwF8Ln73JeyvOoBHTv++IX4LOvnPuAnx39Gd7eOXfbcfFP9mbPYfv2W1by+BQ3gKawJCNPAfKvz5U/vTS/s88T/+4XXiIiRgPoZGBtONm8xgHY8oGxEJgzHhv78OKNpgR/sgckhWya9tid6PDcmy1QsjnOi3PmzMUjgAVFXXRckrq0PXWAdyLcQYAY6hYZ768UhIpdRagLjDcFd7e/8KLABgGhGRujv5hNVSiTeXgwO3amZJo0skw7Kub9fLMjrs8b2uT22uFAxV1Zv7XCR2HPxWHtiuXkzlPtgQ8IHGHdpHhndb6Z0obzf9tez8X9lod6OHb3CGqYP07fZXe6wgEASYho1ws3BDcEESxqlQRaxsTAiBlvAGQPXoNpKPIcK1NmktuayBCE6ICTx9JskhBKI9WJJfLpcvX75EBBA5CxIxJeEBDqVhgkioyXE1HuVuC9/vV7hFWIABJJLMwSMsmaUQu7pRQFiYH62nhx26O6ofY2zPhvIv3pclwHKfOoYPjQgwj7BVF3M3NVVXC1UfQ/vadfhqI3al/OPrxhjg4w8vQ+APNpXQZR3jL2/Lv/x0+X++9PfuoMMdzNEd5lrPJFFCgiqXUyuVSYSJgRjy8RJqVVA1RKQUTn0d1R5hpmFgZrciJbFAh1ICIiKEEMoO28sQXE3HUFdQdUIwdSVN4L3RcKIReFVfDZwaNTqVl5p24JjmoLL7In5MVIbZ3mz5mOGrdULaWPMRFLFPgVgepj0kHKMvplX4pTUs8OPvPv/4xx/hS3ld109IjoxELy/naZqOL0jyT2x+I9RqTQOlb9EjxJSVwixhHDz7gGSz7+2ggFQ4mKaptTbPcxI/8ruWZbler29vb1/f3i6363W53fq66jhG4AjvOoaNVmo6ruTEpVlTcfh6uw5z9CgiBQk2QiAicUAwc2vtNM3n+TS31kqdpqkIt0+zFMkzSm/HWmt+6evr6+l02ogiO/EpVbPURzZvASAiPiy4sadPSQzITBsRh3UJGeF58IFg5jq6hiEXMAfiIEkNdCQ0s7H2wE3tUFXzGd9QTAgsbGZzrYWl996X1ftIzTAbwxFTzZeJiggjCRIBvDT8PMvnczvNhdAQrRBKdlukhcMwy1706vE++jC7reNfFlgcriMsQD1clcA5BoQxAHNAY3Udjkaq+dWBbBiBHcXJh7k5IAI7kSHVe1jpDpYOLcxM7JrzpBx6MABQSkn2jkfk/LMNb0QRQaacOjfxgwclRvimdH0IQgRgcxjDeu/JasuxysyBkFym3nsr1cwWtcQ0IhGL3Nvve3uZmYtEKwBeE61rZl5LEBIIC5UqjhTrCogePszUbYSZGZUyLDSC1UWcCadW1X31Ee5mqKq30YEQC9dodSzcO0CY+VGObK2lLl9enN67qj7K4fydFt+/bvu7hsQfuhzgv2mtf+xmICLAX3Ot6CHeiF3v9D/Vlf+VTb6tIv/9tkf2cMBztvqfL607royZBSDwBACMPoP+UOmfXus//zj/6aW8FBIMMF1v/XpbGKAKamCj2k7V/Q0iqmtB6sCaNghEQATfiUcJgB6oMDu6G/zfulG+NarBHczM1FTVIPQ3M87NbPhQ1MGKAZPMA6EgUoAEJJYDHcLCIixQkJBIRGoJQUPIWc7e3t7GGOfTS5ECwKVUdx+qjzXvTUc4/xh+Op0UAhH7GKUUIBymYwxzd/16JGx78BOqqh4FMe3N8mY9dFSee7nhD0S98F3E/bjLe8RF/+7j8DFR+dA5RbyXTfJt25QRYX+lbz05RHi4mqtlGV8ICuCpkEAURCY0jazxq4cG6VBL+wvhWmtpzfZgx3dR5o9eirCB6i1s+Lhc3jLNXJebhkkAsUgRTsBNgjcDHMC0P+4jDuBXxKUrxlYLDzc3A/BEXoOrq6m5Wjp/pHt6OHgWtrNroGY6hrmNoW6WLZoPeYWqutt6u4Rbujm4matCSu2Ej35zj6FDLSJQDXoft3Xpw5yyC2Se6lJE2VIJ7xPAus5WT+EjQgHNPHlYY6KWcO2sbFNgodLKPLdZCFrlUiXCiKBURiRhKIwGpS3rutYAX5bldgPVbqbpQ1+KZw3F/E4pIgBJx2hmFk51cnR0CAcfGZKSF0cwB3R08PAedFNblY2QWhEQFkGmdMu23TLoG+gXrOuATVfwCfqF4BRECIxpmkBChEnnC2zlCcob4RHOnDF3+8Mffv+HP/0BRH5Y15VLoMAqP3x+7evtmAHMzLS7h2OYDoyWanc2RgAIc9afISLt4eNBp3gL7iHM4Ei9wiNnobI1freqR6bfl8sl1be7juE6QBUsKLIHh4hUSJoAsUb0PnrvaSaTE7CZrZkP5ANTCpibmYg0oU+fXoX5fD59ev30Mp+qlJpSZsLGgUzruuZxllJKKRkHn87naZ4QgIWRaNOMCkePt8v7sZTmyR6XeozROydS9LYsGSy6+xY2ETIwFxEMD+ure7i6994pgBjujw+XpY/leqtTQyZizv7twbUIABaJ8FSJ8KFjWW0otmBAiEitdwKozK1WRmIkhnid5TzDXL2yCeX4SVk8iOBhoUO7WpBd1v7zbVl7/3pbflYaIBasQcRcmAlMnCRMr1dgdDIgcyQTHoRZ9EqNfkdxggHugSyCXEPShXUfbYUThasRZqNJI8S8C4cVT0JwS6nmlitahuNbaiFiEb5rSx5zUf7Az4qjtjlckyDVQF5W3M2+juGKiKfTKfZJL/bPjjFMtVTZ2Eu7nsReb4VagrC6aoClWhohBUEEmHmdJmT++vZ1VQ2MbgpuwT6RDHMPGGbkLsytQR9jrBAODtHNV1OJWqQURLktCDdwjZR4TmQR0TTPp3kmRAo65OwPQNHRD//PsD2GxLn4/fvu/Hn/v23nsQneb4f3V6UWj/HGkfnsrML/dH2CD9u3ZOL7RUR6Ah0dL8VDsp4vwCMq5EOQGJBo+wTZPbwNUbZ+BUQQ0qMr22NM7g+YECTAh2zySe/5Q3/iyZjlmSQNv2k7AllmTv4kI7ZYfxD4p5f6336c//nz9MMsHPauflt1vS63Wz/P08vpXCtOjYSI2wShZECAjEWFndBSOQPwmLCOb3T3CGDA/C8wpWKRoFt48KYpA9tQ2wAr+RO6hXMEAKKbqw4x8YTfuG9THjptkkdpLhaIaO7qgYA+hsda0WGmUooBMHghEgIEYCImAQBzCGRERmISqYFMQxCa0O3WY+3DEiyEpUytzgdtTlUt9W8Bc+nNCQuRTqdptS1caOFgBIqIuKwrE+XNPbS/cjEoLJfLe4KC0tntXnWAaJJaqfd5Z4d/3L0d86hoU75nQAzftGTvhWJ8eiIYWDdfTrxvj0MK03Nl22A/BtocKTfz6ezx60NjB3chV/zwfAU8jpDYcQAZz4M7RSACIBGjmrkOMwt3BmCSylAw5sLkhu6xmYWTgnfH1aAPjVTyqbXUUkrhwJSiJqJEwniEqpqJMEVSYtAgMDzE2EPtbaitvd+G9lm1Tqd5nnkTRWJhRkIIVB0bsH8/I8vl2f3WR7iFG7i7K9ggDAAgANPV1QJgHXZb+1Ab6kNN3ZJh4ru+maoOHTrUzProsWPMj9LvGMN02LhCBHhghOkIc04VB3MKW5YxxgBmpKIGq46196Hucp++iImZ8/GjsIDUuULzRGplPqMBgEgA2eFARI7AUto0TYgUEOaKmikhARCLTMwi7Byl1rLIGMPM13WNSKNGWrqqk3CkzsBmvIZMiJBW0YSE5O5ZqdhY1+ZI1hWYwp0cWTwMQz0USJGAZW5T4erEwEgQiBE6EB4H+l0noZwrbmoLlLczBzkjwHgTJiHGgFZKa1WQICDMhZ6aiMkTyUHuYOeXUz23tk7n0/yjU6BAk6nK9f0r7sppSGnk6toxbJj269sbIvgYgKBh4SMi0J1LTaPGPOwjKiq1rrpm31JEkBF864EsyxKuvff39/e3t7fL5bIs6zGxiKBw+nsAIqJwrfV8fpmneSqTqa3rqmMYbOaYpuruFIDZojTTXFBEpnlqU3v5dJpae/306fPrp6mUwjy1RkjhsYYN0yM0yWGc7Zd2njOnAsAgQKKuCgaIcLvdDiw77Qrsia8ToffbNTykr2tfu5sTWoDryGSWmKXWwqjaJQq4P4qJb5oMkfhDXfqqG5AKuyoQIpBgTQyPuQun7Cy9v79ZHwIIwwicJAoLATDRXKUVEaLCwojThMKIaKlVgOijD0NkJkPrCutqN1UNu6zr29pvy3obdtPQAAdIAYfCxKHFmcLWdaiIkyBIgHiQG7hBAGw2m4FIDFyQGaWSVGKkogeSgXb7I1UN8yKb71xe1ayLpaMO851ViLuUZd67WgrsHZXHpgruZmKwyw6ZWerUldrYoZSSPmO5wKVvmLoD731dgFJKqKWQJgJYpOer5+Ed3RhmmBsqqTICACGp6oqIhBhEHHM9I5V4v3ZdLXykrY3jFVYdChCxEjKVqRXmVmglHAGqPsaCpcgEbh4BzDLVGS/v3nX0FRHBnIlrKUQkyLXWoyOU1+coX/5KrvJs/gj0GAQ+l7ufdvIbi/Dfr9bj84vx3Tf+WsD59NJjuvC8Q3oA0QaC+jMQ7jlC+N72C8XQXzzY5x2G+x0K+3wjfu27nr/4w9F+71MfX/mlFOPbTZ6O6fEaIhDRQ6vonhTcb16GUx9v3/23Q5Mn0xGiuxNBRm2w6+pkMTvz7w9n88iYJyeghyvy+OOzQczTcvghi/1t6eO2LiIiIkGI99cqLxT/8Nr+64+nf3itP061gq9q15WWm44ORKWWNrfpPFEpzqG11LW7QzhihhNGeTGdgWMvotxP1h0xcsgmnj8y2FQdbpAulrDBVPY6xNZ4T04yAOXZ+0NQ6+6YXl/ohJkSOhG5ORG4uVqk+SykSYsFgISru4lQqnkGEjI5+QALZCBBJgqRQCYWwSkKXq5LXwR5jDHGm/D6cnYALKW01pZRBMR3ieFaKwCMMYgZqRiCiEytOcJYTERKKYC4Xpayqd8wEb2+vmY5udZqfcGAdV1hTy3uo0aVMHFhlLuiXRfBEEuRBBknDm0TIfFtaXlc6R/HAxMHBSIez8MHPMwxsOOwP996hzkFEKIfiUoghGpmSkc+c4zY+7/wbJ90LISPSFNCDFD3Pqz3YUMRQogr00RcMBoFhHuYWWpBYndcFG7DzZ1Fyu5Px8QJMc8afCLdwyOhIrUIAGhsDg7F3ZxbaYh+vbzpunz9+eeX2+38+vr68lJqBQBibq3RZsCaT7yHpwSa626a0wPMRmh3U7CBYZUhj2a9vfd1ANHbdXm73LpFH7YOVbVQZ2aIGGP0PETdKtl9Bx5kooKICXox1coDYZcAiWCkWioBuDkDLrdl7b1MU2AsasNsqKqHddh1rpACTI8JERO6TlQcOxPVEqXUVkMJGSsGB5ADCgnVWqaptNkAHXF4hG92NcDMuZxHNVLinqI4AOHuo4/e1QHVQH0wGRJt+amjBAXFYAwANzCMcBiOI2A4qINigEZHo+Hu5CRh7hTmILUUpsCK06tJVUCjoHCEAL1XsvLpix38Jnv5APe68ta1IED1WkphATcCbLUUlvDQoXInkUXm7fskjtLmUlhDUXCuxWZ0JwiA6ARZUEwra8DMBN0xfLm8rde3zJcyJMuHRDgAXPUOxSml3FOdbabdSTa7CtmyLMKYiK9lWXrviCAi8zwDIrU61etcuI+eDNTT6fRyPrc2gYGpjt76ecog7BiHKXidcTEJt2lq83Q6nUotp9d5nqZPn15fzi9NSnJU3G1d1uWmeRj57/v7e++91no6naQUFCZiVe2qEdHHgAhidPd9ZcYMBHNyk8IO0Pvq4RKiqn10QBymfV2zfcaELEzoGITOwszCYYDpk7Pd502myc2XvuYiZOEkjAalCDE7QNch3MYYZnp7u6BHY0FzIhCEqVCYF8ZZpDGXzZQTUdBJDNiwKJCueruuhFgrOns3X9W6+qp67dp7DHUPMvNh4YhEICQogoDhBGF6mpOcQVyIhUhKALpHQMcwMIdNqA1ZSIRrESEpkq1d2MtEGT2k18jjbO+7XdW2BsdTWWQrO3pwEYlEcpajbZJviwdmXe48B0+pDRGZudZ6OC8l9m+Y2m3s4xaFa7el987MCGChm85IhLtnS42ZmRgoBqIaI1MeRh+ahaBpOjkgspQ2Yx9jXTSFvRBut2GmQGAYXOR0PtWpIYbpeFu0+7iuN6qtnnRsUHCZ26nA9equfSBiqFFAIy61+t4yOvAUH1bY4+dvGPPw3Zc+7OJvTlS+CYnxl9/4nBP8SsD5ITZ/Lq8/f+oIORAe49lHmkDELwLGv3Pwzy/Fw0t4/DF7Nbsf7sfc5lfq+o9CnfikSvUb/TR/+0t/Xx+VpyGFz8eRbff8OX6tv/Z8y//9D/J7W4KeczIqRD/A+ueT/PF8/i8/zn96nU4U4PG2LLdFf+qkQY2nVmWapiYyCzQ2jI1nkQpphpu3FCAgAfl3zyaZ9BiQOlHmyc9DZDYzBAXUCIuNiQJIhP4UzuKRne/K1r9pQ8wyTx+xLG4YQcRVuJZAGggUQRAI0N2Hew0CACKuTWqVYdiKpIZrNqbd4Ku9Xa/LPM/TfAoPiw1YnzDfXHqR6LYMImqtsQjV4ghrXzM2kgylmHOOm+c5p2khPrWSpdY87AeOClHEkahk92aPsbbpO5eKrFptDdBwonuictQbYD+jI6zJiG3LABF/TfXrb94eZ73N/zWntD2fgk00DPp1GVsZN5ixMDWmWUolkNDIAnpGvR7q0T26u5QipdRaS6nETyeyraYRAGGmviOw82oDggd6WIQRkplel1Xf3r700ebT+XyepimvfGuNmCNi6J3d7js2IJWzvi6ruYGO0BVjNMa51dNUauHL15+ut9s69Kcv71/eb91jNRhpzG1RWHLNSzRL3mUPp42NEABQpLBwduTCVMARPHaAJXGyYiDMbsOGqkGAu8FYzCxCwY0w56stZntIUAm4llbrqdWZwkvAwOl89lcdbIgoAOxIEChIMlUlWiMaxKVbEWxMhURqpWmiVogIIqboEXG7LQCgquval2Vdlu4BziUQdY+/t36gWWEuSExI7jQCicKpG3WFoZEEoUo0EBDChzkplIJCUxHkVmnyUjsLBQYGghMAyB2u/Vikx4hPrUBs3bC8LEwsRZhQ4lRLIUIbWkXO0yzCYD7MysTHE7UBVbdVGJkIMNaxuOtUC7moxvAI00qpDIBH4RnDMRwirpd33GsBBwuFmYm4d2eWiEhAfD71iNjX9UDF5OOc4zyf7lLkkaBiZjmGa2sn05dpWk6nfAqY+XQ6vby8tNYk6+5j6FYtTsCXmtnl62Ub7eFSS2mttNpaY+Hp0+vU2svLy/l0mmqbSi0sy7KY6fv/eLvcbl+/fn17e/vy5cv1et0PowaAA7ibuh0ILhEpJNM07xWqcPd1XbNMI4Uvt6vqyAqR7nDZMcba11IFQzAiGAmYQ9jdCJDZzR4jJFUFdevd3FSTWppcJgTCILTwAByqa7YdRg93ISGMZE+JRGUGwCLchKukNBxAwMBiKBFFnX3V5bIuqwpSm4Obqke3UIfhoApuYAPAMbp7IBBiEBKhlER4OFBAcxYiQS5SGksJC7ekyn11IDBDsAgmcMRgQmGu9AAeySXDkyT6FAb6M449J0d7mCG33INZmA4w2GE/ukWHe9UJnlHNvfckeR2xY45tRAyENk1utu0biVIKOLJpZ+abXXLymnKgEmCggRMCALETeYR6mFpEBHYgllqoFCkVx8jKpjmkIk5YeATxrRQhinBjQCFRDgv4er3S1E7TXFkwkHED/iZaafSuqkyUC72r+UaJFH+glf727UPTIL7/0t++/bvv8Ne/6/i6RLE+cKX8N6Kz8Htp1W/ePtRn7/W4/1e3v3Oi8sDUCQBkfkrp8CFh/P545Qdu03/kuDnETKdp+jS1/3OKf/rx/Ptz/d1cXgrr6Ldl/XoZl+69vQAwFJ6mOk3cCs7isxCC9SAhxM01HHzH3f96YEsPBJWt+gJBnLL1RECA5IeNAQIhAfFj6wkRKbsHv3mIw54Gutu6DkaKQkCtNKFWusEIo2ygBfRharI1wzDm1ubmt1WnqTaoKEJEBhEWGtr7eH9/t4jf/f6zg+OuUuDuSYRNN4BgIqLGDEy3demjb4kKSkJZeu9HylFKcdUxtLBkspHz+34qzhF5tTKdSEPJrOC22rKxsLfFOfcJEQSHail9GGy+m0XkR+KBpc3y901UjkeAAoiCHrfNMzjco/fEGmFhYc5QoEylzIwUS4AFOCaHRb2bd4vV8PVUpUgppdQCxI/nbGaSeoijJ6rKrGxpIXg4EG35KAO2UoG8q729vb99ff8LUcoeJJOSmS18GbYzqTZDzw0jY/aX281txBhhvZC/NPn0Mn16eTnP9evP//N6u/WuP329/OXtfTUcux7ATE2lJMhh9K57f3KLMPbl31PN17dCqY8BEASAAcJSmCsLBhigmpepFaZg7hZFfHtaIxkXW2i7YQUBAIDBXl/Pry8/vLycVOowvVlvVedpRJBMU2r4ZW1GCAfBLbQFf13XOQqUibA4N5fmUlEQzUkGUrjrGIuq+kbrNzWnRr5PC7Br5jDzIDJjPICBWxs83AOCCjmEdyVCRgBCG7BWLFIqY8yFTWRFRKbKHLABeOkZQ++7CSZjSAwBwEKILMKlSGYJTPxy+jE97L0PRpxqKyzhrqaD7Vh9n00z0dXeL8t1dRtuBsKtIDbCQMJ1wIMiAu1SHOEOoLCXkHNE7SkHARaRchRub7dbzudjKEmFRx2wPQ3DnRIAe6EqexrzPE/TNMk8IY/SMszKIsv55WVq9TzLxlEOXzNRSbyQ+s8//RwOFm57wxuZSRiYcZpabbVWKUVECMnMlmW5vL9/+fLlcrv99NNPX79+vV6viDjPcymFWXKadve8gBvjpbV5nqYiaVSVGbvvRiulSqw+9kTlyNPyeg5TUpVaAjENGiUCMYjJ1kdHARjJGlyHqXXaDDwBsicFFp4cOdVxG0OQLm/vYVGFOZ8asCrUSgWJ7HGEuWOYuSGOIuRwMysDfehytd6jCM4MQHuFw8MddIT28AFuVpwAZWsKl8KFIa3twTiAmZkLc2GpRByEQQ4QouSxacUipOYdiEAVqnz3dEqbeN4gC/AYVT8G2QFgEb5bbT4+m6iKTEcbPG18fE9pEhCaGchjorIua32puTClZMIR2YfBxJOp5q3kACSCrUtja190HwBJRMkVE4nBDcISkIHISBKqw0xVb2tfR6/zdFTpMnIIAHRQNXdVRUBvrc6nVhinVhbu4m7ub5d3Y+ymZ64FKNTrbpOiqmHWzb5+/dp7FxELtP1C5TR9X+l+Wx36uLzHx54Wy39X0vWH76K/ihzy27/rPsAQkO/V+98e9/LfrATwmC9th/KfYPtuovKLTnnHD3ns+PzSL5wQImwy+rBVPe6v7CB/+jd44t82sH7lzb9t+3Dg8JyWQ+o5BgSGV8LPU/3z5/P/8Qn+4fU0FagQpmPp4+tN31a/DJo+vQJCSdnCCiJeBAsDB+pOWHAIgwjEAEqRzuOyfBwUz9C2iEDPq0BAxCwEAWhIAmGIAYib7uJDrnfkgd8Mu2+2Q4J373+5h6muHZAK1sZFUNAjFNLEChlcDc2zaAQIUYVrYaZeS5mooAgQKfhwZ6Y2tWVdbu+Xn376iWRrYhBRQFj40HFb1ts6SLZZlYhgX0SJGeDefjmfz+fzOSJaa+vt1pjvHbuHgB4AOZweQB0AsDdPiDzcNSOew6nazLarnIia/eod92XzOdkXFT9oPwkY+6Vn4FdmNfww5n7hvmzvSSjH9r84OipHOXjrm4Xvo4SYSBhCACpBY5wFaKiHAoaTq8XwGI7qYB4iO8+Y2QF3e0cHCHeFIgip8+a2+SAmTyDH5k5lpyCIrv22LNxO67Ksa0+aT944Zg6HS1ffaIHe++h93ZhLHoPZzVzX0NEk7FTZz42h4NTXq40eAZRDNBuVQIxoakxCu0nHJs4LCIS30RMhR0/XCxF5LjNsvqdAgCLCRQiAjJyYpKCwEqE6uBciRwDgSkyQ7HEsIrzLlHH4+TydXz6fz2eVMtQ6rp9WHqgF2BgcKIADkSMIQtHWgB5kCsDIgAVFkTWIA9M30gHUo6st61B3IAoky1wzwB70hYhCAyWAKZaxGbcCgNoAj8w/CzOaEZK5D0MkBnOIQdUEKcIYgiiGjxJMUgK3FjdJ2cd0ZOk803RBOMfahFtrpdayP0T5NKmuRIQegzhtNwOShQJfr7djsk9f6v1xwMb17fruoeEoUefSRKS1wmVe7EtaWiAGkcsmJODgXiaC9CDav+iIAlVXiATY2NDx/v6llMIi4cpUwQEh6C5TvAnK9r6YOSKVUltrGTowUyvlPDVtxcyEeZrn0+k0z3MmKnPBA+zZx7quy0FseK3iGcUGbEtAWpYj/nRd0TVMXceIcBym+uXrz19++nK7LZfr7XK5vr1d3P10mmudpNR0PE9xx8x8pJZa6+nlfD6d5sI2Rl9TamsdNohIWM6n0zKWQHB3EoHsFSM6YTAd4TUE0KFsC7Hh6O7rVKi59RFmAGHm6ZwKxyKOGOYeka0k9XZbrwCx6fQiMJIIFWE3JyEAUNOIwABFWkoLVrEQBjAfTt25RkEsbh7hYIEBbmBJNdEIh8qCSCgiSefOOjQyBBVD2oxACxA5otHmhitMjqiYK7MCEmEIpRwFHXMvuOcTl63XDw32x7xF3QOeRdIDzIzNNounxMMQMdHYjDtdmBCRMWUpMAHcrmrUCYAQmCkVJxCAGQkpAoWKAZo5IzEAE2V3OzyG6hjaex9dTaOUdZp6rQ0EMLGxFkhAsgEuzGwMXZZFh548pBUEoAwoAsLDPNTNdFAiQZmmWktlG0rM4KEBy9KBrwQMLSZkdBBmQaKAGJboznFdYlUSBik73SzVVI9gfFvg9uUuHhbJD9FowHdCmoSiHp/KIO5h/XyAKn3YYSKsAeAjrio+vPeB15Cf2z71Czi146XvB2AfXngaYBp3/+JnONLjeT2DkZ7ytI+tJ4T7p+JDrJKrJwKie7jb8Rn81cznuGb4cYffuZz/1ksftsN9Xu5dyMRWPhxWX1dIGRpEZEZGZIKs4S++36kAka3wbxbhlcDTmBUQuYBIbCinIHTeL33id4/jDg8ApI2r/TQFBD03BD6gFX/L9nTHEIyzhAfZBE6vVQAAaHVaVM0BEEuhH0r9x1n+28v8pxP/188iHAb0tujX27hqDGjWTl65UK2V5xl5iqjuFaMyUWGnAk4rEzOQRaAFRQhEdahXu2HElmKEq6qrYQAhrjYICYWIGEHQNXRQKefzjwYLglOpQkSg4eSq793GshDLHrxuxQx2BgTcPQqfeotZclYjzAAdsxJUgJiLiImABpoaFQGG6/tC3EheKjUL13BzQpRzw6nQonbr69sNru8LrCvoVOq51bNXGR4KRhVffjz5ajbsbbkM01LK+7KKcDdde08LUVXrEe+Xy7r003SOiNGH9vVUa2Fqp/n19TVdQH30Kmy9M1OG2QgernvUwaijr93dM0rG5P4jMfK6XpiwtikLToiY3uphKVOJToTuuFdbc4jW0hAQHBkFwNxDqLQyIWLoOOYHIkIid+cNk/ZhJGIEIGAEDIdWqpFlMyeYIoJyQTQDAAukLJgd04c5AwpSZZlqvd5WcgSCr+/v7kjsau5KtdRKcKL4TPFiFxrLEtfudjG7OF7Uf176+02R2qfXsxRurbZWM6APBLPB7NJwde++mKq5gRqRz6dW3COwhKiqO8AkwKJISjRK0Yjl9u7mETpWQ4gBuFwCAQPxp9t66G7YwwwAgGjGm+EGVkABFDKhLgzMg0gpmBHQgZwan4x4aFAFZ3IWFsbSSIe5Z0pFLEhUhZlwqkWEN7wQ+CScEh211NM8l1rcPcwjYA4iFgfsZuxeEUEEWJAIHwDVRaTUgohMzBivn6Yy/w6KNK41zIve4gyTTgpW2HbVi616EKGlfOVyPr+s2m8r4CwTT8iCEdG7q73f+r/+fPnpuvzr5fbTX976OrrB4GIRY2gpBYV1Xc2MCSgy3OMVSgpghRmCCWGlmDwcjAW5igIAsxNFRCFarY/3LxRADmJapXJBAggUJwxEIY4IRmQBJiCMUqgWKUyn6bWwTNNUW8MEPpmZ6nBdFjTzoWpqy7qMdctGHPEvY9jeGBljjHFXgVP7iujowRFTwUJf/ss//CNmi+/0+y2ftRGmYBphpZVWOWwVpuvtCmbZYCTC3se6XP84t7HclvXG5FRguf1ldGYWIm4DhItw43CLCEfP3i3xWWa0t5c5+jzW620qZZrT1F4oHKkyMTHN0/z66fV8OtXWCPHcpqx9eGhE8zgnpDFcP72yW5LRQjVl2ljVetdpwNJ1uf38hVGTZOgwbstt6T+9XX768uXLl3cLaG2eXj+//vj7UstQq1TGGGMoU+Faaq2fP39+fX0twr97nfrt9vb29h4m1F5Okwj/8MPnHz59Avy09PX9en2/XVGIp+YYxj7ATlHMYll6m2dpBYLD4LYsN1stpxWExYaFU8aYaOEeYQxM0pIA4x5uWbqw7u/z1N77z2tc+IQU4mbIJLVIcRSqtWn4xUOJ1Lybawwwm6apzCdLBV6Ia4wb6c1WAW4ixDCWdSyqI0Yw8CQMxEMYqXihgbASNpRiIcO1/jDdxdBBw8Mggj2SRF9bARxjqA4mCGzMwRWFCwG527qumrYnsNcZzY4uRzbVb7fb7XbrvXMpiMSlIiJE5mthardx1QepQwRAoklYwke49yUb+ultkLz8cA2wcX0PdwkvUlTH2rtqR0QBJGeI4mBjUUDEEdG91goMw33ttwDsY3279GFLqVqnIIqxXPtQcyApBadAAjDT9V//5/8Q5tvbz4x/9FGISHTMAJoGKgCFwMMvlysihgUCf/78eZpPxu+392tlkvD3f/lXv9zi0yebJgBMc4HKZfgSaoRIWTwB0Ofq3eNvLHKsDln+ur9NHsXrHcKTk4a4Z3gAu5+y7TVD9GFHvBjP1BaSx4AejpQhno0ykO4E9+T/4Z7EEgLSUZ/cmyF7zI57TYsIh43HU37KJbA8XoMHtSknvifMW+S2Z8/gm7Z1ChxuZxYAADtL+fiiAzQOYX7/Fe+GDQGALJAn7oBp2rgnigYfmlf3HYLegT/pcHTPVh4sKTefjD0/ig8WgHHPWOx+vFsnY/sU7vLEiBjPtKEPW1YIIgIh3OEXk6wPuWfiB3IVCCAMGH0c/YP4VUrQ33dLNkdgIARhBB9Z+HX0cAOEwuV3jf/Luf3zXP/b+fRDYwBdXZfubze9dR9QQKqU1jg798QcSM6FSpNaoRKJ2To6M7FIVR4sgayIcTCPjmLl0+EBIkY+A5nw7ZaQEbh3Y7YhQ4SUrRbcsuDNuM53fZ5s5/xbVyT/5+7DBlJ3CiKep9NAobXDnusFYAADYAJNwTPRciaoIiyI6BQI4QSAEbWWwnLT7sNNTUphZnRmF3N/e3u7rcswBcTz64+AG1AnCe4HdtzVeu8HX+LxORdhAMjqlJnhzlQJj7nII64jEepmlvZqCfrgzRX7f30E7Vt8o8IRmYs8H+f3Lvr3Ki2PL8XO1fyguY4BTBThOgbm/AVZ8wZhqIyVgDEgFGJ4xIBspMRirhFILMIly6c74yJSzSwi4zdEB4xtqgT32PDvDlvTxSFMfQwLcgoe5urR2hwP/BM3O6ZzkXKY++bej9NxHeFBG8WamQWIkRmZSmnmQFZKxXmCAhVpNuCubmC0YY7EzGiX00VECyfmIiSb9ZkTIoUjwOv5JUdLSgjQRvTPjlkhYg9chlazARHMgBwIjduHAZADTDCmudX51GZhH+4qtpaiUlAQIBVfY0tU8rNcCtXSuyKQAa8W67AqiGZoqmP98nb5crm+vy/vt/Xteu1dt6VPiGNbTInCzIYOtGwIyNU1JRoiTAioiHmoGjJYsG1rawkuEaFArg42CK64DGmDa6O+UpnKPLXTiUsTBJFSW5GCL6f5fJ4IPXuKt9UAyRCXYX30pJ73tfdh16u7ZSK6qaZutxjxp95914yGZyjFcCdwdODwMW6fzicqQsSq3VECIzAcCZCSJ0RSmDkwkIjYAqzsgBMOrgBIzrWcipRSUtHL3dUUxhAQZrWxkrSspqEhEqED11ZKbWbzPL+8vERYgrNEYCqV94Zw4r5Op1OCV+c6beom4BEaYKpp+7FOQm6uqZhtHo4AsK5jZSWF0b9cvnz5ebmtbkAEgX3pSUnqQyO9rWoVKRn+EIOHBRgxEGFr7XQ6ffr88vJyFqI2VQivo1fdYHUlh3hr2XfKzpeGg1sIIdHGmM/nOpzSJTYyt47tueDYxVsAI1IwLTJewK3fAvcAIAx9xAAPR6DCGPkoCxZR6oQQDOrYc1KCGOAWQe5dlTXl6QkKowogYhEE9ADfaGVwJ4IQSqtcpNQJSwFhZIJkOz25dwcCICFk/xtBHzSCzcwH9LH2UVkIpCEixE4DjMhGPREh8gH7zAVlo7396hLrj+gmxFxytrWJGADdQ9Vyp2aWtpa36yU2zxYCYFXMmxGBbi5SmNjJIwUHmdSUN3vTNJiOvuoFr5fL7fxyalWWrqOvfRgQ16aArFlYCPvLT29mJrXleD48dmxXEE61tOv18vb18v52u1376+srEuMIWB0Xi+vo43o1tDaY2Z10WX3tMNTX4e6H3cL3UAbxhAjJ5eJ+87zwh7UyCB03yhw8rJjHeowBtU7H+7MTfkRc/SF7fGJ+I5A88OjM/GHZxTj0oT7G+pLtRwQA9HBQyLkKMB4zrsdYHwBjIz8dLz4cSThukMNsZ+85wbcb7kceQH6/kHt/advY7+pWBIjxcCsewvGjU7Ndy3gC/TxGNQp3LFQih+A4macrGvDwUsRzL+XhZ37wlcl073hRDiy+P59VHiduH9gmLsCUlMLvXLDHb3cAitjVaDMddT1O5IiN/sO3jPoTzgGIDIx73Tti3IjptfLvZ/6nc/mvL6d/Ok0/ShOKfxm3Rcd1HX2gAiNTEaltLqWxNGGs1Qpb4WiFS8FCyEy4uJRSm0yAihWKAIOioXNeFNpBW0869Mw5fs3TqfyXN9wliIiciDIEdDMdoIzu7Hs/+rdemgA1JVOcqE3T/Pq6OH5dHD6koAhDfRhaUGb0wtSm0kpB7I/vHWOMPnrssoyQTmvIzMRsEDAQgUVk6IB90jlSjowdH7nvuc/t9AFCR1YbEo0dERuIiWgqQjgf+8Qdfe7ukwgRHqZdv/36PF553s1A3f0RQJkr3xHI/hVkwQ/bQaTbCyT3y0tEq+pqAYCeyBwEZmiErfAkweie8RKlt6Ovw9ZuZiCl1FJFEh6/zQPHGeW12t0/gABsF/vyiFwzNRzMe+9AiMJASACc8I99AwQ8CNmBFuM+I8bTrCe1JomNIZpQmaRNrU7nNlVEKcsYQUZ99etqzDKPYFYrrRBv+L2DwJA+a7e1J+MioxdCEARmZqRC6HuiMk3TA+MIpEyAODzaOibVgWi4L08PK1ZGKnmLBaOdynw6zbOwd7OxGLTZJxs2QEsJuAuS5sdLKa22Md4Si2gea9dCoWBga+/9L1/ff/76/na5vr1fb8vqFmlywUwQJUmzecoPrdIBkGmeE5IwMiKBR5A5GDWXiZmptTK18DD3rhrm2G8eV5LLdH6ZXl4KESuzaiE6v5ZPn84//vi5tYkoHMxcTU3Df752tchALckSfV3X3nWYBUVsQKiEYe33H1k2Fo3vvhzHJVVXAidPdRqb5llEPuBtjmFPCKWU1sQUmClVy5M6nNR55lP0K3MrRaZpRoTe15R9S9wq+PBgD2NoTJXAmQGREBqx10an07Suk9ogyoc6eKJSyjzP6Qt5Op2maUoKwcQFwBGznpqE5qGq4Q1Papon672P0VXVe+8BY/R1vd3e379+ubxfhwJyINrwvo7326bfmhnR4dohwoQbrS6hsJ8+fUoLSCasGBiefo6xa6/nOxnREZa+cuehpqrEhYikFAQPd0Mwd0yN8IMRFI6YrkqpRx47Ceou4HkEiBkjBoKGR+8ESWBMxzAMQmAaSEDIRAaxmg337pb6+GIa65pPVtklfRGx1grmahZmRAjCIIwuKFCYZOI2tzqdAskQQBiLaABqDLgTgfcHPJUY9sHpm+dIWBxkOaLNS+egLR1TPZEcdZCcMHO5cfeu33VVT1HKY9543AMmiNFMVbNisj3RAD2Udk/J/JYteVD3EcnIiV0oIh9A2kG8Y2xyZOkFtCzneSoBZA69q4Z2dUAGZg9Ekuv12peltebup9PpqDGZbW7RuRaPMXY7AQz3qUz9cos+yMKX/v52Wd+vrbVaam0nXTXWQRoxzHWHMWWwvd+VD7Xqx4X4KKhDrnnj4fLGlktvzsiZnh0fe1hT+vXeyjiqltubCx59GGbhPTlBgLWvtL9ESIcofXbD7kcIz5ZQ+iCukL1RxGSUBj3mOo+iuBne37scTxyIxzz7AQvzMfp+2KE9pzofA2z8TfSVfDC2TwQUvN+vD1/9OOLjmczzgVj+hJB62MOHLID8nsceFdHc7onKtxvtx5pDbEtnIvOZ757zQ47lEUCR3TCK7TbfR9T39vB33bba89ZTIgDEjeqKgH6q06v4n8/yz5+mP0/yh8afhVjX98vyF79dVYcF81TqSWQqMhUSQi7zTOTEWhgEDB1ohxcyM6emEmALdgpHQHAPzdF7H7VHroKQKlKaTlGE38sKD9w9ERAFwobiUws3ij3Cdf/l+/vtltg/DKqtvpxfpvMLDBNe4ptwYZipkwcCAEEQUSsllT4ex3KpVYh1uY6lL2OF1BtF8Ihuqm4kUiAS53xEybnKHqRDW9eUaMyw8hg5CHD9+oUeSLG0M+OZ2Ey5MO0axLhzoImEEZmf+ND/qxvuE+JWG34wHDgu1CaF/DcnKrlI7Enp00tE7KP3PlgaBCAGRgh6Y5uFphISESM0TAO7Y9dYhq1dzalVqbUyJRiGjut/rOjujrBVK2CfKy1CY/OrT+Y66xArrRQmBgRGMjDF7DJTuEX4VhQInE/nuN+++6ISAApByGlTLehzxdPrfH6ZT+c2n5KqwVAW5dswJplHkKm1qWbHUlJBe1/mA+L0SsiUissYjuDCVJiFKbq6GWzBbtuTnAxGCiCBWvd0exMPUA+LoOcU8dgE/HCMQWImqC1qszqoE3AR/0a3tNbaSo1Sq3ArhIKrBw4tYaPrWPtlGbd1LF2HOiKXmsIQBBCFqY8B7sQ0Ty28JCzQA07tBESChLQFnDtNi2Q68/wiInWap9Mpwte167JYX3l066tLcRZqlYdM0/xaaJrLy+v5/HqqVYb2dYxufVn7bV3WYf/61czv7hD75cMATr0QIAYAI3gM4Vx3VtOD3tF2SYE2XH7EaZr++Ic/EKKOwcz6xL6D9LQSkVIqYTBzrZqc8v1ggonMMjRyFi8iUiakwtLCHFKVCgKCABx8EDpYAInpzXwgBjFMc3OXfc3yNLfNJsahEpEPzqHAgQQA5kGqyMyuFICMrogElu37FVbGwDAMDVMdfVmWt9syLJDE1cewSx9jbNlXIs9yzhGRUrkAp2jy+Xw+n0+n0zxNlYlirEEIhMDkEMOUQ5IHUGtVtyRzx8h4XTjNo0LdAiEUHPxu9JE6DFuaDRgR6MB7dSxJRw5brJX9XEdwBA03dwokBCDQYWEeCZxpGELMqAhDYXEb7upu7mDm0Zl5nuecmVMaQUQ8VMcw90JEVcQrMgtiikudXl7a/DLCuml2zykCCbTfR16KbfiOckfHoxzz4XHOs8vxmSnKPvBQpMIdXAA2xrZC/eok/0GE93HwO4vvxqCOQ5h7HwBAatKmXApTQuYY20NtdJ3OZxIm5zAlEWRal7VEnE6ntbs7rqu21ojA3dd1Wdc6n88B0A1cdZg7RCFhKXWa5tO5j9GHrn3UKQAJMAIJCHof6TwWkZdcl2X98uUNAqvc1tsCgEVqa3NAcjGQmU3Nw4lIioAHHGKScfzzCxs/aE7mcnMsd1uokW8jJiKPXYf5cVpGejT/0X6/L+Zmcb8RaA9vixUec6QHzafDTS0PG+U7clDPzeEt50ldW3LhZ4rMY+8C/TFegscshu6cbn9MVAAy3sBvdggARnaHmz+UAgOA8MFuBB/yxYc2FEA2HY8dR8CDny9uQKxt5/Cw7dzI/Y309Nr3bnnAUyH+IdSNeOo1yfGsHpHK/VNbVhthuYxgBET2rhOOuh9cXhoiigBTQ/DSGmxV8IgIpECg7pZ8AlMDfNLQ+MCOekpjnslC8L2XPkKoni7jwWcKgBTnT6hLXnlKjxCAPwv+8VT/+fP8T6/1lbyhh/efl/Uv79efwJylSOMylzbXemKuwgW4DvBKyExCLBiCSPswImZhabWeiAKqh5hbuCJvmtnxUPJHIs8KetagECE1c4XRSaQwZ/cH9xfxkVmdppnunhy4jfoMsZXEtqKuJ9Zb0kkAwsyPniIiMsskbZ6meZ5rq2uMvOBMhLQBq6qQBaqFWmSIAgGE0IoIwRgDXIi1Fgx3C5imCSho5Z/+8jUT41XHbV3SKSwA3H2eXo5AOcu0uUSpar/dAEBE0tE2K9lJ/n55eTlOP70UjnvfpiY7GfQIE0spIiz7hBARtIPNUtbk0DzJpMAfkiLcjSMgIlc23wWIvs2670e1V+MOJ6JjnUO8e5xuQfY+8nNty5B7N9TJhNMRyc3dti89UgtChABhnIVmwYIjbJhrxDDE1WIYrepLt2GBKXdGlCzoo90UD+0UyHZ2uBJlicXM+uhcRIgSPqluZpYnVllYBAJoFo3oY6x9Xfpq4cCERIjUuO5TWOz1wm1WX2MAsgBzoIC3QqfXen49vXw6hZksQwOhachtNQBugeyR1LlMOQkRATfoIwRQLYAohESA7gAuhIWJmXVZ0uNPhFk4m/XuDgED2MLdQ9pEgIHkARLgEfQ4swfgjlQUCqmFS0EmMEQmKkJFSEAAXO4dlbzCWTCOiERCBpNjjIjotrqrhhlqiFKNYlynYpGaJIhIEYBaEJmp1FLrpijt7qYOtQmVDPL66AmYZGaprc7nNr9M09TaJEXMjJzIgAP9coOUUuqrXi8hNOH5U+Nprsi8rP269Pd1vSzLtesydBl9mAOeNg9KB/fsum0lN7Vt9AaEB/quoI2BpQjvY+wYZrkZeJgRcrj+8Pnz6XwGVURkQrV9hsw8BZLsXogYqIQDgEQAcx1jMQ1iYipGJcxdARf1RlIEiMKRC5ZWwuE+IoAAAP3FSURBVCzAEDczK0BzM3d2ALUMUnGa6l5KJ2Y6TaW1uimATVOmuBmgcCCm0sWGt9gq7iSifUUP3j0iCcMdagmr3KsURkawsV7e32/dkAsC9dWcKWe5bD7nmJmmqdYiJZBwatOnT6/zPNdaE9bqEV27mqn72vt1XccYQdTdjgWFdmUJgM08IRCoFe9gZrRLhuynLMl+cndMgOi2YiYWBSEtoVPjIiVwgTAo3C0cIoQYEEa4uWo4o3uVEp6CRgNQERUg3YTGUOZ7lQQAkkCIqUCVXcIEEEBAcSEupQAGtZlbARDyEkQe5qoQnvW+cB+qY11772oaHoTIwEcBWETK1FLMt5TiHoCb/HRWaI/rJlxiLx6nKvSxk2yeR0QpJaEQsC/rj/9ml4MPu+EAcwwUdVuvnYXzvsSqM3EpxWxzkT/Whb722zraspS6CVUHBjI7hJo1madpUo0ipTZL7L2pmTrPc2kG10U9AimANAIBpLbp5eW2jqGhDuqRaixM5OsYY8GUAwpkrszal9vlcgGgNk1mQcRAbCLaCcBvqmMZU0GHcCGgkvoh95kzvb+PR/kx/GbeQhtMh709eQigjb4IABCIFhFBEQg7MO++7j4EflJ3zQA3U7tX6APiSXqI8Og2BNB4kOTWhzkKIfQuWrhl8Y8Hf98hJCfTNxj/L8fi+dVHpIrPwS3WB2l4gO2xA4CEsdzPmDaKRdI9Kh9fQE+lTULQ47sIEe/9CrRHcJfZA1gR7S5XlEobR+aTl2w7NQ9/aIAgPokaf4zS8YiP3I6jDUAQuiPDwZ86Ko/9mkfHaIQ9k/IADPT8bUtl/KFHdeQAGZipDgirKZ4LME/TNBXwGGpvfQRSPn74bFLxK4nKU+70If94Pv9nfNJDVPEcRzptZkYUHraQQa2llnZi/L/P9Q9z+eO5vjKR2zp0tf7zsvzc1y61tVObz8RCZaY6IQtIRS5GcNPObp/OZRIqaLw3oRwACYWlkgDPEGyru1sEEbI7+I4FBgBidgjfepq4DycnJCRqrYoIOwsKiRNLgCEa7qVpIgrfgMQQkJbUQQjwlKiEqu+KVRSpawIBDHtskYq3thkCDDNLwjogbQyQwkE0HIbqUNcCCM5AU6FSOKKbDuwrcCcQro13B99Pnz6p2dJXcCURDF9HT3zC169fH+++7YbxWX6OiEesRY4fYpbWaK/LZgJzZDh9XQZsLx0qjUms5/Adk+LHAqCqRQptHiW0JYJPMoh4PCG467TuVeHHIYpwfxC3RMXMPgxQBECkBH7n9fFj5O8yZbkxk8iGawLffd3vTtuwhUTMEt4E50JNnGH4WFL1wBCuwxe1rtAtgFiKUNKKCfHh6/zZgVQgldngSCAvtxsQtdYoIjD0oZrOzKc2MYuU2SDW3t+vV6rVEakwihAxPdA8PvTiO2oEcRAFFKSp0Hku86fTy6ezmpIshiRzQLndugOVkIKQvh2ZBJHbg2Do3lFHAAxnipQCYcI0McK9MIyIAUFbgg+IGGMgYy0ciOaQHkYB4D6OGx2HFSwRY9RWpRYW9Oi7eR6hMEAQ03G/bPc7E5G+roBkDqipPp4gG4gQIITSqE0NKDISsbHJBYKDGxViktamWksplYVT8MeARASR1Y0IIKKPIZLvbKXU0+mcT1PCsWLTQNEIB7d1uSBqKTGWul4kfLx/fevBGjAiBrIij+ABk9N+TQDTBxb3SSYiHCkitg4LMpFEOITnpIzHlP5Mb3V3YbZhhfj19TU2pSOOMCKCoLyIABS2Afzy+TBTCHIDpgIxAFi4ERNL0xgRoUCFpLazhzusLIKgTsPdRbgwAkSYhocHGBix63AAZyEIJKJ5nqepNcFSS9u3DKM3MI9l0LghFu5ZAYQ5YC44SESODopRhbBxr9Iqn6eptSZ8Ne9uyNyGWebe284RSymn0+l8PrfWAm9EeDpNL6+nWot7DO1DVwDs6zr6eL9df377erlcMvm+XK/vt6uPkYrJWQTZahMAQUi1uFCEK0Sk+28EERWAriO7lIWZUZLLmTcXGIAQCH3HSiAGBgGTGtgmyE+IYQQKoaaE4QrGVNAhwAIiYf8BZg5j5DBIMCHsYYCZDVfMRAUo3BEC2ZEZE786TVwbEwSCh699iaERmkoyGm596Dp0R8QxMzImc4CZSTjl2XeK/DYdElHJdtlevQKgPQK6i8vFDlfOC0sbqeMeBx9wr2zv5zuJyCwc2SBYBM2X2zv0IaWE+xjDMU6n07F+HfDUPsb1dmN5c4Raq4UDAApTYQMHhNZa71brULUxVndXM3VTMwA0jz4MGYIw+kj8DnKhWte1D/fb2om41jrUb2sf4x7EIjBTARiuuHZVUoDNWEIBoVQAMAAzM+xZcQ8EE4zHqnlYLn6wTf5H/gGe/TkiQAyke7QX4AEPUfBTOPfYzNqT8H2XgRu4bkAwPOGA4im9eQQ3EdI9KToAZvnrA53FwR61lR/v+HaC+3ntoKT9dB7Z+fEYSe9ZFkJA2MNyA0QPeR0C8ENfBoEQPCBz47neeeBEfqf7PwkIRC58G9IBUHjLgxCyh3R8yvkpbjmYX4FQ2nzke8/8hGfVaQR4mOcDAWlbgj90Ix/xfY9OZfDrPipHd8gBADPovqd/3/0Uc5ir6ss8//jDp3/6xz//6Q9/cLMvX778f//y9V9/+jmjw3jOTP4jtwAIBI7gcPBeET4J/3iiz1P577+vZ4aKFEMvXS9D39XeV714fCqvczlNZQYpVFqIOIsxAaFxYtgDAxmAIhNMd9PeXbtHBBO2IkBNWaH7aqbuEOhqWwsTwPGZWgUAAITkEQyRGFYhEXQSR8pH6Jebzlkbz0XzMer9N65MhKmt0a83bxeIHlcLMyVmYn5EkBGLhS5juGPyxomxVZlrm1tcFde1L+OrNCuzYeVwFxHken37erld1R2ZBItiUAgz8xPRYyOiJP67MAPAkagcwxcR256o4C4Z7DsQ2Wxjjm56x1k5K4UI/W63cscuZ4fh1y/Oh3tzL5M/Pw3fw+o9TqOewgj3JfBh/kVIINNxYLQ3cMDBXFPwJNOHjfAJRIhVapUQ9oLGsQYMAx+hGjAcluGrObEUkVKqMBMjET7WLY5yZvbUTc3NfaglPDoC1kVq4SIMGOHDdOhIsZoq5eV8bnWSegrArtpOt5t2R0BmqkIktUyPBaT71QBY0RL1S04FuDKeJnx5nafzBBFSbhbM6iZzUzAkJwYgXTvtl5EZ5GEatY0LCATOBEyAe1ekSKU9U4pd6jerowOyTubEEoGxUfQIMMzuT+eRexARYSTYBgiAKcKz7osUiE+wy8fkNldDBx8G5AFCjQkpzRahApwCtfSN3N+7jx5D3axWcUcRmectXD4A/YCELB7Q14EAqSdNW6fRU4C1CEV4OK6hOpa+LhDmPiA8wAy6w0Cy3i+lNjn93oiDxKmANGQGJIYsfN4jtselKCIg0PGezgMAAH0zsf3Cdjqd3n7++vLyMp9O7o7u6B7hRAWB84on9nuDMJkSMVEgGhGn+6VIFUm3n4KE4Y4ozK3UKUs1LNJttQAHAyRiFiF0wz0u+f8x9689kmRJliB2ROReVTNzj4iszKyqru3u2Vnszs6DnAX4/4HlPxh+I7lYEEuABHt7u7sqM8LdzVTvFTn8IFfV1Dwzo7NqepZUJJDu4WZqaqr3IY/z6L1HrN0dRCJ3L5fL5fJk0mstWXfP6FM2y9ehfDJmdjJ0YnwFqCBrtAFBKTLVErOZ8OkyP18uzx9un24ffryuL43XNbl8KtiUKzYPjYQpns4TgFL1fD7byIFjm528Xm9vb29/+tOf/vTjD+u6qioFP375DJGPdSKw9Laua49O05TfCRH3TkGokOEeDOrmott7Z4SZpSRDkirHg1ZBhESUhAVsBEsKfGirhjOE6IyOTMOju4uHqAvVg0zQmAMBuvfNmn0rAG2ftSEOxExooSKMlOM7f/h4nuZaKyQ8+toWVaiK7YGdR3T31vraemsA6CFV9whx2yS3NeAQwe5POYdxWzu3ZT+zqd1ndmkNgKrmxWPbWQCYley+7qvNKAaJWikUqbVSRK7X2+229p4PPV5TzkTyhOfzeYw3BgVLb7bcsjSd5UWrNeEviQlcF1+WdV2ZxJK3t7e5FIiEqJO99WCnCJhgVAE0iNvSgmJm3aP3fr0tPLQXxhIpRqB3b7f1Xg6PA4RJ0PcdVrZIeks5xMqAJPERA7N1VywznNSO4Xj6PJSoeUwD8FCSVn2Q02WkxaWQCttTIwCQI8H90L0h4XbUE37YyrnR0QlA9L0ywPYuK7bjx5SItT36chy+cT9uvh5b/UtUpOjDm47vk/LQhwECOZkDr1ceNqmHBoAeQqzHZE/Lz2PgCfCoYvDY8+n2cv9LrVrq/Y0PMKiHiEhTPlJEEqi/t1AEGncGC7sfT/LVRGUzRwfAYOTIEeARTfj+XSIJZvzuu2//9d/+zd/89V/94a9+r4Ivn1/s//V312V9e3t7/03+dzwoCKim9SL704RP5/rdc/3+w/TpXL59aka01V9avK54XfVza0tH0M7T06Ve5vnCYlEKa3FVqrlwaevHqUy1Mnp0VwNSz9X7uvTWB1aIgmryoZyt8Nrj1qaENERvwBh4CfN9B2HL1sc8zWbGzgARoRJfuYcchK6g/FkcFRFVMlc3NT0xpaZF71k2AMCsevS19e7KMCiKymmans7zNEcD3eERb29vXFaZilVFkb6uBKxWhIup0FJjv5itr3fe2y7+mDxF2Yxssx8y0Cyl1FoLuAtMjfU9IgnTz89PyUPJbAe/4Na0JyrZosEv39Lwe21JN3uWkRc9shfelXwe7/CO1iUoe6Xt+CgJ1Fp9Q1vt3yvSTi1ioDJIpK+FIkHy81yr9mpRJAqjwxtbd19ClybX1loPmac6nUqtqfgljyyaOBx7ouJ9tE1a784oU51Os6h199W7tvXcGoip1k/PH56fP9j0BNXm/tSWa1u7QqppKao22V2GhVttEkAAN3WhCE2oRXQSTAXTuU7zZKrQ6lC0WFHZukCDQqKI7SaMD7U0weqeSYaARcUUCE8s8qRqB48d3TisDqweUtJluwAQ53BbQYjcE5W8RVuiEunEKgbJjdEIVWgcanPAVmVXHWYVWg0AmAh+ySmhIio41yI0nts8nyazfrut1+sSLwm5zUL+HrwmgYGMYgrq2j3crUGEKZvZW+vrLVqlnySMEdEWRNdwZaAWonuESICxtuvrm3jcTOzTcxObpM46XWQOqRAVN6FqSr7s8YNsP5OQUAVj88fK55zMoa8wEzMoLGbffffdNE1sKyMkAgxnZ/RUkGO4yZDear3d2WmbJUquEq010aLK1PwTKYCJKNAppUn4mDWCkL6GDWNzzCezLiJSa22tk8gRBqBu8hv5KHcxg6wgjJ6oEFnezETlHg+lGj4jOtBVaYa5lnmq59N0OZ8vT0/zW3tbrp1BwH1jsW9EhWmaeu8RZT6VaRqkhZxB6erYe//8+cvLy8vnz5/bFjfnrXj58oVW1TQEEbmBRCYqFOlOVRXTvjbvPfmaRbL6I9wYHCSj34HCLFmWD0TsdlYhIOCkMxiRFkTJzs+6Z+8wc0WAZCc7pVMc6HDxANZ1vd1ueFyuxUZjodQCESk6doE6zedLqZMVBZ2d6jm9oIpwiY2qPvQe1jW3ldY8eUUQMRTd9M34k6KebP4NEWmqPtb8POGyLPlDpP2iWS4LsslFRMTl6bQXpPYeEUkrQ8clx1KuQj4s521tq63DZiCLETtGF2RmL7ktHr5Uu91up/k5Ec4ZOTD67XotRRMtuTa/Lm0d7HZN4ax81hFxvV4j4nQ6jTSsdV+Xe89j230iwluTB+aY6HFub1K9AxmomhJTQlRT4UYmfLftCbLmM7KYeycHB0YJxk69f9SBAsRHRr7q5m26oZf3E25Y1UyXBBtKXIGo9+pvVhDHz8ROZZHshfDnw+Bcne9XePiaIo/kjgN/no6IyKKwmMSha/IIxxAt8yFvA0FE5H91sn3LOTJbCOghUdnw5kBWFvx40+QAoX9ohm3VvP3mHEoJvjrv9d/3cdRhbDiHzMAgk+wnFOCQ6siBHYR/NlE5qhoccwsZPfztAw6BGhmmNk3Td99++6/+1V//zR9++7vffjfVsrb+D9fb//L/rNcbkER7HE7wL39kPXVsoxgqiiPLBahkjf7pPP3Vh/O3l/LtRT6cNPwWgbdWXhpuMS2Q1tURZmUqp1JmKyfU4kW7GQUuJDDNc1+XtXc7T5OZoAN0Ro9ozd0VaqJCdkY7naZaZW7xBbIqhCJUd+0U4db5G/czZdaEdIC1FlNt3YmudGW/R07CFFveVKnTyAqMUfcCNnBx5p8Pt2nr/yUcrVQLIyIC52nqPUld758RrXpbeoe7kgrQVGrRqVpVrYZeAJig3jyWt7cWjcq1R6kTVD1CBaWUbCuUWtBHEpx4j3BPzFuInC8XVX1+fv7w4cPlfG6t3ZYlItq6vl3ftr7E+HJZTzrNM3rHtktl6zznGPeKSH6RbTKn39tXEpV7R0WyH4JIBtljq+Ur2aMcD4z0b9+9jtNSVYlB4jomDwgPCxWoSS7lIiMoLMJqmARVYNvEDbKTa0SjpnZwUa21mBXbRYnviaxkRTl9A9LtvkV00j26s0dgjd68B00ZZN/sLUCWUk7n89PTU5k/Ui0QZV2q9yaQolqKFhPavrgnDXXcNAGlAapRhFpEJkDFpZTQUkoRCxMxxjzTplMjPBBB2SzqRmHpsIwmWU5AIYuJKemSnCpIirEoshWoRRnhGWV1zY6K6maRlTBixd1IhRg3f2uQYDxR0bz3IQNEKDtkYahzCopIETpwmiuz7K6eZYA9kZlLCe8StYiIR1Oh+3ozQrq7yS4FOQSpzZSBWicHEA4Mg87WOyWgpd1ufZpiXVjMe+/LTfpahVIlxEQK+rgrokKw9ebROn+wMpXTU8oDmagXhMJhVEOkjP+9xQmRGBhUbPHAmCKpHEm8W3y234lpqq2tdSofP30QkU1cjgys3sJ79x69KcPqSBjSGl0k5ZgCFIjlTs+1Uy2EVFLNIWuAwRawAbkJCBxbw2msIxCLotUKkYZ3nSI6T7VWe/5w1k2ddo874w7dZYrGkAEEIsCAhzKypkSiex9CxRESoUARVNVqNtcyFRNyOMgmliEiNu0mVZ2mSQ3zaU7WT3P3pffut9vteru21q/X5fp2bb0nrSWp/2bmEVdf6lQlZ8Lm3AoyiB5RTUUkeQ4mI+M2kVIqU0nPjBEtfFdJ1RjpfcJh98ZZJOOLJFKCIsHmIQFVoUd4RLbcHDICLB/KYkRmFV7KXhpnFkYlPTMszStExHJJMYMJBA4GCMWmHzHafpmspOxaBrUOtOZQVVMxm0TqQa14l6ClAIy92xrbt4pITr5vxu7NvYtZKVZqyfZyBkUpKpZ2H9n1B+DeW3OAhtq6B6GWFhcmWugU0VLq2lNVMYDozXt305Jw9ZeXtyBqLcuyXi6X3h2Ck+iyNjMr5iKWdQGSHt5aX5aV8Xq+nNe13a635p4+B4QSqvMMKqi++tVvvcc0TWtr69u1HEPAQXQyAHAvx8Ifj1VzqlqKRVEYIoBEDIsRKZbA0xj7DrnpSmU3gWnnxXc24Pc66cZuGePQj1fox6KslElMhjuZB7FVDXL53qIijixrC7t4lKzZntpYbRs3+ATxWNZ8SFlU7/GtICa7L3NHesm7eF4FYiwFpYppPKpq4Rh9lzJuSHaBGVl4R0h7qCg/xG0h5Z7dPDZbRO+M+TjcKBnb1pbSxEGjDDhmqgp9lBSK/Su+q9v6mrRnCoh3pYF2r1Zvy8w4Sl9XiOioGj18Md+cFil5h2njyaKEj7mYHgECJBxfhUTvDtoffvfbf/vf/vVvvztdnjHNRpn/3cvv/u//N/zTP77M8xwiDFFCSUgsfpfwe+xzwb5i8G2yF0JGwLDfKF2FqjSLIlK7sImjitRS3nAK+c2kv//N5Q8fyvdP5dOlPFUzwdvbp9fr+npdliCLo1q1qdq51Kl8/KTzGXUKYZBwscwiBO2tnYs9Tzajoa/UiIrmvPb48iVuLVrhJKhP5XLCPF1nYZR4O59fbvj8xX/oNJpE8ebBFOTmBgQL92aC8P7h+RIedX7mGm1t1Sho4T3osLBJ2HpEOGLtVkpl1LYEBHTXWtVUCPGoouJsrYmpRwhnsgfXICKUQNHz6VSeL7NZ5XLta0PQVM2qiLG7SnE7w7VxXprflvX5wqlwXfnpdPpQrtG6nU5vtJfm9TSfp+frsnx5/fzHP/0RW1A+neZ5mrPnfnuDiSFAz32LQpqImJ2k9NtiZtMnW6/Xty8v9wSZmKzAQyFznWWjalQx9JjqPTvXTW0pJYw55KAhaZasNpcqQMlijWgRtSwyCbJZn8SuQcEHBJHgdStFRfr1PnoJy0EdfWCgAdGtA0lyQ8QS5GTFNwxNSs0kNz2379xnW+tZJ359ff3ywz/91d/+Bt56G3Bedq8a1WQu8dunJr1JW6P1oKyc3jx+bP219y8LsqlfoAYUoTEAoTBXX2dulhpE99Q05o9r86B37wEnoLWHv97ah5C3pc2lzucLgE5xEUJ74Nb9m9+cpMxQqHuJ6KIukgNaD5tKLjaxBQiGUAhoAlVC6bXEdLH5NEd31NlEJwuHKmGD3CXZXliWpVhJec295mlCQHX4qQMSWQnQ4FwKt7WGzF6JsjAobCyiUSJ8xF/EQDWo1b22SpiYEnACESV8CppUKD2CEGGrGpMwasnaMrpL+LlOH56fiogjgO7RmrfeGoFiVuoIvtZbM9C9U2Q6n6BYI8Q7RLQ7QJZCPWk506wFAoTqirKs7e3q19Wvzte1/fjyqmYfVJcrX4XKdn1JjQv3tkZb4e32tqhKUVOIiqqLXzusmMoVt0qHWdWiae8NQpw6L31iMkFVk++SqzAZmdmpDfWkIJV0FyG9N4ioFmKHkozJXCe0pX37zafu6/XWsPZUqyTklT2ElBCTSQuL6Xx6uV0/ffyw3npbYnWvp1MnuaFrtFRFUCU8tJhNU53n19fXejoRtKCWaeB11bQUUUlnhmuE96bhU1Ez1sLTVC7TNFUD024VRUUE7l1IiY2kG056DwdD6AiXcER4u+Z+HBFEIIiWcCi6ryZxKfakcvL+wWSd7ce3Ze3U6cKgt2jLuqiayvlUwxdEiaiv17eMJpZ1fbtdr8tyXa5tae3WoocAc6nFSrViolWtWgnFmlaEghXRwy2KmprqSY0OAHOdTaz3TqIDPaJYkSJmydeKTiR7sNRyvd6macqhMUmxUk7GZVlu7UqdReDoSphATcQBoUrMdlKohvfuCilFIgLRAK9S1EQjlrcX9DZNNSGSIrrcrufLZTaDdKhOIlqneZrqNLGQRhTVMNEK9bfrS7r3KEq4I3wy4zQpKRG9d7hL0L3TdZq1qM6lpr6gFjMJYEjRJBOR4YlPMK1WKhlvb299XaKvQr+c5lKfFl9rLRn8EKGiapxUSZFwKzCx7mu4K3yuGhFteQs9qRmjT7V8/PDE6L2aqt5uN9WyLB1Ab+2H+NLaEA4WlLmXz1++vPUen7w9NULE5O3lBpEvn2+fPnGeT0tbmq89vDVf1vbyulwuH/THGwC6Lq/XkdXUaqovn78wwlpLlaO+rK6qqrNIa/4QZo6QTFiKHxFSERCpdYIg3AN6VLXNNF4IQNYs3ovuUmBb0UXQVqq4b8WnOgT3BrJnzx4lHVRGeXGqRo4mlagc8Nsi0HACKFbBB+xASTFGd0aYmhyxT0d/RtUjw1mt7NzHURpjpFbFUUDZj+kHASvZ6xkaLIcMXOWUgauYQpLmNbCQqlP0hiDSPOBwyrlmR0UAjsbdYPHEA34muxZbNy81TrarigcWtx06Fg/p50P9VIDsYPfu0VbUrUqYqPuf56UM6TFuXaHpMu8D5yiFDGCIQSViWeQok/C1jgp/OkI3PNjIh7YU9B1kUKyq1qfz84enD+dZT5OWakD98Hz+8HQSQWsto6IsuOmjo8KvP/ZS9M+5Vcqo+0A1u4nR0R30D1I/zPb7p+kPH+v3T/Zh4gni63rr8cdXWztDVOeqtSIJhlClOsQhCmzibVuoQwioFMVWAmREoLuv7i24OFfAW4/ei4s4TMIYFw2axKQemsokN4kenZ7ND2VK1YsEvU6TiKZYJKBCCIfil+rw7+GWZXMUqlIXdjx6T7KwYitxbs0AKEcjIQhhIITeo3VPA1RVzYF2TGKJRLtKC/XRWQCEojBkQnBzmUQKNlPSovZ8ed67D9H9tt42iUFqqSTpQY8iKsG+rsXK6XSi4Hw+u/u6rAkA2y9C6eTgGmaPPnViv46/GpUIubcJbbP8M3xtHL5bebeCL3hclf8lDtOUDaUZEmbw8vLSWpum6SjeLiJFBURRTEqJNSOkhGl259qxOpoziCwFFzMbHYBM8jl83dJSMtyJHtE9egZWRCedg2i+e/1UHTgHISHiweY9GKoGEbEUipRKqJonH0MkDiWTvICUDsiOnFKRUGJSCd1kpKvWoKqqdF96SHcZhbAx/X966FgcONaFvGkiW1GGuR5TBJDc9cI9thamEAejiPsl7x93HA17DUuYhcUs6lpRm4xvbVWRIlLmarS5lEsRJRvo7Qbv7qv0JgCoDAu3FMW0iCSru4qZWrFSa5km9lsE1+7auqxtltAOEUL0ta+31q/Xa+rjvby+vS6rmYleJ9V1vb188auQ4eGd3uk9GLXMWf8FNbpTgsEw0rTZgMmHLCpGCNVkqsUMoTzuaaOFB6iQdy2Xe3t4k4v4pYlyu92mUs7ncykV3bNHHPtSK2Ob6e6XeZ7nyQVtbREYklZ6rwVsuWqkgrZQnRGgFlMzdze9b4Fmlt5sabQHNQgJiRSkTrwAKQxVTQFepPP4aBuEjLU0w1lHBOjMmejO8IHDzetKd9o+SvQJkbPRV9FiagIV9N5SFxsKMS1Tua3L2+0NytAGQe6fq/dlbWvrvdOT1ZJIkK3Nm4tqF/ftZoaAhzJnRMimm8OtIbwvMY9FbUFCvUDfcI9bR1j2TksWO3Oj3EuxKoBIMeEWQigQ4QBydRlAlQEJFoZ7F80wUTWckV2R7DmWlOZQRriHmmsIvZPp/rGLZfeAUwJKMYhSlJAYKiYMg4nQTGq1WrSUo1YqAe7qF6mDJTqsSyLcLHXnhjib2FA3kanEplVDSsRo6oJBdwXMSmePcASnKQXN1USq2Xmee5aMyd5HDOruy7KKaO8eEettDZI91tvyRb4091IrkpshYMibvfW13263tqze+tBoDvny45cEVCdkLUioIx8kwfRkzO8dm6nbLzojbDfoMM1l+zVybX//ctnf9ZNjO8tocSen5b3B4VFadwOe7HX37awPfYIHZNm7Y+x5MtxQvkJEeA8/eX9Hxu82T/t3PkKkKLBax8fFiOjuJ7TBr4UqVfbsgQLLjo2EmOER67EZJRND9m2j36gedZYHpUQ1b6zadEwsj3z3I3vn/Y16BHqIWWY+AeYmm78iAkd20MHPnps6VG6c5F1qmrz71KcGKnKlyHru4aq+lqh85XjAbKjg/mEQLVWKhsw6fTx/PE8xVzGrwfJ8ef7w/MFEyUhxs9gabsfkKR5lK79yvAP3Hw+hgeKiNFGlgEqv4Bn467N+e5l+/83pt0/T88QqDvdU4fyyIKB1mufLqVjVFsIeFGHZvKEiW8whx4nKzZgFAIPoPfut7dr9rcfisKvFNNU6nUqhQiMK5AyJophV4J1rI7l4i2BMuWiEQMSax3T+CJ3pDYcRIJt5bg7FOCwCQbbec2h4ZHd6g0omrstdBRFhD5Y4jKCzry3WFWhVILUU+ck4FmXOx968d3hyw03UZK4FvHZvsAJEW5ZYlqW13vzbj98xEB4Rnn66Ec6gEwvdh9wpM1FZ22qi0zSZ8Lvvvvv06dOu0rg94lGlz50r94YEPKiqHWT1RmL2c0eG2kOlvrvZr5oRxxPqL2dEf/HBx0/pvb++vgI4Tw+Xp4LJNMQmQy0q3hCR3Y/mce391vuy9rV50Got8zwnkHoXTc7slUQ4nEjm/OrRPXoKBO70mMejWKmlwMf21rzf2uoMrUYTUdGplqAQXVUlC0LSfvIU7mGlciQqlFS4MouSFmYwHzgrK9b6oa3OTTxUN0GF/bR1i7iEAbgkTsgKEKYDopyishEp7kr3OC4p78bM8aEf/6TcN7AhI1lEa9G5mijBUNXJtCiMrCYnA5vTF7RX6S2Wlb0RlGTfq1CU9UQIU6oiXEiFmOpcypUpMcSI6N7erooNfPP55mvvy7IkIznd4nPDO9XS3W+m9G4qxUSFBhEtu1nEfVUf3y7IykCLYOuQRm3Sus4Ohuld05OP0cFf5h3U156yGe6OcBHEZlCUNRujSIgS52ku0KK1rW3TFpP9wW2hZPTeYjMgyj0lmS3LshwD0n38bNUNCVf2Hh58pJjqZjc0NgJ3bIlrbwsj6AG6jCyl0wOg9z7EGA9v3Nxnck3Opk6ZplKKqYl4+rAHHOu6mEld9e0NqlzX24+vIipmBhUHkwHS3AfSiKGE57QWOKOFS2fzUecNQer8UsUZEnJUZPnKzisbgGnUdA70oH/m0XLQMIpZe+AwP9zGXGTykeUT3KlHzZnKXCSTnWWbS5W07krLQoO3tq7RO33T6M9ul+mw3jMFDYSKmkrqQKbYdFKb1PSwwY7VSXYOCYdxkJkd9SdLKS1Kfp3kVR6y5WxVD1mwkdWIlFI0OJ/P2ADAuzZmbmetxbqu1+u1tRYR+e8ko0dv0cJb7+vLy9LbNM/QjXEHba2lu3yuA7vQmWrJFaz3Hh4ID5Fwh0jq+EfssnV7v/lffmv72jESlV8xon7heLf4vFuXjq/MB4chK/y4ZP1FX9p73+OvBIiOzwWKlchewTuMN4EJks0lSXrCXZhHt4eyF2GPF//u00VEN1/sd38ak0ilHNoy7v7QKfrlB/0QcW1LZUTiOO+CeDt5b5w/Dv2lcHDcExGJ6HfHz9QN2e6G91UAydAtU9btT39honLfsN+X2jGVUqKsb7d2XTXEUCwEbhFSxc7zXEqpHqS1HlmfDb6/HX9BovIYjIqEcmsRBnthfy7xm1P9zWT/6ql891S/+zA9VSgd9M7IGtRsStVa7VyLlAnoCfoRlbS6E0YKCpH3ptIGChy9yUxmeou19av3V/dbiJUua5xO1ry4mIK+dgYNOBlwVthEMYEsXa6LB4zZLRfx8Hm6UEqAwKEvOXYO6sioH1jR7nAVEQ46dHgwNCfDxh0M0o4PjwzSw3vz1ihtgtVEN/FB2iog7vAe7MHudGJolBgvl2n+YtfFpSi1gLZ6FDMVXZeeEiy996nWOk0MRLrpWQGCIhB20qyc5rn3/nq9ncrIQ3KHOA6AYgbhPgdyid8Q5O+jzJ8dQseOSo/2y0am79/FXcbyv8Bq3trqm0hABp357713cs4noUivBRH3qpgUEkH3LO2u0W/ua+Pa2JpTMxKaDgHZaJc7QSLLsc1j6d5866hAj6THfZJmf6yowQo2D4Gk2ospVVBMihUR7zE+QN7XI2QzbpJNt/WhowKYDocU9nEBTLyd6MZzeUhUdHO2yQekTgxdWM3eoA0zCBVuGjWJewdkmxGqd4u3d/ntcV162M4hFDgKt1qXqBSVWooYP57nwbsMR2tGVEdbr7x9sf6mrUVvbGvEKHITDEgvt4CMegAZrUdrcKePLa/33r3fliUYHT08SDRo697a2sbRSYpwbf3t7dan6TTV1NxXLaaaDTbd8I1ZYrS7g6pYLaJFYEMbWcyJ1rpjlcvTfTxsKq4YscJfMubnaW5L+/zjF1BOpVa1UZUHALFAhCi1qp2n83pbJyul1HW5vRucGSCmHFP+ewaU2FQ6RO5QTGyZxjFRyXpwDGHSAwh5VKII9/AePojbotL6kHhm+MhV3NPt1HvjwUTVh+e3994ZnYwUHyhVa80aC0RRirGD4VA4+229QpziS6stXIuZmdYipkhDa4FAgok8hDOy00uyhwtjTUCKgIKiUmrJv6akwOE5/DOJCrZgqBTbb91XItps7OTtLaW09UFj8Kjwuy+qsvHNxieK9Bjk9cw2Seadar1L9zB4ykb05mvzPlLE0bYwAIIisE0XA1JPtYpM03R+SkrjlElsOqXuV6ibRH4+r+4jwD2fzwDWdd0TlRq2rmt3z62k9cbIvhu7ryPjSTJ+91LKPE1m1ea676uiaoLuXVVN5bZ0ktfr1Q8S8ABEdFlakFqsM9q6ttYgoqYiSsh6u1kp+2CL1pBy5CZCgojuIEcRPQjQ3z3zbWsTkffCs/9FD90JRoKv5sy/dPy0tPRLf0Ik6y5zgJ1T8dMz/oRT9wuHPEYmx6ggyU3ZQX2YLAJIyehNbGxB498JLYWEqqgVAMdhGX78XhDBUOhXwUOeBoDQhPRKP6DCku51uBtf6SgdvkhEykh67+jdBc7Q+JnEsj9cRgACFTE11ej3D2M8iI6yp6RJyprc22MZbxz7NY8CrI+fLod+8BHqIrjv36aKYBWYyuvnz31ZS8wa6K0LjD3mMpmIWWEbb/FtA+AWZMSmyoqhsHm4hkdv7qPnA94VAIjEvAFRlU/G3xT84an87jL99ZN8c5bn2ZWttVvvQYqAk8m3YtCitVhRmmAuHVxb797Rm01zD0+J0/QFyEzF0uZtE5wm0Xtf1742b93XHkuotCgdr01UESEnEXVpvTtZil6qaSkRs6HfFo/mnegRLRIqy9PpXGzSCr+9yTbgErZSknbQ97U+wpOxfBeYytQkC6+5kWfVO+iMiA3FxEByjjy4rk1aUzEVKbWW0hKSTjIEq7dU7mg9mkd3cQCKMlutmCpqR9AVmKxAwlRJadGUWkzF1EqBqTMc4RHe2gBwppjRVE2ttQby4+U8zzNS9WXTuhGRolY0S+823CESP12KmbW2HAbDUP0jUwNzDBTJERXEYz0p412O+/Ywro4pygi10zJonxy/nLbkNewn3y3DEg+CQSZMlO2wBkvtywjfpkaDiGlRrPmAla7KqjC6hINBQUPcPN5af1t7cwas1imjz5JujRvmLXslEfRgD67de8RIPp2h3MOFY2g+ujAemcFm4AWgg51ENVYT0wDENsY+Sdxbr+NWysg0CAi6RsYRaZbBjaI+yrHpe5CJhgQScJJXtbfa9OC/qZI28bmuW9o6pZSIQmJLVDA4cTK6cHLPdt5Vp+JoKU3uHjsqBlVYESvKiHAFq8lpKoA8FZHo0TvpVEfvaB23q65vXF7oXXvT1hUEJNILhvB6isR/QjrRuvuy+rL2dfhaBCM6e/jqPW03PUi1BBh5oDmcEFUXlcDaXdRNbSqGIXqoFOXGTDyK46Wot5lZnVTMbBKrKBNLhRpRCMnncLg59xU409FtTRkzYjzKfSA9Zhe5kgX49rYyXq61nuf5lBrExNa1MgprnUUsgo3B8DS1TE+VHJ1bDjBm2ZZFt3Vd05hCTa0MfE6qY22yafdLylhTAkWM1DFS0vRggKtGNuIi4kjJHoYzOiIjZM+qwbG+Hlv1If1MPDrEzaQWm6YyzWWaa61l6d1BLZokOCtCZUOXtnR2aKET4taj1CJFd0EJNc0oJ4Aebu6eaF+RpiGb5ZCDCA8gGO4xTwcQ9VY7yKutG3Fuf1J7OpoyzRnf57KciQQgO2IKkiqze5LDbREewffB2fY+y/aLyadJQKxkorLXoVIiBSIR7i3YXcjoveeG5E6heyMEcJEwSwSNm6GWwkYr9Xy+nC7n03ma5zLNOtXkzArIvQu3ZynuHry7mlix9CPeZg2U4upZWEQwJFRUglICwR5hGTsGQVYt0zRBk+0fzNJM1RSml2kSKb37IfnftjYtN+1aTVG0d7ozAineKAIom3cZwsFBwnNf8+5rVvSZTzPdMLc97b5JYYMMZblH5T5hj/sg8ICXkgf7r/dC/scj3yWyPeXtF5GEhMj2p4erUiExIOaUd9vIftyxVZIoIz5+7FjqRRI7jy0oOmhPATgWOWN4zY7vrg/Y8ENPJjsi0MSSPbqv+D3JvFd28mhJg1L8lLwQAjEBFSqBA14qb2/WVPQuSxUg+ZAvJVhJ8spEjsHzYz6XXPiHfxg6G49HLn+RLERTIsDhmPTO9oTtiCsTyX6mSoig1LsWAgfJnSSCKDUrh6rKh/YSfoLqOT6GB4DgYdAQ+x5FAVN8KrMLU7br0/PlY33qy+v15Qf/8I2pRqeUkxBPp/OpTlfvEKZ4c2LNFdIjcrPsm7TiPvzuXzniCKc7RhLvijoOB1lUKvxDkW8rvp/1b57l9x/Kp9ovtU/SESvZKEHoXLSa1jXMIgqJvqpQ9caA9+ah3ufMDkPE1A9hmyJkaB0mRJiteVvdm4cHezgEIW+NfFuva1wKZ8WHqkARo2iEL3B/KlYul7WyiN9af7ldX5cWQVO9zHNVVdGIrodtXkVK0VKkJRR1YJKdoZsP5H19yam+54EpSbQJmaTak2gQkCywujs8IJZ7UQ8VKDJG8lVJJ1ugObqzu6NoqWLGWlCU174ua3TtLpZ6C7UaBaBBahqTu5t7SXWqCBeRaZpDkO4cVuzTpw+fnp5yYOgB4mVmU61zKXLIHEZBMlv2D81cyRIxmca490RFTSWpGdv2LBtWRA7Kznues+9eGJH2qCXv8+NrxcVD4XD/+R34gWSujfnvGYe9X+DMABFQxZVRBQWuDHGnSJCrx7X3txaLM1jMNMV/tjNoJq4RkfoFHuzuzekD1g0P+qEhrqrZwM3v23oznBSwUtqmDZ0dkBCgFpqGSQTFrJrFqCkgjuUT3BNIABEy0oZU7kk6WOYhaqWklSdGDXswVMZt2SNj3Z4yABUpaibiZALBgbQ3jvt7RUiRvXQq8OCxM/MuV7mHUIdlSRBqVbSIVQHRQwTVLGXdZl+EjWxkJxtj7ctNl2vx1pa3JM6pe+YL3T16R4SGE+bBTji1ebS192X13qN3RpDo4Wv3NblwWas9Vt0gIaZQQh0g1IPNQ1XVDKljkjsFuMsS5deyTTMKaqqTWoFVqEFNSi110mkelPn7nbnfpZyt7/AJx0TFNxjScbKEI52/r7fl7e32Ym+n09lMEXG5XIb+pkdcr/zH+PTxuZp66xnAnU4nVb3dbjveBiLloBDa1pbCWWa2rmvqbKQpU9+cK7brZGKo+tqoNJgpZ1VXo3KPwHKLjUiSV9JUBu4rwukd9HC/l4Ae05UM04EAolSd5jJNZZrq6TzN13LttpBWap1KrWYKMYoIlR0x17l3DxABgRo2MWzASjUGe7rUN5LDYwDEXBRazBLx1VvTYqlCq0OJ+GEARERrTQ9QWDn0zeIAss0pnItV7ji9ddmInJHtxMw6IgD9yU3Yz3/HbWZUPJZHsohmi+x0OuVkz6RIVQMSHmQo6K17a957dE8FMQEMkjKJbtrUqJynSmOZ5/N5Pp2naS6lailmJRVoZRecis0Ad29o7AKSBenKpVlvqtColWZB9g6xXF2DQonS6Q4odNqa/ZI0PJUgNZh3aa9kSZWlPWigA9gMi0tdGlQ0Ar1zm3tDBRKMn7VWy6LQYHsJiCzPZSy7Y0LGY36Et2Cv0TxO2IfI7DFRecwkHvOWiBE0H4pEWWk6Ll94t5OOvONn8p/7frrFRcCwC3z3+uNnxZYwj9ccoko9eqDH0EbRJIrIwxn3fANA9yYiVBub2CHK50H8N0hx3wnuJEfdf7u/eftAOCPvzlhEjmGFDfKJiO7fmplx6MOz22tJIVA9WKIwDmKfsIdbPcZScGjhHz53v0sGs5xf211T/PwrgcT8pBClQOuUlIlcIDKoQgqNlMyplI8m2njHUXmn+vXVTtfPH0J+eJqez/bxNJ0q+vJ6exPF7KEGrYIPl6dPHz5+WX6YpuJITmsIQuECZFd3x6dGhKg+tKUeo8B3QeFDAi0xmV1MPtr0bYnfnuT3T/rX39RvLgpGUZi6aUxFg9IhnYWeIp294dYj4O5SpmiFawlSGDJA6Mm+im1QIXtbWxkgGZKpToke4oQptCyO27WVgpNxEr2d6vlc5wnoi/cbIkpAKLOqPtWl+9PZruu8tk7Hh1ORvsL78ZlodgwdxcQKjqiwbVOUbDz+uc/xp4dq6hlxsjLoUJpwaLpr6zHmlfJyqtNkdmto3lusJGwSKyZ2LnLIeF0SwzDPqtqua2twd+VKEaAv3kzrVPR0mkVkh20Mv4VSSim327XocJ3fl1TfTIL/yx3HyEZF8Mu2QsfDj1KX25b/09c4Y7ndmvcsZD7sDYB7bL0FqaZGGFtBWPSsRrYet9au7mtEp4oVMyulJp0Jh5U9YtDlA8j8pKd6COFJFX74ztgyPb9db/XTb0ruoMMfXDVpK3OlKW1ba5iVsO3q/7MPGd4OI9P8pVKFJNAr21MydgAZTUbZqkxjQ1MgjXJz8efWa3p3848/64FlKBCoiRlUhVLMarEeDoeKzOGC5n1lb97WWFdpV2tXttbDJV0WM3vOZryImTZvZPOesq5CB5v7uniPta0R4uFBtuDq7D6KBXy/jdqwnhQJSg9qD6CTBI0kg0VTUXkcGRVloqJmKgYxaIGZaKEUFaOq6K+DSP45h94JfyC4rG3pPfES9fUFkbzorozneb629TxPQhq9mH78+BEH0yEZPcAHlNH1euVmYtjDzeybb77ZWVv7K5dl7d3T4ZTeF6hKTCJKq1b3QOVes4iR7yO1WEnFXS70q4OeIjBTE9TJprnMrZzm6XyZGxEdOtVaS61mRQBmmTfpKVkahJmoUW3Y+AjIDgyZkNZ7dzeIiVJQpRBo4aoIhxZjqlmBa2ubs49ia0vG5pz7M9dNZmaS3aq87UmHMLM+gr+9zvsQU3hPnbxxPAyAjWZ2LzZtl9F759Yry1VUtuaPJs3YIxi9tXVZemvRXQQWgRESawBSq55PEaFm9XzSqZ5Op/k0ay1phk5GEK054n6FX7kJPJQLLV1RRDTdEw8uW0vrQ/H5ENfCg+EZcG53IUPtFIfH69vbXqXK9ubIDK2oFSUzZcrK4yZx9K7Z8HC8o7cf18qvjNHY2sj4ag3uKwd/IcH4s47cerIg/jXQwl92ckmbLQCQIS9xP3b0Cn4ymfl+h7xvdMc/vAvAuBdSR/VTSIgpCVGh7CH84T3y7iENDIBsdYL9Dw+Rj9wf87iw+69HE5TH3ti76/8qROQXn+tRRY1EOFU3wNq4YG5nGN0kUUgnhEm5xkNX6jFRObBR8ZgI/tpD+P1vn23lPPFysrmgKBHNe3igNz/N89PTU/9f/1HLnPJZsbfM9i/xuGg+4LkeR8YvUfAptFnP1X47X35f7Pez/NUFv3vGN89SS7BcGF6oc0URBMMpzZUUwiNo0W9ZcmY/91j7Go6eaas8lAu2Bx8bziqQFOQYAjDaQgKmSi1dS9PaUBq1AMutnRmXHpOss3AWRUAbPeJkMc36wZ7c7O26rLf2fJqkr9L9cfRKseKAFS/2fs4Ec8Yx/rOXCYx6P0GWuURESCqQIwsQ3d1DCwDh+VzPkxXVvC2mVqa51lMtJnG9P680vWIYQ1kW8WoMFa02nebV24+fV9Feled5do8sX/FwRHCeZyFIttZk4yPm+PH+FyHlf93BnaACQORXMlveneH4615cFBFTu96uvnVa3h3JRhCBqYiZAhaq3nRzZE2b5Ovab4GAVi2lTqUkBmvPpWOrBtMhqW44pKGTNRQISsRDvpc3trWWvmAQGSrBHDShUmuZZpjABEXFCf8aCuAvOGQzmcnf3pFejq9UUVMtopD0+YFmYzjbMRuZPrKjktaZGPvqL51zP45tLqWKGqRAi7AroxQrXkTFgNlJhrD3ftO+Rlu0XdEWtEbflKC2Bs6OYBZf1UlxJ9HpHW3tfV1b87b2gMRArwnUUkIJVKW/20x1K905E4reg0IGwRripq5qgXIgRt9xX8WglthiUYWamrkWaBH9C8mNv/JQM6g271DRUhcf+rASvQgq+Hq7XZebr8vFdKrl22+/JbksS06ibfs41vs0g+lcOqyWNEncTVH2V7p7pim9NxOGZe0j3NG77gaOx/YIGMIOYHOGzJIkstr5lVxFVNSkmk5TnaZpPsW58al1l9pb11JrtWkqapmEpNoFRFWMGPA71cxF8zVD4SmjT8IDZioQUya0htFbiGkCIRz0CPi6N1Wya71/wf4T7P7ee0lq+AiXgVRuKKV4uIfLcNLZldP229s9HvrSx2e0X8N9YkQEWYvugQG22TdWYO/ujRHRe1tvy/XW1wVBMy3Z5dUUFORU5HSy7j1IO590w62J2U5c9mBra5aS90wD9+b5/Wr3TFVVKVJMsb1FDvoNJDHkyu7/GJuZb17McSxtX3kQYJK1v0/M/H+pxUGrbuHhIYz0Q8HQgPrn59evP/Zi2a6/8mefgsQjuuEvuIy9T/4vUHP9yUHcRXJ//cU9xABffaeW96slRz2bjDTAAwExPS4V7yK9hzUKd2bmr77eh4HxPtT/5WDpHSv44YSHU76fy4evzAhu9bIUttoTwT1zpwBKdMsNflhNHE5YHq8em+ab4GAMuGdzmwznVt4ZPx/OQFSVp8v0209Pk3Xjcpk/QHlb1+70lUVlUu3rCpQAXQCEZodti8yy3cQNAoItNcj7snfBMuYYF7HfutQhI+dqH+b67aX+7lT+q5P84YN8c/HZ1og2Pz/11pS4TNWU3XtEVApDliW801uoo0YAUwu/9EaXa7ixk4WwzK+G8SpHi2WASLJQmVxGJutjxBNaq5UZanlvvyzX1/V2KvHpbGHsjhPqPE0n0UnXLvQ0nzc5nU9PpbA3DPWB/KoiKmpWgGI0U4AySMsp9SakZZNvu0eEhCAgnnUcIZVO0BjBQN74BC1uxXBDGL2Ia6yAVI0IryEaMFJSdtGDPuA7tVopUjQK/aTQSetczudprqU6d5ui1P7CVkDtszpUi02nUwd+fFnmovV0+vTpU52KLy0bKVlkigiQCsmupQ0UmSeIOUuk3g8+qY+HbGP1OG72wcxNz42PczvGOBwzJPJ9v2rh3uaRpvbeqHUfI5gMDtI7uXlf17YXot61sD1LbqClTxAgjKRNMe1QyMQC9QBFSyprmuXnUiQixQ8QAy+9C63uY3fk21tLefsaowLEdV29ewOF2ryPXr6almq1QAyqAk3cyV4ighxP9nDkspIqzwkd3gx85V2gJ6qQgGLoSm7pAh9OBQAjMRMRlaw0cjwJ3Ys6+UNCIO+gscee/vHr/+zP21nURNM20NRMgxEmSN9IgQs7vCEavaO38JaYS3AItu5wNhGoziLdKR6xovfefJT52bpzWDNCtRRFeAQcB14iR8UXVA1VEwkISPexMum+1pNdRFSMI3C2UkQtFZFFZdQaZfheyiaGrmA6421t/P2/f/Y4FPrur5dN4iuLLOjdew+rpU6n2/U1QEEIKRAHu6CIhKiDBKd5TqHLY537+JGDe91aLoa11nVdX15eUhXtCBKzUj2YnB81ioolqlcV/SC6SIKUSDPHcHdVoeoA1uzjYtyTX4hiJCnUxSxKqbX6NMU8zWfKVUTKoKyk3kFQPUSDQRVB8qJETMSGpKsgRFJbGwBF1aBWtBQ1HStbRAAq0CBkxNroQVBVQplY2s3vFVtvhMKBd1cVECbq7qbCKIm8aq1l6sKIbV0UDJi5bhQH6RvD6icIeNn5A7nM7DIeDJZadgvLe8yaLKN1ce+9tei997W13nsMLVJQEAaaEqQVmdR659q75BhO4UgZ1q9pkOitgxJbe257Thu+avuPzHBRIDCgiIIRoiEwk5BwZZoxyekU3VXNtLTeWlshEqQFfG1DHCOY8hjcGt2JUE2kgJke7oyJqpn5yFEf+u2/ZCmB94Hvw0zdB+jPzF6ShwLKvhMNN/D99vzkbYdi/uMuKSLv5oMgfuou8e4rbC2d9wvvr1txxkuBwy5wf/ux40HAgL0S5pue6+Z9dm9M8bj7Z/1a8P6rAQDqwdJNNgD5GF/dEUAG1EIxia2d8pPI/Lj7bLdCJIJxgMx9/W7caebycMePLSTZgp8RMuovPBji6PD4rsC3i64SEFWO7ENFdKXeI6+ch+NiAjpUibn1VPcTlhSXynPG6FmPcyQKWUDADaLKQTQTWeuZe4/IG8MtFeAjJi9/9c3HJy6/UcWXvzv5ObRMc6zL64nF3l7O0b6p9r/+8McVQDE1IcRsKqUw1bwN3Tu8q5pOGl0ZSAMmVZVy5y2v3iBKGEWLVVWTvp5Mngy/E/lX3/zmjPbb8/I3v8P3H9ZvnktF5apzffPKsKLTRBHtjfBTOMhZZ2++XG/z0tbeln4ljIUGO/tLf3E/Pffz04LSVESkmBrDlqiMCXEWFAS8qVA0Pi+vr5hvVpYizlt0Da5Kq66kdopqXbr86QvfTE4qhTC4yvr9JykGC1lWN+fl/HSqJyn68uOPdci6AGrQUqa5AMGrL+tJ2ZXusXkUpVAPQWvroqLnM6QSdQG+cA2Z5ioyJXBfSEGP5vBqCrGl8dI7+2e0/jFuZv03z2K11rImmNcKhatiNQkGlrfVMJ/m+hLr81k/nSBrfBKv5e3Th+n5qZTqoiVV4XtvORCzxqlqEizzJLOuuN1cmnrTcqqflKfr4mrVIdXq6VTog9IqwqmMOjS21H9AP8FayrECRpK9w72Ihsc+75PoJmqOWL1d5vnWGlqf57mUuslLerIRs4VEESlTASK8eTC8aBcgU6m9qzmWgKybxBBwDkZrKwgzE1/HVqpIIuhyu769vS1rU9UdVpK1w0TSV0vEUVQsZ76EL8KAZAdjflnfXp0/LO3zypdOmk1TnU5qNpjpEMlUtYs2sa4WdPUmHlx6uCcUTAglCyXMdqieyij91HkC+Pcvf/qr3/0BEaZzu63BWs+f5PRhlflTeSYli2giUCGVg78fR67bYeVFbvdDjUJNNLtUUgI1wDToUQViZR+ltdhQE7kS7YuvmilZk2zdG+nFrEyTqrj3dWlzPSdkpXvnqFHrZFM1rAGP8N5JT9jYobB6wDEfMc1pKOnNW6/iJkHlXAVNwvtbGEPC6d2rWSnmpjade3P3q4A119ZgAU91FlUn38zYunNp3rqqC2/tdl1bd+k6NffubqVQERlsKVRYSzLIIogQDUqQ4X0lGrQIkgHvQkqfUEJkEmlarc44nbpKqAaKw5xaHCd091g16RauBnWp1EIrtAC6wgUdkQlm1ZFpkUwn0ywgp4ege0itoCTueksr6O5CFtM9xHd3RUxFiVhvb8lNYqdS6DFNF7AwRMAfX3/Qbz5hmpa3Ny0T2UukWZy1aFmEKmWoY1ktEkGytT5NM4DePYK9u4d7dyfflkUVVVAlqqaBjdH99rqcTmVQepl9pkzaABGbLGv6ffGELm9RgY7QdmDokT2+ilwzik18XbuaT7VOq58qT1Zv6J8uJ6u1FIsIb23kS6Frc4gXVVUTU6d7D8tqhJjVE0kZKEAC8NSCDKi7pLmRqai6R7QeDAlaaMLWIscLndJDBGattdzlFQHSIAUSPbyt3338qBD29bqut2Vtawek3xoSV7CXg0QjC3hO0lu0iO6ZhYoVq9mqE9FpGlZa3jqGqoZkXa9aqdM01wnB6+vVTM/ns1SkjtZyu2WJCpo6o2LFrBSJVQAtaoYiiNZ7u1X401w4GUxpkpEY3a+tr97D4W9XYQJR1IM9QrRkrkDpYEhQEDXbkBvNuS1dxMRUtVAhNuKpCFJ7GGFFa8WyUBURjdE8yluP4SND92geHtGz00oRiWmylE7OLaz33ntULd27t4CLaQ1l9B5p+l4GuBWZDKXMNQOk/FJlnKNgfF+WN6+uIZmYVUV/yBM4Vuzxi6mKDNc/klL0kMOQmai6g2JRRSBgKFIfEtUaAqmOkEC7nbu/Ib2z5K8YtsjHy/ekahUDhl8RgKGCU8u9RrYlvuEBQuOOBH7XG/E7GC/RmQKgM0DMUpo7mZLBGvSsUmy075/XDmunsFKSzjRaGSPXjTpX7Bnmlu1w32Ji3I0I3ikghFkJYaTOlAoP3mpHpkhWHLP1AhF/EAx4QCq9hyYlLK2kpOehN/KQcDL8vpubFTnQfii25/iRE8FZVOfp1Fu/5xhC5O6pCmiZB7kx6AziwCkq8pBe/vQYnxZCyMhbQlLLI/eVEAkIha6kuPzww+v3T88fnif3+OGHH758/vzh+9+cZr2tfltu0RdhRzRGBxRdIiREOaB1BBhsZIKpghIqhSoqyJDsgIujpK4FXILB1Rhn82/m+ZvJ/tVJfl/7x6fy3/z1p7/9w/zx0p7ORQPt2mR5a86mJtOJqh5zRIOvCIeLm4CmIOE9opicqoha+MqojKbRxYYgsJGFMReppgYyPEUR12jdg8Hem4NiIuEFnqrJFaKIVVTIEqKI3vo1ohSZS6lKDyRNShlFoogLG0NFInpjdLUseg7aRrVabTETujAg7wYUVNUUKnCEa3SlK9zoIMohdReJYlSlCUwkvENgiCo4FSFUi5hRhBXF6BARZLVu6KCFe87uIpgUpdrlMn1zqU+XWqoFrLtWZWtj2U0XFzNTotTCqkKsPegdEMkq/emsmm2TLDiMIaBgrTVtCRI8c1ccD8YBrPmuEvPzJQIBgR6e1oBOStZo74Xi+3Jw/EQt5SuOj6ORxY2rEQnQAiPGys5UFU6L8ujOHnTJlIFBRqoYkbXWOlkppsoe3dcFvqhqWoUHcAOv4Ql/MVWIVpGCqBoGZwhJl+HTlz1LcHRHuQHqQ/bv+7UCeXP3cCUgYlamaZ6mU51PdTq9b7M+9LMfCmL7OGUmniA3Y6WkAMc93PmZq8nK+f0DHsk8+Q+q2XvL7ypEepVoCrmGKA+ev8wxp/CtXoXD4HlXzDs8YkqaBWbhlQJIEBHRHBYCFkoRLYg2HIFFoGY24JECZWRtveZuLVIQGhqB8OjJSCHBpFh4dAQdJtkFQSFAVDUGHepBT2fCSJmTXaVQIOw9BoQpu0AyLEBza6AIRTwo4OIdorQIY1I/qpqWYlpEp/0xb5tr1pd5xPrkjVNVH/C2dyzJrc75k5G29dKHFQ42FL6kHrCoQCBqdcowLvL6ZGMCqCh0pwVkYrk/ypBjDTVAdO/du0e83d6mUnQqp2IEWm+tqxWxgHffiCISwBGo4UH38ECPbKLr/fSjs54tmAQ5QCxhX/SgUcT6UG8kADUrwZ4QvcRkImgGd4QHlFTmKncAHQD7PNlWnfvUyKkWpDJbQCKSdDQJsju26b93QXd14xzhBBFBFaWl92brKyS6tyGKLkwLOADR+/7JW9dzFNJLcuKyV69Si2o2hUSmUhkRymOFO79CzXmBO7mXB32CPZoZLT8BxDDkg0RVi6IoRWqRMIaZrTpoHSTTBUw8JEI8LCeKR4ikuqHQERIitFTeAYlsDSkHX1l0qNdki4OjzSCiKDqJBVTEUwjR7rjbFurpWZr2mAJRAcwQ4EBgmunBl8N9LVYE0ntf1iUiEENuWIphKqPMz7Gop6fuzyxbXz1+jX+xHKA/5ChFbZ2nh75D5ukZ3IkMLIP8cgvop8cxonmXqHztXbhv9nIwYVMglvbQ+HzsV9x//snHpWb6+Ap7cMCH1eDhGgT0ROYRkeU65OSVrQuRnGeMP/zkRNvtugv2/BTs9LNHzkzVGIaP9mvudi6XozVNHvfHn77wl07ycOdVmfgiiJNHh7v3Z+AvItAKaHtHZUO1bCdBE+7BmYZkj2X81UhIpGyBJbnSg5AvS3vtkPlZzvpy8x8/v54/PRedJonzpV6eyjxb0BluZSJKBEHx7F4JwYBSREAIwyDR3yR1RXcb3P0ikEQdhPdJ9anIp1l++2zfX+Y/YPn+tP7NH779P/yH//pv/+a3z5c6FbR1ub2+/H/+l//JuncKTLUUJcPDAYJPz5dYfTVrdVVtkEa1AB1kc3iXcHgzVaiJsEIq+VzrycQQwRaM5n5bl3XtoGhzM62MKWJSs1o1rJgItUtqxbiGq9IC8MbbtUWLy4kspsWEUqQWj/4GinBp7SbSrLKkouVURKytXqe5FKO7uwBxWEJUyCLVxMUbQFGqRYmwCBJmsY92NZJUpUgXQWueQuOlllOp0LKJddhJi8IAF6hwhfQI9B667W0D7F6m8/l8Op3P57NVbV0gjaQAt2VJtEDuMR+eP0C1SUjPinYnS7FSa01j5ywtKMXknqi4NxteaUNgdAMLZPt8fK+v4CzfHTvwOrG5v/TGvddhZqqC90L0P39wwyJvU0gjI36P1vq6rMva1x7dGZpMp8FemKYpdYoX9tfXdb19EMY0FTaPcA+6c5V4Y3zx9rquEXoqpZR6ruUy1bmYZ2juIREBA5HezKSHeChDgjoaBwRCkqH5iytRslpFFAIzm+pUa61TrVP9pbfgL/V1/ZUn3GE/41dQ/pxHn4eqYpMN4LbvYkRIP383lFmqVlVoBtSiQWmB1p2RNUBVLUhzmszvFVIMKFvjWtRmnc+imgAnECEtRD3YunfPPGVkAxoj7DZI0ZKyKpNhJOnBtcXS3SMQDA/Ve3/fGQIUG7G7mu5zJ18wQDWCWBcRoxm1RllsbWeIlWJa6/x034pETFUIEwjQD9MhL5JkphC/8nkfpx5lEz/OPyX7yEwDpMzTdLlcsuu4czbGgSPRUY6PEkewBBkRA3XZuxYl2Nry1tEFcipVJCFRt9VNsNk0HctBRDBXrV08/fhtjrHHfklkIdw7KSPyCfDa1iU6ROgPKmH5dBICaJu8TGb2vzRFH+vEiSx8eChjLQqGRwadAZhs3bF8ZSK0soXJSKiRCFTFfRUJEevNIyhigKQuPmI9mhkk8FlFTXTS4pBu3hBWimw4Q4icT6f7qse7zBGBeZ5T7SIORklZvtmdTPZ9B1uwVWQyQTEthqrI8VkFU63iRoinrWbvLi4e+Z9mKdoZQYGYjDkNlQBCxUMEWCOENJFiprBpM/IS1aw9BCEBkKa2S5mnreSeqDS20JDWsJOZVLKGbYhki+14ATNLVWvu+s7rCklpZLNpOs1zFBtIMo+gg9kLe6dW9S9/7A9Cho7FL0acI/Hdfs22hhMPkKyfHO/omsd1/ivh8vE4JntCxEF56N1Gfzzfv8gmxW3TT8h6bGRUEYnuwAB6CfmoyPufzwMkuCkv/2o2i+xkKndEpPFEHjsCMI9fubfmbjdU9cMhx1v9EM9/xYGryJ2y8pidCZRMZD4TnkwNuTMUR5CSUJRs8gNO+fJ2+7t//ONvLvOn86cQXZtfv7yeok2MbvjwPH3/3afffv/NzXVx7WHp47AOzD8FUURKUdVQlSK4lKJyd4za8cQkIOYe3YOtTcIni48Tfvsk31/kO5S//f2H//Af//V/+D/+u0+/+yubngDtb3+avvzDP/zD32vr4RGllqmKMJr1NaJpkUuv3RTFVK1oneJ1fVsWbw1REZ3RNJqFKMwgE1kZz+dysSji0t3pnXFb29o7QyaTooCq1XKudTpNoFn2pLQjIjzzPzEgukRPZuYNUgTVgGKlaAOvDJi0m19NPUHXpWrCHzc9e40uIiQCsG0RABCmJU0TwqlGIyxYIgiY3Am4OtigWUeK1nvd5LbMqlrl2J51KiVVKhQSPRhOSnh0GWoS+bAYsu+1ElhX796HF13v2GivSWoMgOGpmNl7J01USilaa0YS0d1KnaZpT1RaW7hB0vcR7+5EmNmh1P5rS0q994QFZ8/kl6aiqqUzoLt7j2K/GJ1naVJTyQWRWTWQ5RHLYCKVN5d1zS8+FmUOBRihYeySEDA6GE3oWf+nKIMrsQZfgS+93boD8jzVD/PpMpXzbFMtC9EZvUmLAYjJci2QBi7ZPxplseyQPhTGf+ZGuburAmrABtflP7OqP1QZ/vw639dP+P6zOdbcn34QH/87HqrCePCN2QOjeCz03q8BYopBFxy7oDu1BW4dM8WoqiZqhGZpSVSKaqAw2ykiFEM5cT6FWirf0gW6dpFGrhk4CQiWqWa13UrJ7SdZFCIyVWPQGYVId1DPqp2nJui4WsqI9Uspdaq7Cw05bPX2r3Z7exVRaKEWm6a5u1m5TGfYjPnxMYyy+aGYf3hAe0/jVwpcPDwyef8n2aRuRLWU+Xw+jxA2d0Q9AvrvmcvxUeIQEDCie299Xdbb2pvUMrxllAjelpiLFVMImvcwEDQpD+QA4OA275LtnMPBnKcY2vo2NNP4tlwbY3W/NV+6v63ty/X2elsc4hlhDCPayE6DR3gP6ABoiwCPl7E1DRHE0O8bd42IwL60p25eClMGo7ft3VkBv3s2JHQ4t3+EC6CUIhoCNWpG4vSxVjA7hJhtb+wQafVmWmqpos82M3wp0Ty6CsxohaYCOZeKABmdQYy2S15VnWr+vM/BzKXzhu/R/7snbipF1FKOe7TcxNSKlhOH0kcqs4P0COshEabwCLqr0yGqBkJIhLoVZH8FoDMYxYwiVSC2c4VFVAKUQZOhb0LMxwhVRKCwWti7hCZ9jAKY5lwO7/M8pw5qa23XWLvdbrfrmlT74VBhprWcz+fz+byGs7u7O/pWe1Bg0JF+3eT7S4597R3ivwdytqSd4NZU2eWI7kxjQPnPsOS/0lH5lfvIcQGXTaf5Z8/xbr35NSf/Z47sniHgMVTLsu6uOpqHeU+yhfqLPeY//1CDYRd+/PVFovETHxSfx7/88g7+S3t/jvZd8HTXpkeCtA8h1ldyqRKtTfOcyToTUgzUUry3LCwAFM0d0YoKVBj0HlBjehogBEERzX4u/OXzn/63f7DvLvXj6cPb6/XtpHP5IHB2VPOPz/X3335sDS9vfl29LauTSjeVYihmU9GpqimLoih+W8UAVTMdQh0QJNTiSkRIJn81+kn6c4mPVZ5k+XSe/uv/5q//zb/777/523+lz79D/QYoOv0TZNKn7329SbDUqdRiyvCbLdVvV42ixSZDzPXSOb+tnXy5LmVxFQ828UWiTBQFp6JntbPoR8Mkrt6Dq/e2tKW5r2sEoYypTNNpnufpNNsQQkz1tbSjdESIOAFKNaVRYo2XgihCKWKm1Sh+BaGIWgFQtKtNOQJrncK1r346T95WKxKxC9IjIrwT1BRrHdtQBKIrq5kg2rHAsTkJSaJ6cq1T0V0+IX+2olUganTp0bLVlk0VTKOCmW15d1+WpRQtYevq3T2bA4llEpFpmrIl0rx789vt9vLyuq5NpxPJcK+1Zp2yExGxLEui2apprTWFw1MgRXYDQf7M+rUrxsQucSgPSi4i0ofbtGC4ofm+wL0jBHIjdIJ08YwXRDXVtXLXVFHQxSkRwnDv4V0lRhUbLgz2tt6uy3LrrUW4ShSF2ObAoHRfImJSqbXOVc9TrNerxep9jXASq8ey8ka+hr+23np/nufnOj3P9Wm286Rm1BCnhkmwLN2X1ktna2iC7iFCUWyG78qsZz6qxckBWefeVSUirE45djLqTcxBDiDsQxDAJhrzLk7d42OkbSYGiCUDRYxodJwuMbuyiZep5gh9eMr7VqQbxXgvHu/P0cw6t97Ro4Ls6LCLJGf3nmNv1Jef+aS8N0MZqwi6QqjR2NdQF1s9Jq2iLSRtOEYWVMvUKUGhiNiMMkmdMZ2p5k5hROcq2gkXcSCjt1ILoGK7owUBlFqScy0m7ll39wzJo/XoHaQ7rKTjpxVBKZKTbqqpMn13IL3XayPWdSVEtWiplbRSua7Smnn33limdH18N9P2BG/vcGKPzwYWLOdsKp/CzBSKg6QhD618jjYXtYiSmnM3B4yaIJ6enkYTQ2Bqsnk/7nHhfj35BXt4R9/37ebtti5rX1Zfuzulm6qYFSiBnp62RisSOoBrwR3LMo602yQMogMzuo2NNA8YiwEJ2bRWI0Jbi35d29u6vi7L6219W9a3tVHUizCyHCEBddCDHgyY7tHCVkvIZycRdWAcU+pgFA8isxbmHBdN7I2MGiSICN+jIzhEWEbiObhlICVchBO1AlPu+xZUhBPKzTJYACBQLBSZNo7HXatOtUxqn5xg6cTN+0J20bAEP1oVSaZByngl+B4CqtRSt+EgCQPGQTn3XgNmZqlWa51K1egRSe0vqfyXm1hEojMDnhEPwwNOC6iiCBSe/nCDokcilGLKVK6ghCFXlMy9VXkLGzgzS5K+FoMJAntzjIdqeo4BnUpmNQrW3C0iCEZE+mnugVnuRMuytLbebrfUa5ZarFSdapnrdDqXeeLatbD3fgtGd+595lFJ3hcsHOVp39mwHqPzo8Z3pmHHaf7TyNTddWB495eNfo4kY1aVQ7cAspVRhizRvX0hOS4hEvw5vFJu8PtGsHeDH8Ws4uEd3F28hNBSZEwN4tBtzOeNcUKmbs3x20WkSHLsAI7cpBC/2PMBgO5MsCVH74zJCNtEijOuBrItLGPV4qZPmS5zWaXJD8YGNZY7pwgAe8f27xmNjO+TC8L+KCP4Cz2WfOu4/sfXjLmw396dt5Qr8njHEJJ+d04dEuCPKI3H/FmHbosMvOD4lABQnp9OVixbnMuy0Hsp1SSsaodGdCbTUawWmWdRlQj82COj7bQAVEHRUs2K8IM16Wvc3q5ffrye9KXw40mXIjDelh63OEl89zT1by5vJ7++LW/X6Mu6ImqxeSpzwVy1FFZDLTojfmsoQ70GZt2MKqpGit7UQhQooKg3i/UsPqPV8N/85um/+ts/fPv7P+jTb1A/onyCTH2SmGP6zX8tfbGATlWLKjvb6/L2mfK5Rjf49Hw2Ah5fvtw8+Ha7ra1/Xh2+SrfKuaBW5VOR58kuhid1cfe4RfS135a+tmDvZIgaT1WeztPT5TTVopbAqtxrAySNMdDke21MK06mYiUhqkUEER4RRRhKwhNEZkVVdZpmsHiLp6fL7e1V2wjHGYxU1XTeenTSIZ2BCA+33lm6WKEHN8T26BWLqipF6lQTbC064Lxjooiq0sxUEZBQBQ0kI0EM3KaMh7O1tiQ/NcqyMqP/Xa7x6G3cw3vvt+v17e3NXSczEO7e3t5y5mdazCCD6V9PumzdNjkQCSTFZx4RF/fK8U+m6DbZxpYPwMwYbHFoEB9eH5skVr4vPHJeSYaPZEIURIneN5WKkHBjYMB6WtXy9vbjy+fP3nsRKUUAAwwIfQA0FYBWrJRaVE9xXa6vGusg51DW1m8t3pwvvrbOYvXj+fLpcnk+l6dZTTvhEzTIfNImUs26SyvaovRbt4hMVfq2u4mjj3jrHiBk+J4s9Cxnmhl7AFJLnWqVbXwcE5WRuIjgUeV9363vAcchUcnaLrYUhVsjYlADCf5kAzs2TxKV8Q7wMALWYq0HhS6kDmPc8YJsRG6hj28G2+NZHwdAroPbwBjxusgmYxId2mEh0hBFgDKhVVip00SV6F3FxMUJh+l0ttNF5jPqqRPhEWtrelugHcpSy1R1LUbWuTKw2yOXpKmpmaqoaCkNPXqnD9vO6E4PIN2vs3tZ9kQl37qJQAg2G6K2NT0pxnA1mbQIKRHmXsLN49aaWhVV2WJZPFbfRoro7gct2uMk1WGrOh76todvT0L282C4m6soRQUqGqTJeOKn0zDH8LVlncBT3cxHvrBnm9mYbd4a1v2zlrbc1pu7d/YOLzZRwoG1u6iV0BbspMNQjIjQQY0/Jmjr0C/UzQbzHqc5+0aXSCi6iKp7b+4w65Rb81vrr0t7vd1u3VukTWNJRb7R0UrMCJWaFNlMC9Q4QnYAcDe54791jHlwWHox63uaFeUUI2eAYUpsSkcFNLIMugWcEkyAVExFT7VOZnNy4K1FCoOpuecKhwhAWEVEkGOSERBWYBJMgkmlqjpQnNXD1aCJLSwTtFiFyKou3jsoKjCFiplya5Xc5/iG2NlV6fOfd+HHIYfH/D6qVhWqQ3LMPYemR/LAwkPFihqiK6kSZuko5URG+enTHkIVOlM+tXuEQrVRzMxKERoBqBSdALh7sXLflQ6zAIAHrBvMUKyAHrH2trY1Iuap5gQ5lg/S0jRPYsUIs6nW82y1ylSoOs2TESLS1rUf+tzv8urR1NiHymaQBTwym979OJiW+JmX5a621SUk+qGAv63so7Uom1wqJWkb9JxLdzvgwwzKheOhRbmt17rpWe+JXC7ch6s6XMTe7gUgsGokxf29eUNyobc0ODOC/Y87Ao2Mbd36mZLoQ5aSaoYR3Bon+Yrxomx1mwlHUJE1ADXte4CR/VAfUPME93LzT3mXWTKCaU95qAOGp5rCIaoYa9HPHOPiMxU0e9fnOH61vkVxW3J4L0gdcqKxluclUfAgbS8PA/F+Iw//np9YPn26fPz48cOHD2b25cuXv/u7v/vxxx/ByC0tO5ymvFT9+FQu51JNGDgrvEWEq8IEpjif7TzPl2qT/yjdJvP2+uUH9Q/1+7cX69cvT8+ndWkMnRHfnEw+TusT/Dfzeq3tdrv+qFWtFpkKJ+VkqMapYBJ+P1mRPQoh0GWw5ATVXEhIwOgSK7V7odQif/3X337/u+/rp+9x+k3IKQY3erLpN7//b/5PAWdGGyD92q4/vv7pH6/lH0v7p9n8bHayIj3O8+vS1j/96cc/SRfvomYSFTGbnKs+Ff1YcFGtsQbWGxu5engPpqdFBObTNM31MpWnyaYqsKT5URTsRHjPHmhuIBs3dS6XxGZkZBakSKiAyu5XNZZS08y4TmWaqqD0c1wup5e5Lsvae/TeVVQkpfZk6X7zWEEmuMUklIHwcBMR7mi6ICPLhgI1Kxy4WzOrTIiJKkRL4WYyZtENoSkoKQJlDBuZiHXt7hmJevUSYbnHikitNd3WsqMSEb17IqAiwqyWUqyYma17dEtUVRNNFtM+JPYJeVwyjj+/K2/sNZifIlC35gn3hfv4QT87sb9+MDyVmBiRov7u3ntjhPab+e1SWM+nUsrh0gNyu1+t7Rh7URG/LuhrW9a+LAE6ytpjWfot4rouEniaLx8vz988P38812nuUOkRs9fefW19aa4RyWkwQzV1Oa3BRdta/LauV1+TGiiQJkfa3sMxnNce993/nx/3IAb4yvOi7IWtn0F//aoPwn1ZfddSCEiIhpgLu3jRCikK2tQq3Iqwr9F7eFiz1dmoKBPrjHpimVtgpb/19ebsQFixOk+XeBZhhBaRjVMmQLVSzIalJRCQRtAjWvfWESEpF6PWudvNaSk6T2VQdcf01pySO0Zl5BcqAdnkTaVACmE99NHQ6S870ofUvaf8mh5iqYcRJVt8ECAxWbFiyvyV82nAAcZ++QvPMr/USMC83XjbqalrW1OugAgoKYGEPkJ6REeygzb27NBK2FR6tsMP5eokKmy/0eqUaxQBD49wJde1La2t0a6tXVu/tX5d12vrq3snzGwj62ZaIRuki8xsPxelUCkPXrOCAw16sMUH0CWxaiZqslUH8j9ENUPaARBmWkwVUkREtJEcAhuc1c6lTKZTtVpMSgDD3jCcWWvOKpJaNp8gkmiXMLhGBx3igJraFJKISTWzMtFKsFqpNNXekTpBw8BnbP976w97jfbww76SjwGMDqft7AOKWUmkrIDhy5AN2G7TXZfeuzByB1eIiERiBRFGg1BBIT1LHDu2VycK0hJaEhyiw25cLCHVcl/Ht59va/dSUEzn2npfe3NFEYh0Eck1NhOVzFIS8VVrHWKSKnaarFathaZhcrbqS9urQ2l9pqqS+LyHkfIwO/It/Oli/jATf+2kj34XhDomD9xNHfLXvc5/7+iNQx/djaL9Czs4cyhBZZfgGOk/vOxfZGv7Cuhq1PWCHCT9FGYhk1B1vA4VgUSEQOJOp9e9sDeOR/rcX3D9997aSALl3V8PH3U3Pro3tX7yuX/ZHXx35eXTN5d//+//u3/zb/77Uuzt7fo//8//03/6T//phx9+vN1WtRPJqZbLpN9c6rfP04dzORUV0e9O09vb23pbi2k1LSbnk1xOcpqkNDU9gTV6W1+/fP6TTtrOM5ZX0zqL1RPjQxG9WCnVqvS1rK+2zFphxaJqFPFZvRaZTIvoZc6VykSk9+Y+EhUVRVsC5qghRescWpZXoodNmOparAMKV5gz3iSs0sr0HN//a1YTtR4e3jVu7e1HsacyX+JP10nXolJUKSjVTlO1gvBGXylmjKI8FXme7Knah6oXEy7eQKOv0R3uDN9UAWUSLaIGU5gQcCJy0FUTqhmRpu6bZIoCrGUswRg6ICQHRqVW5WClhqpMtc7zqRgYsj49nc7z6+tbhPfugkg+qYjouZrqVArI5Dyn14maWkyHETFatHl/i5UNMmu0kiqNue6YejFVRYiGGaMgnHSGw2Vngfbe3Wmm66qBsDIngihpgtM0ZYO7lPL6+cugatxuEVHmYlaKlVLruZSduGKl1FJy8VVNAYmfyTcA2GEHf0fFewd0eZfS7PXXnHv77vIXTbdsZz8giLiBdrTfvns+Td99VBkGz9scDbLfG9cCkB49PCLokfdihQDU1n1ZM8rx1lqxWtSUPNX66dPT6QKde7Cvnzudaw/3aN2X3pfOta3d2aWW7qWiiGpQie7RNHrwNQ7+6493YPCGkxjw/x/HHrIAEKZY0v8en/VYwVOBbmElQowaMBqmwpOhldYz6nFxsYreQfRSOtFaa643j9vqy+qrM6CwUkRKtXmeojXSDak8P4RkVKSaTaWq6I/XNx1oT/fewyNjU1G1UqdaTqfTPNXTVOZqcwLGyhAC2H0PVTUL0r37CguyqE4pOKeqhIajt18Lef5nDurW77ehNbX94VC7TQMiRUbSVkqBpxIJz5dLKaX3bqqu+ksmxTm/tk5RW2LZw4edL8fdv2szFoiI1smaf/nlcU45OrEcx0b+vq9RGXGm1+RtWV7a24+v1x9fv/z48vLydr3elrVlldLwyxu8bPHBO37K14/ECf801iejKGVT9ymqkxYbcnACtsg7JVoAI5UopEVUimU7W8wRLUCVCIaGlhyGuSyHCpUh0SFgWtMkbcWdwSqoEIG9QITQgI/gVtMnDpsBd178BvG6j9gkqNyfRvLsRS2QmATSeydkaJQIPJShdI3QYOo3I5A4dk8NYhhBSfWWfAFMugzRsxBTmHq2q4hrQukApHJAKWraI6L36/W66zvltxjJ0ygbpPifiSpVEgUlKuqy9rYsg4TZWrvdbtlROdXL5s0Eq5PNE5OIo9ms82VZWmvhHuEJJDL9xbo4gN0l/aeujvpnipGMd8l9W9hLfsBjF/LxTwCk/CpZqv89j3dz2X+Z7f2XHUWNaVuUzA0BQwZxxR7WEFHbFJaDokO4UKCPbtNqlqlG+FBC+nMvicNIjaMqfdjf3gVax1n57s68E7n5c68BP7nz5T/++//2b/7m999/82SlPJ/rp+f/oSj/x//x/6zCdWkmMs/lw7l+cy6fTvrNWS6VJvx+0h/BK70apxm1yFTbXFhMq/R5ulDq21trvb99+eGlxPSbDz++vJRa5/OH01S/ez7NV8BwOVWf+02E/VQI1V4ERWJWqZZlAoE5BklS17Wvy5IlK4OWpPiBLjS1FnHrC6MjZHn5Y3/5AW9fUM5SZwXAAjlrfeo6l3kWLb2tIk04lZPOH0IF1y//i7JH7wtXX5bb2jrdGd1zBQ5FVHI2nItdDCezuWhfU2YrYwRyLNIDFulkGvGlzzdFRRSUWjT9paEU0b1ot0lMxgapVxMLEYiE8DxNzi5gdAfFrNY6q2LqnE6T1QoVZ3R3VfcsWYiez09ap957AmlM1UzMrIjKei+OpjXgqE1qel5noqJiKlZka74nhU9NsvmW4J4NYsANmzA2qm18U1RK0VJqAreyRV9rMTMmkqnH2jxCipqaalExuHcBplrnUk3SV3xsXWYW4ccSwhjleIis303XfV7loixDuxYAgqFiwRBq+pLtXftHLbWHyguFctAFHR867BO6hiOBx91JqKmpWdFvP31Ybm/e3so0lapxmNpHMzRVBaT3aAhnXNe1rUuE11oY6G3twcV5awyHqIbHsqz/+Md/ui1fnr6p8wc1w/dPn4QiOvR5W/fX6/Ly+rIsffnhRojDC2M2M9Hm0TVa8HpbkH2+h0BNAHHvEXeu7v6V/+Jj3D9iyF5uQI677yMOQLTtUx+KhId88qvLsxAMGeW0u+bdn3P9D7krJYQUyXpqVsWI5E+DojRQQlHo5k1TaxeQMk1dDE6xunq8LEvTeG1xW9cCtnAHRVHMiiiqdEPzxH3lB6BYSUliengMvb8B+cwUORFCIvNprrWcTvM81bloLVL2uS40haVTxzzPU11bn6Zp7T4wT2rTVEupWWFxhGM0aIAjl+SfvWvHH0l3Qky1FlMpFndVj+7dN7V9CiZVQDIFLGaaepcSQZmmSUwpgzN6TFQo92qgRzTvzVvrrUVb+3LXQAt3ugjSv8wAyJCQ8Qil9LTtVQsIkNQnHBpphMCmaV8cHgI9hFqJCIoEwyktyMDaufT4/Lr8+Hb78nr7/HZ7vS1L9xZOLduQ30VQZe+OACjlLjClqltuNTTSBQN8O8qidCDIKKKqA1qqZlRN+h1JRUvtACGLqikKYAIReIbwyRhKywiR6E5QNKAwETUwBZMzwIpUcIjRZAEsTSLDKWA+LBOD9N6jO8XEqQr3riKAuvdEQnPcZt3ayQNWypG9mqbDpg72Ty7jkdQCAgFMKlo84L42uiKMAQk5WbK/ugSFruJEiCoSZorBaNA0pkhSj0xMq1kCWq3YVDqjuzt18RBQSSW89bZ2MVm9r6356oKEUIuK2KjAFbWSgacQKqKmheYskbPAmTkttg0ruZ0ApqoWajRRWDErFmmZJmB4W9c0lqH31EVQsYf1ahulx1+wJcDv/7S9jdvLfs0aWQ4StEl3O5zw4SKO75Lj2YNHSqO8u9ikOvxnbDdjxz/uadu/Qwayc4C1fl2sz69uOu92ll1IQEWS8pLdJagM3Pjjh8qY5UKPoY6s2eQbOmH76TVr2PsJ//yD2xvlXtSQfbN94PQ+qJY8XvAvDLajpPVPj9huzngKh5OUf/27y4eTy/qnj8/fX7777k+fX/6H//gf/v7v/+7/+j/9P9qfcJlPE5dnyl+dyge9fVT/w7cfJo3K6Xo5v75Ya9d68vOZqovKSVFrWPit++15kqYMCF7jpd9KLf1282X99M0336icrIngrCbztMYJtxerqrWoYgYqCTadqHN9a57LlZBS1WC99Xa9rt2NT3WSOvlU3Gw5Fc7f9nXtCJ7J6//2/14//F/04yc/f2inb9bTb8rzH6ZzqXIRKaCc5sn70teQ6TQ9fby+/TjrpX35AmlA69Ff1/Xv/vjlH1/Z7SPYT9U+nMrTJBf4BW2W2vqyLn0S9pDexBflAr96u67eukAszkolSkhBma3WMtV5mqwWA9bbsiyLKBV3sH4w1bNGzSwkfHhpOKNVX6rwPD89TR+fTr+p00fXqTG8VBcr81nqVOaTTSezudZpqpPZ1ENQ5jFSjtCmYBi3vFgEUorO86yqwSjn87FPzTtIWFQ02+a1ThIh9PAGaIC9QTCZVdE30U5q74t7mWSiOIpNl3o+n6ep1jqZaUT0tip0eb19+fEKr6XOOl/K+cQJLt1CTIdjjG2L6TRNp2lqyzVdb3YKu4fXomY1gUnZysh5MggSIlYsMVmdTI0jK0YGTRdlxCpNZk7VzFQCbN6994/zaag+RqTLxFhahSu6BDUawN6sqimUkOhR11dF8lVEFN19mqYPHy6Ar+s/nZ+QbssiMvZ6BiEs59ZaBIsWoXh3KNd1vS235XbTotTyY78tzjfyn9b+ecHiZqWE6ueI6/X6j9GntZUvVmqpFt+WP364nD59+vTh0/P5NF0+TJffnD4s8/Xt7elcr2/rHz+3z/22QroUI0KLm4hpCy6trd3TQj1U3JmQ1z99/vE0nT5ePojAw4vaqcy+tpj9mNAdKXypInqUKMAmcpA+H/ec2SppS/M6TcknNIgLLKVpmUgn+EGhiKBve1sG8fd1LoZL9GBDBgQoYhDEVhEAAIEfeIBabCrm7mzYm2w5orBJimW/sVfnaZJ5gncPoKKeUEIbGwwrXEGUaT59ENHAi/fee6yBxtpClxUvS/t886vf3lrv0dvyo2kUyDSJRqsap6J6nqJruuFtoB5xwrSubf2Hf/rjKvb59vbDly/XZbk1dwfMVNVFimlR1KIfny/Pl1M1NWHKM1RZC6SIFS0eWN2XOdbwNVBYBWYOA4vZ6XSSp0u7PPF0aqWKFbXiaTOR9hIKIYoO568MudQsctMhBVTRqapleR5hGRNDnubT/XElm3+siPSny7r2t+vb9bYG1IMtKGbTaZo+nFe2Fo1CGEwtWifDe7/6LYYoJntP9eG2rmt3v2E9WkBkhT6lFxg0swi8rQuCBunXz5zNzvVZzt6bO2sx06Iitrkqk7KPLtuK/Xlcb59NJBBLW7v76nx5efvx5cvbbf37l/5y4w8v+HKTH1/b67LkO8FWtKpKKSmVji4Sgci4oVQIipoKatVisqFp6M2BdAElw42hgqRIqPnulwMYsspuRUTfbk0AhmiShzW1fc2gkO5CF2mQjhQhZIGRqjIhwsnewz28J78ZZqXTA8rM2Mnlti7rWku5nE9utiy+tpXQoLBUKRXzpMXCe6BJ0JQnka7WoV0QVEOpZVpa80CpU+5JbuaWjGiurb8ut9bWUkq1IiLR4nl+ugauSwcYrqRYSUixtOWNzNU8M34JJRm3iBPOwmTZe0k3yNYUKMWqiEkpplpEJLR7wrZdbSXcO9ZGp5kVKx1QRAHflmVwSq1A4XTvbemikHN9vi5r711rCUYOTncPD19brjC99+v1uqyLqs7zTNK5qsVc1Gqtl1OZJx+GKbj94xdfbxLdGK45tRjwoNtBFjbBnfcI0SqQFKOsP9yVwY9rY+6e9wX20EUcq+J2rNGwWYvCCh3wkFLqVCP7EgwxE9lkr/Ljej9qUh8PZUbwPsAUVkDAnUCkKiYEqbjNweWASOC+EwU7HBBRM4GMlmz3+TT37tva7oy0VSZ87F0Z9Lu7kPQ7Z5Wqj1zzdxjM4zfYasGP91CBNmISiCpwl38hye6Jf/PwcBcRmIqpAFw7MvOnU9LdV7IJ2m9rVsrzGYerqhZVUfW0jvDU6VEcFZkP1vSa3Rs1EL21XRVYku02SF2BAKYJo1h8ZyHm0W7L/eSyf3NQQPPxFEZ6c++cuyglye9gRD+MjfJ8eX46n0sp3pt7N8Hlcv63//bfvL7dvP1w+/HHjxf7/uPTxxM+VHx70eepTyVqX+qJEzzI81lOl4xli3IqjnC05qvj7bYua6i5IZQBUXHnuqhZZRQT85XkqUj9iPNTnZ5ORWl9kfXWG5sEq3w6nyUptcRyW65vYSICdi3XlxvVp9PpfJ6mWUj0zrZqb/H3f//3pRqM5ZsPOH+qv/3Xl7/6znRaV9bLPKzNgkHpDvd+XW9vt5u+vrWXq8kNbK9vb//wx5d/+uPnH16ub9coxSbDpJgNk4ax6yb+O4zHU08xMjpL3XodGg6qaqWeTvP5bFMp06RmpfVwdg/ZeBEAItLxYJSQMqNNt1XnJtiYE6olEZDhDMIj3Pv1tlxvNwpVayZ3OfSn+rCm9O65ChHcZciyQlenUqeiqh5RzHaYwT7m8tvsiXEOQtl0JkSlqEWRhHX1Fu7Y2/RPT091rufz+XQ6JUReRHrvAlmXpa3pE41A6oMMPKu7X06XaZqu12s6EJNsrYlAf7mOkS/baYjH1uSQNOJmpLTNEyJvo4/vRCZUNqvS3ZNQmXC8h2qFhSgIhiLmKrUKfaV3ei+lC0g6wfPlaZ4vZuV8mcNbPX8SRYrYJEyut7a26N5fX669d5C1lKkUAXrvb+vyertBJcjOWIO3HteONeiQEE1VH1Gl6eKxXJcU3zfB6/L5VF/m04/zPD09nT98vDw9PZ1Ok5XLx+/n+e0ms9azvb61ZfHqaGtbO0sMqWkrdCIkRKFwhrdgtL6ua6utVs2l3MO/qv3+tQLPzyn9y9ZR4f47toLqfr6fbYPI1wtch7/ekRgAgHXth1cNqMKxB30sIN1/pGx9DmAz/9TE/RcRagAe7KkDDQsU17iufQ1ZWtyCL0t7Wf3W/dZb8+jLa1WwmhpmQ1GplvinMg1YkAQ0iNVzb4aZ3K6327KsbW1rCwJq0LECZJGrFJum+vR0eTqfqmkpxcTRXw2oMIECWoPGMHcloolQUgBLKbtgdsio5ElWvkDsjpxbMXIv9AkGuyIAehcRNTXoZDoNMz4zwanenemzsTGYFMR1iUJKLxJk8uVTeSseeqlJ+06vibW35r3TE23l7qOd4r311jV2VRmO/gNIFcDX1VUR7Mva1wb3uU5qVoo+PT/Dw4RQle4qoEpJiR5VSm7yyXtHag+Ixm11CHvz63VZW19a//L29uX19nZb//T59rquL9fl7br0YJYoVUBBAYQs2QBJvgEYQIjGoSqpIsU0R1WGpMiKHqgqAi0KFYjKdCoZOwLqgewoB5JZDh2NCDBpJsFQEaGKjvoB05FLg7L2oKNaln1VRJzsvAcra1L1R6IZ6+qthZNW+EO71lJKRakFpULExZbuQ+UDgFAYgEiISmhYhssDnZBlMlOIiALkrTX8f4n7sy3JlSxLDNxnEIGqmvlwp4jIyMxKFpvF1f//E+wHvvCtu1Y1u8gaMjOGe93dTBWAyBn4IABMze6QNyKTqyVu+HI3NQUEgODIGfbZG7AYJn3nZM5M5OJGe0UcLLSVDjWIpF7czbIfYuGDSJ/SOWnkDQccQQZLIzON6j0iIshFqDAf8MSYEpEbpi59eHPpSAdVFWIWFmGMCtCu6U7X56fubuHoRDKefPDW3xq8/6cM6FBfQST61j5AWvVUKxdtvXtrZkYjhzQ6UYe12a4jOe886b8i176/y3fHuEuuv5YiMS4HZDpirMoXcZ7taD9nt39q8G5bsGVoXnaA+2n8GGV0HPClUT9BBO/962++eXp6ykjZwZAHRcAW+r85WL7EGOOaf3quPzVeygh3yIT7PepffB4/9wtbGeqgNR41MdohCbmPGJJAW9WC3zzKXzrv/dwBIgbFscn9W4+XG3JcAgBAy3Qppwdi6S2u17nUqdBNiX/33beC83/9/801bpxSiL9+V377UR8e8qQ0IfrJ26qAiKZIjKYGgsLDe0iCMlBIh89JPcPAD95aX9YsXAqfT9Pa5nVdP7y7/O3v/+bdx8v54yNFxPzUnp9uT0/XfrMM9o3OjpJQlXDq3UTENJUbKElWKVTq0PaY1tXWW7t9sufb06dPf5wws9uH9795p8r6YHGC5wgKw4OyI5vbui7P8+3z7Y9/bJ//SLFGtOen5z9/un3//TzfmjlN9Xz0VPBrxOfWvZfbnzboD4VB0qxf+OH0+PDhm6/O7x5pKqxCA75wXaQb7b0Qh0udmW8oLmIfiPDRHuexNluWleucyBa5LvO6tp37YsNr7fgoFnlxIO91EjAEWfZCiapO0zRN04b6LfVIG498yfGbB7sXIYoWqtOI3SM8hMFyOp0u59ZWc+vH1b1//16KHKcYh+29u9vzbX5e1m7h8fYdenx4yMxlWcYMjxtuZvXnjcUBxb7P9IwxulN+/HPs73lEuFnPDRTPzGBa3SlHZfXuxabkRBn5OjjBsdxs9aLQwlqoqpQh/1P0fD6zsIdLgTcKnLvZclvX9TbP87osa2vruvRuz8sSbkI5Fa1FVVCFI8zCiAqI3bkblua3JZqHgw9kxPGMxuUMTKvhfO15c+C64PuZ+YfpVM7n03Qq3317EUqcyvvTh3dJ6dl7//Lly9PT0j6DkHCLNAJYmCTMnNmIOcK8rXnqVEqGt76a22nDX/wFRvz/vyP20HQfbxnhDhz8eLmOnx+vBlMOktKD2nIgTDhS0sMR6T2Mwq01XjqapWc4XW/LYn5d2m3tz92u3VeLuXcL9+XLVPUyVTqJTBqlJCtzgrzK2Io4QRaItS1rg3XJWJZlwNM9HCRMQ/OQ91S3TNN0Pl8eHh4+vn88TxMzpzdbiCM4GYFMikzNCI7I1EiANCDD8z5iRUDTKZxDkv1uo8SBqXszRslFgcKoQpVxKToVrcrKUpl3OgkCcismb+4pfXle1qpFoCrdoiBGVW9X9tjD2Qx3a27rura+rtF9C1u2puSjmd4kjmj3iDyZWYjTehCneVtXt01ho16fVVisU3ohPk/lLKKESWRiZZUocbxxA4g3lgrlhszoFt386Xob/315vt6W9YcfbrP7PM/LsvjA0A64xabJsQ3cpV08t66RN7CwwUI6CAloqyiyCglDedNoQIS55wD1jujCPZJGFocBCXTiDVuLyAQJg+DDzyM4sKRHj5bpUNkYUCnHobZ9EEu3obk7QpXem7tPk7BgpSygKlpTCZKQAMMIFA9SZbtpyEhKx2HUaOjTRuaWIhq7YWLbF8ZTftkogci4LouM+TGXUkQVREcARmByJmFmYeFwjz6InAPhgwRFEmyJ9AIKQrq9FHAB0cNu0Bm5cfSDLDmDD4kbKUIIHj2mqi+dRQlmriIaYeE+ZFT2WIvvRIdob9oBkAlzN0YZvWTMZIG12222tVHqsVPjcB6Gct895uZXByq/ALC6N5vyuve9cMHuJP91AKRfGPmjppf7E9yDjn4JHRYxUqV/WdvJX9Wx83MjX9vJDYr2mm/gLx28swNv2ZfBTY4hK/GvnTwRaBcx+Dd/rHgNDCOie5oyvbacQpXV3WPt4fn9n/5cBX/7229/8803v3vk5z/+l6+q/+7by//0dx//5rvTJOupcMzP87Xfrqt77OZUGBOReMydh4FyZKiQe3j2CGYKM+vLjVGaBXKNtFPR3//Nd//hP/z7x6/fT49TW2/L5z/PP/yZJ2pPEX3V5aC6Y2LaAP5iXqyoe/TpxO/el4fHqdaqWubr+vw0k1spCVlFtPAs8RTzZ65PypSxhod3S+/u87J8nufvv3z+px/++T9//ud/Wj//Kfoa1pa1XRdfVyfWqZaJpKpU1amoMHHmyKfEkXvZCIHDMwyZRFB+9/7jw7v3p3cP+nCWy0RFQ3joWyHy2D6Ht3TEJKIvGxV2vzy3U1Ak2KJZX5YlmKp1i1zmeVmWWuuHDx/meXbLo3WSiEZ7DLYFNpbx+DNV9QB3HQ3uIhKZKS8f5U65u/3TD+p9LrVU5fA+iGsXN2KY2el0fnzMaXKV8vj4eLpcpqmybmq749IG9HZelqdlmVsbHlYmJxhgSgZIRJCbcOQhC70d4efflk0X6G7revPR5kncJegBlFq3Ig9xZroZ70nbZsEcsnX2AojRdsuZNRaJBDngpdJUa1UqVVVFp4dRL4vMp3md57n1lonrvDx162bruvbWu/XhTY3tPknhLBxB3LwrxWliZRpIg5FU68Zrw7zm2tOArXrHL17X/rjTkZAyYLHjubv781OvC9XJ/unTH0vhyzSdpvJ4Pr9/fLg8nh8eTx+vc320Zbbn5+enm5n7EGEwTmbWqS5rH6B2FQbCbPXo/zclWn5u/NzZ/m3ipNx8hJEsfFPdvoN+5Sim8JbwS4mQdE2XNFvWFp3d3VasC7UbekNf4X5dl3lpX27z022+dVvMZ4u1u4f19fkyFY6z0lmJOksXJxUOHrn7UU4QyrDe1ltrNjqXjomB9iLpFqiQiNRaz+dTrVVEp2kCYGksShRpSKR7NLM1s0W0iAjwJgUKJATMSM6kTA3nCKRnDkgQaCtSvNRCjxfr8KQvlYrIqehJ9VRkUp2KTFqK6kBrj98fZM+bq5uZXqpC0wW5tF7IDWaenDwIckamcHgw3fra2tpbR+8xIF+jsTha67237h1KR0Xl3sSBQomHo+zmwybP89xbv16fv7y7SOSk8m46vSv1pHIROZcqKnGuA33BO5N7RHgEIsx6hC/L+uX5+uXp+ek6P1/nz0/P12V9vi0torXmESDcByrMG9vfSDUREJlMRAnbSr6gRJj3cH6hABjqfiCEsNQiyqPlHUnkSRRhufV+eMToM4vdq8kRAg9QIUJARXk0+SbvDeEeZkERtzYKtqoqLIwki3QL97wttnGIZEZE7x7uTkDBuw+PxpIkPTk6koJVtRZmdjDIhxgTR2RAtjgsMiyDEaNDpiPM9miwtUbMsYsq8s55HRFL6zL4u1WFC4pkIgiZsN4ZIC2l1I2sBgjzoFiP3Hpmdk83wE8lO/BIKDl6dgy8cVqMMsjEoyLFDhIqzC9SUGtfgU3fm1WZdfPGkplVRYgELeFGkYHgTMmhKrm10UWYex8vgyXmXTKvDMLi1vvafFmtdymbkhju6drzEAa5s2y/YtAbEu7XdvWe2PdNEmezlhH5U9nAf+X48Ylez+8FZvXjXYCO/1S/fPnSWlPVIZbwa059/2uj/vivHEesktjLHD+V5fn14yU/C6T7EasgiUSOktT2ih/T+HUHJyJmDFuOH4ml/CvH2C5eZvWauVj/l//1f/v97//m26++Eka4WV+X2/Xhcp4uk3B+Jd9dH9p3J/p//v23/+Hvvv7NNyfEAp/zev30/ffpP7RmhDJq+MKFmJw6a4AEnMwwS89ovaeTr5U8sofBIlu4nM763Tcf/8P/499/8/v/ubx7wIm1PWk5i9Zrb77cuEjYrMQECs9ECnGmmWe9TDNmyXz/8fT1N4+P7y6lCJGcL7VWWa7P0E68VC2Uz3b74/zDf55MST+mIi289zBb5ufn5z8/Pf3hh+//6dOf/+nTn/5g8xxtCYsBfA4nJInqSeup6CSso9zPiTQAe5EdyCSiAByppzqdz+fL42+++e78cHn88F6mSipciwhbuPV++/TJ1rau68b0uuP8Brjo2D6xJ33dPd1Hy65HzMuSRMU63wTIiBSmy+UyoCy32zqK9/urFbuxSiKUwplj+6MRNhxMXEMNl3lwFvELuuWO/4oAZmFsWukCYuGUURryWNduUUo5n0+qlUlLqefzuZ5OtU4kdAQboyoyz/P1Ol+X5db6msllylISNJgnKNm6T9NUa12WJXNY91EFIs6M3MQuhm++AzlyRCO4M2RvHM3jfQg/oHd5kGAiMjIHIeDWzDPYKIkySRkMD+8EKKHQUjRFVaQ8XB7Ol/M4XAAdk3nOy/z8/Pz09HS7PneziFh6f1pbDIxmbvCOiEGrk95DwCTiwaVIKcmUREHEDvJEd557PC2xdHRIcqG7p32UsI7L78itCZgIyLHazKwhr2tnhtKqlJdT/erD47cf371/fDi///D7iy9r+/SJ9M92e177aDiFqvIKkUqFKN3Tza2bdbPevRfk0cWcrxWdYqsev1R7Xp7DfSZsD4xp9AwU9sjx98OkjWulSGEBISMAOrKVlANl8XLmMaVt9QrvW/dGH/dSIb+zvrkT9Ryx3/CEjkkec1ZixYDCBKVLurixNbEGtzD3Nltbc5mj3bK16Iubf36+Lmu7zvO8rLfWFvMW2d0iwpalI7pqEx3tskQ9CglSxYVAxBZhkbELLLTeemtxKI0y56bOOXTfcGQHdi8iiDYiwvSIHmHRzZZuS0TPDKLhaVCSsjARI5CW3pQuUwa8hUWo+mBi3XfaLYnKTJQ0OvqRzKIsZ45J8FD1XMuplio8/lMGy0utf2xaGYhIT+Akk2TJopynwgGEpAwkVA5mrvF0MRRoFmvX+dapd++99SHsHUhkDq3PML8PVIb1G69MlZLmvfdx61pry7I8Xa/lWT/dTqdSHqfTsqxzrY+qi+i5VlWBTyybHhQYOWC5EYic57mbPV/n6/X2dJuvt+V6W57ndV5bHzmqsaiYIDxIEYm5igiGRhoihtbjwMVmeBIjQUkIJEXSUGEOG9GNMClzUa4qUy1FRtxDHujhPbJntgCTU3o6WOTItRlyvCwRLsIR5EQGGPFO6A1GZqBbH30iasLCRORD2cnzaekbo8zW2UUBLqyoJ354HxkdFEmOBFhIJ66liCGHgaDMIfwOMJODyNO9t3APBFFCePTFjIfqFiPfd/joALpbJLtnECpkBO1HOziXOri1trB0uHSaROxarEWC3LMtLcNU2BAGIyZyKxoXPjFoyMswIJxKRgBYCqlTCm3JKQLM2iCX8URYES3JA6SLzJ4IZLr1jCBCoRShZAkDMjmC3BA9rblvHBMOThaH997bvNiyUiQ8lZhFa904l/bFFeONf7Xp0c+imN6y292XkIh2qznoazdeD/yoBT/N736NsDcexNHkvRtP2kHUmaDc9Hxj32tfZnGIt2IrFBzTfUFkvRAtYMTFuN8CtrAi0x0gJprnGZm+qzMf1j7vpNPfDLkTOMNraNW9gOYb5HHcCx2/jm823lKABr3WrrI3uCuGGcnjBu2jqMaeJccOYMjdXXlJwg4H8sBQRVKmgAbrRnrs6l8U96C8+xoYvUIY5EZmG+M5kgp+aisHkEPD6m6LfLk3L30CG3PA8U8Z+/f+/43SIhOZ+v/6X/+3d+/+v7/99pvffP3h8VxPVd5dzuhNFRfBx4/T9P4f/v1vv/qf/vY3v/v28cP7KXy9Xn/Alz9a+PNyEysZmqHMyrwpcTErZ0gKi0jDmh29paV7Y+K09GzEAbdzrX//+99895tv9eE3KBMk6TRNVClVv1z5edEKxyKgMLP5Zr4OnvKpysPD+XLOyPbh48Pju2k6DRyjTZP0i9aLAM4EBbKv7cufPtt/oj9/sjyZdzfvq3uzcOvt9vnzHz//8Ifr9Xm+3mCRncNgHRYcTtZtqjkVKcoiYISwMGFokW6ZrUF0KzJdznK5TA8PH7/95sPHrzLpdDk/XB5YhYjSw3p/vl3X59vTH/9I8dLtfe/PEW8S4HxoGO/EWR5gpmber9dlXUUEguk8nU/n9+/fR6DWyiyZX5a5Hatko7aLAIJZjja4TJQ6yZ4ZG2Nzy4iI5WXFMt8zUTAT5UFxFEzMUsYhO4jFx6ubySKlaK21SilcJQmjNWWwKF6v16enp0+fn26tLR6B0ROmEXDL9CTdWCyYuZRybH4jk01E8N2hBI7WrsNNx+4B5w4YuN/MNsNxaF3dqbF7hIDokNwCzlOhTIZxJlsiOkevKpdaPl5OQsRcRArryaFr93Xtq/mfnr9fzefb7TbP1nsOIqYIT7SUO/MA5AYYjxhcOiwqg3OSwpHgIDA3ZHMs3a9L3NZsQcEKkaD97X69Z2yxLiI3KAFtvRfEAawWFmdYrumI/vQ8//B5/dP388f3784X/fixivD7Dw+11ucv19u1r4v1tsEUtGhB2roAWNfZrGd6bpQ8Px0cvsHb/EKgchTQMjcS74jAFhtvv0vApGVErd3sVZBBYHp18CM6IkBYEunux7ZxF9q9GOZjTzlC9PtY5WXCkczCGH1KQKSkc3T2lXtj79bXWGZf5z7Pvt68LdZWM7vOSzNbrfW0CMswyhBKZiJVIvLuy7zuFqZkcBWdzYoKEbpHN28WzTC3WCzW1gfr1YhaQbRtK4nWWu8yGMDNTpnZex8X0s2jmzWzZq3ZrbXZzcGknAMUD5ZSWYSSw82tC3xCZJg7scrWf0KBEWbTCBS3/ZbCCVDRU+EL2qXKw6SXqZxUlEkJhYIRm4by/rwyM3lzV0lJwewskF6odQ+jNQLI7NaWxcxYJSPNbGltbe35dl2zebpttUofAUkSBdLcQa+W4lhpYQ6Im8WOFlvXde3NI1pv1/X2eHlwiybrrHLTchE5laKitJyGJFQpZeCshuIuIsx8Xden59vzvHx+mr88Xedlvd3mtffYNw4RIZXgQQmlxFyPdRiZHmk+3OLMoXROERhS9yTMxKCMTEpnUBUpRWrR01QfHk6nUgEQs3m28BaxesAjzJwxiN22fiBKAgWRMSBpFA5BwplseDOZTHAm0uzpTGzEPcExCmAZSUncCEfPpogwFwb4fJHLJWtBjKbKDBCLopaoNUQWawVs8LrLiuWwzhjlrZ45wj8jYc+BtQZKHU/K3YE026x9772eHjOCE4LB9mIjIcdEtdbMHQTh7kgnhSLB0Gprj0AzrN0HeI9ji3GjWymZBVKFIrx3YZogSRAQEynzUOhzZA2nRCWPzXOjTEfKANcRkad5H6WSIBpqiMkZkXmu2imRQpB0TibEqLgEoYy+x+4r+ab+V4qAyJmUdJipAwHhzIh4paz3Jh75+XoC3evZD1MZmYOgTwkg3InDHL8ZB/ne1iW7LeYYTdh0oHpedgCiLV+3pY1el2Lud/O3pYyILRC678oAMOhUXyb/0o4aAGhTIDn4P1/O9QtVoLv7dI80iV174Cd+D6C7A76ZPA+x1VF/HoJY+9aWP4VaH0NEeWM8j126cVv2x1fojst0izwi9vuwBZyUPEp/zK+IFo5iSQIvpecN3fvKZ9lKgz/O/w6o6I8WxtbJuf98C6R3AAjfHZL2sJMyI1Ofbvbl8x/+/Kcfvvzu27/77Te//eZ9Fg32tpjQ/Pjh4d///m//5//hH/72t9++//BIlzNg0/Ll+o//7zpf9fq5zSvzpHSORKAzjFKpgyIlOVVYyQKYF8tE+C5XFkwZrV2mj3//t9/pWVEEdUIFgkAsLU+Pz1//ZsrC5Xccra3X59un7+cv38d8rYUul3cPl5NM79z7wzstdXRR9pFTjXBizSBbaHmGZ7f4ofPV8v8wSBJZj754Wzws3drt+fn6/P08L1JO4UhLN3JjT/LYQ22AkeO/NxjCkbEDwCK1cC3T5eOHd199PD++o1pUNYltMM7clvl2e/78Zb7e0I1envGrpynx8nRHAeFYDdHXjJF07bfbjQXny+lymaapPD4+mgURmbnKDWjH2ssE0RBk5yFkfaSJS50OMPQIIfgOLvKywH6xG0T5qFhmrVU0RWSqJ2Bk90RESMQpx+Y6btrIVs7zfLvdZjNLGIg8YE4C27grcN+x8wtjz4i/ilL+NWOL1kbGBeDonC4EgQtSS5xKuZzqVOr5MplnN587+tqWtrbm89Kb2/M6Pz9f53kZ/ZzD04jMDMTdS3/oo48wSsVFoigVkcJQYs3kSAS1tFvzp1ufV3iUAAcNBs8Efu6qR3VnPEFKIDeWDwaGQjsiEEnpOXd7Xm9/+Lyq5tfv6fHx8vXHr99/+Pj4/qs+9/l2e/r8/Pw8a2jvBo+wvmTMt2u3RpSqfJ9Pemun/g0ey6vRW0ck7fvNK/r2V1minz3x/Qx/tD++GvzzXU+DVhURaUbWYYbe0Bvb0p+/ZO+x3GxdbF2ir249eguPeEE7JQtVUk4bC0HLw/Cb55tZ72Z26qc4k5ds0UsJouzmS+vz2q5zuzVf+lj2A6g2ZCR2gt7MeZ6L4na7nad6qlpVEE5ESL/OS/Tuq1mz27I+3+bZ3YmgXBKc4SR8OqFUESLnsB5m6h3MjMIER7ZBTzLoebabCRxrDqTMleXDaboonaucqhRGQTKyEAmxZ38h/AV2ilnPpCpKESEZnEwgz4ZIdAv0dSWQmbHLsiy3Zbkt87wu87IsWGOD6O9FV/DOF3+/ie9MbgAyrRslRr68tba0dW7rkXMlp+xxJZyEn1WryCSsIqfHdyoyApVBiHikNtdlXdd2m5frvD5dr9fbvPTeupsF3UklHNZmFIe34uO+ulQkeUg6U8s27jWN11rAI3kqKkKqW5RynurDw+nxfJoGTRaJBVpYi6BubhbCIQSJMCCSBlXxiNmAIOJRVAeMEUNLk9NBkhSUyOrDw2AmEWIaRgSZJUGx0dKPbYVF6vlERQIERiaRkDKTFhEl4RCejRrRFBSZlVh0gMczBj/l7pl1a4N027fMPI9WmHEXx+Y1fHQl3m5UpC1rtH46n2up01RddKyMcDi8R1iEeWSkB8Vgv0iOZAZ5cA9K0NoDqSdIMUIPpXAjRXTFiUSIS7JvDMxeEsGuAJI82QmWSJEkdmKAM9Pccq+8DZCAm4eZm5fLaSzNUaZUkdZaEekebY50ZLqlbTUiHvUuTvOtOSgzd7UxZg76KxFFr3mBt9Q+beW1X/javefA9/989cXMjDjwyv7rpkgvlOh4KensFbNXya94dcCXneivhVfdH/wAjL1Nff54wq8LVi9cMLTpNb04lK88y9fHvDt1bNnOQTVCYMqX8OQeRvCa2+2+vLStjzEV0lrub8h9387LJSdAxCyJ3VSaYVAN/fjyRY922VcHeXPnR9fL3lDg3YGX3I2qIodSbSrLBFFi+vT5aeK8KL2bNHUib1X7h2n6h9//3d/97b97uDxQOYEnCAW/O3/V6rXx5xn4ouWxlAfr3eLJnbwv5hwiThnAAMI6M2hIsBGQBIe7MN6dp4dzBVvyU0iABZGUWIylfPXt735DU6ETe1/WLz9Mj3/Ufy7zn//xRP7+Mk1FZKpJ0+VSQG1Z3T3crbf186frbQ6fI1ebn5aM9LSR3OBJl/DWYrnZeqPoFI62LH2xbpHk4ZSG6NQbDEPSgn95IQJbo2opQtOpPjxePn6YHh+4Fj5NEbkuy/p0Wz4/rV+e7bp4axIZukWcB5jkGC9ljR2UdfxadDXryzr37r13SWRUZZpUujXrua7rsszdXnXMZybtpQy5G4OM7Eg2890AEfiVas/PeXvDvaMdCcZEQyayFiISIhlvUQAitBXB94acAa4YCLieFMRhnuSlDD0I/ILj+OMR+/gXbcevGUTEIhvBafhynU+Fz1M9V7mc9GHSqsQR7v37z9wMS7PWbWm2dvNIT3jmdXnq0YI7EVnCY0Nvj132uKHHnJkZFKVYZVSlKpigGsweEuHIjv689KdbWxosJIa8A9GdiPxPXAqnAkDSBv82Osq6FOtotI0MkCbrAk8LNL9e+7n273+wrz7cPr5/eLyc3n91vjzi3U0/f+L11td1jczVu/cW1kcienp9D++DB7d/40hFi6roS4/B3fiVXZL3L+CbwuabcQQq+NHrQEmjYSBaz7Ys89zmud+e27z60w/e1rbMfV0zDJQcBji2ztgNpizCopCEZyJSoNbdc1DB9dZsrv1aFxE5F2gRZm7d125rs7n1tXWzrYjOzMTkg3VsDxrSe2vt6ekJ4daWtsynWpgZ6fN6i27e3Jqvrc/rejMzYlY6MwuSpJgWYTdzdGOV6N1ypjr6fwEtlJQ8Ym8K0Ng6N24jQIiLalG+FJ0EVaiST8SFoBuHU7a4Q5ls0osjoZ6TgIJCCEoeCYFydgRntmVForuT8bIst/k2z/PzfLsu8+pL7mzsAFT1sA9+p9nyktgDEOEeRZSZtzx9RERYODMXSHj01nr4SrgxMWMACd6ti4oOLd3BvLkZosjb89xauy1tbb2b90yQSGESNTtySdsC2/ZsJryWun+B3RIHaSDhQwfeOKHMQswUqqLKUym1yFT0VOpU6jQeNFiDyBkZLmrW0zRcqAdHwe73YE/NbMubJAYuhbZFT4ADFJlUt7nyRtiCIaQVeSmKHSwwtrBSylSrVM2M5GRVAgdxIgIO7w6nUjPNhcoISiKQA0pGYekRA7Zn4ZZBRGBKZu9bxyHutjAAQjyqRhEJC1EppaIOigvqmT2j+6YjfNRkwj0D4QgbBLUb+2P06IyWWlRddaVCBo5Ic6aogZBJiApQgQnJTMpOFA4COFJ6whJBxVgp2ffSAo2uprExeghIRIto85cdYZBk1loHF8TgyO5mLWzph0Yog+jx8mE0Ox/llLFyIIK/XNv9bQfgwItuS5F/YWe+b4N+4+GY381jYImINpBF/Lq+9nuLDdw/+IjA61ji+Dvzv+zF/Yvjx3sKvXS4/ey3fk79cLPNOx8a/fy33uRej+6vHIULDNAEAKp3tEl+h+KiH03+pUg1AGM/NUMACN8xcwN2GemRe2oTRJus+GtxSVU51t79XpmA3an6vvI5Qcm7RMdw5c0O8IJeHh/Xeba+dJYfPl0L6FyLZKqv7787fTifvvn4/vFyIZ2gJ8jkouAz6m/1YX73G754F54yubdl7Z/Dvvzwz//ZA82zZ1rrbbZuG6Qn3IkHg1eY9dOpnqeabUFfIj6HG9EUzr7G7WZG568+fsuX81I8vUm5iBS05renGrdTLZSt95TKzFOkEDRDl3m+Pi/f//n5+YnbzdutVyVlSthi16ymE1vVtfnt2dcbWWe4uIX3jKCHmuHpThGwSE+OpEHKyjvb3yB/xL7IAMh4LACmUh4fz+8/1ocHqmoRyPDe5+v1+unz7c+f2tNVLc+lni+XazTw1rDhEREbMpL2QOW+0PHyNGtp69y9c6Nwt25VeL0tS5m7ofd4fnr68vnLuqy4pyPEMHmbYRwpMFVm0VLKsUDvqrhEW6/gzyzf+5UcaS9MP+FbYXnQdyvAgdHLGlJK7vme1trtdnu+Xp+uz1+enlcvwTWJuwdFaAIb3XMCyVsh4J4nI99Q0Obr8QtW6T6l8bY6tlu+BMCEUR4IJ++V+0OZvno8fXj/MCkTHL09z9fPT/NzfttCuod5eMKI12jLsjZrT1/+VGshotZaIkUkMPQwgyC7ldnyvCACCVMW9iJUOCpDkTJ6Y4Ic1IPW5kuzZuyksaeXaDN8tG2uWycHNjD7thgYySPrOW4qKDM8EZkbsacDnmRISjnr47ws1/n5hx+e3z3qN18//uY3Hx/P+lAu0VnRgOzm5sEMj+jd1rU9PG47XB517PtE+b963Hdpp++p4F2v+n49vHxnrzfdZfmPT17GL5/3iOfpR/ADApCjkcm9rf12tdut3a5tnmO5eW99ubW2ClNVzsEQB6IW494wgggswkkSFszRRxsOJ7G5r8t6bW08168+XESVmbp7a949zH3t7jGUwLb3PJM9kg60m0pE3G43683a2tt6miozZzjg1s2aebMI9IjeezAHJNQZgAoQCA/vniwhGbYuN44gQRZJMIvSpgo60oxHT/0QOIEClUkRipAgODMXZhEKIWaC5Y6UJuzYhMz0AClTCozTOAkojELesmek99aZm5motN5aa2tf17auvS3eht0bub3Y+h6GJi1eLcUI7B3Y4ZGyx72jwkAUxEw86VRURNgzu3ez2JK5RJ+/PB8VlQEu2hOeEZ2sb4A0zy2QiwFC37Ga2BneB25oRCpHAXR8tLflMVhGmSHcrDvBiWJQvBVlFSnKRWSjsx7I70QygXJwiwpTVR1lDwZVnWLHww+6e9pa05PHN8YbvJvggXEkOggbiLWwCmWSe2Yw61HdBqGollpFy8BJE2Ek3jK3ZrlRAnl498CpEkbBsB69B6VT2JCvwl6lGkEmMxODYe7I7YnSDgQYsGDrzZtFRJhNp6mWMnLMZmYQ85ECaC/hqzs8Nlu4Vd0IhIwMAhKpSmWiWkN4hadneirBAEbRDfYanFQJIBYKJgqwgzhTgoyIaL/vGUUFGcHIgHeLyCJaS1XR2VYPcZUIHSw1vaNRFGY/UTNneCYZU+TW3UTEoozMsZzNDuPGhL8k4beP0XhxmMXh+FKmbHI8v1Smvv/7j03rUcJG5tiyWBi/LlC5P2De/2izzPcXcJdLelVQ+BW0Wvmjv9KbnyYSyaNH7NV5f3S1dGyAd3sXCLjTL3kbq7y6h683zrtu5rFp88vmJnRMgO4QXQS49xey5o04IwfYPc3ybpN+xSOd+0432vI9th6hA3G31TIJwnvfziaTMoxDxh1QYWtJokMaYiu4EYGkFHJ3SlhmtJ7enIVEiEh7uxZi0TOcPt9sjTXLc1/Lb87lzPrd48ODJmGlDYOdmRVc1tM7//ofTpfflVpVC4cL7PrlT//8X/5T0T9+/uN/Dcu+9uW2Umzs4yJ5qhSZnagFugev/Xq7ffnTH76i4OkDVgQsaVrXTJ4uH0+hNZj8dG6Np/dVoTn30ls8/fewL5MmlNd1+dO8aDktc/7wQ//yaf306Xq7tWWNaTolY/amKiIS/BCrL6tBeW203DDfcm3RrHdzoiwKmdcM9FCP0oKXtYX5pIXXDAWKePLSnQJSi9YiRUVkOp9rhIUnSwoHBylUwIzH8C9fPvU//ql9/kK9XyaUy2ANswetx2pgVuaXTDTxfaAiQ4pYRIjSbJEqiIms2W1eF19t/tS/Xz+vdDp1iwGm8sip1sokTJnOWgdbmqpoKboH6xFDVf0lETWWv6dv3iwdyeaXt54yKHzsMlvO7I5hbMsTg5BwBCHAICKF0KZ7Qs2smy1r+/Tly5en62KxpniQpwSxoFhwDVYpp9NZybyv3huQp9NpmqbIIQeXkTlaFEaJppRykH2R8FG6YWZWMbNAephFHw50UBp5jz5w4DliIpKg1mBuq9uten9Qfnfi310up1qmqRQp17l9ut6aZ7PaURvECA5yYo+c5zavi7vfbrNBoruwkFZk9tiwGgB1d+wd3h4ZbrUWESoiJ70Ucg1kdicnLpDaBUvPz09+W9MTKQ4OLkZCEBmveiYMhBgtebxbP/LNnDgoIMhxb0b+qWp6RNogqxjrQCHEaNaICaiLx/Iln5blh9vtq6++en+5/M23D8vpaap0W5eYl2TnIsQFVJB7ee0wi7ulZ7zsEIO87WXNx5st5mW01gByJDGDY5Q5DZmZJ+XAaMod+KuXel3eyZYhR5cOfOM+zQSBlQDPMNvJ5WlIKW7Dend3ESnj7QvbDLIQJzu2lE9Rlkyf5+SI69VvT9IWmq90ffJ5flpab4ubqbAIkdCkhZDm/sH1HNEk1kIRIJIgamu7tT7X6ebztZmZDVWG7UEmlu87M6uqiiQwVJ9FiLUkJgd8yJaBRAF3BFEMwkRYuK3ezL7MyzTV03SqRSl8aDUFqLtlRJmKiDLzqWoVOWndMmQgARFjma+qJJ7cmWZRMKFIcicGcQmj5CSiZKGoRc6Sj5onrBduo1RYtBTFoCR2ZAATYUuhj/XCAEEUBFqWa0YK8lzIPDgjJ7Jrm29XPr3vET1s+bJc2/q83r7MX57nm5MpiZtF+OClkhSBjh3983IlSiEWhgpnercGgBAh5Xle17X1ZhQpTsVFUxhs4by1PjEFj8WEhCFvhAindqNMwsY9IMOZJm2tr92IOIGIpE1HnMp0OtruWbgU2VsBg8/BCQJJpBIpqCCEwIyzblKYkUHnIjLJkBhkaberchagABPRlJAeKtCpxInhkY50ym5kOU3ybnoI5LW3JAIGwHjjhM6IdLSbewSNNh8CjasXTgFDx7sy6oGn+rJ/zX3eI3AQkYpIUSlFRbl7qVVVI9OXm5tp5VIKSdGtisYtSouw1nw1ZZlOU1tvozciIykhxBnkkWR+lvPq1pnqpTrSMgoQ6/r89BwqZZp67wRjLapB3Amre3rL3trG/ZXpvXsfzCisTFL1dmvpnTIZUmt1t9bb6RRTzfNJRNgNK6gHC9PEky8ZvSnh4+OZTydwuM0CKSzvqmTGJmAq3oGrJxtWz1wHI0Q4MpWH3eyw9EB0GZUJYaPoCSlSeYrMh8c6z+uX51YWTKbdNZJZi9YKbjlMGcRN11Uxc+/ISKQNL4L3xtcXY3vXMp/3RYl8DXMlkBJGEZXA4Byp/OHcHtEHMNbS8bW8Cwt42HyPGL2GtYDg4Z4uLBQ5lCqZZRj/wXOQeleUeCWwscUPkR7uzCxFjh/bshwKcbTT8Y1eJtwdEPfd+QCVgpeYIX2LAYbDvskSgflIeOYm6LgfIfe0wzGNvYg0yrsAsCseJvNL1DQi5CHdOBrNx+WPkOAuNvNtMiPM23UnIxCIuscBCR4SEpE5NsT03M8rwjl0GmyFOe0gQWIezXCj3TeZeCo4AotMEHm3jMgxMREUJSYWQEZiKjOzUxCRjGZ+pb24jgQGc3eyYMv3JYhSJIgaJQVBSUyIyJeGzFwbErpmkxAJAcgpl7b4P/8jrOHjxds34UZuBAcnNuJ1dk+jItPHU0GZplIKfOVolLp+dW3/dC4sLU0GDDM6Y8vEqCJAgw+ASUn486cv/8d/+W+3ZTnZlPLI03uu71AfpJ55OtFpoqlImSREYKEn1kqqKRSZLm6dyGm59T9fv//hh+cvX5Z1jXnpvUOrEg+O2ewenj5SC0JT6z2MorNb9O5rc/NOTICsiyeRERnYipDUSeQy1Uut7y6XqdYB5ksGV5FTPV/OtU4y1cj0DHMPJEl6u3nP8OhLzE/PfZ4JWVWUuKgOzsRRVb8bd9H/q/Hql0Z2UJlV9OFyqay9tfm2rHNrLH10fkeUWqZaiUiYEyjTNJybHfH1NvF8OIX354rwOzL3N9WLeMl5ukcQczInEdG9CXj58jhLEDZMRWttWdfWvTs8yZISkkREmzxWrbWoCpGw7FaAIry1NffW53tx3IMhcbPFdyd/81Ff9/zByJmNhEQ6EmufA8jgE9VYZ4n14yP/zdfT1+/ORNUMn7uvP3yaeyzde1Dz9ABruof5ptgw3MuR5cdW0qDdb3+5i6MPbtxOIoiwEIqQCpiZM2jwLAGZaelLz2uPuUe39MgEiLay01Y6frGcx4Pa0iSv0kOjqIkc4Aag3H/nfpZ3wSkjsbS076+fv6xV6fnjw7dfvf/wzVd1mXleyuUDBaK7gF8v2FdH+3Gy6deMZIKP7Hp6+Oji2BKFP/eV+6vHj1JSv24aR1kfQOarHNz9+8nMNHRUkIN9aeNA8z7aI2KksjlZRQvXIows4Ut0dSixqkUSkXqCEpb40qOZ94jB+X1U7SkjU2QT64i3eAYajEm5FwtHZZNAsIjxyuJO8DRB5v441e1eUYhKJh/IUNHBOSYiG3zIMzjQ3VfxiqzMWkqIxu4f3WXgjpsehGAkwSRdEpLC6Qw/WHn2VbfVOF+/KUmjNICkwFBWFUZRnqryRmxm3dZuS++rWR9crkqUlINZd1QSeWTw3ciTOMfnSD+IyoBog2DedwnB3SgS8bmUUrSIhrsTw4MABiWhpVtmmIUHAUScIILk3mSO8EHCNtLHTCy8c3cxkkhVatGx4JgHh1BKgpMmkklURvwD6uyxReMKgEeUIqoiq3UZMIwR7mR6Rg8PI+80NL4isqiolmbWuo9A7uiIiZErTQoQcaoOYl0hQAkpvJlMwm3puRf8SSnpZTcr03Q8Pd5JGkWENqortNZb7wOz9JILj0OecNBdC5Uy0kkY4poB3tWRgaEKwYOhJInc0gkE9G5ugaS1rSRMhFpLKSrCYzGzkNvoxnciGnrbCM/MYB6NKhsQf6itDErBcbEH5S8SxDy0WUCtu/fuzIvZySw40lKZiLJkUoQiA54AM/VIo0wmJ/jGH+tBo/+YKdkRiBf4gIBINCiSM5HQcVkhtN6WjjQPoiRJcC17zMDrgAblWLwyWMV+cqM/XsDtfXtTHfjLq+D3ghhvznV8NFJ0R/v4X7UzvB1vgbsjIbsZ8NfhzY/qF/cz/NnBewn1dZYNhLDXd+31QX7ykMM5eFvbOUobmTvI4j7weZls7j9/SQgSrPUdRgEG7ZQFb2eQ99zSzLmY86iIUzAN9aTNZYkXyeUBMcfoYWMe/UXMsvvZlkxj08mXEs/r8+71nk2TK1+uAkSOGL0DxETCxJyx0XTooO8OCoBlqsS0+rp4g5x7X9uyLMvSr88aEXpqMrnAqaSc6kmrllJPyGiLeDCkT+d37y+Pn6R4rMgsNCBHlAoISbAHLFx8A6z88OkLshv4vXzP1aYL80XK41QrHM5wAqMn9YQ7vCe6s3eYpYW7PXsEX5/mP/3p8/efr/NsiRJJxHw618EW6W7uHukEDFhra7a2bM37Gm313t0TqhRJz4udLg+PX393/vDd+ePX54eHZCJ3Dj+1pbIkqFnr4VJ0upTzw1RP55DKwhk+z3PvS9ralp4ISlqv3uYtL6vKhVh35vnIO+mnN4aDXqRC3kQq4+eqWmuJbi62MSOxrMu6jiillJG3GBkUENVSaA9U7qMUAHFHWHFvwkayNu/OezeJ5IOmbv967DpTv2RwNixEWLPbbXm+DvIbN0vPDIbQloisRc/n6XKqKqx3tCH7hrcFcPfilbkrvYxbZHd15FF8OT5yu7NSQZyUWzCRnm7rSs0K8HGSv/ntV3//m3dT9ev8/H8+rYtx6967ExfWKYmCQcTuMUKvgXhelmVMzN3pp6K2cXvDN6b8sRGrcFFWliJQJDPLINAEGVGzfFrb89JvS1+7t/QXEz/uzMHJuD+vV4/sR31Qf+k4DpiZ3fO///D9ra/ffPPh/bt3H85nrY/nUiv4BKYfG99/9bmD0s2H0kx4gFhAW//u/23j4NH+CejCq4auDaA8nFAPb6333lvva2trW80dHlRoAouolFIE6flI1Z16uHlYwJPW1pt16tbWeeBSXnGMApQpdwHY67mNWH+PL4mISHWkQHHbkmrp7odcUq21qm4o+bsDHoai1lKYq9aqZXDcQhgQJw2poZpFQzWJnWk4VrGJ2xEwmus9yJMiKEH+U2Ds7cJ+4UHwiwb4ljgZPYEnS0dGeLZ1XW5tWfq62trCPCO41mHrDis64D1DwJsih11JC0unXRbJiSLQ3cLz6NImYRE5a6msKtqJgwUAq2zsiJHdvS2t94YIJpaBuSKWWJOGi4PhRIqKqgoJiwED252qWkoZLOtETClDb54TJ9GqRYmFmGgLVHZg1RAWExURljMImbGlgeHIOaw7MwUAz43Dw0dTITFrqSgW/tNWO7IWcRFxZ7NkYhXsClzuNG7LCFb8zsAccGLsDTaZaWYEcA9zi4h1XSGsp8q7KvFok6MtUkowFa0YYYMoIgEjYCA9KQFKyowwEYGob4r0uaZld0/03us0DSrLN1JIB9yLdpb8bSthie4j2Ud7L8RQrxfhUjZWzHEoumMP697DHcjuvvTeERRelIiouiuCEcIAZ0g4KDIE1Ig7YBHI7pkABRHASczuR+hHBAHp3n6QDJmEgq1TW4Mi0hLkDlqy7+VIdttY4oaNgmzszL9eNgT4a6KUtwd4Xb253w9pdIEec4l/g5Pdh1l8x0L0S4Po1+6PA1u4w09eHCd60YLcnPt/8aT/0gj3gb2nO4dnOwUGHc8WhL76WrctAACGEDv2HphXjzKTBmyMmCgTg3I0AaAo7kg+BlnzCFqIhsZSIiG0q7YlUaCbeTgxQ2XgZ/6K60/zcTnMQpIoEeYRAaQykxBkqEMIlVrPXL96d368nDKst+Xp6ZNocjnndKLzO7kQV9Z6Sp7AGgNxyhPSSU51evd4fpxE50jKke1hSowEUW+Au/a08EiLkFtDXcH1gz58S3qh6cJSzLpdv2iUCNUuQTXW1aL1p+9t/uRtbq3b2jqyPVtf/XZrIHp8fDxdKLElh2oJVSViczazAUztfXWHGVtHb9b6UEjb0kKi5f3H9+++/vbr3/+7j7/7/emrb+rlzMrdW6wL/vkfNbJZxwIyE2EplOQW3VkLDaLPZV2u6S36ogwtU9FTlrG2ttLeUcGIyJ9xODYC7J90kka0qaql1KgODyHOTGGZI1ezERSNsxz9LffewdvGLHoVC91/dN/3NrBdxy/t3VxbY8DRRUP0ix5HJMLDrLc+z/P1uixrb5aeZAHawloWlqp6Pk1TLQQWJdxBbO+jkftjH2IIm/LXXWFHWEho/ygzZQ/tg4IoWEbmKaEOCXus9t07/e3X56/fn0Xo6an94an/n18W50Jghkgwe1AKYXg4m3DnUMVZ19XdByDtJ8tLx63OUarIJKaiXIWKZGUWQtnNQILcafW4NX9a2q21ZhFIKjvt+F0O5ufO9a8PHMZmM+4hMaLm7dOnz/P1u2++/ur9V9+cP358ePxwOVfivyoH90sjCUNYoQ01oUhiYhEG5V+Fvf6V423h8TXe4FjwI7WWtDlwFr56X3tbe1utP18XD2dEhhYmT0lkQohxOdVI9ggDlm5LsxYRgIX3Q0a99wOWCYCRNNS07364zSghiJGRjq3LnUdNlYjydPKI3jtt1mMfqnzXb3PkQUZFpRQprEWLalUpXBQqKJoq+vguVTtxdyeJV2BrAraYBclBaYQk6oxBME1DvP7YQMeXfmHV3Acq+07GpZTTKecIioi+2LK0ebbWfO1hFpk8ERNAkCEhlIGksB69swVzMoGDEB7RsWsmdkQEeUYk3AcrdgoTMatDGBzJCVaVojT+FKk8td7n622Zl/QQImEWsFCyhcI7bUUL2nV1VZhCiLGLpx8aTsTM3l9UaQpzYS7btkAgTkKARocTEwuJsipzPV88YrXe0w3ZMwCy6DzIPYgACpAnRSLgg5DYX916GpANEIEhldhjUKuMsCS2R0ynyyUyfdjU7YljJ5l7OZ67D1ZMM3PzGtBSmDkyGTjifSIKj52CORIhQiKaEdYtRZIzA+RG44uZlJmIIjQ0ytbM1Xoz6zYUViBSGITIcLfeB42vsbx0u0QQ0R278dCX2Eppo4oyEDLEW5TCd/3B402JiB6dmVOYGBBpkWnGcCdhxjkzEMLJDGWAkWHJsSYnU3hyDu4vH21pjCRKibsuuIFLZh7NIfPaSBQBb9bX7s1790zi7r0OgaCB7uVwAgY4aPCV5gEueO34/uz4t7Dkb7z2+/OO9fxvdjZ6bRIV9+oOb136u6+99rJ+qaLy4pjtKLLtGy8SXv/CIX7tGMWEI0q5nyHfqTq+HbJJvmJ/xG/s7DbDHMwN47coVcf7gNdsBDje5QQANw/33d+gQoNDHNEtwoEYpJ8Q/uuuPyJG3oeYkEKhlAkjELT2rkGFyMPVqLC8O+kl84xUUF+WP/3hn+fblWopD+8fvqVLOdfzQ0aSMBE3dyYqWjKKuUx1mhOX03mtN2efVGWQNRJx8hOWDCQzSfYo3bwbTu++uXz1e373O9IzpAYhzPr6ZJ9udcLjuwkkFL7Ot/n50/r8yeYbpWac59YggupTqRXw4O5uHiBy95OOghTc2Tq3nhvmPLybRnBmhkcmDcK4aZoe3j28//rDV7/57Xe///3jd7+L6cSnOl1qyW43ieeKtalKhebqxGBJkCMdaWZpbVmXm/fG4WmWTKCgu5TSVu8aZm5LH+0rjw6n521Y8npApVDGiEZqLZzozGaG3PyqI1FEOw8S74rleUe39XIK0cPjeVMTpvSDCHCrOxwLnbEJJWeKaCn6knG/v4L9qnJoFGSmu7W+3ubrdXm+LfPq3RGpyZIgISmllFpERQBGytZH/4JMGJvEkfEiImTSZuGTdwr50adG9PLn+Fa3AEajKdIj3BCuQLpbX8vty4dH+dtv3v3mq9NUsLT5D59v3z/ntU8uEgOhHpye2R3RlbSIOm1RyrIsIxs3ohR3l0gwIoJe3eRMgEQQngEhKowqVIVOSlVIEEKsQ+0tqSdm86fWv6y9IV0wqoOROUq0G4z17Y5zF46+8kS2RXjsuLizffc/vNe3In5ZUYGRJSZq9oc//eAd795/xcwMVuK9j3eDGI2i+1E9vo+RX5nE1x8cn3m4JcVQ0Q7PHK3GNJoB7i95vGK5a0H+2FbSLpeBeLGkRLQB4TIzU1Xv0RF01zd/3z4/qOC3NC1AKsk0uPClFBYJpiQ067dl6WacEVMRCmXo6BZj5qChacQRDlq6W7ghunu3/kKqezcYECYRHnniUsqWqx76A2YAeOOHSOGsU1FRIqFSPGJd13mej9YyZk5k0bJ3NSeQw3ccD7FoKaIqhVWlVCmVyoSqUSQvl2QNkg2ER+yAZWQmKwViFASUs2RyruzBkt67hiYzCSMst2YqYnBm5shUbP0NL7bnyJOOM4nq5u57hFF6MIzM0rqtq69LRggLpysAJsoUBIEsPLylmxKFh4eBgLAMYwaPtvMBTwr4aNOIcIAyk9K6FRVmlgRESq1ctnAlU2upVVSJvXVlKaoMUDjjliSux3KDqJYivEle0ADjYssFDOpPTwYRM2gUXHgQkjolyF6WK1SlyFYxEOYqYmY+BPcQKQSmEEohig3YPpTzksg9ejeLMGy9iLRxQvIguoxM0Y15pRSJiEQMsVEimi6XHtF6N7fuQ8ZoTIoAHVMceY2+kVU5JZiURTLBvAELR3YpPRAkRBYRZoRUlWDqHik0UEuDYGy0Ggglj66yIlqJRWo4W6abu5lHZlbmNHe4gwzME0EzzAdtyIGoHF1CY+UTMyQFElmSh25JqlRhKSqjnOJ7cRIYOYEkInMjhpRCLE5wIDycGJQnohHIVSQkKU2QEyVxoDDILUIiGHAkZTqCRkddbG/lyDswc4oQs3uEW2uDtzzMvA/CIk+IxI67GfbSbIBP6bCr6b512u3Dze/yiy8pAxrInMPo7Q7JZiik3MEzXyx2DpzmS2b0MMpERJz0ghrPoby0jb3Ddf8okMCwB2+M+b1hNOtbISUTInRHe3VvxvepYRi9V4474d7MereXL2KHVu2OxLEJ5qF+M/abnRx5d1bubsc9GOU1RobvMOrEwL4ZIZP4RQbmCI3GRY2aGL9h/h1YqlFaG4gp1UEfHON5bPKoW+kRkTtv9DC6mUPIhwb1xpZB6G4j9YXMtID7qKkQYGM+438EMFMMh2W76txVlu+f3U6qsfu6x83cFgCNt5EAEoYKQsDQ350uTz98UmTvru7VRV0SwMTLI335jOjr+fGs5/O7r708vC+Xx1MYqAs6b9I8zhTEEWlJwSLvPrxvvVtbR8PNwQtw4lJCvIdF9J4/PN2YTx+++dv6/rf99IHKlCD0hojbpx/+23/5j5S3b756ZM4iMt+uva8Tq4qKvLtcPuYZ7796YKEMa22+Xp8+ffozLVcm6q1fzucMiohI6ppgS0iksFBCWCSTu2W0DA9CauGHd+cPX3319bfffv3dt6ePH0w1i9Rz6d2hoJMsFkgHh8dKBoZpeJS8zWtkLvM8Pz3BXZjCvTC8957LTv0anNiSr9tzf3l4gcAWPwvtRYl9Qb8OVFTCkkY7lEhKUK1EFJGqPk0TEU3TdD6fB6fhcGdY9SV1+aOI+VVf3d2nAmAvP/M9QAS4Zy4ecsj3r+L98ccb5e4RBjNb2+12e3q6Xq/zMvfWw0OClbgGD2Hd6Xw+n09TKTKplqJL7y+lpwNns1urFwM51vo+3lzUUesHdvIAZLegdMDCDH1lm//hu/rN+/O7h3O6/+F5/Tzbc9cvJosT6UkiEUGW5JRDOQUpFWsu61DA7gfMT0diLnLAvQl3ELuR4BGtYZkRKqiFq9AkNHEqp3qOpGyzsMjV8nm1a7ebhe9l2dhtBCX4iEjx0+OQcLpfUdjCku3fBx/iEdCyvi2Ij28xiREzCxHM47ast6Uta2utJYGFSHRbV1s+ZkPJ5l1dIl9Xo+8XXtwRTLu7O9nWchygDQ5HgY005eWAeWAV6Ud8kS/X+zoRRQNBsqfHRqBy+CKvXpY3uyVh3yqCRYYTzSL1NJWpMjOImtltbW1tlBHpo1VjKlq0kDIsRDOVMUJnInOz8NXamMAoEo5pjEUrm2YAy67Qin0/FpF0o8xB1QBARS7TVGsFaDSWZGZrbexzm7oroEUJgjtTMA7OzJfTSVgqV1UVqVxOmE48TTlpr6fBQEVURDR5tBFlZMgoWSYEWRAFJraSGwtSPeDplI5kJIKYaOtMHV2oo0pA94GK+8u7wyIF8K0tmIqkcyilINDNW7N1TTAXpnDZTJbT4L4zgzmnR5KZpZkThEiYVKSWqkoJ9Mi1N5hHOsbaIDjgCGLWohkxdnJVrXVSLb15LRrC6rZSFpZaKgGwBgerbNaUNuXcoRh8KkqDy32TqaU9/Ut5L2kVER4eMZgTFt/yRxtXEnMyQ5iIgymEwpG8878xE8tRCdmCCTCIkglChLDe98pkZmIv9A8fJolDGDSgRB48EiiEmqFAVelCzalZN4Rv9HvpvqHsBia2tTYWeZVB3GyiKrlxxvTekeBUEelmbn0qCuWeuYapim+wxkSmCHNKoVACE2kNlQD3aXB4UBAlKFoEpXrrzAwJRApIQZwIc48cVZSxdQIg4hH5B3MEpzC5uFlmiopqYYaI3O0kkTkyAwBgbloUqg4AHCwWHoF0TIQ6zBGHhxEHESmraokIl+xCmlBgJ9nigcrJTMtNBYgInEwZxBzE3bN7OChAzWN1Dwcl7Obb5oaBatsMGBPAnFsmfbRO5p77ILcXLfZDTnc3m69MKB0BD+4ly3fb/lNm8uhAGG3cHMAutrtBM47NHZQbTcS+cezfupdYGfCNoyaGw989IpxjvJaYP5IdeJtR3baGrbJ3QNlzL3FhC9iOWzOyKsd1gTZjFTFY4+KVWMCr9hJ6SVnu5m6M+0JNIuluO86d0HJctfcupRxbw/01csI94I4tobLzHgKwwe4Z6Ucwi01lV3i7G8MUe+RIXOaendsoif1AteXO47INFahgYEzHoV8qMa8SqHIH9juW07bfsYyiHzKFiGRUTxXB+jcfP8z/9IeTcgX5Oqehi6xtvXE8nXkSC1tbXx4yzu+bte7doq+FV1gSemUNBLwLVlbLEvj6I+PWw69PX3qbwwLYnMuJxZ1dTB3IPE3n6eGbd1/9dnr8+naqpEqBDOKgp09f/vf/z39cn//87lLfv39XqyTj3bt308evU85UHj9++M2Hj99++Juvk8zWa7t9+vz9P0Lp6VNStKIyVR2ggMxgTqLCnKpkFixpRkRYGwURLCySOYiDlaVwLXo5FdSJlEHWEIXhhY3TvK/z8/XTJ2tNhZWFuDSqmVjXfrte3WIknE71PJ3Q7Xroc8qevc2RDP659oV/aWwuiyiVZFCYi4ibn0CkGhGq+vDwcD6fN9yziN8tlQMYtr8tL/0wr9d93ru9TC9d0mP2d6vtZ6eascmrmZmZY23rvFyfnp8+f5lvS/eMoAAP/mcSZS1aaq211NH9uLvU95mb++PfX8ibU/8oQ7+HK7llFDIQHWlpN29tqvz47vzvf1sz8jrb90/+ww1zFBPtgixElhQJzxwQMh/M/uvScoX5wEQdRuHXjpHCRBUunEIhSAE4wYEId/dmeWvxtKzX1tc3Owe/6CUxfum8b8wZ7sK8QQGGHdz149/8yWlzDK5rAGQRzWyN3mBGqTHeuE0FCIcH/KuO/BPDkZsQ9XCy6A7t9tcd8efHfYyEX3s3kMghqixFsiirJJFn9N7Xta9ry+gZJhlFcFuqqrr5iQtGdneLZ7O7t9aX1oh4ZJp5p+jZAq3xJt5Bv0bIERGE1LstgZirylnLVCuxZqS4u/uyLONQw1GrRQfycARFxwFFRIUvl0mIlKpAuZy4nLIWqlPUqZcSzMzKLKNhf+CFBMq+MKUQK+UElHC1JmgUSapIHhyxoxg6EClEQXgbFf/kGOtqPCNhdnfJlAxOQ/RsHRZEwkqceagqb4po4RmD+tKt94hQYWYCE+toBBEAZG7h4qEqo2k+hcFERakqlyIZEcGJifWhTtM0eTEiCjM91xXBQFUhgERiCAAmQGBh0Q3oxeDKMfLNGUGUEAqmCIrkTor9+Vrk4IEa0uTN/cUgupF3ZSAIQoEIypDBaTzEnocxIbDE4DfIJJbEwJtjK1Js5jF7uO8vL1Ea+cHgx0SlKA3mt4R0V6JgmkQ7c1Mx955ukXMz8xiJm9eBilBu0jTDX9Gp8ugaEiiXUX4BbbLKg4QhCCmCgIchwAAzFFwoBTiRK69MaoBI1CpPHNRBgCdiCybrVKuOJODoU8oXhpURcI4E05asiZ2fkLcMjqoKEQtnYNTMD7TYGKIyHFYfviZRak2ilvTcUQgWYRxVvHAmE8ORPTqQIOTEHJwWHGBAOUGIQSCfDB89M0i4IxlSDeiEEHFhYxjQM+DoSwOrliIyyKO2Hi1QMpc8oEpDd3h4vVul+3i/Xqxq0qu2+DcjXu+wr+zhvRuBLcTZgB6BOJzn13ulm+MeffSLfSO0q/0MjPfPGOqftd73RCy0RyY/uUtuxSLmv3r/+pUj94IJM7+hfr7zXnZw7/73N3OuWijhxFyUhDct+rsjbaUnH00pW71H3rgPGWnWBxJKZAs69lzjC0647OlvAqlABLwxZf/CnYrXE773l46lN5KJDMTorWLS508/wE00VItF9N7c1jXkWrOvD72VdWURWufp9nw9Pz/T+blMJ2uWICpTnc6ioojCDu2YMH37dSnW05J9uVGmMYIygfz85cYYVEN5mgpP7y4ff/v44RvoxLyCegSl97asP3z68sc/Pd0+P/2jtXN9qufy+OHhf/wP370rH+X07uGr33/123/37pvf0uVEFLU/6+V7rmezTmHRnqJz0ZLDAYjQQlqoTtp7d0+S3o0SfW2WHOhEnqJO5BYdGQMcR3Bb5tbmNn/x9Xb7/On506d5nm9fnq6fP/fWKJIyI+n07quEWA+b27yaORJFFHUKt6syRmXjpAVaYvcs9RfaF35+jHUpA6BPnKLezd1Dw0s9jxwJc611VFdG/uCOUPvt2IGxPOoeL4smIXcJ9cMx2qZB8qv6Hu6KQcwUGW7W1zbflmVe3dI8A5ykyUqsoqpTFVXOwVnTA2NL20527C7HP9+c7ec+Ot7zyIw0JFFmYPWYhez8qI+X0+Ol/uHP/9yMnpo8tzJjClXooOlDb8tehw8Ls+iOWNrSlhV7wpv/IlWpfZushUrhIlnIGUGRDOGEZVi31eJ5sS/X23WNTkV0e50ZLw+OB7XTzzcjvnqy+yIZfyJ+VsfwFwalSCZRgtI85t6ae4N3ZPEgyfu7cQAYfu2deT0sYotVIhhCW9YRwIt8z7/VOKJNEfmVkpEYBpwAFTaVUgbVanfvZoMq0boJcmYoo6oy86TCHFoyjdewJXJZ1m42OI4GIGqIcmBf9pmJiF0NiQ+4QillCC3oXUmNmadSz9N0Pl9YJAJiZma11nle1nUdcSnliSPKrs+1N9irqgpzlWBiTiUIiIIoiWkIXdeJhImUiJGIZAarMIOUtDArYRIq0bSRMp0iazpjK7UdHb3HtRQuP8Iu/sQ4ApWNVCMTCM6QwZFFVFggWku9Zyw8dvrxpyF9hA1FQEQCLiq1aBEOELi7d3YhKoIwT6ZkoqnSufKpqjslTqWeSj1zmUh5gruZuxRMKZKoKkSUPlLqfjwUESHeGlE1Ld17t9EFwcKUQRmU6VzsSKDG6IsezRtoYSPBmwQ3ZKdKg4qHE7HdCzANXH5CEhzIIiPzzDlwnMxIYhC2YHj432PN76RvRNS3nn6ARVl4KDkiooaoKrGyKoQ7opkt3rvHao0ijwc9assACGhm4AEYFu3VzEh45NdPE3q33rvqkOnY/BVnEDQpM4wiMyHMkqEEQZ7FCqlQOqEWqiLgCBgIs9FRJxlbMBGNWMhAY1YHu8y+KW+/M57XwSox2lNodMjtC+l+Wb4Q1dCAxLCoRkRzj54nTpd08vcnVmUPa715rN4VJEqkSgWSwQwGlBIpkYZkpCGFMtw3I5rIcCIXSS1yOtcU4zW6Ibn3QJCtZpyHmcAGquE7WMH+Urgj8XNJrl+mRYl72ZPXGbpDFA4A8ZZzGQsCsYV/zPLm4EQ0yj6/TJHiZj4qq6UQ0drbsaO9naH9gnrvKwdm2IetqH7vLI1btNvcX5jVv37kHRuQEPsrEMQL/QM2v3aPVV5nAIMkfVADM4kMKzHus9dCHsSRnESO7kTg/FE0x/ySls4cEgeRQIJIRljIiSTkVMbGl0AOni4Z6kb0C+Ki92tDXstEvrobo51ReOTL9fb8+TQVZCy3J6mFKSKtGVaz67w+3JSJCGFmlsZFLSzb+uH9o0eiTPH47nS+6CDFE6AUev/xDDvdFr4uDCZKyiA4I09ObJalZw/PYvxwfv+uTjW8izUKpLG1/vT58x/++Ofn53ab48unW1Gt5/iOHv4Oj1k+8OXj5bvfn7/7PT181aAq4HLhUk6Ehy+fn374wTKZK0lBBkdkuFgkWERVKDwup1PrdCoLE/HT4leLHChrMPXWnr/88M/z8sQqmT4/P623L9GWfnu+PT211ubrLb2dlMKGVl7Mnz8nSve8Lnad/bbGagQqovxwjkl4mmqtymfSrWyOyHxFNf6rRx4VWGEm2l4hY5conrJ7Nltn+b4/3wM332T9w32rhQ4OnDhqlveaiTt2cT9G3uHACG/M2SsI5kC7gzgzQziHXJqFGdwzYqPuJSKhwbevU63n83k6TXWqTLIc5d3XoQh+lEe5//THOZ6tYhARGQwCOnKZarw7nc/TBOTa7POzNsM1cqFwdRDBIUaM9ERu2svZ4B0eiGdf5/asIUW0ahnm7753jbfy0x1CaSPO2B6lcCpTISoUgmSAI4ly050O6kZr83m1tSdGyne0ww3TQZu3yvSzgln5o7uBPXOzAaliR9/+ktufx7OlBG++EkDkkd2jjbcB6RmyI4Npr+2OA9Arcso7G5kUP78j5rFB58scjg8PccntX7Rf8i9WmH7OJz6SrG9ek18c474xEVhl9KAkU4ab941LnjIyu9vaee29to4IpdTIZF7CZ495Wc0cpKoT06JMmVDhkfQePl/yrgtIJABlCpEKW8aaPkh4x5yU6MQ4CZ2FuGhPIqJFB5Ys1tatO7MoK9wyiohGRCnlcjqLsmphpvSZ9hgzYKOliiI9QkTAQoOb0nO0DQilIi8qhTGpVKYawSHsXIwqkyApA26JXfKLCMkZQkXpMCX7G3T80ts7PoJJZkFKxmC0YOZS1DyplmmaOq534gaUuXHIZwYzQ4WItOhUy1TL+TQ9PFymUjSytS5zkVLnbujmGQ4QY7TqiLIShPgylUlIEWTrNFEPTzciFGFmmnQ0iIuHvikWjddVmNjSI8Kt9ybCmjVyNExQl7BIG+IbEUm5VUsSLfa+4KH+NFADSDA5AYnkIQ3gyKQcqoMsJJnB+ztLRIkQoiRmFvcAODPchxdOA9pjlJxB2LLgQwgm3MkTtRBzQSoTFa2UIqAWgjxtOobsBMeIyoa7zJGWe8Z9o9h2d/eBecrwcMsNxY6BfU8Qi0Q6CJ4DpzW4jJIQhWjiVJDBVUSEeuYqYRENLqDKPAnXbRuiiPAY+3bk4JwgYpYRtMjeqpeZLLJ1EKmoqpJk7Ld+Txcez1RESHigLjNzkByAyNKXAQEOkBC3iCG1KyLMbVnBQSKFS4zeesiwr8kgFUIyBOPdGgjAzB5DfQUhVM7TQ51SC7UWQW7p5tEb1j7cx2CGDHYETnc3Tzdi3koEA8zMP+uL/JIVjVfwpjd+//F33rOVOWBRA3G0SXMO9v3tREX1qBW8qcDflXkw+vtGaI1MmCVTiuCO3w/YwEc/N326g2kcT3zEAHgdqIw/6V8kCnp19AP6NCZyd657eMgdLAV3uA9mJibzVx+9zDAPvUXeCvJ3u7ZZDw8weeZWH6fNnJZaKYBwsnQaYMutkuZ3HouIUJH9Qd3NgSAiI1E6ApWmo3tnwwsSE4Rz9yjejLuGw7uj3v31R09qwyaO5aMPgSzs5uVEzGg9n59mfXi8Yvq+SX5pvxV5nKD9Rj987v5l/fP77+X0Z8p333793f/w7x4e/171Y9BliYvkmflifFunyt+8f6x/fw5nTqCv63NfnuD/qX/+voR/eH8ul4eoD/IwMX/C6hM/Xm9zerSlff9f/9t/+9//o6+3tM6qN53W4EeXb77926/ef1cf3z08ftTLBaWwlogOA3M1ueDhd9NvIOtVhejsfb1SrOvTn+P6ha89lvbVw7sqXNKXtc/T+ZQ9W1iD97w9r93+TLix/2n59B+nSd49Xk7TVJyw9nW1agAZYk04IdyCB7+w6m0Jiz6v9nRtX672tOTco4ew6LnicqrvLjhP0ZZsp3456ePpXGoJP4orW2c/MWVmMgKdiDL9QHcQkTszk3lssGbmYIoIaOFQAA93WLJNGTQi3DMR0UfoMlAiowg7mIuFx0/coycll7GxMBOX6UQ//abTBpRnZpHXyXJyUqJBZDO2towIieTzZVXMa3/2vK1kXQFKclNGocI5FTlPpTCrlnp6iJQv17VOZ08XFSIaiOe84xkbMDa/o14dFfnMVN4EH2PPRmSmBRLMKWgz4/pQ+rtLqVWeb+3zLW4r3fqUNNi8eHBfDgbcJOoRMZDN4ZloHk/Pz/Pt5o4l8qGK1OqZESHIgDuMFYqCjI1FlTIpkmIAGzjjVPhB80HigfM01KRG0XeSufnzGtcFP9zsh2f3rFMBhCnvnnIyxWCMSE8vKi/GMV+bgXvjS7Sx2WxK9MDww/jI/JKoAlDliHTf6OpGDWa78cNWgZKUpDxd176YQNIsAsvaxbY1xswsPEkBENbDw9zdDRsL0bBi9JwbwoQ2KlciIG0ovXAE4CxUBLLxgxIoMVUd9HMWCEjy1iaboEgbFYlt2ztiXWCUxPcbNdDGWyKt7Um42Ls1Xu7bXSyVwJHwogRRlXriiTxbR5DQuZaz8jcPp3VezlK7kXUjyub+/Zfn2fzhdLJS1TxIFs9b97nFsuq8OOL0WJ3LmYm7mwfd5nVeVwBra6J0Ti3ERfjMfFJMFQ1+NUtVoPDu3U+R58R70VOt6v7F8rbBYeHBkURzpK+nEz8kn85S6qmITkXP50lFgLgtSUJhtize7GZ0jelU/X2hR1lNqxYubsnhE/NF86J54vw4kaRzmsBgjaaVleCV0ol1mA0mzoD3YGZwMofFMppeIIyUCPKEZURCkimSg9yDQRFpa88ekjQFuWeNPFc9n0vjjEnnbp/WL6dHzeTh8QyMYiQnlCymhJQyHFCARKfz48eHx8dSisCxLJ25E6esxFSFtOip1kvhKnERP53rqYhQRL9F+2weuVy4R0FqUarqER7d3SOjMLMDg9IKCCaXAJFlUnISm0wxlSBuxJFpSE9YuXhSSESGu1vvzRoAFn0m7A0CiSBteRa04Ck099IzJxKe4Z7sIWwMD1FRJrMOCZIsiImsS/bkZtGsZ8QmEx2Z5u7U41RGxNXb2lwpiVIgjHhu7V2pUykgcusBl4yJoxZOo5Y6l1gi56Br93QGs7LyQxFl1UlVLw+nohzWq0pRpb74cmXvaGGcYUrMVSqYPD1gSUkiDcxKEEnRoR4S5mZDIRGSvdjyiH468SQBAdck6QHu4atldwSCLUbnQXRv3VW1lkIgm1cnJ0AJGxJZdXC90pBVGKrE4eHRvXtCi9apqBYAcIQZZWakpQEowIJwpq6VpDZfr7M/nioHsrepZmaP7NlMgjTZqQQkiYkhBOKiXNdubp2oSGEhZrgHtEa5XLpj7Sanorfb2pzyFM2WBbbm6IrMiGwWnp3p0APftOtphBEvTdv4kW96L4uV9+53QPaGwxx1utjdbgL8xcB6OPr9MWVboqOrdGcUIqBnO0KBgY8cRDHj9r8kTdMOKPvIKo3ThAepyiGtRsCrttpXl9ZbO/4+yCgGGcHQ7MJA4kbyuN9jFpQRL6UC2mtx95DpUSNOIBHDkcrBS37kXyLSN5xwEuO+bJIJwDOQ9OO83Z7sGykh9bk7VqhuWL0t8YdAQhilOPNQTDvaRLIUBDwYnBBGLeFbQSbdN6FJJlKBMO0J6GyGxMhhe2RgF68kkJ4igHB4QDhJYMOjICkVIIHkoBNn0lL3xRDHU4mwtKG8MrbRJIB3BDJe+J9CW+uD7KJQ6e7L2rtHcyzdr9c8gdYTrVN/96F+uJQpm92+Xw2llDwT1o9izxonl5KclCxU6PI7qS6n/vBhcCJGoq3tuS9fsMydmZ8/T0VL1TyJlCjUa/b29EO7Xvtq19vy+c9/6OvN+sos00mcCwi/+5vfffjwoU71fJrOU6FSUHjoVIIJUK50eV/K6XfCNJ11jR+W+YdYv9xO52f67/PayoTHy3QpRdNOtdSS8+KfntrTHEBYz0ibr8/nKSiUgq14khGEMxUOqU6Au7XmvY/O7QH6Jci+Tkazmpln9wEERFiEp7VKBk5QgHLpFlIZe6ASGeFxwDmCdiKwPUNwAHyIne6oUXNvicPrysbeG3J0x2oCxLx1px1HHgW7jctw12rYe/pLOdP+Bgzv4nhthvDVQJUdZxnfdtY90mEA8VJUDe7PXJS0kOggsgEpCZhVtNRSqo56Lg+wgNlQEPFKGOV7uqcyo9fR+c+MQWQ5fpURQJ6V+mrC+fDwSEJfbv220rKiGZxkqKsOC0LjXg4bNFJQRJkwi97dLQbmK0Bm0cSHaT2S+vsEDp2jzWyMVlhlUoYSKkMRjI1eBJTmvrqv3eeO1WDJubH1vMpcbbRXfzn46f6+/ULdgPbG7K3NeZRuxi1AjnLROFBEmnmY0etUyhssmRARU/hh1I90WlIijjTqq/wKRYzGxUEHdf/J1j4/Yo19Fx4TH4mnDdaSmb9wmf8GY2SghwQzMQtrkamW83R6OFUzaUQd5OFp7oA169y7MA1MkZAkK+hEnMzVikglkYiY17a0jqVhqwpmOkw8c3SrozIVBimb8tDlHUZfiVWIM2TgUswK8ySiRJlpbpk0OjsAUUJrrffau7Z1FUaWQmlMnJFtWW9Pc3OkTojkolxKu80lRmMwVZHHSR44L4qz4ETGI5k7wEVCAIM5fbSEDoK02GQwkjIoiEQG9MtB8IAh+lD8CCSU8mXEziVl3ciHKAgJS63TmTU9yK1ETKeSkSNaGE1lhBQCUeokzFpUWUWkXC6Xh4f3l4fHIuL9uRZpylMRRpmUI4qIFpVH5UnlXKQWrkoCCmSAAtAMo6HXldgEZJMIAqhWpiCKPW8ySAM4QBAOYoP1yAHRcmBI3rvUSAQNaiHxpM3Eijq/xk7UinrKMoVq7i9kMjIZyb5JTyJ7LwBRmvXswbIRihUWtRSkIEEIzkAmZ3KCKYicRJgh6Y5MQyTSCQEp4ka9VwjJRs7EASROqry1t0h07kKoEklEVKfKsjVEDS7gjYY1gRjUO7l1YdHGL5bD5jA5aHAAJLMTGREjjRVCnC4ERnJkFQmCC2udAsVBxrBwC6SHe3gkj9b8YSyIGJuUaCD0DvCswrKTl1DiNs9utvbWzBIJZqIUEdkrEiMSyCFSsQvlaS2U4YE1TDKJsViqgPeytGRkpg7aqkwfj1pqEhIcW59/Nffu6RHd+1B/iASIhLlOBXyZej71wf8QhIhuiBwex33nCQ7r+lLP/lVG7r5eQUB2P5xg4PUu9At7yqiujH3hpYns1XxwVFH3Ygvhp3e5tz9/vd38ynEYlq3+T8fTo3gD5f6VmwhtupBDGjLjbj8bRyBO+ktKNG8OvzFwEhGxavJeqBmhKDPrRuV63I3hgRzMrcxCLAMMuAUqwACD7KnD/WQ84q6RlKSXgHGkSzhHsDsUZu5xIxv44vXME68Us+6fMt6kBe9jP0BbKDMrKURan9dmCU6CRfS5m6g3hgNpBGYFU2FCFZnEz5yVnGJFE3BhVRB7nlJketDTg0RGwjLX2m5t/SF+/w+LSCfVXEsVViZyjkUMdp3XT1+er/OnL9c///OfrK9rW1kmKRXWp1q//foDyDNdFEKGXBGgPm4Tg056UpF3U4AZJCz8ndy+9/V7JPV59etN+Xaa6lQ4u4FBKsxCJJmE4DR4UjrSiZKVNCzWea2lIIRBlhZpsSnA2FCVGDS9u/MUtClrBtLDOMlnozXbsli/mHdvra8nW9o0FdezDQwHMycyEjubPuVuFEZAIjsDDBF46zznn/iFu8f8BgV+/OaBaRl/BxGK5M70QXeDmbOcjoX20mg4/lnKsZLeOKMJpS1QoTGTkfNGxGk5T9NJy4m0BFs6QaAsrHU6TdN0Op1Op9N0Pp/P5zNArTUtZV1a5pZGF2bfBT3wi072/SCMVHsSQiKKXx8vpZwenPLTvFyXtJ7d053APIrPo7eSmTfITSZLOag2W2tD1TF3kt+hF1aLviHKip+qSY2Sa608UU5KRXiXmOAgBPhmfelxW9t1jqVtjj0zszL9tRwMLw/oNc+b6s/X/V8jHOigfMkcLCGRW7Tk5uu6Wu8Zcb957DHqfi7Z4OBv5rAdHy/F6IPiEEDEJmHOLG9M+wBcb7hr4nvDGBEjof7jE/3bDwra8oqbjl6ZTqeH993oY3PrfVmWZV3Xde1msEjxNA9YiuokQiRJNdkcj5GjSuqBdV35+Ro5Cy9EtAs8ZIge4bqI1qoi7AgL2TcrCLOIDuhwrbWGP6jerE3Xws/IcOujstIyhPM0TdNUy2XapPqGGxHdrdl8nZ8/P3VLlMrnDmYiRb0Q8SSioicpl6oPHI+aE6NgZ/1KgmKDHTmIJehl+3zpDR1DHCJDpohKJa20YwraulK+uDiHZlFvjcx6BEi41EupQjJFrpEeEB30AWbm67q2tjJlSmaJMkiFdevEqLWWUoSYCdOpKCJ7hVsVApOIEEgy30sWpkm5CpSTAE8KIQfDPdMRg/GWxw48qJaOeB+DF3SHjAeTc/FAozAPz6GcRkSSRMZ6lILBmVSSSmYSs04v6VZRqXXSqUpRVrHcqi2b22+wHGrmSRFpTjRSz8aeoqyqhDwlj6jGKEcuh4RTOIkDMZYQWNDdnBEWmxCmt7Y2xgNNF6kCBnKgjX1d3Lq3FmujsLPSJMU8PaPUsoNVKSJGkz0RpYbHAbzcOqawb1K07fKcFGPLHDCwnvkcXpDKKMQa4RtGj5Sk6mTEkdSSOpLT08N7T4tgPqwSi2Azv0hE4Re1yjf7C6uAoBme6RmOJGYS1lpGIikA3qiVBtEcQGBIDv2+NCI3YF57LTwRwELpHMrJup/OiYLyyzIPtZwk9sQQ6DxVTSI2SggIIH6e13XtW9lwdLUlRURGWiDTk4Etlf+vNYODsm77e8Lxsy188toVeZWr2rl8/jLdyV833mw3f9G3DrfngCf9+H6R/LrNd2DytzX8WpWYdt5GZiJ604jyK8dYdRk4TkGDFYTJRlB/p/azXePriI52mgWM8tovn2ur1WC/P/sBR0ltL4DcJ7L/unF/hDdepUp9QKZloA9x1ixKtZCQT8wn4Usp56qnwlPBVEkLAyyelZz7DbcvATh1qkSFoJn1Y7ImCliRgexIQlrG6eHr32G+xfNTrkYgQsBmeHou3G4x/7A+3Z6/f7o9fS5E1oPcCHqu+tvffPjq42Pvq3uz9drnzzIxRIFTcgFXUHVRTA/JIx2RkAumWrg+vFv7l89++iG9pfceKSo0WqmY3cJXD0umUqSs860vbqpRwpqBnUFKTES329XMQFmKZqZZbGlU0MjVEYIyVHMqsvRgzUwKo6VZ764iBO7dWs/VaKrB60yE0VcpA127OfhbzLB9JKJbDWQArmLrLGCWwUSvGJyXfB8HE3aEBTMzkre2JCYW3eUZeXTsEjMxjd7J7azMYLJSXsoC+8TGGi3TNMzxqN7ewUmJIcQyYq7IQVSSCKLAaTrVepZBKsDNI0FgKaqlTtMgAJimqZSiKrETZtZSDwDPoQMzzN/pdPq5Rf8yoa1knQJHusAf1KuqEW4rvqy8WB3wIi4xWjiHRzjevON03WKozq/rehDaYHO7o3fLTBHSH/EWbDWHMZm7gO7EmJgmpsIh2PToEpJEi8XN/Nr9uvbV4cmOHDv0z4Dx/oLxxgT88q++RLfMGEwCI8k7XKKjgd+9r81a/zE1ypvqDe3N0PfToP3OHPdny6UksAWlJIMELvCqd/AIVLZiFF59NMAPe8PMr71B/6rBICaZpJ7r5fHisKX1tSlIQJJYQYmsLIzUQvVE01lJa5AkOJgTDEizaD2IaF4by3r0cUaEw81f6oqbzLlwINeeAA2ageGDD3p7nfRCp5OIMX54fj49PS9zT+tD2+56DaE4n8/reZpnVaYIU1XOaOscFn1u3qwtzbkVDy3FtNb3JumV6VT4LDmlTxk1Y0JOPPQcwQPbHYIh75eRQXtXRZpb+oA2BTIsV7CQSjJLPfHkPREZnkSWR/X5CFRaa+u6SqLnpr1XtZYyTcQtM5Ip2cxbb713xiKYjiIeC4S46DCFVKtepul8qkKo7BLmVcO0WxBzrQVAdjuTFyaBS+QonbJZuJFnEifcoiWIB4chMYSZsq+OTHjAMzGEGjmJjKjrZEEd3jkskLvVBqsHR2ZSBAVASRYhAFL49MhbGnIExSpSKpUC0fEejN6BAByjMSAyclINESakD6BIeIStjZKqXBzYqMQIIZSDTpkQnkkBVQIzF3JxoyTyiGvE3FojZNH/q7077ZEkSQ4zbIdHZFZVz+wuuUuKAqT//6sESaAASdydo7uOjHA3M33wyKysnunRiIIgfngfNOZAV+WdEeHmdrRVT2J2JAalapmUVrhkk3RXc+8jtn5sot0ewfxiNvfKo6mfHk2VTe8u9bQ0Rd2sjrQCrVnCJ/ljH0vJqrqWLJk1IiK1xFz6tps18+bNT+pbiUVo5Sb5ZYxbzaVp2tEtQUOixfvlUl67C4jM7jJNVDXCpSJ6RampNbfmeU12SpFZXniLFvdtM5XFVc1FdI9hNURaW9eZNSVVVtJm1FOylaSpHeNOrI75BiLmx6xbmUs1VffHk2aI7nv2EZH3IaJ5Nr9tiv/fL1SysuL9AP0bx9P7g+1XiQ92Tcn+f3FYnnHT/+Pfuv7KdTiEyvvb9+Hm7HcGRvW9G6eohny9ULmdVCP+VW+Kmsw+i7OkKo5B2fOG6+4Ur3cbIPdPZHY7l1/U4v/aXdlMvNOjmfL7K1BScr0w/ep9/Nf1zfmNRWZbzMcYzTV66NjPrR5O7bsH+26VPzws3z+278/+3YN//9iezs1aZu1z9XF5sc9/az2HPv5BH/54+iTrp6bS7KmlrqJttkEusShROS36mONTtdOYHekzbEge822sv33J/tK3576/qGTE7m6jZDX7uz9/9x//wz9+9/15XdUsRn/dXn9UeUuRlJOfP9nDH2r5lPqo7bysJ1WtlL13scd17bp+vyyP7qcQvWxbSEVpD3l5GT/9+PnL82vvo1lzW8x8XOLL5xeJYbXWsHVxF5+7JqPve+9jhLmdz2tEVcrc45VM7bVZLk2W0CXqvHqp9JAttFRHxOtlF9WUNfcI7VukbLuburm5mZu7z3+6moheS9BmHN0PZsuqTc3KYtSwCNGmWlquetuklut6N+csW7M8NpDclmbuOofGzZPispq6m6up3foBz0/kuuZ7aVrdV1qXeZWIulrOyUfXC3JTOQrK56CPum28HBuVi68naW2oDr3t1Jipzy2VZVn0+Miaqu77vj6cjvmM18QPqbJjZlncjnpzefe+ySMzrjw7W2QfPfetuT89LOfc3i6XLy/9TR9GnkeFVYh01RpjZB09CGIMuUs1KbG3t7eXl5djQMrdXJTW2tgjImZfquYu1z2fvNu2njc2X/hF/dHtpLlouIrO6323FB0plyGvY7xs421EL6+5PTXzHO19g7Wup/brkeJ+SSBVXx07Su4OvLc9tK8WErctYy1ppq7WrM0PxlylhKiILm41O2+pyVz7luQYJlpZ2o4j11fhtNvR83Yvx/ozs6lXHc1a50Obb8NtyO5c4xwTsd69P+u7F3kWTR3de44Txoff0Q83cOf2wG4v7G1N9dVZ6lbEUjHmYy4R86brSUYsp6fTY5d02cabPatIZUUfaZGZTW1dVnVPU3VdVldf1Fy8yfwsvOWIcXtaZlpV+76PMaJiuETE3Eo9jhnq6mr3TX5VzOx0Pi8PJ3N/elzeel+bP5zXh3V5aTbmBykqqsYY27a9PL9YZY2+XZbWZkF0ZlTsQ0tdbcS4vL609bQ+nGXsGt1znG15tDpLP8lYYyyVy2oqoTPTUlOP/nR+bHCNSpGQtMqskXO5ElnlpVFDU1X6qMsWMyGodFFvx9PU267mESxQi5RQFXdvi64nNV9mx/PwGLHotsnu1c4tjhRyKdWcF8Buurie1/aw+Ml0DkCPCqvRNEpTVVyOPsyLSNNSGZIWIZHRY+QYIyqt9j726KOnhntzdTfxua2sMr/io8SsuS4mS/PWXnUdzbIddeUjak4RFjV1y8gRNaJExX31h6WqMqKtbseaQmbz1CGipaatdIh5icSIqAqdA1VMVM/LknMojJbO4oXR56DPrG5VTU0kUzW1yvXYF3dvbqKpot5aWg6pkRkhl4xmGnu3S19aRJMWR2mvt2W25TNvyzLH56VVSOo2Rs3rvVnu5q4qEhV7zxJVba2pWmZaqrc2uxhXzCOVZFZq5UwgFA3VIb7FsBxn9aWylTZdvbJGZe3W0tVcpFRMyl2s6aq6p42UqDkPZ256zf2uWXD+Pmv1drxSESvNylIJKZ0zPZe2nFZrbY77m8XN6qY155Uchz91E/XWvOooY9zLddRpZtyJzSxBqyoNrYyy09KGzvvUuQXbZ1PWzFRTmwXxTdTO60lEY4wc/f26VNVMq6wyrgferw6bv37N/dVF58fEqo/X7ffR+jk6exa0/GpK9rUQ/P6M8NWPHaH9627b3Xntt+hccNYxYbTuR7p99RC+cQtfPZ45nfNayVkic6hNSpavp69CbFXXuSIfs9D0Wl8xG+zdxXF/80npO/lwZpesYwrkzD/XNMmsiDomoJapLcdzr1s9i+o153m+KcfyVSokY9yGokjVcd9m5i5mqdcxjtfX9fhGXPMvTI710jfepqPCZCbcz6/SrPG9H8Bzf4YVkX3b3s/0PjvgHSvb1mL3irO3qHx40IfT46fH9unTw6fF//EP57/75H/6fvnu0R9Wd5sjXDVLJery9hJ/zc8vb7n+4J/+/Md/Wr5fPi3tyaWpnEx85qhU7Rk9w6oWVc+svffYd5PoQ1Pcqmnal7fnt3G59G1UmFvv3dy017q0v/zp6e/++LQu0hYp6THGy89vLz/1GPE2lj/9u//4x3//pOZpi/qitpho1Yj9TeN15KVf3rbtdfSxb2Psl1VtT4vUnz+//fjTy3bZTeW0epWKZFTrl9h97Ku6umYt1tWrSk+nZeZcuS+qHpExcoysSA2V6ovrutgatYeeV48KEdmt1CVELmOzruqWXdL0kmG6N9fm7q1ZmHm5W2vSTO7XrarqkUuTZbVSadrKvdRGjBpzAzpnb5d2dzCaY4hNSqSiUs3TtJqJm7jVjFc1N2/aVpkhwHnq1mMEUKocUbVf/5r73eo6qq5hp9vU9/kw8r0lqGZmzyqT5uU+zNKktdVnC3r3dV3P57N7m0sU91ZVe/XbxbSZVeYRPXBX1W3b6q6YXu66+LV1kZmGlFk5NGMxeTj503m9fM7XPd66dp+nbD9+uSSutT3zZuflYGaOMfrI19fXy+VyS7e7y4myOUU4YoS5Lcs8b5mZusvsliNzbWOttfOyLiYPruucZpSlNUStVCNri3od+bLHW4+9qsTETLzU56RgvW2czaWj3rZ685tdAW/ZVrelwu23xrgrELwecea/FnOfy+TWVLSq0o69rNZMykQlVdWat8XNKlJFqupo9vCLtKuZIDcvR+ourjZ/JaVkxuyOXGGJzKpa3fTrE+jtAcs1EHx8Ro/FT5WZzgaac3bhh0dyv06pD8sW9yPgd3tB5DZc5cMpUOcX3MzGKDnelzJ3Xc+xDz89nB6yqq0VKlVSW9/14uI219nmXmrzwqZUfYbGm0dKj1S9y9CrWYYts5NEVWVkVep1aKO7t+aLLi5HNvSss2rL8vTp0/nhwVozlXzrFaPNtlQyO+X4iDHz8fZ9f3mVZuJavW+ttWZa5pUpo9RnEm6NioiuGV5po3uMtcbZ7EHyHPsqe9PRvF3Toec+V9nMcFAxkdlSQitUwiqtcs7IiaoUi1GjKq1LW0KtVKpsG7VeB5zFdRrMvu9772U+BzHVDDHO+Y3Wmrm3JSxMzM3P6+nuU1OmwypNS2uo1qK5jDeT3d3EevYt94uM3qRMynIsvrTFmrY5jyVFI3PP2npctj76CIuR2UeMHDrMl0VbtixXO9vSZnLfvJhrizbXpemyuK6iXqJNTPvIvWfp7ENsc5/aVMrmsXFZlszsfc+aG1bzAmUOdSqtmRLaTL1EQjLEbkWxIpJuc9bbbBBoIuqlqqIVfaiWt/cDytFcbo5HkDkjXOdFiZRkaI/qIWIeo9oeyzZ6D6u0o+Vhioj62nzx0WOM3jcTcdMcIXbszy/mSzvyrHKEylEeKSqZace5scmc+jq7suScfFa3Q4L40qOqKkU8a0l5tJYVOfrcdzEZVi5Vi0hZPDZZzPay1xEjUufnxWT25auKPiKO7XGfp55lWeYBPyNLtUy9NZXS5m1d2rKom1qr2dVEy7SJaMqYUS5v8w4sRUVMdKnmQ6SG/Nz3RcV9fkTm3o7Mhsxu7VrrqDoD/XOko8llH9cyv5HqJa5zynjNop4jYJ/X+YkRIfGhOfzHyPgvkoLuDnT3uUm3i/Lb/99+/bqVoXJXX3471ur1Klk+pmbdX/GLiETMT8Dxkbi1/PnNJIJ57f6+M/DV87x/jt+K818fxHw0+V6qoccSxETLZGb6/SK77Ljru6wwvbvVzDJrt2cwM1Zud/thTahz/X6Ylzq3JK65xhDVuTMtzbVXzvQ5s4hoY5R7XUdPikhVxrXyua7t1ebXuvRYEx7lS6q3dcrd6zGTu+agURGpOuKk89HOx/L+TO+fi16XT3XEPGVeROUY7qf7H7s/w1aGXEsY5u777cfaJ4vzyc8nNWmn9t2nJ388+6en08Nif3rw7x/9u7M9tHQtndHOObfedB/97cuIz2+5PJ7/5Ov3L09/zlNrWj4vh6XmhMPsqdkreu8vX/rlpe+X7eXL/tZzTs/NVcvfZDzv8TLyLXKLCpXMGEMeTsvf/fHpu6fVm/S+r6tVjS8vX/a3n/fLRde//9Of/2FZF1nWKJ/ZhTK6ju3BXrP/LP3L9va3188/ff75x+3Hn2W7uNoYp9fL9uNPzz/++DxGNF9KtCRKLHfTkorKLuEjVSuOiOC6tLY2nT3cS8eIvkfvI0ZIbFm2jlxCT6cWqll9H9Ej1UXnjFnTvUb2tyZLt2xpTXpzba155rIszayufez8LgdGRfw4tDf3prP1pGimjBFxbKOPVnXp74v661JV5m1qWWTOZuZa5bfw89FQ/Nhn14/VXTOh4fiAy3vEXkWavhc2mOptfJKWaMb7rZSqWFRIVo3ct/72drnsfahIW1TFl/W0rktbHh8ezufzbMIz68LmcWpdV/l97kMdZtZaG2PENmJs1S+r6+PTU3MZY/+py6jTUM8orTiqUiTl+DoeB/d5tDWzfd977z9/ft73/RbpuT+aZx5ntcgcQ7Ky6Ww+oObHnHAtdVeztjY/r6fFah3bIrmIukapzrznrY+Xni97fxuxV6W2+4aG+XFn6/1adh4mvr3hav4+LOV+/aAfo191HQijqibajoVKa34U592S7sxFajbOsbJZFS4iUt9uXS8il8tlXnXdsr/m4AIvH2nHMTazdJYpH/tR85WsqqyjXv1bH4DZ//K6UPmNB/K73BZRZlbffm1FPsbSzK0ttp7sFEvJqcnIMSR9u7Tz2rRi28rmID2rajErBERnI/rZqLne2+TXiKPZnfuc06fudpwkrlPql2URFYuZjyqpYs2X0+n8+LCcVl9a7ptmitTcSG2uc7us3MWv/exLeu9vb+ImM9FOTidXW+aUwmaLq5ucn87L2h4WP7udrFbJJXev4bU3uTQdnssM4tV1ofL+4swajXmpXSWVxz+l+rb30pHRM1O9vPWZRZO6Wht9mVP55glv27bL5bL1ka2pNmlNfDW1OiL1Tc1X93JfFs9c531PVmJy0QyNLuIydondq3xsFRWWOS4Vu1S3WaIym3Opd5n7ZlYqo2yTfIl62cd22dOrSkZGVEqUlTbRprX4LIIUMS33vF6JzAlE5/WcatdyZ8uSkaU9I7PnburL0s7nVWYg1rK5up8vY5drd91SV7WqTLUQXc3NPKXKmruo2a2nUmTMtk8q5Ud/USlRldRFKtNKpWw2p5iF/5qlHvNclLPQr6pSKqRyBi1UU0bqlhU139acYfyZWeemmdVnmyY1vTbttbs/758NvUZhU8xnY6RrX8c6Sj6uXw2RYwiMSqhYS9dNssZomWmyROYYj6vO7ikiQ8SkskmKpak95mqucwhlucnRIHNWys+uz3N9oiJ6HKNaG/teKuaeswahuZhdQ9rHoFi1ubQwk6Yy5+XlNSguUiI6exCLqOzqZbrOb7OWlLiGylAxrTQ1qUpNn92s5xK8pI/K1Ijocza91bwY/OWWb8SIiBxDRui3axF/r6y6dcCv9+vU+ebNI7UeVRnvf3NcM9iH3mL/lpV8HFqvcs1n8f72Jt8aB1x1Kw65/6vfftIfYm9fnWKutbh53RI5bnweqWU2FVYRPbaqRoSP8vfdmzpqyURkdtK8/66937eKqLscBfrHdNE5V1hU2qmpHqu3UnlPLqzfXj/eP60avcvsJf0x3Ph16PGuQ1Jm3l9itX/6w+kP3316PNl5yYeTrG08nvTp7Mtizep0qnUZplmhpSY55+ZqyPwO5D40F6mHbe9HMGH0F9Vu2lQXa1rVY3++vP3Qt88//PN/fv3r/3z78nM8P4vsaRrapIbW8rbmy55fRr2MehtjTjY5rfYPf/n7P//pu+8/ndamI7YIVenPX364fP6Xsb39+T88qb7W+JzLWjmiuoX6vmd/rvihv/20vfztx//xn3/463/78sMPL3/7Md82E9u20+cvby9vlxRxX0S15oCaWmI3Ta0hMTJ6hkuNRVupaErNMgoVE7GI6n1c3vboYxFdW6h1aeW7WKtR8rqHap8nGPNU09QImenGKraI5AyaZalU6gy4VVaK1PtCZR6p55X3ckyc1XkRcx8LzwrxW/6V3GJRMk9ymbcI99dpMEc9v319NVYq4z2D8vYNPP5yjNuPZkTdxRj6vt/uYK58cozRe47x/Pn5559//vnz82UfoaLN27qup4fTsj4+Pc28r7hebM1y9qUtl779b74K1/u6FlOYqG77yIx5TluW5dTENMe2v162HzYzW1xdRunorlU1RDKuo2NmBe5ck8yrolmXMu/ll1WAVcelXt/HNvrqVouPMUylQktyLqEX16bWzF3m4BRZRJqKmUaVVPUYl31/3eLl0l/37CVz53gem2a0PCLed1Q+LlTqG3NURI5rj9umyt1hVO/jQ7dwzrxOnVP/Zsx+hhVv+2OmNbOfjz52ai46E0l++z2Su6GK8/2an/Dcc95kiVy7yRyxOne/zo8L+3aHmhI51ihz4+j/eqVSdxO4zKy+nUF7i77JUTewtkWWs5jYaa3z9thjPI0+KtM0JEt0lLxtI8rEuoiPHruP+VL0iMsm27bPD96+73Htyr2YW+kcdSgiGTliVDURUZXz6TSbhJaKr0tb12VZ1C0rI0bWbMYl57U9PZy11LUND1m9ua3ruqxNVcYYITnvYFSuy/q0+rK0xdtqaks7f/d0/vR4Wttp8dW0qViFZbfaTHaXoaPuu2terzBFRFy/8abUjP9JH30bo6cM0S0zMkfUdw9PvR07KvfDzntE98Xaupq7ax0Xwc29NWumpYu2ZVFd7tP/rLKFWIwMldhTZindLqNH5WY59kuNTSJKKoZIa+qj3Dc9ikxEfM982/tbHy8je8n+ts/OgilSlhbSyk7a1qrzUi5lZuImVXPg+ky9WY4rOk1VNdOl7SN61KjqMcqyNEtni/AhIq21ZV19WSKz4kj/UxGJo4XL4s3d5/I6Kmci44wQL8uqlRVDs+kYGnF8bkVlrqbm4XKIpkpkSUUNbUeza1MTa1mqQzRK4qh1yZIoCZG0IyJjJR6WIpVqVSKLtmpqaWGZI+yWo/9VgxbVI9szMypkRLQIvY5eet/ZP1r9yRBRU88wb2XWxz6kwtVVw3Qu0m7R8ZqVM6aLmYk9xqxfN2mWpiE1svatj8tWoTMOLdeyflXNzNk6ZcYT3K+Jg2bz6i0ydO582NF+dx5GpSr7kRRwPTbOl1RCq86PYiIm1kRyz9hFhtcx61JrRr5VZ1dvtxSp0hE6Rl1qkxgRQ0w+lFW8v57zlZ5jJH8zzvI7qbwfVD+mkqlI6XtNUf5i9PB1b0T+dUUZ/7/cQv7XyFHo8cb6V1nNcn2O9nFPqeQ35jB/6Drw1TBrW5a6zqG/ZXEdESXJOU/gSO+eA4lSwkYs7yMK5riVY39TPjRbOhIvZwR6tt9Q0RkpjJSM2atRrue+WQxTH8tI/Nvjd756WUSqIsTdl8XlV1p73V6Na8pA6MfL0fYP3z/95e//9HCSpwf99KCL9YdTPay6LLZnXz3Pazys5TpmEGUOzu45ZmFClvYer69vzy+vX56f8/R8/rSKrmbN1HOPbX/98vzD589/295+/tt//+fx41/j9Vm2N7UIsyE6m2S8Sb72uvTao/YRkdHc1vPDP/7lL999enw4L6mS0V/fMveX5x/+Zfv8LzW2h7//ww8//Ff7/g9ns/Qu8aJSub/V9vLjT//l8uWn58//81/++T89//W/j7cvLy8v/WWzWl5e+peXyxjj6btPy7rEzLqXLIm5JZMZGRIhGcdlnVk+PDw8PH16fHyS0jFy34fZXqlddVVvLdL29CiXXtG22alWzUQspVLN1Eqs1EXMxEXEZ3hU1Ess5uZDirh+PKqoq5W5eNPWZA51qwqZW8slEWXWVKT32/pmUTHxIzpQonMMn1TOGOYR2JynTC+144982Ir9qiOFvqd0Sd/e10gzGeP2S2Pbrk3wJDL63vfe930bfbw+vzx/eX55fn7btyy1trgvS1vX1mYNvbvn7LmoR3S/tUV+30JlRluPMjW3y3YxraZq3s7Lsmr0y+vr85e3Pl7iaV2XB/XKi+ZwrajZ//OIoNfHrKRZvHtLQtj3/RdHqGMmeGZG3y6uUkvv3V2HzqZyopJabbEjw0BSTMpnpHX2EFfJzB5j3/s2Yg/pd72nU2X2D62862V/XXXcHuo3X5zx3oRArplgv/yteTU8/9tsFk/ZNQb/PoSnqjQjdY61VSlNeT+a/8Z7NF/DzNy2bS68b0/Q9x56xF3zfvf5muJxfbLfDFLNLZc86onLf/WH/k/cXlv73dO+jklvPptgrLpW7W+6tPXx4SHGpe+X0WX3WWi1X3qkijaRmcmyLd4yR8/ccpkLlctcqOSRNC9qUnV0QhIZMfpuvXtrbqIPbak6FirqbtdaqSFVWTMm7arr0h7OZyk1XYZHLd5m56vmJqkVR8BeautDrJ3F1Fs7n9Z1XR7W89Pj+vDQvK3e3MS1LFNrWA2TUBl662wlIvq+SimZ1Q6/+qdmUv38wT7GZcQW2WOMUfvrZb0uVERkhg/2fR+ZvVVT8yy/9uHVayQ++zYH9tlMq7slalYu6iKjUq6teCNjROwRPc1y9MqjhdcMCFVr2nyXmtMJSuLS423b95G7yPD28vw6qzLmVZqWLBa1VElFkwyZ4UmVytnAas4KilDJVFMxV1nNSnNW99kMX48xevmcMF1l6sviKZ7XzBA5knxkbtG4taZeIuM6IPQ4yIucPp0lU2NIROqWeQx5PTqoVoqKpjTX2fo6I2yukubQ2qqS1LJZmj+LjzQ15ZoW6T7PICmyuEnEHkMiFpd1OVVrXiFZ2evX42LX1JcjFBKhvffWqqqk1mpHSVwddY8zJ9JKMrW5l2mq5BzpqCalklk6rld5847mZrioylpWLipZc1VTNXLWHO2mp9s6al3X+ambp4DFVjlidnIM8FbVuf07d0WvMW+RmWGnIiJxVInMcZHX47mp1Da2vDabWDTmZNDZav02YuPIiDOftaYi9ni2yx6ROXKGhm6TFz8cGM1c29GZq0R/+8j8e+hdUreKVP8Q4bqVK9zlXsy7lltGk5nFb0TT/m24D4XNpgWRGfsuVZJH7+zbaevu145D0/xg/9ZWyZ2vthfuvxEz1fM44c7tCBERmd93mUnplkezuqqs1AjJu5SD6yKn7rIwjvuS9y0VFXH34+JnbrKqzVD33DPMCDE7epf9dmbBrzGzUgkRb209nWr/mEz4i1cjZyrdx3IjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDv978ADGHiGcZgassAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 232 ms (started: 2023-12-14 18:00:34 +00:00)\n" - ] - } - ], - "source": [ - "pil_image = torchvision.transforms.functional.to_pil_image(response.img)\n", - "pil_image" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 990 ms (started: 2023-12-14 18:00:33 +00:00)\n" + ] + } + ], + "source": [ + "response = analyzer.run(\n", + " path_image=path_img_input,\n", + " batch_size=cfg.batch_size,\n", + " fix_img_size=cfg.fix_img_size,\n", + " return_img_data=cfg.return_img_data,\n", + " include_tensors=cfg.include_tensors,\n", + " path_output=path_img_output,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_Cb8uZNHvFN4" + }, + "source": [ + "## Output image" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 }, + "id": "h_pVKJNKvFqp", + "outputId": "6d8d5a35-5888-4c77-ae4a-b415dc102c47" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "0COQib8gfaeU" - }, - "source": [ - "## Facial Expressions" + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAQ4CAIAAABjcvvYAAEAAElEQVR4nOz9W5fkOI6oCwIgJZm5e9wyq2r3Zc/sPrPmzJqX8zxP8xfmT8yv3mudnrWn++zuuuQtwi9mkkjgPECiSMqksPDwiIzMwtfZUWYuk0RRvAAgCAAYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEY14L/3//P//v169fv3r473hyJKD9GgDFGAGjbloiYWURijCIS4+ia9nwaWai7uXv73R9evX4nTOhcFAaU+fKI2QV99kVERCT7mv+wgPMj5QVDCN77m5ubV69etV0HIkR0Op3+8pc/3//yl+5w+0//+N/effdf0LVCKBgBWJCB3cb1PoFUeBKJ9z89/PgzjKEVisOIAL5rA8fzOHRZlYYQRKRt2xjjMAwcg3OuaZqmaZg5hJA9ZvYiEBCWQlJWaTBXo76UndKyBER0ziEiIMYQYoxE5JzDrH6JELNbxzhuXpB5KSAiM6cLDue+bVvn3DiOAOCc06Mi4lDys/LKD4FhA5GYf40xjuNIRE3TcIjaBgAghKAF0Ns5t7xlZhG5fH1EgFS9KERTEQWRfEvNwTdN13XgmlHiVhXnlR9jZOapbhG99yLCzNp98l+OMTaILcEvP/3txx/+2o/j4e7193/6x7a9cSAgMcYowDGOzOH9h5//4z/+4+l0ev36j3/4059ubm7SUy912A9bdXga+uyRizZf9HpEjlGbyuPj4/uf/zIMY9M0f/jDH7v2KILn8+Cc+/mX9//+P/+Nhe/u7v7pn/7p7u6u6sv6yCIyDMOPP/74n//5nz/88MNff/jhCYNrGu89ERFRajnaL7SWYoxV28jrWW+kpzuEo1YUR45cPJqgj947alrnGxjHIYaI6J3r3r757n/9v/3zf/tf/pdXr14h+fZ449sDIDnnAJ3LKoOI9BEAwDnnGp+VBACWR/bUVOXMvnH+d+dcGgGq8XaHvDbiRksGAIKi0vJioKNxHNu2BYAQQn5Bl3X5ahgZ4zJuaCdavoaiV26NP9Wr1CpN49VODeRnVY1h6155i2Jm7SAXT4kjLxOO99Q4/SoAOIQ0SrEIiOgjC2LIBiJEzAvP29OIzqEXz4qhGA+LZ1lGL9CutBzKHqV6rqrSiuods/dVNVAsBvPifXHer0VE0sjGUB/Krk/pZ/q64RICU0ea773ZsIuzqnsVFLVY/mz5hgKh7ymE97/8tX96T8iCEAkjeAA8OAcyDUrjOOpU4r0nj+QRBB0DCsUoo8CI8DD0D2P8H08Q0cElqgZQVG82pKwfc+tQPrVVv/RZX657DW220eqCAJAmrPWh5SzYPERZ16ueZF0b2QhTDJX51+LiRNWQslUMbSr6LHV32Co5iIQQw3g+n/u+H4YhhBBjDCGwSJQAwE6AREgiCaMwsTiJrXDjHRHpA4rI+XzWkZYAm6bx3jOzI/LNNFkgyG0jdyq+ti0AnM/nx8fH0+mkld80zd3d3Zs3b25ubpvGp4qq6lBvpy1WcBmi9QMRhRCGMQgdfXe8ubnpDkffHdC1oucCYTZJlfImONiRkDc7bPXuiuGrfAs743zOZj/5zYEwNXwVYr7mrcdhHIdBhoDokBmd015+8ZVoEySitjloR+r7XjWW5YLh8si+z57StafFvDA6tKXJVZ9xLlsxtz3j4iqCdF3HzOM4SuTj8Xg6nQBAB4KXeILPIg2++eMn8l+GEHSg6IdeRzQdVkSkGhyY46TpEbVtq4I+QDnN78pzVw4H+88FQKl/IRKC6JzhnKsUFX0RInJ7e6tHnXNC+O9/+zOPoR9GvY7Wkv449EOqJSLKpUydZorqBUEQQRlCRGARYRbnXFKzEanzLSHqDIiIznsEj4ghhBBi3/evX79uu9Zvz8Qvjj6vGiy+2k3/ftA+oiLy/miAOE3Gk1Vifh8CINk0zQKAgPN/1ShatPmrC3nlq3+RFlKUsLD3wTMur30wjWx7AswsaC4//l0QQkRAYABhYSzsidtUY++Vw+/Oz648VP/sU+6byrl3r/0WcEUJn/fLT61DnMXCK88iR8Kkc3F+FkstfIsIqkUACaXQGUII4zjqcETO6XVwGkf+7nieyJHzO1JUsuZI28aDL0HTtr5pEKgBAmJhDiEIoXMOSt1XxRSV7ZrGa4NW4bvQkuk5wtOO8SPy5trIi6MLRNpLVftPr0bijsnkqkFfT9EnHcex8f50OqmOp8ssL/oozyEJ7vqAqngko07+y8Ph4EQ8sPdeh962ab33zJIPZyKignWM0Xl3OB67rptuUd66XEQqrLBV28hLcq12h0hIc/8iIgShpFyVF5yW0dSqTUTff/89ETHAh/7p6Xzu+z5pcals2lrS1JK/Sl3RVVKtIiIR3DqPMFWsWq2mwgreNEcUEYgCI3P0viH04yiN75yjvu+1eIj4NSUpXaK5fq41rkfbfGqTOw3buWUJJQJwjGlJ5MoRpBq+dlZUsOzLxVr0tk16bTT9VKp70bPEypxpDE8jm98svBZYH+H31NRFh2YGFBTZtTVn5GNvVRs7I+/eUkZ2qJoEHG6aq3dWVKqLpLH32SsqVz7XvilhazavDu1cZLL6zZ+vEQ90VgNmtR3HGFWAUfWDXN2XEYHIEQIxJLvbOI4hBJ2nvPeElMr8u+kL13P9+9rhd6ioqLn3VyyGIMYQAMj7JldUtNuoh1LTNGpY/SRd/6O3/vyLfD7ee5WqtXUmYRQRKxeA0uR/1cVVAu77HgCapoHZM+Hbsdult6D2XRWektqQvyMiQo7CwjEyMzrvG+8crTsyc9TW4p0/dF3btoioquDFW+u3zUPPaiiISEv/QkIChLSiUj4X5loHEb1586brOufdGeIv73+5v7+HeTpEIqfWJr0UERI1TdP4YmhSG7lTjS6VBOG2aQiQHBGScy55biHgwbUcYwh95J4Ib2/vHLWn0yCMDY08+ZkxAH819Vb19jQCfKW7/t2Q+xpV7m0VaUUFAECk0OkBl8UHBNF/V1eqFkh3Rp9KUbly0Nvt2ldRlzCXU6V4ois19dSjp5WrbTkVEZPvkC5wfWrhv02c9yDgCFCI4544nlOtcpSvcrPqr142Kb3n8kNQtrDtC1Zr70myzFwhLhVjR1Hbno6r2tiauHf0W7x+bSRTVK5UmBHAewfiVUVRkwfMvnBUqojC7Nw0GzoCIlSjs7Cojtc0Tdd1YRiTle0bEdK+Ji9iqvCg4w7I2iVRmAGRtDFlfiyqEqmiCQLCrGta80rb0iWwFJfKRrk/Ol7Vmd1sYZ0kfsQk+gOgCDNH2dn+8kJwjKB7JAA9Ol3kY5EQglv1Q0cOafIB01fofa0u1qJq4XebL0pMryXNH7h41BS/zHUGPYfmZUrMbIiV5/2KwnEreYTDPCKoiCDOVw+VxqP1IJV2tlRvKf9lsXtntmQ455xzYxjattUf6CKDjhTMrOaQ9TqGljbtbIkxzpYObcWT64cAMgOKaDmFY2WrKotULQovQ7zWT9ZX8+eKxDGcn06nUwjh0LTe+/lcEl1KFgSA8/l8Pp9FpG1b3cuhk4kwQznHZJ/VhuREOCmNRREvokvVRCJCtKglIgACMVsgUmfc9IxpaRsRY5zetd40jdfkHDfu8fHx9HSK6hsGMrVXhLbtEJAIAdE5QkoqB9zc3CKgLsXr9AuIiECAB+emLwC6xj6/SKLIKPx0ejj3D03jX79+c+huhyH25/Hp/oc05eAkturbx/xVpratX7PNM4i4ua0uWYz0x8y1xJl83q4cvnE21KWRbeuXaUhZSwDaYefWWJ+l87EKoHmpSmMw6LCxli2SCQZmbSEJqRdLAh+VgeaztMzVL/OvxaIBESKmp8jbPJYe8FsIQERJgrsgTL1QeL0iUQuFm9csG8D2b6ehplQwPvqzvBg7J3KummVDOcqFOTp188pCrzfFee4oS1VfJBWsVAOL31VPlt+qnInyZ9SjuO5fK18n1KFJz1IDitYaIrGIGkgEIgAgEOHkzYWIzrm0qDU/NYE2BwHUxgYorLutkBAk3b708MGySOWhTTln1TsudIG5m2y6+ObnlIt+1dUu7GzRga4sw1zp+ptY/J2yu8Wyr1UNzHs/jRU6ImWdHTao+vJm16sOzfNC6jLL8Jiflc+hAIjg/aSopI4AAEQuvTCcXvncWrxzHBEmaQEQ1A6lMsm0bp9GvPl2AqKLLalmcsrHmlrNPMJX1XN5xEizs4ggLfYXBJ3QWYDWk4VIOWJJ8dJ3ZHh9R0mygqy17IxLsiHAVPg0qWgVFAtz2XAv81VSJTJz6miTfiLTgkJ6gEqnl2sXfa6cwYFmDxPVqaBojsDMMbJA7fG/w06F7pSJHDVNw+cBBNQ6To6IUAilXETQNg2z3LB161Cuw1T7wi+elIqXPIMvtoCkc+JiMrmyBuojmHkC6GdVDHS5o6ou/RmtBpHU6vLN9NVIlN84CUDJPpHE5XneWsTEpAhVroD5qJFmXiKaBXL9DQgsllZmhm1/vGIfaVbzWh6c1xwq7VHLNIZxDAEAyFG+2SMfT59Op3EcEfFwODjvQwjTbjmoJv7l4+x8FRGxbds+LL5/1ahWVDUAza9S9RwirV4RrQNykyBIJGGSOHVsSqNHElPyEQoRD8fD92/evX31JoQQYqgaduPzFYaihPniQ942UKD1DaKaU3AyliTtagyOkCXoigoAtG3bNIRw7p8cTC1n3po5nY9S7h7GTN4Nc5iBubkVL72o3o2VUv372jDxUWRWDmHPMAo8z/frSUVmlVtrbl2qi9PJSj4oTqmuoEECQghd1+ViQT0Lli3k4oPgvGFUJYYrJzNYhbKoSrh85WVTynTN7NEKsUVFZhEGcZmAUxXj2rURrNpNfgWsBIv8rPJe2c9WDWx9QZg0ruVu2RQ97clZdLPsrVXFqIememloLTFOYtmqRi9TqTBb2o0WJPXcKtRKVQaeYyokL9wYI4AQYWDRPhqDAE1jBxLBPDUnw8Rc1RR5BJhcv5AcQZI31MyfNshtzl9Vu8ljd1RWwvyHVfUmsT4Xoy+dVfWvrVEfnKtfSzr3ojyQLALF77OxgrZfHiKO47i8lGwKyEebLQHmwgW3dZj8LzoyLH8ptm+VXwXUZUtXZVNJnHMAnG5PRCACMhmzCIQQ0uCTm7e6poVce0/z11yTmJkeEtXYqw1gfQjmyXIqZ1FPyymIhLPiAAggwixAQkSAWBhapbCtMAuWesFFcoEKswUDzLahfip5A/BqstI2t6PRptqcnhUJAEFQeHOy+btFp2IEQnym+/vxeEyfVRO75iy1tYcQplgTX8ujJQkf00wQCi1rq3mkFTxcGTsvDo7XkDyR9q+g973Y56/k2SXcAnVDHhISEiELz4FXeBzHcRjV7K27NZIJSqoRfFWqtShz8dY7V8gOgcg0s+6L2tVkCbOviCN68/o1z6te1S8r0/iWK3Mx6iGEMXrvfeObppn0UiRCIkTfoHfUtu0wNiIMk3DjNHxKiHEYhmEcW9f8ThxTMtshfEoTpTmi47NHctXG/eyYt//LdKMvPXGsFaSrztoo1JfeyVSNogKb8vez6zA9msgi937VHVrfJCIiLMIoxMi1HPz5rMfD/Fj+cdOJ65LwrYpKtd64o6hgeYVPf46a/RJunaXFTvPv1i+vL+Fe9Zb3TV3mxadvALWQgfd+36c3fyn7T5he8Y4Q9UWowswSXlNjmNlkv0T1+hTOdX+Owdl8Plv1ZFJU4O80jsEWznsHEDiOYYxB2mdVjkZEVT469ycu+jx8BZK5d7o1X9VMtTVrcJ4YI2Lh/fkMFVwFe7xkyV7/0nuvaxTPG7Z27FjPRnddEJIQShxTSONxHIdxYOau6w6HgyNiABXKsRbos1DFISDi8XgMIQzDANfFptwKJAqZ7Vm3i+w8SGV9SbsynHMxjJKZkfJ6yx38RIqvlW3JlUa43HxVjOyxbkI6RXrfIGII4Xw+j+PYdL8fSS1N/2mZ8cqzcofsZ3Q9nUSenp6898fjcacVpYnmK+xb2AkL+w1SjaLhujqsDM/GMxAQVkUFGBHgpVvmTiATKFZUive4c1aa5WdhbDnkcGd5Yd+17DJ5qXg3QMtO4XNijDc3N6fTCRHVtHrxXpUYs9PIq9ACW7/MrfufY5TZAicL2bQrZmsULYc+qV5KVeBFpvqKVHckgTSn7EhWOnGoy33lq/8iTK5fawMnQKWDg/pWIRHqWue8kPSNDv+LZUxbQ/r6ZcsbQ2BmIfTeOwIYn/PO1o7X15ylmRl0S8D16zCfT75YWYkgOwNHWr+Wec/J+ugnUXl97IyVyWyZCvCp94LVqPqMK6gtc7qKrgIgOURGjCKpWmPkMAYQdOQb31C+L0sEN0Yxzd9yOp2IqHL9qotRWqS2a0PmuQ+9czsj7Nq6lhRInVr1IiocL7/L23yVbiJLYFMd6g4HTdsSQtJRSTfmR5b5JozAk1uYc84xIAYNuBc+koDotwVmTkFwdbMkIo1Ro0siz7ivZkw6HA6IuB98L3U63HYseSme3UMvl+lz5g2djLCciATz1RthAVAHM0LC1YLKUqgoTEhu2q9V7oGRy6dAvkUBIferovqHf3dIxsfqAgGAESZ/EjXYfjT/y+y5lTznUivYNw3vf1Uqy0I1mBdfd6+fU7iIbf0Ipq2xOLuQbDqWlTRN0/e9pg2pNk9Wo0Glm22WY/7dNJ3OgSKqpcKkqOzr9qIR3dRb8oI4rH8VQVD/Q2T9kxDoLh3RvZQiwhu1lz1XMRwASlboWSBIcY3h8nN9Cpj+k/l5BADLqBAXmw3PWeC23myq22cLVPv4MYqjhnwbBYELp0l0CABRhzVhJxiEozALI7NvuxgiIjVtq0VsmiaUVkxtwcvX7GAlf5chNK59Tl15aJpGNxZHmJwL27YlamOUYTjH2LvGATj1CdQqLQp5XbXuCHDDMAhE55Ei6AYrRmGJwkDZvSonVJX7+r733nddpzng1L1Hhty6vLx+ZnZ1x14u2LatzBFvUiaBycNqtiUkcwIuQTzzKbFoh7kc2TSeyKlfWYzx5nAUkTgG3XA5uTKzCAjSpH+L1N6NubSM5BGxHzWtIXV+yQSX4lqqytH3I5ahpdSCG0KI47Q7Qq2MOvylytGzUlWkwND9OJyHXqMeCAI6EpF+HES4axuZ345urIwxeu/J+XxQISKfS2NZDGJZJThLM4oO7OkxPZD3/kEkgqB3rm2co+HcC1DjcBRxnoZT//j45FwD4G5uXhO1IOAAnfPgJqeFiy9Ph9GLy9DkHM5rMjInNEzPpe286zrmiCSI03/euSASwgAAzME5bBuPIByDI3WABf2XJarSqJVPBIeDOunGak7dVyZToXzbLSVEIlIrDwAAZ4M7OdLhS4AZ0B06iWPbdoehi2HsfItIQ4zUNd3d7WN/HmI4Dec7kDgM5BoAJHL5m6MyJWXXLcUAKQYEydqCc07d22DepL7xXMClSFBMAeWyZLKewm6c2bzjpAXGFAtr66y+77Xv0CoujawiAVz8rGsyqq4AQL5hKbWopmnGcUwNcl2eFAwjHzcumvG2zLqyuJJDZfuoZl8RXnbF8tKLBGEnmJUAXxOYpfTxRgRfbr+Y/x8xH75FHau1VYtwHF0WZzmN0oJADQJIhDDp79kUs+yiwXnj6HzPfOKRXJ4DyGMypzYPWRBnhctl5HxsqaY25zF/laUwmk/0xYu9Uk4lwkm9uiA5FdcQkTydDs+xMVAgZopg13bo8BRCEEFcJFRBAFL/donC4xi87wSFMYIwxBGYPJKA70PoDjdBMO2nWoxliCMPS+2oxDmLqJgNHFQ18qyeUHdPLjXg9AeRhYhcvnkyd6atZ4cLGxuUhijNehEkzr1DdIlm/iW5eblAAAQwU7Qpi7hYUdlMEYh8o9/JN+UwUjxyfhHvN0eAyPnCKeH8S317yylzIhR05FzahDmNq/kFQxgAUJwDcuQ8AsUxAkPjHAoyCiADBEAigtZBgwLjQC2ieAAQHnUCmnsz5DuAojCHSZ4hAKKGyBMROe0vuoHKE9EYAxBGECZkAiGYz0LZzrMXo0wXJuecn/syoWA/QHPwzrdEXpCA0HlijuPIh7bjOU9upcilkUeDn5U9MTcmTsu8efD91OOozPObX6GYH7m4OM7bUkTkI9s6JfuQmjLD9li+y4uvvuQLbasxCy/rO/lGwhcrBgpi1Ob+XPO8lHG0Evkrx8qPdZvU5vRf33rIzDCJ/YtUgm9qZJTtof/odbYkJJl9sj+nVVy0Kq1JnbASnpKvxVX3kk3/dSm4YP26aMVJJ0RmBsmCciwrUbP+A4jknPe+hZfmWfX/zB60c68riyGaaw0Rp33JUo5Sy88ANIwGzobPqesLIOg+H5g1PbfEJ8zf8os00W8f7URL833uRS7+Pe8YPMcDeEF23Myex5d505enolUIMNHGqoOaIMVpwkXZC7hfynCp9ZZaQCHqgqZL/aRH+A24zz0PERHO9jpXh/KZTtTcjoIACHMEDwQimF5abU6W0jKK8+rK9DV7dyvRfJHN5Ood8zvK3t7YmxUEARCQMTu0dVZ+we12UZVwp/CbF98tPK2sXUv1bpdKJYGLl3XeoUxh8uqQfdO++7TfQZdeEIFRXDkTYfokgBeF0flP+QLLZHdLdhNtacXKy9VdMM1f87g+xauro0vhktpLrQ/PngWu4co2WU2+XzWPyk6ioudB8zbQS8aVrweRi5M6EakOo3UVMm/YkMkev1xDxz51qGiaRq72/5PMxp8PoMnE9VG5pDJ455dKTvD7ftJSLy8Uy0E8R1N9tvhCGTu6SlJUknNa+suLzL5JJ5x9nC64sekegPxezBzjsqhaXVAvxTMpyG+8bgvQ9Vzpqvfi99rxeK5rI/ucVHpdq3mee6OjaaEj7tbmizTRb5+0/fGTdrbk4PbiWLKVVK/7pagEuG9Pkt575B3bB/pWV9wC6/LLHFFK5twuy8UXMThiygIjAJBJn6gBi+ZDuXpfmut3SvtVdhZ9fSZrBYDmYqoOpQbmnKujtBEhTAE+BQQA02pe3tQ1rG1+Yvpc5UzMD+WKCpc75qncs1fsKCgz6+XF2OkaDklbDQOIcG5qI1jUrB0taIeq2eSbUfc77JZEWxWjWDap9vlsHyr+WB7x3gNLCOG37hSczEPMvL8WrOtLmp35a8oAO1ST71dVVNbmis+8YJpiv9AseCVEROrwxILPMlFP6x7eM/M4jlR25qQYENGV9sMku68VleQK8tF9LNXokFZ1EJFDCtWK8LFlk+WC5SHJVsmfZ6TX7WsXTVk56vclc5CxlHnjpfpkLoqtDUgyL3pWujQzE0F6R+UFJSkqqlB579Wn8XTuP7/AOV9TtlvXzEYxyvaQufvOriOIKIgO4Dl7wDRasQ7jwry1QLxqor9PqnX5ZzzpzsCexo2kb392eQs+f2/bFwcvO6trE8+kQFaDJwqrzMwoHJlFdG/o9DMEWrwdL6ylzLbwynYvtFh8ETPvNASA7QhjVZF/l51ApoyfQg6JCIpMZUv+IudcFqxEXwkSzb6oUbdTT+vzuXmOMh+peqEgX1GB0nGr3GW+uShRudCvvI4vfq5AxOQCKEAMnKu4RRFLVW3rgsXFy1WZa1dUts+qikGutn5mZ8HWWSo6TpNvKXt47yXO6Xf2n+3bplRU9gxt7bx9I0UY+nKlulILqCZfLyKR48UF9MXePG+dh9S2JGn5tTPSvh/QTvHzMm79SlM6Rmaa1XT1g58ejFk96YjIORr7QSYYyU2D9E7pdhX3j4BAREDkEBGJOQpzBHGLhiqwOJhMd4BMbQC170qtOejpjoowvqkJUpZkR70JifQuS+IqEdHdLzCJ1ODcZb15dqe5UAPMnG0PwzQcr9v09c4YOOeUYGZ1f0ylklU07vRHzDypEFU/UR2g6Iqz2jDt5EmmphCCGmGoDNCRtnlPeZe9+puy3pcQkIinVlavw2jPSC7+6y4w30uYJTllOO9FJm0kZddBxBAYUVLDGMcxhHA8Huc8WcV98xrLV3rrsZ1oWQPWQlyUSucanjQrTtldOcSg+m+MLALJ+Tu9mrS0FYYRsz0G+bix0/uqlAI4ezzGGEMYtLDOO9LhaFbYUwtR8jsQEaEPOM3AU19gBJwGjXEcdfTzMl9qY4BKFk3EjefIe02q8DQobU7J1ZC9fK4d1j9d/q6WgKp+XekSuSS0NQJUj7CtZNaHtI/jHL94q8B5c1pfc+tZ1ldIRa0qrfy6fEMEmi3KgsW2nDTrTdfPzeRA2fJwvZmnLG3mEDJpCFMbEU5pGAWn+4EIoRBQA6LSMOULICjgsiTzGnMjHRJ3ObqfZgjKksAAzLYwBBnj+NGNTGvWs0f6VI4MELOdq3lKK40jnr6GUEVpm/yNJYsmLyIqTqdMwaWtjXT9laa4vZVwtlxj3lQzDXKwZGWZxlCY3fzzOQ6JkCavUhYA1lTP4JxzQDzve6YshTAA5Llo6okja0O1iTMfysqzqPxZfsjnmxIr49f2y0XMtAKUOemxXmT5WdXmkz/LeptHoWNAfvXCUyuNPNMjlGfVJcwPlcVYnrGsnPz1szBDsfoKeTz3sm7SeyRcAlRi6cCVj6JEtNTUZFnYDIe7yNKACKgyowhHjslkqTK3zlN5AfSmVFeOpBlTnQXS06Wiggi5+ZCewMw8/Ux9eSbnjsrbbVvXrSaRVG847xmuWvtFa3JxzUtNVCffSUxcb3NJv3BZ7ud8FmFmRAewHt023Rp5ZzTPPlf5d9YPJswyb+fAPK2MCM3tnub8g9qcFiP61t6Vize6cuBOL2lq2YCCwsLCmK0FIxbDtI7Cs0VQRCDGAKvWwJEFRAXZEILPQuxJtsqRzPn5gslyEeYkyTHHLY1xLcHkR3OPJqKpZa+l9mXiRETAraA0elba9Uu0DOLZnASyynxUrU5m0knxLPPsOL3EZHmNMeKsxam0ndWbpKpDgVkLmF6uajh6VlVR01A/laAWkNLD6htLJ3jvxjCknsWRQwiOaByDm/ff9n2ve5R1zBqGAbAWQFN7SHaR5DCWftY2Tb7sk08Pa9OdPqxO4fOTikx9jgDYe384HNUXsRpJ9Zq6iKyxpCCLtMiZyFJtNHeu8MnWQ+M4xhgfnx5ExHt/oMOkQGoyTmZm0es456bU0TNE5HHOagpzYwNkAZ2DkqUfZmmv6u48J5hS8j3iVSetzQ/zfCnzWujFlYTVEF20qPXvL5K3tmpSwY2Z8uIVLv7++llq65eYuaa43RD7xbhxtUmvar3pjlgmpKvvK7AEvcFMUMNNeWv6dXYon+dqSacsY/6z/PqUmaU0IAWIrh8yJDEL6+3IIkX1urmuBAo/mJStSM9J4vl0WjoLpz/ojCl7HtQ7b6+SNyT76+Y5Oyv6cxuQ3CNgfqGTFrEuEBGEMI32s2UtHSJ9ncwMk21rqg/RdHiTAMdAS6J0HXWLmQgFJKqYJwEiswAROQKXRmYd7mAuK5bxowrRDTY7bGFoKF/JXu/YsSxcZ0Cc5rFFUSk1lWz2SUMo7gYfq6ic0yCfHbb9O/IwObUnSKWZ5G5meQMQwtL9qZI30t9FJr+YVLB8ast/xixTeKbcYphqIP2+GlLmHgcwT0VEAMyRmWPed5I7Vl5UWFVv3mXzHyepg+fYGKllIqKGLdI/pgYPACy8FaGnqoTqfaWLIGL1OZ9iqnay1VQmVW5+O1/V9evzSUInzqJ5zq9dOoDFsD2J6V/0XmpiFxENTL7zy6ZptE2kUGAXf6aibPqajyn54Avq1ZrtgdmSlmR7BtfyTMsXRHly3CRJc+mb+xVgTlGGdMFqOaTPUhmqXwoict455zU9vaPJmMhzKr2L3kd5P09KSHq/1ZQgWVC1rVWvlPhVY9CFMehinSxLT+icOx6Pr1+/GseDc67ruiSFT2OK90kJyYOrIGLgJe5bWgvdYm5U8vDwgAht2zo3Bamb44nRTlwPFmYBVovpswYHdberKsf4KF9z19PnIwJJhJf60LZata+bFNdYNq9qAM10LI8cWCgSABD61NudFH4bVKwMFULw8FBEIV8GB4A8W3iMyxQgQN53zCQiXyJTcLXOWYkp+b12+lcyJ8E8pGicTI2ZuXVWdcEvNHSvqa0YmxpHvZl+R9vfuf61xbj6LMqCWecrdLq8sHylydyTC8efdC+d1NLskMefrHheZrkcwmI5aEcp+nsAEdWDhJkBUfIx5erR+qJAUi0ewLPcAdb8xhQV7RUpS2ASZ/mbkSF0vhEQrPbQfRnyWJw7A31SCZxzO8ZaRFgtl09IuUSjJoS1lgKlmHJxpU5RPT6lAsyTFeK80iKXUqx8UWJkNaONsXZd7bqORTQ6c6W2fT7aqr13jjwzALLI1MKTjqFLK1ju1E+6og4Q6fdazvSzp/4s2UpL/irzBxnHUbtYCCGE8fz08ziGtm277oDoHTUA2HVd27Zv3ryNMajEQLPP21QSWdI/afNIhrf8VVZqwEW1Sp8ohJE1GnWMbdtqXAFdzNmKiQm6z0fVTebnvaq/88ns2VSrHPnXb3A39tQvdIGlDE9cFb4wW9SHNptYHj41Hy0RIGRWobxXIjCEfvHUIszTJQ2ZwTPEELPwKi0uYVyZmTmm3AtBlv20aryd15UI6abtjl3XiYj3e3m1n8GOpqqR9NPXnbZR5QnVwYE/FkSuWor/5KI/l1wBEwCgYsrNS5Jvpq/k7+rRnqEGVDW/1/VirT3ivN5ImSJcKZZpEvwkRWVLasXdUA2F9fNZ+aAFZMc/8+8NfZXqMcHMJM/pKWuDVBJFmqbRv3w0lfyVPEdR+cg9PyMhzUfRh6c5bYX+MQlEX+6+HykVajaHae1YhHXlL3dc/BLEGDW3Q9/3amHa+iUzqwyq4t3WzyrrV37BepkPFuN9JbVfOWDh7HekfWYc6zTSSfDdusKXgIUdeiLCwJwlSQOAfhhw3lVZLyJlP7uyuLoCnPbFjuP49PR0OJwd8fk8EobIHGO4v78/n08AMI7DMPTC8nh6SheJMYYQ08rWadZGRDjEImlJP4zTgdUQfzqdcC45IiKhIxdiGIcBYQghdF3XdEfynfcRAYHIt+3NzY0uvk3rxdnyZowMgEQUgsZV4znmAZErB5y5ErEc9apXT4jM3I9DHMfYdYfDgQCcbmZ1qGKA/lvYmpmFhCWKCCOA0JzuhHGq/2TDXqS73D5dNeyUJ8TYpxqIvs0VFZzXOVgYhRFYUhjQJcRvsRaXR3TU/r+03tx1pHaLy5pNtqCCIjyG1PViDCkbPYLIeE6eKjEuRgcBGHjZqMZZbiIE5POQzqpWb57G0yw1p30yk5die/ju5u41yqum7dITvpRcX43hVTe/8iKSeZJo6uu+74moaZqdWa+6V90Oi4S7udjykeaaTW/byQ6KrI7ppHknwfQtcxeGyUyYbrG3HpKftVG86dmy7Id7ysPsDi8w+36lZpDvXllpI8l2fv3qTf4S8mlU9nwOX2A1uzLP7altRWC96U9aNzJlSpS5qi4uxK7/stOiJDuKu01q+dHng7PD60Vb8/OW7CCbuJN0J5d81Z6Bvzm05/7MYYhj712hZajvuf5LAKiZsNMGt2lAnhyd1CSMJP3whDj5w3Hp5C1uWy/aVnZ9buN3KAJxGAGg8V4AkGgYx04XsECDYEDTNAJARMMwMDMRMrNMe1SgXjMovGurI4Uef7F4AsiuC9T3EWQIHsQTap5tYUEmACB02v9zuSdkco/m0l4qg8vYHdln3eeTPHQVXZcAZAEIc9K3QuUQck3nps+AebQ3ruMmpdWqw+Ems11N6dimBZAwwjpfz1xRSSmqDlGyXzKDLo4RcYynx8ebQzcMg5rMdf2HAFWuLWVrTYQBnuqBJhOU09rRXNUhAkDbturRRLH0uNDlHUAgaI7dOIzj2LdN17lWEFAkorCEtu1SbUDZNhpHkMVNIlimh1C8ykxyEHToiHznG4f4008/vb9/eP9wAnB9H0h6EBmG4enx8eH+PoTx4cPhl59+aJv2IfPxCzEkk6QAvB+ekpdJ5MiRBQUEEeB0WpbOmQt1ReOfrkdHFKEwMrBrm5+H4fb9L2/fvP3u9Vts/ev2NTA3ziGibkQhdQFHFADXtDrgNuq5PfmpIwB69Nn1CXipRA65cAcgSOA8Na1v3x7ffAjv4xDAC0M8jyduY/PKd01D4EgIIjALIqt5QNUixiASI47YNY4O7fH7EDvvAWRgao6NPz30cXhCESTPQBEiSCTM09jV6QsSVbPnshMVbaPsBcUIMGcgVcmguhdsUK1Y7tj1t4Ys3Ha52beMXqlyeO9T2iIqN1AW6n15r8/XZ5KdZZ6gtoUbBg8IIYTzmSRgG6MLox8FBeKBZgNF7t+FAA2shDYEmJL18GIIQEDQ78zC6DFKDCHyKIhI4kKMYYwQg5cTcIzMURgJBWGMYQhBgnBAZuEYNfIFTMMys3DuPynzHQEABYfz4jDGkfPFnCFGAERxIBRCkBgOnbu9OxyOHTcnH/rRkXc+MpCgd4gxxjhSc9iuwvx9FYN0aXd387rmFNkyLzzMW0EQsR9zu1iqdwcIKBEA1GdVJX29TiW/8uwqrDaFqkUlk0rfD54jiCAyEXhGBhZABBZwIKK7MYdhUPlBixdDBBkj8eR7hxgRGCEiREJgT+QJSc2TMm9XmMa+5P1aenvJvN8IYcpwNx8AKVtv/iRIVPWiqXpZqHDVcknUwXKHcGWRpGwZjWHaoqk0zWZMrWQsXwujO2l/yF8Y2RgEVm2jbFJXjYc7iy21NpXLD6XXZeNbFGbG0ISmOQswS0DCMZzIdZPFiwUBHZIndB4RoXEQp+CiDABZrD+i/K3g5EFHRAiiPhAA1PijsB960RilAEyEDqb/kMXRklZBsF6JRURyCCoCZrUhixsF5HtJmVlARGNIAPhMMk9DqMozja8mxOUGMV5w1dPrh8Dp2afHTtXrsjiopTQepZxts2p7AdcvrY1ZSpxysSWp8fOv/+2DREAOyAERFhll68d/2QrBFAViNzjvms3VgNmnMJ/vU+O+8hbjOKpzju6fqQoMmcCXPmsPxI9FGV5TyVhbP8v1+2qMxjm2mIgIA02xAQhEgFn9rD5aoFzKnyaejz+EjGEE4BBCCOHDhw8fHh5ZnACJkKPoCGOMQ9+fT+cQg6dpA0tUNQlAJkUlpumwR04zxGyFnTSEKs9xXo6wYSNAkCZK5MghPA7Dw+k8hsDM3rk3r1616DCL41EIo4WVKFWJAEC1blZI7bFer2DmcezHcQzj0HqPx0MIYdoSygzMwqqgCIKAFgRx+sy6LTrq2ERAQA6RRKIwYzJaABSvbsoV/lLW5C/C86xfOTuOE9Whr+mplS9YfXT/0meiEyX3p/PTBwlnokFoQAoe2Ac3BxVajApqzeKphDhbHKYfIEArAUUwMqaFFmZgRgGHABwhxBiFGaNADBxj5MgPfBaRKBKYxzD04zByDBw5YgQ/2QJZxhBCGEVg1oXKMTv7MgyLwqzRXNLXs0QBJCEUhwKO5Hj0YbyV8Oru3R2K0GyFT+3/hWy3kIb81aHp2FeQE9JcBhp5jAEkraqVdvHdsqjvhKbhQ0JU3yhEQmJEIESa0tIsOu2yH7sW34s6KQT97ZBE5S9z64lu7K4ujhdOqik2me+uvWwdqt/vp1/hc365ddbOFqC96kgb3ifyeUIApmYzdxKZJ47nlDZt+5EpI+snXyRJTZO8jd+cb+317MSaf4k9KurtNFuQnHOqU/797D0lNYYgChGwbA11O+r+88B5T4KaMK9s5FUx/MrxehpTifKsjteXKjmYZbb2ibUegnP00hhGnANqXV9LublahPM4mDm6uFcYsJezJjlbNMgV01QkBpbd2OOfTUyLkyLjOD7c3z889cMQmZEaaRtPRFFYI1+levNZ/JNq5B1HWfw+AHFxgEbJUiVUZvhNRUXk5nBwQgPH8zCch34Yhv7pBGO8abvvXr0BgBQ2LT9RVpPlcih3pKlydHJ9ltpdQgh9f06qsqqaacGas3ALucSDiAJRYPKLQzfHjhNhjmUOyd8YlXJeGRSvvMjWOkwViu1lx6t98sA+XxrmOIa+P79/+vDX4f4nNzy9cnzj6eCg48wdqDLC0iKfkCM3ufYiAhxiAM7SMogwR2ZhgfPDmWMcmcfIQ4hDiBBZYhSR96dh1KUS4cBRdZkIwAKPIjJbFAVAslVckUZmV0eczfQqQd00hyVa2DIUACPeHDtAQPYoxGEYhhNg5C8frSQXENeDf5KxmC9nm3kpZI7mj1NC3ufkX8qZ5kgg0peQJR9ejYfTk9Iqm97OxLo355beBHn17uxsKZzbdsO3FRcpjdxbm4IqNWBnReXK9lbda6fAhdW1PKsK81WchcXFfy2TOrlp0/nObt59tOZ5zrem4WF/o+xMPS+xojIn2dDFXe9IZG8X9e8PJNRkT6IrKltOYmV/+PxRmeYIsE3TjOO4coa6zKpb4vqQm7x65vjUnzKZ6VpK0goq2TR9lXndXyeP89A3TUNEmt3iyjuWwUBo6yTtzOogV7niJOk2xijAHKVpWocUODwz7fnVeO8BmLwj57z3h+4A4H4Z7u/vH7jh7tAdDgckOjOPISCRcwREUGpZi2+KIGIzW4N0q8pG6qvK7LQ9mMcYyTnnAGMYh+H9+/fD6UwMd4fjq8NNmpxWE3NcGpUUN8iTc6lv83IW5PMNIJIIEKFzGMLY90OMwTmn+YJEHHNkjiARYUq4oH7YrJ/VfgKRJYgEQEYSRGaJlV/lb45qYl5r3R9lR72p9jfvhFT6TcMcQxgez+/vH36I7//2Kp5fH2/+uXn1ruk6Rzj7QuIUbH5SA9jRsntl2aIC6r8gk3OTKijTjCgsQ/SRpQ9xZHkah6dhHJiHyKPA2+5tEIrCUVi3tQuCIDBQaBohIpcyOQCRIw3iDqqoAABopMCpSADYtqlMuV+uAMTOASAKEWP/9PTTT3+5f/+Dwy++7SqZvWDVPlPrnaSFL2kMTjYO5fNHdkTUBCea8ZEAZZ7LsFwj0heY+yWWF8mKWF9/897Vz1L1Vqar4hLl9bbGinrlQbYP7Zz1rBWVnZFth52zdlZU4s5I+RXl1tRJn70dN1dTf+si987ahma1m8PyVOuNutYl6qg/J1ZDihB1Iw5kKUlSHXEWv1wEtnviZmvG0ihbNZx0RKayLb009yBK4bCihqYuivHRIlwq1bZAkNtxEXGyfhHxalyGrD3Nw7fuvwcsDR6URRYv+54kQ3yaA0TUVlSPgKk2YuTsx5KKioiVdTkJMUmjza1uKaV3XqRK9yVH6jDryVdW8/zZ019SIdOV036suYTVS8oWBH3hWzk7MaMGbs6uoIV3Wn681BiISAAiR0QMMYKAbzw5B85pt8h2hoEWKRsarhz2srESgRGBhRrftO3d3V3XHYTp9d39f7q//u3hp6fTMEYg7wKHwAwEDfmmaYaYksTpMJf6A8VBN/tpIcktmisP45AZijf9ClTAmn4lwsSA6mEfYowg8tAP75vu/v5ec1CqkTK94qlC/BLmhgiptF3NyQkICed9xyKiTuJzUHkEYUYiQN8PEuP4dHoQlpubIzOwgGMYw/ncU4tC5ERIV78QgYTUcsocx/B0Oj2BUNN4AEZCiBI5ALOK46mxOUeTu3BhQS92gmEGbAsc+/Nr1fswCzOfk/6e7nvx+pItgdbi0a6ssNV/tyymsDsRrqUKLCNU7pyVLpsrSLmQDZ+yUlRcPy88zOMmqM9kZIkh9lFOff++OfdE7tDe3h06dE3SRogw86HGMds2gC5XA7CnhmGyl8cYNB+CiIBgbGXqUwItIiGOAAEgCLxqbllQACIIowggEAIhILJvkoyvVY+UNJbF1OK8c9kYGPLXl9WgIIwSHDkCxCDD02PXuTg+DuegI3queOkKD80RgXRivfQqawtXUgPWGWzmc+tGki6rD7j5Kq81w1Pudl5OowKAuuGHCOPinqqCDaJzujqCsmR31QLPX0EzIS7zODOAI9UnwUnaYVL1rznDr/5bpWvcfMj8CGA+YnP1q9nrYS1f5RckwrxmqsTvlz/PM3KyJ+az2U587s1nXH+tniX7nH/lfADcPksFlNSialei3BZWTsv5z7zzEkM+NM3yiXrFCQCi4LQbfTp3+t/5f1YKXlnivD1gua7IcwTXlO1xqoFZDCOiYl/xFV1DWzjM24/JOcQyyHnmVSHq2ZblXIZswtqZAj5ajPQgaTSoTlrvCE1fPc47saZjeX9I+sa8OYyIkFBEaApOMP0es3Y1e8brzYpyFPPo7sMUc0ytV2D6LFm2QRHx3o/jqJ3Kz4mxObJIdb9cJbi+hvNiFC9Md+jo3x0RMwGK8z6O9RZbzJf5pmmI4uRIf2GmT5JKWfZiIJYlBlxxur5WKrPk5nLSNP0U7lKoO5HnHVou3Wy+bMqgV1DoKroKDgQAMcR8Q2cyqKc+kF15yQSUPs8Gquzpy26ydk1J+fiWFjvvQvFz9vdyioVUIYIYOIoIx+DAkXMwZzNBZF52sGEaiqZH2GtCm0adSSBwpJlJbm6o9cfvXn13c7jzf+l++uWXfhyehjOjoHcSQFDAgc8iWo5jEfPHAeUxf0BkzreJ+TJCnUclW4kr7DrC7LxAjBJTonqJk7uIiOjSWapenkMTtl0WbAcEiv0xWuXCQk4IEdVLZhqABHRLPHMMITpHIcSnp/sQh3E8AeAwAveMiDF2MYbz+ak53NAkE0+TY5pUQxjHeDqdPhwOtyJxDL1zXiDqviDdETF1sWkYmZSl9eDE8z7gNF5DOZrteFzkP0vDbLK8QtYl11fIdOOPKCprR5F63FgdvXjB/UNbz1g1bCmVq4+qN2nz2DVF2i9GdSx9dHP+UHWk5BjVr8o5GkO4Pz29P9z91HNz68PhVZyVf+dcynIrgANAtqehEAIHfydT/DkpTHWAQsiAjBiRIlIkjIiMhAAtuCkMFwIjoGopRERu2nulz1GEJ5YoEectMvPABdOeflrWfLBcYsbh1Djvwck4OqLD8agxJxrvp2VZmRO2i0Rh0FB5IppJCVdZrdbDsrbDtaKSDfLF+6laWrERvHznWI/YH2kP1cySPuh7UQvrbO+D+dH18WuraCZTqoEHBQQQJQozC5JO+g4c42VFZbppEvU2ZO7qrFwnqA6tQ/5c7mtlf3BIaaCt7RHbW9Vlfq0pMHT2XJc/A0CucyZV6qOULmfFFWn7uWCl304emHNQhOl6LFXlLB9Lg7r3Xnd164yXyoZT20MESausMNW/JH0EsdTnVooKLtrvJMKl3BJJZotzKsZ8IS79sRDZ5u3tuHLMy4W9dJ3M9p1NTFJaq2XpMlXC4rJhF9W+cygnE/PWOuxmO/l9ruz/iqAu5qB47xka6V94MS4tiXySe3HbtrpJI19nmGyxL1u+qrSe8lDxsO10U490WQmvvFeVCCw36O4IOhXaMx0SIo7DwBhBBKlBQO+ek2FgR5CarHxI3vum8Y7865tX3XfHN2++725v/vy3v/7w449//enHp6FHhiDsIjPL0TU02Wd1cp2nO5Hz8KD3qaSlysJTTXt5qtA0nAEAgozjQI44i6KZUk+O46hRcdT/EJb4j3wan9LtKtO4hldXf0WNuJAmFSTSXDEaMk4bKjM/PDycTo99f2bm0+lRT/TeT4G2nc8rFjPjXwij88J8Ph57hweERu7ANygSh7HXSA/qlLH17lLjoU+M8fD5pEVFuEJb+NSe8ndILrYiIogDcCgIQj3jh4H/c0CAduhe0Xf/JU7yTRF4Q4AieQGEycMgE2qFsHmFaXMI5Y1KohfWgKaoEaOIVbUAdCLEk5YiMQZhICTvBJCCJKMvC2eL8+IanOUsmZSKqXdSlCWcBmK27UtQaBTygB6izDrVJRARSfWm69tTLihf31NevH9VF7xyh1WMzCis4csJdlIz7UCZBlINsCnK0/oxq9mhVFTgmkPVW9qZbtLaSPqaDvH27ICy2IJ3RphaRN4xH2xT/BJxS9r96Hg4laGWo0tPMLjqXr8n5tBzRNtLl98spqi8PCIic0DGF09O/7wxPSXHpGk3ISX7t/+SjZazFMgA0NCmrJ8b4WhKATlnI7quX9GcCp3n1C46a6aQAFdeJITgm5aQwhiZkEQI0T23b29l6VZndEHNo+gRUAKDyM3heGhuBfHmcLw93iDi337+8TQOyMwYA4wjZuJHMRmL85MzAwA4Ao2TrI+Va1lV+2m6JQJpYZURedW0gDJwjL0GogEHBACn0+kvf/nLMAzn81mVFkxLhcDUFLNFZTfVn6WlbZkXVHDKMhn0akmZOfcnDPF8PqudKcaou4y0qEJOMpJAQEQioTs0AsPj4ykECgFDjMdjCzD2fT+qouIc7VgTiw24X1VXyTPc7a8n5H3ZdJUtdCGFiJqm6brDw3BPQiQE4qG9iTd4f/fu+N0/3P2Xfzl8/weZl01EssBZQlKGrs7eC3rXJgFSm8t8iHt+FJAl7Z8qOIwIICisBgsBJkFAIFRD4yjZ7rtsEz8ABF6cWET9j+Z7tX4JSBDy7UYI5BpwDQABMSBxcoLAWnR2jhCcE8TCJWSP3Pj1SYpK3r/2tg0864JXKioqhxMRIH2KdlZAjtIem0rWB+FnKCp03YpKdcFqZTU/K45FLJn8xLi9Y36Ksz97NDm6vLetKiHXytQnr6hUz7VTb1usTynWbGFbpfmdkmZG1J2uv6mn9vViJwDUY9cO6eyLl/l2+Hpl4xhjCIAChCGEBl440W+ybdSD1y5q+VYbNszGlXlS+YLCDVZOKdvvoRz1lhWV6wcRFelSIjCdpS46z+xASIEDIQGigG7mdt5533h4Vl3t2HhY1PMWHbmmaSGCd03TNK5tXodXEtmRiyEO4xje/yIALOgEbw/HdEUil2lQ7DtYljIcLTUv0HY3qfKpsPiC803ldTj9jwiNY+D4cH4aOQKi904iM/PT6fTn8c/n/nQ+9SIyhBGRpkUcYcAlrNbkUjIzFrmDEPQVzy9JZNqA7J1n5hDj5F3GkWM8dN0UR2l2Q2cR1zSiSe94Sh+kiSUJyOsiOY/9eQDpCI7OeYajQxnDlEGPkHLjd/Xukv6Tr859HSRzXITtqbQSEE1R2SLJZzHGGFhz9AIQACH52DRPrn3qbs93rx12y2lFRwGiNnl5MhdBU1gWh2cBgdx8QATAGvgaQVdkZv8RFEB0GvEuSuCAQgAEiI1bFOh89UYAkPKELtlikU7cGjoXhBDFO5kTyAUKgAiA1YJP7ew0earMfhmfoqik/nLVOav+hTubHp51wSvPIiLnicmD84gO9oJtCMCU9a8M6VtMx6sFEMyp5Pv8c3kWXDy0noS2Llh/1XKQOjEVxeBMRySiwrg2u/2LaPSyy7Wa2+kFagX3yndx/Svb/2WqLsFlWRJLT6PnWZAFN2TjKdu3dm7M07Lg6n1VF1yukPfFFxvIMZUiQeogOieb/pIC4IvhwZPv2j6EU99774Gla1sE4Bg9OZllgimRGiISOkcwhfgkABHmMYzDMHjXuqYJshm7A7cdDYutPeW8nJywqcwgKQjknIZy0kR+zKyuKcPQt4cGkIfxPIaeOZJzswGpaGqlq94zcd7p8i4zo27hQlF7cB5dguf5RlPzoMAUuQjAOWJm3WDTNA0zxjgF20UsUjUNqyQ7izk5+yMiqm+MmqtvDi0zxxhCmBYoOEZH5Hxhr/V+WpSYcybWpnGak3OFYTNGai6MiohzLmVanE3+AACRY0ofiYi+bfILCgDoRqhVnuf863qxRd09z+dz2qzinKvcmqttu8sEI+ihadpWGATAtR04YgkYRmq8AKVhz3svAiFEIhiG8XD7SlIOo8oUVMQSKIraeHKEfR+bpmvb28f39/cPD6/fvDncdHdy6I7+7btXbUtE3P4HPjw+vnn39tWr1xCCJ+d94xuv4zERkXNZAJppztAVA0eESL6tU8LPdQ0sGuRaWyzl8Ql4HD7c3//1h7+Npx6DjAOzcGzpcexPjx/u739hgWEYowCgi8KRQUTG2Gsn7XzTNo0jmrfnAUPebChfzcjntnEYtRrDOACAQwfgTr0AIJGTlK8TYWQBQCCP5FTA0mdjAIhhPAkiDmM4n368fzj/8POPf/zjH9++fRM+/NKfz03rh1HXVSDyoFsBJC7ThXeOfMPMMUQW8a0XmDJ4VlLFjv0vyhI6T/ez6h9B9iyI6S2sdXUR6bpO17KS311SV9K9dkTGHfNkdVYlSNGztpHsPObWz1IDTkvB+X3zr9Uj50Z0XoXxmH4pgG07nM+EHMJZOCBH4viq7fA84t2yZFmchSghU7MrSdXBPOFrQ86HLHUz08IDpCQtCICL3VzQgSMBAQYBdM5drCkE8ED5aINz8BhEHGOYLy4yp6vU63TNAVhiiJpAkQhcCzDEPpxf+Sl6igaAGYaBkJGQEIicug2n15FK4poiPV/xZrO47pWpgvKIL6KVJWrXi2HIXiUIFK9v61555t9lTwKLgDSaxo7FIQEuC+wgguiYOQTW7Q8xMDbi0JHzzMwhiggBNs6PPMYxOKSm7ThGoEm+Q0QgD9Tg9B/lMU6WJorgXJP3qHzGKppoWVFFaAGslr3yhI+VnFlMjnmf4mkWlDBvxZNZjPauiAyeuwyjKxI01kpt+jtisSBWFjj/vOViAGVonKo2CrVq3mmzdcH04OdhoHktSxed0yNTtZl8uSAKOgZpuhYeaRyDbpsfxrFRMU+ABAgIkRyAc+AcOUTPjjgGJMYQMYoIIbbkpqCUS8VoKEF0SIji2kYQQgjEAjGSABENYVwCpMyqBeY7TKB4ZGYWAY4gIBoKBFFTw6HG6OBIDDiEgA1HkfP57L33WSBjzEab6qWUGSDK91+947xrl3IZ87QttmmafE8szrEuJoGzdMfL280sOaqpJ1llPg3J/n15nmet+W2h0kbXdaqu7PjNX4mUDMOg1ajNbisM3GI7WVkscF7J+egrWEsVabNsjFk+snnHrV7w87X6RWH7mGFm5wc4b2GtwgUsOYQBAGAcx7ZtvfcPDw9d18Gz6Ptz17bOuUN3PDfnsz9RijfdeoxIhLc3N2/fvD4P59vbm+++++7N2ze3hxs/R87KJRVEZIb0eVrknb8+nB7SfatcGapd8Ez+fgNz27Y3x5thGEWgf7g/j8MYQwjDm9aLbwAgAgcAEV1G4QgyMrN6O4BoClyCSTATykLbS55gF5rtVMHVnJ3vnuQsTSQRkUsONuqqhswSI3MMPQ1ITx8+fAAAeLoHga7rvGtoyoaht6s3Iy41jHXD/tjrvUAl6pF7judtUkiu6Yxfjp189t8gxSTCOuDI9N5REIUAHMCmjW1iS/oCKLaBlYckX5lYWXKTUjSZZzA/a+Nh6udKLUFgmb8vrk/ksuUU0vtTeNm3rIPYJKaEcOUc8OItLTVeEVDPMSkHw0nSnWTZNFaoVQQXc/US5ifrDruF3ZuJdnabbDuolbs8cH1MskM4Pw9tl/LKyl6VcPOKn//6rh9tMC0NqmI2nybpn4+VaqcX1vcSAtHIMQTAqRteYwmfrBjZG3lR9Kop0Plkb0pdXxBiiLLTcmYqS9CVQuoU5ZOmDHV50ueVwLn56L+BPSrJS/t3nEEy2e1gyuz+AhtHctFTWIjIe0+k8TM2FZUkA1UOtekv8rFNiuv0oimnSijSnmAStZnZv4Ruljz793cUPC9HXnUFXcG7ubnJV5A+ia5rvfMhBBYGkLZtCXAYhhCCb1uP6L2/vbt98+bNEMPtMPzpT3969+6dV2fqLGxUegpEl3p+9e/t7W26b22kx0VprFaoiONR+E2M3nvnXeAYPoTh6fwwjIe3tyyCREE4MgThKKAOWCPHGAPN84SvUjlm4yNIZhzJwmsLSNrfiQIsy4qr4OSpgNOhYnGMlxhocmicTCkj48hhCLEfxhDC49NTN56Ox5tXr161bbuTWC1vUUjkyOVpNJ7RclwW0xYA4ModACWqzabtPc+4wotQzFif4mnzq5AsJjFGYEYoloYo41cs4ZVLT9VZ+Sj6Rb046hK+xAVx3rTGzHRdrrp6mHpWJ1pdEAWRhZHBO8dzuBoVOXTeZObNRF0AjgizPSqLHxQCXzcTrS9YFXL5vC0ium3Nc2f7itvW0MswtnuUJdxkZ0Xl+htdOYPnNrvagplF+K1a1G88z9YmSFhFEksw8xKTHTf11sotMI61d89FtHer6xPPsWSVWuCMm2lYfwOKCtGy0v1rl+VLkfZXAEDTNPzZg2+aulQqPbad/kW9y/bPgtml+6LRVF/Erg2mkEtTG53CNK1+Nr3Zz9bNdgq/U0J4lq6SZMS1cP9JFwEAVSCn7UMswzDEGDFGHV8bryZ/UA+6w/HQ+WYJBzSlo53ects2IpLrIWmbtWvr0SF95WxFpSqha5sDAiK2Xde2beO8Q3q4v48ch3EURAIXAUbmKBhZojALBHXqAyAKqJFY5wR1lC8xl/Ei43Ah385UjFyJLf1qmny3aJZtGkXumluYpY1hDJFHwL7v+8enp1sIOn/5sk1efEFa+aXNFCpnwisJgfNFxdY/M46chiJARDUBPOMin8/FvvzNkoYvtdq48pAG6lXHyV+9hMr1iko+LH/+KHrNvZTP3lGyhHjROH7hOgkRy7XNzy8GIiJhnIYdprYRnhbfUmxW7XS0nf9Ut/7oZ8LC9Wtn1/KVKyrV73b2VxS/K9vQC1xwGyx/unPSC6yolPe6RlFZ37SqmW9/BPt8knFz/bzeu2ssXvnOCwBwn15na9GrlNk2T/Te+16t77FOqa7mTp2ek9MwCBBhLtKICHNMsVA3PRorRMqA4rk/YlGQlZf2ZvUws8Y/JUKXvPoiM0cUFqALr+gLk5d8NnvPpSi1EW0ENKc9Kc8SnHMft94njxTmmLwuiVA4LKuc2WbcSmSvpNjSjLdYudbFmBZntG1tb9qr5F3JXLwqH3dVpnXD9LqEyQRSDaMfncF5ziCZPaCkR1vklUUaLgs/524RABFxU0Jojb0DaQJLy1/qWZsvXwCACANc1GGWCYzj1O3btjsej6Ef+nHQU4ZhcNPyl+jK6TCOqsNEJNCcI1lN5hajfDxKjzlmW5sIkXIpk1A2XL8QUK2Jbdse2rbx3hH96Pzj4wNjCCE4gMAyjIEFWZBBRCAMI0sUwACTgzipzyoic7Z/Kf2jpZpVAURkYWHRkQcRQxjm5RmcW990UJ3Y9GGnXOBT2CXwjQdAEXEueAYkVD/1oe8PHhBR/XRJo6DQHG6pbF2pGhFBsqoRKcIHE+aNrej1+V+IMM/Wl98Lt/241ocWe+08yqfRY+s6umUujQZbEnnVbNIi6vqaV5r/06F8YMkPySVfzTRo7Ac9SxfZiuyHc5ui9KaIRCCMUeeypJ8jIrkLigrOruHVxFEnTd22fTxvwsHMYxayGV1EADntz6Yy19aO8V6EVRebNoNlmaZE2DunDpaE+d7vC8+VjS3LtMKs+oYX4RCCq5bH8SNCwSRQQj6EFq89/8KMdLWZfwuekixP4TSiDh1OIx8sDrT5ZHGhbUy/dM656Cg55lf5GfNMzFgKzTtto/pZvpgje246Zfyu7EAuBFQXdFg5QeTfNnMLFkUqC18sPZUduPrl1vMTFAlSdhp2VQFFU5vfIJTxowEAYPE+wFVt64jqvW/myX3qhjDvONlvgBq/D6YpY0d4XQQtjUE+fSUVNtLeM6iGlEs1kLrr/CxIRAIYQswHinkkEXVpVDkSnUsVwMKQCUu5OIfz3oHpl/mevdJ8kL+v9BRzMep3vjP3JbzmclLDbPXjXNhNU6CIVDsoWAXmZB/NX/nHJplLH+uGsLhz1D6XdWuJMerOP0IimrZXRo6RI7IAChFdP298tO6uoVhSzHxecU4+lQ7BbKRkZipy8AmAOIeLB+2sM2ida4pGFdQmMXpOJ5yC/Cbnq3xi00m67KKgvWA9NOcW93po2J6kkyAFK4UzJSyfmn68bFCfJNLlEODG6jZdmgPSQJDXvFrypqUhonxLN0cGQLWgMzNgptzOuqLWXrogM2uR8nsxyxTJRqrqTV/A+wbmTQtN05Jz2g1jjOicviDnqOu6ruv6YRjHMYTQ+SZzMF7rtIV9KH2O+eJ++cIkyvpEJcZRW1Hjm8Z5j9SgawR/dv4cH0/nHiPHMYR+FCCZvQQwathVRCAEBpDJYA0gYVlidkj55hMSmCJ20JTQYBrYkIRiWsJPT+CcQ4AGcd4uiUS6bx8AgBDujg16j4ivQxgZ0DWILsYYQnD94+FwUL8vHRNAV8aQ8vyneXg0FoFsfTw10UqggdWwm6p0PZ5UGviVUot27XQ1yQwBuVxVnZUUlfT7/ILrG6V2DhdMRZcf5+KhNNqs7ZpVN68umGZfXKk31S/z511Lk1OXZ44hTIPYopCLiHCS3LdXR/UWLntflaKyM1VsVfXFW+RnyewXkfvc6vyLqzizk1RRJW4rGoAQARFF3caP8/yOJCLO+2kYxJxyU85cvOlVZiMbTUaclExw07h+sc2nRpJVBRRWjFIrzj0Odtb2LzZspfENOwKAyBEhMkIUIWo0yS/MI0wyAeClnKpaV86Rc7qhOoW9ypZ5EIiWZeQydPVee8gLXJ2Vb+2rlheKQEFEVI4AWxckzItUzLC8rRRh1VnyZ8nbPGIRRal65I11mGqMwu0RoKjP9fXza2afKXOdre5FRIR+HEd1c9B36ZwT5tluLKKx3zaaHiFNAcdk7xVDln6R88FwTvCaRPx6xMv71ywMIOKkI09PBKqoAKii4mSxM4sIqJeA9ibEYmpL9VCJqbDdYitFJX8LqeGp0EXks7OWmt+vqN+A69dvmspBQoe8ST24NDGvmYUoUi0lOfMkySO9bO/aEIJucoCLA+t8o8oiew21FPsCSlxB7qp4UTD6KESY7++qLAHTRM6MZSzXHenwkwqfX/AZhffedW179j7G+Pj4+ObdO7UgjBx11742njAGPO6U+Fr7XH4ohaLSFlU9mf6UBBpynfMt+Qbw1c3NT/c/fMD7MQZkJI+azA4ABLAjN4w9Id4ej13T6o4ajwSI2BSRnXL5o3F+cShWnWP+iiz5ofQZEQmX3Cmq0SHiOI4hDMP5obu5OR6P5HxgEHJEvu/7p6enpx/+fHd317ate9Z29lSHqThfLJLIR8h3qvhtvxSYNeq1lrJP3rDXh1KHXSsPn8+VF9xp2DmeiObsosDCw4BEat7Gq/a7/ppUI7Z6Fr14hX8OKtD3fe+c67oujC+8dSofly46qX4qyZIDItuj5qdckBaD2pS9fr5RYcjftfFtHnrWWRft7hcvuMOV/avSl+o1hOtuVykqW8XYv8JHly8UKhNn59d3zsUQYbZKXnPf3wS4zKh7O3iTGLNeRn4RLhqkPoopKl+Wakh1WR7D3PWLyl1KucUotS3IpI20GJIWWJhZw1bitl0wXfBKLbY6qyhheOEdZ/o483b/54wOIlBp/wmcF3O1rvJsep9X6okr0/Pt4JzvukPTPPV9f39//+rNm6nYuoPFex04xnF0tOkaul5UXa4PmzspU6R8WNuxUFBDh2tMRucPTXto2rd3d4eDO7p2CKMgRQEgn3a8Pzzen/szIr59/frV7Z0n53FSPFyTxRLVwGUwRTs5dN20NKiKinOp3YcxEKR1k2W0RcQAYT5C3vu2bRHxdDo9PNwPvb+5e3V3d9d2XT9yEHCuub+/Z5Hu3bvXr18fj0ev9qpPfVta/kxvytdhviY0JznVvlO5UOZo2G51WdwfH3Lyhl2ZD/IO+zzLwg5J+0qF3/rlldtqY7adC5gdkegi3DcfBkDJFRU3JzlNzn6/btkg8wigq9MsPuP6you0tL7vQ4iI0LatyDhs7+K9knwzfbEACEVI5qrwV26m3zmr6no73eF5IWR2tuBXpsDC/6Lc3XrlgJP/qLJ9XLkFvxaCs8+1Q0cmZlQlFCbRFA5fwP7yK6Kzqs5ZO500NxbzS0Q5qqhSe1+rqOivsng720ltFlBlGJm/zH8WUGfuTyj2b57S3iiiMexxSg0VYkxHk1gz9Zk9zbJQVHIk2yjCc07DeXvBpAqndIcXSRozrnwf9/miM2Iy53+Sxbe6wpZwkxsJ0jCXOklRA/Oddf/3lXVTXfAadOEY56RLSNQ0XqXJIYRxHJ33zjkWIURPhCBTMPK9e1xnn6vtZNNfcpV4hpOiAswE6Mh5pEPbCPcYJQi33YF8Q65Vw6EA/vlv/3l6fELEP7777t3bt4e2053KWHgigPPOZwsarNfXRUKalxHn/I00eYFNxvu0oDLyiMn1cbaNhX5AkePx9nA4docb3zbUiJDzrokxPj0+utu77nD0bYvkikrbfd2VE0TRK/fO+4Loy1qi6m0rKjRHvtbVuSt7fd6wq7M+v8Pu3/cZKyqw55mQyyIIyIyYAnZO58JeWNW90n76KZ9E3tIAAAiR5zgZIosp/7PKIatLyGyh/niVqEKbwus7euE0x9U2y89vb13Tih/OInEMCAyT1LKuhAIVeeYI66h/0WYD8wb6VGsw/6hakdxxSCvvpa48c5kKr+lilaPQi647C7Z7SsXOxFH9Pe9HW4c+cq/t4j3vje+ck0tBVQmRiHWbQ2lNhiQnTxkdBUFQcPKW002ac8RKhE0pWrOK5dU0ZUSYv9JndeXNDotlpNDinEtT2ySmvrTQ9zzdzztBB8giEiMCoKORoyOHjXcq9rEICENsqCHnSGAYRxLHiCgICKzuv2GI4QwoiPkqTRGTozQSQPE6yr5chL3KI5mUT1n43CVhC6eAzV3X9X0/jiPO+4p0Ke9aO3rtnFUdndd5BZiJXEOt4yGG8cyIbdshUIxMS5JA4MhRRQryiBiy4G5SJliomhozD3NgX935ReQInE5UQNNXjmOSNVXkTRkkHUyhWkUYda8OIKJDBOZN4WbdpnlOzVO68hcCuveeZ/tldXq+FiBxytsX+gEB2rbVehjHsWrKMVsnQUKQKaIliBzaTnduJKG2KtUU+JIc4pSJsmmaVFpmrpfEtYlGVn3TddQ6L4inoUefJcIqq6Zpmmnzg3PJRWl6zB2v9GFIg4pDur2764fh/vEBvfv5/Y/fue/v7l75CF3jXh27e+9jGIfHxxjCCFOwaSz3ugksye9w9nGftuIUvbIoVd4bKkt2O3tsAwCin8SWpm2kvRkfxjiO4/jm3Xd3r96OLJHFOdeP4TQ8QBgPTfvu7va/fP8dEgEheEKi1rWwRPBDTVOpBR40OdeycUWSHUQ1gQgCErUNCAIjEsLheMifS/1PmLnx3aG9ub15JUQRsD22IvHp8f708J6Hp/OZ//gP7+5ef+/bo0+7AwUEI2ejkgioa5mWkLPxSmtY05iKSOs79Wmfy505lG/PuFdOxjuyuA4aKa5DdXHJkhVq40y7xbauX21FY2bdyaPBuKtuDnNy2Gr+c85poqG8VOsofDsSTDWkxDGkBwEsaiDPE4rldKM/y13XZukEOEaOgaOm1Q0MMSKPFANxkxVK5hS304BWvofNL6tXfvnzrswaOerALgCB51ABhAgYhBEAHKEnyHZPY7nZIF126l9h1MuGEIZx5MjTMIWAAOM43ICmthPvvSZxBuamPealJSLN3tv3vb4+tdFqaPIwjM65rmnz+F2V/ahwUKzeflm/UFTOpt2tMpPndpYxT9s1CY/oyKMIDz1IACCghoUA2XtwRMDjoNs7W4pDACdIgA7QAzgRYBRquCXhKHF0LC1I611zc2Zm1IjroHPRcuvtlQfnMo2ubAE85cIEAEBHSXZCgZglj3Ku9AvAac83zCvV2ed8cqz6XbF9JRc/yG3qnFRuwc/fkG/aSuVdPm+3+UIpKIuYywDOez/n/q6GUNmecHUrbDLqAnmd6gQxMtPcU4gIgsQxeHKenAh7dF3bAkAIwfkGQbRREJIH8Yie0BGMGCKwxEgQnaDwVI0CIMQI4pwjQF13QwSHQAhH37a+cc6NLgbhPoZpSEdoms77FtEBEKLL6kpQOFtbUJu3CETVrSbnBTeFAfDeqxTkkBgwsKBmOUMKLABIzks5ceQBV3YiwhWpG+f9z3qvah97OTvkE0ExOGC+N7u0VfmiVS5nfNSMsuylS6P6lEj8Jfh8k8nXZVKSs6kyjQ9ZXaedBiGIiMt6YvW81ULnlYvpSTx99noll+Hn8kklXRxnC/zWRfLkkit/4pc0Pu5fKwlqiJOAndzk9s6aVzlw1kYkMnjBMgzDi7TPfBuo1q33/ng8qqgdY4hxBBDvXOub1vuBWTgws2u8xnqulrOrz6kG9Aabj7yd+kotEeu/wxwZaHLGIiQBRpUv1QMECQBBPCE1XgjBEyDuGGgQERCBcI6uVm8YLIpB06pLdQUdKGdXqNa7JiIwAuvEz6rjctN2zjdITkpBtn78nUpbCcG/DyrlIXWZZGb7Fcv2qeTj4XpInMNcTAaz+b/fhjfARR/PfVcImlKn61b88vzCNUlEWIA1/FfxK0QsY5HtVG911rUP9nl84tynr34KBqVF3DVOitqVNEEoQpyvQDIFeUpJ/jZXIT6hNjYGItnNPCuriy9zFuyMbFcNeqsCbg+Pe+Lt5hV2T8ltnOXU9ikk7RpmpVGyQHazIWOJ+YYAGuBR1/BBx43pNasvhEzBImfFBFUMnAt8sTmpgJEHnZD5zCuq4ltEsqiwL3LB6uV+i3tUKqtD/I1MHh9F9ROV4BFRMrNT9YILd8+r8w+5LDPm9W7oOdVWmdyTJPXhqXsXkbjKBZAYaU4uWY3LX9OVP0Usne3ck2nh+spBIgAMIVDjyHv87Hx/FVVVq9G6aZqnpyfvKa0UNU3Tdd3hcFAV93w+H92Npl6pXH0qT+4i/eW2IZ/jZuqryu6WXiWCLDs01PNKhOY/eu+994SaWhS0BKIhF7fbMmXJuapD6wkpeVFWf9cVOX3wpmtd44VAkAVEmIVFIgPL8W4K+bV+iURLbKe91bAyU9XmU/3WwHLjlrbz5FqWV/iX2IrwsuTj4W9LxfoSoC5XOpDtTW6wNGzAMog5zN0wNQaYO8h+ijN8ua2AH0Uqx4Sv+M4dua02VjkhX9kUr9yXBbUaszkWVeHRymJsHtqZ5XZKuJPQfWcZedeDtjb5Xxx7d+blpNuo+TXtqlr/Rl+l+qXAvGGYaNq4Ylwk2UxfyjBRvdxvVFEpHvV3tJ8JZisU1MNBLetvHdohLb29lF57cdPe5AZT+m7mt2vbVgugjmfFY35+ma5G5cg5uh+nFZX9lJc5Gnk9MqOwc04wMxO9RP1Wpmsi0qBVfd/HOIYQxnHsuk73iB8Oh9PpNIzjw8ODa/zxeIRdi35qA9P7Kr0st0pfdb3yM6TZArU2k2oxZadYFJXZfAsxsoQAQhqsyOO2I8F2cq7a8JZtpq/yBuj7DSE4513b+LaRyTdIgEWEgRmYNTYxzSHXixeBKMXYszftwVy98K0L7deyrupxHFV//s3pY/l4CL+9VfoXRvsp8EfCvqmi4kgIiUoHibQhSq0nMIuMHzNvV5P5F5wE6ot/xTee16outuaHLv4MdkWbct4slvqKC0L5mNuPXKyo1L8srpAfuLKE65tdBa5KdcUVq7H3yhYl83Y7Hfb7vk+fcV4YVAcQcpQOCQDzlJaUiL5548yvRkreqlX3It08b2A+t2KysOgC8sdug0sLw/Sm9Us9VGxmvQAR5Cw3XzpUb1+pYmisHgYRk88SIjIwucWDv1L1BKutSlXvyJ1n6keuzloWvRG98yMCaOQTEBbRC4gsQwzNW361SI3fTO0sy6XrV+EcpQQg6vwDWddN/Q2mmWkqZ+SYggIRFTXAzEQUQvC+iTHkBdFcNAnd4wGzDpCXU7Kwpzjvjki/TOSyjpReWGv3kvRQ+b3Wzk7p1ljOq3mz1LLA7GaNi8cCAEREWjK96KQg08VhzlogUtiqpBT250EQYcpS5ebEREKEsyvsSgQvJjNKqZTu7u7ev//5dDrhvNWqbdvj8fj09DSE8fHx8e71qxCC6gNl28hias3jhdZabpKoBJXKgo5ZKLnc07T0/IKUQU9HAkJiXJyGkYimsF5O0ykKIRJxjASLNpK3jXl+l7mMy6QuWejnKSjx0tKmx9GQTuM4qvf84eam7TomFAYRkMghhNPD4/np1Prm5uZGy0ZzNr3UhHIVfzUM1n7XSzHK31VzfXGJ7d3eF//+7F/mnXFXjqy9xvNfpv6yPms/iFCaq3bUm/W9ti6YXhN8bDFzXdLk3QGztYUjUzb+JNdIInJlZvdcld3X00qfsetfJuRPlPosz/mysjHw8jPuT9RpDBQRQRBhn9W51oaunaSOBlpXOGUERCSRwo8UZwdLzGTE9CrnqaEycJRVtVH4OrFvKd+nHLvVXqmdxrBdhzqxTrmAmTl/t6nGAFbhbtOwBIBAAJFFUEPqZXkyqzKVGUuKTIuF4Fv62rnCX5+5tMgUz5lXVL35JPvVTkYU2Ghe+xfcdtyqdhsVl9+J+FKqAbj1DRHyQalU24pilKXNB5x8WEtqW+rvKiwRosu6ZBpGhDU9CmsuFfXFw0xQqSJSc8oXrMa+uXkQuXxoWq9RU5bwcRNE0KFMpMpsQ0iBAwAyMzpfzra7l9zwl9k5MU03cKlL5n9Z9crNe+VfJ0Vl6ZyV8r7zLMszLWHdiWjl3bP1bKQbZi5VXPHK9pcRcZarkqIiIo6c81PKPMliYav4FIvYeQLFW7nikbPK1fZBAKTpcxDJO4gszDKJc8umsGxqxOo1rCdmmYxVF5ZK9ToqZqVpA+aJp3jZKatxGe84Xw/hOT2L9qU812Se6CoXGUMIjfOy8kqkef96ekYus2XtTDBpAaSqXhFpmia/Vz475ht/63EzU2/0bmnncS61aMCDxT2s8SjgeJqiZHooTWKTNcVqD5+kaCupLMtrAgBmSfmVNmpAaI4JmLYvPz093dzcqPn/5ubmw4cPIDCOQwhB90ZXpotcdnRzGvIQAou4YiaGvDFT4Wc4tc9ZLoEt8kEPAckRTuLL9GxIOMVCdE4IwREgOnLAktzc81WU1OX1fWkJ9VBSsBNZHSYpNo7jeD6fY4w3NzevXr2ixkfNZqmHQ3h6eOxP5zd3d3fHG609DfyQFHtBjHEzxdlFn4WLY/f2WZs/ezZbglq6+P58sH81ybK+VvNo/rVeOJ1T2sPHnvHKklD2LLpTNB1K1pP5Xnkximxuc0MQEYHFmJLGf02sUu8BzSWbnSAE5WveFOG2BvOkBujfmdn7RjJHpvy8/OqVQbma6fMHZxEO0TftZEHLctfS8kutiEWcQaI0csocmyEFDlmXZ3oQV/TQLeWkOlQ816phMLOf0oQXsvS+JgxFXNo0E4OwzD7AyMxU7hddar40SOloN9UMYBLOvHfD/IN9hXaVaXFbeciKRFw1y83r47brF1afi1a0eZbbueBO4fPXWutBub5YKfgbrbxEVYfle9k3iucqNmoXRtLCWwTmLanaC8Y5NKLugE8b92P0vkHRyZFRREiSpQxLFRfqsUhtn6qngO57yaMmMvM6tSJlCR+36iOdDgButvelQ8xM5JjZF3rK3phcp7Llesi6eNZ65MwfpFRUnNSxoy5Qx27Z/7XxmXjviqhf8sk+XVXLUL0izXD50VzpX0vtya2zmm5VpFCJrXLZTDe6ppxbhU83RUQqZqxaN7vyXi8i3n2UZz9zrkdVRa3VyOyQznDqVa+6ir5N3XGh3l9N0wgAAvZ9H0LQ35RSS10zSQ24bnPjM0FC7/y0bUmyFVq1EsQIQMKAiI1rNNtKslAsi+y7ltH8l+tDqmycTqfz+axKXdd1AecdigIAMA5jGIbWN13THg4HnX7ydTxmrjfl7Dzy3MumK8CedPIb4vrOrkG9lGqd8/p7VdrONWeFwCL13rlr7pUUJyT8jP79pZB5IYVntgbzrwkzqyj26xZjh53AM3kdVsSkpK1DC1zHNHohAZEquWnfXj3Oby2H1Trnjv5RbYXfK9X2NTZ/9hHB9Yp71Rfcu1d2VpYZszpt9SD5Wdf23ue9WSLSAGQ6fz3jCsYOO71yB1NUvizMnOWoKRr9lYlvKiNNCKN6rSSnwPyCKnKtd7mpc1damsjPUv+xpmnGcUy+ZOmQjrnP3p2PZaZF2fblr+51ZW3AS48jwzCkFRXnHLpPfuq07DM/RaGbFS+9tDqomKLqStd1ur1+GIa+73VR5Xg8Ho+HPvDpdLq7u6ussHBpd2OqSckW458nVu4wqVhqp5NZkWaJHBHBew+OxCESDcPo500sMGvd69ddlTBXVKpbzzumJr8vEbm5uWnbVqORqqIiAiGE+/v78/n8/d2bt2/fHI/HON+FZhdKEeHIAFdt/MUqK9Zvbf/GFpWot7NftlrKeL5M8Ik4R/mKyk7qmJy0cKFG9J2B6FeEM6ocsi/bYa8nxqgrLl9tQ/ynsnaYSeynK50V13qUvhJEXeNFINJPSVGp7nVlEkYoBesqGHreU3aCIeD2a1o75Wefdx7/uhWVWgPZNMNXtvadIpbX3zxrp2vsDEoXG4PinGNhAJCXnigN2O2VOzxTUZGsayMArFLYfDtI+flLGIUEZHIhWyLMIQAgSAy1u+ZyVukFtGcLKZdNVM5bz9Aye9/hylMwmX7X91JjtvoaXRx61h5l15MbnkVENhb61/faUVTKQy/c5tqm0XiTNDuaTo5AV98nlV8RidVR/YBQJALTB09dt2laohMAaJgvFaaPx+PN8ba/fxj6nkMAFmGGbAJbzwGpGHHb+3PvUbZtbZJ90FGHAEhIGN0894sIEjZNA4TiCB21NDnUauwgSlEgdyXd6jdra6WKoSyi2enR+WEM1By0fAgSh+Hx4WEchsPh8Pr1m7br+nGsjNZ6BbxOHkvleXGt71fnysfZ36NyDZWC+lFngHSvHdl0/6zpnRFevNOvlrYT5j0T2QC4M5g/+x648VWmXAM0ucDkh0TUK/XFivHSlI7cxTCS12E16KWVonnLdDpn51YaZ4MEdReCusg5IHV+x3ycKk+r19W3DhVfL3nxzV93injVikr9y42UoXjhvM17lYrK5i93SljvStlQVCqSULcu/N69yhtVdjGd+nXP9oU7znHAC2nvWxF/VR7IX903UrCJnV65gyeipm1Op1OIQR03dQYiIoHJWVNEWBhJPKKgQ5LIYdmlIgzMGAUjuyiRll1b6uSRFzL7GAEAHDEAcyzV9qKBMccpq9Qqh+CkH81XDSEyS9O0IYzed9536M4hSD+M/gBN1wDAGNgXHrSbIrgKMPkv15/VzjGEM/CIzkfwcYwtNiianF6KHJflmor3SwQkLE0mupE6eeTrWNy27TiOuiqioVdgNsLpO2qbQ7oTEfK8OuGci8y+bQMzAEQRXV1h5mEYjl3nXDOO0fuWWZxrdHWl7/tZyEZEFyMjOu+9voSgc/0UbH+qjygMAmEcc1VKyzk1qsyQmdqrogbaVA96VM/KN73Ui/t6iIhFeCXoeO/P5/PNzY3W53JWtlMojxxCRBznffe6WiPiwXkRj8Sy7EdE8DtpSGGOtQAAcWQAJHAS1fepzX62nIYO1acene+c75r26eHJYQhDDD5yK57o9nh3d3t6Op3Off/j3/52aNs3b94gc3KKGkM2ZwMAANGc/7Hh1JeRwNHStfN8Pm6WSBxR41suE7fhbAXhEFzbUNOgCDgahcM4RIAoLAA3bdcgCUnTda5pABEBHRAyChAgpLCnIiIMUV9HHlvCIeiSlA5nBIhIU74/TP7rCCI8jiGcTqeHx1MQOd69vnv3rmmaIUgQapzzwqf7Dw9/+/P48P547NpXh9g25zACoW9aQRxjmDszEmCYt1TlXXJaIsunWwGJjAB+2tNVic6fbA/ZGa/zlZ/UOy4Gs1Lre1prXQttU+F21cIdDWTngvnPKtkxH9mKAOVlWp2d0GllEuFdo2xRjuWCDbmGps0VMUYJgWMEEQJyRB6JdGyJ3GTdEssXySs//6xIxUYv5sW/fEcBk8jgCJwbxl4IhOPDwxOE6ID8q1tVGdT5pNIxijtnX/JpVFiE4zQ2EJ76viEXQ4hj5BDDGAiQAJnDWcYb76O4g7QtOogDEgh4Bo+42FzmVG6Y58xVtFbTIxcefaWzPue5UGt5tmgblXylEx8AeJ/nnwDBfF4upti08zDNINO1ARvfRj88PP4S4ollJABHDaJ3zo8hOOe8JjmNCEAgBEIoDtAzCGv+PiFgL8EFEZYAvhWgKBAjIyK6rMXmefHKV1ntv80LTxsWKIALyVKyY5u9st56l3cimLbqpgElSf95LrW0nS9dZetetD0AVtu8irPKpaJS4ipKXxzCrPCzwq/1TJmIxVWOuLx6iVxeb4xTigXnh35Q12vQFggohMCIiCToATyjF3QCLIGZmQNz1Bg6yyRMhNNOYQFm5xqcXfG9J+YQAjOHGEMIg4h6lIhzuutzJNKIi9l+m9m0APNoo+E0RcD7DggZSBgYInrshx4Io4wURqLb+b7FiJq/VtW501e3veh9USSeztoOyR2jvh8SQd20lQ6FsORA16Xv5X1tFaKCiDR1A80xCrMiArEAawDQfK3li1DOUnu/zNp23ie/TJEIEFPiUQYdaUn2QgGUrCWJi+aZ9Sn7qzFrkiMNzOlaq/uuncpgdu/JRKXN2VfTaOC8QpIfqubs5M57pTH1U1HxrnJ12wfnNzblLsULhz6JbWPSZkcRAI7x9evXukFlGIbHx8fD4XA4HNqm6douxCgiwzBo7C+UKeTCOgPGNRaLvA3UU9HmU03/Ljnz8oOy/EmyM9YPvG9py9r/ZkV5okFE5STnfNO2gCQwB2IRCeM4nE8cxq7xx9ub9nBE777QyuoXIgl/Kmfnm0OMFyBrXNWiymcuI3/09KEP6CgSjFHGGDhECOyFnH+mn9VadJgscXOfTg9YqlnC2kEFQVdRZ2FvtgwsizwX7wWZIel5Jf8VmEQVmcVyLfmuL6KgoAgKCbAGh3SASOgAkJJ4tzPdVIeu/OWLnFX9rJCjsn8xM9Cuh+ut63/CDPusQzvkhc+vs26InyQmXX9v3C/5cxdqac6p+tE9nEWJBICBXBXUQb60s+uOu/717FzhWkUFZwO/upXnhwQkZs611/l4PxMsnWU5fBEB91Mh9VL9jNRvstpXihtO+euzdPggoiuVsDzIY9M0Um6VAQC1nFXp8KoGsKNapMKvp7f13lldHYLSgPQiqMY1xRlcRez5aqyVh2vOEpHb29vz+fz4+KiJLFRCPRyONzc3QxjVJWwYhlRviOgyA1IupjAzbG+2GYbFjLGvGL8sla09965OawjalnhbK9atKeM4AsLheDwcDzjFkkaHKByG/vz48GEYhsPx+Obt21evXudmtt8EqTetl5SNL0o1LMN1+zTy0W/fStK2rRCEGEKMp/M5jqFFOh5ujofueQXeGpaf3anzpJnV2FXdK+2lWUsIv0tEREPjICKRE3I7Kwz533eWSqpfbn39fEWoVjl2L5L/vbKUX3NWfZHtQ6VkvakV1xry9llQLhQUO4KuzqP9a5GcTT6p83KMmFyivqLVoGrYz5undhbzr1VUVFTKP5RX5EUk+pJ8TUHqeohwifiB+IxVm0qETbL+/sOmsyb/pavzvqtplgi9bwojPyJkuYfzqahqADvl0p+pBiLbu73TkgvPMXmvLPyVqBHaOTeOY7XQ+TWp3uCVY4e+0Ddv3mgkYhF5eHi4u7vruu54PDyennSfvWaETJ5scCk8w5R159OjAnxpduxzOsguisq2Vnw6nU6nU4zx0HW3t7dd18nkbo+CwBLH/vz09BRCuHv16s2bt8e71yFeqy5+I8QYU4zvX7El/x0iUDSVKyee1LAn18pt9Ya860N4eHr66f37X+4/cAg33RFeASIdD89Rp9cNexkcngVRkUS4MMOvJixIo83fh6IiLCJAiEIkiMkjqw7wWjShzUGvojhUR/26bkUFNmM97ikqq9JfVYydm1W3vvLQjmdOeaj0UihcBotllmoi/lg5f3WSBEirOHI7RGaX7fz80oVMVHs1n3frHWHJIyICOucQMHBopZ1GHI4oLh+b1G9v7RSEs1TKmouj0nG3SlzXe3HSuvSaDAXLE7NNfhDjVFNpkUEdkCLHyFHmdHJrRfPK7We40XnTwalacPI5yX1vps9QRjFdXSR94jnhF85eBACgNZynJEvNMZnPsyssVbeeYGRe2RcR75xKQqk/pB8nI5mSPH2JqHT9wnw/omoy09aI7PFFpC1zXOZXriZU3PY34CykLFE5TGV1SDRtaFG2e86FvyNqDFPguVYRKQrPWTQRoAhcmAJZINYuTvPpU1WUzqC1s1+q4RSKTaN79X3/4cMHADje3LRdd3Nz0/f9OI5PT0/e++PxqFqZwFIMTRIDAHn9T0Vaqoik3HrBs94rq1Bv1fy6yHA4N/50fRHnnKq76fHzO+almioN63QuecNObQkQIUvmMAz96XTSFbOuO7RNQ5j2QWIMfRjOp8eHMA7O++PxpjncBIYo0MwXTD466dY0j/JrM8H1g++Vk0p1Qd4It5X+TnMs5nRuukL+ltOhnQKv1zbXZcNyf0VVIfkzViMMzYGP1mvCq6ljIWsM0/iZl3bpXnsev8l7RRvP5a5NREKOiGAKBVa7p25dnotsVOW4VN5CP6wlDJ4THAOAMDydh6d++PHn+//84W8f7j+cT6fXN7cwMjB4d5tilK9eUG0BX4pRipWEi9OIthxPLg2tGtqInEPUuUZ/DtP/Imrq5/zl5kN6NSDo12od/gJ7naiqxXxCnHKe6AhKdPkWOjxsXBBSRaHmZdb2fGEuX55xPUnPVSfAOskKEY3M4DJJffWI2YRFVb3lpdvTRvIXuyOy5AlhynLkGSSrDUCr9pT15bKE+U/rC669ry6WcLt11GlU8uiemRG21og2dEIAQN5UmCV5fOhjZV3Mkwvq4o5ANHn0afdxnoSjALDwWkyd3y+X+08XiUAAEDXZ7JKItgLm2+EsvK2t/+uuN0kOhGqRlDLH3VQyV+SXTK5liFikE73aBW+vHW7MFFBm762OMse8j+QPPsUJndyBwhIGhyMTLk9SDb5VoUCSdzsiLpvp12mbltKXY0SpBhSi3jTUzj/mUqpIJ6miouijTopKjByjXo+ZyXvgKl7WtZayrEh1HUgSSWGaayf52E81LiKAQFnnq0Jg5TUQwiSOJ6FE5gWKSlFJNVDNiCKAWKxaVGelE3nOHakuRumQiptS7kRMwkeone6W0l9MUTR3m7qql2k77ZBenZXP00XfQ4Q6dXrRgYlIxWVepYjZQkRAi6SKyhRNShCRgLIQW4WONI4jbkTwzPNdXrjXjP5g8YIT0aZ7PB7Vu2kYhtPp1Hadd/54PN7f3/d9//j4qClW1NCetoDTlKNKYO4jYQ6ku1YIY5l5oGwYRWOTZFudk6hOAyCRvmyiKY+1KhKVsq3DZRp5i1dZ9sFKMitqD1FDNejj930PRF3XHQ4HJGJh5zQGd4xj/3j/4f0vPwrzzd3d3avXTduNkZEacoTlzL98nEf1fND7KDvC2Y51eWc0zw9t9fG879TT0qrk1b12CixzFl0sh7nqstUVpByWkyyL9Vi5WaX6M5rDMK3le+fcfPrlws9tMml0lxUhJAJHgUgAmGuPplq2LdT4KiNbdn0qRq28f+Vjbz49h8iPT+fH8/nh8fH+4enx1L//5cP5caDowhiJwru3b733srIMVvW5FVuWso2qIoJEHCM6jzitFLFmKyYCmrwlVSol1EUCQlg8ZvO3n5pZdcf0mx3Hip0exWWPLEUCbRuomY1FdvpUflZVuuXL0sGxfuVpplvrY3M5GVlQMAUOizG4Brd2MOqNPppifGexpdYrtq9D2/kZaTuG0E6xdoavel7eDumZs5tPfHu0qYMrX/xYXaPolZUqlZYKVVQqxluczJGYTU1EFMeQ5qFJIM1lthhjiOoBgeBS4mw1y+n/TqFhReCSojKrKLX5ad99lLIpldB5XdzLkoBD1gJhnsfzLQOIWCj+ZU3tzBTVJLU1O6znkfzp8guqaSaPzJEOfdoeFVxZhY19uAyBeuVZaykhsdNunsfWrAOrwuvnj+5NT60thaCVSwtZuoqizdF7f+V++tQfpvIUDwLVnLMjtz2Dpm1YQJ8rxsIQOyWyveLVlJ35qvt67w+Hg+oYT6enw/Fwc3NzPB7V9UvjsyUvKZwHKZ5jwU2qe6NJneuVt4vFS9EUKhmLUz4cjsPQ615/jjEyq7REZcrgNakZ5ANlkk0v1lKFy7SUx8cnjNw2zfF4PB6PQi4I6OPHMXAI73/64en+4e7u+Oru9u7Vq6Y7InjnG+Bx6/pfkx3l5Etz5b2et8PqN413Lj3ksx9566wkx4/jOIzh8XT68PR0//B46vvTuX88nU+Pp8cP9+9/ftO5f+na9vXr1zq2/L3NuV+6pSVPFcw2wX8UIhIQ0cBPQgQ42USRkHBL4K/U9Wd0853k7ut7XXXBnZXNF7ngTgl3LvKsC147j25TdXNe/DDq0PPpl0SIXOq4H5tb0xVYpjgV32xuomfwIh326emJiLz3VZAneIaiUpnnjX2qvF1XnrWT/bAK/XnlBas00vkb7LrufD5r4GMqN52vC59E1Z07JzE3GS2Sq2URYq+0B1/5ILm2LOpNNyO1YxWmYlx58X2YmaVej8rvdfF9VT/Lx6bVqtRlmqY5Ho8xxr7vnx6ffOPbrnv9+nXf933f39/f630Ph8MYFs1EV8l4jn0o/eIIB6u14+ox0yrQOA753xMg/PTzj/f3DwDgfIO+9U0Hk8Fmr7ZzfbVSVGJpTivMdXlUa+YxxtPp1Pd9jPGmnbQU55y67GhtjGF8//7n+/sPTevfvn37+vWbw/EGyAkjkPtGFJXKseqrzVt19W6PS2tNNX19qW71rcGfnYz6oxWlofxO5/7h8fGX+/tf7j9oex6GIfbDh/PAIfzX+++/79991J76e+VL20NjjMzzJMUXHMAusigqAkhIQLIkESg20+dcOTvsUHXYK1c5rr/gToGujE5bX/BZekXugFMpDztjY7wu5esOUsYddSmT78q/S1dg3OQlWXgGNm1Dk0dS5E3vUVVUxM2N5jNL/u1QddjnzWWHw2GyM678UD5BUUnWoNUIUq6B1V9/HdYtRfNYreKzf7ECIEDpzwBX652pqrW7bq2pwdW6Sp5GujprGAYNPJ1cv6p75aZ6nDPc7dxWQ1E555qmSXvBpxrIyq5L4fMCRVzr0BdJisra2Fn9JS2nXHBW3AEvf0OAfhiQnD7XxXn04vsqrna9K1H2mZxru9b3zel86ofhh59+fPv2raoTfd8PQy/CRIiAgXUhRZPKMHMMIYxjYI7o/azdqcPCcv1yTMEYwzAMzrm2bU+np/zpdKFGFRXozw8PDwBAvnHt8XAD6JyjPfcGmWsA1xACbzbs/O3FGMdxHIZe0yu1h0N3ODjfRoHIuiWMhQPH8f6XX8ZhfPfm1Zs37w7HGyI/xhhZ/DezLLDTl7+oRblaY9y5V7XO+fewohJiSP3+eWaOaiBKa4WioX4ZmGUMcRjCqR9PT/3paRgGHoMwozD1Q2SGGEZglsgxRnLknJsdop85t6owzjAlH9PZaT6il1576P2ar7uSg1/84mr+IESehIK0JLLjZgMiKEIwZ3cUmloJIuwoKvDZeZN3TEvre11kZ7TZqVydzPK1g1RTexf87BWVK+UcmQq5fE2nTTkZZfpBLvittySUKypRhEVYuHpfyBJRBEBmPUXmusFxCCHEcQzjGAAo28CTz7eL3IIo6j2OkG/OIUHW8PoXn/fTUevw5nLfS/Hstp2jru+5jTsd8o6arj2ennqOAEDCKIwCKIzgF1Es8ACB27b1DSH5vu9T60CNtYDCEkMYXds9o7y5PbUWFiuH1Hy1DXLDFWjzapomxCAE5B06Uu8UHkYh3/pGRBjcVgkFto3cZTGyTikBAiGAI+d9oD5ERhAkcoiHrlPZbp2cpOgBhJil1/TTE6nOPbWAeRvDtB2CVjs1iZZ0b5W6WMklhaGUJQ3PmiklK5fuJYgxxtSXdQsWbJsdu26JrYmZuz8i5nUYoxaSvG+9B842DmmN4bzLKL84Z2mbiKh1XiOYJTez9Evnfd/3qqPrHpLlUJkXLz9rZAZAEQRGInJIKICRJUScq1fLpp1Ks3DqxS/aSNARzKkwK9QBXYuhF0lLTEMI8/4YzVjvX797R03z/pdfPpze/x//8e8i8vh0/+HDexEZzo/np/u2aR/7k8C0bDIF7Z3pY2Z2mlrNJKaUAyXA7EaMgPkVtDDLLyIIi3Nu/OsPHx77N69fv37z5uZ4RCJAOfXnGOMQRtd48nOiRkTNCAmESA4AdDaAyBCBHEHmyR0lH3zYOwcIMYzD0D89PZ2fHr33r17fHt7cMPoenIMmcgCI3sUPTz/89a9/vn8Y7t58/+YPf2hffQ9NB+Q9YhgHijRbLS7g53gPSdFdakCKDpUf8g62WlRRseVQrkqvhofW8AnpUMzyTsK203/6O807I7futZ5FltEmiySWG6SqC8LV9to4BkRsfTPZFIo96HkdQj5GeX+c+pcIInCEpDA3Tb2AuTwF5KZQBEQRGUMvIjfdQWNO6FrxVmlFBAmbppk2euUJi4XzfSn5TJS/fwGI5eqomw06IgJqugcEojHyEBjJMbif709//flDZCHXxvExnGM4xxjFtYc+SuzPjkPrEZGEWcKgpUIhosy8iJLvjYhzWqS+7wWlcU36GcTB+WYQYRZgdjAcPQ7QgGuAGiAEx+CioBeYk15iFN6cOLrjIX1WL5nll1mrqQyDrac0YqubRzpEWVpPQaBibzXD4i9aGGt3prbK2LF0ARHnkbxwL0E4AiI4gUbAi/hV8taFcTgLEoNHIYYIDWKDIwr4A1/qYlMx9F/n3JyyNi998bn4mlkMEfNko5UKV4xRO1pWFXIz32BQlbbYHDK9QkGY/08PlDkTy2IUKwo7Amx5qNikRI42RrPKI4sJojCrDS2bZ1GAxpGmwgLOoWm1rZIjlsjCwkub0Wd46s9xHB8eH0IcQhjHMRB6YXCuAQJglhCYI0/Jh1RfQQCPhAIMyCC0bE8XRGpnLwJGYecdIQxxOEJDAsjEEsIwMLOgYxBAiuARF8EJS8fyUpiQKKwba5xzAtE3rfeOo8QozDKO3DTu4A7CyzIDznbzKZRrabh05JLI6txmst08xHM5lgPO+WHzhNrpvSSoPI0xTb4A5TbgFwl2+W0socyoD/2lX2jQsC9R2Mv7GUUnjJnnLfvWd5pbrWSePAq5q95mNWfn8wFet9Finyqo8WdeDcpBqipeMcSUdSvzxpidJY76RrOZsWgjMv3XtW0Q0Sn2S3vpTLY6mPUl7xCxbdvj7fHcP7y//+n+/v7h4UHXNJqmabvON34II89OcbqBJF1wCEGHBTUwpZ6Ak3En1YDMz6xDSNJhJ/vSZNQVcq6RGAkpCASBwBxARo6Hpo1jz3OEBlWZ0o7/UDaHSm/fekmvbm9O56ehH1S1G8eRfNMdj8e7W0ECdALAAr5pQcanx58+/PLTw8MHwMPx9vbVmzdt17mmIe8R8XAA790YvqBXybdJvmJ5cT3wm0I3uK7tFJ94kSlA3ItY+3aoiihZABJEZI6RIYQQmNE1QH4Yxvv7x59+/qUfhzGEp9NT3/fMkRwhITMDwRhjCCyBwTsBlFJu3yK3XlVVh2p1yiTNtMCdev/UC9X+vH6wl1j02xmxn8fnJgtezHRQfrgAJhuOnjrtktbB9NcXgb4QF4MEfOnE3h+1s6RijMOok7Ka1ZapWQALRxKZtRIBEaRFgio1AcEYwziez+fz6al0RakWHiX7FwBonsSqNIM7O//lUrgp3LGjfQSEC29lSmO/pOZbS0TFV4FPkpq+Dr+rqPyqBRLRZ7sZvxjJJoovtL2nysBVXPBa4blQVfM8kdVy2/M6S+XX/pxLlOxMRbMf2gUbNjPrHv21QeJ5EBEuW3Toi/biai9HWlK7u7kNj4+/CA6Pp4cPH97f348c0TtHBI5uD0fJtrynFyGAo2CyFCKmcCiqmCxBPwQEJvlFdI0Ql2mY5kNAACGMmt5kkHga+4fz6bE/vTk93d3cYhhPp9PNzQ1AYcIhIiiN6/lbi7LVNSSGofFOpDmdTg8PDzHGrusOx9uuuwkQhTVY8kDUDEP/499++PDLLzzym7dv3r59++rVK3XVG4ZBdde+78n9xnI+fj55Ws8XsZh8UVRRadv2c3SMFF87jRIvWsZNJtPmjPcNRGZmiVHNuuM4Pj4+fnj//jzw4+l0f3//+PgIALq6NY5jjOE8jH0YA0fac7OtcXOs+ZdSA3LqDvus3ZL5iP0iJayWUL7xhm1cSe33se0H2Divw7s6macsfwjAYUxTm67eR2ZhBhacN10mC/L8NYZzH8fx/v7+w/19Pmz+1km7qdYjahE0hSUNIHR1GvEvze9HUUkimswR4r8FeA6c/1JjaPLeS8Lrp15BpEiglztm1C34WeWtUkB8vm5WlapY6c5cXyqZRuYguenDZxZjHMcIoO4K9IVT3eejSVqEBYDGN9+9ehO//yOyhBgeT6dhjJHjSQJG8K6ZFraZy7xXFMnNphqhrClO7iTTR0k2w/l7HRJnykcEKCQxqhMvj5F57B/782N/ujveHAT609l7r6N80zS6ECwiQIuGUPeI7QGROXAM/Wl4enoMY3DeN93RNa0AOvCMIhyBpe/HX3768acffoghvLp9/c//9M/d8SYNuMnDahgG+v1EW/m9IkTOe68rcs+7hC7rOedj7GU38eLLotJS3/fn83kYhu/fvGbR+L+aPmUSjwDx3D89Pj7c33/o+zORRvSGGMee4RzGPsSeuWXJQ0rtD8m0ijL/gtReRuUke+XsVjkrfj7Va/2iS2fGV0N2PSmW+UtARDjEsR/Op9P5dM7TkcdYui7r9k1VTsIIkzlvWhyKGs0zBo4BRYZhOD+dPn+n/reDupKtJSWoZCrgJFsiIlydRvyL4nPn5uR/nzzYkq4pLELTgrI+LUf9gWarWBbRqhvk36X8e2EqqkXkqySYnGTBAgBCTNstVIFJ7rCIReypFVvl3QMr5r1nKp9hFtJ30zDAwMCaeVMfZv8x0yrNpZ0qGiKWd0ZsyWjJJbuCyt9JudqJO7COW5qoDuW+arJt6kv1kz/OukVVp0/bLJI/Q1beyFOOZHWJTinqk4drpgwsCwpUBidNRsTIEZghy88DWdNa1e7lSsufEeYl1vQ4y9+zPKH1JURa779/9x04GmLoY4CHD+c4Csd+HB9PZ23a+u6m2kMAgCGOuviLiMiYx+bCMhRb2QMW7U5EsvYgHlhrOI4sABwjQD+Mw9PD451zJHh7e4tzAIaLb1zK3J0pq+MyB036k0CMD/cf7u8fGbDtDk137A4Hch7QCQsKi0gM4/n0+OH9j+enx+Px8O7t969fv5E0jjmnvk+6LYTLbrglYxVNVwSpNOsUFyGYEx3iRth4WLlW6shQtR+9V9qttL5I9eM0COxrzq70UN8q4Y6ct+6JVZmrQ1nnzX9ZFX4ZPFPHTHtXNPU3znmQtC8zc5HmtdgaMeXunEbFaS/sEht9ulEsEqyIFCPYXh3khS83h+QMw/D09PTTTz/99NNPIYTHd29fvX7bNE17OGihkkFtGM4hjDGOIYwivYDgENUdYIjxw+n8cB5u0TUOG+dFmKNmbIR83MpTTPCcKZhobWIAIkJBZtFMCSJCjrR+svWNeYOwpI+XqUazXUXlQoWmKWwpfHFGdUolO9SXyrpqnhUq/w0ApL7MU4BYFWZkOqxvBwlSs9RzZylIyGV9WcueWm/V/ktXmvIsTM9e+S8UQSzLBy6HkbJqCoG+CDeH5TaSqjou3gug2Gsuxc/KH5ah7fIULrGUbouLbA9TxRJKueupqF6VfBBFA+iNw3juh9P58f39/cP9eXK2BxCJPE4Tqkicg8EIs4h4Zgi6+hgBUUBCCGEMMQaW6LU7sDgAjxowAQkRSESiIGr/QULnHCaX6ksVJZAPtiIgMUYk9N4DCM4pWdWxOs2JOtylqWFnWJ5mSSStJYfTXDAHKAXnBBHjPDGl0HP5NZPXQ+rUkPZJbo8AeaGqDVb5mLBf+OLotu3CuyxdZaWoQCYKp7E1DQqT6AKIRABxvVkcoN6YVY0+mzpBeZUr1YV8xMTZ7D2/m2lndowR6kZVUBb2WjdMLEkjjkAttedvpQjnR9PUPokp24N+7uObrjBpGg7nwgDzpj6WxnQdJadcn7MRLtUhEW1749TTkp510cXiQtOf3eGq2kjNLD+ruuCOtARQNKnUJ3UwUhUlv2k2t01/EVQRf7lCmr85sifKojKjXllEqm3Q2T71daVNRZwrqi5GqoH0ZtOYldapBaE7Hm757t333wWC9v3x/vT4OPRw/xBHCCFEZkcOEXhxsZAQA5EjJCAUzTk17TbRCRwm4UQk7QLEtE1FQLDYWIwCI3J6hSIioBnlOMJATXPTHRCxbdv0aFPrWkm3cwmxkqQR51jYwqeH9+fHRw6jaw9d17XHI/kGnBP0HEZHTkL/cP/+w/ufTo8Ph6777s13b1+/67ourXanF6T2trzh5cPdFloS78rmVbzZ1PU+cqmqMefNG7O422mT8VoKLOWSwhCwc/crPWRwW4f5VPL54mLh09dkDstvKyIavztdIc2mhbZTXg7yFyGL26Een/qRSLW2Ihm4LZwXEqdgriFUL+X+/v6///f//q//+q8xxv/7v/y3//X/8f/8wx/+0LZtEOAhDMOg8frGcWAZkVgghBhEhDkQESP+599+oKaNgN+9eXNsD2/uXt0cDiiOqGEOy7JnqSzlQ7qAVLqKRrhiYYHJ6ODICYAnp5rKVIflPLVFng74Y1wWsuvW9TFpbD6reEO8JAPVC+bCTuWcNrcikXIv+aLUCfOc3F1FXEDM22eV3J1mc1Nd8q3cLGlWurCgJNUiVS7AVcEk8s8XJuL0GfNkvuXIk59YvcSiw24PAFj6/uVnhW3f+x17Sl6MSljiUilqmoa8n6zjwxjHsT+dHj7c//Lzz+fziXkaRUMcphGVWRWVtJ7pQuQYQ4xxnhFijGMIzHGIQ9c0h8Ph2HXH9uAawkkTQyDhad4DAZk3fRCsJaXiPeQyhTAwg4qmMDe2ZQhKRpnSfLDJPIROs7HOm4iIQDq1TuLWLKFVEr6isYguCqtEZQyGjYeEMrBYNlavrBhFE61qKrtcea/fj+vXDtP715e0OYb8+mAyKz5LPiiHy51Bf7IyXPRWvJJv3+Wd5mjo2gNjjLlO/q2Rq51byh4AgLA7tJFjK4e37966rj3c3vz0/pf7+3uKeB74SU7nx8en8ZweXDV2kThNuYTqr6UvHgUQZ+VsCR8tqrxQUq20hPMXAnDOU5ZbSeZHcIjHprm9ub27u+u6Tu9+0esmNRtc5e5M9TAMg3B4+PABmNuuPd7c+K4DIgBkQGCQCMhyPp9+/vGvv/zyU+P8H/7w/T/84R9v797GEIUWQ9EzXE2u7ymc7Qu6Rl35dXmREeDzSW//4lJ8TtM0mjan6zoiF+M37Y8RY/zw4cP//J//89/+7d+IqHP0j//0X//0pz81TcNjDCGeTqfT6TQMwzgOIYwxBhEOMXCMc53A/3G6f3x8+umnn28Px9e3d//Xf/rn//oP//Tm9q71PsQAs/RczWXV2/wW2uH12sjzWJuHvxIyeRONIYRxdLTEuqwKQ+XGnmQTrAalZKSb2dQr8hqtdJ6datixF+z8Et3msInbeoXg5nPxxs4TuFpRAYCUEzDGGIbh9HT65edf/vbXv/7lL395eHhIRr3Yn9OwnGxAHKOIxKHXv6fkyNMHiYBwe3vz7t07fP2m8w3Ab3VD47Syslpb2+drzl+ZfAGwXrLL+LtQVACmBXdWG8N23/u10Kx86peCiOFZbtlX7m6U2WHpedLbb4W0r1SdAIdh0FDC32w62FxRKeeewuQQESIyNP7m1avmcHDOOcCD8yT4vh8RaQo4yIyITdM0TeMctU4IUAcsLDaioHNutsuK9955B3OokmwzPTinniP6nQidR3LeUYqqRESIHskTvLq9++67716/ft11nc4okzBRTrGqOq5maLWmh2EYTqdTGM4OuGl9e3tzuLkR1wZxjI4ZBJjHcDqfPrz/+fHhniC+unv13Zu3r25f+baVQxvhs8JbVT1lZ27PFZVvU2/P+UZGAL17qrqdX+YOcvLN7D/cAhG999ryReTu7i5lXmLhcRweHx8fHx/P574fBo3Olx5fmxAAt41/f//h/fv3wvyqO/7w57/8+M9/+7/84z/94z/+Q3fbkiO4tEGxyFv3bQx0VRuL/MJK5k5y5C8NM4cYx2EccHDQp79XQnYeglmnJCJCQkLacbi4UlFZrVgWh2jD9StvclUJq19eCKufflbqFfkFuTSuF4fKz/nXKxUV7V9t2xKRMD+8f//zzz//+7//+//4H//jb3/72+l0mgxGLBQCzlH+Qab99DrgjGGQea1DncNh9g9AjwByc3Oju/O3Hv/bR0SYo65q7yTurKiWVnYSUXw+ta6+bYH6vSsqAoCTmiKTIfmlB7JJyEvVrUtgszfRph9BgY4UKp/JruvXXkGuM6elRcbPGda/kVlwByJS9S/tff+o/TgPCpi7xEr+Rr8MmAEbDkKICIiBWZMqN03bth2Ra5y/O9we2mP820/MGCM3TZtEpbZtW+8OXhxOlhXnyBGljVRN0yQfFiREpLThp/ENzM/uvfPez+0ZYwRHrmmaJCjoxQkROR6PN/OKSkPkkpto/sjJ1XCek5a6jzEOQ386nR4fn8b+9Ic3Xdd1x5sb17YRPLM60IOAcIz3D+/fv/8lxPj61eu3b981XScwxcxnWfIXPSvsRNFTdtqOlHzqjb4yq+f6dQqcGvxFl9EczYXSNM06Ke3z776aCa6J/3sNInJzc/Mv//IvTdOAyH/9h3988+pNjDwOIYqEKOdxPA3DEMYQhhhH5iASCRgdpuQriDTGEIYRQhwe+9PD6f0vH06PZ/L+v978AzA45xAg7VfJ8wtfKtP0iHUVI+eHvxBfVHnA2S1QK+7qe8n81Bq8NfmC7VbFlExEVKaAaYt2iDGM/Sm5SVVSe9M0aXDjeduVLqmM4yKZqd1gKRUuH3NTM5ZvsV7KkOJQJd+np6vWYR4fH8qfLfTjZtgrjDHzDJPsX+wzlWPaBzLD8XMVlRgDInbdwTkClodffv7pxx//f//7v/7rv/7r09OTemKrg98RafL1YhGYdrtNiy3CMDvpaxwwmD0IgBwiwbRNTgB0aJDJm1KfcC5MNhItL0lm3z9UTwOYeum6bUr5IR1/docpnGpEQyUhTNtWr71s2Qa+rKJyZYf1QkINUUPDMJBQhDjEoXOda50IRtHEfETOoXNAngHiPMkREQCKTCk2mTmEkK+TTW6eV1CYK0vXpx0f2PwRCYBmLUF97o/d4e5wHM6DDAECM0hwiOqWewXVslS5RFU8FxEhE5AnckQEqA1dBGXM+jkiYrYNNJQBJfJuiWWy8LwULsvqmObs6V+3pIysVKTIyxINIvqGAEAgioCoN5wj1u3XhI48ADBIXsJ5GJ0vKMUCrrYH3zaIGIbiXoXM3bbjOPopc2Xx+A51bxnov0Xz5c3xi7LUjZXHXFpLgTlU8TAMh8NhHMdyZC9aQ9o6JghRJAgLkHMEvpCNYpxsLbO3T9EYnCNe8iVV8jEDiP7LDGmLcFy8PhARgS69SkIE16j+4AE1rhF4J97TY9sdG9+8f//Lzx7P57OItG37+vXrV69fdV2HDG3XtU0jAIjQtq0In09n7xvftDKbe4nIe4/ajpFi0QCKuY2cx9lFV8ssyaGoabq20y1hUQAFVTuaR/95zmYQYSJqmg4RT09D0zaIMAxPT6fH0+khhKFt6e7ulbt9HcmdkFxwjXMtURgj9OcQxj//+d/uHz6EML569eb7P/7h9evXbdNwS+whsgCQmwPUhjGzILbFan7SZLDYKTEtbenMlzJjzFnb6pENswAe1d81blXXdVhun73YDi8qVFsCqIgMw5C/ha1T8kMaDUKHa9lI+Kho6sZ5U5kUYd+r7a3FYlkui8TGN4h4Pp+7ruNYlHB2yGURQZreAs07stIvHfnkVpfis0+3ytcey6cuE8YtUlHbNBIGdZwiQEL0hF7bMpJDl++kymsjyKYJOTdY3nQHfPddQ+4f/vinEMIfXr179+77w93tQ9+f+uH90/nn8/l9GB+FY+BwGsfzIOrzzoKIXvMeRkYWBIgA4rAn+PP9L6f////+w/Dw//L/2z/+4U9/vLnxSDFEQIgIjCAI5BZ1i+PIcfTee++d8zyyRInMBNgQeQJHIhiJgvOOp5ik5JxHREBRUc/teKizIICnKWJN6a9evOViHvEuZYKDqrsVUT2gmHy5EAjz68cgAIDgHDmQIoMaFVeY1uIcEiIGzfTIIhERHBHhtFVF2rZVEzszqEyB6LxvQASDCAjgIAgOEdAPEcM49PA4QEhS6//J3p81SZIkaWIgM4uIqpq5+RlXRuTVdXR1T3f17M5gABCBBju0tCDsEoH2cZ9AhD+1PwJL+7IPINCC5mEXwAyOmR30dHcdXZlVlZV33OHh7naoqogw74OoioqouVlYeLhHRmYXU1aUmaupqKgcLHx8zDyyE1vP2bvg8P/WukExCYdfvx1IYTSQYTKkOPJ4jPwVHpIDMXWviFJRLwXIZeZR6bN8Yac5PDM/jPJpBVwQEeeds84xc6njs1NFBQHEtnGJut6VES6l82Wtc84mXy3E0ei5hPPet/bs0dPnT58+ffrUtVZ555r4LrLyA7sZx46GgNX+0bpT9QUA2GNlKkO60MV0Mi2MQmEARhAATf0RjgLC4p0HUqUxYmsRRmAG8QAipAA1KQJyzgEBKYXYSzCIgsiETMAEDCAIocCLIaWBwHnhEGpd9BM2iARpzmDmYaIFwHpRCglI6QJQrBPnWAEiKUQK3GDdMKSDaOd7QPgGBggjjZE9JsXHfaYVq013aT3krfUeKCukPjxrhBj/gXtUMJWMotkJr814ljxn/TMCvE4g+E3SjTpAooT97tuS12nkVkK5LHwQx1aFkU2XEzxDNFff0Pym4bOEymjEKWltPHthR8DsLIEwc1mWVWH2qmpvb48wyCsqaESTyUREjCq01tLnCQl6b5J9C6siLz6dp9FJXECJigUQ/DlZSdogS3SfUqte8BIJABSlYvar1Wq5nFvXiqAxZVmZopygmQbIGgEqRZqInV0tzl6+fNHUywDqOzm5fXB4YozRxmhjUOnUwrG75ebaqW3b4Hd6pd/gCoQ57XhXVCnfwpjENdD7M8eqVOxGME9c6pVKMxSPFOYr9irYSWH4F4bP2Zhs4mlbhq7s6fj4GBENq8lkxgq91Kumni8W8+VqsaqXde2sc87F5OO9pDR6ErCIZeda785OheDT303Q82w6rbQBAdIK4BKuNRJnB7Bn0LKEEQQQbrgi1LtJWbq5TEbAwRZ2yZbqRAdB6VTf1jVndXsB84aL6KJLN6MA2C0pbhPNP/DMTm8Hadom/eHokBoaGOkVSvdlDTtPQuw6kB+AHvkW85vD4m3dbLoEUcvqexJ0Eidcy1Cb3nnn3WWKCnY6TNQWvHPxknPjS5A2yEKKvHO+tavT89VyWdd1sL9gbv2R5DNsJYyeyXEN0LhzuiZQBg0na2F4ydgColAwagUX7qgTkpyIYU1SyM55VZ9KCpG9aXEsGijXOfab06jNH7ii8p3TFhDq6FJ617XP+ijm4XrbxyRLcibLfh9oZP3alrk6vyuXA4ZLwVoQfnDTwcrRKB6SJB4dHRWFVkoVRbFYLJjZWhs4+HRihrMz6aFSSkWPSp+WGvoVuI4MHh4NPYChf8eo5IT68RFrt30E4sHsva3rerlc1HVLRJPJpCyqsiyV1qIqAAFhFM/ONewX85cvXj5+8fypgDk8PLx9+/bh4WGI3Q8GHsTsUMArQb+uhaL6dxOKCiRlvHa3FEiSGPqmY1Soz+YXLHkIGdNLuxFqRcNlBV6LokjvemsGkTFDy61Oo0jo+DkgTgGgqiqjtau9IHhmRBIE6x134EVYrVaubVOf2KXdUEpVVRVcE/P5xZdffXm4N7t/997k8JgUBQDCuuktCuLdvs7fK+RuRnoN8PoPiRQNiZVGyynu0/UZSQ2diOidny8WT1ar541lNYvhfIjJUhGANLI8rF4EkM43Eh/gvffODYU+dJe7pBeTux8SwHw+H/xmwj7zqAgkZdaw9/UjQl0vhpq/RBQvjTwqyZpHAOccdW8BnoW5Cz8hgXq5infF9wj+oNbbHIM0aMntahk7P9pfPsFisKRa1jiyBQBIKe+ctXZ/Mg08lvOsngAgOSdJL+Ub4p0gRCQkoMsLWO9IighihuItKduug9Li49d+rkmeUfCPisrNUjp/I4aY2UgGLf2SX745bck/+OYUpfbeL/l9stBxHsmtcKcdsUUfi60Fqf3NC01uoSB/B8GI2ZdFofVBSMlQFMV8Pm/bdj6fiwihrqqqqqpYBBN6YYv66h9xHiMaRyXcPOgAyXtycpaLyNCa9GCPAHbKe5yY8dh777rMkcIX8+dt2zKL0WVVTSfVXlVNEZTnDiwn3nl2zq3mFy9fvHi6WMwF+Ojk+Nat28fHJ1rrYJdnhlCWKE9UmnXkbTr+iqIIVvMADLt2GwEmALwdF1uU9dfRbtdOsVe9N29jN4Kiki7Om+vVjjRSikYce0sP424ipTx52zbLtr6o64v5YrWq67puW+usa5rGtW2Irg5pVDZ1A3rfr/f++enpN4++vXfr9qSs9qd73ROj5zLpQzQ6iEiuqATYvtAPOp/KFoq8i/p0DvFSjGqLvDFekh5iF6zj7P1yuXz+7Pm3F3MPJUon0o9QoZ2nRQAQusy5AAAQqjpgoo0E/TGkpWpsG1QJgT6UAjpY+3K57FUi8GPol4CIZxYWzz5H4/jgbRAcVynx3kd/QuqiCeCzRCnqFZW1+K7wXtBnxDY6K/ocy6oggKFhmUo+VHmJlW3bn0KmbefR+qUsoZdrCYlUZpMdPuc5pd4B7jIm7DSVGFVxpUaoi67Jaz7fCFFefPwmdJX4Wcfv0YMT/E7MDLnSGa2kSilRyrvwYwBB7mq+ee+9YiZjOgNtVprrZomTqkBhxsPARb8UhdW9lfJzdNdHR+ALAAqLeO5MF8S0pYZN75EPFUPzXZSpN+mKSyGJ2AeHBYGV86IBIwqiUvfQFJ6YKauZHEVZBe/oDe/8faloG49SERnZ9tIWQ7ru9PexY2nns4kTyfNOjMSq7C7EfBknfYgiOPQykwgTrQlqI7m6fyTS+sp5xfrgLunq2LQ0DJ0MgfJjLFn/ChGrLX1ZOhUD0EGwrz6JiCxKfKs0IaIxpqoqY8zLly+999baly9fTqdTZq6qKox5UGa01nWTOvfDQJJSCABqjQPEIqoROkFEwZKViXF5banuEoJzLSJ1cQjCtm3qurbWMfv54oKIiqKcTCZFUWqtEQmBFJF3ViE455tmsVicvzh9cvryhTHq6OjowYMPjC4JNaHumI10Di5S4zxdgya2Nnd4WSmSdK2ur/ZNIuylKyF9+uvS6MaRmyt8uPSoyM7pvLc7diYxKktEJ/UNRuU2LM4NTfQX1tWhUTey8c+byxWwrONr2JzLOXhY2JGjEAD3wJJwOGAsG5TigBCz0qibHxxUiLBBQvG48KTVavX85cVyVb+8OL9YrhZNe7ZcLhaLxXKxXC65J8ggcIE3+NiysDRNo5QCAWZZ1qunz58/fPL43u07e+UECaGvrp3iQqV3WIXXJ1IupBMkgpBJXCuizrvSeQKi6aHDxl2DpDOKNunHMM77Bj2wZ9c9h8llzA1LNzQqA2Vuw8RRQLIm9gx6C/j0AMK+uhEiCqIQCqAQgBPx7Jr27MWLbx4+tkzYlefpavf1OgtZ5+IIcFfbJ+wltNYN7gWQoD2Guxl8GkE/VBUUdNYNsCQZVI4OOiSxOFiI2uwcJ8wuHd80VCZUZ+8aTOaLgkM4GWDJtle2PKiPs0FA37g0uZCOz5IMfoD5Rh/VFhwh5dPnIgOwJwGN5Jn7ciaUy0rbaMy9kxAggHjUhuCl+OgB5hS5YWBg3b/duo17rjv1oJdMoBOPopVwWJnST30XvZ+Yn7gvrZZIDmlVGfA+xF8hEXUgswRGGp3tsdZKOgLrB8H2cyHdGqksuuXG9fMr3jVSyUZHRLwRETUM45od1TLyG2H3jERRccxMpHrUa4c49N7rsuwGd8sb70zpS8rG87CzA/f9zxQVEAEIxXqBZXuVknQvb3vaehelOw8ItEIgABBkbzfiU6XH2yhQr8AIJVcGbosYFnEQB1Nj7fqKIaJBUek14O7HqZU8LxSqVLqGWHLlJJ5q0jtwu0vJoTLsPAAAcM6FZLXxbIBee5H8vbKHZr6mbDhi25fclS2b8cnnvRfZoQJMXEJ5kj5MxRmANGXqSPBK74qdD7+J4PBhoQ6/jD/rBEGAWAuyr7OWFAjTWgOKa70Ap/AnIgoYsFj3JhSj6IqfArRta60j6sLsoNNGehbpxkGW0QYfFKTAaGKyS+nqVem0XuGwLAGNUSIs4rwXa+1qtaqbxjlHCFU1KQpTlZOimCIqZm+tVSSESNJ6a5eL+fOXL84vTlfNqjDF7du3b9+5sz87QNR9vrFhNjtBIBnP0It+xV5isEjGvKMUura+VDYZvdYmXeJpNGLZr1h7G+jSu9INtaknaQvpKt3yLBoQz+HG4dKQob/7axoVnfwsqSa8NoDDJgoHX+yeIELSsfy98i6n47n5XVLmABFg1lm/BXsdBbOQxiDSJ9s8b3N0SPeLXxF2MlNd10+ePf326fPnp2ePnz45u5g3ngGV87xsm2ZVQ2K5j0y122KdKMAAgNTBt7TWpNC2frFani/mq6Z23mkItQ4hr2I4yNlEBIBIKF5IhbEFpZRWGrAviC3dAAgIewH0AAwoWr0p5kIkY4+95SJKS5BcSrcGiQwnTh5ItHHbdFJcDxqJ6zxu4e5nwC4prJGem0TE7GkosAtEGFlfdxR1qrQIC7LUi9WLp8/myyZoyRKEjyTJkvPJSyZ5YoJOleKgor6PApiWl8UhDQ9KEssROzOM9kiBhthgjnQQgD6SQnLXc9IMCqhEXZXUDnCJGNUrCWsFVXNj3aiDyZVLjsvLb0sl3U68G0SBpPGMOeDYhpq2ltwehbEAD4zaGXY6aK9PSGQ+/b+9ggLQLXDseBn2ZUElvkhEHkLvxGMW9hxlsJQtxFfGnlWNXoFZwsYKZmilQvbNYRAkQWJjonu/WgRKKHpouds+w8bZou2MLg3utcR2HJ+Q3pXyRh0/vVaPR30KbnsI+bmF06N9Z2H/B0KevW9b7BgBqytBIddl1k0/CyLm643zlaY5SA5RG071k90fnSo2298L+rdbVxJ2vWszcV9EYl2X2JHe/VVdFMXJycne3t7Lly/Pzs6cZSJyzi0WC+/9ZDIJCgYiltUkbv/M778mVfdCTxeOknJS6dMArkvzqVUeEZx3q9WqrmtrbTA8F0VRluV0cqA7KkJPnPXWLYW99vX52dnT589evjxrnZvO9t977/3bd25Xe3tlMe0NqQBvcV5GpqAtmKs310x2f6kd+cYf6SYo6vDe+wC5fP78+ZdfffXrzz9frOrlauWYBZXSBZEW5lCCLWgmXVGIZMqisyUqMPGSF1419cX8Yr6Yt21LZRnsvoTox7XYhw3ILMyCLJ2MEcSFzoeQUyJIv/mwpCwF1kp2XC+NjgCjNTM755zrbDFv1Dh0uK/wmagTB8EzsEcW7K3s7MVGrXvIpRS+D1oahfx7iRqQDTdHPSIwuP4uAZXCFvLsL2M4A6SXcHzpEtk+u4RrbWYax5VWR+aTyXsuqVI0Urjk8rvgqms0t2MOoTKCUOiuSnI42K7U/B9poC0n0UgOVDlsL7UgjHOMXqEf2AUNd4zVe8+JF/sf2nmpSJExUVFJbdK705YsHCNCxKIoRMQ5t+PkRXGzo13nJxiAOmNVKGGWwnl3aSJIt7C2QEcko4J0a2bC+NWv1ZyKd22RHWPAQOz/Lp1f72H8+g7CvJVSZVlWVaW1rqrq5el5KKG4XC7n83nAfYVCK6gyt+pg8EMsdJbGN53oaPCNqktkI+uG5848CXJ6euq8bds2iA7GGCKaTqdVNS3NDFEhhlzSpBQ2Tb1czW2z4uXp+dnZYr4qTHl0fOf45N6t23erydSyKKVHc/F2aPeHbq3pdpVnbckKMOIbr/ugP9KVSUJCC8S2beu6fvLkyddff/348ePHz56e13Xj2AsrrQVVkHcBAAGqycRbmxSbG6i3WWbBY4HIKOf9ql7VdWOdLY1BQDQKCdkPKWNHJklxjlmQOSSZDe0rQswVFdVl2KfgUeE3jrDb/XR4c1o7ApwkPqtraB+AsSulEEY3PJW9Bx5yEFOe1VcnR9hIbRM7eFsQkwRsmMfIJ9gkhjGaPGO4svnS6K7Nr5leGsNnE0WC15JhbuhF8vfNtwQ3wabw721h4VcSMEdseTjXAEzQUtYOsj/S1Wh0fmX42c3C7VhRod6uM5IItz86/YKIPU5OOGTE2wCWeGvUWTZ6R62AdKVVbibOe3CHInhhYe5AhK8KidlE6aG1ZQyjR+W1IrbHi+N1tqP08mmstSxrgJPtj4YdhLzoXaU+f+3ufRvu2kzcV4EMFv2x11KGcMktY5MLFm9vnb9iuqTDrvRFS2QymZRlRaibprm4uGDmuq6bpsE+A/reYlGW1d7e3mRSIWJIa5jDoBC6hJ7hPxQB61znhwkRVn0ZI6QMtNPUq6ZtPTN7L8Kr5kIpDFmMisJobYhoMqmqcmpbAGEBFnHWinPt+cXp2dnL1WKOzflquVKmvHfn1sHxnen0cDLZ00VFDMLADN4LM5MiRRSPtBs9ZkYLeMsWGJnurva4HW8c/eyPuspr0tWHK+gEAOCFF6vlt48e/fqTT168eF43TU3kGBjAGFCGTFlMJjNTGAQ8e/60qVeO2XpPiHoQniIzSyzb4QKANgYEgroRf4MACsmudSqSF2ERFNfzbQ8gCER5+hDP3nsfoV+KCngzemtaCqwdAU3bBt9vxBv3P+zwbyPkUdBEtj0AAXpdBRGCcRdEwAt6nwoCPDgsEFRWi0anZuPEjklpkbVQ42xTLzCFYw0dG8W4jy5dM0eULqbrUtqiwwwNrPlMLhn6IWfw2qsFie5yDaYb+bQQRYjiipC2VKggRVFFFACluvSVEYg3TGXnaZJ+tUjyuN4LJaORTgKAQACkPyq7OqN9y10nB5H1ihQcQdBHqYSYlQ3j9FZoZJ5LD6WRqDbKnpryQA3MmqjQ2rUtCSpEdi7InpSolAhAwAQY/gUQIIYu4F4EPAAjChIYY1hE9xnBdz2nKS8Qs9vBnPlUiQTQOm88K61b8KINFpobz2QFvPeWqNTKsG83bdqshFEuImc4TpE0apOdK0j5soBasybwiEIkgHlhxBjI0WW54S40uQvs6dOoe+9NmgeWGQHipTTAXUSYpa4bAECk1PwVDifuyw5WVVUY5V2ITsF03NLiQVF8D3mKAn/vuyEiSKSNUYjYdBHYhAhK6QTUK6klQoDTwGWNaNu2KIpJWXrvQ/ZAoxQwpyeE9xY6kIA4Z9MAGMSsaGZKMQS8EyJTjDtkU+n7pai1jrlEAxmjQt4Vz0xaIaI4KwTaaJ+ddEjJHG0pRUBEbdt674uiKAoTNl4I6uAM1r8xDDBG1wXoAkLwUkp0VcQmGBBJFaYkQu/Ze8eMzCiCJye3mTkUkCrL5vT0dLlcaq2Zfds2s/0ZsFstLwhRaRWWolIa+4pOiBjwusJd3kkqaOg2CgB0WBIH4p10Rlt2zjVdAlY0pqiKPW1MWZbGFMYUVVV57+bzBbu2MgVp9N4vV0tr28Vi8fz507quUSnnprOTu3fu3Dk+vlVWFZHyyCItEtnA1xWQRhF22CWWwBDwOkxQ94XXEBYjNprZO3uDy3p2rJG2n1oKRsw3vRRry/g8Tgx6C18A462bHjZ5Uca4mqw8H2yUIyTbHaYwcYnSKM3RBmg4JDYL2FrbRPKimYVOXh8hDVXPMhzkw4uSJy1M2/fpEZgVBRkF/g7HnohnqzUiBbwiiiitjAgVxbRN4e45t5GQDbavphfeug8pcU6sE3l+fvbZF1/85vPPv3nxom08o1KmRC8EgrrQxZ6pJlSUQuRY9GS/YXZ12zqrCVGhIfJsnbPWshdEFexBwiKoCJUhTdqoSpvZbGaMCfEw4QW99xkmSKRfp0qRYqPKklvfAHpEAHRFIUYTSOlIFYUpjAEQZqY0f8BmrM+WCNRcQ85WOnvoizMCiKRqUpqOVhAwVmv140ihrMXEGkiq83IEOT8G3YUwzvgZhEXIsXgGJE3kvbcM7Ji9gNZGxHvvEEWpEGCDAIyAyCH4gEGEPTrb1PXKOYuEQipHMg1CdmoeFZH0NTEtpwiZVDJSILM41X44xtInStQR1i7l07dlhkb3bU2HlGzRwQosuVAhkD16CGyAoHINfVdEvYgdJlmGa8NN3RbOnjz0NokRBXHMIQ2Z9KG5ShutFKKqZvtlOSnKAgAlxXegVFUxKcrZbEoKrbUKyyD9dbINYidNICoirRURWueYtLWNdYJCGoMe7B2zA1BdoJcgIIFSKJpQiSgvSjQpVbvWOUGFzOy8IyBjoCgN9ik6RsOeloq21ooAkQ6nnmIVkmRY3zrvPRBpZcpJOZk5Fl0Q6pAoH0CRADhhkNyakOdHU4JRBpA8+kshNE0TMqe3bZtKsJQUyA58MrJ9pYooAkkf4t89OX/TtMFsMwzmmc0emeFtLv/8rhD2SRUQEYZ8GtsQR1d/Vv8h6te9Rr/trjDaOwx1RqPaZ+m9uV4R1YbXaDwV2rZbwkb6Jyek9Zua0KivvZB+hSQU/g3bT6mvut0TS8imlYZ8vokPOPY5bvKRZPyGlMlzGANvsP8aBFZRSrVte3R0NJ1OV6uV1vr8/Lxt28VivlqtWHzT1ERUFEVIYRySpbq27XTDJNoeguGHMpEofaN2tYhBh4GfloUpisKYoihmRNoY3WUT9o5EJkWhtRLwTeOWy+X5+fnFxcVisbDWGmOqanJweFJW1d7enjIFkgrGTBEGEMGhFrfkB+cVBnD9kvShh1duZEdKV/juy+N1ucellC7R13r0pZ+/N9SZMiX7LlvdqAgIWXGkOFlI5Kytm/ZiPn/x8uXFfMECqigQxFlmBK11WU4me3tFNQUi55z1XgABCEmFqtXUZ8tFBCIVYtAj3whqvwBpA1VR7O3tlWUZy7PuMHPBvOyhq6wNnWE63yqKlNY6Qr9kc63Cd5Beh69i5BG9ASzopRJhw5duh2AwXzcCyNpfYEj6lP0uUyF20wLWLiBfehEBOijAJSQIsmHLbhm2LVtbclh7xhBoUB/HAAfHl9+FYjcDDU1qn2XO0jOMsbX9ZwBOzMuCIMKAanZwdHx8PNk/CIWJZYxdF/au1Losy7IoegtRKuJx8nnwnkgy8sOvhwTTw2mZpr3ADgGRmVcEZWxO25kw66okh+P182jpg8FeS85M5d7d7xorKhG1HxD8r9fxd4lixroQoBNR8rxhj799imlwYnLeXSitfTaK9IiZnQLF1bC7ZC8Jmms7009NvGGco2ok8qbLJmQwi7p71KpfV4zbhWLGqkAGSQghsL/rQKlGG7n01UWgPxrf/D3Gk8tZAaY0nqRtW2vtdDoNNbOrqppMJovFAhFWq0XwoSFiVVUhgCcYM1pqIJa5GBk11cbB2Z9UHR4MICg/xhhjDJEhqoLJ03sPCNbVAg4R68afvVysVvV8Pl+tViGCZX9///DwcG9//+DwJKnPRpE5MjPpNy3juGWDSB+bKz32fVMjW4q37k5hB418GtsJR4Usd0s7MaJ0iY584Fvouyqg+R1SmNmYoRuStYFIdWtfnp49evzkyZNny7o2RaW0aZrWcauIjDGmMEVZmMKwgHPOOwd91VStDUGXZRUACElrIhhQCRyz6nmPrPam0+Pj4/39fVMYUqo3C7C8cTkAz55bAXQAAsiGyjcdtbdIkoOKd8SyYxfEAkSEJLE26xUsfW+Htm7yjZr22wT/pPxrdMJqNZhT87HFtHrEaNhdUpme8rwImQeYh2TNMe1BbFEXxXQ6vXfv3oMP3r995z2ldWjZWjs0goIi1MMpxyE6f6SEAoR+JGy8klK5d/dnjRWVFGazeyvvIBESIuGQlSgsYSaSd+TNuK9/chOjHa1BY4/BbndFK92mX6ZtRi0ikDFvKsEESTT4jmKdkNi9dEtc+0wys0Dv6LyOSQnxPEQUklxF1ZGIrkVRSScidbAihow+fZl5pQ4ODuItzHxycrK/v19V5WJxUTerMNqIGOJ2Qs9VkSXuk/QM4EFRSZ0tCDCdTuM7Bgk4aNfO8nSyJyyenYjz3C5XF227AuDlcnX6cmlbF3jf/v7+dDrd398/ODgoJxNSRvolF1+5ry56zWM4uhQVP9kaizVq4Qq6ShSMXks8Gj/3Ss7tdImut7nbo6/XevCOkuSp7YIlxXsvIK7188Xy2enpN98+Oj2/ULrQpUZSrfMTPfHB9MNirRVUgL0u2mMLQSuScFj1Gwc0wmBpGj4QgPC0mhwdHO5Np13KRwBm70AUXKP2+P2bUcnT6+9oRMYOfBGGdyi3F46z3cWpjZrAuu9lw6XNv3tFm8lf5dJrkvzb/w5HV1/rSQCgizL7UTLa1iW4D0UqScqylkB58AAYNRhhkTCFIOrJRktQlswtR6CBGkIWCXE6nd69e/fDDz+8c/fu8cntcA42TbNarRKgChMiWxtMe+DXa279kToKiIlXHo4jSuVe2Pnk0CJjcPyl5sM+1/ogLHYLQgKqCqBn3CwcvNedzrP52ZsuvQ4CYSwfRIpPFxHPYShRQuaAxOqw5TEiI5P6K7geYl/yB/vEt4lrLH0jTnK5dIoBjJL2XjIjvfiY5rnKOmBMama4xL+Gl5UXpHzcIsx7hHGPYmL/LqmpAhPXjeRFKogSo4TCbDRStEk6PqnlEvuCR/lT4numd4WfEXRI63HnU+SY9B6bEbxerIu/DIhX2EgbPOyds3d4f+i9W9QnroC1/YkYatB1MSHO2exirhbGezFJiB53fvBHxVvCV/GMiNba8L5FUSBiVVVFoVerveVqsVwugyoV+hDmJQC3QoY07D0kFDOi9EUftdJFVUKok6N1Ueh0soYtAFIvF95576z1TdMuz85fLFdz751tG2X2ifR0Ot3b25tMJlVVhXov/dSPB5z6Aljp2G+erIw4T6aUzkW2GBIY5LrysL5iL/06mrthy+cKUlwhuGYgyDnKtku56rCdfWU9jKtoC+8dXxqloMgi07Kth4hweW7A0YjiJZ8AINm5iAEVscXjtGkN9GsoLGNFcbjCW/FQUo029SO2EPdCmDUWaa2tm/bZ89P5cqW0Mdqg0sxSTbz3lnoWZ631giEyQSntrA1J+ZxrkR0N0G324oOlIeSPUlp1mqSwRjUpq9l0b1KWhOSZGcR3ZTcjnwTmbB2GFBnpthydC8zcAxFUlzaDBPxozQ+fRzslXzZy6S3r37MVm6ORRgt9+MwsyaEDmJ2Pgf93/Vlrr9vFiMGaTkQckgcAhxILlGzPyK4H6tZ291DvOTBMAXEBz4OAgCzCwhjXfncJIYxzkrk4Fb3yc6MPhejrrqSjwf2zOlxvNikxVCa0N5ybXSVvAADhJAIEAYwphHt4fAds60iRinf1ISUCACiotcZY54YCmqk7FpQx8S4B4eFZaEwxqHSJTgGASmWLjVQHhwGWtrUUa/AgAg3PShcHUsZkmAbIlTb68PDgvQf333/w/vHR8Wx/FuqoLpfLsLP6NdzF9YY0qiLrit9Q13L9EEmZzAbqZJtY64z74oTecXIpqUF5GVuWAfwC3g/SP/TDsd6HVBSRHCuaHkmCkqKOMJGdehGxP7l6eXLUydGjR8folvEZHRBpmzqwQhzQsd1euhT3lUpIcXriXPou85cIs/R92mSWHqngwuNR24VGOEtJKMZsxTI6RCTBn4LD4tsOJNqxI3E0QjJ76VgSMzMpDYlwmQ5aiszpu9q5s/JOYZC8IeGe8dUkC9bPhI9NOu6wzvrWYw/TKyLj1Ebphsx7uDH3wUi+TIElsfzLerhYuusgCUeOqkvygPGraX1JFgcklFxz4z4IePQuRBQ2Kb/CWr+FF8mowbi9tVbbB0p6eW6LWTBOSpyOAJSKXHzoRCJb60qF7Aip+sfMVTUpSjPdm6xWq8C167oO2R2cc+fn56HIfVEUUWkxxnTVHjFJ+0WIACYcFMnCDo71pmmYWaFaXjz23lvbOmeta2zbeO+0MdPJ7ODoTlFW0+k0PE73OSKBkEil6OqUq+bTsCvnkF5PXj8D0gbTB+3S4Cs7sX7ejJ57qfk2dmDd2RI3Y9hEOk9JsnkVZb0IUnt82dHq3XjbWCW4XLzv2MvG8ym9a+O4UQZz3zK8m64MjKgb5+546iUwCbApEgBKg6+2+qjivBCib23r/GJVkzb7h6UgOWbneDpTq8WFJgSArhKbUkEd0EQkrKqCmdumbuulrVdNXTvnEAXAkFZKKVJUFMVsNgOA+XzO3h7uTw9ms2lZxdzcnsBjJzfE4UpMZBJcdTGxbtilofdBOmdOSkkwA3X14/J1k41FisYZ7ZEtEzFWnTHb2MPPMEsemH6On8IrOO9SSSieKePnpqILEAj0ViGyzomEuKDsOAh8GBOCPodOnzZK2PugeDB7QIHA/BARVM+SqW3bUOYmqIA6O5hydEB2snVSWder0esjKuryhKW7siqnsZWgeFBg0YTps1LPA/SwCyLCXt3tbyKdWD9Hs6xJ9YV2KdbX7rqu1aYloPXGPHLUqx8AICxEZIwBBPZeWAiRlKI1PLZ3WSKT4fRBUGbohlZ6bza7fevW7bt3Dvb3q8KEBRCiwANr9d4L5AI3Yq499vZ5DHricAbF+OdgxN+WGicYIPrwdB4OfYHBFEix/fUjIz+2SMRzn5W779clj1aqsxkjIiH5BKKfWoJQkNfS1aaiNfQbjRkjjivslHg1lQhjb9a4xPhQWP8svT6mA8gsQNIvHdlXUni87xu9WiM/VHqbONdXSkhBNoV8QXAi0Y76mecyQnz94pWjLrVtS3kR9NdtcHRX2t2wwweX4ual2B/kFJTzkZz6VuZqTGGCYnapTbt3+107Tg9m4SuAoqgsQ77p1Wq1XC5DLQjn3PnLs6BmUF/hsSiKoEUUaijBpJQKrvOqqpZ1jTTY9pnZWhuUH0Kcn52q4KIhjUiTalpV0xA5c3jnjtI6aEHh1bpTB/FKtYi2Ueq4uNoifEcovgK9KqjsWugKeyP0L2niKs8tioL7yn242QTzHVLdtF7AlNVs/4ARW+ftqg4QzLIqu9A9BiSFSIFVAdFkMlEo3ntCEG/behmKRTK7oqAIOjHGTCaTgLBVNPnog/fu3r6zt7enEjtbYkbvKE5WYP1vcTCugcZ2zDW5J/LJ0ZmyowTSNE3AuGqtnL9KuCAhKqWLoqjKajqd0PQgFpOKwWaDCyD3LcdGqqoavVfSflbjLr2kjIYkdDBtsCz30gbjSYe5fJ8K9NCLcOmPKaHRz+LXwhjsPfmjTuLmHUq0Uc5ME0CFyQ05Xbz3bjMqddTD4WgD8DykBi6KYjqdzmaz/f39sipV79kIRrdNXbppEhGBrqrHWz2JMBvMd+QQHHUj04rDptpi6nslISKiwr6U1Bv19AdHQePEPiL8RhfE9jKRqaKSEvZ+hoARSi+9uUAw0l0HK8LOMbvbG9TjZM08tL+5kZQXj15ZKRX6JfB2ow+ZETGYdkI4e7y0ZW+GoYh3kdppvkaKivMO+9zHWuvpdGqttdZ67/f3Zs65uq47wC5AKMCCiMhDJbUA0BIRY4x1zoOP8mioMhneyGh1/8GxVsroUutKq7Iw06qaGVMgKTHBWSIxYXR3TBIimsvf5KrUweFE4va83vbfGkle4U78DbLfsYawW+D+aMOazWLKFnrdwrJvn7QuJtPZya3b09mBY3l5fmEZWVpEKSZFCOCzjr1gQHSFVaeVViRExOyqqgJ24p333jl2zlEfcFLX9XK5LMvy4ODg+PDgRx9/cP/O3dlsBoDMHMoIrDOrKCJzJ65d8yIfpXW5XhvlaK5H3ptoYAoxJFc4U7AHjDl39Z4rpabT6a3bt98TadBERSUK7jHvQvxLcBTHFlJFZSTrB0XlEl0FgRLdIL8LUxxAUN6iuWf0mrl6UwZDQLBZB2Dwuo40YpWUdC/9pWwVfLeYO6lLTwzQCzNhjXnvexfoJYropukTANRZyp8As9RaEymtAHEYok1dumliZoa+IPJb1BYwz8KS7q/vkNZT+cev2iX0OiOF/b/YL99gtH9HE4VhQFCtAw5vmFJPGV7mxbv2Z225OvLfxQuQcMn00psX1R41aIpSmEPy74DFvEJrW6T2yMtCsMSmRjCntUvxC2zBmVwvxXUST9/RpV3ugi2KSvpS4Q0JERCYptM96B2szllGDm4NYZhUU+982zYhL4r3bJ21beucb1crCsZhoLaxShEgXlzMi6LwyN1mQyjLYn9/TxFOp5NJVb5//9C2Tb2yq9p6b0GzMaosKwGUApi9c846T4RKqQBXQFTXLn1jgqQCuNxQ972guJ3XjabXTqPNsmPg/puYwCK1SeW+N5eJrzZM22+qJpUHOD5uWUAAq0mllF7WKyQ9KYiZrXOt87V11nGQ7pBICROG5DnkjDKKvPfOi7ZqUTfimRDEgWsbtraaze7eu/vh+w/u3jo8PjysypJbG8IVwkutRSl3J044mAEVQMwQEt8mDEaO79ptN6SJ8uG6N9EW80GmgIkEb1s8U3YUOrXRRNi2zjlmcUN0xCutU9LBgVgACKvp5Pjk5J5Szkx61E6HyCLqp5kiiKub+fgqhTH9BEpIbDi8JQzWtPS9JFi1Eo0obVBRkcEpe10CEa0f7EejwzdD/iS3YI79SycFAby1EUM4UqU8b1xFwhLFsdGV1NAWROdQcaFTVLirbxafEoZjhE2UGJskff3EvvNaa1OURVlVZQHeCg1er6SNrQugby5GD+y86NffFwDQi5fO69w5UBEAgUaYy9ehdGt3GZMFx1zv3TzytpwUOmyDoEa3tvXsEREErLW6qJI2gAERiIEQiD0TakUY0OwiVsBro6ytm3qptSmU9uCZOR2fHZMnjgZx2zmXVXxkdh5YCFAhMQqKVGW1VKpt2qaunfOqyLR2CFjDFJMNG50SaTRITC0QSBG1baORjDFtUPG9R2ZkNoEdsAh7EEmfxZSxAEix5jjytxL3pRvLVP5mAcn8FZvGKdi8YzTI+jL1SQke7P25zGyMGfJBpcDfPowkMNBgOFdKFUWhVOemS+NAAjVtG+4K/bGhQURANEoFVTlWvkuehbFLQuwTszHRMGix4CMRhdNrmC8G7AMouTfxxmD6mA1ZRGLWHOwStIsPpjvvTVfD8xJSSbqt0fBuKTBskkkJt4QE0+vpqrP5IhWLPamQ6lcASBVVlQE8cByjoFAB+xBBhoSACkkRhDMXfVjRZDSZfoMgIQmL51BZPssyaeuGvY+1QbkDQysiWrpVURqjwSjUxNNKnRzNQPxyufj8D58/eXZ6evqSBUHpDz78+B+/f3vRXChTABsURGW0NiAS4A1tawuT2QLXZZEhMpNUyKAg4ZBKh/AyT3c4rUeS9FZb4Eb2lS6h7TJW9jV/VIoaTzG+0VTcvXjC9BR2KVjFswDAGrY4eXSWaSMb0hQI2mcn79YYZ0kdRgtKeqaBiQkZEdklHBUpzUSV1gsbDZJGHVoLj84YbKnbtm2aJpSkTBfAthz6ecxerCuAAM55pVRYFVprYWWMIULnrJ4UcUUFTMbQCJEAuJ6tpSZkRWA0Hh/OmL0ATMzxXkHL5ZIFsDhgIuvdoq4te2dts1z5xoIIKSCFWpcHhzPv3PziQrS2QIv5eQnOIJSEBeJUq5PSvH/76OOP3r9959Z7JycIYn2LBILI4iVKJWSClSGz0SIiAHpnWw7l3tpm0TaNd6gMkUaU0tDEqELYeSdFYQCgXrXGGK02pifeohJcmsikO9p0tg1lNEfxEnPqHUzN8JLkQQEA7wQACXvnuiAC6HAUSnaaD/cKe7cilLJQ3oO1gIIohEIoKhxrSnFdt8xMZAAIgATIsifAgrRCdCROo5pOj+8ZOrnNupKhakearo10kYV5EKlOhwE0QADIfZXy8CEcISUNIxUNUp3+QCqeRJwVFcG0llr4fRz5WbWfdiMdbVTZ8KZTuYlFIUBVDWtj5BBQakgNPboUaix2l7z3g2kbU0VFkxaRUBMZFbbOdrqBxvVQuVi/vktaEEdghKZTKMDO27qVUpEuyoJF1Y0pK2qttVYXpWvbEGZMiAQYSqhSSAQK0tomjIgi0tTJP8GdB8zhl4QEiPEsFoSYnwOBCRAJHAMDKq3MRLdt66QVYEJUopBRMSpPW5Qg0sNx48UDoVKalGIQRg9AIsSimUGEJES66S7UszdcCNJQ+AERjTFB/DDapGM4EkTCYIcykYqGFFDYR74FatstLppREuqNlvFUgNxodX4V4WXj+E4A3SJhYhNPnKO7QnrGO3Y3aQZ6O8QWeeW1SHoY+ttXgqN7ff3RublusOlGAeh1zajd9tlareItkLU2gsbEOyEERGNMURQ3urhHdp0rlTB6xfKQTlTLbDUCWRK8vg/dL6wNIQFK6zH4Ss/2g+cq0UiD4RBNSY1tiGRSaq0ExDb14puvv/jq628u5rZuW9s6XZSqKL7+9uuf/OxnWheOrSYzCIgJe5HNGoLgq975j3QZbWFN0UIRsimoRKwcyyJ9zqvrYnRbKOpC1+Kf2UKjpsevtvk9S2NAJPRPa83T6bQsVqtV69jpGSM13qnVcrFarkSIKEBUlVZKUQgQJaJqOq3quqwW1jYK7Z7RB9PZQTU9nh2cHB/feu/ureOjw9ls6G1v3b70MB4RQlddDqNaEwQ8FBRKjNzXPLw3fX6tlzne5S4U6Qtfjt83tkBb4r4kWLhQFWiYSmKvSui1qajnd3pFIn9TSohKEAUSRQUFgRFQAH2GXk4dHWnJxJgfJVCK4YlHc1TSNg7HFqd92of879tc/ZsdriNHXN6LTMQaC2Cp0ytvfAiJFN6k+mIPdgqzUxQmSBqTyaRt21C8CxFJEW+QsVMZcvThVRR7nLozO/UK+n9FpFNSIUvN/LoUYUPdMSpBCr5+ttm2bTD0xLiGQLtLL6MzhWijPnJlReWHT5Kjq9MB3WY0DSqgCMq2PDav243Ip968wdd9NOc5uALFgJboRohOm5B8DLuQx20ZYFLihL5DXaUoCu6ZiWNv2VN35KgbBjVmk/td1VodrTFn/eA3E/A5sBP7oBoiJDVgmpEXk6maTqfLevny5cvHjx//7vPfX1xclGVJHowujC6tE/awmK+c49lsYp3fslf+AdYWvFEabeecs3Umws65kfhvR/wQZKjbdaPKA+QlKd+myWbM9xIf+OiVTVFw37GYH9wYs2rsSgqPaBumvjxU07a2rsV544lUd9J770PmvcBRp3vTW/sH79+99+D23dtHx/uz/Wp/b282K6tC1gI2hl69eyGiN31+pWWOr0Vn9t6nIKhNP0NAIiQF2kBB4KmICU4lyp0AkKtS2SZCZN/9RhCAkBOZu1CZ7wnSoJFkG26JbZAkBi944IfOjzwqeT79Hcdw1OCOl0alGzedemNusxuN7sq8K0TRV6y1DgoeEYXwy8Vi0TQNAGitXfO6j70eEhHvRSt6+5Le1agsy7DGYs1H6ataI+50ZI/ma8tL/1FR2UJbMCEb93JgC0CdovLmIYbRtNBFF73FdAURPyBrBX0oATtxEghurRXpVi0RbYBmbnvWa8VE3igppUARi3jvW9sqc4NFmkXY+5uV9nYhzCFSZVlCz03Gkpkx0BlKwbPz3omwCCHAbKKWy/nF2fKrb7798utv5qt6WXtQEwYlvq0mFZGybrVaNdPZrK4b27rW+cJsjJh/R9bDD4aCDSF+TWc24ESwx2embvqx089dpW7X1YiTkpTSo0PfAo0GaoQbz04HZgpwESIkApGqqkTEeaktCIe4bbdarc7PLxbn5818Kc4JeqUpQmGdcyHDXlmW0wkdHR998MEHP/7w41sHh1obJkAizqvljCTO756DrNHo/HrzA/GmKcWcbOmtZ++csO/WgYwFBIAeo7SuSnXwgZDUWHqrNwMicm8R57UdmgRUpCUKsh5eaoAII7/N+JXLOTvy29GWz9bh5kupIIHbNlQmfe3YpRGPuhQJErcb9La2kMqyu/rdaQgBUiJJydF3nKLZKK6ZKMXtWPV7d624q6c2jIskGXWTxRZ8ebkzcdxL7z1pgH4fxk5EYXdrftuNS3ZHkoRYuM9VrSiEKwZJS2C7j3zkQtnUjfWTPpickZCU8iDCrLp80ol+nwMoUxtyum0AAFxmFUhPI86S7XTp5kNXI+Ceu9yIl8A2Qs/zS+l7BTfIUNlHBsfxGCiccLQwy4MvJTq3mXnNYzy8LCWp/jEpoDYaduldN+tLOhGgsQ9PGC7Fz0QZc19rpzsGRMRaG7P8ktZIHaiTmQ2il+HFR6OBCETUmxMu55VxZ6Vzmu6R8etd0kbX+TjU20GIaQ/TEyg7AwiTH2dDk66oUNIheRdxzmoT0tp4Y0jAA/jJtGwWZ19/9YfHT549f3E+b1oHaD0gGQLdLM49i9FF09iyLD/44MOjw2OtC1SMoGI/IzfqU/pkrz+819a9PIoHyQBvu3lHYW0MR3+PLCIu2nRO1++6MmWPHncv/UMaR5eJraNejCSE0c/i+uxSZ/bMPHsvGpYTIgT5OVgZ0qgVgCy6r0PjyiXMVakOwX+peBGWIXYFH+FSwjwEdeu494mY+vaHV5Z8uWHKUi4XvxAAHBOLDnXvBJBIk4KSgfH5cnG+XF0sF2eL+cXFxXK5WCwWdlXbumZwwaMSywOEjYZlaQxopSbT6eHh4f5sHwAciA81bQERBnhS/loDziocSZG0RgYBBRyKNUu8I+NIcSWHbEh5ba5tw5sO20hcTptNf5bw0uEHl9ImANL6s7b8MiXs6uq6yHhj9jAiFBkdH9RfUnFM4xIO+16SRD1IWUquEG8WXj6W+etGgzBi0cNOVr2iktcGyOvD0MbaJiMetck1hLGu82VDlZ8OyQIba2PZLTmPGjfY9QHXLiVzO/KopJcyKJSMV1H6Xmn72V2YJZKivmbOIIHgwMEQh+gLka6+Z1/RMxTcQQo+tcvMNB2YJI5FBizJTLfJ8xkAYkKFwAllg1uJ8yITsfOXHGSYRnWOT5F4ZmFfdxISf2B3Nat/mw2vczassTQz+HpP0rNSREZlPbdQOqoakn0VR0GYSSlZk6SHhxGJxAESEUBE732QFYNelQaq4kiK3Ll/u5P0OCVmJh6MgkTEfaX2sNi2tD5ecBskztHGZ8+aCDyHcCLHwswBC4NpZd/RBF32rG6gkl/SWD0YeTYRIO6ojh2spwZPWACOKqIgjsWIOA7RWwprtvZ0icfDUilQSlmbuU6zgbrMRtKJ75ujM3WOP7lUG8Fu40H+y/h5zKiTS0N/EBH7xOvSpQ4cahiFHidDnb1LzGs8otGDY2uJkDdog5d2fr3BOAhh9w13bX50ZCK4ocRhyvWSBmV4O8qAs2Gu+hJdjESTqvRsX5w+/f3f/82L589PT8+toDIlIKGgt9a17V41tbZ1tlFK37373v333p9Mpt6DUgUCDScxxBUVtJd0zWfpZbayinTDQj7pGxWV12U+g1knafC1WnhDymXHTBvLRgez7bCunPStDQYOEYE+i+u6KDlya/QbUCQxUXWNpKJDEn856jwkHGA0Cb3/Nuwd2HqSjM0il1I4sOLjUjHd+yE4YMxFJRNeU35FyAjYsQAGFAEEJahJKaK2aVarVV3XdV2vVqvVasWtbZsGiIm7AQmt9SZJ7zU2TeOs9d57z1qpnm8LeI+Z2SVZvUk12HS+EECTZmFR4LETR/oDMXv9yI76oq47JX4c/X0kcY4klfW7utCLzRUk07wII155ZRdNANansLRgWdPKxLwy0YaFiCxMZAgEhaErBNkpbyiAIQKof6/YLACk9p0x+yUS6upwQr9e+9iFsXgQ8AYi26Jsgw883gLJrI1cGWnrare89qMcQqkUEVKqDJfUSGiRaLt0dmOY9bap3HCyw2YhDQBUkp44SIOxzHSQTrmv8xg6Lz1Yrut2z6a6B3b2aIJuvUjQAtcPoZGiEjuGQYXDKFNhAngPImt0mg3JPOPGXB+B2FWAjKElPUkNRtmgRf4QdbbR6IXB0UkWllFkejwCUjl/JE6sN7jlfNxycl4/9GsUVRNKKASFoXEb46jeEdo6iG8qi2yRgaiPRA95YAt1lXlZ50ffCcWibER0pXG6Hrp22ZGZWQbWkPHl3ilPW+vuRY4TuE9IHxQlti32xHV7zbtAWofcmq4otTEE6J8+e/Tpp588/uZrAABt0LN3TilTau29OGeJzNHRyd7e/vHJrdv37h3duuW9MENhFO9Wl+PaabtmcjWjyVujcffejaWR1mcMaXgv/dlYGH03iJk3KSqch4DkalvGsRFQWMSzd67uNJQ6lENZLBZ1XaNj733Y9LIWDInATeObnvzE6e9VmNb2il7pJejFtbe8ElIV5S08K+pC6d8Fuqi/kImuK2XfGxt8EhWOiDExNzOTzvIHpOtwi7KXWhbW0xNv6vyWChupohI6llwa/zgIhNsnOq3MM6LR0KWN6LwOQXopbbAD2CgVolNif7ao3zdBiEi4nlf6h0y9sie9vSkLUkrnK0Js1vfmDSgqXbbrIaUm9inPr/1Z105b0M8jjfYKrzM6kCAD0jC8Av/zagqxTcG20UPM3wZFg0Sg1OsNADs70jZSivHdHb557UB27z1gl4N1xNkjPGY7rDneG1YCS5dkE3vP2KV3jZbNlswYb5eoKLRzFgDKsnR+9fvffvr3f/+ruq4bJ8Gi5jwXShOKW829Y0I6vnP/Rz/5ye3bd45v3RYgL+ABCPG70lJgbXgvzZC4fukdoXEP9Ttx8qX1GbebfvLRfiudexUppVMGk9k7ckVlu4wbWLGzbrVaLVfLQG3biogi0oXWiKQBcABOO+d6rA4JO8/sOwfLNb/j7nQ13jvygW861DAv3fg2dRWfIL5uOnMJ9zGctJa2zjonCCSAAmSMJoUCJCAApFQ6anVdR8FayUZRJBXNgwMh/WX8jCPvqN4s9iQ7dCQ7mszBTule3uRR2T7FWxjsyB2UOTM3B72si0Dx3uEUfrtBU4iQZPFVAN9N1py3SZJXJR5lPE6J+nD8+Pt46ZqFHkk8vNxXjeW+CAOZtyhjjeB48U8bBUKAnT0q64ZMwYD7HQG3xq1lzCL5e9AuKJZ2upLcFrLFhUbeJtMflbYIynDYiCMd5mpk8jDrHXW5bfO1mcZF06I7vrOnXloPGKxzcbXjZrB1akEUEfae+rCcbV16uyafnUm0Vs43gGJt/eXXn//mN795+fLceY9Ks3MKqayqgpS31ih1/969++89eO+DH82Ojtq2ZWYvnkEFb7d1Xm8+LDcRXkfOxS3D+66OfEZ5D98JRSWtzzi2zuSUb9K30rk1Gj3WlCbHBQ6XKPV7QA755hhoAH1NRREWz9I0rml82/i2tSBYmJIYS6XYeVVghIQ3dc2+S3pLCOQtIaqAdMRtZ8qO7ygdc8O8EZQEs7ROV+O9O6o3qYf5lWzwekmYAwJygHH3OYK3EKKEUjz99/jvtts8c3CIhQelemc1nQB00C8NXQyQAABCUQ4J8UkpSqBfJilwN5La1Zpe0deThCJBhYVCLsMvN+ufI0UlvUsn4QuIQwATrikqEK0SCFsS726HnKSf069jvMEa4Dn92QD2cVb63wwthIS+vZwY/iL97tu+9CX+ALsEyj2IHIXSNYND2NDagpf+9nf91HkdimNOfa2t0aX4lfrcdOsnryYigR5BiBTQR8aYQqkA1+uCzDiLbWq9YwQhdCGXX4CqCy1XK5q4ShEZjYiWuZO5CTEHAIwY/baZyZNCZi+QTjQCgzj2QKiLwgEhMAiFXemcda4pJhPnGtD5VkkPy80cRzLlgbIfEgEBCqKyjBiqGHoAQmh97orV2STFzyMHCOVCduoI47y3iAB9qopmtQo6Q8RfDr9M4b4AaRpLGssKyWumMfciaT1BGg19j4YSEWOMAHiBgOpJymCBLobyuiEwFABQEQKI3zjLCBKrESGi825QxtJ0qduwU9l7SR/UGCtFxieSMj17AWYmQa2UJo0eFSrUut9L3V19FTMtIrGHGQPKMdkiggDBZmuZiTrgbDAkxAbTg4NIUZZjbaMvnpKlLCDjgneXfYZuYaOiLh5Okoqf2NfTZGZkBIqMAgvA1eJ0umeY3O8++/Rvf/GrZ89ezGa3kKGdn02qQistXkRgMpndvXPrJz/56a3bdxySKvS0MrZtrfPGlK6xRVH6piUowyv0B+zQQ8cJIxIIA26treu6nOzFiQ0+9WHx0MaFjWu1ViMFb2TkmOmujPwwWkaxz36RIb4lF2Gzsc6WaA4TV2EJhaqpNsuRmXVxlPkxm1kYXUrWXlrKNmd0mjIQCLu05KtopM73y5J3I1U/8hdTCCDMjnkcHYRCtrXe+6IoCMlvBqyPDMDxM2GXsqIoCmtthi4VyHlUxkMEQCCcYkJaOQcsDERKa0Sty6Ksqsl06pNadZBG/8owzZ3IE4OnAZTqhFwBJFKtl9q687b95vGz56dL8UVBe7OCKuW48sKe2XsQ1ISgNGgt5Nr2Yv7Sc6M0zOdnR8X0g9v3bx/dNkUlygBp7EvQe+vikHbul37Nq8JAIjOlAmjtPROB88YUCkmhdiKESIXGLr94919YN84zQFbjc2SQ2mIlGCXkzThzsvV8xIEQImC6zD1nFR/TJTp67LZEqKnM2ncDFaFAoTQjWQHnvYAAoWWvEFBR3Oax0nH/F83sEBgEBNADWoaVdSuPjrRjH5PIxLd2zglC611RlbODg6IoKLEhIgAk8oDuTOxxDFO9IhPNy2KzwyoZDa21TiYiHkuSH1IIQLhxlt3mE3YsaKcwM50x2Gz/pmthZx/dyOy4iTmMOpmj0TIpxbPxzjnvGMB7Fs/AopUCFEXEgMQgnpkZKHRZEIUA2HsUMVrpUa13pdGH0qCEpNKkASJA0ukgwJ6xxxl5XygkQOr2MQIpUAq1EqM623cfCJU+TCuMLyLiAULKovDv+HRItaKhAkx+MK0ndoJeOVRZ3OOI029MUDRSPzrZ9RKLVdaR1WoVtl4ItUp/f0UXRzQqr+uFsfK3yOb8LDdPiAjYZYwEiFMkYz53HSTDh1A9DwU6y8sWAXFHwjw71pZfxj1/E5bgMb7Wb7SSbnn0jtjlLRSX3PpTxhx2M7h21KU0jMqt+bKw/+/a1821z9e1GySjON5xuZ5YYLGaV1NjXfPk+cO/+8UvVnW9t3+IqE5fvJgZmE6nwY96eHT04x//+P333ycij9A6W1urlCpMOZlMtS7mFwtr293dKYjDYTOCCsiG0MProrjwbmJ/hTYjUPa1enW9PblR4rdVunEXGo4EkWCsZuHMspBYv2W4AxBCJElyDSVYZCRIISzW+/li8fL8/GwxZyERVspoo4GA2TEHycgQKoOFRs3WoqHV6qy1K61oWpb7e7PDw8ODg4PUuA4AaYXW0Zrfsm4EQSQTVhJfykax8rsqqXpDW3hoPxlQpRQZpbRWSqFSvmk33tWb1zubO0aQBqT2+tFdZVmVVTXd26uqajKZpOisoFgGGsGQCDem9irNRi+H4EakVvp5dFaqkcyduREzEXGThjDWWSj72SZFZdT5HWk0yKMBT7+Oikuum26zbSX9v5IbnnbsFXSL4w2ZmgzOz+8xvbmkN6IrKiphedFlocPSJ1LAy9IZvTVSRBwcnDunar6Rbmz2c+1I3QkU4XObNzb1SQxvAnY5Wm1+s6KypdhTHmtxlXkJCncnLnNWuzeAvNP2d2lQhEUgOiXdZn/FtdONzte1UEyBEjPkhL8TgNJ0dHT4zbef/+pXv57Pl4Io4ECCaRlevnw5mUz+4i/+4qc//WkosFPX9fPT0/PF0nkmotne/q1bd+7evR+ShJrXAYUGUyUiBt9d+nfpS3pRXuDsWigtcnrtglQEsgfmuaN8eLWT/juktHTj2w+hvpwklDnpAOuSZP0ai0QbrIYI4PuiGYKIxM77uq4vLi5OT0/PL1aojdFaaQIUYc/sWDwLt60nVQgBK1FGmb2qbi+alUWtTFFMJpPJZLI9Mmq05pnfdM1jjs1A+W5W16gbV8NC70jeeyesmLXW4P3VAtHSxTxiDkVhJpPJ3t7ebDYbKSougTaMw0rzkU8b1Jm/PQsOEbwcsjFqYeTKSBWVUaAs6aG3Wxocfc38t5sVlfVGNtEIxLXJbfJ9iYX+wdObS3ojurpHZZOln5Psk9+hohJyLhP2IN/viLLde6UtFFvY3aNyE/lMdhemt7CzEYL2Ct2I79XZ1N/4FUPdhiDXMjNsK/VzzTSar7f23N0pdCwt6tctA4TD/enFxdmvf/2bp09eECpBYiDvXVWVGnxZmB//+Ce37tw5m18s5ovzi/PlYnkxvzi/WKDSRARCDx68P53uF6YM6aF0sZOEgAjec4gIMsZYf4lp7YbMsSkAD67blRHajFVTNyTKGtPoTd/9Q5qT0o3wbriDOpuHsDADi/AAixNmn564KfIeBhSEAAj1igpA27arVdvlI27rlhvwnkErQaWQUES8sBOQ1bJGXVpTmcKjgG9X82axXM5npT45OTk5Odnb2yMiYcENCYJuYs2/Gx4VSP081xGMtuVZw1siviLl+SZKefiaZIZEVPSaZ4aLo42yvlZZCqx0a6d6xWjSBTeqNzsujy22xd0VFc8bk4+NFJUdWda4xMqGRGfdIX4ZveXA3X/g9OaS3og0c0wK3skisXXqSxaMCqows9aD7BJ1EuhAwj5DjGzoJUIfdNi1u6WTOy1lkSGTg7AIMwbLAVJMRCbxMIndGBvJdnnUNqK+xpOAOOdHYu+mbRn+Tn3m7LQkR8TRYU+bHt3PSPh5J0t1v08eO9Ie0xkU2TRd485nbDjn7emjscexEBEz5/nas6EIqkJY3+u28HgMxMa7ncAj7026UEc9TFl2aFMgqfPVjbxRMYVX7EmoG8pdB7hvnKXPVrzjKhptmXy+hnEQkTwzRodXvNyBuWnFyrBmYA0VlrUzhpVgHJBwe99bQMSyLNu2NUUh7P7w+WdfffWVs9wya0OgAgDGm6K49979k9u3Hj19/PDhIxEWgMV87r0HVArQWkuoHz16vFgsyuOqLEtrfRjtcIpv19yoT0KfdjJOccSIx93U/+Y1wNDZUo+F25KQX8zBh2vyXD6m+ROSlse3DI/Ay25Ya3w0+5tDYEaF2y4BS6S2pzgIGYdeW3pZ+xumaxwdlLgQsQcux+fmDW5jdNI77UesDDf0OMCQe0aXRCwgAiKLeOddOCQSuYeFY2gijtzI2NXNRUIS9NYKhrAu8uxb29Z1HZIKiDhh9mAB1KQsp2VJCMLee392fgGAFilEPNf1crlaKpRpVd67e/fWrVvT6bSrop28itaqtw5KhB+N4PiXnRQCQgqNuGU4mIlIK+VFKOdBWR65fNfIhnU92g5bpjJrIGfLW2hL8DTEsLRweqXisnPUk0iQTDqYnyQEfQYa6mLMJXlQlr4SEfu9jh2DhbCGfUTCQ6f6SsdJAaNEFF4kVXfdWhBFpHGp6IwN5A6Q9GvyOZhq00aGkeEsyc2WZIEeMkUly9C9dnAknd+cJTmDTGYqRyal5Oxl3aMShZZoOQqMJebvCZMe/FRhfXalgUKiOe7rYisV4MQh80fY19kZHSvIIWLIt9B9hbjNouzRuary1FZIhIHjdZPSNUbU1ZOO5r/49x4JNBip09Hol/EwDulAhZgaRKJRmsKcshtHAsxmkTu9a4sz/5Vi6qVfpa/3nX4IDxqYICKCAMcQZ8ThbOt/EOU5RJQ1VGVoKjCBTHbY1OP0/Tf/LBeCt/xMolzCwuK9ku4VIm6qZ+4pSx2N25tqKkQEAQaA4JzTeSaAUYfTz1EoDLwzuTTMyJpVYMy0obdFpXOMiJBDAkbcQTbIc5fqM90l2Phe1OfFoj7ZHPTYodSbPZKfMQEKrp9zUXKN6dHSgyHpxsY1NdodIgLZgTS8rySw78gHw1dOxiBm1L1sT25aRdjrSOtZbjLLaG4W6h66fmmsduf3pAvA+c1Ry5BPKw6PTKNowpmttW7bVmk6ffn4d7/79OLiAki3rRck8Q6ABUWXs9bbL7768uzs7GJ+sVrVZVm0rVWKCDURe+/3ZwfMPqBtjDHM4JwzxoTJDY6FTR3GXk313kflpFcnhndPV+wWvjmiqOdE/WQ0nnFhbG4jPwI2suVRr4Z6l4F1bm599KxMDdh0V7bUctNCVBUue7V0h8omVnyZLryxh3Fm43bbYUjzd+kLpUUw3m4UxfGhlBv2JbqDfCPMbDl9FUpu7kpOhr9TKAGLCggJvRcJgmwvsoT2q6qc7VXeM4poBXtG3TqcHcz2gKWu6/mivmjaVVszszZK2JVKHe2fvHd8eOvkeH9/P3QsnCnx5SM+UESAICoqzBxK0K3zxvAGwmi0qleBawgiKq19amdcg6ESvcakxM+jGh1b9/Llfx9xNu8yg1Qmf/fqbseykkaijazvGwIIMw9xZp3MIOABsNN7o24WmV6/PrsmsL8qIkSIDOxlhPFm4KAKAmI4boIQEjCrwy9zj0q6mH1SdG7koqHNCV596moQlzY4mpT0Em+GfqVYskvkvZ7WpKiN0C+VSw4jKSj9vGnZhGGUPJNNlGGcc8FbG0DFwYsVFkyni/ad6RQVQgAUFq21c67jvgkspVNMA0/uVUaMWgp2ikrkY51VK4kXo37FYkjuhOnx2ufmBugKh/baDhFFTjIe3pxGl/oxH+/cNWEpuzZcGukpmeUnu2uEtN9kTcAtR2D+dST+hSkOzb4jNRn+SN8ZRVvmdjN24LPDXWqcoF16G3bcZmH3pn/c0o3uoO1pU08oJ9vU6aX0rh2D6bdQPBGZ2bPfODTfB1ovdPP6bSAiWGuJqG3b09Pn8/l529ijkyPrLoRJUAC9gNRNvXy8irNpymLVNEVRaK0VKICu1MzR0bEpChgWnryWtPpKCvbsPqkayDbr0uUUHSmhDOsoVev3i65xYN8puvb3og3mROyz6sSv6X9aawbqpANERaqqqtls5lE5XaxWy2a10gT7RXHv6PD99+4pwIv5Aqn46vGzb1+8YEICKbU6PD764Nbxh3fu3Ll1ezKZAIBzTitNu9UO35EkcWptZ8tXozQ98WUq02tTGtexRYQdUXz0ujz35oSIRIgCiNAZzDdQqOvnvQ85/TJZfzP0S3jjoG1VVDaqAes+t+GrDKfDqKLAlga3SJxvrqiMQFzrga/xfAlKS6oKhuUXsMHxwyjWK8onzDeyNt58zV+NkvdikS1ZbL8zutpo/1FR+YdO66CLS2nLkSZ5QZ9od6Ek40IvHG9zKaa6yqZ9Hn4TFaFRC9fLceLrAAB7fueq/b0Ovbk4ggiI1DRNWZZts/zd7z6tm1opvVzUShvnHaMH8gIyn8+tdYg4mUzatg11yo0xdV0f7R8xd/FFt2/fKooiih1a69VqNZ1OiSioQ2/Y4Qjq21GsWSe+jjKs7whdh6b6LtLbfC+Ujdl4gqLCvZtVaVVV1f7+PpnSTCdnZ6bRuirM7ePDe0fHt/cPCqJ9XSo1MbokpS5s69gpo2/tlT+6d+/DO7cP9verqvJD9v/rJJGQQ0QIkRRdeyqPUXriK2/ASGn6pt2lwDfnAFsIEZGQBIi6VFGbyFrXNM1yuRSRpmk2xaiMj7M3VlRGR3ZdbzTqiR+Gd2SRTIMAx93YXGnxzRWV0dfU7BitmSPQFzM755qmiYrK0dFROH3WOcMQeHkD7B3zVBBvs5yxUqqHEclNKyoj88GOw7gl2dIW+iErKt/TFG84QjC9MW1fPthj7oMisWmxjbc6Z/wlUIcycq53gIZCVRhdoiAbk9LE+CLYqnPjgOCMiVwlbWH0Xm9CseciwvI9UFS2LByd8s3NPGXjkAVsrkLrbUmlde3FYjFfLt//8E8eP3kRSgtIQH6imMIgae99a50ALOvVRx99NJ8vtDbnFwujjNZmf//g9u07WhkI043knKuqKhTn3g792pGKomRm7511of4g5QbxV9O4DOv3mUYCwQ9GUbmm9xKArgwKIKEIgsQSIoIQsM5aWAQYkRH6LdFlMu1BaAgiBGIQS62nVQVKHRwd7pVlu5od7O0dzqazaqKYCWFS6OP9PetvOfGPX75c1SuNcmu2f7J/cDCbadXh6ddT2G1ijq8SE6I0HczPEgQqQsV4qUBz9RVyEwn34ufdxcoI4xyDBa5JbuyAQRgCLDf+zLZtUzer5ZK9t0WR1jbJKphs9qiMpMAdFBUctNH+e1QXBqhff8m7jRmZG7tR5dCbA6YFxt4b6bYY0iWKSuhL5k4PZs94pllrsX8vRASMEAxwzvV6Cltrm3rVWgsgihTzAfTp1EYelVBKFdYykvf930TS/9u9BW5AX+cD8soFl+YMB8gRjJf3QrKSCSGegQHUECXF0kdeJJVer5NG5oMdj8jt0t2mS9p6r7XWRYFNwwgiwND9pxKxUpECBGZPgsYUzCw9srnDcnYECkmc961VRYGYFVmXDfEPkK/s8cukYOhR9xODRGDoIYNQWP7OO6WVNoYBrPdN206YyWxL/jCSdDf9cntsgCLlAJh5Mpm09Sq9mu3zfDTCJUUKCuXX7Ac4lGBLk/Fll9q2CSdEURQYEPwg7B3E5X8ZrZomHIdqDdmC2OFBg/iYGQmS11dGs7Ve2OiiaZqqqnprB7etC28XWoAEagz5GBJR2ZfOxRwCpMhE8wmCCp50CXW3koJBI49NipUYgWtphCdOZeI+zxUkBf6UUiKAScAVAghg4I8iootChgJMmbS0DhUFgABYzflyV2tVumKUaY8y2FLa3sga5MbAU2D2tW2BpVQKAQS7gEARAUWdqGKInXfWeecI0CgVyr8hYcsekARVKAkn4IuJ0ZU8/erh84uVUPHV44damcbWznutlbOwN91vm8Y2FgBms5k2erVavXx+NpvNVhd1URxMp9P333//pz/90+PjY0hskbowAoCKBMDlIVWYUFgd8ZLuIYgBBZBu37KYsG9EpCwVi1WKmqadVHshEiGaMUbbPM3yFDAD3AdoFjqpnpZvqEzCkKyHnnNjcBr1IenZmXUDs6NqxA63WCtTlDCk26HUqZGbhQe+0Tgbd8FIJUur6UXeEkAsWm98VlYNNjc2k1KRRTjnwuaC10wqmOJIs/cao6svk74RAYBQFAICE4rWVAiZwQ5TIXgjLYnVBM77FhWaylp3n3np6mZaNFpZ9tV0qkDXbevYGc+NWI9UGlNpM9N4UJYXpT63DQId7VcKiQQUoibFAE5QaTPF9mRCcFjdMgfMs6Io9vemh7N9XRrS0NpaKQWAnrN01aRNx2REKCn10kkjiKhUlBtkqCHLtm0NFt651WolAkYVzESolQJNoBVqRQRBLSOlNCJ630aOE4Y9bAdZq2KU08bcUyOhMLuU1wCJWKmiKJxvN90kIXIaL0nbw8lxw9KJKyzgrXVta63tTPL5OR9zshNROGGDD8SzN6UG9sC+D8YOzBlZWOsyHg8sfWQ/ISIWROLa02dPy7KcTKdERIoCnM9znjYj6cemaBBYA3ENPwNipI6z9aEVUQlXwl2h57SMKQAAOD8OYfU9hbhBAAjoKemXASKpRPxSpPoU9uEIDPlWiYiyiHkZ+2Fyzpm+ZvatUEXkqczsheMSswVDOIjZs7M18ty11jkFXK+Wh4eH3vtQxJz6TCFaa3RuYrTYtjK6MaQ0Xlwstdai2FknStAgt16AFSpC0MEwERg4okI0ihSB9x7EAwIixezSI6ECe5doPHL6wcTWg/MgqICAADSRUlhoKhRlh34yUAhAIcyKg3pCHgDC1CM5ASVAgCRkRBCUQgWkRKnURReLAXVtJtHDhKPDbWySjl/X65ht+pxLRON9Gk+iEVw/5fNX86h8D4AQlym5726/R5xolIzvRs2fAX4jIgFvc2lE1BadLe3h9iiXG6BdnzX2dI9aef0+xzN7HRc0GsMtheRHlIvjb7pUo08cEYFArGcAD52yJYi+tUHbtG2LSIqoIGWtq1cNIWoiJLTiyBitSq0LIS/oRbitl/OLc1OUAti2LUtblMVUa+ecW7rlclWooiw0InonCFIVU9vYBa/eu/vgzr0PHjx4/7333gujd6OLpV4umB2S84RKg3iH4oG9bawy1Y5juK55vi5t59HvAu3Yq7jHpc+JdwWSPmjtu/XqhEQ+qkusE7sRDn7viR0CAZZEujDaOst2qmE2X579/g9lMSn2ptP3H9R146dkJkUhSE1DoFtFpAsuS08GBSpbQd2QZwiSKwtwcNQgEgqCq1sEnhhdzPYQsSgKY4zW6srZeF/ljB9zvuTf9Cpe2sy1bIcdKTwocZvfIEWuS13s+8bBZxYU6RfNroMgSTYqZy0RKVYoIKBEKLV+YQICSeN8RmfK5tyvhJL0q7vWfReVGPXS7guM7CWjc5/6SPSiKFI4gyKTPgoRUZC4ywyGQ4KTTIfkzaUAR5a7mMwpuDrj70ZnrvIcTJHivSOwjQpRGpgkRBmt2LT698iQKOkH7J7b1YIEQSQkAMGumDxEQIekuNDx4/rvCDDG+SBKbsvE8KDNTrOsl6M/IzCE7Jvhv96HdvmGfm36DmEFP2To1/eIRip4zppv9lwIhhDnXIwPSR58SfqjdeLet9a5Td5BQqDEf+Vzi1SmV+zYXsLBR+fouMHdWkwbJCLZjJHbkSLgIVi2qkqzSChtJoQs7D04a533qjAC4BFaYAFhgmBqDgY5Z227csxzrTWAY2hPbu0dzQ6ctdbatm2ZuaqqMA5VVTGzeNFaR+Ortbaqqp///Od/9md/vrd/Eqqg9K95g6YDpcgYg0QCrYgYo5SqVsuVMdWOT5UkB+6VF/abl3y9adpeUjBSkGACsFMpdbUlysxa6zCq3yGvCHlok0RxPSEAtoDACB6VEPJyaazf16p98vjsiy9e/O2vDOuacfaTPyl+9uP7/+yfPLYtaA1ESshojUVFe3u6miiltIdJ0+Jq6b1j65y13jnxjALMAr1xdzKZIKIxJqRPRUS47qCUa6HRdrjRlRzj1rqH3uRKwQRODESytZZxqGFCinDn5R9YsbUWe/88dsyVALP1lx6ye3t7aQvpaGd1IdO7BBRnpcXiJQFxSiQViRMLvXZjj0pImRWDQIKWUpZlqqiQ6hSVQa0JEaQ9xIZoKGbX50oD75O0NJgYCrp0z/2VMB1B0xKA3kknkDpoAAHQOpROUSHwjdbhkQJAiiJ48lqkKCIEQhCijXU3utfKHUcUMoAjsHjeqGe88zRS+W7agpDSHxWVd4JGCcWvBsm9GrVtG9ZfQLlc6r/bLlJEGEAshPKukXCeAB5HrDJHquxAMaKmg34lJ8fVdm96/NN1VFWPZ5tSigBBafCekdmDda71tm7bVV23zurSoFKF1kYZAgBC1duL9vf22bN3wI6VIqORpYHWPX34KPQ5ZlNZLpeIOJlMAm64ba0xejrdK8vywYMHf/mXf3F4eOi9zOdzrU1aQfINX3PLABQFIYp19XI1n8/PTk9f3rt3/87t9wozWTQbMdmjMQwfug5fKSYyMxnCGPryLtCOR3jQPIMxIgJCXpcCr0jzil6hkTcnJEIKlcJGEgx7ZUlQMwlo59xMF+Xq7PTf/mL+ySfHbn5sfamnT0/PH/5Pj9pff3pkqsM/eXBRKCgqTySFVqUpTFnqqihKRvKVR4XOts2qDiAtRg9eBFiYq6qK/Ef1eC2lFCD6XW0mb49G2+HaA1FGzworJIj46iY1N8ShOvTlUN2eWBhFFCpCwu0R9AlFj0rbtmVZBo20KAplNKKWDYrKFlzNqPPDZxgUFelOuV5RQRCVxMXniz4Fq2KeaTfgLLTWkdUPhpskVkYFiIEQey/QKypKBT0s7foosmWTRwWGvoMAYBIbgDlWjzwBB+BApwd24opInNZ1p8rViIgECQmIIIsRyWnUw8Sj8gqX3TtO6zbZt/ZojYgCEo3i3FPAbg5dlCRgto8dxFgErdezPUuwzUOHtwHmzQvxSpQ1Ipdckj6TtPSrE3trEAvrvDrhaKhHQ7/plziuENM9MWARu2wqOKT9jXDhtHEeMl4jAqbu/rQwovR1yvpVkioSfVP9AkofNJaQNhD7Ptaol0WijBsbwLW8sVHgiA8KR6wE/Ht/e2+xfPWCRhyy24chiV9TwPMYFCHjRpIeJhjfXFHBXO/K3uwyACX0bxAvMgvAUIOSkwJ24Q/xdkqO2JBEKm07fvKeAWRDmqlddw31dU6C2TvOmtL67GLBXpb16mIxf3F2enZxvmrq5XLVOnter8qq2t+b7U0mRwcH+7OZ0brQRisl4I02JMoUhohIfFGURVE8fvhouVh6GUqRwoCvw7Isz84uCjO5d+/Bn/zJxx99+KEpzGKxnO0dFEWXQVL1Zq5hBMbg9ey9IFnV2ZCOY0V66x4A+0ahrObnDx9++eWXn1/Ml08fPf0X/+L2YnWhqin3qhxuTl7RGz77kpeb0svni23tkqQX0rWXJ0xO7Ykgwv3hmlktIV/ko36P9uimbkA/vD1Wc1yWNrkr43KSgTw3PXf8rNxJO5RLuhYaCsn3yPvIN0il4znwljBs7DlgU4JQ1cs3AmiRSLFB56dOivnFt//rv3G//u2HhkSamv181ZDiY6OfPHz8y//Xf3v4859NPv7g4KOPqru3njer4nBGABWoShct6RU2RTVRitizba0gIBGzEwBUBMJBtIoMJHIbAoK+KMr6GEIfQTF6P+wtx6khoIPmAwd7ivSQqvCwMXPpCsuENZ9VGsRkBgHGJUSvdrjnp/lYDIr9350HjgTE0eeOK0IvS/YCen4CpDVJs8YVEYVi0gx9Gpeg3VAaH4X9X0P/g/0uCidEVJZlWZZAqFSRKSppoHm65XOgGfv0LMM0KZxnzrlC1KZQaxOvMCdaloAuNbssKzH16S6jlB/DyaA/8rSh4N8A6UBUCKKC8SHo/90YMAyPQ6RUAeMkvA1Vbu8T9vFS9lJBYEJAJNs6EaEu+ogx858MpRE6FStZyqGOUJBg2fOwKQSjCTI8qc+RIZLsHQBPocYOMwgIS48b7DuYqtb54g2u/ihrQfQ+9Z49uEwHiDsF069r2yKsXs+Z/BbIp9Wxc1VqC40s1yNGtAs4c8uDYmBk7PmmGzUigvSlkdRQy3n9sBkEx94nG2J/mVmFIVYKvfPeJXIbYlL4Jh3WLX3awvK2HoHDX9KzMEpsIQHAqB+jQzPvRt7jsUg0fO4zqAQAI4IAEkGvYKQF19P2vR/itkfrJleQuv7HyoPrYxKXe3o+ZWx6M5/H/iAUkTCNMsRfjgT6rJWA9YKkUngAdQzRnbnFJDCUTa1FASgqKnCJyB7u3PQlGxvhnRbYuBtJfZjYjX4lp8lxurlLBzz+cnN3Ny5tZhfFDu/96K7L77mkEQ5cwzkX8pyIyHw+XyyWL17O54vl0+fPnj1/frGYL5u6btu6rlvbYmlIqVJro83edHq4f3Aw2z86OJhMqlL7B/fuH86OyRSIuGwaZW1ZTOt6FRW/tEB40zQiUFu7Pzv8J//kn3z00UdFYdrWew+Tat85jvkJEMe+c+GNsn7UTEQkvGVybTQ48ZJMK3Nxdvrw2y8/+c2vnj59QmjsyvnGGTMBIuiqK4631CZBRyTTkUfqTVomdTTHWVRlrpttWdnMcYEFbeFyRWWNduKc0XaQyO6XU2pfDsdChDtSlll148JeZxqp4WYL299xww4SXSdXD3wjz5kxcEUEcMwd7wrji6R6669CatmCMfsk08Xqxd/8Cn77+bGwQrGlJk+8aJfNsm1AE8H5y2//9f8q/8bc+8mf/8X/+f+oP7pjmVms5ZacYY2ISEYTsC0MafJMIt6LEAKR8o2FJIF7OAtERFhIK9hQhZP6IB8iEAmfe86ZDF3KlBABgbQm8BJ14CBnjALFgnIUl0d6Ld2z47mDK1I2s/kGw6RiY5pAYguNVvL61/4vksmsCXUiS598ZbQziBQKiPVePHPIrtIZHzxnIQqYDFQ8oONBGbwTXsR533lzegk10qaIedgMcBAEUBBngzL0VForJdQcjK0DsAT70WhjBnYtfZnw9I9E4G2DXYVr1IgKw3ihdPqHdFoSAtJwLGbqLYR+dJdUugAUYZKuI01qnJpTV20NUMZC7ZDJ8Z2iElWXqDygAEOnFqTSDhGxeO49YIhhpJIOB6UIupejTh0FgUxRGWmWIxmFKEoOkvyxB8nltoZLZrmXD2V0JvVNCUvIMLF2wiY/ptcIskobT79yUhd7JC5uPVPyXiW6xpYj4IrQr7iTt4OCvkOKakkXMPm2iAgxaObMbzN/9rtKW7TOjKKKEm+TPu72Bnt385T3/2bfBRGDVhwQxmdnZ0+ePHn58mXd2qfz5bPnLx4/fbKoVyLCCNY7a63zvoAKAIQZRUCkVOZgf//o6Gg6rX7yo/fh+dOHT5+3tSXnxbV37x6u7EnLXpIXCzMVEtgbUz64e++f//P/9N69e2FC27ZlBmbxPktedLWZHSVpI8wAEslOl9Xi3Lnm8aNvHz/6dn//4OuvvrEHvFquisPJtU/DrqW4x+/89vjSD5Wi1B5BAW/CNxCgQOPZGnT29PTp33zS/P2nJ9arSjUVNZ6VcAViqXSFs22rpZmuGvu4Xj1r/uabxx/8Z//JwT/7y+Knf8IlzqEhkUJpcSwIRERak2cW6XwR1DkHo9qwrWPXeoRFiZyUIq3dlVBmW7XHHyYxMwqrLpT6Ki1EhUREmL3SKqopqcQGeeWQ0fLYqMOjqEINyqWI71O5oEAFZbxCakA8CkDrnEMHl81j6uQPRRhFZDqdzvam00JrrQoTvO9ZbEw5GbKVhKyh6QgML5IbbtK6HCpPKEyZVQhDVcemaV6+P6HIHgABAABJREFUPHv47Nw5a63FoK/3gCAWpoTSMUQEpB5ys3XrIXYQUSIawQ9FJCRXUISyLWX0YITG3i7svddak7oGjPfulC2hd+PoGcl7mxY5XFlRidb9d1aU9N5jSDz4dqubIaIi5bsket/TUi7XRpLLlVugxtEwH4AQXaWz7zTi9lroauWNrkZaa2utc265XJ6enl5cXFxcXDx9+vT52dmnjx7Xtm3b1oswghf2Ics+yXJ5oYgKZbRShNQCXyyXtbNaqUV7/uGHH3Arn//2s/npWWXoH//lny2b+xfLhcsBz1rrsiyLorhz5+7//uf/dH9/P0QGe+8nk4n3/uzszBhjqjLeNVobsGvAbAb92lLvr7XNs2ePfvvb31RV+f4HD+q6RShExFqnyxKuldIX2cIPR69M+McQwTelcAAFvHGw7UW+IVcI8xBEi0etqj/74vkv/m7xm9/dN4UHdkwTNdNzb8SIKK8BlC2L4vZ7d2xTf/X5V61dlI8f/fb/+d+c/PYPf/5/+78e/Ed/5QpgBO9aBEFCUKS08l6xMChCCeHCwST9ijP0JthgwABopUBr2Clia0x+c/qmHyp59goEAEkRilzB8BSnMrACWzemMNPptKqqoijSWMeRDy0d3jTOPkVkAbA2lN6VLpuJlDS4NYhocEY/vXj58vzs2bNn8/mc89Sd3Gf5474QZFVV9+7de/Devfdv3TKEWmnSJD3cqHvNnkfLGl4ot7tnVv/MCzFCzOLg3CUF1nJr26ZpDqq9lwu7XLK1lgiRtOoJBFMVhdL6ChKOm86NuU1R6bZpVFQyPs/iFQZlRm1hNkqpGEyPAggcVD6lrhjpdzV6m5HPO1JUFMMy29LDK52UMoDSoutneDYAAHfuqd5v1ufde3ujI8wgEhbasBlkW3XhNyMU7J4HvQ9HRN4RzfW7ohGT2mJCZhHqOXJwG0vIBoj4buypK9IWb+YVG4xmIRn+DVVC67o+v5i3tn3x4vTZ82fn52dPnj559PjJy4v5SxZVlFBUzrbO+1BEIwBCFFiFoUxKyGoIXgC9sLgvvn304uzCNbZd1kpELFpxy2blxQkQhP8BgIDRqiiryXT64x//9P0HD4Tx5cszpVRhjGMWkWoyddYDBGxk+JfTsdlxYEanL9veVoeMoLBL0NqdgC9fPBfnV03zy7/9xWSyjwiTqjo8OFjwNR8Po/Nmo9d+tB3+4fGGHMQW/hUAQN4WxBx+Q4zxJgFgAgFAReI89GOriEAkxMinecEFBbJDqo8wAEIhElQimtmwL5fePHnx/H/4a/+H359obnxbzqbiRa1kWisk1SpUmovGubouvT+4d8vvmSfP5nrOxdnS/t1vvt7f+7PbB+VHd93efgfBAFRIqBQqIocqxNIQQsjvRwSShRaMxgJznGQAfIRUyuMgvXzY1i6KYJezVEAwoOwVrd20E8PNDv0fkJay5eWZgRC6uBDs0zd1IoXssp+jZBYUlcl07+Tk5KMPP7z/3l1NOk1Hacwgm+VxKIBZnH1ueKbhDXrtUQAAhYwMATnZdCHc8be/ffLUe1fXq1XjVBLdFVFGXoQANOF0Wr137+6ffPjBBAE7hiaAaNLCSvlLQwDbCUAetCmSwZFCr/oepwoMYJ51WRlVqHJiNDBXVWlta63VhIqkLQpTGG1N6qvEtcylRCjcrdtxUazsS6jo2YU0iQSEH2MITAl7MWzkzZOfKPFIiMhj/Ahctutwx32Y3tJj0wMmMW5Q7KZojLl6zeavn+JeCDRKZ5f2UDOHXI1aKUNoPQgAdf/JCHMW2KNCJM9AqBShs+wdEBEIAQsKFgjkrG1rKhTpQgBQEAVJgGVIzTZaN1vkuS2pBlKIHvVl0a21wlyoQoAFCRSKouBXUYCKSDjVVUbra4sRbmOBM0PaC1vPoFFK0xLUzk+0Js/eW6WM9wGiqrP3AicATnh9PRpS0dMabTDBSqFoiFcZjQZutklnkV1559MX9t6lIle+bkZbSax14Yl9BixRShlT1Mtlyhey80xpSYJtUn+3MoX33jmvFJDSRIqZrfMgUhktIB58V7QrjQcYrY0UyZqCgnJWxN6WZVnXNSIaY3LveeZ8lC6SAVShrPeoNRF57wM+1QUcc48sv3xS1FCQLrxvrGLGeT3grEqgh1iRmtnHVSoAqCoRZu+ImZAUMjtHIIL49bPnF8vVk2fPWna/+/rLbx8/en5+aq2jomCL7AU8EyhDxBFALAi+ICICUggKEdmL985aRmposmo8CRtBZbi1q7/4yx999tu/J3LilFY0LXUIiwek2ton3z4+W9rHX397/+69yd4eklKmms72q709b1mR0U2xWtazWTndq5i9ooDTdl48qT6QLMmIfVmR0yFsCUEqLd7WnptVPXfescP33vvQW0WkrfN13ZbltGltUzeT2dGqaVVVLHxtncRwI5GMw4TAnrD1oLeAdt1I0zPkm0jlJ38WwAa6t58p3VnW4g83cpuC+q0nkqf/2BZvlu7maArtczRt7GGeaDjjxCotSguQyfqSchvcfNRnPSf2Idm/9LHvKEF5zaxdksQmC4IHbwQL0IUgMDjkRoEH8ITsa01KlUqZIDoKioB3IrL0dVlVrrUIUhYFgHjnFJLR1PiLAlrfuAlPTtSxbZujpZ0+eYjffN3++g/Pv300f/JUsV9ZIk0orVLmrD4jC6SQQJuSQBVUwWJ5LuTePzr4+PDg0ZMnT4tzgXb+yb/99//3r3/6X/wXJ//pf/Ks1ASlEWFAT9KQ0yAV6ZalRiBNCgEIFFM3DlH0ZRJERAJC7mvNkVKA2NUT9IQibB0zo2CXCkC8dFYLAESGbpkLoGICQREOUc8MrAlMQbVvlNon0iLIzA4dYbBjRCNRN50sApzE5mULYKsCvptynldpz1R63yfF7o6MDFOdnGWbsdYhfjLksAIBlmCDJwSw7JGZyACAtbY0hoWBMNQRRGEGISIEpbHogYYggkLIXjyz84A0VCTsLKQhABWRwddNw8KG0IM4Ycu+NLrUpTb85z/7+N7J7ZPZPrAwM2PHlbcoPTkHkI2XRIZsI3m14lEIpPL+/smxoR+9vDhduVaIRAiRCTSBkCZTlqgVakSUjz548PH99yYEyJwcmJl4sN75ofR6zvPyKNiNt6fRGD1bIxHY25ucHM6Wy4vJpPDeOc8OibXxSpVFOds/qKrKGFOWZciYH9vn4H1tLSoNSqHSDC0IeC8EqABVMNsJewFmIQVesFCFElcSFYCabQi0d4AsRFq/UvIPXI6IisKEjHYKNXtoHaNWQkoppYtCqwKF0imjkcdSI3vPKM57ZtZKhT4TILIPFUgFoBVRqCqjCq0IQVzuAk065iHDGaYiVvp5JIpHWN0YHLFVCxrJ9iFkMUo7m+66KvZgs/mAJAS4CgSrj0T33s16h/soehlFYAfz/JC1jHeyfLwmxb2PgUXJYPu7CkXE3pVd6tFRG8isVZ3fRFd4XJQmQ0CeMQb74DBr7Sa8fiiApZQKHKRuW+m5XdSwO+/K5tG4WpGK0Nt1Z+BNU+gh9YkyruT2jaa7II2gY++d87Y5Pb+YN+75i5enZ+dfP3r42Vdf1OycEGvjBdhLKsXGYUQBY4YEjtZ758KAkAC2BgFBC3j22vtKT+/duffLv/53EzMpDVVlCcKz/X3rxaH5+punn3/zmL49nYn98MF79+8/uHv33v5sZp1lb0VYK7N3UGkDrV36i5o0GK1EvAAD+rZhJAw5AC5PonD5mDrv27Pz55/94XcPHz40uvr5X7Y/+vjPEGSxWCwWSw5niAHHPJnuMTCNo9MvmaN0sb3lRXJd9G52XjOiAGNX5zn4T8NS9nA5UhYFtJAgtgpbQpBQCRoKD+ik9q0lUEppIl1oAmLrnGf0/kdUzZ+cMXOhtLOL1WKxPDtvlit27Uwa36z8agXLelK3ZWvtZy++hU/ccoXPX+xXk/1JFdVLQhVCo5xnhai8EJIXZpBCUVWUCsAg3L9/d//WwfnL83rhH//+s3//3/3Lf/GnP519/P6CiAEYtfLKeCXCjOKJo6W584m+aujCz8LvMckgMP5RanrHtIQgXJI2Afmy4pLv0IIJNLK8fid9kCT31GihbtcrohwWEhMHFhcsvye3jg/2Z6XRIAyeqW+NZZyJL6WtpopL+p3+36VUGqNETGGM0UEBuHQnCggSakU6JGd+V9ZJFBwAOtOSUkqrvirRBo9Kl9XjlSLWoCB1Qh0hcAr8C+6KLZJTfEC34VONLupv0Q3S/3Ib9if5ZfKHzsPg825D4mm5At3odos5D2Mu0E2/fKsgaaXUMLvX/f6RhQVdRY0vsQ8RwMKA72Ktj5RifrCY1vB1KUNk7jza2Gchey2KvpFwtPveC0R9RdtL7+pCJHrDeX4pqyzmvds0GhkKaGfplojCrohS6eu+8tUodC9WMRvlddmlGz3HERIQAMeeiGrXPnn8pG7bR2fzrx8+/P0Xnz8/feFBLIoQWu+sdaWabuqUMYgQQlaUFW6EGZQAMBKgJfAoXol33v/0Jx8T41RXpkAhZPHHh7eXbXv33t0Wyk+/PZ23Yn3Lk+pXnz/+1WcP79299eDendu3ju/eOjk+PDg6OvSyLEoS4DD7joNtCxGwrCqRTn3FnUH53ntE+fzzL3//uz/U9YrIfPLJJx9/9LOq0KenL168eOG916YskZxzd+/dZ77EgbnWYLfYoBf0A0v5foVLpR7LEe78OyRL2LtiBINHCUEo2Bo3+pcEUEABKgEQEhRBASUgCGrP2KZRLLNyr2R0F8vVy/P6xak9Xzz+4otnDx+JSKkNCIjzzWrlrCWAx81CIRoijUoTlUDEgAATRXrvAKBLTxcky5CH3XvvrPMMSinFJAoAwRgznU6BpG4bB4IIJwfHC2lA8WdffP3X/92//Of/1X95MZs0moAIRRdOOXZWCTOrNKPtDVDwikjnUQHw7hU3vMMUOX+aY/D7QlppNoKIVVXFOipKKRE+PjqezWaFLkS6AqDfSQ+DcqK11koj0cZSriKIFFKWybsZf4ud5GOMKYoixqhE23/8oXQJfK8t+kt1pVUuvxRjVHiLkeydpBsNso0GiGgV2vTLt6qojN7zenWVKHTyWrqtVIFhZngnixKmxHx59tubpqstxChcBveIbZpdfEFEqtdDPK/5DTs8WECt2I2jke6i3UcJ++xY8cPuL/smFKZ1qGK2W0mvjFBQGEU8MCA77x8/efLo0bfOu/li+buvvv3t738PhK33oJBZbGtR0950j8RENpoOuCA6ARHxzF7YSSi6ywJE6CtkQqfBGeAP7tz65//RP52V+k9//CdGKVWVzrV3b986my8Ojm4tWvnlbz6tlLctn61wWk4E3DfPzp6+vCgNHcz2Pnr//T/72U+Xi/bW8XFZFkVhUKH3rgt7JgpYj9f0AEjTLj/9za9/+9vftq3VuiLU5+fnWlPdLM/Ozs7Ozrz35UShNq31h4eHzMGEvHFlplsvLuBLs3W/4xT7Hzr/LlRiFQSLCoK3LqC/CQUgpJtGj3jpES5ITIBEHpBC1S8AFEFAYX5+uk+qvVj84fO/sy/O9dK2pxfLZ6fNYk5SC3tvHRMioFhHgHuhwPZkiqSMUgY7ZBW3zrW2qkploGlqEQmgkXCmeO/Ze2tbYgxHCCEJSagr39i60OVqPp8vVgbUXrFfFMXTxeOnf/238//wPzz4x//BaYkrTaJIiSJRKIwCJP4VSvObEWJWBeX7JBytESVpZOEGBKYbpSA6q764ewiaJyJmoZg59zudIGZhAfbcG/suH94QNWqM0QrF8Ts4CSGUJFVUopYyFkh6M+jI03L1RxNu8oAkHhX6jmf69Wl0HF/v1otRAEF03PLLzgs56k0Q6NOaEpF6+5zuj0JEjH8EpRR3BUuYRVSIhw6xrYAjYPeby98jZHRsEDFIPB2cUSvVWt+2bdiEmEQDbBl2HFd13HhJRJBQKcUuoDZRkSIgAI+bdbNoy79k7ntFE/oBT5rY2OHRHKbAolGqjSyaJfrTBdYcmDL6VdrB9ZcKe14nLtekeRER5xx0Ofri5g0W38G8gUlMwrolWPqgka4bCUpnLEduzQ0dfxx6EvOyM2ThCmlWEJbOTRdnrdeKOZms8IN03MaPjmEYaUEDWcshI0PABsVnee8NeucZhBfLxZNnz549f2ZZLhaLv/3FL5+8nDcewItnBCLPXiltTGHKiW+9yDAXcbSB0CF5752rvXeEMC0LhdK2K2QpPe+VePfWAXj/04/uvneyN52o++/fOTw4nDe+LIr9SfnRB+Z8vpDT0w+PK/PT90/nq1ZKAVzOF+fzi+XSrgBa1744P//syy//4uOP/uLP/tGD+/dlD4vCWAta4XQ2a2zrHQcorjEm1COLgxNxetiXaQsIQ+/8fH7+6W8/efHixf7sQJgsiyIH4JfLi7Ozs+VyWVWVs9YJMuC9e/dCCpfM+Z4XdEnPrfjhNR2bubUROzRCz5EgvZTelLWRc7a8Xva6z394F+bgqOwW1aUOw1DcNW7NtYftBC/ewtk2kSA4YWFWDAaJkJzzjCCaWttWClUy48x9eWykKRStsw07UKgUFsDaelg2uFpWjx//4e9/8+2XXynH2jE2vhAsAEuARlxRFqwIRbRSNCkKrafVpCxKG8q0CaMXx9a1bVvXilRpNKMPpoSmaZjZaBN4AilVliWLh8BblRRlUZZlcLWtmhUKlKoAB7a2dVs/mM2cok/+2//3T8zRrX/8s898LQY1iAZSDCiMzA4VUBg6oYD24WF7Qh/pi4hAiNiXTu9/IKHCY1d2VdanIORV7fyBSgEge69IiYBSShvBEAST8rSRkJqnyQkRCT1bTn+JW5jeKIALIGNEm1ZU3othJW9feFlWvTV/exg0UoTZrhlO25E+n14iIu4QtxjOMGIRYQAhJEj2URj2eMABYChFr7Xu+YBIhwEGBGBh70Rtfv2bpsCwnA95hAWwqwI3GtvAWIJ7QBHKBlA33LAmmQZFRCMp9vXKoxQR+hB0QiIKYknyMtA0TRQbpK+jAv2kh5UQIxUHMaP/lwQ7Ewv0JoEcWjaMRr8yOrhrj8EM9sHgSSOllNY0HD202Zg21BeKeZ/jq0lfDc87R0oFVsbMCpGTCnV4mUEwnrHpCSM5EHokBMpaqEW8K8pyo4V0qcks/HhLThqd/QK7Z3SehzWKl1AFYT00B9KX01JKSSsiHMRP6HlfUFRYhkp22w+2ncWCEa8cJMjYCBEprcE655yI9OEyu7W+VY0ZetufqSHZGYY85UKSj/XopSL0aB3rgjk3T2/kfKHkncokGLo0Tg0g1eggNVaBYA62HbOpDY9ON0kvrw/HLfZnm4xiMZO7Ebvyl/0MZiPwyrmKazgLy7lMzY79jKIns3hvo+klLfob1w919Yglbtrh6GIOOdH734fX3zTpnYU7vLZ3PjLE0aEQD7NRN9j7tl4R0XyxfPjk8bxeWeGvHz/6/KuvnpxfLB0DIntmpYRB61Ibg4htY0PB3WDAiLAWRPReGnbWtiQ8K4xGX0CtBY6MunVU/vzHHx8f7H/00QerZjWZVq5dAh54clTpw/3bJGKUzPYmFy+fH+8Vf/XTDx7c2i+n+8ZM5ssFC56enX/98PHDx0+F1PnF4sWTs1+8PHv09bf/9J/+Bz/72c8OD4/29g6tbReLtpxULC4MWxcYkNhQo5cjLKjAoIui8N5+/fUXnu10MtO6sq3zjov9gghXq+XZ2UsRMcbUdbNs2qPjW3fv3i2KAi8xaqUHTLqYOWqJsBZKuJVGO5H6NvNLkn3OpbZRg+mKSv6aa1n9rmEAFTds7H/aQlfniVnyXCuj3bZpy6/3d0cqKu2dk1VrG4da7+3tWZSFb02lpbWeM9EQwrIHZGuNJiLwbGnV6mVtHz59/tvPXn75dblcNBcX97QuyxIVyVRzd3R6FA3gtQIENFqVpjBKF1prBGcb6IqFYqmIFAmh0uR9a9nFFxORUM457JdqMmtt45wjhUwSkDxt2+pClUUhQrZpmqZd2RYANWrTgv3mq5f/+l99dGfv8GhyoUkMgQPjwQMKAmGsCyzU9afPNRLHvFPOCYLzkZLcEoiEKITAwJ3Ek08zdNKbAGilEKltW1IEIEqpwhARKVTgN9jLNuyTni2ryy6O7+u0rZ6ilHmpZrWJNq3kS392KUWJ03tPpFKTXKygDmt14TJur0h8Z3AVHC6JABJJUoU2KCpxIEREGxOKkcfOBFO+IhVqQzvvjS54M/rxpokUdaJdELhlzUIKAAJ9+hwwivx1507cneLiiYoK9Esr/iB8CIpK8LFky0M6ETyKYZ13pVsOQ+GNVFJHQpJgZKVEM8GuwGPf/MhLkyoqRFncGPOQWCjWnIVoMtiw2GN0TfwxJLujk0VZyFDMDWMSQWJ9E0mi4AmMklUMb7S+Z9MVMj7BEuzxJjBCKquPGh918gebyL/bddRbjt89Kooi1C0K8RJb5jL7/sZuqJEGrG9ycOJWj9s+lUK2nzqX0prbZPBm0Cgsx78G05feAJDWnErVdaHx70UGUe913yJQ3PyQcN6ehpGJik3Y1Ozcqm0/+/3vmBQY/eW33/zik0+en54pY5wokJB5EZEASSGSiEjvTQkDHhAIWuumaep6MTFmvzIaFXHz3tHhTz++/8G9W7eP9meTsjIFiuzt7728oL39WePsomk//PgnlpGKw+dPHn/04E7j273Dk/Ozs1u379y5e//ZixfYzu8/OH7+/HSPyp99+PMXZ3PU+mKx/OLzr7/48smz50/+x3/13y+Wi7/4R3/J/PjevXvMYMpSIEn01Isy68MbGZ+ING27Ws1Xq4W1tDctqCwQWyLy7J2vLy7OQ76XxbKu6/rw6HA6nQYz6I4TNNYrfigkwt5frqjsTlsq2Gx8Lsh8dTbVZjrV2pA4z3bpkBnZFJUWgzzMeH/cMgDW0O7rSdk0y2+fPPvd71/8/g/1w6fGtvtlWdcXhdIHs0l4Ha0VM4oXEcUxyY9AoU2hNQpA6xw4Lz5UlaYg92ssZhNEbDFLcZGaVDoDF6LWmhSioclkEuPNSlP4VoDBWr9crYqymCBiszipDppP//Z3/83q1v/p/8D7x41SoACFFJDvk3u/LhF15bKFeZv/azNh0L8pZJL8zgz5V+D/b7nB13x0ovn8kd4Biq6VdQaF/aV17Zd54+FOAaeMRECjjOrpAhhRfAACBIjYNULOtpD33rNX2rwJ7nckpVyhBcyDkLfY+zLt7h+IohJzyG4v6PMdUpqld0sPR4qWv1oZ4bzBtzYg0kchd2/RK+WxnuPVGoxfTeKVgnwjadppc8a6hNZaESknWdD5oKjAOA1LuHSJ2WlnSl1qI0WFKEmi3/umnXO+bVfn54+fPDo5Pn747Olf/82///rZ07P5wiMygJWAxkeFCnsWExlumPegEjvnmqZxzpH4Q5RZYd6/f++nP/r4wwd3p4aI3aQqCXHv9q3W+b2jw9l779dNfXd//9tHT548X+7NDr/6+ouXpy9++ctf3rl19Ozx46Zp0JQPPvz43sf/6Nf/7l81uJod3eblYlHX3rcHe9Vsejyrih//5CfWyfnZxS9/9b999vln/5f//D+bL14eHBwtFmflpIrv75wLCybYw6y1cTSiUioiTVPXdV2WpVF6Pl+0Le/P9g8ODr1rP/vss7Ztw8yycGHMg/sPlFJt2wLptcm8nEaT+27aO65EiDisq6s1cYXR0CLv68LPl26+ktoZwpVtWNPd+3fA8twBJEjLRFn19yaT+VcPv/jFrx7/4jfw4uU+4rFCZQjIndw9aZoGC5yZiW0tN5aYQZhFQE1C+uPwn2s9sgRslShmhZp0yPnuvbPeEZHROq0nmto+EGCxmDtvAUAbtVfNptOpMaZtW+8ckCIGJYCkUBsP4tmV5LE5nxp59rf/28nh0eFf/nx+fGuhCIAwwEgvzbm1w8jHGipbEvJupXDqCBHRbnvhJmh0tF15KW5q8Mqc+QoU/L1v7XF/pF2IckovCUs4CtflkICSiGbK9Cp1LkwiiLivjhQNC2C0ktOCjxxyP7+VYtbee/YcMjdcuZER8Odqjey4E7ckcb1+RYXTGRQYJUi89sdtIhER4N6HRp3/7V3iJG3bQg8q2P7L69UrRjvzRqckevS6hyYwsNc4lpK35zyrb6E1JPjjbEPu1nwPCMSosaTPkoRG7wVbQZK7EOajsWlAtFJIxN7b1jbL1cPHj46Oj7/89uHf/P2vvnn05KxeOmZRBIDMAkQaVECeC6IAeWbPgCJIQEgISCDivRF/9/bh3ePDnxxPPnjv9u3bd0X8bDo92N8rCjPbP2hdO/vgo4dPnp61brlYfPn5l8+fPX/29MXedLo32392fv702bN6cQEgdd3Mlysqpy/n/8utW7ekPj/an3zwwYdH+5NpVRVmtpRSWjc5PNa28d4pNfn5X/10tWz/7b/713/60599+OHHRVGVVdHXBOteWQSsdSKgVLJcA06GkJmds9Y55zgAIolQGw0IF4v548ePBNB7qZsWBPdms9t37nqWVd2UldqRD7zeKv3+UAcjfDN/4JZDJXD8kEdLBDwAoCiWifPu73//7PdfPP7ia6itOM8oMCmmt0+OP/yg/MmfQFGWZWlKo5USBGZmz9rxH/7lvz798uvTx48qkb2JmRBOSl1oJACjTKuYALltlUg5LTtfkYC1AeABAGDb1lmnkELwMjmvRGkUTSCIzrrF/KIwpjw49B1kVABEdeVnIVSiCqOFCEikjTZFobVubOO9b5vWO0+oTFGURK1dWWcnE71YLBYXp7cP7z/7n/+tOl9O/uN/VhwdOyVdrVSJ5UohpDYLSXC3T4lCJcAEICjQRX5Cl/C5/01v7JW+seFflE6gRxIEIiQUQRBM8+9CctNNUnYSXcdeuzkbXEzI2yVSS5D8fTLGCO8X6Mcz2LhC+oQOONf9h1tTEL9ViiIaAkBfEHRt9sPCDC8q3wutLHWYIGahF9irCutW2w7kfdlq7PQURAQaOTNHHpX09gTFhUiAoUAShVuG34XV0ztfriGrGrOE0nOoNmYkeyWlUgpcaX+NBKQtWtMWbqB7uGQI5tE+RFQ5N5qqseMsIaKk4B2AI6WQBIgEFQtRSEEZ1vmuL5n7gDarg5KmToMuCMyzs7aaGgFUShGaQldaWWZ2rvW+JVKb80qnfx9r2sNjc0wIIYXJUFpTWUhVuWXdLhuDQDLs+FE6Sp0HUaQPc2mkBHvX59TCHssIACE3QArb8Mldqey+vrYyQ376dxBDBhHbtjXGBPNh1z3qUFvdXX4wNow0H0o/94ivoABQ/0ciEhkDHOPqYBGBvvOA4hgAfKiMiahMB7eAfueEQYiZx4Iys5ZnfHjlaro3XOlTYDEASEgr1N+jFAYrnVKSF9MMWo1IZ5WJwW2wtjZMXkAwDSlw3diPjT1hCKB3GYsX17bLxcJZ++VXX89u3f/dtw9//ennf/j22dmytogeFSOCwH5RIZCEfYbkERpmRyBGT5kppAD2rq3P70zNj987/o//d//o3q2jFlCXk2pvz5TTew8+OL7z3nxZn9y687e/+vWnnzz+9W8++du/+7tnT5+2TdO2rXNea11WpQtFz3xghsKCXK8c88W3j8R7/WL5ycPz0mhjiumk2j/YPzo62q/Mz9/b82197/aJ3L51fn5eN+1i8eLxY7l96+7RZGpMRVo7L+wYFCEqo0tBVOABQoYkVgjO1mVp6qZ++vThw0cvCrMHQB4aMlj7+cHJR59/9cXZfNEKVvsH7JlKfO+Dj/dv3ZnXLZoSlAG/USRKWRQlBYJEhDYLUqMTK9txWTgy5pxt2Lyh9HR8Vi7DjHbwKFlc8oVDeiwFAsCwMR6TRYQx1HMcAUvzAyJCm6IyP7Rhk3S3ODxLECwJAmimwqMFp2dlvXx528vir3/9xf/4P6O1lXW2dSyiSPM5vvjq0Rf/07/bO94/ODo5Pjkup5OiKg+Oj/am06fPn33z5Vf81UO07gilNLpQZBRpYmMKo7VrpSgnAqAAQuLXpm2bphFnJ0Rh24MATkqoSu9dqOzkRCRIDEKePQMV5YRIWStsybYNkJvsGaOMUQBIzrJtPTM2DbO4Engm4rybmMLN6/P5RaEmRTFhclWpyko3NdjWnp61zqIyB3Ox/OIhr87cxaO9n//V7KMfz/Vs5dS0KBz4Gq13llh0By1Dj+i9IAB7Lx4EQBEp3R3TSgyj9+K8Y7Ee2KNIgQKIwb+CIkBABJqQCBkBBB1bQrVXmDPnUUBQoVIKq8LrQhOyY9eAJkUlgRJA8AiCxgy51Mc2YEpXcrZ6U1kkoMyGS6gh8RKnR0B2AjrHfSU4zEu+jih9VnCMDx0kCF7ZYBVu25ZZjFH1og7xgdZa6MS47hxBpdi5pAWKuWEC8wkptRmw9WIRlSkNojCWqvDgrbAHBhRkVyDMdAXOL1bN8f7doqwciEYEVA7IAyKL0gUAAWBRVN75bht1WsDmbN2bxagrAAEFgQkBxLZOCWkvCGitA88aqZFWRHvP4IVQa1UaXZAS75sd/dLXTs65UL5Tax3C/0FpAvTeg9Ko2QMKKTKFEJLRZDSLsPcaqdcCgFG0JqVQxHt2Il4kiEOekBSRIoK10sOutcaQUgrFB0bPzErroqhI601SpXPWKIUI7FlEkECQvTCyMHlQoEGXuipMhSAAHg2CYp9HMKYNFlqnwTkpoTLOs3NeAE1hTFEJkWcR9tpUAugHgXS4Vwfxxnf+2UwIVhg3/ihBawyAkX6g4iUPwuyBPQCEwqnReZUjR7pI1LDT2zFcKOnhpSP7JiT9ZkHoante+uCbp03PvVkzkcSykkHa3vbLa+jJ9Vp8o3b6SltyURTXaG/e1srmEZSrvv6Wu659cYRRuhRuN7JJrx/GEV12fnEBzJ/94Q+Hx8fPXrz8/RdfPjs9cwyBQwwWPgQQJgBkBAwMERhBiIxQQdQuT/cr/ed/8t7Pf/aTn/34w4nRRHD/wYPGusOTu9P9o+n+4e/+8MXff/r7L77+9he//PUfvn7oPEcJ1QkxAqNqPQiiFxFAFgz+DAYGRCAKoLvW+qZ1iM35YnV6sXzy/KzU9Oiz9u7JkdZPPrx/7/btE1Tz5fyiXl2sLopvVnDr1p3D41taa+tZurwOODJwCAgSsPjlcr5YLJrGal0QgXWWmY+Ojpj9o0ePrHNN0wpQURSrVXN4eLS3NyuK0vf5BNJZ2GQlinvhLUAl3+azrky7bDcJK1EQBUOFOF8vSmuff/KHR3/977W1xKxJlRPdWmcdi4hmmJJWdXv2zVenX3+ptS6Loqoqo43zrlnVd4oqeBoKo8rKGKOQQIStc23r4vKo6zq6iURE6d7OGRQW6HxxAqhRAREDOPbWWut82Gqtc4qLEJROSEWhy7LwXlzrnXPMwiIACBhcUt46KyICLADOu9n+rG1t29iyKL0T71trRZzMnUVj1Uqef/qpR/ro4AT2tBjTIrUS4pdJiyhGBG4RPQF4DmZrQUBgCugAYARi9IwiyIJeyDMzBbkHyAliny9GOEwBiYgTZFHIxFEiA0BFQOidUxiMTVGNjjAITNnXlpW5ZfVebWGHVB+7uKxHazJ9yqQqvXNNXTvnIv4HAbZU7HkVSXSqJMIeAoCwSDj8u3KmIp5XzZzYO0C2DkopjCFjOigiAnZWMhYg2BI6fcMkAAzohBtnvTCHTBvQrRMW36ecUxhOlGQc3nWKxnRECmlRgia/1Wu5ZRoQu0R6xP0+27UXQCHjQqYEBKdoeCaiRK/PNbhTZA1BdLWqj28u40VzQ4dFt1cp6PSDjVH57iikZmZgZhTavDbevJKOjHL14jVYOILlrHuFzRTS3kVL25s/92q0JZ/d7nfdKKUFBEdIm8wCkYf+Yx9bErKxFZPys88+m+zPXl5c/P4P3/z+s8/m9dLnPCTI8z0iXxA8MAAJaRRALYxu+fMfv/9P/vJn904O9vdnjeX7f/qXk73Zye1bzCKk/j///b/69LM//C//9v/39PnLVWuryV7T2qCirFarYCgNRhTnrCB6GYRC6A8FIjqc7YcsEcHp55zz3q9WKwDho4MFL4Tdp59/+/57tx/cPVHi67o5P1vOpjWTqWaHs/0JON8415sVx6eKInLOnZ6enp2daa37tOMdLZfLb7/9NqQFOz8/V0odHp/86Mc/KstSaxOEnleCLQNJn3CsMxddMR5gJxo/692jEbfZ1MVwOmoBJewJgKByfPH7r774H/7N9OziZG/qrW2db61zztZ13Xr2DgT4/GLOzMaYqSlnRWVAYe32jKmOZ9zWngARTaGMMVoTi/eeRZy1NioqYctEkTQa6ihPPkNKARJDF/cVfCzhN9Y6EMUsIVYlwMQAOsB6WOxEqIhC+rhg1lVKOWe999PptCh00zTWtm1b1/WyqduJxtp5VDhxNPEFf/X156v/7/5P/6z88IOL2yeWQATKYFcXACBG8IiEXYbMHj4kASsmyIzkRTwxkzgCJumr3ItlQlEghIIIxEJKiEWcaPGITMjimZwHjwCGREErDlUixucsdMfSw6PVm/5yfGm3xRYmLpwv25Wc0TGaWn8CC1oul6vVKtTLms1mZVm6xOtyXeSFGViYAZgUNqvaM0+ns+VFvXJ8sVi0wpPZrDIFUM+lAQJvZITvtrabgFjnm6Zxzgt02qGIhPrNpAR6rNR32Mkr0LCsA2iIeryEgL9S/dO+PUHZlj54UzeE0H/PhvAahCXsc3V2isqVGvmjonLNJL0VCEJRjs3KQ8b3c8znjot5zZj0el29tMGoqAhv08CDDO29D8aqqyUOenO6do/KtRPnBQTTR2+pVon9DzwzCz959sxU1Xwx//vffvLbLx+erxatsx5AFAIASYcSUByM2MDICIIEBrEQVAT3D6c/+fAnf/Xnf3pyND08OCiqqapm+3fuHxzfWq6W//V//f/427/75S8+/e2kmi7qVpnCEz57udjfq4Q5SHihL51rxTkg9JLlaILEO4E9RjGK3eHvj0/nWtHxwV5B5e++fvLZF19PS3Xn9q27t25fLJ43Trzg+x9+WFaVoCAIIOOacYmImtadn59fXFx472ezmdb6/Py8ruvlcnl2dhbUKgQI2IAf/ehH7917z1obNHkiaus2tha0r0vnLupgPf7kBvXb0bPe5hLdkda6tJE7oIDyCACMgsJ0vjz7xW+P5s3xZGq0cj3A3XlvLXnvSZHW/3/2/uxZkyS7D8TO4u4R8S13yT1r76rurgYa3WgAJECAAy6gjTgczbzqP5AeZDLT05hJ/8HI5k0mG5Ey04y2GWpEm6GJlGa4gQQJEQMQBAE0u4GubnRVZeWeN+/6LbG4+zl68Ij4Ir6b91ZWVtYCsI9VZ997Y/PwcD/r75zjJrnNnJtOJrnLGDA0PkQffKjq2hYGUBVEFb33ISCAtAttAHDrt1jCgzji4eKEXpFFADRBWpCziHDXcCCEKL5d0oSUTgBooUfdakckyvPcZZYIiqKomnpRrgDg6OhwPt/JMlvXNTHmuSPi6KGOvtCcFWzjZ7Vf3rt7cHR0df0zk+nPr40VBAUMhKlutCBK8rAiKoIAcNu2gRlJgBU5okYyQhKRBAlBAAiBgiAiYBvaJBFCoagSFFBIYvJAYVCJqGBRjAQN3BVAakG8g+8s44LyFy3LrdW7xdlGh54vmpEMSOg4yeU20mbhjcM+wYdqXZ4cHZ+eni4WCyJ65ZVX9vf3fV2/dHElIgICIqjia09R6rL88aMnEsOtN79ChlU1+f4Si0YFxNZQUaZPX8zzUw0eoAm+auooMUWGokiyEZPJgojPyub4shMNqn61P6YDCPBCvLy9CyEpPX/Dy15HJyJB/GK/9SelTy+JREXDpy101m7Y9lt2TQP6gO9Flw19qOkPkABnANpWMErsSc9f9RJpa4TadXRKWOtNRckOQSvyzNV1ETBMhxG4y2ZYe7ybqkIUUREmApXtSRi5wC8zTfopTHHqlAiRdL6LktGHI+xeetSRoI+hb3nBx1dhr5gS07kbtnM+bBJ8yTrpxVsLxugqSHTX9jfAYZPmXlFrgdHdgtSu4tNwHvqr+j+mv7MZPks3S/STLMLNXuB2Zno4VozSvxnR1joc3eEivXOo+GqbHNDNpaTdpFHC06PjdV2uq+rDOx9+eP/u4WIlgBEggEBKqm2fARmAgDSgkQURGLQgmrJ989bNX/vV71y9dvX6jZunq1KNufbGOzdvvfrbv/t7v/lf/zf/9o9/+OHd+4AYIpVevXIIiuyKqRUJEqN0ddv6F9F2/DL8Iv3PyX859G1rl2I6n89iCMt1zUy5zbJsWqPePa7uHty5tbu7KpuyCcJ0+/at6XSGiKohRi2yQvtulaAi6r2v67osS2NM+jm1fF4sFqenp2m0i9NllheTyeTtr3zFGFNH6UvDOZdd/M1HzuCt5fCxCwbGYD9E3MKZjFnKNmrlgqWil0IBNocu8mqfvx0M8MGXZDcOS2PDeEJo4ILZrl0lGqOoAjLnCs3Dp/Gjx2/kBWpY16UiOiZjMiICVSIm4jzLCmJCmkwKUVWJzlmPGkIMElOiI6iKxNQmtfOTsrXcO036SUjcyViELtth+Moi6jJOYYRk1SBi1xlNo0jywIpKXdfMxGx1EE1iZlAloqIoyIBqdKUlJomxaSrVWTHJm6ZJE2ubsA5o15GDWK9IYb04YzI7gNX3vj/dvzV79daZozVrY4wnICEFBEVB1haWA5JiI0hKxpAhNAoxCqmgCEoEUEVV1QARFEUFUFAlIoioB0BUwSgSxNe+LpfB16IiEkWjyY2Evk8RQMeW049JJej+PmLmSaBoWyt8c8KWRGjLDzyrwun5Gw4X3nm20y68Lr+l32hbN2x/VnBknp4u6tV6cXyyWq8nk8nx00ONsbAWNXjvmTmKeO8NAaKFZ5UnGigVm4RpBCRKrXiJCFGh7VELaBQNss34eLk8OT7Z3d8xzmJqW8OcbPTUMwcBgvdN00ynWRJSnz/6S1VF1UNYrJaN95JyQQHBkESU1FF0IPiQ0BjehPq+IOo/Soyx5z3D5QTnuFaqOtrXAuga4XyM9dWvzMRzsE173qy9VsKlVNXuqrb/Y0epvF6qS2yM0a6mpWorkpiZ2zIfKhtw3ceMCp4hoYag/U1kTFWRLnV+XTwHW5M5pEsy7IfMoR9Vm0U8Flj9U0RkOI6te5rhOIYWz8cCQ4dbd/PzQKfsOcnWOz9zHFs0PDqswHieCZ4fGLR45KT24ZZee+65oz+c/+6XDHJ40jjxSVWVmTFK6lz7zKvwYlgYbVp+jkwL7dT3oZ0wvOXmDrRRiXohnRyNRHxRCmP/c6foDEfemT6Dzd/P7cdSO/mDIl39A4lIEVGkH35Ca6TMSBGZZm581UZWjV5+nNBJZLs57Ldut34uLi4xJBws5oTSHYvGizbwtvYJm/1yieLbnpCGY5ABwDp3cnZ2eHxE1jx4/Oi9D3689k0AEFQhUEVtkahIRAzICsSkBoDRx3q3KG7k0++8/dU3b1y/uT/bv7r70z/7neimD56e/tEfv/e3/u//zY9/+INHjx6fNaDAAEAu96IKqG2/PBUJ2LdzRsTO1u13fVrnCf3Sp9b1WmMfrOitR1RhwqgYo1SAHlSBAIiV7j08qKrm6fHJqi7JmGsiRZ6LynQy7U1uBSXEuq6Ojo5OTk7qupbQeO/zPE9jeO211+7fv5+45HQ6Lav63XffvX37lRijYdNvn3ET6DEHOLcABr9etFLGn3+wShFHOXpblsnYaNkspGexqYtWKW6/ylhaP/O8/sOlDXKJoTJ0qHeypL/j4Md2KbYjRdAgEQALYVf7o4/umdXaM5iMonggQmRiRBWViBJTPZYZs68bqAkQfPBAqIbYWoOGUEhEhFWld20gGAA0hvrACAxsZu1SunWQ7omIIhJiJPZsbQoPUldIpq7rNG3EzJxa0IIxhrC1ZwCsc3Y6nQRtQgiGjXEEIHmezWaTum607WuieZ5575smsOM8dyyi5TpC04iNHBWqomzcol7/7h8WZ2f02j5fmVdo6tobQRMJgH0Q6SIqSESGjbPGOcvGgIkh+qYOvo6+keBBokoEaZOvEqMha8gwdI7Muiy1Fm2ak6cPFqdPXV6rGkRrTVY17aYe8zeAATy1n8ChaO8TSDYa/EBGdHdohWO7JsfrumfaW6sLBy3Dz2+H4VXjxP3BhlUIVeWbxhAXWW6Q2JjTo+N6Xe7uzB16YhARH0IEZdtlzD+rL80zZAS2c9P3aWsBXAoEpDFUZTkpJt/+1reEFKxRQjIMiCpC3Do2ESAE770nZglCn2N+Ws8lRERQj07OHh8cnK4WVWiaGKxhIALCCGqYEUFVY4hKQkjMJt1hW5h97vGWtCu1E8S9mgcDhRa6pUuIGwaMY/b1HM9q1eOUaN/iRttXbrEDg5ZEWwlHBNpCKkiIOYoAKDPHkJDz6QbMRAqStBMdVzV5pp3Q6brPEA1pqyluzIyLzmzPhwufJYNekFs3uUiN3Hrilop4/r0GLpKLDZWLhv4TejHCtpcWkbQdXl+AUrGdDSy6W22XLLUXpvP31E1/xk/7uI2iP2hI/EyONlSstk74WJjyMylZZd3UvUi4tRfGScEZanOpEEj/60vAcWLXQ1oVRAOoqNa+WSyXSvjk8OmP3v/x6eKsEQmpPgUlnouKkNQsgwQiiMAoGoMFuLkz/49+7ddene+zhq9982tUTL7/4w9PKrj35Onf+Tv/3UcffejXqxCCnezqhsMqgiTPHsFl661nUokNMfNkMgkhLJfLc5rzRv8WjaleIgAAct9GQgFz51Z1s1iu13VV1fWf/4Wff+3V27PZrCrXmZu0CwTBGLMuw8OHD4+Pj5nZcmaMKYrCWrtcLlMiUMrEBYXJZPLzP//zk8mk9qMPdM78eJkittfV5HNP33LOiUhS3HGrWve5EXb2/Avmw1y0NhAABcUyAFAM/tHh2ft3JozrZmmYXDaBZFYTI7rQUa3rWgVE6loENBIyG2I01hpDoS6T+BZJukhy4LfVe87r0InbDJu39pZMorKsOARr7ZaZ7X2IMCr6BABR2okKUTOXTSaTVRnaAlPMztnpdKoRrDXeRwCJ0edFBghHhydF5giILPkKyzoQkliKGoEQfUn37j9cHsry1fKVKwtLCmwjmmBYcVGvk49dETRZdsawM4aMVSMxxiZIbKpyXZVrlQASVFVqjykOg4B92a9kqPg6VN5EXJ8dVquD/WuZgTkDex+ec41u7eVPtFqeSb2m1duWL3DVJWcaNnu7u3fu3Dl48sQYs7OzMykKZq7rark+uXJ1f7FYhBDcpFAETLWoEV+sA7IgEAAJGIG68erjfG8+3ZlXoabJJAL6EACJ2VrbhlO+yJDEmM4Wi+V6VTdNSvyK2ubYisqXaJQdDWXl5f70PhLSwr4+9Zrd2D9Esl2e+MJl0w9DCVU+vwnFjVMHcRDw+fLQlqdbLq7G+RND5SUTtiVhiDBpfS9yk34TaldiePDrSx7weSW731dRXiThbEg66O1IRDGE3obeAm7FwSLtuU/b28Q3w6ue89Fd+Ig6b9+LcKlkKxKRjhOpVT8m5PhJqde0Yowq6usGEJ88PViv103T/NF7P3h08ISdLU/PPNhkJxEyiBCiMcZay0yRoSnXWZRbs/kbN679+Z/99hs3b8yn+d7Vq7NXv3bnwYMffnj///x/+b/de3SASGwzcUWj3ozyooVUBs7xCyk1UtyAu7qkecTRVPduLQAQhVpMW4UeEVQ0eARps4TJ1E2IoamPq6paA4p1f6EsV9NiyuQAtN1SqlVZLpfLEEKe58eHB/P5fL1eA0Ce5w8fPtzd3fXel2UJgn/hl3/l+vXrTdOQsTIefP/zS28IuyVHP09b5Tl7yKbhpeyyF+4FdlFnegQgheBYUPmsaR4+1dOVsQTGqhXrDCEhGSDKOCc2IYTluhSJp/U6z3NEtcY4IlGlKARRVToMf7JVQFKUmgAxYcxav10K5fXc5pLBq0qK1mZZBgCp9AKcc/6lXdnnsQSvIm1nWFX13gdtACTGaC0z58kaIiRrDSLM5pPgvZYNINTO1E1gIKtWhEqgiLKvVVysTu9U9x/+6GkMQM5ENkKkUPpTRUnVpST1oOIWrkboRCKISAgiQYIHDRojiFDkVFoglfsTAGSE1NTRaFPGDKw2FVEDYc+XpWEbGoZLSr6MaRhg+fTsT8ftgEN4LnGzddUlfDgZJzdv3gwhnJ6e1nW9s7NjjAmhuXXzFltaLBbWuSzLkruHmZFZP7nXaeNiUyCFaV6Y2aTy9eMnT+ZX5lFi7QMAFABZVqQzScdXfqE0nU4m5aQsS+eyug7SFQMSEfgik/yfTdhBW0UkXpo3iD00i+iFdYAhMSWMlijSFn9lpt7fdx6U3kpJohcrvfVihF1/ZyJCos+x/enz0jlT88LJ+RhDZQsu1zp4LoVS4nZN3vPZsH+Wqd8bKID4glZs6mOTOIVzrnc4fZ4RlZeiYA19nH1EqHNwjBz2w3frey8mYgRuIaaUwgmKm7ZUF40yRiHCFwjFnB/8+ZmXcd/JF3ZL9zQKtqoAUeMba91ydfD9H/7g3v0HNs+qxhuXVVVQREOIpICKioxEbMgaZQ9V2JtOfuHr7/7UW2++/tqrr33lrcn+TrDmo5Pyv/x//r//xT/7J9FX08wu1w1Z1yhTlikIQmzrNiooSA/kHc3GuFCw6AafmnTE5XLZftbxew0IvBABGUJCBRXUSBoZBEAbAFCwzkoMq7r+wQ9/lNnsL/+lX12u19YUjG2dldVqfXj0dLlcNE2dmjysVss8L7z3i8XizTffPDtd5JkJQd54/c2f+ulvRgUfojOuXyk4jqq/9D3Vv+2LRQI/DTVNk2wPa+0l7sZ+eB+r6l1CW3M4fs2E7RIOsTld5EzE5KZTVV+tSwJOhooorMvae8+IbI3N2OZZXVYqPmeHKhAlBK+V5PNcgLrKu6oqCpRgYJr6+RAqUqqtCgLEREjS7lDStlN9gtuQgpDhxocogpRA59w0frlcLRbLzBSKqkAIQMgILBJVAYmQY1VViIpGiShKjFWjEkP0zMjMxjgRICKJwEzz+ez46aGUpSKIRQGWKME3IYQ1E1oMsdSrM2kgrkqKETlT4CgkoKyniqm3E0jKvE7lVYkipdLwgioMakBBo2oAgMwUqR6bIkQRAYXU2JHAi1eNlsBmbG3uiOtljVop5pQRQipJ3Dr6e9Tw+ejoJq7yqTfOtnToHrbFeXCs3KUuW88jpJqmQYWrV68S4nQy9U2jqpbNrCislcePHz188KiYTvK6BgYvsfaeDc+GXbbG1A0MEWnT2jFlP6pwKvCAEENYrsuIMt3bAWJkRlFEKoqJyzIFHfDIrkxjlzcBbbDlc1Vos6JwLgdM3YFTBTyQNvufcZM10ev6L9Cv5ULSZ4mbZ57YwwuTDiAKl7OuXtNAoqED7fJnXXIwwcbbKGWXx9UiynCTl7Kl2wC2UU0cZHyBAg6U5ba7wOYvL/L5t0eOw0wculRd+mJoW/TQhfaI6YMv1OVWJhZg2WgIAMjMSiiqSkhkiDmAWsLWDUMIBEPvCgNADOIbhAkiC/RGJCJeaP4OOc6WXnhJTO28wmGMISKRSEQwsKd7tGKMkczABXIOlT64IQwPnstn3fwaQVLCBCaMvqoiND5kjJe81yWkXfoXE0WR2AyKFF1stFyicBBRXdc9Hn3jvFc1tk0V7bOfoXOXMm+6fQWN0MExiSn4zZCwUx/6bl/OOWZumkaiIpMCBImQCoMCxC6tCohENckPGrS/7HQsZDYtIlZBAFQByahIU3siMuwgbuIwXScjBDKtFEFE5rRXpfO2MjPjZqlrhxthZkCsfNP7IbBLsY0xNk2jTWOzvDMat9KohjM//jJbSUS4yaKx3cyrKgOoat00iGizLJIcn5wcPD36wY/f/9GdewEz76n2XJY+Q6MsHpoQGkc8n+wYympwxO4mrPdv7vzUO2+//ebrs/lscnM/THdW+fV/+Ov//G/+zb8JoMgT5qIOAY0JXi2CavCSWocDYKr+sAmRJ5wWEyMhIMbuK4OqsVnTNKroXF4URV3Xi8UCALIsU2jzsxM8JmUCJE45y1hUJIYQk3pJRCyMgOhJEKBSZbQYuSzDv/z976+j+Z/+9f9J8N7Hppi69XoJGFarp08PHzRNQJxOd/Km8WVTWpMR0sPHBwB4eHj0xhtv/tyf+4uT+TVFmxUZMg+bPCqPPsqFKVvQpjNpFAVgu81G208p6gZxiSFwf6PVPeP2oHqJO3CE1h1e1q/e1q884NtpqnVcRzjRqC5sFALIrQMADXHLoT56VhpGagSGMMyDBLvla+3DcMhgXINe11yeHN77kaUaDPhVWIdmnk1V1MeoIYQQfNMwROvYOkPIJqrN8hBC9CHhKwwzIlaVr6oqy7L0sYzhpmk0CBNHj95gbRGQDNicEEpfr/18d04+IJIyq8GIxsdQhkjEnBc+rBEJVH0UEYwhlmXlvQiYkCEQIjsLbIKBABCASMlwHU+txTqu55OZimfNi6xomrouK5tnbBBRe84ZJQLGnaszcnq6WEyAZlj4WhaL0jflZDK/unvVh9OT2GTTnWJV7+3vNgoRiQStqJDb+AeTndXOLqq2aizCoM9a6zVoW1APv3bXZwlh1i5oZmLisGQRdIXLZrPZZG86mQSJUQEZo0pCAWU8bCgc46C6KqoaAiBKg0rYPJCgAON+pTisNTLca4a6htmigkoZq6jEqFEQEBEkxhgCRClslqoVKwARKiMxxuh9CLkreqden7+bmDkWjgAlhMn+LmfZ08ePJ5PJdDo9ePw4NPH0rEbO6gjNupzv7zw8PCyq9Su3b8UgdeWbJiAyKCKwsy7JjtjUTBxTGSxFiLEs14uqnMzn1cnTILqWGAEUCY01NqtAnbKWwTqTZQUg1d6zU2tdxBBiPFmtn54tXDGduSKzlOwVEDAKHnyXBrhlkqEiX6Rx0vNVf5UO141MhGjUZaYgMRiRgZMrh1RJQRsVFqEACMpoLApCRC6rZjLgh1u4qkv0HAXe2D1pFfeq+4UNGxTAa4qipq4vEUXg6GyxaHyMrd7SNE1aAylYaq1FkNya3BpDYJiIUp2PCKBD3XC5WolIKhEJiAraeI9EjBhD6KwTBASXkbNkMUZUUNGYuj0WeT5Bl8uG+eNIa2VSZgAkEmWTZRkpoKgBEh8UDRpm59BmogGDMKMlc8mHlMF/2pXwl87NoECClLTXKBoFRNvNuZlewlE1FB20dIMR+6BB5s/2pxy2Yt/KWfIBk/iIouMm4HjBz3BJi9OtiEovEdPO78pIflIrrA3SD1oipd+SxfnlCHa+bNp4g4Zz+Hm6RV6Uhsr61rrZ0uOxazAcQrgcLNCn1my7Fl54kEP1DqBdVNjWeXwWveDEp7ZnvSmYxn9uYj4BbZX572+4ddogJxVijAH07Gz5gx++d+eju40PwFYUVRXJKIGqcEQml00yU+RN3Wjd5Jjl1v/Vv/irRVH8wp//xTridP9Ghe7/9Xf+23/8z/5FM7B1VVMKe3LitU6GTdfIwdTp4NCQtHOi96GkBJxIa4PPraLBzxFU23IGiAogiIgMmBze7VSLSG6zGOUPv/d9BPwP/8pf3JlmIrGJ9Z2P3r937x6ATKdTa91yWRpjmKGpPbNpmgYAX7n96s/93M/v7u0Z6wAxhED6EiBY51dy+yk/364nl2zYLwlR8hU1Tb1eafSI2tTeIeV5AbpxnCfjqihyEQm+yVyBkLJVWaAtXyatfwiNsUQMXaUNVU2LTlTZsLOExFlmsQzlspag5aqKBRgix2iNyck6LgJqGZrS+5xc3VQSJXMO0ASpkcg6JsaogRRYhZVIFBRQIiKggDGMKETGGALQGEIkVAFUJeSyrGOMWZYZY0S6SkEsk/m0EW2apq68D5EInHPMGIIHtuhounflSpaDcQVzJCRBKxhANqxtnJwruuF5W8W1kS50FhOZMVNEIsqLPMunYLPkRFcBTc6KtMA+/VL4JJQejIhA2Lr+EA0xIlfrMg2eiIQQmFL6u46pc1O2qEsmiipN8FVdh+DTiqrruiyr08XpvcePQ2iu3bi6M53dvHHz4ZNHhnm1XE33ClVNPVhS/lJyVxGhqErTAJoIsQ6xCqGpSonBN7VF8BIlBjTM1pgsd5NJPinYZlUdhm2HtOWoqqABtPZhVVWoqC6zSEZbW5PYpr2C5+pYvPTiYNqpvSoAoqnMTxvY0a5OgkKMoayrdVVG2U0dn18g7UMHkTjtzFsA0HEH5BGhautbQgECxKhY+mZZNWXTfI5RgmFEZgOPTvEdJMKOLW+HqQkBkdpK4ilA2LbE7U5nJErWnnYq94vqytiyBxzpoi9FDXvp1Lu2E1c/15l+Q9uGSkoD6J2CP6FPStgBxFUlRv3y5wANW3pdcqhXsltXrrkQu4qICbo2hHv9aaGk+sDg3Vs77UXBXee99T1z2jpNu6rQIYRVWT168vj9Ox+eLM5MlocuG5iYIgMEpsg2t0h27X1sVlfIvDGf/uov/sp8Pv/Zn/sFnu69euO1ReX/6//i//pf/e2/vbt3RULo05teigaS5idVfUif2zmXUOaM22cOZoD6FbUF5E1ukRR+ZWYfA4qCwu//4R985fbVn//Ot46PTh4fPLhz587x0TEAWWtBcbUqi6JwNjeGQoh5PolBvv3t77z9la8WRZHGk+qQDlOrX/iVt/6y+ZSfZS/I88O4aMN+WQgRFEQ0hpAi0aKCxC7LpNrkIbSaqDFpzeugREwfAE8qmoKmBotElOKQbcDT2tPVgtFmlJksn8xmmclWe4vyeEmgx82xAiAIiNSxUqB8b35tb5+yoq61Ol2G44WtYlxV9drH2ARLyGwwEgCgCIpAVBUQDwgqnFkDBDHGtJa8b4hSZxI9PTtlY4hovV4TUcLrMjORmc8KUVqvKt8s63rtmwhA3jdnZ6fF/ny2d33/6msUmzpEIYqIrGQigEueA4AufaLF3ABIrx8ipIdsIB20uWprRbJx/VUtchUhy7IsmzZcYIpXiCiCSoSe6X2OzFtjhARoRYYEnIwSQ4Qo6/XaB3/37t29/f3br73KhGlO2BgJ0kdU0oJJgGERAVJnLREVeR6IYVd25vOmaYrp5Dd/73eeHBzMZtP9W9cB8ez0bHW2uLp/5fretcw6yNV733TUlY8jUamrypg8aFxX9aKqVlUdranKkmNcL5dlU+fT6e5kVsxmLssjQlPXcHGeh6isq/J0sUglJRwZi8REjEgaEeHTZJE9P8kmIvUxtV6bplmcLard/VmewWUB4QspXhg2AR6jKnQTRYTYxlJIEUWgDmFZ1svK1/4lNHF/KURIvWdhyxdJXZoInGv4SMRdTvPL76c50EVVOqnxZaPnHNVlEZXPZFx/1qnXQbVr8PQlJ7m4pdfwUOJi6VdjjF6cxIZd+mlKNfk83uHlERHBGBUGqSszPm9P5S3iMSgoTe/5pn59PV9EbLz//nt//L0f/PHJ4oytQSYQkBAVlMkoa/ARgNjkoCRhtZvZn3n11i/+9Df2r+z88l/6y5WYyZVX/t4//ud/++/8t+/94I8tka9WxGYUKvnU1mP6vsm3XVVVGnye54gY6mr4oFFE5eL2lwAtUjuBd6MII6Ghpm7+0a//07Jav/PVN49OTnxUlxVN7euqEa+z6U6MYb0uVcG5fG93/5vf/JlvfvPbbIxzeVk3qdLApy/LBhdMWrtxPstekFt0yYb9kpCKAKG1Js9zJBLVPM8zMmE8VGtt39cvyzKJbeGQ5I9MAqitw05orU1LLlU2S2qqde7KKzc1iK9CFWMZg7l+rbi6f/T+R7aJxVmJKuCl8lWE2DRxIfXVDHf3dve/9rY2IR4tmkeHqwePmyOQikACqCpKYPAUyKTqwLHBCAgE6myOBERojFXVpvHJUE9gVI6CSAlY4n1w1lrnjDGcm8zloFxVnmmlBp3NYtTaxzLga7dedzv7OwiKrMYIIgsaQS9eOwRCAvj185YkM26gCwOigYEytlWsywd3kASjsta6LCOyvtf0k3+dIKGnIH5+IkyjICEiMyEiB9Gq8dVq1dTNarFoUv9HgNVqxdZE0CzLAFGlVVdU1XufzPjWqw2tMwXZGGKIoqqPHj16//33f/jBB6eLs92dHZu5G8sru/NZ5vjk6ZEjc+PmDe2q4aX1mexSY0hUy9DkbJugZVmu1+t10xBMQhRZLGbT2c7OzulqeXJ8omzbvMEoQBf0k0WIKmVT83IhIjGKBTLMjpmZNDSG0FjDxNZaHngGX7pMHQLnLuEnSaCvy/VqtcoYsxeyoMb3H2VN1AM8eYqK9ScFQMVUqoB8lHVdr1Z1HRTZgVbwJSCkjVm/pTy3dgh0ZsPwECLgufSVlzWkoaGil5Wh/6KoD4G2flhzoTPR9Fp1LyT6bY9IkCoxD6ZWRBTA0EXwA2TuMW2KfYbQx+2uMT4kwW1b2rKYRl7YcyAT2fQYwd5LnTZYV25fh7VqtypebzVnG48RLznUjaTPjQJVaJvQDoen0uc3bXMEHf44eEfAUdx/7IfeGgQMkCFJlvUkXQGiTgnQ/qrNYHD7hlvj7D/K+WobfW4udPlO/XP7c2gkbtNXBmYCwHCxT3oM69f+TUX0EuuhX9j9yHunxRBnlf6/e01NYeZ+XfUzoF0JiY6Vj1wmvXTspl1U+w8xbJoJCeuURpXKLvVhYupaud+9d/ff/uCPHzx94iW4zCliE3zd1GwMETCQRxZrwdqMkBt858a1b3/jnbe+8so77/70yVm5c+vN3/jtf/23/sv/x5ODp8V0ZjWKeBXtP56IDIuYbXfrG9AWa9MBAUDSGhGx7+rTVs6RmCY5hICAxKOsKhyElfrPgZjUKk2NFqJEZFKFqmkMYRnib/3uv2rAN9UiRlXAKCox1utqvjdHpKYpY9R33n7j537uF65cuSaioaoVOBVowg4i0r/IsDUTkapufaOPp+HgAcC8oIgZonW37j/6dZSZ+SzuQR9XqvUSuuzCi1ng+Crc3qQKzjkkUhEESK1IYogGWyMkbRkiSvGuLMti2BScTef0mU6A2GOc0oXWWkD0IfizU4uc22mxv6/X9vTaPs/nr7/xysEHd+lDlNXKr9YkYBVQpapXJ1FR+Oatt2MxxTems3dec2eL8o/ei+/fm648VXXNtaKA4UCYQhYiAQEgtWwDNcb2fKyXNcbYqvYhVG3+rheJGiMYK1EJiZzLi3yysxNCiCIYo6Ax3mXz6zdXJuPMiYKSQSBWYAGFbDS71BsmJKDQrViFJJ4TegZ7aTuwYtJnIiVGSG5dIAWUqKBIpGqxLVSAlHAjXQ4udOwiQVsuQaOobmPURwcv65vc8WcFyyZKRFAJEkNkQBQt16WIZC5rvJ/NZgdPn35w96Nbr96ezGa3bt0iZssuxpAitH3ycOKlUdt1EkMwnW4TQpjtzE2e63qtSAdHR1VV3b5x/Z0333DWrNfl6elp0zSqWtd1CKFpmmvXrq1WK1VtYlit100dgWyKATIigBJi8OH48DDEuKxKMM64nI2d7+wwEhjTix4kpI6pEmJTNcH7aKP3viaqVQnQEhtm9TUjMTEyZVmW5a6NISEz43D/bWdzDD7K8Hca2UutVQIAcaA5iLQlH1NIChNzFhQRFEFFVY0hNE1TVTVljrFnR6Aq2Ct7bf8o3R7TtqY3XgopOUZ7/KF0wlaVTFRs45shNk0IMSbXqY4K8aQJ2SSg9OoQEaW8DVUFVRon1m74l6p20AZVbTvLAoiIs467Yt/DBzEzm9bziGPqzmlLJKuQMcYHn/DPwYfh7CAiEXdDe0badn/PXpxtqTdEBIja1rlBJGpZQJtTO9iGI2Vm1L33EuoHkEgGOvblV11ydBjHO/8d+59Nb5ngwPxqVYouEUFbLGGnqQwmjrq6Cv0diVhaUwcgKdktv/wEwlwH5aGeE6qHHZRTumf3N0l2W13X3ntVGd1vbKnoxfk8Y0k8GhVuQvFbHBk3UiQVShIF7DvBbZkmo1+HIxzOXP9RL1JWOiOzZRbDdJFOd9/0kRx+O1XFcUG3fv0l/bFXW89rNtpt73ROFyvfjsuN3rj9pfUNB/HDE8e3f8aOBQAVGU7b1jrs3+Tc629dMrgzPPtWqiogZjBRMN5FvZN7MGDt9vDgNRB6u0UHhZuhW6WIeP/+/d/7N//mwZPHyugmEyCMqnVTN94XxgBAqDwSoAGEmAm+df3WL3/r3Z//zk+9/e7bdXRayT/+jX/xN/+L/+rJ8RkRBR8FIiqKSP8FdSvWd/G+HDIgHVMvCSBFnFRbywQx4V76NvDDBRY7MQbn1h6k1qjdxxFNKhNG0JX3Wst7f/Lj61d3fF02ZSlBCjcxxtW1997v7u7/7Le/8847Xy2KKbM1bImpCbFPLoftnjBDYYlbhcqeZzZwLOeMsRdO4sU0ZCm9jL+Atr0zGy59bjI/JY00ieFox8MbnnZ+8KJimOuqiiJIJBIFCE1KTWox3P2WMcYY0xbASByjL1yW6ljYzKWqDAkk1gMOa99ghb6OxM5Ue/nU7U1embxyk9nS7RuL21fL+0+aDx/o4UlWNYUg+VD7Vc0neu9w9tarjziUE7v/9le/8s13jr/7o8e/9V1zWt4oYtNUPobUD6tal00Vp3lhgJqqFhBjTF0Tsctzm/a4qKqSKgQvopGJ2LBqlOgbH/3ZKp8UWVbkRWGMret6uVx7H9HS9bfe2r/9Sgl1NOR9cM4JIApxBMHY2gVbacoAHcALtMup649Gib0oSmuidVkrpAxwYEq5FtBJVj+QSgqgoNJd2/NHEU1FWM5z/sF6GK2VrYMXHNu6n8YQ2RIq+Ko+XS4XZwvfNHmeHx4enpydAsDde/fuPXzwxtM3v/ru151z165fJ6IQkrcLvA+ph9LDhw+Xy+Xrb742n80Wi4VGmcx3zpqmqqrlclmW9d7eladHJyFI3QRrfVDwojvT2cGTJ9WjR4a5aZoQwmw2Y+bFYhFjrJv60dNH5bryla+a6COAczydETARr3yoyyqqxManQkMSIiEygRdBJYAWWs+dNY6AGIUFECCGEJBANYTASNYYBkCIAB4A1nXtKpdn+WRSgGUM8TxDSGQHuNutXblVULqPW/ZKQn9oE2AZGyoQWpRvqpISmVJZ5wEb3/rWz/rGYx1gcxRBDSX7RETSWyVNUlRJUVRFNAqqpuQZVRUJfpMtMmCJvQnR2YfElPK3WkMFuxzxYTfY9rBsfFtDtYG7XIpUgK/1HyC17jkEBBzeaqMeEzAzAwqJYQ5Jc2ujr6MvAkCidN7m7wcznu1t9Y+IFLDT5wm7eWovGYqb7pdWXRx3TR2JknM+suGh3nbYUke3izdfQGk5YeeHGqaobL3dlzGHov/MXRDg5Qjgn1CibS38M37W5Yfwi+iL99LpxbJxesVXROq6LsuSmb///e8/ePTwaHE6ne1kWdY0vimbvrBJYrOOjcSG63BlPv/Ou1979+2v3Xjl1WL/+g//+KO/9//9R7/+z37zbF0ymZR9H4EQBGlj2X7ScV5EIYS6rnnQez69lHNtH73eO9DLjBi2SwtsbtcBWmDgEEm/RpEQ9e6DB4B+f2dnOp1JEAzgRRaL5Suv3P7Lf+mv7u9fzfMiRgWNoARRLukOMTJoX2jt9TP5aUIZf1YJEUUUEeum0SRBGSwZMjQtshBCVVW9Fyl1XSSiEHyPjkiLJ6HC0jn936WrDE5Eucu8ekCMBMgoUVdnq/roLL9xzb3+yrV3Xtejs8W//dHD3/r90w/vz1Bns6szh6LmyQfvT9Wv9rI67JrZ3Fy7fvtXf3n6xlcff+8H5oP3i+iPF2dlXbksy/MpmGVT+8xNQNcMCX5me5s/2U4xcAwaQrJZQASEIQZBQh/jqqycXSet1xgzm01i1IAUDS59BTMLlokwQtsNVVDRcA/9Gip0CG3hr5aYRmFqLxsbhgi6elvJcQKAETSmO3YX4Zeq4osqRBGR5dniwf37CDCfzg4Pnh4eHgaJd+7c8SHs7e394L33gOnrX/96CCF32HtJjDFN0xwcHHz/+9//3ve+942ffvcv/sqvXL16NYo/PDpKGND79+8bYx0ZR7YuGwkRFE7PFgcnpw3ok6cH5emxM4aZd3d3J5PJ6enp8fHxbDY7ODw4PD3Ksnx5uqrq4COgczMyddWs1musqvVybYusKCbCZr1YOpc3VW1dvqwri1mWZUQ8cnYATLN8YpwDoqiAUQE0ihBIjNa63u0oPgIEY0QUAdE3DWLvxt2iCz/mM9lUWldVVTVN0+vNOsj5GZk6AKoaYgwheN9AniV/wUjLV9Vzju/hE4fK6MibDiC+s0zG6A9VTaXuFDBl+6soqmcQHtacOEe03fDx0zLqPmxxfvL7HBVp6zu3vrxkqCBiylGR8VWYDpxz93856dwS+vwG/CU1VGhQu4MuLq78E3oBGvv+IbwM+P4lzxp55QeI562v/NmN4XOgFFLYCpI8z1W9WwsRQwh37969c+fOkycHCiAIUcWH0AQvElP9GREw08Kh0Lp6c3fvW1976y/80s/dfuO122+99d4HH/7T//EP//4//A1ncJq5GGPQGIECGkW0EFM4vYdpfUoiooQrTUpkrz4i4jp4a22f9JzCGu1zR0C4zTpE1RhCz/d0XGDXIJZ1Y40+enI4zQvjHAKsV+vg4y/+0i995+e/M5nMrM3qujFsATBVo7kkmj1c/yOv3nNTx5q63oI/MVUG1HkfqK5raNcAWbbseDaZ11XVr8O0TtL51rTox1Q+LtUYzfN8Pp+XdZUypFO6UV3XROScy7LMObdztYBiEk0GQtWjk8XR0h4vpq/ervfym9ev3fpLV3fffP3kh+8/+aP3Hv74fVzVWW3mswxWJ7euv7Wq9OAHd/0rgd79urz7FcyNCRVX9dXXXy2buqqqWZ67Zfn4w4+iyAzbwj4AG80sGSohpIanoa/3lQo5KIJ1WV01q+V6tVql1VIUhXMOmHGSr6UWYyNE5VR1SVhBSJtBA1wiYrMp6gojN5MG3dQnwA6DiCk20h9CwJROo9rnyrd3QKAvh6kyyXINMfrQVLXGiApVWc6ywrHZ3d29//BBnudv3b4tCF5iUqzzou2fmJbH2dnZ8fHxe++9d+/evbfeeit1gAWAvZ2d5WJRrUtCzPN8tVzvT3dfu/nKar1crBeND0/Pzur7sr/eW5yexpOjV27d+sY3vsHMVVVVVbW3t0dETdPsXtmryrpq6qryq7IWMpFtIF6u1n6xODs9yyfFlRs30LqqOmTrjDHTPXLWGWs7DNGAFKbGzVxeuIIMG2uiSgwRCQ2blJSVeGxaYykVsKkNxdCXE9iSNXU5WAxj3XcoiPt6A6oaFapyY6goqIr2cpnHlQDSYLz3NWHt6iRTkvjuzUXp+hz0cM2hfN8q7LRZhwAeNnUR0vBaPIhEh5raTSgwMKsiBk8SGOWSpig4bPj43NicS6gFcQGdl/JDMZD22dBQIUqoS9qKSxNTl4P2+daOfCHaUtWQP78xX2YDDFGuz4WNGJ/QXbr54yVo+NHlHW1FJD8ZnWs8mcbwMjsVPZu62vDJF/aMUXzx9LnZ7pdEb7a/8pfenXAJ9e6fPkT7PFcxESIKgKqu1uvDw6N/+73vnS4WPoR8OlGFum4aH7zECMCExBw0RqlNDLsk33zztZ959523333HzGZ3Hx3+d3/vH/29f/L/Q+NibJq6dIyEJpVQV0jRZO1H+FLeOUaJQRDJmIRp1ijCUdbrVZ5nKQPVWpvcnN77EIIrJufnDXqOkcp2AnTQe4VWvDAweW2QzWK5MjOWOly9cu2dt7/6nV/4Tj7Jl8uVtdlkMlFJXrMEYrkExjnC9b3A2/e+wySL9MtSe+aLJwUQAg8yQY7eA4ASYqu1mKqqVCTLMutcU9cRwGQ5qErwLiNmNsalboyNagjRGAaXXd3d8d6DQpFlzKZu6nVVBlWwfLha7u3tudl8ta4WT49NPpvcvlXYKSpJbQ4Pl8up2/vG2ze+9mbxra9d+dEH9f0niwcPT6tTX5X1w8c4neF0Rg3GBjVze6++hq/ev/MnP9qb71y9+dYkePVxh3j3nbfvvvdDPHpiY3DGFEVGDKohgnrQWjQqBIEgCKICggniktzVXkRUBcp1JTGSYVGpmqZRpdnj4nGRTV9V55CMSopzKIBmzskQlYpbc9yKmCgifbqg4rDVT5Q41CqsYVWIUQQkJfCmv6NuaxsvQaF7IaqbOoRAgIZZRIjJWrtcr4P3p6enzHz16tUrV67kk2Jnd/fr33h3dz7f2dur1jV2FqP3/vvf//4ffvcPb968JSp7u7uG6OG9e+Ha9Xpd+rqZz+dXr1zJXLZqDqP3J8dHlW92r+ysq3JZr7wElXhlvjObzVZlubu76/KcjHn4+LEx5vj07O579xCpcMVqWdVeJvO8XK/LIKuyLE9OrHWTyaSuKvCBrEv1njNreTJBy4YZQVEFgbDVhNCwyaybTiYuy4wxIXofAyEZawAwRCHiEGNVL9frMuGXmLBgtcTGGGNNFydosWTGbFgbdtBcAECFpk1Vb5sTqqbFAwLgfVtVMp3cR0VUtSscD/2Shhgl+higrksVEYkiyUpPFnuIMeZZlgKhhg2kFsYdxUGUpsOKawrsNRpUQURFpWnqpvEtDCzKzBIl+BYxiUEgFEWNdCn3JqLUJjUVo9DnU0DPn9PviJTynvpr9aJLkrVP2OeBtkc21CXCngubpGgLQNsQcjSIiyUKdv8N/6Sf/bbdUh4+T5FnesAGAEiUFitP6GMIIADIxOnTwIBbpibhBKiABDRQ/zFqZGImCKExISODXZIfPad+0NsnzwyHjW+y+Tt1nQoTVcFnWVYHz9awMagQmyA+ogKIAG7wi6Opfz4V8xz6MwIAKCWZzJQzGzTEKhoHq4faxupBBXTcPe1iOrc4NleJKGJb6TXGCNC6tIfv1WWgBgBIIm3b0XLxK/OgCMMwSgugPADlp9ZgSKwAIYrpkqf7GOhg3kYOHuzSimKMNsuSE4WZEWkIqN2Kt2xugh0HTcMQSQu4LVM2CBRJlz3fltu6OICDOvB6DfKXECCKkmJaxl0kuXUMdyNsfSgiGqMQsTEsYdCscxBCUdWmLBsfFGFZVmfL9Yf3H/7wzv3T5ZqLnf1sti7XZ1VZq9QRTF6Qc4uyJok7sZ4Q/tIv/tyv/Hu//FPf/GYDVMyu/KN/8Pd//V/+nm9qkBgEgF1kBsTQeMNgXSYSo6SgfaBxyUszaNskKsM9xYPFK7FViRhACUWRbQYAUSF6iSIxxozYEmdFIVGqqjHGiHhENMZYm4lAbDwApOxSYwzRpuC1dP2aFUGAhgs9KopEAHd46pt6OZ/ceOO1W994651vvvvuSb2s6uCy4vRsYYzJ8zxJZ0IKA99d69AaUL/YmC8UdluQ66GPg5ESLB5kK+ltmznwiF+16OsWCHeu3PHmx3GxihFfwlE4KLnwW24WB8V/ZZSJdIkhNXwvBEwdYKuqMsYMq7SlfNn+zJEbXje8WFGX0OgUZk05I85vXy8PnxqkfDprmnq9WIgKG5vPZs65KkRPHAGEKIt1E5qzdblz/cbk5vXCFZG5bHyWFYuDB34pWAcNsDub7t28WVhcYFhEYbO7KmYyn01m051JAZmtGSrGQBQUDVjWfOlNYzLz1rv7r3+tWq7yxaJ4/EjWVXW6rJZrqNGsva7KvMgCYvzKO7Ni+vT4+LQMV/auTItJFSXuhVs3XrEHj0/v3Tt6+KSqZZ65bMLTK7OmXtSrZTj1UU3Z+PnuDsTgm7ou16hiXHbmvWOnIU5NHjRopMVavKzr4N9wDxpZzQuT3bq5FF/kcxQuyzrLC/SKncQVbNsryyZfpTdikkOux4Vt1gYBISsiJYdIlEiKhLQ5pf3wm++vfZcHBU0ozT5JF2CrIRvihWHJtPASl9wS9JdIWB8jIkYfnTEaBRHz2bTyzd6Nm6ZwKvKjH/0oc/bK3t7ObMYx+lV5XNbG5pTiVyKLxeLhk0e3Xn1ltVqtH6+vFNn0ldt7Ozv12UkIYVJMbt+8+ujeRzvzyS2J62qfnJTRr+uy9lWRF0b5yt6V+uS0rLUOeLKs1nX99OjwyZMnJ4uzKCFPMRGVye7+rstsXqyr+uHj+8vViphB47qupnZWZFZUYrmY8v4UhRjLdbmoj3f29jDPJ9YoAhAJgMkLLgrOc3Y2c8YJxxAY0RjSENDZKFTVDQa7XpwdH50qgMR4ZeKmRT6ZTlV4pBmnjh3dGiHlTedNRYgxxOh98CEG0dpHQMqyvBFZR0ggXu99lKjDqCAKE0M0TGgAJ2ynzLlUM0POKCKrYFXXEYNvyrOzsxiDYaP1MnPOFYXNiz4YmPhEo7FTs5UZ2GywijlkMUrTND5Eg8QIq3WJqs66FDxyjEwC6AUNkxFlr1GRWpaIDMhRwAcxxljn2Bk2ZBGMRKdWEWKn0Md6E7FJP6RFjkRBYlARBEIyRKRAiFmW5WxDjJBZg0YEkpEW0UaD0bF0Dn0FaIsApGQYAEsMANqFiYZrPgSPhJM8cy4L4wp7Q1NkFMBR1SAISgqGSBGRCa2B1NUyUlIIFTbRJCJSwOHttRWwSNz5RgY02ssx4iA3Zjh+0YAEnGoNjDOgBC5kDoZGCuHwtkM/S+vd6a+Ci0laROwnMp3Gcr0vSvC5RxZ08C92OMWkP38Gj9LNulLsgioKAAlmnej5QUFfEhrCb8aGyiYp/Dw1TZPWn7UWLrZIh39/KXHP3n3xciIG527/6W+hYyIAY62ChhgfHxx8dO/eyXIZRBAw+hijqqiCJneQqhCoYcwQru7Pvvq1d269/uobX/nK4+Plf/5//Ft/93/4p5UX7WNTSCnhsIUbSOjdrs80/l+AtuKljGistcwIkOW5r9sWBOnLpvSbLMuapknoHVXlrpWKbnTc4e23fMgIgAK6WFfLsvrLf/XXdFWXVQWYSni1cfZuamWb9f4ZJewSvVrPzhc9HgAgAbMsedc6heO6nO7t7F3frQ4OFyer1dmCYzMpJnluETWKFLnLZ/MgcV1WvpSGuDKKxuBsbnf37M58trPjptN5/c3D+4+e3HtwuFqzMZMs23nt5vTV6zfn85jtgsnJGc1MI7EUL6SI4JTzCgwaIgLmMkSVaK2F3V0zn15/7VZcr5vTVbNcn52crA0tHGYZIRtz48qrt27c9nFxdnr49HDhm5vXr2fG1tU6f+OGe/cr2Uf3j3/0fr08u5JPjg7P9m5ceePaK42Hs9NF+dGdB0dPd6czQfFoJ5NsZ3c/rNer08W8mNXrKvjAxipxFNGop4enN2fzs+/+KD463P/aV9Xm6xCz2QTIRl/3JkTqgCTQboOhJO2288Bu6Wnk+nwWwKAvUXkeerBxPL7QGhhUb4PnD+AjiohvmiBaluXh4SEYnu3tkOGzxdni9Cx1rX1w/74x5tHDh++88461tmmiIKgqEsUYCem111578ODB6clJWVXL5aooJlVVHR0dXb9+/d79B3XwGvzTw8PGB0Rar8vFekXMzmrm8r35rtu9UuR54+P9h3cfHjw5PD4qy1IJXeaK6fTK/v7+lWtsbe3DYrU+OTmpykpFTWaIGRBTiWRr7aOHD29cv+6buj4+FkRrzeL0JMZpiN7lmcsza511zlhrnLPOMJOoKCoSEgJScgagSYEUJkISEQVNvxomZ20Pr0qfjdsS7+1XGApWRm5CKnACIfoQAiAzhxBFkTbutgHjVAAAUeCuCyFS0oqJnGFrDCCJiIkxAR0BIEZBCDabGGONdcbaBP3tydCm5SsOkeGKihwggjGo2jQNREnVsVWEiJhSL01QgKiUGp7DOIvmwpV17r16Zew8bGdrOyQYTppUZkIi1JhmA4mAEJigr+qGiINiISPqAjIfO9rneZ1+xDG2ZhUARJGMslZVQ9JtD9qXQT5cRpdobv9OpH9gymRK2naUz7Oa9LDN3KdCsn0RNLJMCC1voihhECjYopSn0TfZuMRQ6cEzL2Vakt3fB3P4y7cre+dNCw4GZeLSN4eHT3/8/vt37t5dl+tsUiBR7ZvGN00IQsCMhhAlqMTcmd3Z/Fd+5Ve+/bPfefMrX7378Mm/+K3f+R/+wT9idizgm5h4UZoHAEj1kWKMoqkW3DOyAF/sVbZcD6lMUwoZOWOjb4vDJCGaEi5TXkFVVXmei0hd10mGfaztNHwWG3N4fPQH3/3Db3/tG0KouuluS4N+wCPt7c8upVnt1/yLVkl+qUMCmOW5QXblqnlyunr8+K13Xn/jna8+efBklXE4PAJn1NoAWsfYxPVS4s7u3v7tW2vCQMZKxPk87u3Za9eqPHvS1MWs2P3aV3d/+md2K9+UVRDB3ELhyowbkKmdKpCAKoIQGiIiEABSyOcGE/5JhNRoG/gGJHca1jg1Jt/Jr81zuSEEwfEJBxXd38klamNkFXj65i0CPFitrMTp/vShNKbYMbPs2ms38GRx8tHd6qksj5dX0YXpfPLWta+8+nrx0UdSrqvFWS7YrFf3Dk+v3b5ZeSWXR8GmCSyCIUgM0Ut09uzxWXZa8qo8C3767ld3X3lz0UBEjIy9a/ySpYzjhMMviXTpg/y9uvY8V7XR9RBSKuNkMnGTgjN7cnLy9ODgyv6Vvb291WrlnGPm9XqdEuR8UB8CALgsSxlNv/Vbv3X9+vVv/NQ3rs9mRZY13tdNc7o4O10siGlnvnN0dFzW1dlycbpYVE0jqjHGummCRGSTF/nxycnRyXFVVanTqI8REKx1USHLJ9PZLCquq8Xp2fLp4XFdN0ikACmNMNWpW61Wr776amtu5RNmG0FPzk7nOzuuyHf2dq+aqybjhIltmoZATW6JqC+nyGiQTYzRRDHGGDYtV1dIJRn6HK3kEAQAAMFxcvlw5tEi+4CIClj7KKKAbc060U4kfUwGIxKRYbbOpucicR+USDGZxHizLM+cy7Isz/Ot9UmGtyzt7hgCmcCxN73SDbUrt5UMs8yRiNZRWQj8iysOPaDjEhXlPBljDTNJhK4WCGFbsXioxvRZOjTI5icF3U5ReQnEzGTZOGetJWZpOyJJh9Ubndn//OVURC9pBvrvjKFCLRoqSnyRSqL/TtJwZccYm7gxTi6umg/OubT5vfeXSKmeQbRhkE892v5Bneb6pctO6xXKxNyDRBA9PT19/4MP7tz9aFWuyRqXZcxmXZV1CFFEUC1ZiyDeI8Sc7Xd+9tt/5a/8lbffeScC/c7v/cHf/fv//dlyGSmrfCTcVDBMnVxSlSTvfR+ZfTnBKwUg2TBdBMOUOUtE0qVpYldzMCGyVDUFWKbTaVmWScnom2k856hSS+6qqe/cu/vNr3/DOtc0oU/L7pGE0C6qL11/q5dO/f5qNYwvwZpXAMqsSKAqXNGsFPvkw4e+Cbff/op99WZ4egQhekVlIkADAMS6t4d7e5Nr18Q5ClHyzO7MJc81z65Mp2rsKWYawU5omuUWwKNqZpCUJGodSRLipQOQdyQaxYiKgoohFpXkkmfD+WSmUdBHChJCqL0PUSjP8nm+XlfESFk2meUoGkLIJi40/kxlMpurqs8bmU2z69em1/az45Pm6XEJaK9cOwvBEc2yvDo63gWQqn700b3Ds/WeK3Zvv7o+Odm7dWvV+KpujEqMEoMuKykXxzd28on4VbUExqyYcb7nQSK1QCwA4JR0BQDwjBzL4St/SdSPfll+In2o7UzCzMbO53NkOlku/vh7Pzw9O333zbfefPNNZg4hFEUhInmer1arPM9FsKqquq5dnhljvvq1rz58/Gi9Xr/33ntn167+/Hd+bm9vdx8AnX3y5KCqqzsP7p+dnt289dpeiJTnplwtylVZVWXdHJ+ezSbHTw786fFJWZb5pLDOmSxgXXvvRaqM+OTsrAlS+7Asq6Pjk7KqydgosaqqLMsS703/ZlmmqlVZWnbGuGq52p3vTGczBfB1c3jwlI5P92682k9Xql3fq7YMiOluUawxbNqKYQo6NFSSe6ibQrWGhubqcPoNEbIXkShqbDCGAdkYE0EqHzaZ6xfnWLbRgu7pxjpA6goIawixqioRRYAsL5y1Ls9tNjJUAGAIlN0qgwbETJtatym/X1WTaZpa92aZiVFiE/2nCxH0QucTuY+NYWJu2xUhtJYIYR/P78/UYTJ918VFPwNMjY4refZ2I+D27tt69JfQVrlkwBu3t3Y2ImJXpVq1tzu37jgIZ20/IClJKUb5wuZjb+wCPG+W9XD8unHkdPDNlLj88irhXtBsAFLSFBEroEqMYVSFY3xmy8pVz2V5XTzGUQOMhL/p1H3pyhBJ2/pqu+3DYPADDGI3J88wKsYu8yFPEQn94EcvomoN9/riFtcbNtprS3t3gH5tvYN9CHU4WhjcQVJqQfuhQ+hfufOmKxGqYpfu0ibrX2Iv9VO0PUttXuwzba1kCPQTu/2Ow2onqW4mAITgAVr1XVXLOq5Wq/c//OCDO3dOlwsgdMYBUwT1qkGiQCRiS+gYhcCH5pWrr7z95hvz+Twrpr/3+3/4j3/jNw9OFiabIBD5MAqYiLAxAJCqJ/Utcp7h0hn8gYBGTTSHU4+jVdRWOFFVACbKLDmDiBC1rXdEXYlGZrbGKmjK16yqqo9+MDEoSJTk997M4UicpYekoWhQOV3VP/7ow/uPH02nBRuGcaZHHGNq+4+7dY52Be9VL8xS28o2ObcMhnv2wh17jvcinhMh6bShtb5luV00wi2P4IiNjDtEXebKG+21tt5aGxHdsCnYYnQXDQkAJEZACTFGhOu3bi/86t6jp7XLbn3tneLWa160rP2qrthlk9kUrWPj1s7YV26LNUYhGtYsd9OJGGqCuDzHWh1ZUlw1DSJS5lLujyGGDFK/nZSU2tfdVVAfK0BCBgSWlNHnDBIZ4rJcMZIx1lrKVF1ovAoaY9BpBoQEqtFHgahIaF3mMouWohCRZHkTQ11XNstgNpvcuOXXdeOyxckpxji/fqMS8FVz+/Yb5uqNwyhrm+/vzu8fn169ejUeHnmJofFGUQUXlXcaj1drJG+CCX9yZ8XT7O2vwXy3caqADGhSez/ZtBKGi2d+9Cu1370VEKM6sxfqKGnbpqg4M8dPgJQe8kDp9xcOiylfqh71gyfEsiw/+uijg+OjP/nxj9iY5pVXmXkymdR1fXR0tLu7a61NnRlfefWN3d3dJ0+eVGX5+OnTJ08Pdnd3Dw4OTs8Wr966fXy6SAlvy7I+Xa588CeLpQA+PT5ll0/IHK3XPiixFQ3rqn56dNI0lQRR4spHrxCCxKgAZExmXb4qq5Oz1aqq68bXjQ+qFklRJYZUL8Ram+d5lmUxRuccIEqIp8cnTw6euCyb7e7u7O1McYbGSggSAgBkWcZMPnhSTc6mpBJgDwZBtMZmWYaIZKjIC+dc6j40NlTA8DD8poOlgoRqjDrnokARNQiKpv5dCF3rYWjL7EKfTdErgQCgKsZwqs1NREwG0KiKswzK3sZJMTPsENHlhbPOutzYjMbek+FqSIV5N+sHCTgmFECyRdtAsTF5nlkma0xqD80GMEaEYfm6Vk6nzBHOMmZDTNi3Ie7UinRar9+GEHS4cVQ36q0mVgCQGp1ZY4xhJowI6RuJJBvkopXc62bMzAqCCKrMnFzmaY9Ya5kIBi2kz9+wV7R6Va3lyKICqiFqa9wCYVeIclyaLLVdHt7wIvl13loYauPjYY1vMJQjsn2Twf0vZinnBWynXhkcAvU2fUZbgKlh049y/LANPBpg9A6IJLLxa144pq0RjrWKfgA6bpl3CQ0H2SvEyWxIEL502+fswflxz4JLwuyEyESxsxy2Brk5bdCfcavIwyXzNqxl1FsI6W59fVgAEAG+2KF8fs0NIf79HyVeuKR6TNFwJBtr/gKn2nZ9xnNjGAxveObIrJJhjfYB+iXGkJYlMxNh9K23Pl5af7lfNp2JPhbnCslfoojDuUg8vH/34edKHSR68AMNEHTeh+FcBZGDw6c/+vGfPD0+EhEgJmuCxBiDIkQABTWEmTMoUX11a3/nP/4P/v1vvPvWZDp9708++P/8w1//ox/+uA4aFEPwzKTdd4xJtBKJSNM0oy5RoGMN9twvI8NyY2bDeFkSKoCkPWWNyaxxTABABhvf2idJ2iVHqbXWOZcqtGpX5iH9nMyGizSYlOqWRK6CAoFhevDo0Yd3P7p168a1K3uSymXWdSqUrJsWVBf2m++NmX4BPPMdLzFUtgZ77tDw8OjmWzJsSCOrkIY3vITp994c7KXXM8+8hLZuOLT0hhrmJRxvKB0UQWJAQ3X0J6vlzu7ezv7N7JVb4tzDxaq48Wo233FFoSEoMec5WkvWEXNZMBCnCqCKVCMhMmekQJlRSrWwcoNMgKgopKCI4owAoHYliTo0OQIADrzLqohskvsAwGWThDuPACACJkthdmmE0STuYwxriAqS2BIJsEJEaUADseZFCJHJaOW50FWM+WQGPtRVtfPWpDlbPF6Xbmd+82e+1SxPZDbR/d1yWuS3bhwtThyoRFEAZWqQ1ix5DLvB0PFq+cc/8hGnX32nuLpXhZiK2BEzELYVJFMviYvWxqi/LPTZAEm4b44oXmSrpIXUd6qJF4uA8VWjX3uWy8xb22G812BLNzHGNLU/Wyw++uije/fuCWEIwVh78OTJK7duF0UxnU4RcWdnZ7VaAUBd11VVVb45OjpS0Dt37qyrcrVa1XW9XK3u3L+/WK3feeedGKUs1+vG101ti0m1rh4/eTrZmQfQ5aos68ZaS8ZFweW6DDGkMi0YRZM50oi11pnMZXlVVWXTlFVVp4QP5CCauv6FENbrdcrEc87t7++XZYnMZ0eLKBqa5uTkZLlc7u7uTIoiS9EGY7qeQuobT6iGuqr9uJFNTJTn+c6O1nWtoJPpJHOGBzSY0rF6M9jZqC0kO8tQkchmIWoIgQRMEOYO/kDtZ9LOVd8pvqAKzMZai4CEjGgUCJGsNargXJzNKEYhwqzIDTNbh8ZuDelyDE8aQ5/WkoQIEU0mOQEYBGjTERUgdgbGyFgRkdhWSWEmBgBiZto2VJJsapNJxurKZjFjJyp10zc8WQKIqKLSe7vOLe+xMgPpIwZsjUM0JoQ66TnGWCLuNWpVJTJbxVQ2K4EZEVPBHuj2dRpDH4tr3yX9TNh9QQ4X72UcP2t4iC4OjY4gfGmy+kNb9x85ni8axbYVMLzEDP3Nz29XpHgfdX0wnvOqn9DnSBdqfluUvCN9XOJytf6iJ0Hnern8oWOUpIh84pUzZCiXP6tfnD2fxS6k9pym6gZgSqSI4eOveAapap85k+BJiJjQJqvV6sGjh48PDsqmEsUUqw0iMUIQiaqCCf6qviqtyO1rV29fu/LNb37zyeHRP/uNf/7dP3qv8hqB2gCmBBh0HOq7d/cW3UslBQFETeBcy2QIuSuHNpzjVLOyNx62ZgYGy+Y5Fx4RZVlenpz86z/8N9/4xtdmk5w7G3uIDE7xtJf80p8jnfN+PZu2OfaXgBUrwhKjVTE+UBUiNZC72au3s9du+Wt7Z243FBPMMlCIhJENGINkgMhDBCLTdrIjAEQiRkJEtX2p3iQdBQCSE5IktrGDZEphG5hSQJQLxVlMNSYSpCqxBQBSIACB2Jo62tqL6e6IEK1GIEn+C0FgQsOaERgwqalbDDGzofE2c6aum7KcTbP6dAag177xbl1XV7/29o8/fJ+Zq/I0AwrRK0VWXCNNyVAdFvcfNIhMsHf1l1ghSERKHVtBECICAjA+AwD20j7fwIkgF1dH/CyImQkJnJMQJpOJtfbBk8cnJ6dZVWHtb9+6nWIUxpjVaiVdT/Hf/d3f3b2y/+TJkytXrxJRD5ECgOPTRVV7YOO9p/R3Nj6ECLgq17VIRGgaL4AhKqgQeERalUuANn864UkAkIgZuayaxvvGRx8kKACStqq9ElMLshVJLVBOTk5Wq9WNmzedy70PVZRQNzidXtu/sjObF9OJIlVlNZvNFovFdFI4w6TKXW5lr3EiiXVuMlEkLooCCR2Jc6bPCRx/vwvWfAv0SF2tiIx1giFKjLERXUVZl9UzufToHohEPdCJhl50a7PJhIxxSd5ByrUxBolhDMnBS9YUbsAIWZalkFG6IZIiKKsSPqft/EXS0CF1OSU5DwBEuCnR9hPq5rCHI5rkP+t9wM95l953/hND5ctJW5rfJbsmrQM5V0r4Ez1LBs3vVC7UOD+95Ot9BmnhXaKKJmdMyufugVjtUJ9bhe0DRM8b1ztHKXKd0nWcc8lKCSHUVfXR3Y/u3L17tliEGAUJEaJKjLEOEgQEWhOLkUII09y988Ybr9++rTH+9m//9v/4r3736PjEo1NAERBVEB1aYH1aZ+caf5mbFAEAJPkRk/BLIAQAwCiSGsOnMzt157xhubVsnsdQUQQBDRIj6Ef37//gT340zdzObJ7Umj50k1zCzH+Kk9G20govEnu9EZ5Iw5dChqfaNgbJAkOIdYge4YTjSuppbghBNCJbsg6MEeLkw8zEoCBy59TtsN+ACMZAsk66aSAFBGAFCgIpSR5BKXk3sStSNJiZ7eXXhUMVAAURWYEEAKFRUVRKkUdCQO4hzAJeQUkIBJRUQQMiWUaF3GTVat1EcEUuhppa0eZigBEmkyLUzXxndvrk8XQ2f/Nnfrq6//B0uW7KWjVgBAXjLR6XXjUoiDl+cvZepJuvm929vZ1ZNORBGhXFhEMFks+wTETakim3LcYIl8bAXy5lWRaq2hhz7dr1o8OjnacHi3K9s7OzWq/qpn769GliZXt7eyl7Ie3309PTf/V7/7qu669+/Wtny2UTQ4ihKAqTZU2UKvhHhweLszMFKIrCWluWpW8CKtVNExHIWROg8R5EUFRVax8AlABQgYkMUvI0VU1tNDbBNz74KKqASKCkSEneJgU+pdRXVZVsqgf37ytmQYSN2d/bn83nTx4/ns5mBLguS1NXTdMcHBxUs+mt61eNMwQJ+iVEqflH22zEOQfIiMiGbaisabnu8zuXkbqwAqlBFuAQJYRgFCZ1c3q26AGxF94BoU0dJ8SxQCSiJN3SaH30RAnasK1U6MVmdu9VTEKhix4QM0fxqEIiICrwiX2pnzPhuMTFJdT5UoGIP7nb9s8y4QYpE1XV6CC145NEVFrj+0trpeDgX4C2HxJcFnf6dI8baIK69ewvgi6Bi2xRX5HpEy2ArWcl+ljn/XOqX5dQG2ntn3jxHahrnd7XH8NP2EI0VQzCrhctuBdRfKOqJUrdSSjGEELTNIvFYrFa3b3/4PDoOKgCUhRlwDZSKVEABIQVCTF1R3n99a+8/ZU3reGP7t77jd/8l/cfPiI7Ey+CoiJpQw7nIr1+jLEVZi9hnw7BPwqgBMqoTGAZLIEhwZRciUoMQQUJIoAgtRfodqBAVQWEcbu/8iVDiCLr9TrPC2n8ez/60Z/75rcSDrdtKOlcapf7p8DtdimNETKXTc7w6OfJi1tu2hcu1baKLovO1VgDbGw9yeK1q5OvvGLfeQ1eue6mmQQDSkhIjEQgqApRFVXVikFEVAJFIBQCJAVSICRmxRYNl2xyRcCULwqaMs1TMpkQpXr6rQEymJnBygOjAF3aliqgKidrpAWdYl8pAtOdFQiEgVAigkaEqBoZlEkJSRFKnzzcvq7UkKIl0GI+CXVF1rMzsSGd5GGSvfvzP/fHVQOHJ8t1mYlYBURWjyVBo0GlNiUULvvgD/7Nq+/+9G7xVlSMKmQNaV/+7jP8zj0n7/wILxKWxBcaoohY5wSpqqoY41e/+lXO3MHx0Wuvv/bgwzuPnz4tikld16vVqlqX0/lsPp8XxeTk7AeL5SLPi5PTU7ZGozYh1FVVe+8B12XdBFktS0RkkxFj7WOMIj6GKAEVM6tKMaoEAY4KgVIpQgVskyiYkEKUpqlzBO9DuoHCxi+kiFHUWDLO5XlujCFmH4L3PsTo/Xpn78q1G9fn83nQuFouqvXqB+/9ceMjTH+0Lsuf+da3/spf/lVjLBMr9CXmU1V6RGxrSxtGIrbOEgbDZIwhThm5bb8dVNQL4QIpCAjMjAQK1Ha6UFIFZ7NnomPaiIkKdl0qKFnvZJAYFDtgVMuFUnK8YdYWj9SGOvvbXsrl09bToeeFOtuPBFQEIKiKYgtkRP1kOl2/dRLk8BnBpz6UOowW9RqdPlO3ac9K6aybv7VQzTRFCICKWwMVQI2ioiDQp510J186V5e88NgZ048N/tShC4b6YdLiTP/LMMdARCCKzTmGCKpmbCAm0JsxyVet3m/mxxijIaY2sS6heAEg4csv056H3q/2oDEtiPyilxk27E1ujxBCjAny6QOiZZYQrDVkSFB99KUvjex0Gwm3mOrwSeeg/BcSJrwgtDYfMitjABWQTHkE9BZNoBTnXNNUg+eqDhu3daZgn41NRHmep9wDa21bvmYcBEMEkZg6ZhjDqpoc6s65od62hQy2tjVbpWv92Tszxk5uTBwnGbiEFgC4Tb/r7NWEpBy+77iewjAuoTBqLriVYjXSaId/x44vdmDF2MWOkE36AknxkRBhEFfpz9+yrvv90E71sKUdExkLrZajIlEkiKTLE2Pp8isG4qEJnpkF1HtfFEUTfNl4MhYRFQkYBYKPenxydv/xycHpuqzEuMw69lFUldmG9RqizymzdmIUNTazmXv7nddvvXFrLeFv/u2/+707T1YRLQWNQVQw9XZymcvypvHee+dcjCoCxrgQpMPStJRcDCkAIiI0eBEEMNYOEmy47d+AmrKVFVRAEcQIWUPTwk4mhSEiVMuBkdBoMWFQKBtdlFUTtBaofRQlMrYqAxuDDCLS+BAkgmrbeWpYJWKw9RTAWqOKMUaUJMiyCESZ+9GH9w8eHhRkp9l0NpnXvmliWK4rNmydCyLJSIsxxhDT+6ZGLj3TSzpZ+vTOuWTt4DgXv3fGD8qAwpaD/hIeNU7uv1CF29qVNMKdXwxhivH8gJ9JY5N+K7qw+YV7rFPayxfk3qAqRY8AmnpGEQNQFI1Rg8YGm5ktyszIN78ur74pt28u9+eyu6PTgoKQqmICbzHxpoo4GdvOACoSmeGjo/R6A3aQUQWIANx9SkKQlPg1uKq/w5YSRkQIqdUQAEEEDaoxVR2NsXe2DE3rmK4iRAADCCG2oePU7BclgkaIaBmUGIyI1iKY5RZRWRswxfVryyjBuJ1v/+xDr0sy/sFHe8ZleTbLcssoZIBnxLBoGnzwwenq7EoG+PqrBMbVFJHWDgJFQ6yD4r9DxU7ihbVbLqlsMyyfkbKHQ90AgCHWi5k5jrMltZcOoMPPOs56gxAly7KqqhCRmKUrD6iIVd0YpNzYOtbW5cbaV197Y1FVR6cnZzFMVA7Pzq7MdifZFLyGJi5Ol48PDh+dHi1jEyJdn+bTyfTw7t2maYJEIVxWIRLXZa3EAHCwXMJyuZkrVFGJa98jhBXRS9RarbUKkOqnF4UNAMiMzIertbRSGQFANBIqKiKgIPsIZRPYQgB5cvjk5s2bSPT08GQ6nSBJVa58U56cnJwtzu5+8OOqqtm4R4eLnb39v/idX7ARYyPrKFVTk7OZMzYGo5HZaPQgPrcpSxoJRSgjRCCKAsSEhnqjOnZ8PsmsfvWmnI60u5LtwQjWUkSufJhMiqIoAMBa64Pf1FJCsAQsDQew1uaGQSUAqZ3W4DJQgna9qQACWAKAKCGmhvSQeuGq4IjDXNTpGofqtIigkkldvL0kY03URKSIRgkFAojXWPumYebEuqET6G1hNGuNMYkzEqAipOY0SYwIpI0vMUYQZeaoAD5Schp2CLd2DlN1ZOvYEDQcgqgCk0EkFZAo4hRRkTA5bQQFEYkJAZ2dMqJGn8x+HwKJ97HysQZnxJAixiiEzMTKRg2rtkHjfn91QV1AVQ0xfSLc9tQiGaNVCDFVPUVEQ9YpYNMEHjsdRioWjdSe4Y4dcJSNFyOJGxwCZHRUKmnbLhppXBcaTcME7BhixFaFY+ZRahN2BB/nxvtTQM9C/H1GTSeH2oee+/e57tDNuXbA/d5Q6fCgGxjS89AwxHH5VdppJJ/oi39JImlbeKGNcglgxlXDn2fAmgy8c3eDT7Jy+o+VVGTnXFL6Ewitruuqrmrf3H/4sKwbH0Uh1Shrx3f3f/W4u9MaYN3f9gfw6/+H+tfhHsCvAvzq8w7ms6fVF/v4/wT+c1CAw8vO+Ye3/08vtlyHW2PLvv2SrP8vlDBtC0kVuIg0ga2Uc2slinfZ1W99Y3b71eAyyjI1OQkj0ybkTDTcY1uxgpFOPJz55FFNPwOEOMod04HvSi79Rv15qbe7dlEXHNTE2rqBjgtZbvlXtb8tJpWrldvKrGzBCiiE2lcqO7df+cafzx7uX1lnyKt1LVCSRhX1gcGk4j0FEq5WZw8fzW9ep9xFgEAaEQSwaeoU/rbWPidnezF6scDI5ddglyh4Ho4xmRRNWaduiUVRHJ+eHJ8cP3ny5MN7d5nN17729ZzN3mQu3i+Wy4PDw+VqRZld1Y0aK2wOT8+WVY3WaozHx8fO5Y1vFbrkHOShsyZVre4i88Nh0KCoTBqkdEI5pSOL9r6y9BYCgCJaVfX1ydS67PT01IfY+EBEk+kMQBaLM2ZaLpePHz+eTCb37p62d8P82ltfmeTZnQ/e//Denf3rVzlzdfDz2dRcv5KxweARCYl98CmHnECdtdQWeUkAxKDd98IO79qFB7tpVxwapF31nhYkKRL6DioIWzhhTBOhAEhEbIgtGAvsVOOFaCUdeppGFZOfF7dIPIzmoYKIIAiqIDCyovHITOeU776WT6rcM2Yj3b9dOEUGLtrOD7JVv6q/uPurbkxBgPYzbBeZ3IRjcRB4Q0WEzmfYalyJByJ3jf7aYs+gzw7ffCyJSKqYiYhDxP/z3+ycurhdPPb8zv0caLsGQ68Wbydp/YQ+S8Jx47Ysa9uL9slt/aFLwE5DSiupr811SQS/jzZ8oiSlS1rzfJ40DiiN5mbkaHxuxFfCcSQ6V77puYi7huupDoyvm8SIkne/qqrj4+PDo6MP79xZrpbJHa6gMQr8ZMd9NqSqL6hxdVk0CWwdxqXG/9S7cj4dCWLSfgQxiIpEJUqdAkLV2OlksreTXbuiOztoHCu7yCAaHW3wEc89h0Nus+WvuQRN+tJ51NYwLjlzJD0NAyqSskFy1i9Xfl3z7uTK66/entvy6dPFk8PFYkneG2AW5RhRZWJZV/Xx3ceTr74bcwgGPIFnIQWJAoQJ0fqnLkc07aO+vsjwELMBqJN/LcuyJ0+efHj/7ne/+918Oo0gT548/tY3fjqs6xjCoydPJtNpsTOb7+2uP/xwsV6tVquUHPLKK6/UdV2WZd34GGLsoCJbwxi6ArcObQXh0zlJj+999tCljmzkcscf0vgnk8l6va6qqmmaGJobN27Udb1erwGgqqqiKLz3e/tzl+9c2d//7u//wQf3Prr38MGVG9f/w//4P/r6N959fHJanZ7eun5jUhTWWWJLltvCs0CokuBB2GLEBu3O/MXbYbPzunQvBAFQBO/j8yyk4SdTUMGRL3joyxOJA7UdoUM9YdI3xpdsYE7DGEKqWAUAAJTQOMmhoK1nQUAFII5qX7fMQbs6V5e8S7IlpItM0nOaT2NSUEJiY4wZFYm+ZDKxDee2mTjUliZAJGr7brbIJkHdGIz03A1YRFqDcysw8glearwxaVQ8c6Smfp42wnZEpY92/cRQ+Typ5ymJITZN07PRJJDS358/ETxZOH2/v0s2bR98f6aX6yLaOu2LUtouSVl7fq1iSCHGF1CktoaUPlyL0NNU5VikO3R4dPT+hx+cnJ2WZZ1arGDqteLcJ33WT+h56BNZ4EMaOlZxGzEIl6JB/4yTdmAKQRRAYINsmE2SqAUUxZUdP81pf28NQoaNEBIZQTQXmoyXbNHhzMtYjg6tx6Q7PvMqeBk86jlDamm1tJFVBCWjBpERLVMUdja6qjlbZjeuFHuuuHWtODw5ffQEVussinovTSMxnPr1TG1ztqrKUryXgiIhgBpVdm0gJZXo+JQv9TkTtoUuGBG990M1oypLACCipq6qqgKAjz766M033yRjIqgP4eDgAIOUq/XNW7fAMFpuNHqJjQ/rddk04eT0LC8mu7t7V69ev3P3LjKlIELv7Ouf1aPc+w3eHyKiVLwrKZIikpL9euulz/YeiuwUBarrusdOhxCuXLmyXC4Pnjw6PDxMYKTkOgSAyWRyZf9KWcvJ8eHv/KvfFpC9q1cdYiirf/M7/+r3fv/3fvEXf/HP/flfvH37Ngex1qhq67wHiqyEQEooo2AFAhiyG088wqBCNQwytrqkCMJIFLHNZnwmk1SErnQFRdHGh6YJjQ9NCGyMDmt49daIbme7j7AJFyDtYcxPRaJ2d0FN6ZsqKlE0SKx8qH2ofGj8KKDaW544hkQ+k9ICSImsL5KL1VqJwETG8KiYKAKoQILFbr1jygfumtpT17aeEOMm21fS//pPqZcWORjSxk5DwhfS4bfmbdy4b7Tmv0hDBQbOhqGchi3W3DkpcVOFKdUuIOnjqaqiQqptRgFuJxNdQpeIgbG6MNh7HdPRQZpNYovDTRjHuxFxlOgCo1007p/2vCKhY42ERLS1Zfv9k5h1P+D+h2cGN9LPSfPWQTkvkZi6dhARIpznM/2+7VdV14xve1tKWxpBRICo/3XLWwEAz9gwveepfbtNeyBNaYED2lrZz7Ughj0lQC5cAFuOcx3QFtvqW0r1R/vRDLWgZLC3hwZpE9i+YOtXU9Ugo+e2NdyJmAgZiahpmihS1/VqvX5y+PTBw4d103gfkvQSTViI0eLc/c+u3Sjcrgk//e5rf+Hf+6Vf/83f+e0/fD/ApKkW1lBft0AGZeBV28JiTdMkWZsMXedcXdebb0DU52mEEABaZBp0AdU+lTYqYCqeCIoQGTEz7Jy1BG/M9+ZFMS2KGHxVLp01V6/szyaTK7u7meO6rpH5bLEKoqJwcrZYLteny9VJjIv1el2VkYwSB9VV3ZR1bYzrASEtNxx8c4auKS2ADErTMMAexD/3sz/7V3/t11T1jTfeSIKHjcmc+/cf/i/6902fDFN3rfHmUm1Zswz687TfvG/X0z58tJTP5Z1ujgwPDG8IYxpvjRHi4BJuc17/7ovajdAC+Lwsq3eSacu6xncZD7hLRmuBW8QMxOwcuYysJesM03w6AcdiEJyjGFRRENWQAOMgw33rRTbbNUn4wYYdWiNJwdxcNeoTOqJtITL89WIRO5ZyI8/oliY3YN6qPXKmk+X920QiURSDSlzHClQ5s+Js7T1MCrBczHdCnq2eHkGIE8WTR499XS1qRQCNAYjYECAQqFHNRCV1GOxkXPr6fVfZi+iSho/P2Qvy3ERtm236bAjx6DskJSH9TG2JWxARQBQQiVEAF4vFcrWazWZf//rX37/zISK+cvu2NP7H778/y4rZZELWoKF8Pjt8/AiQJ9O5AofgmxDv3LvvHj9RAOvy1XrdM2YdB+JalToNFdvWGDD4au3EqsaNk1uHt+q7P/VkrY0hrFYrJDJESJRiO865qqoSTi91hHz8+DEzHx4e7exePTo8RBHVePz0YDrJf/0f/PePD57cuHnrN/7pPz87W/7UT/3U1avXptNJURREbIyZzopGJIHXjDHW2XJdElMMUVXn+Sz1QgZElISNYlUNMXpURkNEbQ0KVQk+eO99rJu6ruuksg+/mQAGAWYDaCOQAFU+Hi0WnGWipBO7adQDukkwUBKQHiKFW4xtuDI2nwIARhVfRLVPW0VAUlTVqBIleolV06ybpmya0oe08vrbj4RIl9zRJf2rJr/hmDcmg2HIAXthNBg3ppAdE7UF1Ikg/UiESEw22VOqSiBAybBkBEIgYzhKJCTR5LYUkTb5fhCx75XFdsxDVrmRjwCAEFOLZOzW7uaVW+0xtTYYTPYW/GS8SYdMD7ZSE5/B1nqVrwe665bdMspeGbMUHP64PckXjeoZrK3fh1uBUR2z8P6+nSRu6yOd278KoJ1z4rnqym0LmIuPDqem50SqGkOIMQJCUly89+3GE5FzVVCHk6PjDzbGaj6foaItTrqtFhXHlk83aTHGlHDY47v6j5SMKx00wuuXSG/k9GNipp5pbgGfeuXMGJPsGVXo/Q2D1xoyaFGFNBzY/hC6xQ2GU5Nai1PXrgRG0c8hRxjebjRt5/fG5tBYjg6/yjB/i4iGOVcYg17QnWO492Q7yxZ1NJB2/UtqX9DaA9qOpbcQBkD51KCqC4IBihjiWgQIj46O7t2/9+jJ49P10oMoqLWOiGKIPOhkn8gwEVMEuHH7tbNV/dH9R1UdG60dknSAwFZp2xRtI1WFLZHc899+ZgbWCHRgjLS6+mUDbSOaVLcEUIGBLKEzpjAuY9ybzQrrLJEwKfHuZHptPiemibPOsWUkZgl+uVxneW5xOsutY9WyMjxxTOvG16rGWgUIIRJzcg/3HvHhR5eNxAJA1P6TqQrDg8ePfQig2jtoSbYBvv3qSgC8sca52V/Dha2a+pO2jDjGeK5d6UUGMw4P9TxK297zo43zrDFu3TtduxXM2VD6aomN0HhIeBFrGxNt+ti0O+OZz+qFZTsYYmBCa9lYyjKT55g563Kw3BQ5AAiCNmKBU7cdZfQIFD8Ge926D0SGhTdG0VHp87m2h6gXC+OtPUDnZNmARvr3hRJwXFwEtm2YXt9VJEo4GSHkrBBtBIKd7dRRoomrpoFJVs9n69Uq+khAD5crkjjd352a2XHVRMuGmRScpiIW2iD0xWBkgA3Gy+PhQ/1gq+HjJYeem3qmCpctXkCE3qDqWVCr6BgK4utQHz49PHjyhAwXRVHVNXo/n80WJ6e+aSQvlAmtufvwPp9kZePJWmDrRYMCES9XlTFeREMMIcTRfnjW5Aw1vDSYvkovdo3Feha6ZcwMF1jf5iHUdUpNnE6nXTNHcM71Kl0KFgGAqhwfP016AhPt7e2Hqjx4+GB/f39qzeFy+f3vfvfmtWv78/nD48MY46QodnZ318tJ4CAgWZYBQJ7nCTQxmUzqqlqtSmdtKvsRYgQAY62IBB+QLVFK1UEFFZFUeSWGePD0+OTkpCzL/nP0rykAQiRECugFVuv66OjU2lyBfMPJ99w5+IaOAB4aIP0mxc6z1s4ADNaeDv7tlKX0Gykknh9FgkpUaYIv67oK4ju3VftFhv1nOv6HvdtLuzsPvmar6hOmjKWkOycztT9BuprdxhgmUmqreQ2sBCKyrf4E0ovjvhObMUZ8Q5RSnlLS6saDzNwbdf24EQd1nHvey8zQKSEiQkzblgpCaocAAFsd47bVgIvCXKojM0M2bwIDBtszH+qq0YyedYnHf9wn8kIaX3Z5n9A/TdRPWRIPTdMYNZ0StuHm8Xzc4Qui3hTsFus2xrHfJ5crHL22PTwtqS+DG4beZX7+8sG9cVvKfAlouMEukcSpAlL/q+t6ssI5Sz0F6BOmDs5l5H/60abMkxBCUzdTthKiqpar8vj4+ODwcLFYRJFesHnvtbMKhhs+NxiiroE+enL8u3/0Rz/68EExu4rRabiw82SrcZ7zBm3NAHXohc62vLhhbfLMKRAAKzCQI5O7bGo5MyZ3BkCcdb5eE2qeO8PUNNVsvreTzWvfhOCrcr0zy4uMp9Ex6/pxKLK8cNnh6ZnUtSJOi4mCWZbl0EbaHsYlBYuYThdnh8dHN65dT70LGImR5E95eeIvIfV2bIqalj60rgFjTVHY2QSNI+fAcM0IQKxAKqQIisqgCEJKz7fVtvbyuUjsp6XLfWEvQDSAbg+fgoiEDKCc9DVjICO0yjkAYShXkPkaTW1dad1yfVYKVjbbn+TTKUKgaBXyrPE+Mw5BI8WAySO18Wr1GsxLf6nPmeq6McygUVWKoiDDy3vLo8PD/atXPvzgAwkxxpjaqswym00m9548WjeNdXMfYipJEoKE0JhoRMQPQLwAn+CTS9fcSbuoey+mt5jqkHrxmsR66mGVVsWwpXJ/tyQgVJGIQAkFF8fH8/n8nTfffHpwcPb06WQ+Pzs4ePDhh6vjoxhjXuQxBufcK6+8yvMMAHZ2dh49foSI8/m8ruuqrq0x1mSTySRZL9B1c072BtosBhEVRCImUU0dvSTGjz56uF6v67o+P0nS5cIAYN3408VCAGofJkfHhPFCkAyOixYmUyGFK6D9V6GFn0H3lz5HRSH1YhrkqERJ0DJBEFVJlr+I4gt2+pEBPf+2adFDyV0SJcWACFNZZuqc4RsP/sZSSQL3uVNNXpiS9rsVA/zS0tYILxnwnzVDpZMWLUqq83yM2MQXPdKWeku894r1NOzCuaV0xjBy3ifTPzW5877pD51/08RJkzdreIg/eXWsz5me05DYnqgY+jk8/1I6CFi9zLEOhiEiEgKRizFAlPV6vVgs1uv1uq4EtAke0RGR956tMcy+aYbfJTPkvf74f/3oPXgEAPvv2aauCeESf2eq0tgDqYfzNvzKPd+E1kB69o5QBCLGtpuFoCgjOmuneTHLnXXsMht8UxS5ymxnZ1ZMikmeqSowBVRrrXM2yywRWMvWcgzhlRs3qqjZaq2EpmwWTfAKWZ77qNLV4OkX/2bAfCGbiiK1bx48fHjt6jXvAwO5LCNA/Ymh8rIpAdkTrBGJjHHojC0m7JwtJpTlaoywBcaYggiwSZNFbdsUfrZS+rlpuDXO+25egJLoSeCZPmqdhI5BSnV4FEFiDBIzYMPkrAMfrfWNhGjzNeCjp0ev7OzMbt5wAItHHz16enrz2z+dzaelKIQQUWqKgGrR9K7WXjNODU8/azXosyXVlD89n8+bulmV693d3dl8fv/Bg3v37+/v7r312uvW2dNHZyerxeHi9MHjR6YodOlFlIicc6kRZKt+xohmJNouYnTn3TppkadbDQ2VS1Iik13dR2BijHVdb+yErvQ/tKEdTUHsZKggIiNlxkKUel1mxpbLlSL4qvre7/2uD/611169efPm/Qf3z84Wf/2v/we7cjWKLA+Ovv/9708nk7woEPGP/uiPrly5cuPW7Z29vel02vtnY4yIRMbUhlfrsqprIko4tPa9BOqyhZzQpZp0Mq5OTk7Ozs4QAUkGmKuNO0nH+f1bPtMUCOoPbQmm4bOGv+bWEWIbyiDUtrELIoDDF+lv1n/TT6TQEzMpBNUoEiUSMkCbptIZKqPx9+GdXuZ+1vtTJIpgy4W+fLrcFm3tShk2hxgvxT9Thkr6IdmUfZ5AvwPhUm71aZ7cyt+2HZd2ETuE3o3wLNrKlBgeGnKN82y0p5Th0HO94VnnXhN78Ylj6Mvw5l9SOTeYnUtG2KsIiRiUBst9OMPW2iRRElhoZKpdPAGdP2gTq+7bbA1PGwYriAgRYlQVqJvm8PDo0ePHx8fH5Kx0zbOCRFLGTSJEN0jG9/+XDwDg6n+2d/ifnBz/b/3V/zQj1Ev8P+kmqb7n+UPDn4e0febghRExtclJADBCsIiZocIaY9hZK6HJnNHonLU+eKKCDYnqYnU2n86UYGd3Zq2ldgBiJ/OT02UIDdDMuRAOT5qydtZNM1c3pXQh/jSO/kXPNzPuy8VUIhnxwdPDKBFUJHqADBCfE2X6E7qcWjgGIgCYLMsS+MFYYl7WjXHOFnkCfaW+BKqiwl0JYlUg6dyppEBycfBuTFtqSowvWeJuBWn7XfBiAWXsDAYYiJh+fxEwgBIgAXrvq7IBMmhdEGVj2ThfRySa7uygs8KOc7z74w/4ycFuMX3ljdebGMBYjSqgAUAQzGCT9nyDup62n3JmPk/S8Ww7Z5u6Pjs5WVfr5Wr1wZ0Py6aybJi4abwx7tU33lgtVidni7KpAyNbJ6ICCEgRwDdNiELESkZBRt1hzmGGLyFRMdRiMZK7XUBTLePzZkonAlrEb2cYYIJjQavcRwJQIulAPj1OSQFICRCVqKrWV/Z3o69VQmzqxw9OGu8NAhE9un//wx//+Oj4CBHv/PhPblclsz08Orz/J++/+eabWtbL5XLGdnl4LEF9VTfzeXo6M6fAjsnyOJkcLxar1cqwsdZigiGJgqpGSAkY8oxSTimiQpAq63btORAUiHpVOAVANtcgd2V+kya2KdE7xGoi0RAO3rffUQAm7keCAKKAiASITIAooBEgRlDVy/swj8DrCNC1qB2pXs+t0CMxtE5wERFsURsExICcgkTQAc4AU9cWSO4+SFOEhIC9ztCOpSt1gL2GcUnbo3MbZ/hXVVXpPM7PRnd+uegivMwWNzMjHJsKIjmXee8BUBVCiFmWIaKIjqzBbkOmZizGSP/VmTkVyWjqxubeZoWxFhFD1z9187TBRPJYkRqOWLZzcfCZh7z3aVekLRdFCjcBAGaDiGVZaWpJoxhCKKazPhwxuvfo50sgJ+MRAbcbECWGRqRhQ5ZdQBGseo2rFypdzfKNlUhdw5N0qO0BoioxqgoibXrwjfhIO0+9d3wzM2M/gYikWMr56ETiaN0IW9d7D2NIbioAKIoieYmgM7EGg2ijzNCFEXpv4rbFLBdW4gqN3zgeEKHTuRU0uX/aSesSqLBNbhvO4Rh3EUMTQm6sAEYZZXoFAQBCpgT4HAHPiUK3MIhoYxYghuQVloQlS8PUpFAbUehGGGMQxOPjY+ecYdNEDQrA5tGTp+9/dPdkuWKXl74OgIQYfSMIrsgb71Pjqn4kdZDX//c3vQ+xa6qFiFFTBUwMQQBSvRHXR96a4BWBrQHC4IOAujwDgCb49EZpd1hriTmqKCgyNU1AJsOECkxkOoZAijGSYCpiGZghdzgv8EqOexPKyefkd6/MyrK8ujefFEVR5ICa53kT60k+R4DCWSWSEEDBWUNZzlWJTmZXZ+sqnKzKKewenJwtV+tGoCKzDiFGMZYFwEsABmQmwsaH3vZHRDVtTgWqArtQhqcnZ08fP765u5M7oxrF5VFGztRU1wDgGTla55fiZjFg+yDqSpE+87StO7Taab8sR9KiA6CmxUxtxI8GrRsuuOEgvjSqwwKookEQwCAMpX6CoW+uGieVDX9LPOG81aoApiiUCImBSI1VYzyRR1ImeyX3MUSivCiyPENi7fQ2kZh0FAVIXYE39xyVLUUcAGwAWv6cMthFLwj0yUixGGaQbzE9NMPZGIFmR3teNH0YQwwA9aiOEA/5Bg+TUkAhdSWLMcZoJ11uFWJyxic1l5krKdMhQnBEnLsY4rpeRY0Kkk0yy9QA4nT2xptvYFkfvH/36PhoOp3vv/mau3mTlOqqxswBkIuY7tMrKqoxDTv6YIi3ZOXwg/JgomKMQ4cHIqYusQAQfBinrIznYjAbflxBZLSiJPYLG7pYXNpEsSsvo+eMB2douSgFIzle1islrMrm2v611bI6luXVm7fLqO/ff1BGEeBQe6c2BG0wRAGRKKgC6oP3EokImQQRVKPEFlVhzQYSs4WmHqyNInM+au0bUYkKsZVZCISNKBG2OnTqcQltSioQ+DaKm9riKjNFBYhiyVhuLZ+m9L0IjiARVQ3meZaSWE6XK5cFXzfL9UpEsyyr1346m54cnj569Ci1ofyTH75vrCmK4sP3/6TIHULc250Vhf2DP/jDKOrmsyaEqDrdmccQvA9BxNfVq9eurSPsFbMJ2fTFkYiZJUYfghfVrshKMrF6WFRuDEoU8cYYhQDq55PJ/nRuDDddS0JNa4O5i6Aioengmopj17hzm0plRER9eoaCJQZViV3dqgHfaEIgBENoCES1iVoL1hGCQIiCCEFikOhjCBJTyMVHn3ZniDFgBFRQDapBY8r0TygGVCXA2Pikr4BCjNFlWYxReixXSgcFECVBVUIwCkbQGptnZK0AK6NADDFEjaBAzAYBDRGzAHgVIVw3tXSWUZIEFsEYKy6PCj4GiQ2GRmt1WSGx2aiO7TfDBLCpBZAMGoyqEJVUGFVQSGNmnMSQWZc5ZwwbYyAKABLyViLKCL4x6IeREpk2Z4IHUJBNr56eLBlQgChtC8+hD3VQDk7HHmQZVnKi7VJJFwnEzzii0rU4PRcz+MypV5T7eOvGw/XyaeOJ6y1qURCV53yYdulrn8Yl9tKnODUoTKpAcsw8D0zCOZeCPD0G6XmeteXm37zL+J2GmCVjTAwvNb3kYyzT1jncJnLDJv4ydMSm8jvT6VRVy9WalOumPlssnhwcVFUdRWInnZOQY2MAMXVMHxlaClevXlmv1z/8n98BgGv/uzm0F104Rh2kg28thh4s2+6BLv06efZ6dSRZXn1jLARiTX38kAmNYWsocyZ3JkPNnGFCZ41h6gqiUErmI0RVZSJgiKKY7NjIjskbYiV1qEjGFQBCEpaV35tODdfLSuvYRFAkUEyoiS0le0MCEAAZsWmauq69bwwTqYp34RMAj78w6pf6F8Afn4+IWYiJSJjRGGUDxiARGhOJgCwxA7N0FlK7crAHogNcmmPWO0QS/PUFwBifft5e7A7YwdB7V3q/uS68RIG0ra6SjDo2hlWsIGRxBjPS62ePD0KM125cn+/Ov/qtb0bAVVkV82lKQG57PL2QiHgpE/WcNxku7AvPOXd7VGEEjWG5XIQYbt269fDh47IsrbXXbtxYlOu7Dx5Uwds8L8tyXVV1XStSTSTQecR0JEeGfTxhqIk8izeOXhNUUjvILcOPMLnzk0u9f9lL2wFjVGFQABVQJOQBLCqhtZMsU9V1Wa7W6zRCJHN6tjhbLHd3d51z0/lO0zSGebFcfnjno+PTkxjj3/gbfyPN8+nh0e7+lZ29XTfbmcym+aS4eu1almXe+9VqVdf1/pUrV4xbLFez2SzF25P7r6qqqq7vPXla1XWqOfQsed0GIZhpZzp57datW1eu70yLaqCMprYn/elMXRnylHE+UEYND5SlhJhKXwEARHWAteuloQIEUUQ1CASxquqzdQVBQy1hKxPpwo/Q3qcX1b2m3snAC0m7MjPMjMSgoi1IqbPBiAgJCREI+ghyC05rjYyunjupavBBvI8+xhhMZgFBEWPUqAKghpEANdUmvmBY/cJuX66N1CAC+hCTnRl80FQHEkf6yTMppScl6nN3XxZdzhXPn/nMTfrZGioKm55Ksl2p9rOlXkXWrjptl9P22Q6ilViAyZJ8fkNFuhxoIjpfmux56KU3OEtiOBke3vvkkoePk3l1XWMbamN9bqxdL+x7tN4zKQVIe/TnFobtpbz185CO64nh+BAipkhU1dTi1WXZ6Wr5+ODJarUKEKNEBSDEFILs8ot8nudb+ULW2rGV8jGUQF/U9QEYHuqXVk9JHbw8/8cyAqCgIKJhyqwpXDYpiulkyhLyPA8hZFnGzM7ZxOCIkE0GMSTcPJCAKCbPdxRrnRNRYGQBK2RiXU1Xq9W6anamEzYGQOKqVlVE46FVYwkvZFMigsRlVS2XS1V11qExxll82WChz4L6KM35tJwvCZXrtbBBRGVjCrBsvvPrv/xFD+rPFP2Tb/09UjRig5g6BuvslZvX108OFLEOPkOd5BlbCyAdBAfiC5kcn75kyDa7uLj1xHBhP7/SE0NkJGYuy2q5XE6npKo3bt+qan/3yaOyLEMIi8WiKIosy5xzMUYBbOpGB1VnaBOVx2FQbqj+bilByU7of93KS7novbQrYUwDbfvZ89arQINMlUSTyQQAUmJhQgr0oacQm3TJ0dFRSkPd29v7lV/5lbJa371/twnNX/trf60oirIsF4vFtWvX3nrrrXxSFLtXluvV7du3r1y5Yq11zpVl6b3P8oJdvliurl+/nvq9pOcul8t1WdaKR8fHJycnHyMOnLt27dqtW7f2JvPd2YQMj3TlgWZF23kjG7w00cYxlj5bf1KQ2PsphpOvAIoEElgVNDjnkB2sm8ZXXp/PUDlHcs4cejZ1vr++5FdyFkgLzk+FCTj1Q4EuV23rnu2CZGYiYyzkmZBGxBhRqa/DITFGSKUXkGKMz9nYpRfrSemqBy34nt83sVXibJTd+qmFEg6KeQJAvDTJ9iKB+BkbKt2cIaKI8qd/6eem3k3Sq2j9D5/pc3s7RUQlynPuot6CTCvmxQyVrXX56fWepIb2yJBW9Ry3NThPvVn8iQYw9ErCxbZQYmJ9Y5wt5N7n5pbenurBz0nMNF1mfFApl4v3P/zg8dMDrzFKBJHeqyMieZ6nF/fez2az/j4i8rv/s+8CwNX/dPb0f7OA5zBXpKv/09fjHo6q3wLD5p6Xs2kCTM4gBDBEznKWuSJzRe5QKK2N1JnEWpeEPSI5Z0MtIsLGEKlGSREVMWzAmOiQLRrRumHmsDOvqkqinilgZiVmjXfgvRKIYtAoinAxz5YoSFxX1bpchxBerLLqF0XU1QXWQbnMLxVFEYFIRIJRvdfn6zb7E3p+StqJABSz6U7YX4YIhjEzr/z/2fvvqFuy7C4Q3HsfE3HdZ5/J917my0pTRqUqqSySSqZKGnkJxBKioVsYCQmBEEwDa4ZmDTPdq5mh1wJ6mmmQhBEMvqcRSIgFCGhAahpEUVJVyZXKV2a+zOfNZ6+JiHP23vPHiYgbcT/zvnyZWVUStVeul/e7N+LEiWP22fa3n3xibWtjtDbxwwE6I1EBAaWOGHmEB70KvHEVsP9E6i7sVVbZ/atjFkaAUFXO2EGWW2MOD6dlFScb61UIB4cHe/sHgprqQbGwdS4b5AI6m82hI6u1T6/PEe4pKj0Brh9q3j1HQiPqHet70WWIb1MC/GEShahwkkQ1icUdgR56wGJElHLNQwg+H2jTPUJ66umnnrz65Fu/9Es+/rGPP5nZGOPtO3d39/bf+KY3rq1vhBic8xubWxHp0qVLFy9e3NjYsNbGGPM8JyIyNijkeT4cZMNhPhrmoioso2E+XxTTKkTm+XyeMOJPWirGmPFkvLGxMTR+NBgO8rw7k91l2RuT1UVzfOMKIAZSmqJo0tmWHhUgA8oQIygZYwBdkPl0Hh6ZY2pHHVI90XmxnIIGJhQF00pKwXKUsnM64uWxy4YIpVajMUW218i+phbHRZRFDKgxFhRFxJxNUO3aH2uFihUArHsZjhHp1BBbsf++8uyW1XPtZEZ0yoHYV1T6MOHtZ+wExR5Lq9cTSQgsLJxKoKLWiBlnMq6vzPQpxTeO9L3uf8uPWqk3iY+NAl0DY3evOUOven/1BqTJom8ytbC9ZqVqTzOex1hPW9kRGiwmrVMk696mdcircEYnbPtG41dNq/CkFwHsTTp2bUOpq62iAp0c/VOUonZ7HE1obiMl0hxRU2iv/UaaXJruQLW2AcTWY6uqwMyuk6NylL3WlY/wqOezN/hth7tcqdVyl2/Y0PLidkal68uiqqrSuGV5Ng/zX/vkxz/+qU8ezGeKICk1U9Q6W4UaRiZ5q1asO61V48GfnHbfEck0wWfaus5ZBBocTOh4EdsXTN3OsmyFkzZ+PIBahkBVRUBrrTNGOcWaKSJaBGsoz1zmDUg98kSUfDhLPt6UWIXGi5KaT4uZIwOiswaRnHNliIgosZRYVbPoLAnb0jsWrkQNogA2Gfa9yWoZmagCoKhWZVWVVaiCAYQQFLsitQJIW7sTelY8aN3zx1J3Max8353/lQqq3aXYXZVtO+1btPxn5QmnMaVuCsEpPX9Iit1JnLQ/NIi1tdBY6MPafIFeFYopn8cgo9o8s8NsvL1xYXvjyuOPj9Yn0cCiKi247oJoGWOzCLvtrUbWdT73r8IlS0t7s2Y+K7uh53oA1GVgBp7sReiZw7WWAeqe61JXacpAgYgoy2I2zbLcAI7HI1Wdzubzorh9+/Z0UVYSUz00QCxCIOY8z13moSgh8rLxZkykqfXcFWag0Um0qVLQXs9yvO+le033gO7+VH9u9uzygFCtIciYyVphYVVRFU29AlTlYhk3WJ8kIqoaYywXc2E5f/7c9va5K1euXL5y+S1vectoNBqvr7306VtVGV739Ovf9a535YP8wc6DPM+eefoZVawkrm2sA4C1djAYpB4my1RgJjSIaFtPiAdn0Xu/OZ3ff7Bjre3qou2LpBFTAGtsng/yPJ8Mxrm3yssKsyucRusstWYNLRff6WytzhIxgETWdQU/Y0EiEKmgwRisOmOdtdYYAWly0nuFONMCazwnKiAIddJ/kg7TPKbouw4/7xQsb6YjnXGYLHYrtgLszXt3qbRtLl9cQVRTAhvHEGNwuWvFY0REJABFJEIQZeyvupaortK2Kkxqp5gSkWnrqqmuBjGuUNfz2a5tqDfyiXepastGQKEHlXKqfJhy5JIjqtuvFS/QiXVUsG/S7vCaU97xmF+x8R8lTI7UM2PMESG7/87HfU7tdVo+Ko4uH9ptIfEI6gQINSKUtKy5EWHPqDP2OH23G7XM2pFg63BIRIUlSFw7pCfJPe011FniSYStWVtf5j5W5UjUiLyU9mnXYrQyhq2SoKppYLoNJh8cNHpgKz33p6H3Qi3KAtbVXnuQcwlDMx0DqVet6tKp9ILdgeqcIoi4mj4LJ1C7w5vd2/mpf+WyEQStc+WxI0P27mq/SjMhTX269jJjKAFTMrPz/sVbn/r4Zz61c3hAhkQEqC4n740pQ7TGJLEeEa21CbegHeHzf24tLQZM46NcT0+DK1Kv4cYI4TKfpkxEDBnql5FKSgUiVlXVHd42cKEWUTS9hRnkeTkvEWtYeELwzg5zbwljqIbZBBG99ykHNxkCnHOqUlUBRIjIEHGjqCTRIdYrWWIMeT4ANexpPHAjbzaVAhCqTGfkEFhBUBHQIHQTfzsLst4jSS0qimI6m54/t01ExtpuqTdVEIF+dEaXpZwSkqoA2FWNutRh5b1M4mSxOfZZKyJmu/AQT1OWoL/BTi+Y2HlqX1HRE9lX/0G60mFI7AgB+/h4H/mtH0FDCbkkrbqEoeec095o9GI5VHo86qRo1RXbfavGn9jvY6m2ddLRw94Zm/ZdjezUNQafvBocGe2gevSs8tCLrQ8hxBiT9q6dPDppwnu++Ze/vXlTEFUwFDUEVDPItx67kEUerk3EIBgiS5yqfLe556ray6xYOYoeTu3wtudjOz4rZ1N3GlK6gT4sXhRWCnQqQFtTlYW6eCrMdQxVEugjX797PcaYj0fb29uf/MxzL924KaB1qrezqSuS4oBQrfc+z7AM7cFqyKCpX+TYfrasgxvnc3r9sinCCAnlcHkg1kuoXUXQOcfbQGhmRtHuYut1ABUMxsCsDIit9Ayq2BjstEkOSUdAmgklXFRVxZGcvb+zU8X44Pr1jXNbm7sXQPX1b3zThUuXrTGPXX48WalG43E2WoL/tqHaiXLXnJvKafUaJEAUQu99/aaG2hOzfVOiVE9drTXOWgRwzsGpeR0A0luL3Y2yajDC5WeFGtcCsMuitF5FqElGBUBFQrRIlkxUSEVkVVUabOpaNhfR5sRRwBabTDrQvSHERtROJ7muEHQRlhve3uShtNl4S/kNGkG6/aZLre7R/pSYfx1XRijChowxJhWiODbGxBiTGFf3NGkf0RgKG1ZRv0ZPmlnZ5mkjdO2zieWeNsMAotKWlj9SHn35cYVpJ2FGVAwaxF552dUN27lvVVHBEyyIX6BHo/pIaz+/fGox3VsYmVe1g2elI+JX/8e+5tMee4/2yqdQ18UPACynBaGdhXrGP4QEXdLQUmjTJuuu4945fo8klSPV0tq5f++Dv/jh23fvBo4DP1BE7qhtrbv/ZXn2pJPLBJ2zRFWdc2mdqK6iGzrnUr5mUmPabU7Uw4xFREKklAWElADrEwCzt2Y0yPPMo6olTA1SA8nfOaSJAAlt6hKm47wZN2sdhxBCWMxniEhkvIFR7tZGOWSmElTVcZ4VsZLAITIoEfWKorTvmwaBpQoKhYb5fL63u0dPPWWsdc7N5odnGcxHpnZ506kpVb/eiRBTFSog6uXLAhAhdASyNqpY+0V1tbFc1upK5yRa0RBWErRSXZ10WHYvO0VdWfkJzTLtrSs6AEDS1bmtudFNdVvBgTzzrmwVldpi2oYGdRlKR/qpvwFgFRUOykJAAz/0gxFCwKQRIaAx1nbVR0qQU69g1bXiiBwp4XUKraz5R3t8iLF9XnKS1IYtorXR5HDvoJLq/t17RBhiPJxOR+sTEK7rZgBAUlRSCXAVPgEa7qTOH0ui2ou17gA9t0UOHioUxQbrkpps2PYn4ywQMWhoniKaTPzqUmnx5lDrdjIyZ4P83IXz3/jN36Sqt2/ffv8H/tNXfMVXvPmLv3hj+/y58+en06kCbJ07V8O1xei9y7K8PaZXBcS+pRUh5XsLnhUzvEcKPeyZvtaiqEvHWX/cFTvFW/WIfabjhVm13KCCaN1c0tvpVAzfV4WWtrwjCwCxzohKAV2P1n499U19+d5PSEjLTfeob3AmavkAvRyU85W7zv6sVkQ8O/85xqOS6Dfw6fvZJGFuFZVW931Z1J5tn1sFshUaEnUZ8cpPLnmKm8p9r2k3Xjl1J0VTlmTnp+VzEVt7qR4PjVJTyg+JMe7u7n7g53/+xesvMajxVhLofFdq6Qg3Z+9w2tstNEcXdMja2k4sR+DwrbV5nrdBWa22c8RwgkSUFBUkskQIoASk4pwZj4bDPMMYzWod0iXfSJenaDARAURrbWunqvlxncilCJxZQ3lWjke80ByMAJQcomKYTmdVVFCDjqHnaEqcNPXBICEgx1BVZVmWIcR8RCmU7uxD+gikjSkUm7CN1/RxnytCqpOToX7TbnU2A3UphhrPNPnrmDnKqp+k3TgJVjvRish+VA7oZhi3mvApdyX1oP3TONsuthXrMofYlQB6to9+LchHU1SSrtJIn8vLju73pL1FiUKihgxYctYhxSpUVcWo1gyoL+0ZY6RhsI92KGCD+9cu47PctbLm4yMt+aqq+n4+TTCJzlrhOBwMoko2GOzP5tZan2doCEWhj2vf+uLOXlX8lIMDjyyAljd2b1zRdVeoHZaj05Gy+KBRZhCX9fiIXKuorHTPe+ece+tb3/rlX/7l1669OBqNLly4sLu7+4EP/Hw+HI0nk4sXLw6HwxBCWZaDwWBtba2qytaUDi9L3jijl7ZPuqqftK3VLo7j70Jtb1tVRU7qHdTvhAqgTWGXzxbHbWd29Uypp5sMGXzUzGdacleCI14OBWnlqNdU9ntZBotj7zr77dxUDU6mnEdSVDrFU1/BuPzGPLNPIa2j+xNsHGkNjKjQAK2nyx5tSLtIIETUjQ76bNKKfHDKT61ocrrn4dFohZvTKVi9ffPMsnvQKyCYfAftrzE0mDrYa0K1B2F30gZTBLImhnD3/r0bt25++rnPBOZ8NLREzMzaSRbSpUXhZYm5rVetFdpaJdZaW5ZlE2/Qu8tZ651fxLkwp6UKzTZvwYgBoOaXjX0n9ZZAUwmIofeZcxwrIsscsUlHaeMdkqGWkiWSqGpi+bgjFBokY80g884kCGNjvB8MMlPMydoJZRVPZkXYmy2MAoqSA1kebZA82emzIXLOkoIysSKSKctqHWk+X/jh4OxD+gi0MvK/URUVwhb3sl4Uy5+IFOGN/+AN6c9f/M2/lAJIVgK6UrIppLpyotIYAhCguy8RIJZl+6eIsHCMMYbIzA2sDtVhzZ21PZvNlhUbukaHxmlAhEpEgJDUBgBo4EBaq3n3vcKjApm01KorWscO0cplK0wsBQIhIRqjLFG0ICWESjiCmDYFohmtVL9Jlsr/oygqrcR89qW7ajI76429yzTE1lxjrE3lSByazPvZwdw7H8rd8frG7HDGITjnZrNFEBFrWus5AqqCAIKi6IkRSF2jEDb9PzZNbUX96IbcJCW8Nagn38WxZK3F43wjCkDWoCEBjcLJUy1QF+XDPnXPUULKvP+iN7+5rMqLFy888eQTv/Irv/Lcc89tbZ173TPrd+4/OHfxsSJEpTAaDf1gUMZI1hlroIXhTctD26WjywBorc82BMGTBTbs/Hv0ez3tzkZVqfd557U6s6Kd1qlzDDX9bzqLoCDt9MOqK+X4XmAbzNy56OVuldbS0X2ZZoQxuVQU6XRFpbcUtdMNBEULRIjpn3R1HQ+HRHCGCI7jntb54wzYxNBxlr4sltK96+w9FJFkZj0dk2mFbLd1beOJVUGVof4PGyA2bSJ0DXCj3AISGIsebYwxcrQmQ4QsywwZUJBGzo4x9tdJ773Iop4EgKNn0lbbW45GpiZouYbvVFVVWu9jzY9ODMXrBlCeToyKgCSESkLKpOC8zZyNTjRi039R6QaxSH9ee6bBdDjVsaFQB7bGCADCy1paK2de14pBgCqaIqMIEHrv2IsmjH096iRrpTErFoWe8N89jNv1d9S8lKyMSTpP9lcASDgnMdZ69lGxb6WRXg9NvSalqQS/HAHn2j6qSovpiQqdOAJQZu1C2dKyOG4n9BQAgZUNChhAxNp3DwAGSLEsxVgLoPNFUYTqhRev3b137/r16w/ms8znEiSgIiLHGtEyH2RoDBkriVuTAYTA0t26rUywYrBPKzkt5jTCnNrM88VsGqvKEhIZBIjMoGqdS3kkYTYjYYegCIokEkVEUVGFEIwxhOiIUjSCAQ1VYSe+nE3HxgyNuTAab2eZ4+idsZYyb4TZGSSUPMszTwhcFqX3mTfWGVObvupjW2zmi0UxyPP5bFbMF9aYzOVEFEKoYsyzAfn9olp4m11YGzg6j6LlfKYioSissQIahGMKBTMQQ1QWIOOsqUJpsmw3RMiGLzx//fErT54bTfYWSwSCJK2eZA2lhq1Rg7fR/pQig9L3iJgMoq03KV3ZSaw6gTpqsEIvb2QlGKM7y9RNe8ETLZ4r5nlnu4anXsnEfplYOFHGUACooUeQCIwDMqqoCjEE7iDRhKr64p96CwD80rf94tv++dvf/k/f9rHv/CgDC4AqA0BtIeSEdKcogKrFolTQ0WjAVajKBSGEsgRgAkzZoemNYgghRmZO2QsGLYhaa2tJEQEUiqJYLBaxDCCA1uR5RtZY58BgiNFluYoOh8PhaEjOCnNkk+qchhBFMM9z51yKk2xZn6a6RifMUKsb1A7Jzk/WGA4xhlg7l8i4rOaWBpdIIdxkZSyfoEpEFhwiCgsgVQR700MNVVwsrj522YBSSEDhqgCCwhUjojWGrO0ugKPRMl3q5d4oqAgC2KZK77I/K6deV6A3deZrur634jsh6gqgwADtCCkA7u/vGWNIUcoQOSrh+tbmtRdf3NjYMETOmMXhzA4HB/d2BtmwOlxs+FGcV8jIrErEYlo82bSdy2oOtcBIZA0RMXNRVciYkIurEEyWp9kCEW+zWM58lhflIs/yIFKFYMk561qoqzQ1qeItKaCoRSJnWyvhoiqhsYK3rvXEEKxdtfm2VBZhzkWMTGhrLNBmQqIoIZC2GAVorHHOGSQEGBn/of/wH7Worr7uyb3dPYn81FNPXbj0WASqYnjuxeefuPrEZDzOx/kiFMYYVDrYV2fN2iQvy5g5Q8oANUyVkpE6E6Q+3UQgsFYsEtkSOWOK+dw5p8yoiqqEmLIoXZYZMskSFasQQyBDdfHjepn0NoRITyGhxveC2nm+Js6GLQCRQWoDPnsNKgSNRIYMhhIik4IRxGhEiCUIACiLssQYJbJBsmQQwAs6RUJUQmnKuTCoMAMiM0+n0xhjggOGJoQ1pVIjGkSAVCqUrHOZd37gHc8LqapYxcgqQNbl1g/BeFJVaqIiVbXJULLOkrcSI4cAUUiBFARAESJSYUcjO1gfDKv5Ivc2spMYSMEQhFjVQ5hCPZN5ghlqQT2qMiJBAugBBBAFisx1uIICixCA8Q4AmIWgZzHpLteE5tpOpaouTTkn5yK5pdouXf0LADi2icqrUqVFQlEAMZAMJR1xvQeB01UzX+uCj/8ZkDbezGbLNZnJp5eBetQYg6XppVFkPyd0xkfHyF3sL+N66+2V9781AKwwypXGe/Jg38Zwyk+91vp/rsa1I7IwM8eUUmzNbDF/8fpLPs9EqQUYOfK+PdHh6Gn3UEoN0koBx2ZlJGcJEVmTcB8VAQmQO7aTVLysqei18rZaFIV3JpZBlQbeZ9Z6Q6qGKBn/knNJtBcprgggNa/HVo10zlnvuKy0SShshy451TPvFNAax8ZMclgfDzfWJjJbHBRlV7Wue4odgxkhIFTMZRUvbK2HEJijcY/oi18xc7Tb7dFaO/uzVhbwGa1nR5f9KyRsHBFJwkNltYgAyqim96SlzfiEHDwRQUjWb41ViFWIzN7lkbmczatiEYoClDlU89msLAqpA2MIEUKMZVEURTFfLKqqAgFVvXDhwmQyKcvy8PBwd3f3YH+/qqpiVnrnRuPx2sbGZH0yHI/RUGTOsnw82TBIhoxlZlWyxnkPhghxMBq1XLQVf9ObnzI4qt3t1Qcvibzc4P02utqvHsnwTpmH0tS7REQGCCJVVV26cOHgcLo9HnvjUBmaKm8nHQFnMZ1+FggBnLVtx5gFQA2RIQLRw8MDBfDDweF06vLs4OBga2Pj3r17MYRogEPcu7/DUWazeagC14Dj1NbzTq32gWuW1Lo3k5DkrK2BxUTLsrTGIuKzTz176crlTz/33PVbN6iptNjP/tduMG1irSmWr/eanZ0Cp5epEWmZ84obShPrRKU6Xby+HAliGe4VdxeLxe07d7bOn8sGg7e/8x3nLpz/iZ/8ycOifM9XfeV4NDq3vT2bzQ4ODojIez8cjqqKnRsXBWfOxhAsQXJ+IRlGA9j1cwAiAosCpwi6Y49R7K/o7ocVK8vRu5orceWbzm09Kwwr1LU7FVQ7DptUdh2ahG+SlDepD8uu6bpTanXobELWyTtp9Yl1EicQwGq8az2Y7UnXuIHaLgiAoGn4iKaV9Gien2O735ugV9Lg5wF9QVH5nFFXiz0CmnAirdTEeY369lA6Ca5nhVKmQ/vnCms7yZf1srqBTfzGo/Xw0WilemsRFiGGsiwDRxHZ3d27detWURRKSMaA1IVfTpd3H0FRkU6+SnsWSlNWrDX4Wee4ilDnvRlWFhGp65Cdpk5ziJRbQnTWjQfDPM+yzMQYrKVWVTt2EtPgG2MSrkBZliGExWJhGzy31taSeqiEw8HQmmjIi6CK3RpPHtuuwOwHjoWcYiyuzTZVVRVlMRgOp9MpODscnKlE5lHq7squYPrK1+pR6rb5yMkGr242DnaRUjUV6lUkEhXoZ4y2nW8/tDuOCEUkLXtg5RCqsqrKMsaY51otFvt7e/PpocSqKhd7u7sP7t3Z29vf3tpuU0pDDPPZ/ODgYH9/f76YhyjPPvvsOB/cuXHzU5/69N17d+fzuQJk1m1tnZuMx2tra5PxeDQcee/JWVXNsmyQ584YjjHEgIa8yRHRkhHQxWLRhSdJO6iBvjlxFqSTiLIy7K2+AT0/LMDDzDHdbSstFFWTb0bGZFkuErsVyLpHwEOm83NEqdB1clDEGBPehqpyDN57l3k3HASRF669YMlcvHDBZ9mL166ZYb6xsXH7/v1z2xci4sb2uRnC/PCwiqmqErRDtNSNj+iE7a8uoaWnmF0UdD6G8PXf8A3f/33fR0Q/9jf+xs6/3gWAoii0H+vSMqiuhz8xcDDd2LEepvAp/EE6PGRlj6980/XTDgZ5CGE+n9+8eXPv8GA8mSjCYDDYffBg48LFmy++NPTZP7tx85lnnrly5Yr33qytVbAIrDORmciF89uROUaxBgwSpvofbaXFxiccYwwhclOX7NG4EBw5zQ0+ip2oilHb7dBodbUJzSKhmJS3/kgZNZ9lanMozpgA9gU6nb6gqHzOqJttQobMyYV+u0SdADx4DUTwM9KqBeWEbqzwL7I9YJ8Vc+AjkHRQJld6dcYePjKtHDAxxqqqoshsPrt7987+/r4xJggbRO0ElpwyUETkrDv215OoK/RzUyy5tc5CI8haY4JUUMtACFwX1UqKyknLDhVy5zDK2nC8Ocy885nPnEMAQYMq2ioqR0UxZsYm5FKarB5mJqxBRVrTXT19SqMstxCNyYShKhcDZ86vTVS1Ksvb08VJI4DNkZDkYGNof39/88K5Rz4euruyRe9JY/uqHzl90PBHWZ+nYhA/CrXzwswKKgqigKqCgCLd9+96CVY+pORvZtYoZVGUi0KYJbKK7Ny6NT+cvvjii9ODPVI+PDi4e+fWbHoIqmF/yswJ2LcoirIs61FBvHLlytD7j3/k127fuRNCsEST4ZCZNfJ0b6+cz4rFYn9/d2N7a31z02deAfLBcLwI+WCYD3Igst5Za0soSoDIXEYJMYqI9z6J0W2OwSmsqNUoVngXAKQQsmN1koSusbSp98k24Vvp9rRl2DlWKYri/GQj1SHpGnk+T46AUwgVlEUiM8eyLGNViahaUy7KEMJgPDo4PAzKH/jgB599+mmfZQXNZovF/OBgd+9g/3BWyr0iRjPMYd8qoiiI1JC+KwN4rEclZZVYa2OIkiJgRLIs+x2/43d87/d8zzAfzOfzN7zpjf/2Z3+mzf9c7X/jTkmifM1Fra04dq9Z7pRT91084qRtP3cVlTa5JemfgaOAElHgeHBwkBSqwXAIotO9/Rc/8/y1zzy3vb393Cc/9b73ve/c+fMf/7WPvu7JJynLdh7sGMTp1ce3t7cR0RB6a8gY7hS+SeleMcaiqObFIq0+fAWIr6r9A/flt6EIlbAKqGiqjKmqKVIMUa0hq1qjbOGrbzN6dSmtDWroc92d3wi0qqjUeWOpJnGC+k7KNwCJ6HFssdXOoY5CQWCFtOWEpYmzF+nJrCuxsB0ehCtC5tk3TvfKFUgB7ICmQ13wMaWdycntn/Jg7Kv1iIq11KB13GzjnT/GDZrId0L8Woj89u+TfjrCrLvicueuRixuRqCH7JSsTvU1J1tkpVOIRutgTWotQwm9ob2M2uqNHbk8oU+213jKsEPQzHQ7TaraDF5bPUabkaz9ot0VSB2wlH4A0uqyae2g1lqJ3ZND2+juoxXyWrOZ9BtvZyFFBbThrdkgv333zoP7D9L4IKH0JRtmTsEGCMoi1tnk3KAUGH3EYtcaCFs5Js1qeuHWKdGaxNqLEYCMSYAzqpp26VKUQgRNOKcAsc3Or096hBTZpTlZCOX6aDx0ZpgPBj5jKQASBIqDVEHZ+7wpUZyqaggvl03ypaQR8N7HomzXSQuLREShqizZANEjoaVgTJllolqWi4Pc350uiMgAVLEiRUzhQQrSxHanxMZQhTzPDw/2z126mMp4tSOpqt0QxC56VXcF6rLwVm99UqfQQTPCK9ttZeH1tIfuyukm/66cYSds62Ms9HX38Gjz/bCNE3UYSZ4orSFlVhH82ndsFg4SmWTn7DTe3bPLD+n2qqokCocwn85CVcUQynlhiD75qx+5f+fu/Xt3hYPEOD88KItZlvn1tXVPwAwqwiF4gmw4MIastUhmYzxYTA8f3LmLHHNnVNX5DAFFdDAYiIAq7+/tPnhwX1Ctd8Za7/Mnnnh6Y2Nr69z2YDTMZEBEUFVlVS3KAqy3znXB69odmpZ0ekFCEmiiIztgSu1Ad/dm2rBp1xMuPZxVUbbXJEazcoZSUya1Vd0RERQaqCj2zoA2FQapV+liZZb7Li8AWBoFeHWJnvhnd0mtqAUnSeTYlNhKHlRnLKAxgLvTGcfoh95atNYEqKbTKYOqpQ/9yi8tymJ/eng4n+0dHpRVVYRwf2+vqOLOYnG4WBwWxbwqA6uxbr5Y2CacDJtBg1TJAZeLFpu4r/oDILFEEST89m//9m//9m9XgAiaDwcXLlwYDofT6bTNAGxvNE0KaGd8GlYcQ288Oqpp0mfgOAFJRNpvj5166CwhbaJ2Up6qpqOlqkTk3t27VVVZa10+cM7ffOl6Zv3rnrj6wmeee/GFa87ateFoEasb128WVbG7t/Pkk09ubm7meT4YDlRCBQIKiGStMcYAAgsXZbkoqsVinvZs6weAToShpRq7xVmbfH31NY1gcFQJJ9tZySdT990VMLCG5AZSbeK/VFW9c9RwHiKyxhoT2xawiYdsxzMpmYaMbdClV6cG26opkiwysKyIlUS4+nECYBq3PyGJqIJyZAA1pj4roQEKaY+Sdi21hg+sDV6xebtlrB20nFMTNkSNsrOyhJrWoMVCbJlA+0Ea0iYGVUETRwJ4GdCUetJRtDp/q0ulu5Xabh9dA90N2/2VO6UXemtDdTUDDDsCPTNrq+gzy5IzHsPnUnOpHCY23s5kt2168xAPeNtYrUe/TFqRD7hTTx069TekKYVrjNG6EtyjWaSw9wl7WSkJKIdTDfXjb+rFeq1Efq2EgVFHkugM1JE10G2hWTTNKXhURazXyimhI10ZTkTSzlyy1EZ0a4e64Vl1SlkIoeV9KQCgdYCkBquq4gYboFNjflk+sX69pgONNNAT9doDXkS6Ildf/AIR7pivVlbXUuTqDqiCUqObwXG1StM2qaoqLkIajWJR3L59uwpVM3rYNbUSUpQGTkCpWYQKAnU5yD41h7Fis7eNMe1VCmCIRBUbd0pvMXRirCNz8pcn/q9JjamxukA4pgJSDQJazXlVVSOPfLY2Gv+Nb/q51OrfuP7bkKzzlsCmec/zfDQarQxdC+tRF3VpXEbQEctanw8icoyEiALE6gwOvVssihJxa5AfDDJDFFWNNVIJJZ2KCBNujoiAKBljTFVVzvnaHhmWtk+pw0W6A7v8vLLI2wW58mt3szV8/CRtpLctu0x/JWhh5TzoSZwnR+R197X2Veh+sUJcua37MSmlUicEL68S0aVRo44uR2MMGMN9dCxV/cVv/fDbf/od7/7ffhMA/MI3/rw0RbVBeT6bg0goq8V8Xi6KxWx2sH+wc//Bpz7yq4vDKahwDMVihiCjQT4ZjgbeE4KSGKPOpbRfJEplJnR2cKAqa6OchWPkyEwqRIQWCQFJRRNGWAwcFkXqN1kziFX0ja4eYnCZVwCDiMYmDA9aWpS0PbOgQf0mS6ioUEsh2uG9rXTfjCGZBpYdGgNKopX8B+hH63V3fbtTkkJTMzdHzJISmYkISFP28OqKOUJthFRrNTjl2t5COeHsbd/uKLVSWtrvoai8c7du3iqLYmtrK7duURSLRTE7PMwGeZB4sDt76cYNn3nn/fPXXpju7F2/datijaA7+wcHxSISvfNd7x6urf2bf/0ze/v7o+Ewsa+qqhQg8x4RQwghRGxqFEJnawAAMw/9MEBYHM7f/WVf9q3f+q3b29toiFWA6MKFC+fOndvf32+nr93gzi4rhGIHpHjl9VsO1h21JGasXNk/U3pj3VWHuniGilCGChCTlJ1WQlkUlgywcBmQNRbVha3t7Y1Na5yqPP7YpcXh1A7d1uba9euHzz333I0bN97xjncMhqONjU0BdYNh5Kiq1jrbVrosw6KK80WRzut0Rnf73PJtJLLOUopPTmPVOJSYWaR3+qxw0YeSiAhgxbyoqrIoE8AmEibr9ngIWe6bXmHSPuoBRGz7ii34PaL33lhjrK0t783ktny83ezJztiesLjCo0WgATdHooSzzxwVgMhSB6urNeK0glAXTpAQGSFGjjFqbVJcKsBQHz2iCRdUgUWO8G9tW25x2E9SVJqXBVVgZgPmYQJ470G9P0++rTUZ9NStTlG4VlbsboGuSrPCwZIxIh0iLaB8avCzGvq10t3P5qM/a5QWnyAkof2VvyT2wxz5tPPmc0mqmsK+Cepci2RKh0agXzkp03JMRdyzLIMOT2Nm5miMrR3uLwfG7qTetdwqxti1Y6cva8sQqIFV63Irc5zSujHmcDYtyzIK7+7u5vlgZ3dXVQ1RDNLi1bTasqqKKNGykvGrvh3aZhM/7oM+qTaR7l0/Q6Jf/YEX04e3/ZUnSGF9NGm1FAD4vsd/4u/vfLf39nB/9vuv/uP05c+4/0uypKbDO8uy9nRf6VJbkjKFuECzvIkIVDPjgUWFM2MNRyd8cWNjXpaj3fn8cAoChky68thXTssmz/OkKne/XzGRnkJdL9ZvVGolOX058WzOOZstncAhBAD4+W/4QDpa0sHJzDEE4FguFrEKi/l8djiVyKGqXnjuuQ998BfibOatNURVMSfUzfXJeDLKnI8cXBN8Za1RrWVr5iisxGKIrDHe+YgxYFO4BzFKDRamKgRiEFN9IlG5e/v2zoOd559/3jo3Wptsnz+3ub29ff7caDympoRueq/aBFsvEpNiz4hoMBgkGTGloCSzbvdgbu2X3WM11TFsf1rZ2i0TODopqQ91U2SSqUVElfr+u7NRK5nJkdSIV51iU1tpPp8PBwNj7WI+r4oiz7L5bBaqipm995sbG2jdzv5elIO9g33vfRmq2/fu7t6+F2McjCYv3Ljx4OAgevuGN73xu777u69effJLvvSdP/6//oNf/JUP+yxLTDgZQRJzIzoxXwETTl2M57a2v+97vvfKlStAKHXMg25ub12+fPkTn/gEEbXSeaKjHKBVX7tfrqigXXjilZ/OSl3kNAUGhRTlRIQJgETrhGwSHTifGXuws/vcJz41n8/zweATv/axu/fvvvurftPTzzwTquKFay8NJ5PHLl2+/MQTG2RUBZAia1VVqmU6WAGgqqqyfBUKHnT0hUenMnIRYlFVLCIqiHU8AhGuj/OztNAqG4hIj5Qnc3bCGrM9GfceuY4KdmX6U6+sl9bZOfZrTS1joX6KrIj0ErDPTK26BR3TQNL8P6uKSlfDfujE/DqlWq0HTECErzzRVY8AxXy+UbvTahmUDHbclNAclkfFVmhML8ftvdoEKCKPcEgf28lUYyiEkPXB+KiJ+RbVrg2o3XXyMJ0zhJDn+Xg8vvfg/mKxiCGkuKa6hb6iUttFksm2KSP1qkgSN/7o/fTh3J+dYMdzpSJdNNH2vGdmiaE79B/9gZfaz7/0B1/6+r/zxvFguPKUzHuT2d935W+333xd+B9/LvtTrYU+9xn2PW/tc00Gi8UCEdv0laWiwpxbV5YLAcmyfJxlLGKcO7e2dvkSHlTXIqgDp3iiyZeZQ0iKijhaTnF3nB9KplOutBVJf4MRNgCUdASR+RRaGY2UzIOd0oFp+4eqAo7z6awoitnB4WI2mx5OP/2JT37i4x/nGAxoGSuNYTQcDIc5WSOqFVcAoEHrvQYqKnX6DSIBpvgJBKD0n9b/ISKIQB1IUMceG+PQECLNF9V8tggckzfTere+uXnh4sXN7a1nvvgtG1ubw+Ewz/NkvEgvpaohVCJSFEWe5639MoWwGq11vHaRLLURbUD9VZeORAWFnstajqCodyclKSppa2gkakIWFU/LnDlllqlT1fGUEN9XhbgtmsRsEYuiuH79+mAwePzxx621o9GodlI5OxyP4oO7zFwUxfPPP28AY1VeeOyiog8vvOgGw+3HLnz393zv46973XxRvecrv+rxK4//b//mX/3Tf/ZPb968OR6P04w457z3ZMyiLE7sUmRl+aEf+qGrV69CXfkHWYRUJ5PJ008//XM/93NVVa3Y/o9yAGnQUFhWwcHaP23HeL9SePSM1KpDAKAI3GD6GgGDlFSU9O9iNo9VGI1GxXwBopcvXXruM8/NZrODw/1f+9Vf/Zf/8qff+76vm0zGaO1gOMyzQRV5b39v85wpiqKqKlVtee9DE2zOSKv+k5ffpCIIAoNWwhwji7TncuntQxBU20Ya2yIRdeOoXwtqlBRK4PePZj8mMq2f5JSJWJ6Sp0Phf3apawFJu7LlNo+mqJRl2bLBtOmojeV7Bf1MEMunVP2B1QDqEyIifv0TAqSyjwgISAk7D1jFvGLQyORabf/0j7QCPgvUOlJns5moWmsODw9DCIPBQFWTMNHlNsy8KBbT2dQ5b5x1g+VSbCXslIfq8zNZU07vHSK1q1+96xR8xOTt1STTH/dSSac+hVVmg2w+X8QYDw4PqxBmi4WIWuvKGDqAwXX+jUCdXPHq+lJu/rF77ef7/83hpf9pq218tSyaKjTx9ypyyvIc5d7aI2yRDMLqlykVzTtHiIZsOgJTpUdVUK1jdMHWfDYxI+0MAoIhg6KCCobMZDyuhMtYDvPs8Yv59bt3ZlUZBBkUmuLEkI5ypHSCs4hIHOQDVUboSR4rQvbpRwK8smp6rwrpI0imZ6b2HVtZ9vjLUg0naM25PXduCspvJbk0XCGEEALEWFXVYj6fz2bXXnj+Ex/7+I2XXlIW712MVZY5JSBLWZap8Gw+997kWbaoFp2QYQFAa61z1hiDEQEghW9yjCJcJ9Co1LHsSbchJIIqVrFkFrBmxByrqiJDqDQ9LPb29m5cf8kPBh/95KeefeMbrly+kg8H49Eoz3NjbQoUcc6KagyBBgNDlHI1a/cLkgJQJyywJtEYo5qlltJWIVjZ4N0olJqaKhKElKLCjDFIJtmDFUEUWMHWV8GpKH2rs9x1F7+m69gYUxQFAGRZVpUlMw+y/OrjT3zsYx/z1l24cMFbt7+7v1gsLl99YjGbXX/hRY2shmIVnnvu+XPrmyHwjVv3DxbztXPnvvO3fdezb3iDEI3XJlyGx5+4+l2//b945g3P/uRP/OTzzz0HiCl4JoYYTi1/bAy95z3veee73pXlORkCojRpDJpZ+9hjjw0Gg6IoUt5gd9zgSC6oiPBKGkafpTSQcUfm91TqbvOu6VbrmCMATTXYe/wq985ZNxkNOVQ3Xry2mE3LxXzn/r0sz66/8MJssfjFD314Y2v7/GOXdnd3yyqev/iY9fl8UYYYIwsRMSACGkI1pHyaBns8cP0ROrKqH0XmscYiWSArqbYXkoIAgeKq42zZnyPxUe0YUgc8AJKa92rsgTrMrA3camb8xJE54XPKb6AmeiwFlWnz00pz2KeX2dnXirSToddGnXX17ZdL3vtWjITGoJb2lNVurAsoCysQGWdsbQhPXl3oR1xwBAQAYxAsqIJaayBqZJYYCzIOBawj513jsNQGWL/ztA5hp9QLHll8/Z+OFzjSoHV/6q3aTrx+WRSDYY2jjycbaFefdexF9VlS17dTYFZWjcaStVkgL1y1jSD2tHyNXfPMCsxrzxPdQwfqPnoFU6sb7qLCwkQEigholhkgLQuuvzQNkLyqJsx7bKvaqXITxGCMUeAEYIIAaCjV1Up9qKpKRBaLxf0HD4CkiMXF8xeAdDo7UOVhnpMKicQyWO+RkFkUsAgRrcuGw8FkopHbpGERbnMbEFET1m0bF96ZryoEaIy7K+E9Icb0Dae3Yi6rioiyPJdG61AAjpwQ0NEYa4wiSAtGWddAYGOMM76qs9cMEcUYq6pOrLTWGdD9g2p3f+/69Zd8llW7+0UZrbXWDSsolZkVWIVDtM4tprPJeFyWJQJaMmQRRJkZFcrF0jqYarGlNB7nnDVGU8ZXZwEQkTOWY2XNKksKgbPMZNlgPp9XZchHdaT+YrEwSMbZWJYxRitQBCaSQZ7bI2zN0mw+m/3R//AV/5+ven/65h8Wf/hwPlWIcK535bQK3xL+fPr889v/AwiIGuuHWoVQBRVUQRBSVQVCsmQcGZPyTKrAxnkGYRE/GmvkMlaM4nIXKslFt8vyTRc3fvn5a1wFsjmpxRSCj1IoE2QO8yi0fzgtq8X6ei4xdot4iqR57DAHXGUUKy/eGAh7I9IV9lYFUOhGqwN08ka6RYu7kSGqanopVb1YBdFjija0jcAJqNCnUacbKRzTpUKrIj2BC3syLQoDEFrU3Cy4CB34tZS12Gry7UGFRCKymB4e7O5+9CMf+eiv/epiNjUkhAAS89wgROcolMUUZJjlzhiLVoOYGtoXAQmoHmEDhALWIEJdQ5sQiVFBA7IiiHJK+DeWomiMgGitdwYIlPJhZr1hjiFGS2qJAEQW8/0bNz6+t/9J+tB4fXLp0uVLVy5vbG0KKAAOhkNrrPUORyONoSiKkEKImAfr6yGEIhY5ZZYMiCAoqShopRJDDUGO1lhTuzJUJEZul1taaV0wj8ZboqyIgFWQKlRAFowrQxmjgvfWObDGgEqIoSrzYd7yqBX/jOt7b+qqjkR6alVHXT2Le3+dtKBS7F/7XimCzhgzGo3KxfzBvfsCeu78+dl0MRtVa5PscH+BADKbze7em965+81f/bWf+NSnp4t5Phw/2NnZnz64uwj3Dg7/z9/7fV/9dV8PhgCoFAZH4Gjk1r/sK77ydU8/+1M/8ZP/+8/+7HR2OB6NmWNussOqMM5SAyiiqqPRaLFYCOjaxXPf+tt+qx0PAmnmbFmWyUZrjQFnn3322QsXLuzv76eoreV7JbcJIZJJHhhWYUhQVHXKVhKNEuBB0k6dJ2aRJcLbcqCkI3YaJGjnSCEKt8Zya0yXOSyNcyIGKR06omKtnYwH4/Hk8PBguoDt7W2bma3zGzduv7R3b+eJx6+un9u4fOHKF7/1S9a2t9fWt9e3tx/s7g2G8fqdW8PR6NKlSwoyHA1ZWFGtdyVXaABARqNBCMEYdM4wB2PQWkdgjTWchEMVY20QJkJRTUlTjRmolxSKzVmSdKyTROsU30WGQIVDNAIQOAZlcAFUhJXFG/CZd8ZYJERU0ZTBV3KMKkJorG2yPpqSnU2Bb+uctdYAOYVk3hKTAJQAEJOnVFUSZ082glhVzi0lIuiAdxFRTn5aHEgUYSBQBWTVIAIshKbG9wStPS2ICAYENUQQlRAlRGVhkTIEATXOoiiXIWpdBRsQk22CECSo9z7lXqYya1wxABgwDbAitD7m5j8lNHUSL6J3PhuOWICZRcF0kBJWohNPseL1Iuj6KJPLvGJRgxRFi/lCVb333Srt2ucvPQ9zFNFlSeVukH+t/jWlJx/Zo3JUUUzO+W6W52p5o88VtVJFsn69Fk/Q2vyonXlJdnrEvvp0Sic7l73iDjVUa72P5NXBbv7ZyXo8My8Wi3RIZFm2d7AbmMfDERnKssxaAwApdsJng/YuEYkco7BASg5ZBpiK1BA6R5+1Yuha6dXZ3XQnXZdwJ5xz2En4bhrvwZJ2Hz2fzQ6mh4eHh9PZvChKjjFtB24wv5KpAZseJmcxcO9FThrkrinlFPv3ClGDYSAiyVTcqrXJ/tM6JQwCIZKCqr75Lz/20R+8nVr4lv/fG/1YjQpr/P5/9ZYnLl/ZmKxd55tEtLm59Wc++Z1/6g0/ma78p/ZPfEv4c+2jf9OD/9v7N/+MMosIglqDzMoSOUYy2JoeV6Yj6fBoKI0XAFLSPDk4BG/IJyyHNCQKACrLrdXwPoSjc5tC/k7ymL8cA9UrpdZ68tl86EPpYV1RUVZmBpTOiuUQwRACIFESVSrmUFUcopQFAty9c+faC8/PplNCaSZFQIkQCcEgEmDa8CCqhNI/OMkYbA6VFeXcIEgj/ZQaQVFrrATEpMImYBNUBEZgBCHgLiqgBV0c7s8X83t38drzn86Hw/WNDZv50Wh84eJlVX3jm964tb01n83KEMpQkTV5lhVFgYjOWuccqNYmdhERsUgKKgiidfG8+jMSHy0Sd4J9rbMqlMigc0ZACasYjQoaY8g45xP00LEc40Sj20Om+FGop942qeea5D7CKDJbLNY2Nx/c37l97/50trh+/XrmM4MBRF7/9LOL6ezqE0/cvHN38/z5e7t786qcV/z13/BN3/Gd3ykAzthUJzdZl42zzrmnRk/9lu/4LZsbGz/zb3/m/t17KfRrFqv2cE9O+ASTwCLv+9qvfcOb3pg0qDR3nZGC4XC4ublJHSi/RF0vzYoO03WAYCc6HxFTSFWXx3bvWn7um0VWzORd5tBxB9QiuKRzUbgoCkQoywUA3Lp1c29vl4im08PBYBDKQMY+dfV17/2a9xYch+vrs6K8eftO5IgIoZjv7z4wzkaOApqyzvBhoURHl9RrJNWltaMKDJCA0RVUFBNeCDY+3lO6gX0CQkQ0yQbUdVc9KuHK/xPoCT6ktnetpx733PYU7lKKx6EOwupZ+6cNdBgiITFLVVacQMkArPfQGCwe2enxyqnHozAhhz08KfTVz1ExxiSDtT6swt1njbCD9Ho0e/izRisOENNDFu6JbjG+0k4iYjeQursbzr7uic4EaZdCusuy9N47Z4tQVvOp935jbZ2MUYCowircB85i5qqqkmlQpVbokpafut3q2f1N1R/DjsteX41kHm1gRptc8+Wz2kjlNIAdw4CKagihLEvmGEIoyyrdGLnGIqyNzUug5xrIpW28na9je9VGap4yd0/+pYvX/sid9Pn8n9uwzhJRWVfZy6nJCV4RblDBGDQIoIrCwPylP3w+s2ZrfW00yjc2MqMyHA6LRXF4eFDM5xI5yzJj7HQ6/cGfefeTTz5pLe1s78O4P4wcOUGcVJXEaIgG3lLup4t5cu8e1bistYCiAqLAEUTUe19y1KpyxgyyzGcZlkFayQ7hjOiAiCjCcCRcrf21p8O8JoaMmrSGA651Tj0OSu7zixBBQZg1BAXqWnmqKqAlbSqQpN0RQohVCNP59PDw2nPP37x+QzgOBo7SeYyAomjAknEJK4PIkSEkgw8J8k7Fn6UOraW6DhzW8lyqCEqIYFCRDAAohZMPY4MYYkzRVgg4m81u3b4NAJvb2y88/9JoNHr961+PCjdv3pzN52jN2toaTUhBvffOWIPIkWOMwKIsCjVkU7LCtsTMcASevgvuBJ2ijSs5VMZag2SkxjQNSg6Rkjp0DAtabQ1eew18JeMU2iAQlSi8dfH87ft3iyL+8sc/CkqDfHg4na5P1tbX862tzSHrnZdeuvr002zdnfsPihAY8Evf8fY/8Sf/ZJZlKdOIOWqjkVZFgYje2MuPP/5tv+U3T9bW/sVP//RL114Ejp2TvXZkpC128cLFd73rXXmeO+fm8/mRs0zX1tYuXbqUsjWOnRE4Es6wQt20Ae6UsTJ9fLwurRxS3i1T8FuptP6mq6hAA1RDBKAFc4yhBUROOlL6dV7Oh5PheDxkDmVV3vnMPeP8M0+97pOf/tR4Mtrc2pxM1oFoWsyLqtLhwFin+hBF5bNGdY4aszTrPMkuL0uqpj4lhw8lwK7XruuvAbXOutPNxCskLCJqrcUGeVWSJoCIDaZRewa9pv0/iY7ur46YeuJdr76iQkTS5BZ+DvW2LrWyiMiquPzZpBVrCvQtUq/uumlba7B98NhfT6czKirpstlsFkLwmUei6Wy2s7vrnEs10DPvlVbBCpNYoy2eHVDjeNCUmmKMsdYlaKxOz5Oldfl3+/GU4T07pWelUPuVd29COVrsv2X7VVXNZrPpdJoUthaemFkEpI3g79rbiCiFnDWdPbG37epNDPcUZez8n9toP6fDMgXuJZticmod9WY4IgI1KsBCKuPh0BFsrK2NRzlRdGSyLCOiwWC4ub5eFeV8Pt/d2dnb293Z2RkMBoYohgDP9nrynoP/Ln34F+EPg6pFMkTWIBI44+CI0g613INqARU4MhFZwhT/Zsnk1ufeE6CoCgI1ZqeznD1SF006cXj75s/XVlFJH0xdo/Pzgj2eTlpjczP0j/pQVUaMAQSiyBJj5BhIwSBNi+L6iy/dvnUbRL211KAV1f8CGiRrbOZc5rwz1hprDCH0jALtZ2yjkxWoKfDVzn5SAyjFSwAgktSpHIiqqEqqooopMreh2eHholhkeW6tK8oCiDbW15gZVUB4fW1tMhrvPtj55Mc+zqCPP/GEt84QAaK3ziCFKsQqaGRlSfa4EKOqsnDtdgVVSS4XyewSKi1lLPb9tMuwsO6wk7XOAClwUQAQWhLQKgauSustfo6q3J7UeGsTZWYBVUMc2Q3y93/gA5++9nw+GE8m60VRHJaFSvFEeWVtY3O4vv7v3/+fouru4eHO/oEbDH7v7/uerfPbs9nMu3xRFmhImlD+fDBARGUhZydra1/93q8ZDod/7+/+3bt375Ih7MR9JaA2EXn729/+5OteBw0yfhtLXA8UwHg8vnjxYkJm7/7UP24ewpZbNQNab/mpY74SoN61QLXnVx133Q1VFRWVxsNvrDUp7q61eSWKMTLL4fTgQ7/4oQf7e5P1jU+/8HxRVrfvPXjiicff+e53lbPpwXD33MXHCNQZS0DKIK/YKvpqUY1ak85JaFVP1DOLkUs1L1GKv6rrneDnSYDPGSkd2e3xfUajv4g0oOSINWgcEVEb+tsaW88OHv3q0rE8qg60Oxn/4JiCjz1fJDT2n2NaX26to9TmQ/cVuJU9fLofr33WyhdnXW0puB+aY6/JYViaPeAYttJtfCVW96xMHwmByJAxxkisAFaRpOsndTKJqQ69qan7rPqb5ZXYseuv+v3TMm2F+9bQ1ZpqEnVnrSNGSzPhtVGqU+OsHo2lwM0xWVJbhJO0qdCQz3NWOZgeDodDa4xYBwgSWQFijOQsM0NTkKsoi1TTPXOZNoDFrVFKhLvJS+18SZMHrJ0aCCKyMn216KCKgEjLMLZe9UZdajiqarxrhlGhmw/Qe3sFQBH23ocQVPnw4KAoir29vcPDw4RqlYLHFHp+2/T0BLeVWnbOpRpewoxE3bLobQfaxXNs3Bd1cGnamU3htgmGwXuPDbpLfSKCImCCFogxaIzGGq4qZHaWMkvjwWBgbWYMQm0mzLKsLIuyyEKVqj6bqixFZGdnx1o7m8//6ztf+T9/5c/BEfoW/8M/S39cY5gvZoQUo/gsT8HBqe4FABKRsw5TCRcBAFSRKtbR3qBqAC3ScDAk2oeYilqAoAiJMQ1WKYAh4rQakaG/wo2xesLO7loxEZG5x15OOh2wn8vRv0q0qZOIJzi124euzGNngfVIT+r9y+FL/QZP+gW7eaHJN44sKoDQV3BFUA2wShVDjCFGAFURiDyfze7evjOfzkbDocRAIJgQvBQlCgGrEWUBUQK0xjhj0r7o8itpkMEBEAwpMxkjCpjMYLVjoo4uxrqmELbpZwBqEYiQDBlUVMTWdiaAqM4aQ4gqWeaQMHBAUELIffbElSvj4bCK8bELF/PhIB8Nc+9jUY4nE2tMDAFEyqIgBQSQyDHGyFFYmDkmiRm0TrVFkq46imnkeipZWgeiip1VQYbIESlwhQQERGUIxMeWDz/pM5x0VqrCydm/q6uhzqcyZmUxY99I1PZcJArLvCy2LpzzeeayLIION9YO7y7u3b9DUpF3t/b2XZb78ejOrVs7BwcV8/d/3/e96c1vLsrSel9UpfWORaH2nIGwUDqPEAVhNB6/+S1f/BXvec9P/dRPsYgzJnHREAI29aPe9va3bW5sOO+Tqz+x3LSugurAZwi4ublpra3KqlagASG5djvv2J6/RJRkQGnTCWJMyntrvfLei0iM8aTBTRHx2Ji6RKTrkEzX1EVIeuxlaeFqDzts1NSkiaW3yzI7X8w+/rFfu379us2yW3fuzsvy6aeeLQ4P/8k//PHHLl26dPnKN3zLt+aj0SQfFDEiYFWGlJNez6DW7v3uvFtjANFaV9dGZAFr+kFuKwJO99R7yBpr36gFVdNmq4pIErRhyS1ROyYTREwWCGzyV9OQNu4UIiJsIkIJUUC7zs+qqqThJ53jvZ7xNENdwSmEmOYXQLGv0CaW1OX57SwTkcbAwq06ncY5OZCSIJqKqKR+1DOuyxlf2YPtU7pCQroL6vCBmouSs9goKtKUDDo6BSuT1ztuerZfxA50ijVLcFdm6a6HXgt44iGlK17oTmm1lSv7BR+bA7vxRUp9oJ1wrDUb5pg3N8ZIcwEzN1Hy3XtXmjr2CXWv+s888coVane+dN5fFVrJ/OiInNb4SfsNj5lLwLpIEIsCLot4dHuvkZfSTKM+NYup26dVmVUb5MSVNdce8KmmWfus9h1bYWjlrr5ovlQMQoi4tBjV71kv05otaAouSk8pikJBzcBZ56oQ9g8PBnmOOSBiLCvLXPrKZl5VTcLGFSmKIrHagFQVZcp3TGwXjuyf1N8kf9fv3iAYdllDS0ctl9rE3nQvoz4KOHS2SrvrFDoiEIAIl2WpqrPZrKpKFhaR+XxeFGUVAhGRsSvIPy21KRPYyBzOufJINFTf91I7SdNJ3F7TmR1Irv+05o0xhJiQBpKiEqoAjfkgSXj1AKo6Mk6UOebOTgb5OB9sTiaO0AKMJmMQttZOxmNUtdbOpjNVtdaOx0PnfVEU88XiYDZHot/+j9/orNve3v5L7/l33eEto0CMoSqtdZHFilRVleY9zUWWZd47Mg5F0UgKvhLQGEMaLgxKiKPB0BtbNgWzGEVVHFFCeATUVImMiExTpKUz+z2NcUXe0sYYvMIPVsyf3c91Fenjf1quK+xA33bXVdp0dBxPOYYDnEwnHwGn0ZH3OtJqugxAm7rsCEKIvWjVGo5IYxVSoQxINfjK8nBvf3p4KDF6Z8pQJVybGidH1UBKkVJlEZbkMNFOzbLOsdVsAcDIQsYCKAEiGQaFhMihiqCIBIigKb0teVoUgQkVUIhSFjNx5AjCKqjoLYIEVnCZd5kfu+FoMh4Ox49dfPJ1V5/kEFV4Y23dejeeTA7299fW160xVVHm3k9n81hWCECAoayKoogcIcWAQo2VhqQIBlCCLpPOj57itckM68Jb9YJHUMLA0QhQyrjlqMIOKcGg9WarswD6nvPTzsq+KHLidUTL6nUnttW8WrL7ooJB1MiL2Xw8npShKuNi7/Dg7oP7hDQL1Uu3b1+4dOX6/evXb98BY+xw8J6veM9XvPdrjLMKICpkDYOCWa5tVWAVQjTOAgBZm+X5m77oTZv/x+bN27dTaGue52VZJtPPk08++eTVJ9No53meCjclrpuOjxijQdra2hqPx7PZ7JSaG+1JRESRaz9GO7IrMkbLYOmYk6t9l+Vp3m1H6rq0zVz0ChZr2wfEXlGXNOaJ+SNiUS6QKIQwn89D5GwwOr+xuXvvbnF4oBqL0bhcm927efPS1Se9z8t54QYkjG2UfhJF0iJMY5WatdYysLM2rRQWBlgGKrenZWcxnL5Ylhe2L9iILoCIdSWk2vdIpgmi6MjnkhYtYuIr2HyuS/pQJ+gLm2q/dT91GYCXDnFYVVSaiyGl1C0pxtAoKkDNZkv3Yoe9d7NbVRUEpKrKoqzKilN9SUQAlEb9UFURbpK6l4pKK+91V1dr5DoqroACUVvXQUWEoFceIF18SpA5nKq0qPTqDUCHocUYWofE6jX9Q6p3EItKx5HOx1VbTvRZraPyBepSd6m1gnLLfbqXQWN9QUQ6m8Ou3XOJkSWLRCusn3QX9UNylZeYJG33UoMJaCWE0KbRA0BZlofz2eTCps+zUnU6n4VaajesIqGqymo4SoUFtCzLRVG0Asp8Np/PZiGE4XDovaezFb5Y2icedllXB+hKsWSS/6nRVR76yIYSHMdisZjNptbY2WyWlJYYgmLTmnRB9ZaurXai0wFDJxcxTHclGyH0kXYembAB02BmBPBEVVU4xLXhYJhnjtCCZtaMh8Ph0GtySXnvjM3ynOiwqqqqLEE1laGYLoqiqkKM5aI8nJV789WyBnvzxcAZJWfQIGLSRbGDPJhGIEZGEa2isjCzMcYheO9zkbIoM+ty74mMQmzDfuoUy4ZYWFjqenkdOmKBhpVfTVP+T0Qy50+68uzDC50Ne8a72r3ZePk/j6LC2sCtVQuHiMTIKYeeOZktyqLc39+fT2cIEKuA0Iv7yry31mbWeeuctSlTxRpbh0phbQqpuRbVBlGDKEgGCUEFhVUJQJIjBShhUyQ8CAJQQDQEgGVZqqZoEjGEhDamIDFK8OCqqqxSzOf7+3uC4DKfZ4PxcDv32c+//z89d+2FrXPbZO3ewf4Xv+WL3/LWt37m9qdd5g3gfDpbn6x552aLxexwulgskkXfe++9d84RkoqGWImq9a7nDjtD5qgCBI5cFQZwkuVEKhKMtYRUq2Gv/iQfT2kuztJnaO2SMd68fv3g8PBgNs2ce+zCxReu37j2/AsC+rqnnsqIblx/6TAyGDMti8nGpjfm+3/wB7PBUJLQ04QACi7BZ7URMVHBeschWO/e9o53vOFNb7px61ZRFMkdZ61dLBbOuccee+ziYxexw166TAARVTQf5RcuXNja2rpz507vgOvkbCRmQsuavyey3ySfpW7Iit/7iGDX9qd97lHx7oxz3H0cIjAn26IhMs75xy6cP3/+ws793cPDg4sXti9vn7t7/cZ/+Nl/93Xf/C1baDmwczrIBoflYWqEGsPfmZ79+UftdC9l99eM0vwhYArSMY2tIZ2tPfcCBwmhKooQg4ocQeh8OHUVgNXV9VmkFNqaaj0REceqK762S+hYp80rpC8oKp8zwo5Tr28ywa6Y0mVnImLPrKh0zfbUxOmdnke1sg26cqT06++0JpDkFUk2hhDC4WzKHl2eWebFbB5jzLIsyzJWkchlVSb5Q0CZWZpq1kWxCNO5RE6HfdejcvoB2b5OCmQ66WI8AUMMIJkT22IpZ5UBiHAwGMxmM+99CO5gd/fOnTu7u7tVGVhEERBSmpaslByRJqU+jXbCqDmLtTIFMZ5FKzsLSYMoTYgcK4hxvDaZDIcb4/F4MBAOs8MDjuWfeecvpOv/9Me+ZTgc5Fn+p9/1s+mb7//pt7hcbJYPBkMgW06nQgadmRfVu//647/w/dfTZX/8F77+9sWD7fWxQwREa81iNm+nqeNWoixzKcKdNSJiCpipYQ2QMudzn6XFn7SUo0AroQpFUaSF2oJHw8NSrbQ5XU7XZ85OKxv2jG1qU6oMa6CFzyNFJSWZCELXXt9ygBBCVVUp8nOxWJRFMT+chrLMnA9VYdEgcHKbpH+blBU0SM5ab50jowhBY+vnaW0iRGQADZJirc8jNGqPAmmDIlZjiQmo2BTvRSZGq1oH/LQCYjKoo5KIRGEVcNaSIQWwmc+yfDjIPvyhD33k135tZ2/X5VmI8V3vfvfmxuZzn/lMPhioyI2Xrk9G4+n+wWI2LxYLrkIy3Djv8zzPsiyBitbDVEebLOmMIlSMUVQBtAwlqzoF55xDos8uGEwyGSRN/pTFnEymydgcY9QqWIFyOs/IPnbu/P17O7vV4db21mKx2FssFiHevXYtH40Hk8mD/f0/8kf/2NaFiyHGWj+BujxbojR0Swg4BVQtCs5Hw4HPvvKrv+rDH/7w/fv3kylHRPI8r6rqPe95z+bGRhdZtmtFFpEs88aYtbW1xx577DOf+Qx0olC6wZ8rRrpTBioZ14bDujxu14/avFmvzbTT2wDdJv5nObnu5LS6LnU7hghZ7kU5Bk4duHv75t6DHWd9qEoT16995tMRMKq+/z/+xy/7qq8ZrG0wa1RNaH4t4zrLcz9vqZ3u1zoHAxGpdgIrAyPHOtijie9qpSnlSMI1tMYjGRlayXDF5PpZJkJSUmyiv9qetKJgkk9ei5H/gqLySgkVEGp04iakIsVj40Ol3lZIAgRrbMvCqmpplm6V6VME8WNbbg97RGwPklYjOvaulUfYlYSlToNVWZIxqsmxEIqyYBVBCDHuHRyeyzKyThBj5DJEFhBRjnVRFqy914rWqHAVg8wkzueDfDAajZKWQt30xPal2g/Y4D4dCYo79r3oSIxc95XbXSeqzpzJoB5CFNFU1RjR7B0e3H+wc3g4RWsTZCkqsYgKdxWVdlJav8rS13lqlAYBOGulU5ChpSSxPfeHbqY/z/25jdWIdYUmGqX9EkGVOYAoGTMwJsv85Qvn18ajzFDuSQKByf7i1/9C285/+0X/4odv/lc/cPHvtN/89W/9SPv59/2bd41HY4B5GeJ+NTuYLb7kRy8px8zhr44+ebC///qrV7c31szYOaIQGRHJkOJybVNjjooiqepFTD5yURVQAgPGd7BCawM/1VtMayRwsNZlWW59Rm61gttJa6ONJKxNp68G4F53w55dUenur1fYh1eRmgx4wD48ELIAoKhyiDGEWAVhjkUVFkXKTs6yjDkQiDA38MHAkUlRyAgzOmeQDJI1RkENNs9q5hhTdQAEQkixXVTXUtKG3aoB7BYNTZQYSO6MCCYFMGXSMkBUNSlkS1Qj1FXlEZDIe5tlfuf+g2svXX+wc99l2cb62pu+6IsuPX7l5s3r3nlD+Asf+Pn9vb0YYzlfFMUiz7Ktjc3Njc31tXVl0chchapTYJ6s4T6QCSCah1scUUWcdUakWJRG2OZZqgSpKnjmU+CVk4pgqj8W42mLuYkETmaCjbW1zLoXX3zxYD6bT+fntrdHk7UiVnsPdiqOgGCcY5XpfP6tv/k3f8373rd/eGi9s2ZVGklIce2Jlf5LFuvRaLSYL976JW+9evXq4cFBqpqV6I1f9Kb3vu99zntGwLRiGuNavb8AiqLgyFmWXb169SMf+cjBwUF6oohYpcQtpcnxlfaYPplSxFEbk3yiRtehZJPQGKXJVOk+olv1r1FE6qBChaW8m4QHAQVVAtzb38PawWgQozMyq6bFvFybjD/5qU+K6sbW+Tv3H9y6e8+67A1f/Jb1rXMsQpZBJPW7OSm0cWgpJk9WE5WUeO9rQ50zChABKPXi5Rc5heOmoPXrdp/0MjunDSQ+QipMD4AiAFBVpcQYOhFQtWjBYhBRBRHIEgiBNgVXoFctHY/EGS+Ho3kpEWE9TVHR9h9Yyp+68qRHpRaFNSljpsF81v4GeS3OL9vdG9SnqiyttQnzZ+X4FFXE9j8BWP6XNPyk5renL4g0la1a6r9O31DU65Xz2uCIr5ij+p+h236IIQhz2lqEAGQzT84yS+DIIjbdvupvPWWIT/zJqSBA2uiqRIoGAY2HbIDFjDr1N3rvpYCIKaSnqwxw42cQEdMUU6cGqzfB1bX29RXu2RHxlxGNAFAxG2PIEEAC4lre5YkQkIw92mAajLTfENH7pRBvlBbTwjib+QHD/iwEBi0AFqDz+7vCsHnxPI1G+7u7i93d8foGRX1wd8ecNxrZIlUa5xL2qvlsNneZH9tslOfD4TDLspVcRgTQyEmIjMwMgoaMQWYuOaSalaIqKZmrSbJHRFZNqI6tabY7Tv2JJUhZRQBkbGxGvh1AZmaVSGZeFoHZ2Rr5V1Xv37//0vXrv/rJT+wVBXsPRALMzBLLBIADTKloY9pCSXxJJ1MVGQ0JaBkqm3lrLc+mbadEojGGAJ0xnihHct7PVITqclTpZMoG7td+4IX2rvt/Yu/xv3Qh8xmqpiRmh0rKNTS7AoIYBeDoRSzSyNJFBxe3189vDwcDnzkzHOVlAWsbWyuL/Pnnn4fLx6///+/Xf/D3/PM3TzK7NnAUfYZeyETUksvdRVVevzNdxDc8+eTVx7ICZkTGOpdl3lqLAJEDqCrCfHqAACHwoihUKR9MNGosDvLBYL8sqeJz+WDi/Q7OVQAVFAlUkDIyREYplQw3brEI66NxFZelCUMorbXdU2ClvGxzBoDIihS4whu6J0TPDNFlRO0WPl1kWaGWP6QPBjo9XDHDaY9VntT6SiJKNx8G+/f103J6HCCXpgYAKShbu9w4VlhAI8eiKoJw1MAxgsSwmEeubGb3HuxUocgyq6iImGK6MyUCJJDMUu5sZsmSIggIb3rPEkOQwBpJGUHrAwVUNcsdQyyLogxVHeVtEBFB0HtvXRa5jmcn64wxRHaAgwQfNxgMjKGqCotisZjPy7JCMtZYT55VgoikmozSejYAAQAASURBVDwCxWLx6WufzLL86ddfHQyG6+vrW5vjanFQleX9/YN//28/c+vWndFotCgW9x48cIPs/LlzJjOB2Ho/mUyiCqlwDCS8NsiBqAphsb/fqsHWOmNMt5ZnWZbW2ra4UMrGlsgekURDUXljBt4bVY3KGkNVGue6Ekx30uVkYdp2K342LkQiQqKyV9+912RdMSZGQ2Sotzm6TxKRyNFZZ6092Cuq+fSFT39murdL1q2Phmtrk+miuH3//m4IVdT17e0wm1YcN9Y3vvJ971VHfpBx51BCBU25nYgpA02EqcmaqDhmo4EgoDdrW5vvfsc7P/WxjydUhiqGx68+8Uf+6H+9eX6bRcBSBAAQtGSEQJUQCVFZokY0JopceOyx6XwemFvYeIumPW6EAIk09UZB6cThNdYpwMFsWo8g1geHqnYzu6zppRgxK5IloCqwqiLZdgOGjndFmDWlKBABkrMOEqSkcNJ3mEUkqqqAc9YCURUiWnSDweF0KpYCKhrDIdx9cMcYO5/tXf/EL5e7t9/0pjf5wSCS2T53voxxsVi4LEPQlNZVMUucBzBIufXOW+OtsWQI6tSQk0ajL5Y8/EJVVUVjbFlOlYGAiEFYsILcm7Vs1MbUIRIZE2PkyITEXGGfs6UqOt57MuSdtcYQIYqCJndG7YwnIo1czOaZ88CiMcbIyuKMkdhj5q2QFmNlOBSLqagqUFFFMyvQHfiASoSEgWNVllUIhsg6m6qaoKpFghglVmiMWAI1XGIZNMvy3HuO0RiT1rzBplIYANBSH2wURFBCQKyqEhCNNYDIKqwikDRwZA1ZbslYVYPkAa2isAQQNehOnKO+A783XZ3JY0kCdZ3oYg1wQhJhBtDUdUoWpSaK4ahlnKUXP9kTONuilwgNRE59wa8Dj0rauqtGs9Nvea371KFWRweosRSTKVCTWHg2OsVa0774invh1aKeFedInv3xXQLgwMViIXMl7/LBwJbF4eH+wXQ6L8tFWfmqHDPnfjDMy2pRVGXAKAKYks4TJJMAFKGazme8tjEYrW1ubHrvEz9aee5J9hsB6LoYkxUzJRuoqvGuXQcr9jBzMgreUSm1Pr8AMuexk6IXY9zZ3Z3OZi+8eO1gOiuqAJRiJKSzYk96DgAAInJT2+S06AKtc/UI0ZDp1ZQ5OWK17rYxhmp3TdJSSEElAkcPknu/NsiubA8vbK5vb21mmfOZBeDNycgcCaT9f3/l+097F6KyqrI8O7e9feH8+Na9Bzv7u7kj9F5jdbC/u7c7ubA2yQZkjXFEBKgsIcakwkUN37n+11NTf+2577LW/c4LP5b+/NFP/g5JddVZbM3+kFLegulqC7VvjYwRVaRXfaP8Z0fYOOIaU2rfJgIqCtDA9bA0mZ0AgCk7ABDBEIGgQTRABgElgiCigkSNlQQiS84SogEJpGqgcZRp8zwE772oxFBVoRQRsoYMgSEismg5RhY2zufORAFW5iqyFqMstxaIyCKgCqkYVQNgCcsYBTSqtsd84khCoGqYo8QoMcwODz61u7O1tfXgwYNbt27tPThYFIv5bFpUZYhRCHb393ye2cxPF/N8OCBronCe54PBAAirGBaLReZ9sspzjJDqcHeoNa9AkxACAMnsQihVVaoxBpwaJA4WCGsv4is64qQDxVnP0ysjEUmCIyL6PLt1bW/nYH9elrkxo9FkVlXr62vT+TzPsoXGMsTFoiRv3/e1X/v0M8+kSjUuz6DqtdlKbCuRCSk8KQovyrJaFFvbW9772d6e8e4Nb3zjD/yBH3jLW9+qKZ5ely8mANg4fDRyQptJwWrOmC7cQXdotUNy6pivHKPYoDMBrJgZVu9qqTVN1gkAvOxU23TaYimsKy2q5HZIadiqYL0XVWPs2micZRlZyyLrmxsSQ1kUMVaqaq04Z2/deOlXf/kXb7z4/NXXvW7j4qVQlS7za5MRi4QqcgwcA2hSDMgQ1SK/LnuDivrq+VYUlFVjMjsCtDnWCVrvkZ9zbFgL9if2FG9D14IsoioMKe1NFeviaRXawtis4EpVhNkgqHCsJOm7hkwxm2IKiRQG4dbag6muZQuioGcVGPUEOVB7//Ze/VWcqZpwpRfLZcwcAWv7e/vby22+FYdSI78OFJUWpqktDfO57tGrTysSZ/fgwH7pxjPmqJyduF8jrKf7npBUhwDD4XBRFA92dyIoepuA6ouyLKvqMJYyPRzN1rbXN4c2Yynm8zkAFCQVxyCsqoogIjFECdGSGQ2Ga2tr6TWrqjr2oWd5EenUlY8dD+nKsjnjEDYmHEREQ4TGtqEnVVXt7+8fHh7+0q/+yt7BfptzUhRF6n971ynp+ck/pqpJvzo9sjNpR87a0PUMHNuspgAJMEDWGmdMYG61FFJBEYNic7cxGW1Nxtubo/X18Xg8tpZYwny+MMYURfixl77j9z/xT840UgD5cLx/cDAvwniYba9PnMO1kZktZixByJhYyOKgmu9jvuaNy50HBERKBvPM+m8d/MW2qR94+h91W/5Db/gH6cMP/tuvNinfACwhgTHasxABACSbrrAYd+S3L9AjUc802vuljl2MKeAhRmVOEjSahE9BFskjWXQW0SIRsCIgqTNoSA0KASMwKROgQBvfTCAIneqSxphYxVhWwoyIzhhrrXGWjLGghQSO6qypYohVhcY55wkJNZIxRMgcmGNVVSGUIpUIlzEyQKwjvpWbSg1CUDEuyuLg4EBV8zzf2tq6e/fu/v5+CCEE9t6XZWmt83kuhEVR3Lx5M8Y4sMP5bDYYDN7whjdcvnx5Pp/fvXs3gVBNDw7b1Ds4wlTbZIZuBoiIWEuEwAiCEEEkiHD0zmWE3aCgRyNrrXOuNcTEVxz1Tg3AHSKSIcwzOxzev/bSOZ/xfKFIZHB9tP7GZ8cfffH6/b09a+1wPH7Pe97jnKuEiSiE4OCsexabrOIQ4vkLF77sy7/8mWeeefr1z15+/MrjT15lESDMR8PpYtHG+RhAFWXmEIKE6IxV1bIsUyL+0t/e59f1oav1OjmlS3yk1GY6AohopbJz965l1HFDbe5KN/w73ShNOUtAhs5h3c0Q0BjTot3e3s7z/MGDB5cvX97Y2Lh982Y1n7cpKIeHh4iY53kI4dOf+jRev3n5yuNve/vbh6PB/vSQmYuiaJFFDZFzznUzr14LQmVg1hhAo6IAAAGTCCqfubbv2amNXxI5xU+2khzCUispKXRdyrLU2VTJ+hzRIEDte2kWZ4gxSmQKFSZgUhWD0E31084C0DMrKp+fJA3Etqo6Ndhgx62aU8/2jqm11i7860BRkSVo49IT9BuNtPdeK4pK+lCD8L7azGLVfXECiuvqXQjD4XDvYH86m5I6REwYUAeL2VxCNTsc7e2NrLeKJDpfLMRQJKiYo3DybsQYVWQ0Gq2Nx5nPsMl2TdFuj/w6eFymyqPF/bfqjTFGEeuoRoQY43Q6PTg8/MjHPvpgd8cYk9h6w86WdaMVTysyhZ0qNKd4VFocRiIy1kJcWtqMMd77d/6tN3zoez6Zvjn/59cgA9IUnAneOWtsDJFUEIBUjIpFdd4OM3dxY+3i1sbWxK9PxqPRAEFYzGQ8ds4gYgzxf7n/u/YPDhZF9cff/C+7Xfr2v3n+n33vve43f/W9/+l3/vMvqcqqigJanVsbbI78/sFeWcxAolXYnAwsRCvsCTNjggjHuJjNQ4iGHAwePh1/+f/079/1wlVRUVAkNIbgiNvHWGuMUZVTnGZfoDOSdkowNr7iJSHWOyTlT0tkEEkI9JjSSgwRkUdjCDNFC2QAwFsFdcYMvB3kNvfGkHAoKlbnPNRbFYCwzvAFAIQqhgQWZ8kYZ62xxrrMeWupXBwOnBErkSuNEYUJARiAqGR1ziFgDElLCSGEv/8ddW7V1/29Z5N0ICr/4XuupS+/7G9eVSAgREBCFJb7d+/NZjPr3GK+ACGJKRTERBHnMzI0m812dnYMXHv3u9711NNPq+onPvWp3Z2dqqqMMVmWrY0nCRPCOguEK/LuCr4tNI7WRYiIEIuyNKSQWcTAAoTWuVcusbUu+oemXpyREgZ6QoAsq3Dh8St3dnfdaHB/b9f5/LHLV/JsUFTsjTl37tzudFqU5dve9rYrV64g4vr6uiLoaSDJPdIGdsJ7jyP9krd96Tvf9a7RaFSGyniHROPhYG9/3/bZqQKASFJUuApCAQEW8+lsekAIJiVBAdS5Kd1ntchxp6ZKHPWoQFu6sRc+eryiok0kHnWKV67cpS0ely7ROKkDbKOqBkxRFADw9NNPj8fjvb09InrmmWf+w//x7yRUHEOKOh6Px6PRKIRQluV8XrzuwsXbN2/eu3J5NBqQinDkqmQRdBbRpUPZOfdap6ezxggcVRiIQRFVUIVEUU72IjwitZZfFdGTXYrYgeFJ3KJRW1WFpaoYCW1OxhswtdGmyXKMMVRV4BiH1lDtbe6vhg4eqcjLQBz9PKR2EaZK2WR69TNOEm5PoXZkUiMr1QaWrpZW3tK23khvK3azP3tgEYk/pGiZ2q/c/LOSDNKrmNY8+qigeUTKPNOLtlu9vbcul9PJnz5GeD2t7V4o90M70Di9ujcdYZ3Lz8fEXKXwFdX6RzK0os9APYx1yyvCmfb5assQk41g2UJnKqEz3XgyGAACVGXpvF9bW5tX5aKq1NBoNJqMx3d2H1QSqyj7+/vr2XCSDRCJVatYASGDCmgUrkJZFIUhM5msrY/XhlkmnWSSdtFzSghBk0KtRBUIWJawLH0/ibHWpmKCImK8g45xq5uj8lDdrLmLiGr90BhThiKE6LwDQ8x8/eaNnb3dKlTItFgsWKQ9OZbO3AaEV5uMgVaTaa9pT6kQQg83OaGCiiKAtP4WTQeuUEI0RnTWeue+6EcfD1WoUCusBlnmrauYnfODLCcAS4ZjSQgGlCRa1LU8v7i9fvHc5sWtjfPrg/FgkGV1wc18MLDWIsJ8tlCVkGfuSJLripaS6H/9tl/57f/krRxjVc7G+SQb+Em2xdVQJRqDgyzLPFpCVGEOHGVelnt7+1FVyMLasQttlT74fS8CQPankYiASA1BrCdXJeE7MRH1q5DXuuuSj0GKO9d2LrproxsG0CT5t7G2vXWiWue3IK6kNy9ZWWsH7bTZ+2vlBbXBV3BkdLktlTpZVd3NewofOpbBNi1Qd+1Z23qqV+OJ6+COhMGpvRLRzrkk/GsT/WUAEdFam+W5z2qtAwAMINWxsIrWKjCRIqnzzmc+hqCRVdWqU6hPcm1AMlRVVMqErFXXnrPWOu+9s84gVCJojEGKMRiC3DtRZI6VIKtGBFVdLOZlWYnIT/62T7T9/5nf9emv+btPR5H/2GgpAPCB733xLT9y0RjjrCNrqkXBwpnPZtOpRSLvY1pmCKEoYoz5cDAej9c3Nt7yxW8bjEe379zePzgoimI4HG5dOJ9KSq6trXFkY4x0dn37xPRNbEoHahM1FCBWVRHmRWatI8i9I0iFZwTJQodXt/Orqt1yICtro1mKirisPaXNxoBelEv3Nj2pwS6lmg+JiTHzznR/fza1+SBIMRhPJusba2vrB9P5rbt3XnzxJUQMIXzjN37j9va2WgJjAkcyREDaodRyEs2RljJ9u66yLPPWuSTEEtrMkzGKMC8L412IsVs4uc2FYOaqLI0zIlJMp8VsaoCdRSKrCioQq0h1bXhBQG1STYBWzlPon+HdigI9SaZbpEX61uUVkQARU/UQUEXqlRNoPQraZLe2jKvrkNGIxpj9/f33v//96+vrCTX7ox/9qDV0/vz52fSwKIrk3JvNZgAwmUzW1sc3r18zzi+mh8ViXhbz2eFuFSoikgiZ9y7LWkUlVTk0CZkAuyPwKFpEK2EmdwXHaBAQUkVfQFUkNTWEBmJdEkRVmkxorJm/NLuGO/VGCJd5eXgcuHqqDdAVdNP49sTCrjLf32sxRmARsgn2ECoRjiGEECK0SRpa54a1EhWAcOQGoL9WUVKbWAvM9WiuLIzuh2TMbfxvy8zkrtEzfaBl0e7jB7+mky3DvZixIyxlOX2NwEZNMbd6C6RKKd3juD8LPZG42aTQyGzUYGBYPCKltccYNchLeCTpvM9QMOkqqaX0TbpluVaOk3q7A8WdNGjoT1JfLVM8247oKiqphlE9ndo4/Or931vBZwSPO8VSjggd3QwbWIG6/9q7q6Mt9J+c6tO1X5EhEUlGpyPLF6FB1+0aPFYU9+5ULrdM+qmBn2p72F5DJwT6IwAZUtWU/n6wmAmjH+bjyWRtbc3N9+fFbGd/b300NsYEEARhEUMGDAlh5LhYLIqisMasjcaj4XCQ5UGjdKrAAkDSzq0xSHV1ZEQAJEuUBDCDwOUyMbU/tss/29a643Hse7WXNaItY1NIvigKASsxClFVlXt7e/fv35/OZzbLbt++nQ6O1TJPbRhxc2hps6tTKk5XZCGkyLGrqNQIGxwRsG9tUU715ptFXvNlIovKRJnzzljGKvdZ5n0oKmcplGBAHakzODTm4sbkyfPb5zY3tjfXzm+teWeNcaIaQ0BEZ50w5F6L4jAzNHTZP7j3u3/H+b+bHv9nf+Wb/5sv6TlYWlofjUJVxaqwZjLMPDmLuVMV68h5Z8hsbEwMWRFgkHmxmJaFsX5alP/dh77pv3/nv6rbf+m/DIvi//6Gf3zSHJX/bZH/GZ/GXJqtDczW2lSiFBte2S6AJARCCxDXFEaQI/gcvf3ZnDfNqujMwZL1ESJCP86wntNjClD0ZZ3jbMj1HkwoEY09pX9lN5JET+BDsNLhFYsJNg7M9nP7rO6uF4Uk7WFdW3XZCCElL6AxxojhELHxiGbeO2tZ+Od+z6fTxb/1bz0jxvzD3137/X7PT72BARigZK6qSlkMGtPU804FNMiQsVZVQwzMdeMAgAoWyAFZAVFmBQlRRaKCArECK7Aqix6G8I++oUau+7q/97qjB8ciVEejWy0SKgjzB7+/VmDe9WNXc+tENWqNJyugzjk3yEajUZ7niPjRj38sz/P0mQiV0GbeOTfI8yqEsiyzPMsMISEle1Lz2FbWTNyjho1CBAMSGRGdNQigLCpSaWWUOTemCQluOFVr7+gdASvqOgCIqDFLLTr9VDYF3bFxk3WWypkOxBijSi0wIOLh/mGxKA4PZ85nh4v5S7dvDw4Obuw8eOH6jQc7u9lo+NRTT129elVEVICDKIIwe+O1X8SjPTFNxxLaygNEhAZMg50NgAIqjTKQhI8U1dMKH6paluVsdlhwDFU5m+7PpvuWYJA5Q4aFY4h+mKfdRzFoqGJV1toRrlS76g1UN6mvO7aNQF9Twn05fhBTjcOGqFFFsA9KiwAt/KH0q6OqqnPOObe3tzefzx88eOCcGw6HiDjIsvOPbxSL+Xw+X1tbW1tbs9bu7+8XRWG921hfs849uH+bjN68c3tjc2NtYz0y+zzL88zlORIZYzFl7jenf1d1xdWMhbNSK++pKgh7Q55QEY0gkiJab8ik0QCsBSBJ+SK1ZE9ErQFFOtE3VNekr3Wco/GSaa8lNt5q/klW7M5XuwixFqqW4hyiEqGqhCpIrJLEDiJEZBLGNgIAWENUVxxWFKkrmCWltImUOcrHVyS9dlFhU4yhObyWjrgYI4DGKJlvW6j/037e5qqwdEqWzsM4QOp8enrS/ZrBQXwY9OXKi/cUFULbBHyJyK+D0K//zCnBT8UYq6qKMWb+UQrSrSyU7uKQRjmp/+xEIJzSoLV2Op/ng3xtbW13ejCvSqiqQZ5fvnTp/uKwnM0Ppof3pwfoTAxxbBERLTjnHRqKIouqTLUgM+cz572xoQM8bwxpUz7WWouARVGMRiNFmBeFNKenIBg4xk+yIno+MjX25nqPGEDns0Wo7t2/d+3G9Zu3b83nc5v5oioNee1Gmr6c9htGuHpXzYKJAMFYE0IYDAbOOegmWTbpocmc4byvqopDdGgMGWuMJSOILGAJLWhuaJzl5ybDJy9uP3Z+a3M83JwMhrk3xhiyMYr1pKoxMKEdZoNyfrA2HGVZPp3N//aL37W3f7CzdzCFvZPe6MnLj+3t7QKULsu8y4wICSNBPvB+mDvvrbUceFoudg+n93b2DhZlPjK7B3vX7937yr9zNTJvbmx8ePzc0Ns/Nv3mteEAFP77LzpRY1kh62ySm5XgdAzHREnBO2WptBJA6/U6Szfa40Q6WQdnvKulLn8/ZfOenXqnbxP+m6LzleOxtyg0wS61tNfrSIxBVYwxnlAQOMRUHUVVCZFD/Ln/aum++Knv+Uy35b/zWz/5vf/iS//8V/3H9Ocf/tfvRhDlOihfUvKsNSlpLXBUrePIUUGUOQRGVIhRuKiYQZWBFaJwFA2iqTrET3znEkH7Z37XC+/8sUsrL3gwn5oj1SrSfv/gD7zUfvPB3//iu3/sKqhCR8JU1aqsymonhFBWlc2G3vssyz7xez+VLvgvfum7Njc38+GAVRSBjLHeqapor8q7c66pvsBt+VdExKgWkKzzxmqUGKJDNNZ5NKGqwJgWeuSkTMLPFaHC2mCilcwOZ+NNf+PWzdnzzwcBNWZvb88aUxbFt33bt21sbGDfnLay5k9a591ViNgU/gRImEiqKghyxJBIRIqSSrYfHhw6DbEq79y++dK1FwyhNU5EQhXKorBumMqOpQTClG4FjcXzEQak9yIv53RIfgxrbYrRan9q10y7YLTx26vqzs7OeDxOvoKiKPI8jzGWi8Wv7DzY2FhPLV++fHk8Hs9ms3Pnzo1Go+u3rt+9d/f89pZKXB+P1ibjYjFnkY2NDee9s1Y7RuRXnbCGkKKBdeqVwEY0qgggpH7oKDtzAcHGwErduKNX2LelnVEkhsAsgGisIczIWnLeGIMIMcZkM0CABLneNuK9w5SaK3xKGoqqigJp6zk7kbpK+9GDo2uSO6WRniJ0ynWndkM7du10rDCzan2+PNpRdSx9QVH5fKfWWIKvoJJOHxKRe/bmxo/cVvWqv3/YKjdExpjxeLyxsVHtPJjP59a5zPsL65uzg8M7RbE7OxCDpGi8G1rvFJ1zaEzgWBTFolikRiyuFplKWkrr609RVSJC1jjnuoqKVKvmN20qUbzyqkhEGALPZrME0l3OY1GWN27fevHG9Vv37s7n83lRzA/20FDKu3kERaV9x6NctT6BiADQGpNw+n2WQTFfXoOY6jUYY0DBOzebqTKDiCVyxlqkAACilgwBZM5tTsaPXdi6dPH8hY3RyLvxIDMIRJBSo1XRkDM+IYlrnnnrTJ5lMcYx58xcVlVVxf/Hv//y/+dX/6eVDv/o9e+mDVobZg9me8PJ2mQwMswW0Bo0ubVDb501yqXMDxbT2w/u3d3ZXwTBeXEwn9/d2d8tuAi8M7/r6f4o95uj4cb62mgw+MEH73Nc/MX3rj7uKHnnk2LJKOHUuniqSxfr6VO2jKk487TiIxV8xH4EGsdlJdMVs1N3855deui7W2slqlbATr2x1VUI0XSCWKx1hhWxAgUistaiKEqCp6Mff+/PnN6fv/ktv9x+/uFv+IXf/9Pv4FCmuDtBsN45a9pXY2ZtKjwKQBRFVhCJzHMJDMoKUeB/+Y5fTdd/0999ujoS8r1f8bM/cv7TP1RHLX7RXzvvcmOMeffffuIXfm+tlnzV33oy2mPGo4607IB4ImLgWJSlMWYwGIBxVVW98AMvthf8+Nv+0fc/9/sODw/vHE6ZeW1tbTQaJWWmi/OeBOJkhJK24ieSAXGGMudy6xyCQc2tXR+OJ8OM5wv8XNeoPoUQ4MLm+cvnLt26eXd3/3D/cHpYlYcxkM/AGhvh/LnzX/M1XzMajaS/dJl7a777kx6pgNz+mTwZCX49lRNp/+ypQf0GrbGz8uBjH/vYrVu3etkXCj7zCawfiSSUsWHO+KhlWF+JJtkG83S/bOMtl1u4KRRrjBmNRhsbG9vb288995yIpKWFoEZ1sVjEGK218/n83r17eZ7fvXv3S7/0S9/+trfdv3+fVSbray9dv777YGe8Njl/8bz3PvPeOCdJHni19ZQ2etYY46xdH45yn5eCZDwrICgBO+BxNjg7ekSrpbwqwI/tYksWAQ1BhBHAWUvOGufAejQ2RdK0ZeeSDajbCCQmJgwn79mkyKR4MITT7GJJTmuNGv2fRKSOcjrdBtc/Rx5FsKxDIhtHeuvnEanD6uocrVdj3bwmikqKp3zNqgJ9flGNR9HGtjcuUD0t8O9lUNIrsAHzPtFxfCqdZpRVgI7EszTxn0wKEIWzPGcRa+3mxubBbLp7uD8PFRga5aO18drBbLaogs5nuXVljLnxSGSsRSRWqGIsyhIRhUVEKojdxZxU89gQiw4GA2YGQmNMqEptAzn7L9Xq99CPxnkZA5WcjwgAUFWBozifIVIZYsVx7+Dw2ksvvXTzphBUMe4dHJCzKGqwB3gItZv6IaR9Wu1Jh4hqRcXaHkNJJjfnnPeeMSYrTmQWUCTCmk0AKSAhKThD40G2MRqsjfLRIPMGjcXhKCdyAGgwlGVAxEE+jMyL+XwwyJUFALz3YyQAioFDjFXgP/8r3wxAosocnXNlDLxe5MORybNKx5PxZJTnhiUz1lh6L/9ZqAAq+Dfmh6bT6b3dnet37+5NFwxmFg4ODuazKs4rYMVKmL3hRVWU1XRRDPPMG9ry8Af+5Tv+6jd/uH3x/T91sPbnt9J8YYpmBrXWgKpBIwh6hgLe7UlwkiShbTzAw3bEsRN3utf72LvaP6UThQv9Dbvy+eztt5/bQyUdeLk/EW0pBUw0QLG9I2foszLyHJRjUAVjTCqHAgr/r0s/cpYudenB/uwn/8vaA/O9/+hNDhGsFVARjZwKRAABMAKKQgRQUJEQY6UaQFngxzv+k3/1u59791+9svKIIGqtfdNfv2qM2VjP8ZymV5PI7/l7T1NaSwYcoB5Rcuqw5p5DKQponuWqUlWV0jEr5EMf/vB4NFJVZ/3jjz/usswPBuSczTw0blFmLssyQQUQoBASGUU+3NvdWJtsjkZbk7VR7g0ocHRkQDQ51VU1OaVfIzv3yyLsf5gfHl594olFKP/dBz5QVgU5R6jTcjEaDAX1iSeeuPL442BS/LxiCi9UVJU63j4VaFs5pLR+AHYipZe1DxO/bZ3qsIoTpaqiSkTOuSzLHty89omPfvTGiy9ujMeHsxmkkCFE54w2SMSiktLU0ggT4qMpHI9mV67diSGEEFZ+KsqSELuiYa2rEIYQnHMJ8isBu5VlqSzDwQCVp9NpWZbPP//8jRs3hsPhpUuXvPd3797dPrd55fKl3f19Fc4zH0U2N9Zz77a2NgslMsQKbYmP9E6df18J1WkCSaidDHwmwEDGOVFBQAIFjqPcpeIbaU4FTwxHat1x6djshb42fyAAaC/4WxuRFbBZkY0ksFRURFWUWVi0NhA645wXMikzzFmTJgX7+gOCqrByZI4cg0HtiwYrwYQC2qB2nkzdvIZV0S5F6wJQHcO73BG9y17OiXY86TLzM01fqgGVRp45iNTx7UugcYAj5TvpjHKaPaW7UkNeqKimIIleJ9uaoWk9EAIRkigLWWNSeb4YOUaNDE6I7Cn73PqsbhlqgMtuP7pXUqcb/QCP3pRpJ0c8LfqEdMbCEiMhGiIVkYd4Ds5EERtuK2CIgCWqUGYjKVBnYhS7a5Q6Iy81lH/7Jkt5VOvcFGg9etrBXCeiNg4xxh5H68k9HT3eGJPcwSlW0lsHHYyF1hKgqgK9u1IEGjOzcAisIqPBkAAzwkHulXQairKIyHYwmGxOyge7u/O9eeUsM5ZbGJzbDFLMS0C68WDn9t7+0HqNGhUrlZxqYHtjLRkjMSozAVRlORgMilAhQMkR+xIDyzICmIhawwACcFiBe+4GaHZ/WsbkowJyFNWU2TovSkCbjQaIUBTltb3dG7dvXdt5cBDDoijm8wUaL6xEpNYECTHENpZXAaIC9LM/V8qxWTIBUFSVRYG1P2Xe5yEEZiFCVbTOM6shZ5AMUYK0D1X1/t/5K+n6N//wlclktDYeCoIYMERKQo5Gg3yhXMzLtYHfcHh5fXj13PrYA1o1k4HmA8q8CgorOps7Z4wzZDgoemPdJGHeWLJIARUd0mKxqKq4NyvIWOOcscZYS4aQCAwZggs0HAg7ULLG5e6ri/+hfamv5x/5K3e/44WX7r10Z3cWWY0PQmgHv/B9L6QLvvQvX6hAolQLVimkDMETxgwGI1ghAdUQTUSy4iwDl2ujLHNmsSjAZT4ft1eG0MYia4wCAC7rxU/2GccqO2iDCLop862opLw6ce0p0uZU9Kjz50rQ8MomhcbuhdA7jbq2utWunmK76hiD21PKABoy3SXaJQSwXQQkkdhhCFlVroEWzBHBGCoZInO1qBCOMc591d97EhH+/XdfS3+++Uce++gP3e5e0GopAPA3v+vjv/0fvjETyTNviESlZ8lWFWGNZcpwOChEgeAIE59KeOovjJ//Y3UF1Tf+6LbxOBrlk8lkmA8sgjSlygSRCTnGEKNEISZV/LK/8sQH/mDtZvmKv/NsIRUSVsIKysK1Pzm5NVgdICMdldu21jdijC/duPXkk6976qlnRqPRcDiMMa6vbUJT2fX+zr2iKMqi9NaOB8NYhBi5KuZhMdseZ7myr4r1YQbMYFBBNEYkU/MzhBp6AFRBUoWklojIdH10TRHSozKK93VyiKquGINP8iEoQst6EUBZSUHL4IH2DmfobOazx5+88sa9Z/fm08OqdJG3sgxEB8PR137jNxVVcOjBEAGoCEQBEEASEAlBoTa0L3vomg2rgIqky8FOMkAtOKfAG0BDFgCqWNV4xJGVRUIA0YHPgnVWqJgVxXQ+nU4BMXCUVB2YzCJWEqq0i1kk5UxjfU709khXcj/Fu6W9kx16QmPfR4eNeqaqKjEZodJ82RrPUGOMYoyIBGblWEuKCqqIguhsJfyZ5583RAjgyIACIlVFmQyn1mVlFRUo8mw2f/6ZZ5558aXr8+nBU0+97m3veMenPvWpofWTyUSjHt554CLYySjzG0VkqKxVsoAGFTGmpO5XaCvHTn5setOBJiWkBUJQRGQOFgnQACIjBK5KFlYgtI4QAFgwgfSwijHGZd44CwiZMd4gEQioqKTI1FRPCZhDVcymB8aiqlQxBo2VBgZOacZkDSECi0bWyBKjhMixCiqRDLscnUXnki4DAC7z7WBUITDXGXcEqsUBSKwrUjMjQJpZY12WZ8I8ny84BAJoEr3TWbOCwlLr70hgrI3MrBpFUu2pKkYRQSJhZ8goA3NlHKW8J0UFBdZe3mbXr3uK0891sDfaFCDnHBE1r5gaNABkjEs2l2IxR1BD6r2r7QZJdUQC6Qi3zEkET+FzogIKEmtEBNMxy9pVheyVqVna38p45MNnjeq0qxR6ob0evLqd0RQO2xF20wg+FFHv0Ya66zd4NB2re1C9rDhObaAkVHQxm4Fohib3PjP20vb5MoZfe+HTh3v7qk4QMp/lPgsxhsiLsjyYTRVh9+Dg4sZWlmVFqBZVlZFVAUUU0vbYC8yIyKqzxUJEnHM51paB5XLq+D2Ofa9HJU2AI6oqCnk+8NnQWjudz/b2D27evfeJz3zm4OCAiAIz19ojItaZ2dpkQL6yPtTUxIGQSOqVShLNOnTj/7rXfv7oH77xnr+/TkQJNkVYBJQQwRAqGEMI6J3NnbMExpAxhIbQGCWjUOP0IRoyVhSVyXinKCigCIhCxlhjrLHWWDG6vjZJtaLJ2tpa0UBqoDWWUDgKwNGiOM+9dP/FW/f/ye+5lf5839+6/L9/z83211/+wbtf9jcuVUCE5IgckgFk1Xm1alZUVFIwiJYMqFhDztm1tcnOzs6Tz75xZ3bYXokNoPvy3lcyMf850SlecVQlVUOUgQmEkUiIjDFgVjNevvpvPZFlzln7Tf/wDQeVxCCFLd/0w+c//oebKKwfvfCxP3S3e8usLCuOgaMlUpXIAk2EWkKTlIQrqhS5hklaeWjFAQRe/xfWnbPO2DzLJvlwkOcjN/TGMQqjjRAYuZKqUk1Sl5AAEIsiwrv+2hMu82WMBzzPs6wMYQm9lHrSGaXE9h/7C+du/7H76curP3J57Z2T0Wj02KXHr1y5MplMUn2n0Wjk3FJEuH//PiIapMx7731VlPPZjEM1GQ62tzZJtVjMcW2ShDYBOD25tct8Ho0RHRG4z9SIsxZED8uSiIZZTkhFWW364ZWt82995vWfeen6xoB3D/fR+dm8uHbt2vXr17fObeejofEuJSK6zMcqpEBfVcVTPEWqrVGv1k9aS2D/CGitzkQknJYnFkWxt7e3v7c3n82KRVGVlXG2RfRSgCoE0aXhQNvQ3Fcv4L6l3nw139RuAZAWjQM7/pP0b3qp9n2xAWtBVQIQVFSl2tsMAIAKseNkrqoqz3NmXl9fX1ufSLV48ODBL//iLz548MB7X8wXyZkTYzznL+N0Oi/j5vlhkx8rjWmUXn3Jrl7eujouCqKiABExskQRPsN0dMtTtvIDdsJfWlq6UwC0U0g6uXsat7ZYa4M1xnkgtt67xreJCsVs0eWWUpc+ZBGGssBUgAU0FaWxWZYPBt5lvb6e/EanB1+svDQsXYx1EUnUY6C1H0VYahppt8ZJFxJhjKEsMQ1aE5qIiFiW1bEgMrB0kqa/hTt2F9uNXX5Zodif56RNprI0OE6f6x6t0tESUWe8K13cFpZ5uaQdSNyzT7d2QOhUxAjEyBrZZgYMrvvJpXMXrt+6uc97e4spWquq3nsfw6IqE7J7VZb3s8H+1vYawKIsi6oM1tdIdoDM0TuHiAlcOFUnIKL19fUzLlF9xXmlisDNmhGFKBJ4pog7e3t37j+4du2F/f39urRlUbR2aGNMiI1l6xigp0ekGGOyW0gIncX8kJaNMclOwRyjz421KVknFZsbDPLBYGCbtBZrnbU2LSVQREvGOESKQdSSMaYKi+aYALKIXoVTUaeUA4RABKrGWrKNy5sAhLQD/rjSwwfT+U/9nqVm0tVSEn3g+2od5lt//BlkQcVAsgj85r/y2Ef/YG2GH/2Pm+lMIUPWWtXSOpcs1vu7+4aIpZfIsaKoxDMEhn2BTidVQVILag0RohgCQ2oJjwC05GhyoKHNfO7XFedlNZ3ODuf6lh89F4RZeM6zlVvKKpBBVgFJFQYs1OkxysyRQzKXqEIVVBUq4a/4q4+//w9cT7c/8z+vq7I1xhubuWxg3dpgNBkMPdlMyATYDQsWjjEmk7kwq0gS8ioEIYgKrFCUC7LWD/LZfCEqxzqLVuji/7SdVv6Upx/84Aff/OY3f9EXf8nGxkZRFETkvU9Olfb6+/fvr6+vT8YTAOQYjTEhBIlxNNpYX1+HMsb5XFWsoXRIKOIpIcWvvNLFimfvjMHrzGyQhsOhiByGPY/m3GTjxTs314ej17/u6clk/aVbt60x9/cPiPAnfuInfvqnf/o3ffmXf9V7v/rKk1c3NzfX1tZYhUNs5bC0Z0/qYcvnFQH7uPMrR0AS8QFJFBTZklHVsiy994PBYDQapUBZ7ohOzJzqhUuTGylNpYuzDuKZaeVog+bFERGhjphYEQqX7tDG6dqSiBhDUoc/pdiTpYQwGAy6z2Xm8Xi8u7t7cLC3MRnt7e0VRTGdTheLRZ7ng8FgMplkg8GLL744GK8/duVqKnUKMHnVB+EsJCICGJkDQBVCjKENrH1NRdY29EtEhMU0trgU2VuWZb08RMr5vFVUpEkrFxGROPAejKJFBDDeZ3me5bnPc++9hOOBTI5SV21+5e+10s7LkiSlLTyqvQzh7jVElBTdhFCa1GwAMAa9c+2yTIl5y9v6LsruT6seld8w1NTl+TzVUuDI1J6xk9IB4Hu0Xdo1wyAinK3QUMsKk7gcheeLBbNUwsZZNaQIly8+FkTnL92clkVVVUiUZVlUrmIsiiLGMC0WO4f7gbkMFacAttpBRKKa8NIjx+l0du/+vXt3704mk7WN9RUz4Smv3P/pkQyKWteAYwVR5BgXZXn77p0bN2/v7OykQIJUK6B1bbWZ06+uolJjEGOdHpceoQ9jUklRqUIVqlD7ZIgA/v/s/XnYbWlWFwiutd5h733O+YY7x5xTJGRCklACCgIKArbaVQ6FWnaLWlp2WWWLVimlKN12dfUjouKIilMztCCKIMijaIkgKMkomSSZSZJkZkRkRNy4cYdvONMe3vdda/Uf7z772+fc+315MzIySctcTzw3znfOHt9xDb/1W2qtRUm+KKqqzFbKIDkgS2iIjHMFADJ3xhBZStydGSoI5EASxxhVVLkHI0pOEcluThUQ5BRV1TmXCVt/wv7Zz1/9b/nx/uIvfMUv4XMP2QI/8Ds/+Lu++1OSKPpyXXerdXP45/fEeVaADVcCEVprObTW2r29PWY+ODg8nc+dPcu7GHaaj6T5PykfRhQEQY2hAoCJEhEbYoNid+cdsmISj2bfFcYVjQtLopk3TYqtpDq2Tde+4a9PP/jHenPlV3zjpcaGjIszRCKQi4/k2ybmxCw9EygkBhYJKUbhT/trlxh6TDIgTl3lnJv4svTekY2RRbnTTkAakqTMKcO/kmwQOArQIosq5+sbUpX1apmYq6LUh1UqIC8Ri8XiXe9618t3jq5evfra1772Mz7jM4jo5ORknHVQlqWINHW9ms/3JtMrl69UVRVaKIoCAGbTacssImjNJhnjomVtvFS+slVohy7pIa+Bm1yO3tNvDBaujUEN3bp7Z52Sm1a2KbrjyEpNW4vID//wD/3gD//bgyuX3/SmN33e533emz/90y4dHGbaklw+8rwNcVwacgezoNt1xlQVB+gmUopREltr9/f3U4pXrlw5ODiom6aLW2FfIoJNfsKQAbLRJV5lReL+rQ03JB8ZrA4jnTI/Sc9FtkmEGGyzHpyjkmMSiKC0BYkcI/qstTmT/vDwkAwuTo4A9Pbt25nyIfNDXLlyZf/S4ZrD3v6+qsYUPyL8xasrqppjFFEkxZgR6Pjq7bbnCW6mg/Yo3J5sbRgY+U9lSV27U9kzp20QUTWZYSaPQ/LeObdR3Ake0lAZtK/7URWvTHYiMw+pfOYVaBhytFVkaVebzckFuqkM5r1nZmtdUUzO4lw55Df8u50NMYbo7+aoDLOCiDLC6IHxpmHvz6N/eM9hfeldv9uvf18Oydadz22dixpx56ctMOjGx2BgUxgIEWGT4DG80fjy90MIHnyv+3pliCr22X6bWC1vveaHDds98K44rrlDhjIHqI4K3eR/6T6CoAtEVfM/qGdVVnQ7N/f+lu8nDMi8rY8XxyHGyXw62ZuhIXJ2erB/NcXb82V7ktq2JUTnXCEFEOWMmGVTH52cJOY6dFm36IkjVH1ZsLCo1m17sjg9Oj1ZNnUxrVj4TEsZEio3/yNCGbXq1nAd+QKHDJ/Nn7IJ6g5VMnqFnKxtm9oXhTXuZL5YrOrjk9Nnnnv29p2jLkURads2Tz8A6HOEVDm7SDd3h6FW3TbpE94/bDap0vkJxgdv4vtGVRVUREIIAzFOPvM1f+Xqh/54DzX5Vd/6JqZc7lCHEbh5SIOo3ntnbebnGK7vnFcGMtYah2jIWkTjlFTQEKRYaIppk5kE0m+QoFJ4p4AiIqBIYAwIKkt2UGpeo4uiyEbRj/qv6bquabqXq+Orew9RhX4jpGoIo9Bi3dYdC5ICKsKmirQSUWIG1Zwjm2KcHczq9drvn+Wo5NbaQtufv+Hq1maz++O49847a3cp2969zr3x9lq/M4e38D7nX2Nn7znvdqhbS8p9Fzn7TBc8MAGKFtYY0YQYkaIqEVhv//Lya/9E8efyUV/8za/ti2mJAsvEG2ucqyaVtS2nhsMquJWxnQlv+qsWgVC1A2YVIUygBMAsm5SQM6VkUB+7lIN8HIUZVPui8oREZVERmh/9vX3xli/8tk8RYRH5yf/u2fzNm7/xWnZMjDRfFLPJ3FbNE9yQcc7FtiM8qyEL4wUTETc87yISUxTud8aU0t27d40xTz/9tPd+sVx2bTufz+FKf8O9vb3FYpFinB+fmOuPXL9m9vf3W2tydMI5Z6Z9epZuemdbNe8X/wf6rfTc0bx12NidtzNsHnI3EdWYYqYvE9XFct6puknlQVehvXn37rJp5utVMZ1oxxWRqiaWx5964nM/71d96Zd92Wte85pyUhFgTnbv45+jO8cUrbVIyIljipw4N6/zTkR0Uy8jpdR1bd55aUN7hAioiKQImMu1eefVmje84Q3r9Xrd1PPFQg0tV0vVjIAlFB1Hg3HTSorjIM9FqsIOoH7803nn0KgyoDFGB+eU6mCfDEeOnWLDOBTVcZV11ZFRp1AUxXQ6vXz5ctM0t27dWiwWe3t7+/v7iePx4pQ5Xb582VobQlDVoihOTk6arjWzqu5eft0bDwpfPPCxH0J0XErmghVlp1zYVrsxCICIpBhjijltnaXfx2VTDmusCdDIxoBNndyNxq8y1FDPhKKbJh0UYM1PvWnezGgE2kcJ4kZ6Ql6RylnaJEJba3NVTeccGWd8ARsbfngqzs50Fuidng/VjqpKiIETbFM+5shnSoybdGLE3U1ua3/ZvqVsl7DTkdB4CSFEwGFYGrtVoXV4u5QScz9cc/Q4N3IIYRNpkQ3GQY2hjA3LfyKSqqTEIszCIQQVQUQ7djRuerHPZckF7+AMLn82xGhE60mjqmF5iIjmQXb/TrmzVj7YINtJONud9LtHjn86uzSOEZyAMPC9bsjdRs98rgWyLReZUiNDBTd2OBljePSaO4NjSwm40KAdk+1Y03PnD4MDzqbiWdrTw5jIOZ6RKUdpu0be8MDjdxz9iXXsjuvV3ZNjQPRlUVbl/t5+YV1MPJvtBWZVZVVWceoEAQAix9PV4l5VGWcjpyScS7rGGK1xihQ4xZTm6+V8vYqc0Bq0VhBFtyubDgsx5qK/Z688DNetpfE+Q2WwUgZ7e+MmYUGNKQFRaJq7R0cnp4tbd+7cevnlLqRyb1Y3jY6AczmulVLqqzputvxxyH7LULn/IQbbRgQeBMsm6pOe8l7FwoYMERMRigLR5/+jt9y4dj2EUFfrVb1EQ5AxzdbkUpUWjTGkqs557MEjiMOYMSayqDHonCoKkDHWFkYZVMV5J6D5BTkl3OybIuJQM9EGgqASAhXOihIzxyTZLZoXoFyeDBE5BStdQelrf+IL/tznv+3Djk8A+Ee/4/2//bs/9eh0ced43iUR51QRCATAgGZm7RijQzDGOueQUDYw7p1hvOWPOH+abw+brQ7Z1vp2nbnjs7b6edtQOU8L3O368QW2jYpX5tQdryGKup3pMH54gIfTq5QAFbwxBtWoJkNdtrhRrXN/4O2/5T3vercVERRGDMrr0AIKBwEABkBES8aJ8WQr48kTUCGsiVk5MkgCjaIIKswEaskYJNGN50ezeaIRVBCUMNfezDXFM/dOjPyzf+iZ4YF/7Pf90uN/48rNP3o0fPPer7p75evLo6/p67dc+foSEYzpsR0GyZCxZACAWI3z3YafA0cuib7jsK9GJyLWWKXej8jMyHz58uXXvva1zzzzDCIul8tnn30Wvrh/hpOTk+eff15ZJmVZlkWWqvCTySQ7jMuyxLwpowqAouiDslT6pe++DI2zA7aYGxAetPliT2iyRVFz3gDYko37b71er9drAa1X65DCzRdfVGFUiCGmlEKSELioqqtXr375b/g/femXf9kTr3nKOte27XRvhpsGzDKeEbksAyqebRnWhhD2DvaNNXpG3H+mwMC2/qGqQy0/UZlMJqryxBNP+LJY1/WiXv3Ce9+7XC7jRqsZ1C8AoDOA1kOZbTtMABcUzRz30RjKBSNTfHidQRccNrsd25IAovZFwc8uvzFUuq7b39+/dOlSvpf3/g1veMPVq1edt5f2Jrdv3w4htG1rrV2tVhkbtnzxhceffp0tpyHEcH+64UcgD7Wk7IzJreVRFan3rzELEllruetgs4eODZW8uZtNW+38utnBJIPMezLVDdtvr4VvHkc3/u5sqKTQDYYKMw86AAFW3lmi7JjLl+o/Gyt0FssSUdkAj7PXHDbqqG7vKTtjY3h+IhJm3ICZtfeZ5rx51W0H6P1OjQdKfpfBVN48quQFfdRzveLEfDbMxoZAfs4MikPEAfSVGzYb2yIcYyoKT8ZwYiJ0zjvvrDUiTITM0nVdCCEza+fc/S088djmexhN95PyyytjW/aCUXj/WbBZ9XTkTDzvyJ3P2eWUQyhtDCfLedN1lw4OLh9eMqylr4z12b0dYhTWYUyh0LppTleLqqqU0FgbY1ytVs26nvq95WpJRF3XrdZrZi7KMmXzw1D2E2zGJD7kbnGBDMN7vC8CgCIUVem8P5mfnswXJ6eLW3fu3rl3T0CryaTdhBY2sY7eoTX2x3xEHfHKpA8iEwFkCiLOkZYdSHcOu8UYrYGdvQERyRjnPRliZoVcwZkUILMaqYBkaljZFHsRydH3gaGF+pioKCiokIozZJ1T0LpNA0dN1hp/TffnAQD24R/c+a259/70O76sEfxrn/2DH/Z9G9Zb907nTatQWOMV8Tzeb2utIaOqzjt0W5S7n8R9veqiIIDqDBGIQQMAnXd1im0Mzrmnn376fe/9ReEIAgG15dh0vJbOpPoHfm9fEvG3fM9nJZXE8O++sg9xfO4/fKOJkZNVSUkFmLONW1hbOZeRkAqgICFvZUk61ZxbT7kgtLUbY1qP5/OdZ767Wu58M1gp+fO1b5ghqAGyZIwxpXXeOmXJzpLwoJzU8yQHB5xzn/KmN3/hF37hO9/5zps3b77lLW954YUXbt++PRz29re/va7rSweHr3vNa6bTaVEURFS4XAU811RB/IQfvaoaU4oxFkVRXbvWdZ2SOXrh+Zdeurle15Cj9yKauChKY8yf+BN/4gt/zRetmho2OmLusvGCPF5Is7MjpdQ0zXK5bNvWGLNarS533SOPPTIcljFjWa2MMboRr1HWXCWTXhYlxI6Zp9Ppk1XpvL91987Lt2+3bRtDyFnPw6bwcVOEBvsEHwA5O5MdZ8fDS9u2y+Xy5ZdfXq1WMcZP//RPPzg4eMMb3nB4uP8L73rn6elp0zTee1VpmmY+n4cQBOHa9etgepfTR58BdbFc8F5E2BedvFA1zY0zDlw8jAzet51R96AbABHlYaYbtutM4IWScppmdpMNrkwiVOFhCxaVQeUiBRHJbggVUdKH9QtsP/zw5NrT7vSf6AITeee1RnWZBqPufmVmR3XcdvdviYh477PrJRs2Zw8JjKQK0rZdXdcAkJkGzcZFlO2cobRUfqoHGypZvbiPv/uT8oklqppNYdyugfVhzxrr1pLOTSy+P90/j1FQvDQ7QEQWQUPz+dwgWYECDSVOmgazW0ZliYio47Bcr6tykQhEtevCfD5fr9flwVRVU0p5Dc347Jzbt1qtLk32Ms/mq7VQDrHLbOVnt4pzzlnXxXDn7t1bt19eLNf3jk9funW7DaEoS5V0796RK4qiKMYNmCfS2FD5WOvEo1VYQxdijNkk2A2IIahKipEhrztbPw7wWeYEUIJSDxcVSJtwowqfaQ0ZJK19uNw5JymeGYwKCEAAhKgAk7LETfIcM3/mna8Z7vsHn/6+P/3yF9WBWdqE+D//3G/8q5/1ry5+39PQLduGs1eJKINfHrj+ZjBA14WqmOyssPcbcp+Uj1aUc8KuNUYAwbs9mgYDWoN3ZVn4y1ev3Lp1s+3qrq27rhWBF79ma4j+86/4udf9lYNn//iZOfEzv+f9n/ZNjxICIrCAxCSGvLWlN9PCTSZVjhMCaN00dV23Mc2X65Sncp6WMaaU3vdVxw985MK6ABc5hktXWBBnjPfekS2MJUQFYU0i8pA+kuypzXnz0+n02rVr73nPe971rncdHh7O5/OXX355Z6qq6nQ6LcvS+6J3QFpDGnOAiERfjeq1H1ux1lKJnFLTNG3drFP3zPMv/ORP/1QdYyPSKSxC2wqzhdisf8WbP/stb3nLcrUqJxVYkz2vQJhSPFPN71uvAKCvK79cLhaL9Xo9n8/fSDg2VIgwV23PK/P4CmQow2NyAoZRVpX1er1ariKn93/g/cfHx13XxZhkZKjgLsXzx7Ajhi2JNhn85xkqr2wpY+amae7cuRNCyNXuP/jBD56enl65cim267quU0p5NynLsm3b9Xr9hk95o7O2nM2MMU3TfHRBlQ8v4/fajaiAKhkSubiO47ar/SPTiIYGv+DIoih0Y8zk+EBPS0Mmtmm4Am5QZDtZBsPN8kcBHTZZFTEfBYnr2T49+vjwF8FNspOOs6SyVrnNaz/WdlLsslUz2GbDkbmMTzZUBjVpMFSyEXJ6enpycpJjJvmGsMFqdV3XNI2qVlWVyRJ3DRXYWFSfOBEVxTMyAN18A/BhC0peHGEc/nsV1JfxE34EZ71SFMfZFUYGLuLDhhrGcZiLe/n+iEo/LhEv7x/MJpOqrKbV5Hh+opH3qsl+Ua1WNSOKwVxMTrtW+CxObY0JKS3rWp1hkcBp3TZNDKJgi6Jum0VTK1FRVaoqiPPlYraYP37tBkq/iiFuI3BgU5BupzUvbNmsbWd0aQ7RQgZTMrx0++WX79xe1/Wt23eOT+eK6JwDxPlyWVZVjkfm5WmIe4oIbbgNXt2JM7yabt4Ic/gDkQCBwFqrAKv1ioiKSblqlgOmgwBVNSVOxJvxuYmJARAZa6xBwwJAMNyEe3bmPqKSs3lykjwAgmbfLhpjNQUAzTXbmtB2MZC3viqd9zHlJBkA0BR39zYh55wvvF2sll29/LPv/c2TsgJDX/PUd97fAl/4HW94/vbLihZAMFcAVKWMW8r/QG+E5bZKMUqSQpKmc/Gin5RXUYjIALGoJ5o5IwYtERpPAFevXn3hhQ8BIBpihJtf8wCHyL3Vaueb+Xp186v7uMenfeNlBEWLhbGFN1XpvPNkKHGKAQ0qKMeUIiCIiKj3jox53/945777AAC87m8+avbMo3/3yi/9ob5+/K/69jf/1Fe+d3xMZZ0z6owtvPfOG0BgZU2ApKgZNAcw4sM9+7cfYEd/sre7Jt8wAQBRffvPvePypUvL5eLS/v573/1uYe7aZtSAUBbu9a950iEe7E0nk9JZ64lWq1NEQwCEhJDt84/VGH5lQeoxbLppmq5pY4zzxeLu0b0f/Mkfe+HO7cTSpCTGdKwNJ0YwxhqLe3t7IlI6x8KaFImsNSmmMTQeEc0oydAYI6IxpTaGmNLNF2/+xI+/7fTk9Df8pt/45k//tOGwrKYhYl6fw8jVOqzMROS8084w69Wr1wTgPe997/t+8X2n83kIoe5acIVuirCh6phV7FWI5p8vCuMG2NDkjxokf3Ox9o252vB9vhxFIEQRqes6e23e//73W2uPjo7KqpgWtuu6y5cvHx4eFkWRY1aZx/nll28/+bqJtUZBNmOwL456Ma/DK5Bzt07dcP4RIp3d9wHxAuzhEjkUCRsNAUYTVu8jJ+6bW3LyytZVcZMSlu8fY+zBHQDO2txlnBJrstTnlg9dBpt9x9kRO4XIULN7AHWMzngFMo6owOiz5qoD+a0/7MAdR0iGiAoiypb6nVH4anKgV5XgrMHHL1BVk5x8gvdVJnXWo2po2+V8fuvmzbZt+u4iYE5nyDGi2WzGHK21ImIBxwR5CkjGemINKanCUFgwHz0cSWQzAEMVU8o8VM45EOlG5ckwdz/k1dYY4bNsKd1ORDmvdJBiVoeGz1uI7fNyPfOmkqIgGASjogKggt6VhurELXMHUOaqj1kDyw+8W3z1vLEz6pOsROY0DMxO5exYJoQcuoctU3V0lS084hhePK4FuXNWil0+MwN4+tNFdDPPz4oejhpnTIg5juGqKiKIsKpsYiZnvTzm+98BrxPItKycsU6xUDyZz5k5gl569Dov1zaEHIAPoQOR0jkC0E4kYsdp2baUbBcSML9UL587vldeu1JFc3txeme12rfFVVvFlNYhzmM8CLFpuxtXr65Wq2xR5H9zCd4UovS1ikG1r+vEKqxKMH4RR0Qxxq7rUkqIxjkXQ8qsMItVnafQ8cnJMx96YbFazZfLyCkJsigYW3chxMjKCmCsz20bc5EyQGN9LrSGm6Un8/92XWeNwVHiEI1CH4joXGGM6bMkidw2WinWbTHZV+OWoMuuodJ7UOccJPRo6rp23jHzfL1iwr29vdJ6ds4Z23VtvW6m1YSj1JwAySLOvJt5B5wIIXJKkbt1V4qxhTUeMQbmlEvZ90+bkrCElJRV0ZLD1IaUEhmnLDFIs04Z7ZGEGxDcqygKtHy5cLMJYU58TMkiQTd+LaicdqGbVJODqwfrdZ3q+d353WvXr3/dC1/xZ578nvGRv+Y73/CLN28d142CQzKs0Yi6nCa78S8kNBi7qTWP7l1qThePveap+XplHfLICZ0LeDNz9s1kKtXB3fXwIIELkPsWzy/CSFtryI7xjxsGvx1n3kO6A3fS+eA+z8LZn1uUNNs6xpgfcvgHALaX5THbEgBYIQBAUAEGUEzgEa6gOZzt3VnXs8ODRw8OP4Cuiakyk73Z9CZsVXjMcuXwYAlb0Y/BSgGAX/iq48/6xke5ATMxFqwFa8gqgAApmS7JsukMOlFIkimGUc7ZRwDg2T9y68u/6zN+8He+a/jmp77yvb/2O978o7+7t1Xe/E2PTKbFnkeDhIaQIITYpsiiTCKIFXkWiZl0CBSoH2SK2IYogEd/4mS4+N2vPrn2V4kR3N70+dsvYAh3X/jQflk60tidGSqxXX/uZ33GdYeHhmYsnsRqfX2yH4MnNMhoAQlJURQNoOD2C+7odg7NsGXT2D8NEPlcfiE838lzHrsMKhS+bNY1soa2ZeYUZVk3t46P//1P/eQv3bwJziJZIW27lJJmRw4kQGOO5qdBeOasAKBBQQjCgMDDE2Yaws2sRAXpUkAIZGg6rRQNmD2qPvTCLz2+fz1Th+R/DVlC3UxtNcbgcAURFt6EeVWNO7h2o22bO7/0gf/49p+/c/dEVZjBkk8COVRIm2SDs+Y1Z20jI9c4QK8A9K092Fojcs6eNma7y3R0QUQ01uU+Y9CUaUPQoM31PRFyBRMFswGJ0SanYnCBa8egqpI4K2nW9KqNAhEVRZGjIin1GmEIgTk2S9nf31OFxWJZFMFayywhxJT4pZduTvdme3uz2cHBpb3KonYhTPZmzOI/ak/rjuh2wGprHKoCwqYee36h/l9lsWRaFmWxQAbJGUuAHJMtHAEYRABkUAFlVAZNoEk5w7iR2ZKxDjFJSgpdBAPOe+8sxwgqREjCyklBWQFRITH2TsMeTQCqQdPwxFv+SgWIZz6arViHgkeQxJo4o+m37KJRZktGgDInZmVmFSAEFEAEb31ZlFnfUFEyoCCKYp0jsikBEBlDWzTeI1BJr5mQ2dzlTD8UUQBFMqMlgHIqTOKkIkVRphBDiBnzJqJdF2NkVUCByWRSVFWIIYSUmVSz9aicVvPTO3du37v98vHdO6t176tCBUvY628ixtm2Wb98m5PwZDI5d3+9b6g8/E+vvjwQaqd4wUNc7PvQkR9+fNir7DG5+Fr3xyse5siP4O7nnLXz/YBE/IhihSoCYArvD/f2265b1/XJ/LTruqh6eOWqnJyu6rUxpvA+CqsqAVgkJRP6EsqcPQgd8zp066b21XS+XB7P59NLV4msKgNQEm1CaLs2CWfWUREBYQBIwiRnE7sn6Ngof4hbceS+PvHG2RZZIqc2dNlmyAGW1Wp1587d+XLZhZgNdhQRSMIsIjCUIn+QDLvRxY6RIWL5MDlgGQOSZ3cepgJg8nw2xjuHRBvKr5c/5x+/BToCRFZBRATMpDGcUuQknMD2EHAePD6y+U8VBBAUSPJ+iL3XSfLOwCKSpK6b2HWF88rShbDs2vXpoqsb5111+WA2mTp0ElJYNsX+xFoCY5GFhX+6/Jpf2X59fqlvv/v7njcvdJKA2ZeFP9hnlZOTk5Oje1H4zxz9WhJdzBeny6YB+0xzvG5bzmB9Qsq+ZYSRRwwVIZfnJgWDYIgK70VlbPXlvWGo8Tz4uj7RQsf/aclOqw1UlQRYWgKVSVkox9mkBIB4ToGj5/7ogzFaZ3dBQITQheBsCOFv/Lofy9///n/zuUiESJNJ0SUOCJ2wMF9EUwZg7K75t2yWb/k7N5KwEpazcjabVRpBNKYYYgyp58jMs0RZR9ygZ5bfxauzpGRUkdAgcAoCqiOb4an9wyfKatJ0Uy3suqb1as/TZdEjQIcbn5Pm5UcfWLjtAnnFTtqHEWEREWBRkXVdM+jx/PTn3v3zN2+/DEQAlDCXuoFcMz2fhYgsnDhlPvpxG45n4s6sFFBFQAvoSEFSDFcvX3LO7h/M4OEEN1qYiBDhvcW8a7s7d+780I/86Iu3bvXeaIWBU422E4s/RjLuoOzZGT+wnim+o1PwDEmhI06X3v89prvFbfB2klz+ayBiyucqQAwxY71ijN77lJK19pFHHqnbZjKpJpPJ/v5eVZYcAxF675HIAYHwxzLC9GBR3FLadpXAEa7h/qVgG0m2iSH0mbrZ3gVDqAiYzdaNuygfyQBK2juRNyCEzHVDm13lwc+8remd/anAmzjGxUNtsHJzdKLtLsDgndECbkNPPoLVYHtY7uJUdYM0SynFbO6REvTfsgiLNqGDhgKnxIk3lGL5cieL49sv37p9+/ad27fr9XrsQMuLhQqqYgyJuQEiNIRgLjZUPikfQ9nJADlvoO64Wh9SLjhr5yfnvYgMOeIPuTTnw4wx09nsisqqXp/MT5fLZWRh7613+/v7bQhEVHjfhYCAzlgEZFXMkCQRVOliWNXr0/ncKRyfnhydnlyf7IuqoAJhSHG5Xq3qdYwx33FotFxVzY6IZlVVVHJTmm0feTZUhsNCCNm5PtBDZcbG27fvNCwKZIwBFUCUnCTKCRDHtc92EJk5SwRGC8p5Mux/H9aLn8vAKykRjpcKRHTeq+o7//tnhy//4+969+d+11uJKMWYMw6ZU0op/0kpysSzniFYuY87CeU0vm0qqoEqPoXIzLHrUohd6GIMbds263q1Xt1bnpZkp0VhfYGAmgQNI4Mh1sTWO2utsggLAryN/njXdSGkE229dZqYY9LE0/29oiwP9vZZuIlhfnxcr9aTsprtX14k+IWbt5IIbCo0PEzoIxskIQZfVjvfD64sGeXIfjJx5VWR8XhGxMIXCliW5Y/99zfzl1/6D5/+km97/b/7fc+cf41zxJAihhhDCH/nN/z08PW3/Pqf+a//6acY06taOeafOTx+xTe/9u1/4LkHXuxktdh9ckt7+4fe+5iSILBK0zSkmT6LIPOCayaWwBhT7yt5aEEA6KJTtGSJKHLC7fKCv/INT4dnX0S0azO/eulwdjg7+aXnn/60N++70iIYlKxVIShBf2O9z0p8oOhO3tqrrXLnOgmYJKS0Xq9P69X7Pvj+X/zA+5vQUeHEEDBn2L4gao45IBgEZs4A2h0l87zJmF1UDBokcUrL5VIB3v7On7vyyPUr16895NMi5BUkA1rIWndvee9f/+t//fzzzw/Mv5jNYhDczor+KBvqAhl30I6Ta1z2ZEdkRIlGI8luuPFhO4ZQ13X5pZxz3vtNbeV2v6pyzLlt26ZpiGg6nZ6entZN/fgbXnN4cBC7MJ1OMzLKWku6DT75hJFhm/iwmwULDwo3aO+KICIlA2bD3rm5SFaQUATsJqijPRyzh3uBsvDgu9jRo8ZYs3FEBRWSsOYQKJkLpqiOkkNesfHMLIPxcsFFdtaNnZjq0GiqCiJ5ESAiX3g0JAaFUAkTahtD5JRb2RA550QkhTCfz4+Pj09OTlarVU5QGS6ehrwslZCiAJA1ZK1L8ZOGyi+b7KyAFxgq4yMfcpDunrV18d2fNqCv3cD0BZJV85SYCKfT6bXr1xfr1e3btxfL5WmMs719XxS+LCbC0DQhBASwxiBQSpwrNwkzqmZDZbFaEvOqrkOMbQxdCnljiymtm3pd15ETEQkoS0+akYSJ2ZgdQyXX9DBK2LW7ZbzypGJmQAoxLlertm1D1zVte3p6evfuXVGwziNZFk5dy6Ci2qUoKrmMw7jRxm1II3zXxRGV8Ur6YVt4Q5y1dSQR5eDA/afkzWaTJd+XpkJEiIEnVjaJe6zK+V9QAoXRtjcQL2ZDpatjijG0bdd1OZN1fnra1S2DFIWf+PLSdG822/PTqtibGGMosPVOmA0ab32ixJBAlARJkBSNYmEcsEDiiS+uHBwm4dI5Ub1SFK959LHYdvP54rTulHvc0dBiHzYAwsxd15F39XpdTbbqqAz5qbjJsh2AGfAxdjz/5yDjfiHAggx599VXv3E44Id+zwd+83d9+m/77re0qftXv+v9F1zqdd907dn/8W7+/Hnf/ikt1XhO9BERiUxT1wIIqs5aFeGUqqr6wu98s6oqijD/5Fd+MB//lr/7yFLXb/pbV3/x/96XHvrsb37cGOS2rZtGEUQ1ME9RmDWJsGoO1PVJWoLMPHZy3z9oDv/i/umf7G2h/a+fQQGogF2ylFc/FVAy6PAs3PfUwcFL7/9AnK/Z+cXVSzdmkzvvfvfNttv/lb9KQAkVVQAVVUlACASRHs6NvbsWvdrBgbzCAAszhxje/4EP/Nx7fp6cvXJp/2ixREVWzcnCAEawR24DYl8jT4VwjCrZ3nq25yRaSim0TTM/PeUQPvTsM8fHx2/9zLceXr38kE+LiIQk2Cc61039Y29727ve8+4UUxJW0T5DGCkTsm7qPGzZEq+6PHAj/rAi29zNOoJ+jdW+XcNPWEZsvF3Xqar3PqvX2UrJ+Nj9/X0AaJqGjLl7+/YvvPvdjz72mDHWGD+d7qNC7AIZY+HjDKz58DLeXvHCHXYoU5MNFRQdTgcCTSkxZ+R2ph3Pw8BsqgWAgmygXwD5kB14zuhe59EuKyRm6KHgFzXmkOaRHcofQYuMH+P8J7zvsDPh+yIqZ4YKS4iBmdFQ5MTCTQhd23JM1tFQSbzwfjad9uzbIl3XZRLzjGQZX1z07D9WEIAQk4YIRHZnxI8F8eyxdlonRw/PyiqNZKcpRo+iO4vlFmz6/AYch9R2EgrPPUn7OiqDUjIWHeUJnEshlHFg55VR2Lnb5hccjYZ+0CP0WToj0ussF3hzVTVrUb2HfvQU2wbHeReA4RkG5Vg3dOCwKX6UZScIsPV5q5oNbBVA6o8TUTLG7O/vPfrooyGE5c2XFsvFoq739vZyYXIRCV3HMeXCPYVzCTRwQkRFDSnOV8v5agkpxRRzCKVuGue9sVYA6qZZt826aaaTiQgLgYDGGGNKKSU32SNjmFlAM3lh5vrmzRq0cUUYRMgVmhRUrVvM57dfvr1ar+umruu67VpOPJlMwTnrfEwx1KsuhCgsOYFMZVc/uK8gxhBXGewWY4xs+Kby7jJ0elazzjL/Nl+OLt/vW845Mpg3FcMiLGVZ3q9bc2YlUmVma20ukteJhBCMSmKOTDmKkpSBKAmzqqNecd9wnG9CujGmlMK6k8R122SandVqVdd1WVWXDg6mRakhWsWrly/Prlxye5PAKdYtiqqwMAoTokW0vyL8fwAACvgh/ipLcVqU06IkNEYgNR0i+qq03jVdB4SFc5Oi7JLWbZpUFWYn50jGFGc5qTETMTvvMrl+YM5+8aFlvPcxpmG1IDIAZ6SKO0UPtouOPaxsp5dsryjnbz/jNUG3eR6JaDzPaMtY/TDYwnP+fNizzjXbHmqbAwA1wt6UO982q0XhfTErftM/ffoHfscH8pdv/VtXGPA9G8vh9X/7CoF82t97ZFJV06oK0KlGBYubthoLM6cUYtcYUzhryRAgTqbVdDqNMYYuBhEg/Lx/9DTknf6KySP8C/7x5SrnQUwRsF9si7Kw1iKgxjbG1HZt04WYIaeioMoKRHSWzIgKmyKPPRGdAiIe/IW93Gu5jgOokqhB3AxVtNbKCPrllCuRLoaOuZ2fLl++bVb1rfe9/81v/Ux/sD9vm7IsQCRj4jesIefqs2Nnk26HLC7ouvuGzfiK44tv/Z3vAQh37t75wLPPvHjrpTtHR/tXLx3PT53xIrBuOoMZawVlWbJK6BICLBaLrD/o8LibNPfxzQatI6+PsWtj16Wmbhfzn3/7f5yWrqqcblfpHtKo+umDfT76Zkyrza4fQz/7znf82I+/rWkbJIrChCgIlIMQ2Oe+Dt70s+1u7JwC0FGttvtbdKxvwAhiPV4RVHn7tLHf7dyWN5vLyib7eWioaXEWScYN2Wtuatic1esVAM5aY4wH13VdiF3uhbIsl8slABRFsX948LrXvDax/PzPvbNp2mvXHyl8denwMk0mhrIfaXiqjwNGbks7BTjTbwZTDUZeLehz73G4Am6Geraxc3xJVZFoU4MEEIFFQbXvOO3jlyK5iBENpgmN1KOczp17b5h9w8OPI6g6DnMpMDNsSOpUKAdxoR/Ju0ZsfqS8U5/NdIThjYZhkDXPfGb/8Bt/z3jE7rbn2ZdnLT82VPKRw4xwxiKiqHBIddusmrpLsW3aLnSFs/n4aVFevXzFeV9UZWi7RiRH7ZqmGRy7w9vxZqomFVFkUFYVlbpptw0VxBEFge482fjIjGI022RHG9VqZ95urqZbXqjtimPbKMydma/n00Gfl4aBZ6XB4QGGSl96Bi40VGDHKjj3qLMfVXu/EQ433aoij2PA3w70a7xM6ybznjeVyB/4yvdVIt569rxWDgDW8bo/vteAiyWisyW9v8auw0t1s3CLAGHWFEWViA4ODm7cuLGsm6M7t+fz+XK13N/br6rKWTubzgiwqWtFNNa2HB0nJmbVyGlVrxf12gEE5jZ0i/VquVrtHexb78iarmvXTb2s174sErMxpKJN24YQRGRiy6LqNVdfWszBadUYI0BvkaaURLoQQp4bgLAMYblancyP5/NF6LrErCrG2CBsVbrYNV3XhdClmO0fYGURpK2tYzw2BiMkd1autNgP+42VOO7owc4f/Hb4oKhuHgbOWTKkqt45QmFk730I4fO/49N/4ne/Jx/5qX//NVylYSEzhlBMrmrPzMZQG7rSQUwpCIeU0CCDZurEHmw+CjjUdb1er5um0SaFNiyWi3snxzHGyWRy45FHDi8dTsoqLVanR/Pp/qWD2d7+pUvRk3IES9Alp4jOgzXeTD/l6E8Nr/Olk2/8N/JVKBrqJgkX1mESV3iHZIHQ+hQDEVokS0Y4FGU5KGaDjN2cuMn5ARDvHCiczuezg31JXJYlbGA+mXdhkzVIRGfTRlXvsyxeiaGyOw/vM2KH3t8+Cu8/ZvzT2cL7cGoAXrCWvbKzdlbibdfguRdkBt7ltt+fTfbKqtib1G3zFd/z5iTKCnxFQ+Ir37IXOXXIZmatMZDd28KQonBCQjSOiP5v//Kz//7/+Wfz1X73v/jMBS+E2SESiTVqiIw1B9PJbDZb12tSVd6UKFBJIUYIefwY1f3p1BlTWJdpNqwx3nkEYOFlo8E4QiSyIXISTayRUyJVQKGhVVRUMPfRFrjjbPXuV1RRBsnBXmdt27QHk8m4TdfrtXBiVZukvXPkk8ZVvXjxpceuXtLYQmVVhdTkdO3tXXRXhhW+12NGDqmLhsZFo2Z8ry0VRkQtmcVqsW6apuv2Dvf3Dg9cWWqz3i8qY1y7rpd1zarGEXeBQbP2lF0eIrqpwLcptb5tVg2THRGaetnWy2ZxUiH+7M+9Iy1Xe9NZt17H2DoYpalsLJW8VkjP95OpAhEATudzRPy+7/u+7/jOf3R6Ot+bzRRAOSkhALAqgA5sY2e64ACjGhkSva4zZMlv+Zh2VY7hOjsmx30l28/r2e1tebN9b69jAAAxbRGd5QbcBPAVc3liEUTMVkqGGOBmRc2UspPJJJfUnE6n9bo+Pj6xzjpjF6fzFz70wiOPPDabzUBEt0aXfkxtlfsMlTNNBuks4XAgocrnEBHCoMcCENCIRiW/YwyBkFgZ+nCBCrAZ+XYRSTZmKrP2A6w3agazBUQER76nrWV/bE5v2QSQbaEz7X80jLbn2lnl+M1TDY62/puBCnmM18jqeL6DN/27DxcfN+j4AXf+HH8ewimqGjh0oVvW67ppFuvVfLVcrFerep04eWesdRbp6uGlyWQSQvDed11X1727cwinDH0HSECgKqwqigzEKgoG0cT0oDoqO6/6QKFNtbssr2yD/M9cvB9zam3ljdCGzeMVN+ywOA5DfFh2X5XOIiLIBCubCvfe+ytXrgSRU5A6hFVdA2BKaTqZTKrKEREAJ0mgAtoag4zKIAgdp1W9rsiEFLsQ1nW9WK18VVpryRppZFmv67bZ44SI2cLuUjxdzEH1sJiaXLQUgZlZJTsAMguNbErOhxDrep2VbxY5bZuma9frdV3Xuskt4UzFa91yXdd1nVTQkDILguTVjs5guXmGndcyOWyyKUzbb3vjmrX3y/2dIqoppR7HlVMtmYn5zPdD9Oa/81TktG4b2AcYuJIpJ55sMuVVVaTtUushRJ84xZQiMwFEjlLXls6yzHNRsNwynFJ7Up8eH7ddt3ewf+n69cNLl65cv1ZVlSZOiqe371lr9/f2prNpa8Co17LCJKv5MoCoyP1ryKSsJKb96axuW2I1GVsj8F/6vw4AUME/X/4PpAAszCkJS84j3pgow7LzwJbf25vloFnbtkdHZwXIy7IcDH65LxHrAoX74QW31JRXYX6Np/9/cqsrqnDo/shPfunf/Lwfyt/81u/+lCuHB5en+wJciPoEkaUNsYnBGWOqUgmj4Wo6tcasV+v1eh1Wa4mxMsYheufy9PmD/+pzWIRRuxQQ0fuiQmJREAYEAhROKXYgbAxwE40xlfPGGOhzuJlTUub5yYkldNY6YydlNakqjAlVY0pJI0fRxCBKAKiIoJkW/IJXzk6gYRc/6zKEqJySACGAhKAl0Rufeu3PwIv599u37xbFdNVGVZJVF5oFL9tYmBff974rTz02vTRNwqiCgEYomewEexVG7EcvItIrH21Dho7nc+Ps6WqhCm95+lPXy3p9MpcueUL0ZR1j7+xBBYBbt259yps+law5z37SDWuWiHCKi5OTpl5f29v/qR/9sR//wR869CUmvnvzpXa1mly+esET5sgMiDCqMHvvf/iHf/i7vuu7lstVURSJmYh8UcQRkfEQgtjR2OC+af6QS8eOH+RjijPtui2ORSLy3uf0LZC8FYY+vXOUzWKMyaq3tbZt24EZbL1cPvfMM088+dRqtTqYzRiIAE6Ojq9fv+6dh4sqmvwyyUPnqIxFe2riPHkll87pr6Bb1qAOMTsFUdFRjko2VGArdHZ2/XM+v/IXPU82W/9m9L6qXTQYCMysInXbrdfru8dHx4vTk9Xy3snx8elJJykPtsI5b13XddZaQmrbNtbt6fHJ3bt3l8vlQG50NjsIAIwAKWavsCjgQKa3a6jgOI52vgzw7h245Cfl4SU+iOU9izEmx/KyavsKUIm4iaIMJpA+gB/5lYsxRkBVVZizZ8UYM5vNrgLc6NpFXccYV/W6aZrYBd1jS6YqSraZCBlcCrAJ3qaU1uv11LhWuy6G5Xp1upjPDvaosNY7UVkul5n93W7KTocQTk5ODOKq2q8mE+cc5OCJcKblSSnFyIMAQObX7rouxBBSXK1WTdPksqk5szM3Ua6UElIEwgH4l91ehs64JC9ImsdNRmMOmDjvs5acOYthO/3xgiVVpDe6EKknw2TmmGijbRPsmjeDnpT/nwMlzMxIKZeGRUAiVgkxesQQI4fkwKaUchZKCGG5XB4dHa3XaxCVVbx29erTN65PptNyNvFFkfN2XOFxf3b18UeaGDpOpmlpUngy1hhDyAc9nMZ5t/NS1lgCLHzRdZ0kzmxd/9Xe3x4O+C17f+c7179PRFJiyejh+xJGz2t5a6117uTkZP/KlaZpYOMHWK1WVVUNqbGyAWr3nXufj+CBF79YLihV9spksKwGPOF/KoIKBjB24fjo3pd8xxNtioWx6kWTaEpKypxUWVWcNWQrBcrb/6yaOeNENClGgdAlCzCZTB2R9y7rW5ISgwzJV2VZsHNN04YQsjGLiKpARBNXgRpOHLrYphoAjLVFUZSzSeFsWRgU1iTKjABRGAAkcUxp3a6YIXIKzCzAAjGTH/NFwXfRUZXAnbgoUYaPqkgBSkp7I3zOnZfuHCDuH146OV7oIrRdTTEEtenu3W65KK/MgrIlQlYAAaCPiPXrYypEpKJN07zw/AvgzNHJ8aJea2Efe/yx1z/+pLfF1cNLL925c/vkpBFpmRf1etm0GVr54osvhhB9uYsPHGTYEJumWS0X7ap+/Nr1X3jPe/7p/+87JkJX9vePT05O7ty989KtK0+99rzpcWaoqHCU0Lbf8Q+//fu+7/vWq9UA+r9/tg5u4/udeq9smu/wT35Mp/P9qkK+o4joqEbC7ntZgwLDJpXVj7Ztj49PHn3i0ec/9KEnnnzyxRdvLpbrtomvec3rQJSZjaVPtIUJX5mhsqGw63cH5/rIDFFOwcqNpaogG4evAqripso8AQjKQIm/OzZ2AIoDvOJjEIQa12g2r3b3DM4+VWWWFONqvT46Onrpzsv35qen9aoJHVqjiLFrQrAZYeKNlRAP9vZT0y1OT46PjnJBekQEPRuxCCBoBsrRszcCgB1DBRAHNQjhgm7eCkKNB8QrbvetmokIMPAw5norW2W2Nt38yruBEHLO1Nndx1d+ZdJT5SqcAQEuCNLft+ptPR/RUDH9ldmBQ6BwbKsMBvFHv1YiIvZOhYzppcyT7Z177NFHuxCNwt07d+vVeh5TCGF/NptWEyKDwobJUKaZ1awlNF3XxpCUQ+KGw7pruhTtxBOSiK7brk0xCVu0OUgQOS3q2hK1XZc4OefyiNecrIKYE8lFRFLKbjNVTSm1Xdd27fFqKQDeOhBFBGdd9qmAoRAjETnvY0qZJj93q2wjhB7YKflIg2SIYAPryjm+CJDjKeOtgjJGYAAJwtb8UREWUQQkRAFRZREV1o3DBgmxr33YD7OhZ/u9VlVANZPQEyEZss5ah5BHBXCSkJiV26bdFHs+PT09jTFVVbU/27t+4/Kkmuwd7FfTiSsLtAYMWuuMd1+IfwleBwDwgzcvP0JKtTVkCjQWyc7KwJwpnm995rc/+s6vzG/03ie/kY/mEjpESCk2YbvAykik99nk9qChxR4cDdzsD8w829sLwuvVev/yZRiBj2KMQ4nc+wf/qzIdXsWrDRcZVIr/tGwVAI2cVsuls5aVnSVCAGXm6MrCiEdhzIa4ABljjDVITiHUTdd1kROBGhAydFCVBOCJrDG52huACrNwQgTvHBN3rYIyghFOoWtzILFwhabo0JRVhTTJdHdkjFGRlAIlQqU8VxUAQVCZJUEyQEpg1SggEZAikAATGYgxZMgHbGo3DZM2l8F6gNaLYLzJef2YceeqNNJbDvYOT97//iv7+6SG29gtW4cJPToB6QKIAKmxLic6ggJ+wowEFF2v6/f90vvJ0Lprl8uldXh4+fLVS5cevXFjv9rb35u99nWve9+zz73v2WeXx0ccY+ldHSIiHh0d5aopeccc0y4PWUCAxDGu1+vjo+PXPXpttVh857d8Szefv/F1T6e6KxCWy9N3v/1nP+1XfV42IHt9YXQR3eBqQPTk5OgHvv9ffN/3/TNQ9YX1ZJu2AcTAiZl7xA4ggiJLtmEGr96ZYnL+ND/Dbe2sUHq2cShcxHH/qsiOdp7/zLpEJsVGxPu5WMhQ/6BEXQgAMJlMJrPZ4cE+sHjv1+u1PT29ev3GlWtXFbRu6hs3HonysS1UvyV49q/u9PLmgD4HhTDvrTRu9S0h2FFuN/GHIRyKWRfOh2k2R1RVUalH7ymoCHDPiSUASIqEINo/oPbZLbhtmYD2j5+/ytTIw9gfHvUVh0KyT4R7DNtZedBXZdgN4z8312q9ns/nd+7evXnz5qKtmVBQUxvXdV2WLnLiEEVEQlqezi/tH3CIy5OTrm2SqHeOCFNK2hOLKShI79MxAipIuVAdIAiA3QpFichGxyXqeR0AKFdoHb+sQeTEAOC9J0BUIESDxhrLY3QygipkHKRzPqP7+nttz3TRPrX+rBBk9rgrgFL/7WZbGDqW9exe9yPzdocnkbXWO5eCQgQUY63LTODaF+7WCxxW48fFUZ8NK9QmCAgZ1BhFfTkR77rQbjLjt8k6xlbMNut3FBYEJUwqhDQuJoWj0rQ71AJjs2gwTmiTEbjzClvnjd5y/GeMcTjhzA2DSIhdG5GQjLHWSV+SExNL5YprgubqDd/FAuCk9Mu6nnfLFuIM4hNXr3adzlyZINZtw2yQLCAuIptlCwaIimWKH1qclKvLT+xNrvhJS+6oa5+/d3zjxiNTcrlMUxfTWnU+X+zPTmcH+857QnKGvLXr0DVt08VIQQHUIPnShxQzRGGxXq5WK1GZVpNpUZFCCF3HEY1pgRPIsl73MUgiYFVVi+iNB8DSF9mVy8ygitqXzbLWoCFJUYW9dftFUZbl6XKBqJNJJVEksCNn0c6qGTPX9XpaVlVVMXPlfVfXylJMC0UY6+5CqN4EVD+pUl0DQJC0f7AXm8CKxhVJWJCSQDmdLVbrlPmJNux+pnAJpJNkrF3HUBS+Drxc1LFlZypthSyt2yCC65Pl4nR+enqajbSrh48eHh5euXx5Np1ZS9PJNDKTs9W0QmMybfSvPv6a4Tm/fP9vfe/7f//ElyRa+WJSVVpZX3oBeOPiz+Zjnn3D34wxxW7dtqdIMcS6C3VKjDSrqi0eYQAQzInLNrbioYxigNVYsmRUNHBUUYOU8TyiqXSOUkcEZVGErjvcPzyt22bZwMZd6wx2bQ2SiqJIHBExBC3L0to+lJS9LUOK0YPmCACAgRH7xfZM4nS2Z+9c4r7slRF65PzE/R4oL5rZp3RUMEG2rrhzs/Ou97Cyo2rnJSub3Duhpy0/kZ79LQjiq5svvUTkuK1nRakpGqOcYtusK4MVixgSVEa0QJaMJ2vQdF3oUlyHljmmFKrSXJnuHVSls8Si1pi/9qVvy7f4yn/25on3iCgIq6YpvbWmSqLWWkFsQ7LeC9KVWZkdoiJirTHWbbSNtFfOBnR5jtN2XWe92Zvuh6YLieuubWIMAiqaOWsV1SuqQhLhTAwlJMzKOXSpiz+zzo938Bf2hp3IW+slhSQsmpCSaFlNFscnQ8stF3NB27VMhT2FBl23D3YmBFKEtcwigVWofMMdqgowCeKo/shOzoOxNKDV73Mqb+VXjDt9VBzmvtg+9GkYImKMyRg8Zk4x3Ts6vXnrpSCwivGDzz3b1qurVy5fUfOor6qZVytCvHdpeqO5clSfvHTyMnpo2waMFZF3vOMdy/mi9EVRls47YOWQsCzaFJIIeWetXS+W7apenS4fu/rIS8996Jv++l9/7hff98jhpdTUbb0snKl8+YGf+5lf+sX3vPHNb+HQGeeZGQwl1MDJmIyTo1Cvf/G9v/Dd3/WPf+on3hab5rHHbtSNtm2onGWWNsVNBoAhawlJsFVUJZWcVg0ACGDRZJ/v0FAgCIIIZDdZc4O+qaqSS9rruD0RwICaTe8hQOCzupC543CD9uTRRpxTu4c/Q2Q8Iy3EbT1qm6OMBYWNMCIW1hCRda53g6pWZbFcLovCd6mbzaY5/m4L573f29u7fOnS4aVLqvzIo48DYTGpPvVNn/7Io09EYbJWAYDOvMu6Uc/6P9NIWTqzIj+M3M94vMEIgAAqgAiKaErMAkjWACQWUDGOOHBCVofGG2cIYnA6QUgb8xBBQQUVQAVUMGMHRMQXRWqDtSaDMhRAYiKyiMaSA6MqCBpEA6ik5izvF0SHujuqUCChAqjKprzMYCdFEgQxAkbBE6py5CCIZCg1LYA66wiMzSmmzERkjRnP6zwq+oSi7cnL0kNvVDXEmAgMomAm9My2en9klHTeDsFypviJbG0Bqpgzuo0xSVOunqyC8/ni5aO7zz7/3Mt3bwdmVRDm7LR2xoTIROR8GUSPV6t12x4tFgSonEJoiTCmZJEcGTUUQaJwAlm1ARQVhsxu7akCdyMq2zL2zuqrkohyYY3G86o6GtrCaYwaUTcmyUckeTpQX9F2rNy/govlK56n/398w/T8cIVZHlIUd/ezsWS/RXZZJekrjeQE/tL5aVldPjiMnNAYMaQNMWjbNXfu3vG+qKaTSVnNpoGsa2NsQ4iRg2ODKKyiEITrrk0peWudsQzQhtA0bSoqm4sxiYSU2pTqrmlil1KygALAoJn8QlXJGqPAoCml1Wp1997d23dur9ZrJLp86apHQ4CQ2NsCrefYcUxdSprOuMYJMl/AA+LIwzjMeBNAMEikQIAZ0VSWZVJJKZIaBCRASyZHV0DBkFFRQ5vKxzk+uT2MBFQRgZCAaMOFkJgVMLMMZ8+MqKD2UTJR0VEAzVgLRKyihAKIZFQVBAzZrukEEH3RNO3zL77QNq219sajj1y9dnU2nfnCF0VhnZvOZsbZlCJCj0HaXsR6+W3XvyV/+Ma3fXHouqs3rr7+6Td8UfHXhgNe98E/8s5Lfy52bdd1sQtd13VdF/oi3+mfn/7h33LYo7/+5fIPHWsNCEkkxkiA5oJBCND7GVBzVrRGTintzWaL5Wo4bL1eT6dTAMj1zqbTaRd5yCnMeiq+eqjIV10G3eXjH1cZIucfURgWAetV3azbwlmN7MkWxhXOl9Z6MiiYSBOAMQ7ISFJIKUlaLldt6roYENUYUzjrvXPGOEIA/Wu//ieH63/7f/3e3/8v3goAjLpfVEk1cp/1zm1AssaqBVNZh0aGYHKOYOfG9Ghw4/Py1htrSusUwACmNmTSHILMHjL2m412nI3nHxRQcbBSAGD+p5aHf3EfeoVVAMQQWUvMknmJxm0VFiurhIAhpZA6Ei4KOyncyWo5XyyvG+cdhhh75/FWtdMHyAYCh7ng6Uc/YHptYRPNzHHplFLowmK5fOmlW88+++ztk7ureokAj9145Mr+4euffKqpm/1Db5y5def28eLk3vFRG7sowpIEUDQsFoubN29ev34dVHsntGpKyTlHCJHT/OSkXq25CYez2enR0bd/27e842d++o1PvmZaFARcFa6alG1olscn7/jp//jUa99QTSYxRlO4yMyJDSFG6VZN1zQ/+eNv+47v+Pbnn/mgJbi0d5Ca0M5XpvCIQETJGAACMoqUe7wP3GlPu7TlQRwrH+enrwzh3/zhfoLjB65o3vseC5Dhyq82ol5EnHNt2+7v7z/66KMnJyfr9dp7P5lMrl97POOiJ5PJdDrtqWMBFovFZ332Z16+fLUNoWnbg4OD6Ww6mc6Komja1hdmrLSd64R9+Ce8r2EEUAAVVAWEYNiARh7v4Y5bt9w24AbDcGRmni+bjQBFIXNsg6oCAwipwQFkMa43osCjtsCeZqi/FWKvG1Hv71cQUVTpHSC6MSu2XucVd3+uO/QRVoaFof12lvoh1kQbngBmDiF0oZsvl4t6tQ5dx5FVxjfNbjUiImNENKaULVbmhICqSICkmBRRICEmxZQp8DaOf8WtsNJFhopsOAQ+ol3qk/LLJTtQ+4/esMxla7NsjV0AGkocCiuAsTanueeR4pybzWZqyU+raja9d3J8ND9p64a6MK2kLEtn7bSakGWt65ASaApdZ9VwSgoSY1ytVjHEoii897KU9Xq9mC+uVhNbFoCYp0rTNIvVatXUB5OZt45EWKUPc6sCIQByCOumPjk9PZ3P13WNRNPZjBMHEGuMc9YAxBhEJVOajk3XvNMMsN02nDXv2Ho3ZJQEiUjPtijnHAWTWyMrScaYXPQXNgkzhff54tpblduGyiYglp8h+9tijBZt9qyQNb/4B/sKete+4ZKICCfdpKkQUVmWiBhjdMZkGGHOWplOJ6lr1+t1t1zdOzrutNu/sn94cLi3v1dNKz/xzjtXeOc8zSoWRlcQKwEa7DG75w2Yr/qCH/n3zf9856WbLzzzHLx566duXbddG0PqQmxiakKMiduu8yEh4ved/GHSoCDJSGY1CCnWXZcRIBcsPYikCkhUVRVsrI7JZFI37XgYN00zmUyGlkHsx8lAsD44ZV4Fd8yrLThCbIoIfRxrVI4rmT5ky6CChPjyCze5C1U5k6SVdVNX7BXV1PvKGiLhBMqUiBRN4pSEY5K0SScDQO9tVZZlWRbOGwTg3SGQZ4SqkGqJdlKWZG2I0oaIxhZlOSmqSXGWVZbt/MHp4DfEGJrLuiFZXzCzMBMRyaYwxU4NgbGVkItbQ49M2BHZEOipKqpaY8Sa0HaAIKC2OKNRSct64isU9cYyB1FtOa04PHrtyUeefCKppKRgqecm/nA9kFFM1tpXa9ce+n3gWBeRtm3bpnvp1q3nXvjQ0clJG7qqqp588rHpdHqwv++MmU6n165dZ6CfePs7nrt58/mbN7sQ0PmqmCybDhRWq9Xb3/72N73pTbkfAUBFLCKwdimcnp7W6xWJHExm3Lbf9g/+/o/+8L994voVS7w/8altWOKknCnY2MV3/+TP/IrP/JxP+YxPSyDWGItYeE+s83vH9168/V3/5Dv/5b/4FyJskYyAdlKv24KcIBpDalBBA4kiCWS/G1gyCjI05njYX7D07QC5cUT+ccFZY8kdhxvs/SvtsXMlM7Xm8inT6bRt27qunXNlWVhr67rOhsre3t5TTz2VUjo+Pj48PFwsl9O9g4ODg739gzt37wqaJ8rKFd4ayymdgdx3oiGvKM9+x9MKo6xLFRxywF6ZFfTwQkSUa83nasgikP2LIltB9ZH0QSMdrnBWh0ARDCICWgALalAlB16YRS7Uvz+OMm75ncg5jMolD3G/tm3X6/XdxenJernu2qjMpIpnVL7eWCLy1lpjyJI1xpJRFgWJUQ0oAeSglDIklQjCgMJnxsnOFPgwhgqMxsqr0SCvRDJoMstHlCP1n5uM18pXZaXbuch4DCARqLIwg7JKiKnp2qZrYwh13UVOXYqRE4rOqomqkqG2rk1KIcTl6Zy8N0jOgnPOWwcOQoiKwiKAGmPKBHb7vvTei0hdN8vVMsYrUBYAIMwhhLbrls26bpsmZScoMHPilCMqMSVE7GI4mc/v3Lt7upgDkS8L550hL5EVFIzpYlw2zTqEFFgSF644Qyeq5lh5TuRtQz1uilHaDyoSoGRwrHPOGNN0QUV94WPTV/zI1Cu0qR/cdZ2x1mSIQqai3l4dxrudtTazZKSUnLPZYvnZ/8s7h4PvfvXJk3+r0k0tlEFHISJmLpxVEWOMSgRVRLLWxlW8c3S8rpsbN65NptPZbOZcX+HKGnIGrcWYQkxpWk2sQVRwZCQmUH3HlW/4L46++oFj5qRevuFT39Q09c73d49P2rZt13Xouvnp4t7JEZEpp3tVjESEhBm/D9pn5sQUuxiA6MPueQqKiGVRhBAP9/eTKqiWZQmbYhXW2kxm7b3PTQeQPZfSq6MjKYri4tt9/GWIjvYMy+bjtwDSqJIpPPSq0tbN888958laIF9W3uDf+6/6sfrXf+Y3guSECwwCURQA0VhCODjYb0Jbd61I8t6XZVl476wnEMVdWyDvl0m4qirVPt5orZkYG0VVNKa0jokQDGUa9ezkNIaMJfLmzPwlImsdGcMphRCIKNcvzwbt2H0gALrhAFSFXMRQHuS8HDb1IbZp0SCFlFISnuyfMeoagcIXHDpHKEqKtrSu9P7Ga5/0B7M6BvKFQA9aJwW5sAe893nuxxg/+qD68CLj0qgZLdk09Z17d+/eu8ecZtPZa1775Ke+8fWV81915W8CAESADwEAwOefe+Vvgr/9Tf/+b5/781g+F+Bz4SbcOufn9/+zD/xb+MA5P74V4K0PdZOPm+Ro2/0yppfFDbT+VZTcccaYuq6feeaZzA82n89D6NarBXPKBS4QMaX0xBNP3Lhx45nnnnXBL5bLJLxYra5df/Sxp16TVEJKgOaCJOFXNuy2kLAKACoC0udZilK2/D/muihRn/qZ+TE2m72AyDi3JTsf82dU8JbGDXI29XIKL6DJudEAmR5QEyvpxRr4x0223NC70K9xPToaVoB1U6+6pk4hoOCmskVeCVHBmpx6aDJsBPJKqsqio8qAigoKGlUTKGeY7UjGy5fd/WUDMxh8CTiS4UARRczuzLOX6n9H3LYws6sSAHSbKn1LxjBZAgI8M5BC0j6HA4FQB2A3guaUSugNeoWR4ydnDI9NwzywEBHwjA16p8zvRb7b7YY6/8CzxT32MW3deGq34eX3JYcgEkBfKhU2/TS0b77OrpIyusZOVbgt2onR5xyUHOAclszwedzLCiCjpWPHzhZVMqSEIYSmC6t6dTI/rZtGVU9PFpKTzVQVEQx6Y29cuoKHl9bL5cnJSdd1FlCQVNQiOWsladBOVYhyCXgJIbRts1+UzjlrTds263XddZ3OpgONSYxx2dTzen1duESAnG6umqEqISVrTBvC8enJcr0yzlVlQdaAYteGFFNKLNhESW3ouhRjYmUw3njnhIWI0JCqkDEWibQvjwUAuXY7AGR1ijkCgjHGkXHGlUWRWVNytggihhByRkQmpM7ZKczsnGu6logwV1ahB7Dc5n/HxjkisTygPG2METcsNzLieesXGswFHzSm2DSNM9h13WKxKMqyLEqN3K0bNzNqpWtaVPDGJQ4leqemVLLW5YHMCBE1cfqR6Z8VFWD5dd3XjR/jt1z5B5AAtum+vvXlr/xQ/XIXYlzW7bpdLpd1U1dV1XZd13XeewgCKN67LsWQoii0ITShIztVBRqRxxOSkGQQKwBYa6SLxvdlpaWv14jT6QzmZy1zcHCwWCxms1l2cCrmDSar4Nm9dVYBdjRrRM9wL7g1izaOz1yh5SFzZAd1v+9cOJuJu2rl9kgYx3x2VqmtUgwX3XxntTnnoPt8E+dFmXa+3Eqx67qjo6NJWSqLq4pv/a0/P/z0xz73X/3Fn/j1BrHypWVpkzCBeGAFEBbUpmsRyXtXFgUZk1JyBo2xf+ZtX/J1X/Dv8kX+h//9syP0ND3obGJtYuhCCiwhctMFFjFIl4vCkSl84QtflEVRFGgxsqaYfGF1s90JS+BOVUMIXQwxhChn8VIiBNkUdsQNGB9BBETy5qqquv910wH9tffnp5tVX0UECJTZVaUxRj0wga/O2K7YUiIoqkK6ziatrN935eH+4Rs/49P8pb06tQSQQvTG4oB836oFt9WzuUbQA2MpFxgtO7+Mz31gZD6l1IZAzgZOl65eKSblpUuXDBn78Qz2/R9CiqLQvACp5mD7sOxvLzawNX+HBWFT8HK0pJzJzszNm4gxpm3buqkPDw7zPuWcq6qyLMuqqjLlIxEVRfHcc88dXrrUdO3do3uzsFdOJk+99jWXrlwuJ1XTtTFy4VwOdZLZUj1QIcXO2qzHI9w3wHYku0ISMyudZUpsFFoRAVZLoDLol5ulMuuEGbIHgETWWTIGCa21998UN7cTkXxDZiZEhcxgmitWYdYesS/pSQAkrNlVkL2Q46rN/VzTLX9avsNmgem1OlUwQISAAiAqzCrK0POe9xqsnj3h9gV12AXGxHF5QxwUxWG57mFasLUO7DTIYH6o6lZVx8FQ6dsLBi0i29LMXNf1uq6bGBiB8aySZn5Ik+GtidHY7F3t42MqLMwKps84UgJQBEZgwB27fCf7zm7tiJs75eWJNjVV7l+qVAXPUN1nGNY8gvLhuiE50J4QJacw7I6eza3HGnffxtlnlpQQUalPOBMdyvoqMhNuFlMBML2hoqrZUBl36iYa04cUNz/t8j88+Pngw8224QIAGWZjrYUNOgD6wQfjph+Xhx82RdlgMMeKy5m6qbq9JGy1206Z3vuea/Qmm7iqbqB9A2R/ZHduDfMdOzsyW3Is3HTdcr2aLxf3jo9DCMaaGGOGYLEIEhpnjXOF99Z6v7dvAOfLZWCOiZlFRZBFmYlIesQFqGjXdeu6lr3Dsqq8L5rFsm2atm3z4pI9miwyX6+Ol/NlvS6ccxvHqrAICCKtm+bFl26+fOe2IlbTSVJJTeAkBZSJIYh0KbWx61IEhVxLWhOT8xkQ4q3rLUtRlb7cO28qORpjyrIsimK1DgRorfXWeeusc31/5Qxd8LhRajOZzHQ6bZomd2iew74omq4daseeddKGY3o8B8cGzFhSShb7NXIYLflIZgFDzEkNpJRSiqjUdR0SWmNPT5bWGO9SXXeTyWS2t2fIJy+FtzxvnDWagH1iAAYRBDTkTUEGUgxBuh/E/+XL9S+dP/AAAP7bR779K7/39RJlih64Z0gvFDMXtHMusQCKNz5FTpIi86peB2bjCURh43To62Nus0CKsHUVIGay6aZtS9wy7Ygot/Nisdjb2wMA3oArhpC3brLVxzNlbELgdooIbvwROWa1877b28MDwpK0oX076ynccjTgfacMV9vWYHbWq4dSRvXCbLzxA29ZVsNG+qD3Gsuqruu6Md5FDvfjNNoYEMBY68kLcqscU4qip6fzNrar9do5gzglY1Sk6yI44wqrAH/mbV+iAF2KDXUoYowRxSbFKNoqB5A6dqu6TSxkTGFskziQBAAHUqiUqiUAIkpKnrwFIOxz0ESlC6Ft2xRjm0IUzVqMjgyOJKIEoqAILCoKSZVFOCfPIuz9+em4ZXRwGRBJ4sIYNMZZi6pgzxT6R9/4uiuXLjuWO88+Z0QKpBTjZDaFiU+WVMl5Z5Aw+9f7jXXseMTtnu37a9gHz+ujnT4ffd46aRylz76hXA2267q7R0fHi1M/m1SGjKF6td6/skuM8Um5X8bc6Na5TNACG+7gc/wRD/Bi5P1YtC+jnp2wF/S4McZamyt+ENFkMlHV2Wx25cql9Wpx9erVl19+OScgZZ76k5OTxGl65eB1T78RiW7fuQuGBBStiZwUSSOmxKo92/vId6bEsawKIkKEC+C0w8vGGJs2dKxnJQFUIZcEwJw4ZLN6mcPvQ4sg9OkgqpqxCjnvczxuh1bLSWfDzpvVbtFcQG0TMUZkFgI0ZqOoi6gKGnLGTCYTt+GTGJzdIqKioa2HHstfD9g/sqgsIEDW5I0cRYFFMWdl9EU5cYSxvL+hBoXwfkNlyB4Zpn9WdFVU6cEr9tbDqwrvwtqHUwaHyyAppaZp1nXdtm0mK0EAa4y3zvuicBYRY9OllDSxACRORLTJskMGVM0spmAIAEhy9j9u8UJsDIdePiECT7DdiAi4zYgF2cIFBFFJG7UAVQ30wYdP4sEeXobVge6rTDRotwCg29re2ChSBFBklTaEVb0+XcxXde3LwpcFEU0nezHGrutCCCySu1NiSjE5Zw73D4uqWq7Wp+uaNUnmppT+kYRz9bZIidfrtYhMqsp7vxZpu65t2+x2GqTjtG7bddvMqgkYB8yJUxdDFD4+mR8fHz/3/IeKqrp05XKXYtO2quqs9+BFYpfaVdeu2ialVDpfOO+NlRhiF4wx2fwfhmWmFuCUMgTLGFMUReZ5NMaQJZOzWYwF1T4dMiVAVI2z2SyH1Acf/Hq9VtWcs5iTSVili0G2s4yy/yYvTNnIERUAzZkDn/HNb3zXH3h/PvjKXzy4iE58W4iobRpmvnz5sigu61hW7k9/5g8MB/yl934FAsyq6ioV3prf/Njfy9//u/g1pvS+KIw1BIlYrCKQ+df1H10sFr/z2rdecNOXbt9R1j2azKpJ4dy3/F/77Jq/+4tfgYhEIIYis4CySNO1J/M5AkRJF5faizE6VWtMBsjtzfaWdd21LZmzla0sy+VyeXh4+Pzzz1++fHlcv+jDNZTBcygl8vQBgAwqs+b8R/yo5b4J+8uGwn1IWayWq2Zd0ISBu+0JCwDobTavmDmkuGib02ZVd3E9X5IlUDDGjhKHHhAZsJl0CEAUEyhzstYqELYdETkk45335bSaIIKItiHUdW1DKEPw3jtDdewc9EoPIiloF7sudjGmEENSSMxRJLBE0bTZ1BOzKLIKCyRRURBQ3kV074qIoKGsUyigIoxzVKonrtNsenn/gCqzeOGWNu1kOi2fuN6QlhZnk72mbSTEgqy+UkTNqyXZJs9WCiKSNVeuX2eRo6OjqnSXnnpqnEz2p97x3/zwT//E3a6edy2QQUXLhAAtsLE2Y18ff/zxr/3ar33Tm950+/btwvsC7OHh4Tve8fbv//7v+akf//c2pX3nH7186fVPPOrxtLRYoEPWrokxsRqLzgLR1E6OFytwJlm8dfd24mQBC7Kq9FLXgLWiFGJqQggxKah1hXc+tWsEUAEBjJIJaFHJAGJgGVkLAANGXxXsEIjDQS8cGufMNN2WXAF9+af7gNsDNdGPj2SXSlag8wbtvRfhG9ev3Lt3r2maqqpu375NRNeuXTs8PCRrjDW3br+cmN/4qZ86nc2UCBBZBEQ6SCGG7APSjNMCAABUPfDWbUyvCx28qgrZVIsxLJs4xl3nXa8oiqLwGXcg90eeP8YizCnGrIg7ZzNFZM5vTBugtYioiBs9lPcu54nldSyEBpAMAhGRCmnO9d9k929O3AkJqLzK2L8L9o7xSB6c+MMIHxsqmiPPXdfWTVPXXdtpYmNtaf3+bHb58FLhfErp3r17NdeZJ0NVBTb86ggyoG579iUUBM6Gyi6j0Jl8ohgqD11K6YycB1UkfbSV2v4zFN3ADUcxsV7Gq8Cuq3Z0sAKgAou0oVutV03bFmWxf3DQQxoSZIU+xtg0Tdu0whmbzRyjK8q96dQ6T75Yt10bEwAoUNdFRWFVUSY82xGds947VWmbpqmblBKM0tQUIUhqY8g1Q1h6PorIab1e3z2614ZgC7+q10kYIBdtMM2q6UJsumbdNSElIkJrnHOFdQlURLLXZGfLwb6OZBzCKd77EIKhHolprLHGAPQrb7aoPdnsysoHI2LOuhkvBIbIGKNht/Kg937IZs5cunmn6Qm4mF//t56InNrQyQMSes8VZs4JPNPJRMjVlP63z/6B8QH/y5u/5/f+y88uyTzl/f/jS39s+P5L3Nd/77N/gIgUNWL6HY99W/7+x8qvqdyHSe24ceWainqcWKBv/p3vHr7/Q2/6nn908/cZwphCF4OANl23XK2Ojo6MoTYxuov2dSLKO0KKMftgnHN1Xe8fXBqOyWxCuR5ztgzhYSuo9vto7gJvtugH80zJsG/4WCofOxN2FFL+RBRFEIOMEEWSpiaF3/ZPXv+9/01vl/6vP/vlVFgS4MhN182b+rheH6+X67bbs2VZlRNDRemrqnLOOVFgcNsDgIgs9CQfqiIpdZHLsnBWoZxUtmq6LjFLG3g2KcrSE1FwddPUMbYtFxIr50o1rq/ploOW2oWu7doc580RlSgSRINoyvy8gFESK4gIKwiQKIgoq9zPVjQW2eSjkzE5mDU2VCZPXBNr6Mqlx67u33jDU9K2T73+tVo6nfibd2+bwlvEqSuzWvMqay4foSBSURRVVYlIFyMS3bt7t+7aq1cuIdLp6em1g8Ph4JOT05fv3qsNJGsQyWzKG6QQkUhVvfcvvPDCj/7ojz7xxBPe+8uXr/AqfO93f8/3f/8/v3P7pgUqDJWWLu/tUUpFqaXBIhNnFMY7o9aBtUQUV4uDApiTI+/3KmMMENXrdcf8VLUH1ghQSNyGVDdhXbddCBK6g/09Y4y1jqxLCm2IbQhtG7oYJQnQWTRbRjpa5b1s5uOOujyOZuwoMEOGT5bxIm8+vkoLb2ofI2KuQJ+RYC+9dDPGePny5ePj47IsY4xt25ZlGTheuny5qCasCkSmr4gEGWHcSGpC2zaN5BLhm3ck1YmpUjKyXWTvflHt1eJe923DoLbnrdZau7+/X5Y+J5kZACPmY12LZiw9DoKj9oWYaMggGGApOaJiR3HObMYMhgrmNDkAg0iKg5WyIzvD5lV/SWYe1Lqd0TsGBQzhphw1GuA8w7jtuq6u67quQwjA4oyZ+vJgtv/I9euP3riBisvFIiejxpQyMEeYc4IfAEpO4xDIKCjMPN8ECucwFQDAx9lQ0fOJS863klHgjFABR/MBwcQQM3Rcd2G7H+ZBHsQonBksPtG9lR+9DCpyb8Fvpa+MbHqEdA7fsQIQYlKNMbZtR0QH+/sHBwdA1LZtSAEFDJHx3hs7Lauu60LXxRhYLStwTAg4KyvvyzYEBCUyS10nSFFFBNUABA0hdG1rsLLWMmgTQ5uCiBoa2CV03TXLerVYr1Z7NZUTEGZhTinGdDpfrFb1pcPLviq6GI1zlqiLYb5cSQ0hpjqFLjJZWxSFN85aT2QKDymGqiiMMUPFesjMidjPYQBFQuuMdaYLQoYsGUdkkIiMIqQNlBOQjKOMA/bet20LhGRMHrCD2zin0fNOiXQkZ6zp08AUiRBRRHXjEuNNRUiAi7gIB+8FQK5KBDEmUTXOAuJkNnv/L7wLPnv3rM//0i9zCu/5t//7zvfr07k1ZAz9jjf9k+HLL9Sv/7erP/Kv0h/6jZf/7gOf4Y/94Od006CKEim0u3UeCZEIUxvbGISo7uKqDfOmU+MkCYDa89kavfeOlZC6EFh43Ta+KJeLZVmWsCEoXi5XZVGsVuvpdNq23d5sD3VU9kQz/cgDNg/RjMpVFlZRPznL6JNNfCPGiIQ6Si3tdeihwT9quWDCfgIKKhZFYZxjhI7FJHYov/07X79fTWbTclWtvS1QsGu75bpdtO2qa9Zd14TuoJp675DIEFmDhXdOVRW8MyHK133Bj+Tr/6m3fTERWVUlUoUEiIk9GAuqahwBIAcCQbpz7/jg0uFsNgPrjJekEGKUmACwJY0ApGSEiFRUYuKQOKakAkkgigaWyBJFGZAVNMM3VJOCiCqKCIlIxvqOFbKx31IBWIGyo6fnRsoVIHrxl/ZbSWtHDcfZtQOj+82VWSJY3LtjrXv8kUdS09Jmv8ofXtmgugjt93CSUmRm733TNKELZBCJyqJo2/aFF19YTqdWAT6zP/jO0dFkOm1jq6oIqoCKCoq+LIpJtV6uqqq01vz4j7/tC3715z/++OPvede7vvNbv/397/tF5lh6i4lLco9cu+YIJHbGC6miGFQprEHrBDBzTk2mZVUUXd2UZTmzqIRqqJsW1d7eqg5knAB2Ma2asG6auoldSoro96csGpMkERJFby1hYWxkXjUBc80iImaOKar09XPRUPZcMAwwyL7f+1p/G21MNxB7BMipiWfNONpVjX2VFbAHLpT5S0VgEUC0ZPYP9ifVZLlYOGdTDG3Teu+Pjo4Xi/nh4WHTNMvVYm9v5go3mZSf+qY3rZvm8PIVaw0iAaEAAmjH3KS0jjHHFjKrCQAYlctVwQMSabMMPnCTYtUkEpkj8+lyAWD66t6qzGytlBNVMH0dR8wueMi1U/saj4CQifz7vshRio94sOvw78hVaywR2qTAUQIHV9gUM41Qj/vNeddIGrt2eL/Bq6uqgJBBZH2BZ4IhrRC3y3WM8SwAYF8RaUom3di8ww6k8/yIygjVm20S3pSMQ8QNuk1ybkhKIcYQQoeiBtEYWxXlwWzv2qXLNy5fDV0ITeO9y+UE+2ib9ol1fZlExQxgVUDIaeL95nuuA/GieZJ9wD3VTJ/g0QuShQ3jsSgqZPJStA5j1ylo5jICxUxyACAZgDYuwjlus61sHlUFVUIwZMhUZDMqM28JmTMG+/8KyR4KUWMUjEgM1lrjKCWx1jJrSpJ5WgG0KCoiSqnruroLdVn5Tadiz1G/m9JzJhdxXIysLGOMbqghEckXVVc3SdRaIyCSq5KJCLMfo+FFUmIhNsZYMpFHTtMBj2gIt3EwOyb4OK12G0++FW4aztrC1mMPeD87bVRSFzYLx/DvouuKslQWb6y3zgIZBkfGuqJT4MQhcExRRAihKn1VegBYrlcZ6GxSAiIFDAhT3I+TyXxvdnd5cm8xD5QQkYOcrtarVb0/3Z8UBXl7p62PQlw28dHD/QqLqiyjETR+2YU7p6f7eweolJoOEa0vU1jduTtXKGyxt1itkSh1MUrO2JN514SYUopIVKIlBVFNnEB1ryyrybRpGu9pundw79695XJ5+fJlAGy6ddutkwRrzXRW3Xj0+nK5MA4LU+xTUXq/Xq+LqojKTUxRIQmwxL1CUgpVVQGKGvW+eP7WC21ogcjFiGSJoO1CiCmEhKOSQZf291fHp9euX5PErBpTLI3NGN7ECQ0Za1NTM6gSSlJOwRZeNfdjrmoF5CwQRuEQmWOa7k2BpQldguT2ps6XCDSlByDLbzzy1LSy9a/8TICfG39/T0//p0//ofuP/7L9vwkA/+a5/9Y4cywhIohoBG5CmK+W82oJVhBMc9TMyt3YiyZOgSvjmybOWY47+oUX7i3EdmTUowKr9jUHc9r6mPYqdrEg49BaV6w4XnvkybrppoJH946HY5an6+mjewZVQY2SBJauU2EALIoiI4+P7t1j1VXbXnv0sbqulbCoqqZuV80ajXnv+37x+M7dz3rDpzz1+BNN0yjAZDo5rdcxJSCc6ASpcs4SUd00VVWqKhkDAN5YDozae2H72dqDq7FLCTflFLPnaXhmGXnP81YIINmgNVupLFub/wVEzuMjd+BsNF5DtteNLSgCKo5WmB1A3vDwqPDU5UcPp1debpZqZzFhASCSInYtgabUUNcmXXS8aLpl23apBcBqMjFGnRVrqHDoNHFYF2XBjk+Xp3/ly9853OgvfMGP/Ml//0UAhGQIzXFsplf3S7A26sRjFJk4f9rVp01NAmnddorGGAtAxlmGru0Wq1qnpTXknffWEmgOoKSELHYRmQFYTQKMyh1HUU455UxQN4qpagYzEKkuvra3ias/N900NLKqsmJi70siMmAKAWCpKl9M94bXqfaumhhCAld4nkyL6eTWug6hvbZ/5XB/nxmsKwlBIgMnTZFUTVkNNnX25w4pCmNYIxEZMlnnEFV7DjxRt0uFZMVrDP8YLk7Gdk0riQ/3DzjxtYP9p5968n0f/MBrn366rusmxnvz+XCdZ+cntcrdP7nMf176hgMmEAAhqLs1OQypA5Xjozvf8Bf+vLCsVkvmziEU1hQInvDAeysdiJZ+OrUVKec61UhgUAyRR0KEiSsUwO5XAFAYB4amezMkE2IkDoqMgOqpJCyJLlWFqGfEZExkDkFDkiSajATSSJqYCixUUUEFoU0JgMmZJMgxHfqSRTqCjjXkzDIVFEBABu4jXqoKhIZEIYmigIZuDL6PEgdFSCIVvih8kUtLIfTx9vvhqVsxmdE8J4RsLOWgugIWzhljs5PFew+I0+nUEorEo+MTIMeuWEWwldk7uLw8uWcQVGldNyJqnG+6dm9/ikaV+Nq1Kxqb0C6O7907ONy7e+f29UedqypkmUxmXX3cpXj73t02BOs8WauIMcTSukcO92f7+4JGGYyx2bsim/VhGHg5QwxEwRgmTMggislgQmFIrOw4RmaFTFLvvW85qiSQkGKXmBFQxBuy1pSo0RAWriqsMVaIIqLbuOgQoLc2RURYOKTMUUGAYE0IzKiCyqjWOsRcwTxbpU2KHQgDQNPNg7XeF9YXSCYmZoHEoqqOE2KvJxOhMdgruQJtXaOwtWBKbwnAKCIacKQYuTNFX05X+9z9TS9vE0EBQJ/9b0gTS19wFMCSEsYYAycRRfAimKJ6RxuDeew2gfH1B2sEQDIaJQNhxrdOI9JdVW2aZr1ep9ilFNGQCB7u7V05vPTa17zm8Ws3ZtX0uLkX6vbOySkbA9bFlADJEJmNlRJCJMLMBpY1YUR0aAAxbuVfbo3/V2zQfxzhsuP8/5w6lj/mx+hdlx/RI+no39FFenPlY+WxzOidtm1zSQ0YWSN4xvWxe/edzDDpzpaw8wFyH3PJUytT7qaUQHpdDEStsZnJIMMZx2tuJjmx1vo+jYMtFVXhWSThch3KomhESXK+qWIbY4qJCF3hY4ptil1MiYUQrSGDFIVZJYnElFhEVJxxiLiu66YLe3v7TduJgncudpIi9wRfABFEAXIKQl68ErOKNqHjlESknFRt6LoYqunEONt0bds0HAKJeOO9MRIjKaAoIquwL+08xNgFNhBTTMyZEoET202qSYjRIbJKEs50JrnjmSWmJCo0Cn4aYy0SiBpjBDDEkJiRGRRiSgAQYhQRxQ2EtDdAMx5UYRyuzQk2zASYeVqddeQsWWOQHrl67bX/b//c/+tsPfptP/glL3/pPYDEZfFt8sd/H/2V/P3341f/5s/8hgtGxa9/7bcOn//prT9gUclYQERrfNtKEvFChv677/70/+9vf08+7Js+8NuDSZBS3bQnq7qm4s7R/O58KWg1+58vRLURUs89KMKiSUUJyBgihM24m+3vdSFMJ5Ou7ZLEajL1vhCR1WplnS+MbdrOWC8i62Z+613v2TvYv3T5Mjdt3YXE8MwHP/CD//aHn3/+Q3fe+l/8pt/wG+rlqvDF0Xw+m80uXbqyXCxO7h23s8nBwUFVVVVReetDCKEJAMCUsiPnfpjl/4HFGnzkxvVn33vX7+21IRTWGIDAAiEACKNtGNrEHXObUtsG78ysLCpjp7aw1hgCTImVk0GD6Ktdy5ZzYW3VhCqxI0NTX1beieUmREyxTabyrlvWbB3HBJsUOATw1omx907n3ruqKEtfGCIUlcTCKgJRgSHnykNSEcjsDyoKmyL1AJv6zap6+qfPSos2X7suv256xg+HoIisYBRUFGVTHHu0U7EoorHW7O3tVVXVdV0TIoGpZnvWFxI6TkzWGIOAZMT2NT7OkZ38h8HSuGDk7URadINKx23OyXzxXIyobdu6Xl+9fPn5wpeFW61W9+7du37tmi/PXB4J5IU/fgQAV//i/r0/uTj56vmlv7xLy2sMtU3zwnJV+qKalCBoDBoCh+iRytJVpSuddc4gJNx2yFMmeyVEUOOs9946x6BoyRcFMyuIs9n3DyLqLU0Kz6IikgCoqiJz51IXuQuhjQkBDIIYtcbEyCHGNkaQaAgKb8g4YVeQCUkDQy6tK4BWCYFy9VBSZFDAMy5t2rH7h07ZOPzbpkXAyWSyv7+/Xq9Wq3XOecslXHbOOr8PR81C1FO6CyJRTGkymRwcHLzxjW944UPPNCEaV0aGLqSm7Rg0dAGU0dphIHjvZ7NpCOGFF14QiX7p9vb3RCG07eWrN3zhqukEAOt6xalezU/aZmld4a0RREBiNEQGCAEzOwz1PuYc+d9x8ud/sSf+dkVBTBkoJQyUjJIIcBReNI0hU1SUBNqU6i60IQioIQscWABzMv1A5JRZxFHPAxuoyJBYP3y58an3tLkKCsrZwkLFbIcYyun9iojOWgPkgRBUu2wb8uDcH17SCpOqKjqLZGnD7bXrZtqR8Vy+YO/QLYGNNku7NFEXShpJRnwNP+2UWBmex5jsCDHOOeucNVZVu9DVTdN2bcbEKmy8cllBVwDoq8qMnxiGwMODiGeyfKLkqFwgzAxbDqTxQv1xtJc+askR0rIsRSSEUIwcw7hd020nILhVCGnEz/BxTiwbS06T8N4XRTGQ1mUTmQzphiNvB54LhPmsbJq3bZtnIBJNqsmka6u2VsbEbF1BUeq6brrWkZmW1Xq9rru2aduQUoYXGzKBA4ukFEMIKUVh8Q4B4PT0VEBXTT2dTsuyrNumi7ENXd02bQhUliiKiBYJAUQlCYgIIUrsYoi5j3Ih88wT1TVtaltIXDi3V01mZZXajhRIQSKLlcip40Qppsht2+ZUFgKMKRVlaa0NMXZdB0R5OcDcVtYAQIoh7080WpucszavNapImFKyxlpjrLVdF/OCoiKyIfIect2GDznnDzaji5l7sCyRLRw6g8ZaNa998snHr1xb/q93kvXGeQP6H9JPfODFZz7nsz8LY/tZn/6Wd/6a7z09vmcATu7dhdOHHSG/49Fv/ts//1+qoYRgFS1RQnWFT8KC+ge+7y2Hh3tXDve54paFU+hAa9F5W9+6d7RcrSWnHmcmkPPHOJkeC5oJ2UQEAZ1zFs1gqJRl2XadGjpdL60xRdd6byVKUmljsOwzRfJLL94ixGWzrlMIyoo4n89/8md++uU7t0OKjzzyKDt69tbN97/vl979rne95vEnP+utb33rW98a67Zbt4nTbDJlm6y1bd10XZdhWscnp6Xzxpic9fTLNVs/nqIIVPgnXvea7uffASmKcC2opJGTaUKSQiB2TKuQ1m2MXQRVb92kKPesu1JOjLGRI5GiBYkpiaQYdm4RYmABEWGEQmSCuO/9zE+01FXdpvV6TVoYKosy8/IZY/Kk6/N8EMrZRAE6Tl0dDZJB1I2hH3LUXoRBM7MPq7CKKAjDmJXo/kSFBzfIaJLe7wQLIQBAzhnouq5pGhHZn+3FxE2IkNhbo0SRI4GazP+r52o4Ox7ZjNzoN5eH7L7New1JGjs/Zc6fk+MT56uu7WaT6aZuYFVOzgwVSfy6v3EjCrfQd1+20HoMGwAqSGJOCUQTxthhVRhLWCA4osripPDeWWvMAzEwmVOBiJw1YPryDtVsOt3fM9aEEIAIpF/YWZSc9yXExCmlqCqZqMpmblYqwDhnhUEAKnUhpLquQdmAMdYUk9JYqwrCLJ0AKysnYUBiUGcIEQaH8aaen2oPQFLUrRRhZh6UZxHMDDF5GyWiIRFxBwSxhQo+XwUdp54y83Q6tdYul0si8wVf9EXpP7ztNa9/43yxKsvJC898sFmcXrp8eX56PB4bzrkYk3P2sccem80mk/3i3tHdazceabv1vaPbaqmYTozzArhe3p2f3NEuFIWzKAoEQArWgqVekyVCzBH+M4jy+QOxdF5NbwiIUYXYSujietW5tRoiKiU2bXtvMZ8vl4kTGeOstYKqqCpkLqIi3JFhx7z/FBFBgA1F8dnjIkBROINIBomAOcXQdZFjTMLJQcoMtLvZvwqld6RalnY6KUBSEx4qyXALwXQ+n9uw4+dA0UdinmxdBDbYswtMYiLK2bZFUVRlVXCbB6Ww1E19BGgQj46PThfzEKPgVlBokHERYbgPjjR83gXCvZLX+vjKNrpppx3/09v4HzgOBpMj2+J4PjxRt6NjH8/EsrEYoiTivffe13U9DPEcXM2r7aAonz3vyLKqqmpQIBJzrl1qkEjAAqF1yrFpmyZ0trRlVSlA23V1aGOKROSNNUR5jqbEKcWUGKSvJbxcLEKKpXWRky1903V12wROMeMZRECVAE1O/FAV4ZyiEFMkRGPNuqm7tvNFAYTrpu66Dlgt0rQoD2cHZVWu12siMgIqjKWdr1dKKKiL1brtOk4JAMhQijEn03cxdF3nvO+hnyoiYtDCJnFQVNCf9aZ1zkGfBRFRU0rGFZOyKsuyTYGZTe95StuNv2FG3yTDqSogEmLKpyASUVF4NQRkjeCkMJ/2htcf1+vbzTpy6lAB+NmXXnzu1kvTwv+Hn/m54vK1N73x6Tt3XjbV/sMbKgDwgV/6oKuKyf6eKwtDRggFuyApxujQZQODhUW07brWmEb0mZduvXD75U44p6cbuQ/etC1ElJlC8jKtIplEv6CzSi5dDIvVclWv7x7de/qNbzTetTHWTWPLat228/Wda9ev3ZsvXFX9/Lve9baf+enP+dzPfe7mi67wL7300jMfei6mNF8siHDRrKdXr37o3u03vuUtR7devnXn7pPHp6X1V69eXTVra33Xhbbtlsvl8fFx14XDw4MY0+HezDkHGyjOf4Ir1kcq6gt3/foVIlyul8WkqiGpISusKXz/73khH/Sr/u6TddMCwsFsb2868Qb3bLHvJ2RN22rSBImTsoAaxK/9kc/5c1/8H/OJ/9O/+RVtjNlQEYCZ8zPrSu8K71AgxIiaICUz0raJKNdaHVYbNFZUoiRhBk3jIZZYVZVFBDQxJxVWYRFRGCucO/voBSKDoaJC950SY8xh9rZtba49YYy1JolKF1LoKmfZGuBkESwgIeH5m/ZOUmx+wuwt4osCk2cy7LC7PqZNFD17YZxz737XuwhgVk38bFJ3LRK+8MIL8JbN3ZkN0rP/0+3859W/tA+bBACFPh+MkKzz1hhnrDXoCa0Bj+QRHYIBNSokCVIav7JuHiarTcYQWmOtNdY657xzrvDGGEU0iJE1pZRYkiIrhJBCCEYUrEnWWCJnGAFajTl7QxFVbCTjEEpvkjBZY7xVBWZlQ0kSdMqSWDlXEwVUIspEpZkkMKmqCgBm8mDY9rTgSIVxzqeUcjJkURQ5j3EHZg8fidozDPiMXNjb27PWPv3008x86fLl6zdu/Opf/aufeu3rjXE/85M//lNv+w/3XnqRrEmjwdE0TeIwmZREtFgs7p02SbgNQQnr0CXQjmNRVq4qTo5uNeu5s4WBCEzWEqAygkHNqSxqCIAgewFgUxr13EmDmaGiB9CgMISO19I0sorGl6KAgRbLxe17t+u6FhDvfenKmamIrA71VHArd+g8GfT7+4MVI0NlNyOwq2tEQLJoDGd4LpIlQ8ZBEtyUyuC+rHDfVTEli5iSRRT/0PyQ47m8lTz8oBfRMbT4I5dsIVhrh1Dq2a3Hn4myuy3GONubVanJTNaL5QIB7pGxSPVydTyfp8RDyb+dB6fziwhv3Xr7NLtYLLLZrTkhfYNB6vkK8L4YDSIiCuvweTgyt5ohkoH/AVE3pAH5EeUcTf1+/8EmBi0iakyvz+0ovnqGwOuDiheY1LmBcpfkSynojr92C5P9ypIPhwhcThEeXSTjf5hTrl8O2/RzuZE3DzC+NZnR4B4Tne3YKbRJvO4DzqNrbFea3MkPwvHdt31yuyaibooiEaIyI+JkMmmaJoSQ/WoAIKB5og4IyE1XKlmTwyzGGOesMSZjIikll8QZ4wANKwE44zriLoYmdoeVr4rSGNPEUIeujSGnOrpceES169q27XRPAaCua+/9uq6ZGQhCilaki2HdNvlljLOEBCDMLKaHh/aNwmKELZkuRu46BEBr5qtVDAEMFUUBotPJtCpLTswxKRGIFkURgevYWmebEJqujZyYmYwBxKLw2R6r6zql1LRt7zPLhMeIIYS261JKSltek8J7DYmZY0x16mKMUmp2zDvnZFMmdtNT0v4/uxY6ADj4ugoAFLRtW0QUkby4IICxtigKESUkcq4NqbBFvVw+/eTjdRs+ePv2vaY+Wi07ZWMtESzWYbE6+st/45t+3Rf/2suHB089+fh7vvw/fPoPftF9g/7B8ld++3sB4A9/95uNt7YsjCuCciYiJCICJEBBCDEE5eMu3Vou3v/izXv1GqgEQBUh1A10YDNYCRFRRWGzKxCSIZJ+sIkAeOc0nZ2yrusXb9584eaLgVMxnTzy6KNN23ISa+3LL7/87HPPGmPKsiCi+WoN3vvZ3u0XXrz1S+8/OTleLJfMyblCVE+b5kd+/MdTCHfvHd+4dFWMuXN8LJElpceefPzOnSNjTPP/Z+/P423JsrJQdIwxm4hYzV67Pf05mXlOtpVZLVQVPVKAgqAPBIEriiKgF67IFS+K+u714RNF4PIsuV4QRQUtGxQoeXTSFVBQHVRRXVb2mSdPk6fb7eqimXOOcf+YsWLHWvvsXSebgkKdv/PLXGvHWrFmzJgx52i+8X15fvPWzUuXL0XNln63d9+FuzfW1/M8j7Zy1BKFg9l8uf3CWF916zFf+NjcineUMTP3rTmZyPkztNe9xTXw8E12fuXk1ZVlQzj1rgreEwYfjIT3fePN5jPv/cuX7/v+tU6W9nu9XmqV9ySgAIzSnpR3ZQiOIZBSaZIqou9692chYmAZq5KQOcLBASxCZhNjrGd2lc+9K7yr6skgzrlocCutCWtlLRauQmRYhSAYQhCWSP+lQFWhpFgxHDhEIGXUpI+qxLPtt1kM179vefM7duMf03/Qg1lRYXz0vPeB0GrlvY+ITJqvJKlTrzOOGCJKkkQQAwIjTCtXlmU/S62KBfkoALol1hZ3GZip+hycG/t/vONgc/tb7ddNQISIut3ucHdvMFh61SMPP/X8c6sb61euXuWW4CMBAuJdP7AuCJf+2ubmdwyPf/9yzDXUMI+67BdRQCElxmAojFJWaQNsCA2hElEAEjwroJZKmLLWzOSqtNY6sUmSKK2VNYDQVNVmWaaDOOecDxTEBRGDIgIsaZaUZYkChhQKIAszCBKRIjIVOQ2hl5nSV1LXV0gZvHPMwYOw1UoARMAosqS0inD7+FkhRK2VcyEaUzwPr9MxutVC0cDMErXWImJkf/YHeL33t9HWOM9u074x1u12IxUhEQ0Gg2PHjj300ENnz555/KmPvXDj+tVrL1x48CEOcvauu7ZuXp8Od/d2dxpBEWF2ztlEV1X1/PPPk4KV9Z7zVVFMh6O9Dkqad2RXIhsUcBHYJ0oDOoWKwAkgcIWUAUGsqyTSEXcYYi11zDBBfSFCTf+RAEmQGRQh+xBCFaQs3Wg6Lse8E4zywU/zfHNzc3dnp6wq732apRvL62cHZ9Oky0IswahEqVp8BZEO4r4a/yTaJ3Or1uyONEKVCFDzKDAjM6MojYoICYOw0dqSqgJ77z1zKAuRsB8xbFmqfWtRa5rpvXBj30ZBq8b0mlcfn9NAb9nY7W63bf3ZhjJnxR22pzQGdu1ZzarQrbULZraeT+wwc7RnsqyTTBLEcVmVUaueABWi9770zjPPpuQigjTaLfHhXfAgsCUt2EjDxP/r3d3dqAgR/ch60rSU6Wef3zdkEdG7hvSgVpxBrJFnM8c2BhiigE4MY4vSCDB7O++6Lbxu+scsrdccOLRl0eYcFdmv9FhwV6KtRjNl1rgKMHPNRLAwmWdvcfZEvbg259TRvCBjLEzUcGACLbiC834Ft4ve5wgN5z2VxlW9jdFzuBZkFDPmmfjjwsUc7GH9VMxG2BhjjBmNRuPxOLKeB2FozZlmaRARXxbRKY8teixEZKwNZKqqyqc5svioIeWDq1xelgPpZdYaY6rgplWZuypNE0VkqI75Rd1AALHGTMaToigYhJRCpQLz7t7uaDqJ/MUCAgzBszXWauM5RL7aADWxRYLghcdFjohaq3I68d4TodGGEG1iu72u0mpa5C549kKKSKlJWXphES6qqoopDgBEVERJkiRJMh6PJ+MJWV3kOc9k4+NoRz57EYlPSjPg2pgiLwHAB1+WZRRmaRaX6G9zCNFwz//3fSqtvb+dL313Gl2gKMUVlbKQIJKPKUXGGJOmnosktdijNMnOHz/uKpdmHVJqe7K7+TfzeLaVf7h8/frWT/ynt4dQft4f+dxz91x416f/Ylnkmt1nf+irDptU7fZ/f+VjX/Nj55JO9mN/ug6K/9n/9IDRmgBj3c4onxQcXpiUz12/uZMXHhAjIJCZEDTN4WXqQAlwXHa8854URj7r8aSqSpOkxtppsV85sDccbu/uXN+8deXaC55g5fnV0XDqgq8qd/36tVu3NgGk1+ulSRpNw1/5zXcWZbG9uaW1Ys8IxIVnFNZqVBQGVcWwNRqlN27atCvOX79+7fGLz3U62alTp4qiuHnz5uXLlyvnOlknTWxVTj/tTW9i5n6/n6ZpHSIRiUik9qPWfmbnlRwPNTEXl5H2d+YBQnOJ2DuWiVzwfO4wf+tdmRl9/vTpDz/3rPdeNHnARA7IYqKy1irUEpidq4AmZdE1KogoUkaTcFBap0lCRgPRd7z2l+IXv/OdnzOaTL33pDUCo0oC6WnlhpPJzmi0M81HzlchBNnfyHEG9kBErawOIUhgAAgcArAAsCAGAOYQjEYAZITopUSKmhnbVvse1aOx/v0r08rNCHj3aypFxDvPRrXsTmmQD/UgiBhjrTVJksRwT5qmNkkkZlaSBIIvfCjL0hAarTSpzmxfihjaZj05sIDv/46IHFGoMgfOnd8C2hZPURSRk7SqKgl88viJ3JVpkq6vre1NJ8PRsNfpNl9kH574tmsAcP6tx+NfjNYCEFwVAWAYpQcBrNK6Tt+wRZNo0ixWkUYgEQMAIQgjz0aeRGKOOg5pDNzEUfXecyFQ41tJKUUMSikdWErn2SGi1hpYXJ5rop6xJYXgfFDKI5PSxlij7cj7AJIkiSHwEjx7QEKFwYND7BlrrXXMITCC0qLqRBmRAWQFQsoHxiCEAEQgxMIA9YpqlQ4ggQPP+B5h5q92u92DliI0i95sG13Yl2FWlx6n2dra2nA4jATfWZYBwOOPP/7u97zrxtb13mDlwYdfZdNkOs4Z5NKVy6PpOAgrpbQmZg7sECnL0izLiMgmWmlllU0zUxQTUYI7lLqJDyIEK6uDxNhYUibkcz9Syhah0iJC4jn4EDSQkJ7RcSEgzCoXECKdVMth02Q4sFG6Ilfmk8KN82pvr9ie3JpcH21NpvloNCzzPLoB3rvB0sAqv2r6ShOLieQBSqEiRagOJFX2A7I8U0GJ86QVFheJwmhRKVFEZLZuMDMKB1agIghwOpmUlWOBwCDMabKf9SMibNTrJSYiVAxUCQSZRRkAajB83ROk0FokD1JXN45K46k259kPCtMc59hhgXtpJQ8AgEKIhhnM6lWaT/J82VsEKBpjzEwcOcTtzLn9Aj4C8SzcyM7CgRm7f0VzrfVDhIhRO44ZAPQ+PgReRNDlDlscDrqDtNQRR0UkPsZx+ORO0bafFC16cK0l5pO6tf2lj9NmD0Msly/LcmdnRynV7/dRUZM2aQf5RMRXdawIZxUsMUVASvW73eiJpsYWVSmEwDL0w9JV7LzSyibWVy6vysq7LnWs1jHvDgDM4r13zveXukVe7O3t9fv9rfGWC2EynTgODJK7QmljrTVau6kriyJN0sRaQfDCvqri7LJaN+qiPj7JOpIyIROkvQ4oGuXTMrjcV977brc7yqcVACKE4EtXxRGMFxhlVRBxMpn44DOVFFVVr0pKIUJMPcW/CMw5KgjYFP+8hFtptMFYQE8EANpo4hAjdtbaWKySJAkRdnppWuG5jQ0JlGxtrm8c+89//Neb8+z8rd1j/2gtNebStw/fDr/09o/90j/r/cD5C3d7hR/4gl9+w6984Z10Zm8y+YU/f6l5+2//9BPf+oufarQmxLIqJ3m+ORk9vbV76cZ2hQI6CQgKEWeo5yOuHxFFOElsp9OdTCfTaZ7EEki//6VLly6BopNnTue+eu/7f/f8hQt7o+nuzl5ZFM67yvlerzsqy5u7u0YbzNKt69esMd45w6IoUu1BhEGzQGAunQ8sz169cm1zM0tTozTv7YxHI/vYY1mWGWv28rwoCzFmmE+MhKVe74EHHiiKIoSQJHVp+O3iAn8wbcFufplnQxAMHqrqcz/t0x5/9mIQ8HGjaoHxYlPWEuqqqqSqsKomfVQur3IQ7zB4raCfZX/rs37r4E98z2f/5re/4zOZOaZwC4ayqL7njb8Yj376Dx2vmAUBocYzWGtphv5nZiClfBAhYhYhDSoAO66hqoqQmEFREA5S1z0LLoasmqAYM7+YfbOG5jTvsyxLkiTG0aLgTw3UJu1ZUBsW8cwUfXfPAVmc63U7xphabPQVpbhdsGwWAoj1sqa1MebC+fMf+siHb928ef3m9e3xMIRQ+f1MUb/X+8KfetMv/6n3PfttNwDg5PcOWDESxlLiRu2OkDRRonVitFaJUWgQEqMTQmJWiMiBWLCFUY97SiMJQrMmIi4ELyGOsCB6kbpGJQgiaqNrnilmhkBIoAgBvFJekVFK28TaRAHk7FOFiabEJKUrKy+EpIKGQMiMDBYhIIYgwQUuAwevlCitTGKVMS7ItCg5sBJBIqWTwAIwrPsvQDDjQ28Ve8e9oLGbD458fH30E9rr9bz3r33ta69cudLtdquqWl9fv3z58mOPPbZ6fGWcT5+9+Nz68ZMnT59aWup+ypveeP3q5aXlQTHOq6oIIdjEJInJsmxlZQUAApfBu+W1ZREejXdFg9/1Mqas01k7djzr9klpRKzYVdOicJU2dlrkopb3RuualDeJ1wZT0UqjIpmBqSLVPiCKgPft4L0O6FGAOZRVUbhxxcXeZPPm7o0bk53xeDyZTFDAlZWrKgTw1aSj1bpd18YqlbLQLPf5CWrC3gUJRJoDI7OqQ4AoEXAxa+37hQBwIDn2Cndr5mW95DO0J1uMIDdvw/wmFTnBoqdXVa5BdrAwIbVJfQ9bE5ts8EFvHObLtttzXkeMLN9ZXeCLbdIqWgocjlhQFwB57UPMEhncG/xfc0gdJRHzSdFoRqt6cPX5JGzNBhDb0b2Ns3mWzYC4xRJRkqY4Q8q2p6OIRLGwOBqxVD0mZEgpnXaN0sv9JUNqUuQBOAiPJuOiqnzlTJLZJCnLKq+Kyjsi0tpojP56JNsIzlUc6kjJ2tra9b1pp9vRqb169arnYLRBpQQhiKwsLyvC/tJgMp3mVaERyqoKIGo+6BjDb3UgRITQktHbw73pdEpKsYgLXvKpsAQia2xZlZVzcbVoEkfGmAhAJ6WaQI5SShuDiC4qSLIoTQGlHcnAGUloeEnLnDFGRKL2cLwQ8pImCQBorUPw5D2RiudXrI4tL1uVLa2sDA+wCrlyfPNv7mds/vL429/4Hffd/+oH/tq3/dVfePDHSASc+2PPftMRnSkO+BqdbjdLM0QuymqUT69vbl6+tbtXsqACQiI1K00FYuDD7fkkSUzgpaWllZXlopoiIQBO81yq/V988sknp75ywNdu3lBa7w6Ho0m+M9zz3mutBUEQ0ywLzKPpRCQEgqST+UgEB4KNxAoi+BApFIuqZJDElWq8573PjCUEA2Hsyxm0TzrINrO3tjafeuqp0Wj0+te//syZMzs7O7EY8ZW1L19OC4fIJb3kphGtyCP33n9yff2ZnS0mjYoQ8c0/eu6931D7q2e+bwNT9N7lXAl6LTz0ZSigYK9FMiJL+rZeSrvP/+Tz333w0Lu/+cZ9b101xixZGyVTqaUazswESAw68vvERAkLAWqlmCgE54WjoG2z8/PtHJXGpuTD89ULrVn9mr9MJpP4kEY7o9frKaXGo7EVqsqKQNhXSiDRilmUMIooRbdu3VJKLS8vxyLsO/z1O2k4j/5ttxh7igV1CnHn5s6xjWMXr18drAz28gkz+9Z1ZUlijPm0f/Oq0XgsCKHHo8nY+YAY1ROiphNqIqO1NTYxOgVWGBRhak2mKEVJiFKjDyq+RuhOjHPRvhCqGFJAGPPkQSRLEhUV+jQgA3om4hCCD9zv9ybjUZ4XhNTNUqWoCoykDAF4Tg31Ot3AjEopNFohIZFIqFwA9IgEEJCEJJAEEma0WUoKjUm0saVzgYMI+wDRsWsXgdSwtwMUIZEwKuLD4QCB27yjcqhJmuf5cDiMHLI3btw4ceLEr/3arymlXv/619te8vjTzzx/6dLrP+VN12/e2Lp549lnn73n/D3PPP44Ip48ebLT6ezu7YTgIjmn957FKwWB2TnHyEojKQzAWlOnlzEqQVV5N5zsTvJxXuUmMVVZVTw+MT2T2oyCKDtbP5VCowipI7Nkl1ILgHSJgGrgqsxDKFmccxPPRUAHAIRKAo9H4+C8UQpY8vFkZ2t7ONg2JktTQJ1+gh2ViJKIkGUhBE0kiKj0wlMz56h8gqPTMb8R44/ey6JI2Z21I6rYFxaXmDYoy3IynZZlGcNtPnKuYr0OHr1/HOGo0BGOyituQ7dhgTFAX8fp+ag7dmRUT2JiK2KF5ovKeDYRXrIOlhz19mU3nAHhIoFvBOEdIc/3B94WEnNzh1ovMFYcMcd9yxizsrISdw5QyCzMwVWe9vGByADdrBs4xLoUmKEtI83/dG/XWGuMSjspk3jhpCqQsAqVC94oZbQGkKpyjhmiEjyiAkJBFgmBHcu0LIuqsmmapWmabd28tbW8unzh3vtW19e6vV5/sLS8stLtdKHwVVlm3e5wPHrsicefu3RpMsl9YKVnitcAABApj0kpiV0lCEU+Ho0Dc6w8EcLhZJxlHR+8Tqz33gWvlKpDR0TRIRlPxgJCmkIIHEKkS48fC8w+eIlBJpl/dBGDsAvez7PA1SFeqAO9sSXfZcq/W4cz+/8gFay5sOuwvYAhQgBlNCAkaaISpa3VOmEfKik5cKogITDM50+fWpgSr77w0G/Oq6ncvHZtc3uznEy/4iu+fHlluQzVvzvxA3/m+rfHo9/35FdffOqZf/olv9t8nnS6cM5+1iWE0STfGg+v7+5dvLEzqoS0Ll0gEGOU+BArLwWPel6Cd5UPgAhKX7pytb+ycvLUmZtXr7/w/BV4c/2ZvfHYAe9Ox4JYuqra2gKyAVAZS1orhMI5PxwmNiFlpqXjANOiCixGGwk8I5MEEBDGwCzEMQBRMTvnYlIos6nSgQhDCJ1ONp1On3/hhczYE4m1WccF/uijH9NaLy8vK6UEwHNQn0g9+ztvRzzyL60phUbrLOucPnbiqRs3uC6wIAT1pn/70I3NzeFwwgkH5rz0QKINaaMKZnalB0gQUSt0R9nfb/2C9xxxtCRSyiRZZuu6oMANvUQIjII1Op5inAOESJNRBITD4a4ICB+9X+2DFmKu/MjdubXrM1eucq10n9Jaz4QvyrKcTKZECmJCgINRBICVqzRImmW9TpoZq7wDCUVRbG1vZ2kaaQlfqbbgqS7MhwZ0aoxRhFmadtJs0OufOn48BD+e7OMtl3tdRaAB1laWs06nrBzckKIsC1chAGOkrxVCNigJQaowJYWBNUiiMDUqRUiVskYbRZ6LuQEViVj5KNdWp3oAfAQwI6bWAlFVOYAIhCdC0nqmcYOY5xOrje6b0vnAoLShsvLeSwhclZnVvaX+9u6OIkJQCgQVQSDIrCJUSjkAQWQBtAApigQmD4RIShCYyBIGRYRSy961ydOasZ2fMzzDjMQo9cG70Lo1h05N59z6+npc9peXl0+fPv2mN73pscce63a717ZuJml65syZosivvfAcCt919903rlx++DWvzkwCwK4qV0eDvb1dQmH21ppOtzcqdkfjERpMe13SpFS8RnQusPbIkJfT7eH2cLxdutymxrtSsLx6/ZkqH/XTTi/JelnXKKu0JpNopVCnmkhrq0Va6FQEQOeqynmRMC3LwlWTcrI72h0XU1JKAo6G+fbWkAB86QtfJMZqsOxxmk97ZW5MqrRupzFuN7n3x05uZ4ZRtG0iL36LAwEFUARBrCGtFaDSgD5IgECkSKk6s9q6X+2Mip79YHOlEv//UnMg7eWGmauqimZY5RyYRTL3O2kLj3n7Wpo4CAGIgPe+ci4v8kk+9d6JACEKQKhvZvzfPO4YWxUW0jgFINLUTtflOu0AyQIiTHvPRVH1eghAIEJKE5EQELE6kA1omjIa6rEXL4FEAaAQkFZuFv+N91oBEoACVICzEmKFuOiNaH2QjI+INAAr8llig9EiDBDL/evrNqpVYIf1csDiOSBp5Tm44AWBtGYQREg7mR5q5sDsmT2LR1GITe7+JSIx2tfiZ5KlIQRldI7iUQRrKn0IPgbnGEGpffaDRY+8dfKm8iRuElrtRweBa5mn2EJoq33ViMx4/rZJhBAF6GI1i2hSMKt9XLyuUG/WgsCxChIAABghyvTs7ezsbm8TQL/bjW69Z64it31gYgFmZCFSEaQ1zSsk1GSSThpdlOl0Wpfdgy+LIvryrAUVmVJlXRsCF5rI+SXbLXAyHed7eV4gKm07KtUlGWMU0aTwO5MCbGaWV40x/cHgix983bHjJ9I04cCgKMsyrXUIodvpbF7f9M5pY5anUxCjKAX39M7ONhFxyJHqotsGNIKIQDjKc56V1vnSKRVYmEmP8tIYM50WQEpIVYGVUqi1B8idnxY7zALGloFdUZEiY6yIJDbNXZFXOWg0pKtQAoA1Kp8N/mg0EWtHRZ5zQERfOr2a2KwzcoVDKSVQangElauxZOnfs6CVJlWGKjE26/by8dQoFxxnqTWuTDHYBG1Hey4pWPZKyKjEohPT0ezEZNLLw/jKc7+0/g/+qPzt2I0f2P1bH7vviQVH5fnvGAPAc/Brv/Udv/uqhx8+d/bMIw++6pcf+o/leFpOhtdOPfpP7//d9ud/9S9d/7L/eP7tX/1sfPsPPvAWhWE89TslP7NXfuCFWzuVECj0ZLVFRF+VIKK0igjwxCQxVBFvR7RREBGExXmd2FuT0fNbWyHpjkq58egT0+H45uZm8+tPbm22w97ivWePqBgghDip0bHLSwcCwkyIVVkCQOldW9ZQiwJtFBhAYK5zjwiUmgwAKgaoPCCISDEcExEpnbPsEl0eD09oDdp86IMfefOb3thb6pmOiYr3aZp57513sSYaZ+J6wq3c2vyCMFfsLhIzM1VVGWPmM4JzlW40f0xaSYAIoGqdveW3LKbX9g/RwfUifgIF+spMkmpapmg6JiuDeM8emEmmLi/ZgRabqSTV4v3Uu6oCy5BW3iaqsCLAGNxKdhsd0jtsvU4/1bqf9RJjosfO3omXUAXnnIAfee9jfkPYMXsOwljXcmlbBJ/ZNLVJGVkuBJAxVkE2xg0pQqWQkQhRxJf7oUyc3xGMTgB5Mh3FOA6T3hqOmqMVqqzTrZwnbYg0Weu10VqXeY4iVVmiD7Gun4TZhambGEVW66y/lHR6vqzKoiIkpRQhzu9gc6kRJCUzCm+ah5/NuVItwiIAaPNPMnOaptPpdDydXLt5o+Rqko/vOXfm+vXraza957VvSJLk1+FH4oc//TUPbe3sJKHq9AeVDwXpMSlLxoqTpFNoNXUFuTw1sppVq0mRUFjpWAlMIoniVEtmTWoMInNwoRUpR8QqVAqUJl1WeWI6JAEloIiOhoEIhAAhQKBYoBdAkJgQFSEaYsEgNtZMpMowsw3BaFWVZQheaxu8r6a7KXp2lUJMCEG4k+qRCkAMXAUGYyyhcpUXjYqMK0tlrDbaieTANlEdBZMiL8pcUcqtjErlKyJllEZSVVk1Q69nND/1rVnQISCKWDUACLCvvBz5jxpgvE2yp55++vqNGyGEu+++e2V19fKVK/c/8MCtzVs+oFL2/vvuk+Au3HOOhc+fv/t9AFcvX3Jcnj97psrz97/3UjEd9nqdTpZm/S4ahVB5qSrElUFPpynqZKm33umuAmeJTQs3uXTlqe3x9SKM+11rbbbSSxWNbwzftzlWmpSiZK1/bG35dGZXsnQ5UdkuqqWs10my5f6AvSDpqO1Yeu+pKsFVAXdd2CmKvSrPgQJ2dveKYizFKOQjjwTGWCE9rcR0Egf2xs1drTNU0k+JdCCFRIainmCs3EcQASQKPrjgAaGsysJ5AXKBFaAvvQLkgBCQAmqvlCZUEkLlgRlEIJA4AvFBABAJQmCR6IFKYCdQezL149SC0COINYoElQgJApBnKVzlg1dKMbOhtK44nU/McnuxJRSEyrsyyqkBRiUDmilAxMnAHISZQVARaSXzQuptbiREpFZKn6uqmVFtax8AtDVRD7sWqA+8Nx5e2bx5a7Q3KSpBdCEAkFImXnIdCtBUq6fHUrTWesgchYNJiAAkBIEgAIwCKdZQlIbyKsyKZ2ro1yE1Ki8lunbQSWwAqfhi0nK1R6RUlHInQebF/qgWS0BNwB3H9/C44IH6+E9sZo5b8WACgNlW95IDl9JqL797R5/ioFxSw4aOs8Kb+KikaVpzsIYQy8pnIehYlVrPJBNru6P6sUBqk6Ve33s/LfLdfOSCr7yLDNwSgnNegsR6+jTtKFQEhISOeTidOOZet9fJuoKUJMnpc/c88MADZ8+eXV1dtdZam3pRpHQEmOlZuab3HoBOnDwV4VjOh7Pn7jp2/MTpU2c++tGPXrp0MaANHJnKgH2AygUBqEVhY82txP/GVywgAEQU3a2mLCca00EYRBoRRlIUXaBOp1OWpRCyCFDNjLcQRXPeRWmYwBzBDQAYQvAhuODrirzFG7YPpg9hX0UBmH3p+qsDYyMHiyg1e1QEOknGZRB2HWvN6ur16zef/vBH33bsr66dPWMv3JN2u9++/A8PmyHXv314HWr4zf/8k1/1xV/4x5wPVXWbWPigk37jf31o0LUnN05AgtOxq1Cubm8/fvnyqHJitDicFQftLxQRlzV3iS3FIRFOjArst3d34CKy98vLq8I8KYqtvd3mK17m42OtmQwwy5cc8iS0d4v9D92Ooas5YawmACQRCCA7w70kSSAIV54Gg+F47IJb6xxzzpGYJs/+SZxkvX07rMOCUJRVEOlk2WsfefXvXXxuK98TQlZaae1dIcKEYIwihc5LEBAQAvRBKCDXI05DL1/70w+/7csffbEdO/9DZ8EqBtoa7hqjldIRLeN9KFzpQwBEDxAiP2F8NhGkLmoFLRBJkIj0vpN4gFdV5tvi4BwW2kVkQGk5jTZJWdCzWE3GaqU1khIkDx6QkVA0GrSCMq4KRugkdl8aCdBYA0HHnY8QRfiw9GPsZztIeVg74uhkMokoNZsk0+lUa7V161YnTUMIqTbn77q7QYoQyN3nzg76S5UPmzu71mgCgeANoRcG0dvfvgkAmwAXfrzbtSpVKlPIqEjEakqMMlqRQhAUQhX2xzKqV8V/GKtACYlQBJCliVLPXBYAEKxfIcS9icFa23bUmDkxqtIYQvBlQcAgCjigrneNuPwLc8cagzidlgiiokKKoEKxSULGkFZqBh9h4NQqosx7bOfE63VXon12pyN/h206neKsLvTJJ5989NFHI0lxXhSdlcE9589v3drsdDq9Tnfz5q319fW9vT1mOba2WrnqAx/43atXr1qjEFhntrPSE5Decn97bzsvSxYAUkqnvd5geflYkmZi3XC6NRrv+uAUYb3RIxAIKh+kKAofnHhXBPap3gveupxX+xsPXXjQkPLeKYoSnBLpv11gF6R0UDhf+uBCKCtXFEWRF6O9YZFPQQIBJCZlxWXprDa9Xq9ne8YaEQ6+ZD7I2HGbURKAILOFd8YdOoMZATZ1aU0WIJ5mllqv/xrDvbWhEwd931GZu60tHwb2f0cO3XVecnsx0+cwA7KZn/XKhrMTS/SHXVmWpatc8PO/N7+9xlGJrw/8Qptycv8rKBzqYpGDa5SO3LIhhLm42idBw0jQMVthG0xb+wLUPAdLU1cH9IlGBr6UVm8uFPnQ4AgmriNaG+H3cbecT1yLfYj+bpqmMV/BzOC9CUGDCDIEDhBi8VO8H6nUVSUNJKnMC63UoNcPEJz3ZVkWQEG48s4wZMaG0hd5IUtiksSmyWQ02h3unThxIut2B2urX/L6Tzlz7uyJEydWVlbiDhoBlEliiVXlvHPOWtvr9ZrlO4TQSTqRGVlrnSTJ6urq0tJSr9fbOLb+/ve/x/kqhrWi1xHjWwziCy+z6deejdjwkM4clegh1HVm8/cLZlDvoiii300zVbWFMGdZVnlVxjiCIqURY9iscqWbadQc4azWcfpZ95h5MFgSZlJKG6O1icE5EVFBQuW48qSTlf5SN+3e2t7ZvH5z7fiJtbXl1/7WXLn8H3/bq37+az9221/84Ud+4le/81cfOH9extvwPy0e7SbY73ZOrG6sr25MKz8Ku1deuP7E9cvbkylrAOcR7mj9aa4ohADMQgoRXQij8YgDP3/50mg4rIpy1EKhHITDAs7xe84j7uCwQ20WjyMevbYrxcyEOJ5MQl7ke0NXlfl73+N8eff58xcuXDixvBqCXezbH/KGgs4HpVRizCMPP7T22795Nd/NC+dQBSsKtSYFGBRSNBeCMCAFkdyFgEoRBBTn3N4k3x5PvuDH7+okyc989ZNH/+jKD6wbpRWRJoVaA6oANGKnKh9LxUSk8EUpjoEVUBBkqbVN4hnijBIQEZTw8b1HEbn117bi66Xv6c2NwJFlHnmeb7bSfYg4Ho97vV6WZTJj7QzBi6LorxvREnxeFVKVpatKZ5ezjiEiipxSSqmoqCdHY0kaVtOjAYcLnQ/zm5T3Pk3TmKI/d+7ceDx+8sknlVLj8TjP82PHjsEsDVZV1fbzz3d6vQvn78lu3Oh0ei9cuSLOVRgC8pW/erk55y983a1v/vmHEqUzjeyJEK1WidVGK60QgngWbCMCFmAqget7N+80CiAKNTEPwRmxI7OIGLuPkOEZCKIuzWf2TRRjVqZc140QWauNMSLALAjxMUcisipBbYCQQ9AaNQsFr40xic1zL62ScaVohoefs6pjWLZ1w17KshC3rWjOIeLa2losViFFo7K4+5577rrrrl/91V/9lV/5lZWVleXl5Te/+c2//Vu/mSTm4rPPbG1tbRzbSFPDwgFCkMCEpM3S0pI2Wuu01x2srZ9cWTuZ2gGLTEJujel2+1L5MgQEE/8BqMlkJOIj0nLP77jCI1/PJ5CP3cP3fmpVVV5bZlb19hg3SCkrKErISz+dlGVZOV+VxXQyHg73dra3N6uqIOVtojs9RWRcZVbXBqurK2vpapZmIlI5d+f1Wg2HtSIKM0f2RTURCYFlhhKr8T4AcOTu8EnSFne9VmvvsDzTpI6NOcJTJ9M89y3mjIPtzkud281739TjLyyhuiiK6Kjc4bl+H5rMOFibGLPcrvgGYI5bPY5vbe0hhgM1wX/grR3MmheHeBGtcVRm8YA/mOchmuMNV11c4mOvIk98XYTc7BwIKGC0bt9KYRbmyCKRmdRqTnXS5cAI48nEu4CCyFgyGGOV0t1uv5N1z99732ve8IYTx44naaqSTCldVhUROhdmQpOstLCEiLVAxDzPo5BWlmXOucl4yszj6YS0UloXVeWCX1lbe7iT5uXk1ubNGzduFEURWMAzEgNCCOxmZGVtYpb4Ns9zpVT0lJotc/8aWyKMsZA60vVUwcdi0DCTIm4/nFVZFmXhvPPeo0aYJUOrygXhObK+27UQvPfeKI2IzMEYk6ZpnufGHMvSVCkls4cLFWW9ngIAxiTtai8n0wy1uvixJ/rH1hdO+w3f8g0/v/fXD/vRp75t6ynYevX/137Kd6fv/zv7sPK/8+7P8FlxfHVlY7DuHOUBn9/a/r1nn7s2GlcIIQAhAd8R+W0z4esxBkJAH8I4n6LI9s7O3u4uez8t9n+97SXOTrJ/wsWI+DyzfvtQ+zUunGW+hzjjkRSRKvgplqJ1lqSe8ImLF4vp+NEnnvjiL/ri9dctNQvvS10PPhmbIdPpWArUSZONwVLvpi3yqsjLCZnOYCnPp6Gs4tPEHEniObA4H4SYqsDETsh52SnyXS8DUJ/6o2ersiq9B2We+F+ux1/pffdSFUKSpTaxNrPIggJKaSIFQCBY+cDiNeuO7gCCj5kTQiHFzs8cFRGEiCJk5sAs3MJuHb667nzHXvN6+J3j7O/vV2G1zZSF70fCw2eeeQY+t/5L1DhK03TmotTPdRm8IiGkgGAQNZFKM2Ap8yIXxMAiQoBGKcAZiScL6UM7HB+BRsbx6Hjq/vv5T3U6HeccIkZQHDOvrq5GycI8z8uybByV+++/f3d3dzgc7u3uuDz/wKOPjnd3CIM2iH7R2OinidVao7BCEoheitGkEFhCHahv93CW6kKAsiyhJjqe87IkAhelBm9irVzBwAwyR/lPREprTWSUEpGCPZGNh9zM9jXGKACllAtegLtZyixV5YUpAm0wogwa9T3hGXuyMgYCtiOqBFFzYD7avzDyL201iLc40seFEDY3N7XWkfA6r8qnn3zqx//1j21vbxGpa1evpml68dnnOlnCS6aqipWVQbeTJVYPpyMnblxM+msrOjFoMMuywcraxvrJY8dOL69sAJjJNA9od8c8mUxG+XhajieGqinnideoclcGX1aucFWFLBpNZnsry8ePH1/f2FiPqyoiBh9EkGsJF3Gey0qKIhSFq5z33hXFNJ+MJuO96XhMSrLUZF2TpZSlnTTpr6wcW+r3lrvLhFi63DnHd+zdNWt7FNd4CUHjtlssME9y8AenxH2HbWFrm8uMzObh4s44q4fJ87zIC+f8EbUSizmlOzNTQwgN8GEhcaJDS5VvRnssAkC0T8a8AEo5eGHNx2K8OKbOERVCxIjeBu2ELeLahTYz6Pddq7ZR3u4JHQiFtnaImNCrtdLbZ2sSW/t9a9p8j+Zn2/yxQ24ztO4xNnoXs2KifcwIQjtBNNerA/cVW7I2zX9FZrnH23YQoSEP8d4virhJzbHdrOwHJyUA4EwtBRdIbxCYQ7S2o5fSXIXRGhElcAAMkepO6wh/qivIWADqhGKMBjrni7JkASRFZFJrXQhWu37WU2SQzKQK1nbOnD7zGZ/x2adPn9rY2IjRRxEQVCGwgHdxhVIaiRSRICVp5irX1JlECdWIJBSk4Jy21iaWRcp8Mi7ygDJYW33Tp3/65UuXPvaxx65evTLNcxYJVeW9369wOGC8tv3nfR/sgKPCzIFDR3eIaDQa0Yy2vM2z2Y4XlFXlZuwxcRckoqpy0+k0Asfjh+uZVud5JEhAxMBclhUAbP+tGg3/4L84EVmJjdbGWgTwEM1EVtqmaSexFhjL0gPRYGU56XfW9iY33vMhOD83JY7fc3q+XOU27SP/e/X5bz3+tf/hfK+XdlK9POjaDLK0u7qyltrB5tb2c1u3Pvz0sxc3dyoCDwCAWpmag3WeO6V53RTLMTPMRoOFI7i1KqvgnDFG0dgF752rDsR7DnM5Fqb9HUbWZP6jNGfbydxNAcyLqoCi8j6AaJHhaJxZO5lMy7K0ppauy4siUoFFOqM2qHWhk/MeV72Kvti6/MOM0VcEjWC0VR7EBxD/mocfvLR9c/viUAAKx13AzCbOVN65aNwBYgBwHJBICJ33jABag4YqcFm5yWicks6Lqqw8Kln//jXPIoKswCprtU6NVUoxe2DGwAIoEoQwlBUigyCXDgDQBwO1WC1oHVgQUTgIIhKEmcmhtYkF2N5771wrHIAitT7SwX13Yd42sbZYeND4ySLSKHrFdunSpSi/A7NFgJm9c+CDTUxijEYwiEvdLDNmOpn4siiLQkdCQm1EgEOEsQiAALa7sdjDeSd/H4Z+xKRvq68oBZHhJ3KpPX/1qlKq1+uFEG7cuLG0tNRevqqqWl5eXllZKcuyLPJBvxNcrrVWiZ66YuFXelZF2hVGIJDopRiFhBIYmRCB9vOZM1koCezLCo0S4VhXE5f3/S0SWYAAgDFicLlmQBWSUM0KeiTChThigXguAdvcKWYGYULRAJFplwkUkkIKgUEksIj3gnUApQ7YayUihNTqfSwpiZNkBnU9ZOjbr9ufaoUpFz8YmCOZYVVVgcNgaTAaj4w2wuwqh4E/9uGPKKUGy4NOtzvaG1678sIjDz9EOFheGWgQkTBYGTjy/Wxp9cTG8vrazmiPQFDZwWB9ZeVYlva7WU/rVBOV+fD6jWtXr17dm+yIEkIY2bxne1YnRRVCcHkxrsqpeJ+Z9OTx7tLZ9XNn793YOG6tTRIb5f3qyL2I8y4Ieuay8gJIpBEpOKkKr1FnJrMJKhP6Hdvrpr1eb3X5xPLgeGaXurbH7AWDl1oFWCmFSLGue2b4ImDtTsR9JDJBI2IInln2javaDINZ2fcMOSJCFFn9qXnAWZi5riBqOyrI2FLREGmJMMZpdttgwcJTGcsIZ29jUPf27lQrwAFKEc1IDu88/IUz+cWmG411GiMgwAwswQfvgw+hflhaQoNx+BrrqMH7HFwqDzP7a3ytSLw70eWmmRakjhcZy1TaHcWW0YAHc9ntzXL280SktSJFwdcVe4046G36O//03XYnbu/3zaG5t9Tuxr5bEdUfYZa3FeHo/DVjV9+JuF60h2qukPRwP2V+sBd62FgqRKRI1bMMlUgNxxYAZsCm3Kp1R+Ma1DY7pFVqLyKNSYR1wn+++62XcarVLKiLFznnDjWW9IJH2vhxNapgBlgEgRBCJKdr0ikwAzVhkCAhbgtxNJhqynhCxSE4ZseeiELp9oZ7rnJESqFGQK2VzVIklaRdnXY6wS0t+9Xjpy/ce+/dd9+tlMrLgoUYlQ9+MpkWlbNJopVm7+IoSQg2TRKbVKWLCK7oqFhri6Ioy1IbbbM0d5WToCM1baeDSlVVlabp2sZa2u0NVtefevqpJ594cmdnxznHgjNTsJ5RtbkzG714rK6unn/aZZZLERFFiogioXOWZdqYiOyKWanoTTWD7/aNJEQkRRQ/kOdTm6aN3tn+4tVaJkIITmD8/24q8+HXv/H6a3/r/ixNtDZEhLHKkIUBgkKnUSdaKa3TpBjnu5PRoNdf6vT74+I/f+jrvvK1Px5P8uibfvrh93053EFbW13udtN/9qUfiG//8RNffPbMaed4two3J/kHn3zq4q3NCsADACExBccgsJCtgtbz3lQBxSk645ylIKyUEXRBRANM8rwsilA5mDf0cT4sIvMr/vzzO3fkMMcJFryd1iGO5Zf73yIGUWgC0dg5cZXWutvvJ2m2ubk93Btaa7e3txHxkUceUUqVZUlER/hLi6sNABzUuX8x7ZWGSiOyimWdWuMjD9z/sWeefubSpakLAcp+XlhtLv/13fjR+/7pCVIqhOAldBNrtCnLAgS00kAmtZgHl5dVILn27TvxK+d+8DSIhMDehxvfcSsi/O79kXsYAQg1sBIkAQrQ04aU0lprUgCYWlU/lSJCXBeZRVOJ6+VaAKw1wrWj4trM4AgiLIB0IGwHi45fdBwkhuqROYJCASC+aLOQv/3tb3/wwQc/5VM+5eTJkxGiFhcrdoVlzEhnxhiERDARNEmHtdkZ78VfjKqpHAI2mwgcavgu7CmNK4WICyij9sSmueeoLsBzzq2srKyuriLi+fPnL168OBgMut1uFN+IrdPp3Lp1qyhyQnD5dLy300u0sqZUQBge/IHVx799O37yu3/zDWli/vqbaxq37/ntNygUTWg0EaIGQBB23IRvEWb3gCU4p7VqJOoi6qnBYkQFJgEQrJXRUSEqhcjguYndxrNFU7DZChv/P5p93nsfPAgrpRRRVToFpLUigUq890GYQyzpRATEaKhprX1ggQVkEcbA39E23MKx9vdbBuviOTgEa2xZlvEWjMfjqqyindPv9YBlkk8Q8Nj6hhLcubV55uxZrdQzTz9d5iNiybIESLJeprvJxoljHsVLIGuSpGNNJ0v7ie1anWY2cVV+47lrjz322N7uaHu8y8AIhH6UqFGis9Gk0Iqcr7SS1Jpe0l9bObO+erbf3UhjS1IiRFA82+a89y5ULlSVLwVBKR0moMGcO3U+OZ8S6bIc3tq+5Pyw28uWl1fWV9cG/Y3ULJlgAleoZFo5rbUiivusxEj0/njW+3J0PKKjAhDL4oUWzc5FR0UDINZWc/t+1FbTQoXGIuPJvgnddlTid9vfaj+VDYIj+rTRhLjNLW85KgBAs5QpH6k4snho5iA18x9mS4rn0DgqcShqU7AOP++fEGcDsrC84OE5idv1qvaR/Nzli+ZWW/AK/lttkVoUAFgYmfGTQ3btlW31vivSQJMPa02gulma2ydpZzbbbxvtnQV5IGiS8lIjKLxwHckQGbm8Th0WhXMuz/PpdCoi1iTE5CuPRL1+L+12kyxdXlm+/8Krzp69a/3YyUleOOeAIEk7has2t3ei9nyadSMvfpp1EdE5p1EhovOhqqqYtQizig49a6R1JA62SWKtVcvL3vu9vT3vvfNsbXry1GlSWmt7+fLlmzdvTiYTUgi+AJiB7upo2G1aY2HH8ZHWYxXLeMqyRERrreN9wre4I87RmbcWJhG2ScLM3vs6T966ZXfYrLVR6ybuk0QIqDSisUYZjVoFImuMZch3xsU073SXVo6vCvHPPfmNo+lk4+4zxdOXPv7PAABA1k9/5E98oHn7vz7wCz/Hfy2vps9u7/zuk0995OLz4yCgY5AAUZAEhfYXyjtfiAIHJIuauBQWjvSgC/J8rZn78dtLWwDnnJbFhDMFCQEERDjPM6Nd5VbXN7JO92Mf+xiCDAaDp556amVl5aGHHoJZVJjDXEboD9GyPKPejJM5+GKy0u2cPXHq4uZuzqEqq499y5Xmw0/9L9fv+afHGQFBbKosIQSCIFJVzgelKCML1lz8K9ear1z61qsHf/Tpv/Tcq374tNZKIYHI7/2lZ+Lf3/K2h+JOGRdD552rnGNxVeVEQggu+KKqPAfUqqa7vbO2+v3L2//bbnzd/e5MXmpRZJ7njz322NNPP72+vv7www8/9NBDa2trEjixHQlOISXGGsLpcK8SXuovCXOn0wGRoiiCD6mx5veP5FqiVR8Xq16vlyRJfOucW1tbW11dhd36oyGEpaWlfi9zZSG+BO+6qSVDAZiQFcLn/fMz9x9fP9XXg675K2/a18P5zs/cXzf+7ZOfK4SKqJK5yt3mnsZwUTP03CpWaT80DDAjGkGIRljY3/SJSBoTTZiQQNUbaJivBsSITxVCEJEAIiisUESBO1AZ37QjYuF3Ou53vHxFXZ3BYLC0tLS9vS0i6+vrb3jDG5xzt25tMnNZFIPBAAEuX7r0ute+rtvtXr5yUampUUAIxuB4OqZEp51ENFTB9wb9xGb9zuryYK3fW+lk/dSkRAjCe3t7RT4VEQQqirKYVi4P4EiJKYNPEyMQ1tdWTpw9e+Geex+6/9Xnzp3vZ/0kyeI2JHJgnaZKWzGp4kqXU64q3lg7fd8D9xqdjkZ7ebm7vJxs71zt9pN+b3V5abXfXTWqL4UrnQcAc8AUOaLFe0pEhNSQLfx325gXXfTbt1nomllCYPhErjztZxkB9h2V+k9/eHbEl9wUUR1+5noU/ttrPOOgjCXjR0y+ZtE/uJiGGXtrVPwIM0oZRmjC2zGdMheEa5hX6gS3lGU1LYuqql7YulV5V5RlVZazjAFEpE4Hk5Xl1dOnT544dXLt2Mb6xsb6sY1Op8MCw72RTqy2ZjqdCqJKDBjlqsrlZTelWIYxnU5jUK3ZXRTWSCprbQihKIo4vVkkeJ9lWcSFR7swuu9RnDH+t9/vv/a1rz19+vQzzzxz+fLl8XhYFkFCgPlCsduOZ5MWYGaZUW9FDyHmNKOi1n4UhCgaSe34ig+BQYBqn2cmwlXrwmIrf3KHLUkiWWsdFkVErTQjpsZabZRSAkRIK/2lnphie293uql1MEtpv+omCqubW1e2txaQYLdtX/Uf7pVOtfDHm5vDa5u7v/PMc+994rEiCCniIAREM/705vJflAPmmYFIac0IASQS4e/TzAHArIz4Dle22waeZyc61No4vHYQNRkR8eDBYxUEmLVIPi2eevJpzMcvXL36GZ/xGUS0tbWV57m1tsGXN6e4bQj/k7mJECEgkSE4ffz4m9/wKU+/cOPxK9d1t1cWt1EkiwYLi1OEvUQZ0Folv/T1dQH9ue9ZupMfXet3lrq9bpr+xBftW72/9rWPfd6/fxVzqMri3X+h9l5e9YPHKhdcDKxyJByawZ9ezAO1/L1L8SkWkIX7decnSdOUmauq2tra+rVf+7Vf//Vfv3DhwkMPPviaB15lFJrUqtSmxqSZIRGrtHfaALuqYmZrjNbqFc6HHd5EwLnKGLO8vHzjxo1+vz8YDGLUKcuyuMw2H06SZGXQB+GqzNdWlm5eu7K7faPfGeTVBFEswVKaLXezrsX0cOHTP3v/b7zt8c9ShNba5pFugrVEtKB7FgPzOCsdjAdrc5gICAOHyJRKoKBVtos140hE0kFgmZU7+uioQC2yIQA8C81LTViNoI684wv0rC+hyeGlzwutrEpCcs697nWvu3DhwtWrV1dWVojo+PHjFy8+/8EPfjDLMqVUv99/1atederUqcFgMJ2ORnvTwWBJK+z1OgE496XtZpNqmnW7K51etzsYdI8dP3FqZXkj0Ta1lrmCwGVZdrrdrb1t54JWCZGAkDAGRq0lzZCUueuuU2/4lNdfuOveU8fuWlk5lugksyqxCSlazOSijKa7IWgWcK7iAGurx86cOb6xcmwyybsdUgYBi2mx0+12Op1emvSVyggtk/c+OOeY1J2vkw2EhBD5fzgqh4gwLrS63slaY7RS6qUIUb+YLrWfZS0zs5Jb1H6foPZJMheQav5iZqZPdJ9m9MTtRTNiJz+hTWa5vMaoPeyTelbgftDw5VkoZyGjggDex0wJREjSfk2wRO2FWi3GOTfOJ8PRaHtvd5xPd4ucmX0IHAIpMtamabq+vrG2unb3ibuPnzh5/Phxba1JDGntvPMCRAqUlGUlCEmaCeG0yPeGw7KqkCgxHQG21ma9LCK7kFQI7AL3lrrj0Tjyn0RHJV5p8MH5sLS0ZKwdj0eVqypXjUajoih73W7a6QrSWpptb28XRbFx/ARp0x8s7+5sP/qR9zOABInaNQQEKHjA0cVZO5gDjRZzDENWVVUPF6JC0qSihGVznsAsBDGEKSLGGA7sWpX6H2/rksF3Z3t/p0Z//blfepM5o7XSRBRzXgS1/5SSNkgKIpw/aNIAUnEwWt8abRnCUkqbago42d39l7/zpX/xjT9729/7gY/9mY998KMsocyCOWB97Bblh59+9gNPPDHygRAVaeSAQo39QTPIHLf53g80nP0jAI5JUSRCBVGnqC0X1AxETL3P1p+jt7IjtrojenWkZ4Ux4e+FkXkSwsAmV2/euH7tug3VXefO3dzeNll2bLCUF3mkVBIODS60ucd/iAIqKAIQKxshMeb8Xeceuf+BRy9e3itKh7eZtPHKnCvf9U03Dh699J3DO/nRd37tU3/xnW85GEQofOmd/52/+Hzzl499683T3zeIxqjngETGGqhXOY6lHvW/uXj9Akh4/7+wkFKLa+8ssXx0y4sisbZZEETk6aeeevbpp3/tV3752Pr6qZOn1lYG/Sw7tray3O8H5xEhAKNIt9M93umisVJ5qCsAQWpqutavznqAi6m+uQu5w2atjZnwXq+3dfPW3mh4+fJlZjl15vTyysrq+jrMFGIC++3tcTdNrdGXLl2q8qklSq1SDhWIQe5YSg0Z+jgcGizwdQ//dnz9to9+XgMtAQQiACRuzSjZx9VITHfE3VYQCBUCxeCQCBhqkY0LIREwowgzeBd8kBklcWjHcAU4UqvOlqr45Qgrkpm1i9iitgUAvq2bgXHruNPhb0+wxZLRVrPGKlLBh2effXZpMOgvLQnBgw+/6uknn3rPu989WFp+5FWPXLx48dj6sWMbx6uyeu7ZZ1dXV+6+Z9DpJJubN4uiyKuiu9IfT8aDXmISq61Nk26Wda3tJDZNjDVaVaUD4ePrG89d7q2vbzgJO8MholIahZVGhQl3+okx+tTpk6dOHcvSFIAVYq/TNShaa5oh4QFme6hIJ0uBbJporXS3Y/r9ZG1lYDAZ9NLAvVEuIsPgAwgQgLCwgyBBouquc6QaO6cFUz9sPGc8Gk0YqP2czG4xtO/jESvwHBrs4G/Nf/JOTnhUzyMKdb+/zVr00ncIabXb/mL8Ja11kiZJkhhjrDYu7KcRcf7FS+rK3OMQLQFsSvsmuc9L7wIwqADIEgAEVLRjSGsbZVW9Z63JGAsAMZTeOn89P0QEQBiArFGBahcIkREcB+W9fimimdBEnZsL2D+0gAxsvYzSfJGZihmUqpMM1toQOPgapBitwGZ2z/stcy4/z63+cNjn4jIms1noCbJOx5WsWBikEo5eCslcfDbsp0EJENpk+ITUrmj0rg5JIuIiMlLahY/1+FubyrzswzyAEjzvq0cRUTs4JC2AMhElqFCR9945rwEMgrVWvPfCUVk5ovODr4gIORT5ZDTNt4fDze2d0TQPICCUJqki1ev3VpZXjh0/ds899xw/fiJNU2X6WhskdMGPywqqKjoYVVFYnaTd7mQyGY8ncdHvZb1OKs67Qa8X0xR721vMrJSy1gx6y1VVjUYTQQoSbm5uJUmyur4R62o0IDs3GY6UVlxvTpxom/QMEh1bXZ/m+c7OzuryiohUVdVJs5VBjCD2Ll994crVa1HcbToZdRLNVZ5o5dvzJOI4Z/cIWrF8mjGkMTMKGMAkyZxzqTKZttPJRLlWXb7CIMw++OD7vf44n1ptJr4MwhHV1pTE7N8+ZRqYA4cq7aQn3zqoiiJRJK+FjcHqatcKAFqtGRRjQKoAEqt8VSgIBBBCmAIJsFrVEtgW4IsClARmAlnqZktZ8vOPfvXOzp4kSafT/VMP/7vY27f+1pfuFddXV5du7WxXE3dsZf27P/xFf+c1vxiPftfVr/7lR3/vPY8+MaoCoQaAyjMiNTVm0TCEwAiQxGpmIkVKk0JSgCIgNjERU6xI6agYwUCUhjIIgyLDAkEIlJEgrmWwBhBsyZUCgBxgC9wf9rbaHVKsi40pL5nD6895NPbwPEyQkggsEghHp3Ti/dSNEMQiFFu3Lu7tWMSH77t/XJbjK5cH3U6i1g2qOCSIIIKBZ4FhBBLeN39xTjMqFu/eVtRvbo2av+S5ZWShMq/NeL/wrcM9OqsABDkwMyCpDsHnvu6Rq088+v7HHrsGeM//ffK5b6mhXHf/0HEgSYBQ6GPfcvOwE95h+5ef/Wtf8p9fs/DH0e7Nj37raOGP0yIHUqSUtXqwsqKt2drZLqpKKVWxgKArKgAB0gINJIJFKQQIdaQghLb1ORNGRAFCrDk9gMR5NApREOs6JufK1hQDUeLFcwiKSMWdg4EBRqN8PN57/vJziJilaZZkpICImCgM+kmaPXLfA8tXr91/5txq2suAMmW6WacIlU0TV1Vpap2rCIUlVmcIiW9MMERFpAAggIBAm4E07uT7b1uuljamKAoA7PT6TzzxxPs/+CERGY2Gp06dfvbSpY0TJ9s+YqdjKwFkQMeDTjfVqpupxMDPfc0LAABQfMYvnu4apxPKOXzfO1/9HZ/9kdve0z/30G81r7/2kXf8zMU/DiBCXIkr2FfMxscKeBGOolYCEGtT0CSp9zOWIOZQBZhVugSW2X1slywDAYALoSxd8EprBI4yyjWyIKjK1xtdREzPRgmIIskHAbAC0Ii+dNNpSTopA86p2zAxgBeIcmFNsh3n/Y/5JA22YTbOz5spTbErkAbFDkir69du7t07/uxP/VSTJcPJ5NLmrUcefg2i/q13/vaZs+fuOf/g1etXjh1fPX3+zM2tqwA3n71+sahKkySepCReXR44z9tbozNnzhANup0Vaw2AN9oaAgFc6azcdfzeyf3u8q3Lo2kxzquQopcKNSJh0us4wk6aGZNJpVLVWU76fbJLKkERYowpMQCwVgNwVRb9JF3rrgEpvWTpxIZW2ibaWoNIgXlrd7vb6T17dQtsqHAqum8TlVICPq2kSDq94bSwSUcrowmNEkvKkAJ2M/pgYOEYDogJTF9UCkgBFtMcYuA1qr8RMqEiRAQNCAGCZwgcMCotaJht8ZVzwTPUuTinsSX42K6+BlHdhIxGRCXAIbINcgBmAVIKFKFWjgNBdJkkBN9M1PrOYr3Re++dq1TXaiWIohCQhYP4AJ6hZNAHlujGPJibT/OHLClhYQTGKBkXZhcCnkMkomBhEfDA3W53fWl5d3vHC4NWCmJVNlCMijCAgBMAkcCxcoziahObJhV3qKYAbH/Ot3q4n+d0LCJaONbGxIKC/efplRej+e+y+RDL8DwEEYWxkh4XPZ2j2otF+LyctvBb8wBSAQBkARYUacQ1CZEDC9clcSzMwTvvJkW5OxrtjsZ7k0npqjTLbJYmvaWVlbXl5eVjx46dPHlyZWWl1+sRkfOh9EDGIKICtEnNHOCD8547HTPN87wotNZWawCIkq42mLjoxGCktTZ2KW4/ZVk2mMaICouYruFw2O12tVKRwCOEQKRMqpm58m5vb1i5urhlPB4Ph0Ot9dra2tra2t7oFBo7HBeqKAGBvWOusjQR71DwsOgIthoAMLNzTkRYxGaZIkIibUz8S3vAeRbmiFxYIQSHGGbhvdvGP9ohUwZxropcFhx8UeTCQStljLE20QAmkEcduR5mGTAAYcFI4cmIsrKyPN7e3R6P94ZjdEF8MEiGlNXKhTDe2f2pD36VCzyp3JirqizHxbgoy/6gYzUZbX7kxtd2Bv2bk+k7H/vQ+x99cuI9w+1RrUfHlhqbeFE6NhYKzbbpOB4sEATaSZk7SaR8IpvALK6Ns3U1dmlU5jJEJawZlrq9933g/Y9/8EOve/UjX/FlXw7zwfz6RDETe/iVNKHfO4e6fSIatVLzSZI4586dOvlHP/dzxtPx5YvPjfLxPT90wmgjkT0GMByl0Pvi2tbWrde9deWD37YT337WD/Y2Tp78KCw6KkmSeBZtTG+pn2ZpNQtaAcBsD2xCb8BR11VAcP+6bn9r4uVjjC0hIdIdXFc0cOKdnc2TuYRNXhTTPK/rShUNh7tl6W5euzFIO5fvPn/P6bOjze2qKFcGg+X1lbNnz95z7uwkL7TWBExeNJExuijGrewKxxQA1a7I4TSjrddVVUVGqaIoxuPxYGX52rVrvaWlrNt59uJzDOJbcnudThc9cunKIt/Z2d7Z3hwNd//VV7/QfOD//KJH3/r+T0eEyvvc+e/42XuulSKoFMiP/6ln42f+3jvf+H989u+0+5N2Oxy84wqYUYlhJKmNI0GcA41GBb6oZUQksn/3JGY5ZplpmIV7AOKuA8KIQiGIDxy8yAwWIYAsKIIs7HnOUYmxDwEQUDFCS0QGSVnrWYWyXXKGMY55VOL4xbT95RGAAIKELOsURf7cc8++9o1vePWF13T6/Y2N9WJr9NEPP3rs5Im1Y8cComM5fvb06z/1NY8//ntPPL1FVmHA4B0zCPt8Og0IpNJr126xU6v9VUJSihCFCI3WWluF3bXBKVDq2cuXtoa7VagEKkEw2jLjUnc5n5YXn3nu2NLxjd6GWVeWtPigtMaZboHMijAVoSE16PVpVkeKkdfOGBEI7Ktusn1tb3f7ZuULKqptURaWVbashQBIKat0SpF5AQWbyNcRg3a7BIQs5E9bJ8GXndPG1mkXfuvFtmbHi/+L6we/jKSKzJsVc91GJAFGREEi1EonxnaStJt1hsWUMRqENYnU/rdextXVXdqnwhJpiulj4uHlnfl/tNu0WEgXI/cgL6X2SGQeAP3K9e3j/tZC4xbxLrVa8HWKPHoFgTnPy+F4PM1Lz2Js2k87vf5Sb7C0cfL0hXvvO3nypDHGzRoRCaC1idJRx4zKsozW/GypkiRJ0jR1zsVSk9i890qpqAIUqb0imwcz53lOM8VGrOtkyrIsYxlAJACIdfbQikgREYjs7u7GMxtjjh07Zq211uZ5vrWz2ck66+vrejQWYRK/e+ua9y5UlTo8VxjNi4aIpgGAKaXSNK1JdZVqhzGa0Y4tlq9EqHS8ungjDoN+Ncs0+yBKJdpAqMbjsffBGJMkSZLUjopCHSnE2xNAGnlKFgEUQiRSRk/zfLw7RJbU2uADpknW6U6qogoMSgcP0zK/tbk5qcrltY7V2Ot1tE1uDafv/vBH3vneD+858YT0klbSpm4EBfDIZaqZhAclij8ZmsyDQJIkU6TFOVI4KXJlTNrv3nX+gkrSUFYHN1qSj+Oo3KGo3+9nixCaJEk2NjYeeODBd16/OikLj7qXaQ4QBDyBU0etal/4r8798tffKYsDlVXK8kf+6bGuNX3t1u5aOf/Qwz8Nc3qRp/7xoNPvgqBJbH9pyXMoylIppWfsIwvn3J9Ud6q2ELUZ4jN/hx0/qjVLAREhi6okQxhv7bwwfP7ixYuf/dmffe+99443tx/duqbHW//1A+89c/z4qbW11z/w0Nn1jcwkmgFcUEoJzhBiEt3D6EITC8odeIpElCSJtRYAer2etXZ1dfXKlStZlg0GgzRN2xm8wWBlqbvMrqomk/FoZ2lpKbhVgGn7hNYorA1+Vkr3MuUZgvN/9ifu6aRpr9ubaLvYh8RiUBIoEQXsPQcMHqlesuJkOzhuCwumAHiRIPVtbUJI9SfDLEzmg/Pec+D9VIfa3+bagWeAwCIgAYWBnRfnAwMSKWOs8uDlNqVZFDM/L6/hPCMrCmmAJEkmZdHr9VaWBq6sVs4MlrrdZx9/+nO/4C2s1Bd9yZf81Nvf/po3vu41n/paD663Mlg/cTyw29vczkcT8KK8hKJyClRidnZ3+p0lAMiyLElsXZXKkljJbG999SSlJku7iKgI0pQ6abaytJKmnfHetNfrDPor09F4e2u7OHaae6JQYhk9tBYrnFWKag6kdSR9qcOgsXRWhMhnqVpbXa12dsp8An5adPKuyRENIhljEpspZUEIWnDi/9HusPHhNSoKqcngR0RSmqa9Xm+wtLQroajKGnFQBwZesS61TZHaUZkZfjUX6iv2U/+jAWitRBvQWgVhQngJMpS/b/mUI3+sPW8aRyUuJaKkuSwRqYJ4EURKklSlHVGqs9Q/cfL0+vHjJ8+cXVldQ8KyKE2SmCSpoXksWWqUNk11R0yVxGUxuiIRvh9TtDBLvzrnopQhzNIsTTciE2hEW8VvRfr/WE1YMykjImIUWyWitJPlRWWMWVpairorRVFsbW1FgQtmNtYsLy9n/SVCQD7+tLidWy8YrY+4qc0oIWJcf6NQhtEGESvvrTGe2VWV5zkkY/OINs4bzDQE2w/w4m2aBWWVUgrEouplHV/AdDLx3mttkiRRWlFUj6DFuPuCo+KDIGHa7URvjZnHo/HElVVVAXLB4p2rfHBBJt7tjcf/6S9HRqbN73vsi5NOdn1770NPP/s7jz6+54RNIp5lP1r8Ilo7ZHhE7L09P19m9eonqC3EqyoXkBFF0iTJnXvvB35vKU2D0buTSU+buBJHCH8LQ31U4zsT9fv9bBFrkaZpCEEBnl5Zu3z9BnkvsViAAIBiOvI1/9fpD/+VOUavr/iPD3/Gp3367uu2zv3siR/90vfFP/6xHz33X7+h9ls+75+fxuB/7X+uK1u+8sfOZxt2qddPjAUJRo8v3Hdh7eTx7332T/2N8z8VP3P2B1dtJ+slvU6WJWkSQIajkfigkLRS3vnFLKUIM0/+dqRBhuS7U/h4rbawsMHevdy70NzTuIzookyzDJRW/aVpWT7+9FPrp09Tv7ux1Nse75WT0a18qkfJez784RvHT9x3+uwg64aqyLomYooRauLVGbD+TrekJs6itT558uTNmze11rdu3Xr22WcffvjhtbW1uA7HZpMUDTpSWtFgbWV1ZTkhB3ClfUICYRFEydI07RgrEli8Fx/EszgfAvi//huf9X9+bo3++ndXv/wLTtdY05/d/dOaPQUvSqBVkHnQUWmiA9LKqITgwzzBYF2UEhhEaWUE0PlQRegYQuPiiEDUtw+eQ8vzidzEIsAopXPTvCxc0AmRQBFc4ebIRWhOguJltYXcKSGaJGFga836ysqFu+8erK4Uk4lSKu2mRGZS5f/lZ3/mK7/mTy+vLRVu0ummkyrfmYzK4JXRibEG2JImrXWis6XByeP3rw7WkiTJ8zyzNun2FJEyxnvpdXtFKIW5KkpXliDQ7/bvOnvu/Ll7+tlguDO0KtkYrC13B+sra1op4Lo2WlpgpNh/pZQ2WjnRihKjo0cUPxx8qIB7Nl1fXr9w1wMmwWubL5AYo7pKGRREMmRsknSgQbHOgUL+h0H78VvzmCzsUCiAimLBDyIQKaN1mqS9Tnep18smkxg5JVKEyK8oCus2jkqNaa4h4/tVMXcIIZCmXBiAI7FSbUIRIMospVCD9T+edsph57+TC5t73xJzPEg8XV8/yGJd2jwd/hy7wBHD0D7F/Me00iXXMmEsHGNyXCfq2ief62P7WmShG3M/e7gPe8SYSf2DdbZhtlhjzdzY/ukDX407HGI0u+uU+jzPlVJGaaOtaKVM1ukuD46dOnX27F0r6+t5YM8ogbXNWNgHpxMDgMLgQyClY7gl2sQwo/CKp434rkZqIA7RaDRKkkQpNZ1Omdlam2VZ3E2jLkpMIkcYWK/Xc85Np9NOp9PkheIno3gFEnU63cq5NE1XV1d3dnZu3boFM5FUZg4+MAciWl1ZyRJdjHcne5tKuKh8YGloCeZ2jlgEJRJtfZjFwJIk8RwiBhSYffA8b402j5UxJgYLm8hZs+82LT5ZXPP4IyEogESpbpomymhtptNcRLx3Sqk3vvB34nl+79g/AoDAHEcs9i2EEIIXAV9WmowyRhtfeI9Gp0t9B+zKSmkaeb832kWAsnTjSV4w/+jX7cetv+OhX3jr9T/7xOUrv/uxJ2+NckYVAgAScJg9mJEV/CjA3GyvwsCso1cpIgxRm0hrHVdWRcoHHwPeMT7bGB+zk9ECK8/8kydySFIfcZ9dfrEwb369WQBJtt2kue/Mf80maaw/E1Lbw+GmcxsrK7uTybgq+mnqyipJE19V8XebtXhukZ7H6Da9hQNcYYtLSmsFoBYSIwoiNm8X6IzksIVuvgouHor5STQmgjNPnTr1OZ+ZjAF/I3/vzZ3dKvUViIgSZs3aECnCN//wuaVef3UwGA93LUKRT0jk1Q88+MDq+uc8/aqdvb3heDQ9PX3wZ9Z9rIpeBZvYT3vHg0jkvZ+uTpRSGxsbq2trRTmdhs3eqTXqpaNQfMF/ODsJOHUSlkyadtf6g06WFWW5O9zzzqEAskiIKgGL6Z3GSwGA8u8U9u8nc9cJABEBH6l7W7nTepAJDrsR0K69hEbdCgkQDkgEQmR/QewmqQT2VaERDeL1Sy9cv3R1feNYdzC45+57l/orxXg8nOZl4SbTi+//0EfOnDzxhle/ZqBgqd8R74lQgg/BE4DVuo59tO8l7M+ONrGFtEoZu93um9/85mvXri0vL+/s7Jw/f77T6bQfEGYJIVTBKwQkqKpCAf+j337d3/zMD8YP/JPffRNaiaTsJKATk0gAEEFFJvFCeeWLMoym42/6Lw90Lfa66Z/5nJ9uzv+ly//p50Z/JoDz6ATCbCrP7USA1Jg7s400YvmEhaK71qyls3JWiXWLQMhCDBRkFhwSDMHPIKYyAwTGRqyAg3jxQdB5DgBCFBimRb5XFNOW/myQelBvY/Pcob3RatHKr5dUgH6nY5IUELMsRZDfe//v3Ny6de+99772tW84d+7ss88///Xf+PXD0eT02VMMfrW3dGvzBRe8E1+Iz4vclYVVNjNaa206ncFgudvr9vv9NE2TJNHGxLAJIhqtuh09zLmY7o32dnxZAcnq+sa99zx45sSZlXSQnDMoaNCs9pfXV9b7WVcR8QyGB7NdDGdwA6XQgrLGpMYkxihdS5sEhVYTSRDgauADK6NWneNutqKpS5BokzKiVhYgVoZFCZ25QkSobz8AQNzxI2RDZiTU8TNxAitS0W6tTUCp1QhiV6GJAc0OzE7fYluWfQDugTs8UzhowGD7ZirOcU4GPzsTiLQrUfcX9ua3GwZRmKVMG5ej6UsbMxWVAW5rWi/8EVlIYs23CHsUSY3tpNlyf6k/HPnKTaSieaBdLXs6e8u8v5MiYnQFVH0Vc79GipqO1zns2eHaUYnXryL3z4F2tK8Sd98a4BsEMdYn19Rvft57bjyB247Ry2ztc+LMhr5d53F21QcOtM92x6GwRZ69NuM7oQ+eQ2BBlnjPawLfxU1/wUdqDiG2lV7i9J19am6LmbtSWezVQmsMQb8vU4gLHMULNcfQsp6ZOUpJNjtB/K9nJmNB6TTTnaWlY6dOrZ040ekvaZtM8gJMGoABwAePSNqkRFS5qqxKo2w0xyPGqYkKI2KU647EvjFoF52WBsgUeziZTKbTaVEUUVFqNJpEWfqiKHgmogIAeZ5vb2/DLIoQ/ZziOh5tAAEAAElEQVT4tigLz7VrMRwOY7pmPB5H5ZP46ysrK3uTPCYjsiwDkKIskYywxxllcHvDjrRjMZfSIM3iJ10IqJVn5livhrJgFsRrjBmhsH+b5kBf+09W/VqQSAlqgm6SdJPMkArauGkOIFVVfebO322++/qbf/M9J76Xmal1TmaOYcSiqoIrCMkLu+ALXwUUtEYhIiaYT0FRWRQVctDIfvEpu3hj83c++vjmpCiFmFSsJomzsm3JHT05iQiRQgg6Ft6FWsOUo3AeEYRAiiRWlzIErpcamvMV96tammFrDSDiUXBmjDsZz4tzHeGoxCdh//08uG7uqpGCgIhMijLRSimzN53+5nvec+3GzQvHjj/y4IOxxKHZ1VTNV9gOGM495dRiHFmYhwvrbduZievVgoNXx7HUoWXW7VXu4FLT3F92LiY2kyQ5uXH8yz7nLQ+dv/9f/vR/enbrJmeJAKoABsgozSpUwo4DGaWU4uDSNH3iscfvOnE8W06t7v35e/91PPlP7X3znxr8UHz9r699/erK+p9Mvy++/caff829Z9c7g8E3Z/8GAAB+41+Gb7uytb07yT3rJOunad/adHlpCRHHo1ExzcUHBJDA7IP4EKV42iMFh7b5pzUKIpFSMwG4OLREkTT79tWGTdJFZqNPRAQCqFrnb91JAeYqSl0rgK5OMLidqzfvPXW3CsZNfD/pdzB1aZFPxqVIYe0OyG985ENnlldPrm+cOXuKqzLV2mRWK3FlCUpzKxYqUhM01I7uPISy6UdEq544cWJjYyMib2GepDtWi5HVxEKKELhjTD9L3vqRt2xvbvZTTYYNIQNqrargESiloEhFZAkok1chr6q9kR5P1Xg83RvnMN+s7eTlkKWp5hMCagL2IQTA/chOtAVE9vFejZfRRG1nbgyyZ0FgRAEVYgREhEWqBbUUUXUYVhiQPLMPXAUJTIAaiRlgmpfjqmx/LTDfvpZgfnIsLI+HrZYyi7jFLen1n/L6TrfT7/ed97c2N9/5G+8oq+qd73iHNuZPfuVXvu4Nn7q6PACA8WhvWk5wJwh64aC0JmPEauynArpUAgQWURMRUrMXK1KAwMIaUWnKMuqkamvz+mhvRyEGwV5ncObUPceWj210Bp0kS22iABNtO0mW2TQ1iUIkQMa5RFDtqyBpDISMGBBDXQMfeRwJU5WBJZdy1SWEQeU8kbaQECht0sJViFYpUGSIZvyRCwM1cyoip05VVXG8GwHWpktKKZQgUZqhxUIZPWHYZ6du1xtiGyogUMt5zzqz33g2AWdnxOanF/bEJtrVBCkahIU0va2N/foozhaShQk1O+3crtd8Rloy4vFSFgJv8QdQxPsAIIYos3a5tzTo7HnnQlm54GHeLWyH6kS4VTiJAO2NaQ5zSvvgW2nqx2L/D+cw/2+3qVlOnqNZ88mXG8Q5M2suMsrhZbNXY9ztXpxc4BGtWeIRkUixACnT7XdPnT178ty5zmAASAGJBcZV1Qy3MQaQ2DvvQ2DopIaZo1K7iESHZDKZRMRq9F4i6oCZo9pJt9tNkgQRvfdZljWmpIiUZbm0tDQcDre3txthMpylMhqt+njmoijiI6SMnkwLFsnzPIpReu93d3cj7Kqo8ps3b7KQtQkRJdYm1hprIQRtkpAzzGoD5m7fzOZu4xDqFxij7zz7twiCb8ps4leif3h01KBpmU16nW5qrEXFBMPpHXG8Nt0DAGYuq4pDcM6VZckcPAFrYoySkQYVgQQEUIDKLU7L//pb73l+a68SYtQAgBI/8N91Ln4+HoHOB6oLioTZKYQg9NzVyzdu3bw8WGHv3vC616dx6s7qjhBfRIb5sE82u2OcTrG2tZlXjZNz5+vDgTk5l7GKEdP4W+fWjrHAw/fd9+T1K5IYJP3CX6vJvh7+obNakSeZlqXJkpDzT37NowDww/DbPyHf+iey/19zysZLAYC/cPJftX/4X/zxD//cia/5kut/u/nLXwxv/bK9168sH6tKTpNelna0SVxRllWVT6bBueA9CEc/kIleWtlAXECoaYCtGpVXMiQnKABcl8EDAmJi7PUXrnWz3igvd8fj46dOXr11FRHywk+mI61JO2dJbU3d9Seefe76rQfuPW9JBr2s20mZWILQi0F/Na/jshYDPbeZbKIZg4gEENLU7/eXMet30pvjIjWUaJVq1Iq4FlBiRCydN0p/04O/Hk/wE9e/PLVZYrDXs7dMtrWzs9CZL0z+BSQAAP/x2c+bWX6Hj9ssih8X3wCBZ8CKZrmLr1gwUogFYS/sA3NUrWdu+xuzE0aYhHBgz+I9uwCOgwveBxGFLgQHc8D/hpT4ziUKqEERHmgNgZLWmggE5Iu/+Iti9r7b65EipdR4PH7f7/zOu37zN7pZ564z58D74Xhva2fLpLi80h10O0orNMqlyisoGLwSowkQoQomlrbXSV2IsxoFCEkTWWO63ez4xrHqphtOxq7ymU1OHT+5kQw6NkuShFA0KKO0UTqqdUV0XdvshtlOR+wUAolAKyoXB6qbJForx5w7EOiUvor7DgqGoBA40k8jKoCmRuWVD4UzMyI1nX/5J2yH5OATE75/ma2OqguAgEKMmSSjdLfTWe73QwiurKbTqedAUtdcLbqIrcpMxHk8wMdJguy3/x4dFVIKIxtdFHz85DOcFlTn+ECF08tpCHUwKQbA9Muuu20yKjEUGBD7S4P1Y8dPnj4zWF4VUrlznr0QcZBGwjkmSeK3olhYxDvCTME9JuIibkQplSTJZDIZj8fN0szM3W43fktrHUV5o9S91jpyfNfaKSFEfyZaS/HkRVEURdEsE1GrPk2xKIvRaAQA1tqyLOOi75wbDociopQ6cfIEIWqSbq+7srwi3W5e+dK5eHThyUuNjZcQi01j8Ca2tt/S3jLr2zQrMWwcldjusE7aGpMmiUYiRKPMnW+KzXwTZmtNPnF5npdVGYmhK+8AQIi8Ah9VphFRU/DwF37ykX/9FR+NJ3nNP1t/+tZmAQRkRQDBkwQE8S+O8e6/tYZzKDQUJABCYBAJHACASVUskhcTM9nc2X77z/yXt3zeW04dPxGlBmpm1RZ7/UIUo91EDlUhxHmsZhPRi89UBLnhQcDcnV4XQCuY0ljwAECKvfdL/e4f+czPfO9HPrxTVc9/2z4l8aPffPm+Hz6pXIXj4aCb/ezXPNoc+qrsB++wJwBwc2uR5njz6t7KysrSUkKgEBWEUJTV3nBvWuTOOR+CRIQDoiZ1kKyh9w/7479V84a1cF9zLYaEqcZ9ESI2NSryCpRMzzUBEWQBYEQG8Kh2x6OxhBJlfeOYK/3yYHVz6+b6+sY6rO/sbfeWlkioErs9He5Mb126dr2fJanCUyc2HrjvQj9LpSjupHLs4JSIcyyiUhfWpcjAHwgUoLam38n6GHpWD01ljU60soaSxPrAXJR5nhcFa22/7c3vbc7wVSdqoNe/uf7lebAFyzf8/EM/+scfO9ixrz7/jn//9Od+XJNnfw0V8bxfTN8+Ghm9AoMP3jMH4ah0HPFaBxk66m+BeAHP4AK7IJ4hBHZeQNh5ZuGXGVz8uDZAvYVpeuyxj21ufu4b3/hGEVlaWpqMJ8K8vrz6pV/0xcPJ+B2//Etv+ezPu3758olTJ08/+MC0Gm3t3MwnYwnsQXLiQjMpk3U6aX+pZ7Numhql22mBeorHzD2kWbL02kc+pWD3m+/5jerSc2W+W5ZDrUM3yTqmkyYpIShCo3QkwQNE5/3CyNeAK6UUqybrNb+yidEASKmxWdrxQjpUAgHZiwjnmgiITFxj5jVsXuEmzLWXJa8MZxu12sKK/cmwTd62DyJijOkpOrF+LLEJitwSGOdTCZ4OWezajgpiS+xscUk5dJLrA359k/h5aQMV99NIaCEvBj/1+9QQgGYptlof6hP6e4ICJIiNhX4nzv5cCmW+QBBbkIt5LMbiD8/jNBaPwSzrPYfuaP336GGZ29hEJEb6I1uxUHdpeXVjI+svkdZOgAGIlDI2DzEWCACgZkAskaCDaJTgg4hkWZYkSVmWUaJ7Op1GWuGIoYo+DACEEEajUaNGb4zpdDpZlq2vr08mk8lkkudjpVR0M0Qkeikx8teOfRZFEetbtNbG2rwskySx2uRlEWNRPoTJdLq9tR0k3H3XXS5wmqbj8cSLDwzWWNTEUirEWOyBjawQAAq44LU1GmzwPnoywqxIKaWcCxFR0P43N8itbIw0bfGeyvzb+rVCVAAcPCORqkkRGeBdK9/1GTP01wePf285C9UDzKClzRYi4p2vvGMQmyRlVeVF7ryLa00IzIGjJtpbv+QD8YTf/Jufi0n6vscffebWCw5Am7QKHPki4wZCn+DloBEb+SRbdeo2n9xHUjZOE4KIQuaKPXsRop3J5F3vex8F0dp8+Z/8k6lp6I/m5oDMV+MstCMyKrHV8woAWj5Pk1HBecbJxZMfHhmL+m3xP21sAyEx8dJS79VLD37N/+vLf/E33/k8bLfPWXhHgN65Xjc77Hc/brv5/BU4NfeX+++6Vxntna9cVVSl98GjTKbjKqqPB08qwr0ICeB2FmH29zsiwrfDRcemABVS9DvjP6z/4Us1aY76liALIKMwihcpgHfyqU06VWBEKqrS2uTy5audLFUar166Np3kq8vHp5Pp9q3riVYnjq2u9Dp7z126cvPmyY2NT33wPmpYOEQWUMjNq1htE18CACmAKFESkR6320pRAJGsVtZoxZ7FG0VWKW1IGWUMAULwfjoZV2E6DoscX7H9uRM//YOTL1teGjj2f/ZnzntXLXe7P/xFT7Q/w7JYu7XwRlqNZwAwboFwokxDmPGbOwbvY8UKMAMDziBbc6dlQAZkgcAcGDyLZ3GMjtkxIIoXDvPsXnJg6f647QgvBRFJodbKGK2NQoSf+qmfHCwvfdZnfkaapBzc9WvXjNZnz519zYMPfej9H7x1/ZolOrG+MSpGlsxgsHLl2vNpmiVumrosSNAqyZaW+oOVJZV0TT/iNqkG0eHsQUZhzpIukNoZbp89dua+uy7k4yEiEHuD3Ek6HdtNE0OICEgAtW4N13ocPMPfRdZoREAURZE4m0FCGxOEACAVACgUg6gVCigW9ijATNEBqrlhFga2ma44b90cvJP7n56Zywvma4QF1joeNWH5nRjJsvD/2Ys6IbrfFtKShy/rC0deAQP2sIlY2zGzw82OoEhpY1aXEYmmRT7Op3lV+uAjkbe0hxtBokZCo+zZRpm1N8TZeKMsdkgANGkI4kqXu1CllCrah8baRCrnKudi5aLSWmldVZXSOsyhksULi3daa2UMhrgzMSIABqWBA5Zl0en0F7bY9l054lFsh2oOZNwWS1WbN8F5ZmalJTCwVFUZCxuCD4AY40BxoOZGZA54PjdaRzCrzmnJcQ3gQYyZ0oSSdApTL6KRFPtatxkF25oS83SqoaUDBS0jQBCqmQgxCsRZ0RiarGZbYs0Y37xDxfu9JyJFERzPDdionlhIjMGHQIhGaZxRTkUcZ1N/JsKKwmxCkiDbNPXeG2MnpVu/cP/yxrFsba3S2gUAxIDK+xCqqTKqqipE7PV6Wmsi6nWz6XSKiE3JuA8hFAUgkNHM3On3nAs6ujUAzjlSYIzJ83w6Gm3vDUMIy8vLy8vLMasoLF4gAPaXB1mWRdb/4XAY4WFpmmZZVuUFM0dcdVVVWmvvfeT+4uA0LgG7rVs3Jnk5yYtJnvf7S4O1jTRLV/o9Du6Jp56umDq9JRdwqT9I0ZddNxnvjoaTICxIvC9rDSiMoYrQHRVQYZTUlFAGP9sseSb20vZITUSmhVCUpQ+BlHKzNGCcMQRRFJl98ARgNCVGF2UIDD2bpIo6Brzzo7zUWccx3NgbDgadk2X5keN/TxN5BseOBDXqWLmmiFwQBWRJ++ATY8tq2u12jTGj0YgQDam0Y3d3d7mQQZY6hQWZv/vF+0HQH/qc33jD285/9LmrAiSg2Tuaza6ooKKNbRaqaArLrIZNt2o56u0FUSlFWiuQOD4ooGb1UcyskECB+ODLKvjAwCFaG9DWRIRwgFVW0X4mOfK/NW+Lomg9lPWT15j1cEir5h7fuUWlrdYKMIcTtuKav0X9OCIMIh7DtaIaCC8nne7Kmhfw7AlAkO98V1oIVqn2UskgzAigUQGCmnHoCjMhUnzU6ie9XohiwK9dQ9UWwCVskRihCPqZJAgqo4WhLB2RSmwmWE2LqSB9zqe/8cSZk78OH50bxko0Qjfr5tVR8ePfveuff+rz3xRf/4NLX3nvPRe+Kvyj5uhq9+Q/ev7r/uZdPx7ffsM7/qgocOwrrqZVPimmZVkNq9whe+RA7BmccywQFRzRqFaeU+o6PQRApFan2lssAqREClEjqrpOFAAEJYAAtgYND5QOUq3QCopIU6wCDiIgyIizDO2c440+aBQhYCUBFYWyGiSJJupkWVkUWmlXFVVVDgYDrfXy8vJ4PA6rYTyZ9lZ7nZXzo+Hw2niyVbmHH37Vta3trRs7w8mHVpeWLtxzz1K3A8ETAHsHnpEQyQtCpHxlqHe2JtqGTawM570bAEbQpJSIFU+IGjnPx3/i3ncAANwDP/74ZzL40hWkaNBPJSzvjqvLm3Pkxe32rRfeHl/8lV99ZJxj3pbMBACAIkg3MRqFCIInBKVIUOv9BTb+i1W9sdwCAJFZmAGCiBf2LF4YSLxAIAkEIUhD7aWIOOzbGE3OP4TAgBWjE3ABK6Fp8LlQiVJVrmIMvGA77MMKlIqhgSACSql20DD4ubRk/TSGSEI2+xiKUsDeiUYEWh4Mlgarl6688L7f+cCrX/M6pfXy+spwsuedK30Riny0devik4+9/tPeNFjp8QT2xhOhzvHT909eGAJRVy8FlixdWlpaHXQGnbSryJBOq8p7z8YmhCoEEYWxmkBjSW6y1uuYU3cPKHnN6QeqqlpOlztVpgU1gdGaZlwyNFt/kgCVK/KyzPNca7CJiX6GIiyjucBoM2tVonV7NIIIoHgNkKBCJMeKg3LMzF6gYvZIBMikhBSQisuugmgnIxCJK3JmLxIqV5TBIWEECCCCqjdrQAAWrxFRgSvKypfMXsAjKaXAmij46GeOLUMtoUaLyEeAaJ9BlIZTWmvtQqiYQ6xHYwEB8QECk4ACJKI5+S9CAAgSDdEQWIAUkHKuMnGlgYh2w7jqICgCMToSEdR8Au0uaW1E5sQfZQbrcjEHHp9i2a9URoCKPQAgISBxCCHqQnIQ5w1it5t2Bl21qwU5sHcSHIFoUpUIgEfwKAxCgAbr4Kkxipvq/1nxGAAgoJ8WLS9MmodNELRImAVzG3apjx/0PzIUgLNbFGO4eKfkmof91gG+mjtpjZPKzLF2KlZjx3qD38eGAshYM9jXI4HAKHeOxlk43dyppX66ZPaYAcQ0jrQ970bSSwCc8yFEfmFtlPHV/oJIiggUsSAhCgXnBIWRmZiZQRAYFSjBKP076w6pyjtEGk/ytRMne8dPZktLNutATU4aENFYmxAVrtpY37CJjaomcRuOqK1IYxrvV1u4dAFUEDVbiCgiqbrdboRvTSYTgLo6JeK7Op1OjYhljiL3zrkkSYbDYb/T9d7HXE1TSe+9995NRsNpnl+5cmV7d4+0QWVOnjx14cKFpcHKaDQk9rduvFDmeWew1uv13LSzh6iIlpf6d50+dTFcHk/zukIaKcI7tVULgZcYjwkSeD7Od9vbfdghEog0oyisAFRcBYgUsQRCQa1IK6VQlwwexGjjXCiqajLNe6kBJVGmCZgCBzUzxBHAaB0tEUYSa2MWqE050Ol0QgioFJPgAXTQs5evMJLsmzLNDNyPxX5C20Ic7ON//vDB/0S3hZUtZvtEIAAgyGg67Sh75txZZm4iMm1hwd+H1g71LYzSEZkcJoo9JSAA0kikFQERqgIVZR1x4dat7b3R5I/8wut+/as+GL+18v2rATmwOO/Lsvojb3vo17/2NjgfAPjVn/+v38tf/jde/dMA8LfP/ed/8tTXwPn9o980+MHvfOpP/NWrfyyIJm2cdcPJ2DknAM47570PPiI3WMJs28Nm2sw/knc41kKABKIQVXRMX949OhqIhUgITDE6iaAJhchXbjQapWmijDLW5kVhjWER532SptPpFAjzslheXnbeV957kY8+9vjy8vI4uNHOzW5inrpy+d6777r37Ll+mrALUrlON8PmsRWUuZ28JcR9+17WEbDxpOj2VrL+yp848ZPNwa978Lff9vRnkkJjjFJWK9vp8Uhtf8W/P/2T/9PVw04JAP/X53/0r//q68uy/OaffeCHvrROqnzfu99U9b3xaGqPoAYh14j4Aw2g9T+ILwCBAAMAOuciZVnMgbcWuMMTagCAyALM4jn4UCdSuA5XzY1UOxrV3toWHqgjnq92yjjukN5XU/b+hmNRJ0+efNe73vUFX/AWpe7uL3WPHT/GzFWZry6vHFvfQJTEmul0OhqPp2WVdTsC1OsMtLYd64JHa9JuZ9DrDtKki6iCRKptFF5M+BOCVjq1KWd87pQ9tno8QqYTlckBotv2ddVpGcJIbm+MstYSRdwX7N+luUaNbTrjmIp5+tlfD1v1Z1tQc0aOaL6IgG8tp038t/U/mN9PFs7fPAkgeNTGdtihl6GJN2fONwnCV3wjE6hZqQRAWun3OCIEEGbuuiIyWgOQl+A5oA8Sg6kqqtWzMHgRAFRGBOZUieup0hr/g7lZ3eA2257WJ1U7QoLwiNYsATwT3IjY60/Oa7zDhgKqdTtr8dRoEeNR9lloPROCChWxiOcAAokx+9ZkxMKKoKCIJNY2fxcRjgpNiIjaBRKKcxVZxPlgtEZL6yeOY5YRUcxfRTejcT+SJGHhSLiRpqlSKkK8orDjDOG9j5WPCipZ1t0fAcLYtwgDi6kVZs7zPMLAoluSJEmn0xmPx3mex49FJYft7e00TaeAaZpaa8fj8XQ6LctyOp2Ox+OyLG7dvDHN8263e+LECUGyaefUmbPW2hdeeKHTyYJ3RVH2+0trx44pmxKv713PTCgGvW6W2qqqXrh+Y1oUkeMtrq0xkjSrhEZBYJEYpRCiJuB3cGFu3OyFGUtNVFOAUEiRtlrHGK4xzktgFIg1zAiojMU8Lwrntre31pfS4crSyvLAB4+IgoQA3gfSRikVM2aI+OnFd8Xfeof63+KoWmvjslJVVafT8d47FqUR9eKzWVbuE6xK+go3OVLk9BPaDmo+xNeEgIRLS718mj/zzDP3njnzB9I9ADioztY+1LxemKI1pYQQMka5CaO0IgMKixCef+Ha9a2treHoxu6wAnX2B8/s5XnlfLCCwt77qqpKEFT0+f/2oUGv3+9mP/aFv9E+/84LN77nC9/ZvP2r5//DYr8ZVgerutubTPOtra2yLIuyZJDCVWVVVd5xg/85QP7fhEuOrgpYaLFu/oii51ewKaUQMDoqAqiUoiQFwHw61VqFEDY2NmLVX1xdJ5OJ9340Gq2trUXmQ0RcW1uLK+3m3u7W9gtrg/5yt7v9kb1r1649ePc9d586tb66PtrbBRVj0gSAUfI70jdjVIM/3DojYUYKqHTWFwxn7ns1vDD3Aa21CDvnjEmyLDMWXjfonD22/Mj7zn7Xm95zxOUbSRVCFcpv/f8/SAoHiQnWh4DekzZUeymKFFHA2zP7i0DDpyoCBMBRKbCuvpBm4ZU5aKUcbnNGO5hnxob3zAFQhA5asO15Za2dP8N+OxJIst+cc0jCHD7/89/ykY985MSJE69//eve9ra3vetd7zZG3Xvf+U4n01pfvLi5vLz8zd/yLT/yz3/kVa997WDj2JpdU5PpcDS0Nun31rvCzBI8IKok6XSyvrUpgip9qRABkOvk09yFxPrSJtoYMdtEKFJHG2/jcLRaWXofXAgaALRWRBpgXxz5sKF+OS1GJN2BjNwf3iYzD4LnM96vVGuMsdtMQkTvfRXNBkCFhEiFc2VRmBBBiQqRBKGOXEbUXwhACLPNpTEOQY4SRN93VP4AI4tHtzuP5LVbu1oUEaM0h1KKCMv80BTzJ38jbjHszzbZmZeCzc4hrViBAPg5heR6FYjpzsr7Js8DQAElACGiURRj/xwCx7wbQl0xiuD2jVHyzGBT0fbYifWkP6gIo08YC8HjWh83SJMksYY+uhkNnEZrHf2NCH+KrgXOMPSRTTi2Nl1vrDCJwo6xOD7G/qOwYwhhbW1NKTWZTPI8z7JsOp1GyF9Qemdnp9vtTqfTp556ajhsGLFkeTDQxqytrS2vrZEyyiSdTqff7ydp5+bNG76Y7uxsh+BjtufEiRPbV5arvVsoLjXq7rOnEeSFazcmUsQUVsN8Wye7ECA+rSGSv2q+nStSD2tNTLd4FEFq6kNghdhJbJbaWCFTCiilYuWmiHjvCQUEpnmuEEbj8c3N7TTRg+XlXmoIhQgI0fuQGBtH23vfeCkA8Hn6+38+/1+89zjjbWTmr7/3P8ej//ijXwYm/I13fd73fsY74l/S/w8oo51/JbkfPtFtgXX39/enFzMqtRGDoK0dDkcraffJJ598zf33X7jr7B9ID+mAOltzaGEd3r8WQS0zZB0SWYtKOS974+lePv3gU086ADQ2B8oZTt99YfnUXe/7wAccjxl8YHbBV96lVgthYC6rUh1IIZ1YO3F0t9ePHR8WubFWOS+EeVFMi1wIK+dKV/kQGCVueCwRdl5fy97f2Ikvku/uHLzkIwcKaT5GeCffemltlgeIW78gYafT6XQ6XJR5WWxtbZ08fWpvNOQgLgQGWV1f29vb6wlPp1PnXKfTSZKEmaOm7Xgy6Q6WMTHXtnemOztXrly9tbn5zMbGifVjF87d1dc67g0IMTtQh10+Lh5ghgpDnfbyYtxZPXU7RyVghNSQRoTMcLrcWU4/zurxPV/w7vji237uVVZRVGJBxEbzJzpgCCTCMP+INdxKMttFYySXgFmQiIhFa8QgEc/IYX/5rYP4hztnIsIcgvchRNoWFaXkFj52aBbl8IzK0ZPQh3D2zKkHHnjg6aeffuqpp+6669zq6upgMNjY2Lhx42a3m505cybLsuVk6cmnnn71q199/wP3j0pHSimlWEQpY01PW6PQOB+CF6OTxGZaJRBzhcIUCV3mZ3VZOoaASMZYpRSRCiGMx2MAqE3nWdFmu/8tPwUBIM7DiHrtdlblDsjrX1prHsyFot8/7K2Jqhy8Qa9IW8x7zB/jELxzwNLJMtvteRCamsDMHIhQGUNaQTQCo0KHSBBGxkZuuxHK48AKD3VVdOOl1D/d6sWCaxs/GR+zBnp4cI+fy60CMjMHVCqaXAyosFUc3P7WHQ7cYXvAwgl5xjkoItHwhZoJERtwPNfyCDAjxF4MwCxsxYf26YjA0owyQw7kBxcwFQsLU310/oKxFaxeCPsJgpASmVXEojDXACqljOkkQGo25wQBtDHWGNK63+83y0rMeMf1hZCCDxyCD8F771wV43MAgEpTAVrpsqycC0xibJJ1eysnTupOz9Xp9FquMSZSYkWKmrkfRMSBnXeNzIjMuLlwholHxMQmSGhMIi1ZyUZRJM7PSEzcCB7Fe22MiaS6RKRIxZIYROz3+6PRaDIcDYfDmIdxzi0tLXU6HWMMIhDI6SRBxMqHKrhukqVpGoc0TdPClWVZjkbj5SLPtAUAY0xAUgDWULrSd8VqqIrdIU3zwrMgURlHDOonM95TjyKt0tNmDiyEYw8GERBRizCHWJSSJbbf63TSxEde5xArFClO7LIsEcWJ8mW1ZC0A7gxHALC2tn5yY7XfSUGkk1rwLno1+4bygT40S9WfP/8TzaH/9ZG3/x+/+0VTDt/0rrd85OlnH7t0qUQugwekwx6Ig7tvPdkW4tA1NqBunkPwXilFSLOKXyEiVMBBmgeBZ/CEO9jl2s/yEVZl+y4dNDnmejz/tTs6O86/bi+2VVVScCWqW7dubW5tnT93loW11oHDXLWJLHg7h/ZvThfy/2Hvz6Nu2667MHDOudbazem+8zW3ffe1ai1ZltzKHXIjQ7ApgzEpuhRkZECAAmKqUjCoUXFVMUZRDCAkgSRFma5SYQywoQowGBtwwMHEyMbIIFmWZEu2Xnff7b7utLtZa80564+1z/7O+W6jq6dnOzXCksZ953znnN2svZrZ/ObvBzv09bvr8M51bW8Nl/Yp3D2CburvDVKmpm1aMcaWJSOerdd3T47vn5wum2bBMhyNW5FWifLi6o2bXtR94hPMgqSiAhzbSHWLmSmdoaZtEfR3/PDXf/9v+Eg615//9O+22eVR+g8e/O9/49X/Kr3+M7/0H9Go3JuMjo/PTk9PHxwft8FH1eiD5xgSCwR2oAWOEhVYURTPN14KALT/WZX/3weX+/OhJRrSSEq1fL1NtluIstNRl0tUNnQImBDvunXk7ee1AxROJl4ytCMLKFprszwzkbNBDrNzMGTz7OT8rGnaoixs8FmRK0CMcTQaiUjbemM01ea9//3vX62XmSW8LmfHx+v57Lhuj19+9edefuXVkwdf89733Di8EkM0iInOzHtvkAAE7BPnQyISANOykC3Wsf34u37g/b/w29On/59Xv80V1po8ERBwRBUQ0eFguDd6WhbKv/AbPvXH/8mXISYOEGVhA4igBlL9CSVwbJ8eoS1pv34sp44mJGsRETUykVFWZur8jc7ziMKKJpfNntxPjZSGISVMSs6bhVpEACTF9rZn5vZap7srxc7AeNTXuugV92uFKCihPT09+4Ef+AHm+NVf843D4fDk5AQRm6YZT0bO2RDCaDSqz6qmad/5znc2dQNk1tXa+5DnObdQ5HvWJc3VGIAJLahNtoS1lmNg5hhDig9yZAQRYRFlRUJjXcdP5L03xnofGaUPJuIWnUaaHdTR7hMAxBiaJiTFs7IQ57Iej709BZKlc8kgx43OfWceYBcsgIcMa02+09am07nfiIQICqLMwghIuyWFaTnsit43G8u27d6V6inAjtppV6UMHXXT1vJAG9Nua7e9MOQe2jj6c+GmnvPS7po+l6fgIetH7PaK1HXgVo/tLvidiEJ/GWkJ23SjVk0dfCCig+n+3nAkKnh830e/aJaGTOGyoigMUYjRe+/Fb98ydiViXa7m0va6s4kj2Ms5na1EZ++opGvvZ7ts5EUfqZkIALi71bFABsgiIkq0PVZ2LuvJvdy3p3RUmC+IaNN8Sxaw963ZqeKVbfaG7UPjTm+8ySAZUdKexscljjcPafe59GG5ja/SfxRiJEAyBIbQIGqXrAbAFtBmruO5AogxWmMGw+FgMCj3p0CYvDQEJCJrjTGWLImh3iHqjMANsii5uWnFUQDmWDeNihii0FRlUVTrpm29CIqAs5kdDCDLC5clKV/vfUoNp0i89564W7zyPLfOkqGkw5hlWc8dDBvAWIxRVBAwobbSZSRYV4oFtm07Go1Go1Fd123bDgaD9KCTQErfq0honW3qZrFYIGJd16/80ufS0nB4eHjjxg25EGDh0LZkbVmWUbSqGjTV6ekpAFiX53k+P/WLxbIoShFt2/asXoYQAJWAC5uTwcO9kcrVIrcnp+dV0wJSjB1bDNluhZKU/qIuZdv5IaApWbU9NtLc3I0jqEgk1cyYUVkWmRvleenc2vtEScPMyYYxhlSVY2hjYGY16L0/835dN/hznzbv/1IiM8yprtYIWSoQemSoKUlwpo58eAosQ1uJnFXL2ycnTRQhEEB8PPRrd5pjgtV2ZUg7urnYr+xECAIhhASVTl/ofmUtq/QTWQB6GPWT15MvZCpfXhIec1+XDr4Tx338r7Yog2lLihw0Mo+yLIa4Wq1u3779tueenYyGqmqyHUL5S4bvQwGvxy5f23fy+B/t0EpewkBvv+55tFWVgDSSzUo25ni2vHN2evvkuNjbO4lBM5fnpS3KZl2dLRbz1SrLc1cW+5MJoZ6vTlRh/seXcwAAeN9fesYVpAo2Igb9fT/64be/9LZrhwe833DT/NXP/b7f+9JfTmf/m/f/8BL4/337D618u/TtStvVSeWVZ/fP2rZpfFsnpi+QKCwqUYVFu4JOVWEQQH1o0D485C+FmbZnqzGGHjPqnuyopFjSJj3SydtvHKD+vJd3hz6jYo1tY7TOWWNZeFVV15955u6D+4Tk8tzHaJ3LiyJ5Zev1umma6XRaVWvnXALtnJ+e59b6NpydnTVNleUDj6gWrcHP3L27Xize+fyLX/a+L4sxGNXcGkFAhBijdU/SNtiYpSgi1liJvhyUPwjfe/KpjwwysKV1zmWZBUBmFVY01DLEhnOjPzr7bb9u+rfScT74F5/5V3/wsVUrVdMWJosIIWiwigZNKjdBIyqdZbVlFKbXf+grP5p+/l//m69TUFZVQiBkZgzBgFEFZlbJWJKKlG+FPTOSgS37sh8ACNjGzkZKu5hBUo7pYV8aFdtDatsKuhw+2FHP3LFZt8lBiKgsi/FklOowT09O79x5YzqdpsV8PB4jJjky27bNpz75ya/+4NecnZ0Ve1NrrLUama11aAwZAwC8QQyLKJESIRLJRgU4xhhD9IAs6coJVADRmswYG2NE0MwNEIJyTDHKFCC+2IsRQ4iwkRNV1aZpVqvlYDAoilxVE1FnclS2p96Oo7Jl6PV9u3EHNpmaTaf1x0iDAC8s8q73UlmTxKiigLAJhcHWCS4KtR52VNKqoHhJ7XTruW95GtuhqN6/Sl9+VIhQ+5/0FhozG7vjyWMy1lQBlOiyk78z2C55wluDSjuulAtPpn/Lmy7sMGDKvXkfOTZ1w8yZdQd70/3x2IdwfH6WG5sMv3E5GI/Ghqhq6iWzBxBVs2Wr9x4aEeE2Iih1Kl68tbqVOXpztvhb0t7yU293xK/ifT2h9S4KPLWfpgBoTRqSQBhYBNVmLs9z49yz15+xzhVlmee5MPvgEckaQ9Zkk0l/Fu99iEGQ0BghDKBoyFr7sG6XUSVVZDab0vZRyrcokHJmHShFFgTTtn52PmcWNabfF1NSr98nRISTuYkoIm3T9ptHnw/p83XpbQrzE3GaOb3R3BcdhRASSXE6Qp7nZVkSUQghobSTjkpd1bPZLMmwvPrqq3VdD4fDyWTy7LPPZll2enqaGIqdM4h4fn6uqopkDDnnkiy9dflyuazrGhH29vaqqnIChtsUIiFlUi5sZvbG1prcWWvM+Wze+mjdoA3psgkAOi+lC6Bu0PAqhswl06fvtO0nggqgkqEZDwbj0dASWEJVMQCZIe3oNCFzLs+L3EhVd1qNzhbe+8iyXNe+9W3rv/FrvvzKXpkbylJBQXpMKv9M/tiHqdP5/uHFH/TqZZd2ebt51UD0i7dfP16u2AAgCat5qrH8pNbvaqrKDwtb/C+gOetijNPheFQOPvuZz9SL+a2bN772a7/WgpRZ8at9dZfbthUoAGQHp2ez89XqdL2qQpA8+/lXX6Esy/IclAWxDk3dVtbg1auHy9XymeuHg9Ism/PFH531x/zE73/jq/5fL+TW+ci+9Z7sJz/5qc84MywLa9ASfu+D/xURBYkf589MxnsqMF+vqxiXvl34tvWeY+QYfYwskryUKBw5ighspBsUutIx/gK3iI0XnSRTwFqLm8X8si/yxTd87AZhndU2jEYjxER4KArqQxiNRlVTR+G79+/dP35Q5kWZZcx8cHCwXC4T091isWiapsxzcKVzriyG63U1n68Hg2IwKtGgj+G1Byevv3Hv5Tt3vuL9H9ifjNyg8I1kzmZ5KfwkoL8CgRIgkAizLw2Ir07vvWEtGYMpPpXwQkRqiFhMU9Wz+TmpXL929Z+tf/eiiSer9nNffvqv4LGOShRqQzSowlaVOow+giIjKCPwZv3c8HzC93zNv+1//j1f8ZP/xb/+6v/DV//r9Pa/+fQ3kbUWkpWsAJDYIK0hQ+Ace3DbPI3bbrx4L31cCXAnxNmnAN6iZoxhjsxsDMYYRnbwgQ984Nlnn3399dc+8YnP3Ln7xnA4vH37tjFmb2+vqtYJW+Wc+9lPfOK5F56/8fzzAyJrDDFDEpBNtLJdE+iI3Tj1gzHGkU1h+8jRIHIUZiZD0hkVtCVFliFSaKU3dtNM6TeyECKg9GoBqSYtkbWktvEBnpzB/oJb71qIyLaaGWycHMTEMET8dPM3bf0dDyOi7GhIbPlNCJfE0rY9hIs15AKj9IW1fhxesh9+BVoq9rPGYJ4PB4NBUSJrYd0gK+phmIzGR3v7k+EIVB1S27bGe3hEOqh3NYF6ss7OGbroDbvdg79C9/eo9gTU4FMa8ZeabKT9fnXv6wltG+n09AM0cFTEhAAux6O9/elgNBxNxvlgUOzti2paLH1dq3FFOciLnBA9gAqkmKhYROMAMfW4c1mKXROiIm4XzCERKjgyXT4NNMsyFYkxZi5XUWtc9HG1ruu68aDkHLksJLATorW2bdsQQlEUXbm8s8kVSUglAEipj1Ren7oilZek8ZDqQds2TCaT0WjUlXGH0If/E8QrpWjSQVIaJ32hqqqiKERkuVzOZrP5fO69H4/H0/Fkb28PEZfLZapp8d43TVNVLUIX5IgciUxZlLCpMlfVxWKe5/l0Ol020eZ5bEKe56G2RW6cM86aLEs8hNZYm2fZqqprb+rGr5s6xNg/5JR4tsboJkXZr2t952/Pyu0p4BAHZTEeDgrnDKolQlEEcc6ij8xiSLM8t9YC+LQo53k+noyccaTYxrj2fPvO3R/754uv//L33rh6BIXb5MwxJdB+hL+nT+bIloRLCOGv/sJv/r3v+nvpSn7/j37QD+Hu6clr9x/4ZO+JGpvBF+1a9GuuqqrwW7xl/f9DQ8TRaKSsR0dHXFW3b99eLxcvvfTScy8+/6t9aY9oO0aAws/ff/V0sWja0Hh/vlgu15WSGRmX2azxrYCcnp60bTMejSbDcnZ6/Oz1q+PB4HN3Xrt0WO99bqwP4dQvvABIzHPXBq8SDUKKTta+QcTh+UJE69oHVa8aQBm0Dk2KmAThKMwiMaFYmFMJHBFZQlJCARDd/7P7Pfqr+FPDyzf5UEummTHGECZH5ZcpKJYWxv7tNsQDAa2xV46O1tXaWrtuVkTjpDBbVdVoNDo4OGjblmNs1nVRFOfn59bak5MTEdnf39/f3x8OR4Zcta7JuuFo7LxDFb9uRqPhZHLY2mI5n3365ZffuH/v1o3rN69evXp4eOvGdecylfDkQhXFVHrPpNGhnt57Y704PTDGGEopOOcskbGWQA2oYdFY58vl/I07d63L88Hkyt54VOT/7Wd/0x9+x99Px/w9/+gDf+3bP5Ze/5a/8fy65MKzQ8uCIkYAhEVQCZHI1r7dwA0g9cnDllzvpQDAf/IlP/4XPvUhR+4Pvvufpb/8xZ//cNq5rLU+RPDIelHn0JsWAmgNWwvWqmUJuyAceasdFdxUDI5Gg+GoLMuMmX/Nr/k1H/3oR3/pc7ezLLty5cp4PHr11VevXb+S51mWZdaSMUaEp9PpaDR0zikhhUfatR3xC6AkN8ZZ64xLiGJmDqIaOIaQFbluFmrEbjokUhwOLW6AM0QmofPSnu69R9qAWUCzLEube8JBpE2wz1S8ta0Pd4ZwSYETiUg3CRl+WNfzMUejTS5UkfChQoYNImlLaXRrS91xZohoU1P9hd5Un/pIruIX+vMvpgUfRJiMcc4NyjK3WS1rFDVIw+Hw4ODw2tGVaTlsmza0bULoPFz+cLGyKfTCooqQaJz7b9ptQ+QtWmQVLkg1EPq02ZN/8ySABPYH08tVMZcgDDt5LgRIuK4O3bW5lguNhUuouF+GvIugXBS496dUQEDViGAw1bAgqvTfRADAjp97Q8i9OWAx3SvKYjgeD0bDcjjMB4Vzmc0z45xXjKJRhFkEjSmcLUowFFiUSHBDJU/W2A37meggH4AmNkYGgFSDny6kh9ogYtCIABk5SVdvMh9aVqnbcD5fRJYsy511gpQ7y5GTiwIACROSPJNQcVmWyTnRHvOzlQFMeZv+rUiiCIOUSeyXwsGgK3WtqqppmsSdkjItbdsm9Jf3frlcJp/nwYMHt2/fzvP8pZdems/nZVEgYsqioDGgkpdF3bbrqraGptN957K2qmye5WWRF+W6qkIITdMIy82bt5zLSnCjyd5aAxSFOjcoKbcJdou5s1LmKmMQzp2brSOo+AjCGi9GLwKiyzKVLXoZuJiosKlH1BRZ2mJLLF0+KIs8d4SKACbRCitYIgUVEANirQGEXuKyHJQGAYTJZkad983ay6tv3F3MTr7hq7/q+VtIQD0ZNKh2gecobV371ocQAIGQorD37Z/9V9/Sspy20mS4qOrPfO6VqACURN/AORf4i2UA30l5C8BDEitfZHt4G+xXqy/mmI98/eZakeUijGSvXb9eEDnQzJor1662betKg3DButmvEr8czhxuBVtFd5bIXrsr8UT4EBfL5Ww2XzTNbJCvQMXZJsSAdPX6TQIclMP1er1YLO7evdu29WBQXjk6VOHxaPhgvcoyYx4yIgOzIEaRJrYBF2WRqSAHNSoggsqqChkN8nJd1cFHQxYBSJRUUBWIFKBzTkRYucv0qlhE3QBQQIlAUQUAxn96LzydjDgiEKKhDQ+4McAMiInv+E13eKJFueTob8cdATqVrNT/UdRm+d50f7Va56OxX0ZjLQS/Wq+zPLPOtcGzyt50elzVq9VqNBp578mQy5yohBhFBAxEVHQWEPMsHxZFbBuKECpfe58NyhZh6f2r9+6dnJ8169WzN5957pmbX/6eL6EnbaBp11YEdda84+f+fQCAd8Lfevnfs4YMISEZImMtACE4ABwEdEfTLLP3H5wcn86yYjXdP7DWZsJ/9fbvXC6qdl3rPv+pn/y1Z4v5/fPz6MBHCcrRkiQQN6iKAiqQqnBV14CASArgQwyR6fNlewW091IA4A+++59936c/bABQxJDxwkZRVESQAHgz+wjAOZcBhshOTQjSRsGNQMBbZ1l1TZUBNc/zyd745s3rX/8NX/uZz/z8T/3UT6rqjevXlos5qN554854PLxx89rzzz83HAwt4YkPzz//4htv3P3qb/hGYy0DEhFs0KdJCQkT6XR3sV3u3xAZu9GMZ46oGmOI0bADMhuBb4MoaT9HJOzLgFUT/XfPsxdiRFJN9DyAeTmY7O0VRekyu5tRubSkbdiwtbeGcPNPUhJUUr3Q1d58hpvVuPs3aU4KU2eaYmcYJpehg1X2xMMA0Fcpbo7bc2/glmWL6vKs/2IyYHqJk20Dezv4uFXXhpfm+JMbbr3oR1cKNm93mvbX+8tj3DJHFbXGOGOdtQDKHDlGEC3zfDwcHkz2JsVgDasTRQ2RQxBD1uxWAe2iwS/+izuk3jbZfF2ddDKYOqlBiJGT+RJj9G2bzLsUjoox6YWlx42EiGkwalQIxikwJdScIaMiAEmlQUiF0nKyBbRURCKjj9pqERTY9yPTJA9VVZhVQbZWyg1URLuCClJAFGFGDhKscWQoSrS5A0MRZFmt90MYAQonZKZBJNEtv0Jh+yLp0gjYhmvvXHCqjEyXobXhmAFYCEk02BApGAXLhMjJRI+aXEtUABaOUUZmhIqMqoheohoyRVYOBtOjw8ObN8iYFLMnY5BQADxAKg5QFVGJzFme5XkOPS1MnsUYA4gXARHEzYKN0IaNwt0GZI3b97K5wSzPvW+RyLc1kSUxhSurql4vVsriiDh4jWEy3jPOBWYwVObDVGpSN01KGozH47quexxqsoyNMUVRROG6rhWBVQRUQKu6ImuuXr92enKuAE3b0qY6vygK59xqtcqLARk3m82SjD0AGJsZa1frGpTLskxYr0TZOR6PvfeTvT1EAwjjLA8hWGvzvBARctl8uaqbMGIQz4luoKqr8XTSeKwb730VmfNylLnSN6vm/AxCa63xiuuqpeGgsHnCmyGoxpgd7t+4cnC2nC1W9s795o2786Zmk+WKTpjK4TByTEpUBkBFkAW2bKQmRX2IyIBqjIHJQJbR0dX9MsvzLCPRzNgiyx7cu2+JJEhd+TIrDZHLKSIy62zdqMh+OSgyNEhBOEAU0gowuMHdRfvxf/jj3/YVJy/cfObGtWugEHyLCpg06b1XZhBlUNFEPi/MvI5h5eNZtvdgvvj5X/zFB4tGCAyZxAnUhuYistCNHdwsKZew2hdgPxEhs0mhqDJoE7wxJmm2tE0FzKQOlGNkY1yWdF1UG88+hhBbl7vYNLqZvzulBR2+d+vUxP3udWmh3FSUXZ7mqCDxQtl1+1cKIFsGkOLOiiAc+2DbQ0mzree9ex0aY1mW3jd3Tx583Vd/9fO3blar1clqcbg3Du0ihpAXgybEvBggWQEUIlIkkQvhMdrVudipV9mJa8WLNf+SQQwGUVAiQSSw1m5rF9pyuG5DYAkKVcuv3n6wWFW2KIvhdDIpZovXvPeELrM5kTs8PCTEk/NzbuVw/wozV3X12p0HL7z40umq/eQvvXb12pV3vvQ2+m/1/h++m45/87+4UlkcQmaHxfn9O+tQlyEflYNhXlgkAwhgUwC9rioAgIxiaGMMIsAiEWBuwUdu2ia0nn0A0Ny5PCusdXWSikICBGURiUlhHEEISWGjrIfbdUQqJBojKjjnCksu/d8YY4wGj6pJmV6SruOmIwWNbA6oenmXU04a85jIThRAhBHUJKsRFRE0cgKsG2MQUwJIBY2gUTcQNYe3nnvl1TvcNBy5XtXMUtV1Zot6XTuXjcfjalUXw3GU5XJdtd4D2awoTZYZ65oQmvl5CpQMJ0MCTRhXYwz5Zm9UrNcrm+XMJhhboVuD+9nX7/zcq2/cuf/gK97/ZUeHR5lzoWnzLJN4EYqO0RsqlZw4+56Pf3v/99/24j/5H46/k1RIBARVICucIRNVBjavmrYQe4B7YOH0ZH52ep5l+WA0wZpDZCTM8sxZRxmytFXdWEM5ueFwOCxyihGMWoM+SuPbKCIqPkobYhskKoHNAbI/8I++9Pu+vZMZ/Y9/5L1/5Ts+uf04Pnd6D3bbqpY/+hU/kV7/yY98bRT2IYQIUYUAN4xFWlohBBBSY9GCeGbAVlSBUXZ4V10avACgO6qpl2afqmZZlmTBrLWJ7t9aawxZ4mduPfPsrVvvfve7q6q6f+d2mbvz0+Pgwwe+7L03rh790A/9w71ROT8/ecdLb5sMJ+bQ7E/3z8+X1uRedN2E8WCiKogOyZFBEjZoAEFS6CsZvWqQ1RmgqM7gqCzzLDNIloiRgFA4gkQm5UAETISZtWogRDDOioJnFkRJwUpCz7Gua2ZGQUQ0Lhvv7atKchIAsRiUAMDKAHBJJpfZMytziDEwx+RcEKX1ORjkHKEgGqBxAhpVBYxxHTwEERCEBZScy9G4GAWEnMuttSoCUVKlLyEBmKx0HNvAgRGCSohBQdUgOeu9IkAUEjDoyBExSIIXGpdEXRQFjaKhLDNWFSRGlxVBNEcCQ2BsEAVjfWgcGc+xQABDQVhVt5FRtKm7SXat9z6BUCJzBrk1zhqnAswsij7y0jfDLBdExdTBPRsTAAB2PHv9ytZ9oSPdSq6OMQjQ41lSDRbKltQMICdZPOOW66WojMqiFB6NR4Myb+p6WS8RZZC5fDy+fngwHQ5KkwWAcVEM82xRUSssaHqr+pJzhnb7qSOh6TemJ9XDval2KR7Uu63pMxI0gCi70tEAsEHvP7Jtse52R0tuOmzXn/ZFRZosIOXeYOivIIUIgBA64c7kmAE80kn6optuaCsNogLSpgIykdWiUu/+J76tTsfUOHTO+8CgWVFMyr3x/nR6dJAPB8PxqBbBDeTg0uk4tNt5ie2Pkt42IuZZhrtYxviQbvej70WlBynBBmzaNI33XkWsc5svSiosSdMgVb33yC5VzfO8rmvvfVmWuKk2EZFiUPZ1MumwsCEjvnbtWqpOSRCvGONqtUredVkOdcPqlkhssixLgNfVcn58fBxCWK1W4/E4Cac0TVMvFgcHR4PR0Fq7Wq28903bFEVxeHR0794931F+IxnaxmUJQF1VRVE888yzp8enpyenk1ExGZfGepdlHNYSPYdWCEDVIhTOWFQBHZYOoGjDXohszteLygNQkRWhbhm75CZBJ4lzaTwTAIESiwG0zhV5VuR2ZIvCOEeOQAmNr3xGbjgYLNbr4D0gDcoic1aUl+t10zZX9vfHg8KAJwKDaDgB+pBFW6Ga8R985Gfe9dwbH/jSL90fTzREbkOoG0NUuiy2DRGRNWRs4LBcr9f1mlU1yx/U80//4ucenJ2RsYY6xOCTda+e3GSLSqEfnw8HIzdxo644kja7e/fiC4wb7QSgADbhpz6gtp3Ov5AX697uXNXOMfuvdRiKzbefOmamxrk6hv296et377Q/8T99+Nf8mntv3F7NZ9/2Ld98bTIkIhU1SJlzSiaKCEtkzc1biVFWTIsygQKJYtxhZp03DbpiVi3uPjhuvJqi1CjDwyuD4fDOvdeWq/VkMimKYrI3TYe6++C+cfbFF196+dVXvPcKsFiszmaz+8fHs8Vi/8rhzRs3z0/Pmj9doUJmraCKoI8MRNPD/eVycb5a1MFXWWGttUTO2A6uurkkFo3SxSwj4HJdxxS2EUFDloy1zhhLRBxCUQzSCpASv90wSzJwj+kQAyiEqOBMWoG7iDSqoj40NLTrwy+ow7fePPZrm2GJCuhDxDxHMoPR8PYbd5WUiKqqapvm6Ojo8PDZEMJsNkv/LpfL6XRalGUCFiLiYDAYDgezE0wFzdbapmkWq9XJyclwOBQOD+41k/Ho6OioHJRVVbUxurKUth2V5S987uV7x8ff8HVf/463vx2yvAlxm3dIMKmC72SJ+/5JYqBdRLlLT4GyOkvDQZm5LDdFbsrj49PFfLVYLKPJWdRYk+d5kefG2sloMCxzEWHvnXOZy3//+/9lOv7/42e+igUCQxs4CgSwYrAJ0lQ+aKgb/+1//ZkaiZBuw+o3/Y3n//5/8Gr64a//2zc/A+tLV/tHv+J/7F9/79f/1P/5X3wVIiUWUxFJFMhESookQEktnCB5wQ+LJMImC/n5B4NqX8lzenq6t7eXZdnx8XGeDxDil3zJu77ru77Le/+Zz3wmBfum0yki3rt7/La3vXRwMP3sZz/7/PPP/8D3f//NmzfzPP+mb/qmK/vXbj33/MHR0aActq0PgJG7cpo+0Z8sbcVOU31j5pIoKhIZa60zSAgGkJq6EpEoygpZlllrjeGErWLAKAwAakz6CySlaQWLDgm3w5R9LQdtQa4UVLYsE2MckjjRLM+EMABIsvNUyFoDQNajtZRl1uVkHRgnFslrSvSrAIhw4NAGDYxK6CxYA4SqqAZBkyo3EhFHVk5Qd0Ai6xyQZnme5WWUYNCQta4TM+qUsEWkTwgTEqoSkTVWIkNkl2UI+qbBXQ837Laj7l23UOPWQ3x4OD39wbcc5i7o15vfBJi4l5IHZYgMKqBJQAyOimCtzVWPJtP9waiwmQGUFBkzZJy1QFEuVoRLG6I8JvoPAG+5o/LYpgCCiEAKJKiylcMjhYfS3RdNkKDTh03WPigoowKAuaDAT7VX2gPAKGUtd42/1Pp6buZfFkhx31DBITkg2/GpY7pL1AsnlRS6kINq61sAAIuLts7z4vDo8OqN6+VkVAwHeVlUwXsV2OJMu2TGcQgAXXHIJTcmOdM9cdb2p/HpVC9UNVWPEJGINk1b13Ui5hcWtmyMCSFUVUU2w03hDRElYce07AJAR+clkhyVBO6KMfoYAKAoilQln0DkzFxVFUJXJZIK5dP1N00zn8+ZNR0wpWjSRaa1j5nPz89Xq9WLL77Yy96nC2vathwO0jagqlVVrdfrvb29w8PDBc6h4/AhADDWxhhTd1lrqcCjoyMVeHDvPqgWRb6uuW3bAXYIrt5RLMsyhBAljuwgywpri9wNhuXyc6/fOV/XJkYwRpQVMQ2A5M1uG9rOJDIDzMAUzo6LYliUmaURuRytURNVlKVumizLkKhuGlUxhkaD0hEuzs98tb52eHjj6lWVaMkSEjBYC0bBKCjHEEIdfFT4t6/f+8RrD567fvDC9Wem5XCclzna2AopSGTxnlVZhVXY2Kqul+v6M3fP7p+fpoEh3A1LfMJK+flaGloXCLTNqLtUvdYHmVKV0vZu92bO+oW0SwjgneTD1psOxpf+Dk+Ws350U8AWtVmtV3VVEJ6dni7OzsZF7qv6w9/4zd5LWThlICCHlgVASIVJ4PE09G+ypRuxSWJUduJfs6Y5vnPv+Hxmsxxs9saDuy4rYb28PztdnJ1Mp9O9vb0UccjzvKqqa9eulWX5iY//3Gq1un79OgDUvl0tlyk7WlXVdG9UtY3LMxBtW585RyBV2xhnCueme3tr5+bz+Xy5MNaSNYZMYiWizqhSVWXhzb9YSwQAQ0RImXWZc9aYn/8DXWX22/7aiwn82YcVt57bo1tiGnXG5C7LXWaIDOAvlzTd0zXv/bVrt1arVbWuxuNxVmZJP7dpmtdff72ua+fc8fHxdDr90i/90pdffllE0tKa+OLbtl2vVxDjfD5Pwfumacbj8d7eXtu2mbNWeVDmIYTT01Pv/XA4ZGbv/f50mu9PZqvlP/uX/+Lf/NzPfs1Xf/XBdDrdm/YXJohMAMj2ISaizYRFRDSbySsKaW23JlelIo+ZK5zLynJW1f5sVUnkelnVy6WA5Fk23d8vi0KVqqZS5d///h/rj/+HvvKjf/ojX+ajLFsVpSAaRFuGNkITQxQFyorMAKJVRIHv/BvvYOZIGAkV4Nf99Rd+9He/kg71O/6/7/z+f/8z2xff+oioQAnfRAAAKKJIioSCRIjaI6pEVPRNSnb08e8Ee26a5oUXXrDWXr16xZr4yiuvfPKTnzw6Onrf+95XVVVihamqam9yQES/9bf+1h/5kR95/fXXX3nllWefffY7vuM7fuzHfuyl59/x4V/7a9dNcz6flXvTOoYQu+D6ExZsSZZL4sIiMs4aJEh4r9xpCCFGbtVzdJkz1qpojKFq27ZpRGQwHGRZptoRx6CCdblRdEjGWFAFFhBFA4DonN1ZRXue3A5lp6RkWQgQWFBElFkELCmQGhJLbMhbbEktclAzyA0yRGFWYYQIEjgyockdFRlYJ4AxRGVNMXSjKJaEGYDIGFVHMYvoySK5AWUDW1KWF9Y6SHihvgBFUbqtiYwhBUAiMhBD5LbN6jVwTKxZb24w/Eo23K2IU47bH/VhbkRy1iZgv7U2EX5Ya8uyLMvy2v7h/nBiiZq2bYJvJLao7AyRMf7iXJct2MdXqv/KOSoJSiBIiihb9f0AkIjuHm3fIMiFalKXDdnIOOkGCAsAiLJx/wQIBBL2YUM82Z9Nk7JvMvdVROSXrwAJASwkRwUFu1vcgl4ibKCXqsCiCpSXxWg8zsaT6cHh4dFRNigDRw/S+oZVirJMUYeUnbiEJFlUq1SkmEbP9pVsm+nwKC68z9uSp+G9t9YK82Ixb5o2CZUkVdr+pN77VE/CzIaMsZ3pmWrr27ZNZSq4pQWJiFVT939M1F5pYqtqXVdJWt5sKdlbaweDAZFNZmuqw+szpOv1erlcqmqSa0wqVEk1JctzREiFlcmjY+a6rlV1f/8g1L71HhHJGBEx5oKM21pblENVretaReq2qaq8rhtjjEOyGygIiyCgtdYa8h4gRptbS9YZl7nMWXv/+PzsfN7GAObCUbfGOCIE7LUnnTIpEGiR53vD0WQwyKwjFSMKAgLCMXrloDoo8gez8+PlvMwsGjPInfimWS4mw8GNq0fDQYZsMAiQAQSjahU8J/ssehHNTB04I/3s3dNX759Psvzq/uHRdH9YFFf2hwAqgBGVFSrvz2fnd+/fO1m25ym3riqgyYCVrSn2Jto21rYnoOt9v74hXlDdp0ezQfp+ARbjpZ15FyS7/dnWooQ7aATc/pmC2cS3FC4lYnYoR5+S3FABTuZzZwwAQWSI4c79+zemBx/6hm/wMQJZY3MfhJmLPKgoGVOSpYxY3mLFZUEkTbElQkTZyth87t69s/m8HIwky33kvcOjbDhsGm/IFcNysVxaZ09OT1X06OgQCMma119/3Rhz7dq10Wj0yquvMvMLb3vp3378Y8vlcnowrarq4PAwhtBUNRCyiBFpg//F3/VKOuM3ff97DeCqrrxwFG5iYFXhi6xY6mnpsBhKqNZaZ6yzLssyZ+0n/+OLev1f+j0vP/d9txI5x8VjQXzc+E3WKRJZazPnMms7wLPuAg1/ZZswDwblcrnMi3yvHK6bNSKmrPJkMkmW7unpaVmWv/ALv5DsjBQwWq/XABBC8L4dZK4oiqIoyrJMTIlt256fn685ToaFNZiW9OFwmKzntm3ni7lKU7hs0TaL+3c//QPff/Pq9eefew7G3YVFIiA1ABblX1z5Cx86/iPp7//49q+nYa8t0VOQEyk4Y0UhgcKJoCjclSsH4+GwDWFvWTV1k4BDgGidddYBgrJCUQyL/FK3RIaWpRFqgqybtmk9K/3D3307ffpdf/e9Iax++Ld2iZTf80PvI+o8DyRq2f+uH34fCwtzfCjM8Ge/7WPpxX/6o+/FVMQpmApRN0XRSgqp3OFRwlRP27Isu3nzJjO/+uqrg8Fgf38/9XxaHq9fvzqbzT74wQ/GGFMuhZkPDw+LfLhcLj/4wQ9Op9PPfvazd+7cefnllz/+8Y9/93d/9ysv3x4OR6/eeePasPTLBRMFAFEBQ8qbVDJuSjA2L3QDJWJEAYiigMqgQbkJsW3apm004RKtMcZq0mwNYbVaMfNkMhkOhwoQYjBkMmsJjDWGjXEbAi4iImZCqH3bT6WdcBVCAFRC3/kbEETaGNs2BI6MGlRaVQBdc9CmjtY0qoagyPKkAJN4yBfVarZeHK+Xp75+sJgZMgAYvRdmZOEQKeVpUVFEhUGixMAKFskSZdaWwyGVZVkOrDEQRUWABVhEgUxuTKpXoy4gD+JDiG0LJyzBmw0rz5scEL+CbXsn5W2UBCL2WwBhj+vZcGO4siyNMZZoOhgNXO6jr9t20VSLtq6i98qdsmBvKvTQtO7tZfRE/9omoE7/CW2YnlUTrcoFGZFuaGQRUfTCdVBV2VjA6esiKc+VStgpMU5QqhdXQSVVQQDEVNKtoEIIG7HglI1E6DYeEjL95auqyAbsqzvGg3Y/38A5WFiYEsA3gcsTkieEi055aNBs99slz2n3zaV32xmr7n/pFiJzoi+QyIAIlkCBCVQQrBNQUWUQYQWi0f7+4dHh3v7B8OjQlaV1NsbIlhLFu4BGYbhQrOpofPvWJxMwqU9stWRPb4QvdylftwPDl5JxW3fZj4EYI4vUdR1jp1fdLzfJzbDWJi5IVRUnGWbpt33YMnkm3nveUrxOFTUAkOrg09aY53nTNAnxldbiFPOz1qadFYCMMXmeJ5CYiKTQYNM0Z2dnRVHcvHlzPB4nD+fBgwcAwCKRxYeQXJ1UnZ9q/dumcc5F5rZtXZ6RMTHGHCBZM03TjMphwq15H4TDarVk5uFgYP06I7SIJi3sFp0zBKJM3kvmnDPWokHRwrj94ehukS3W1UoDC0tkUM1dllmLCg+gTv0w+8/6knQPsISnah4A7sCrm7fzj8H8KX7FAFB3D5tPoXoZKoDXn+KHX8Am/JQW9BPK8GdPdS+PazvZANryMhBRNeVz0JIR5YuSSlXFTkoMkYJeyu1AZ2UBIstF5hZBL+onkWzHrIiIsEvx3A/+/uL6jJTJ8hgCgiDQqBw+c3TlXS+8+I4veU8dghuOV3X74P79+3fv3bh27dlbtwhxPBgpMRrYcbu2/aUdNPxO8iCdv1uKt6A6CoBooatqRVFq/VbNXjneH0zOzs+wbYvhGMgIwNG1K/fvP1DCG8/ctNY+OD0FwvlqZaw1bXN8dlot1ienp9evX59MJodXrxhD4/H4ypUrMca6bd717neLyN037iCib1oBff17LvTMf/x3fPJb/8Z7y7yo2qaNvvG+jbEV1Q3iFxJ0K2GbVR1oRja3Lstyl7lkoF8aExeA7OQqJ1TxZhlMnjJttkBLQGicsQYNdVDerrvlkre0cbxFQfBitX3Yl8au1jbV4dMGx0hIils7y9Yz6uhus7KMga1zt27dSovqbDbLyiyE8Prrr4vI3t7eZDI5OTl57rnnhsNhQtumHFdanFMUYDgc3rhy5L2fzWZ1Xdd1ncRwVbUsCkKsqsp7XxRFIl1cLBaq6n3rcjo7PQsh7E8mg8l02bYf/dmfhW/o7utstd6f7BGwRj6//8Z/9fFv2c9wlCENO2cJk/gDdndnjTUI0UfPUVlIJbNEgAYkj0gOYyhjGIkKM4cY27b13kvgyWg8GY0u9SorsVLNsm7ict20gX/s9x33n/7gd+/Upfy17/zEn/m3Hy6MMaAsspK2Dn5V1eua2wi//Qff8QPf9Vl4qP2Xv+6T/7t/8i4ARlQgMGAskGXAhD5MAysBg3YXn23BPoOkWw0uqKK6gF0/loqiWCwW4/H4bW9723p5cvXq1W/+5m8ejUb7+/vHx8cpkh1jTDm0hPX60Ic+9LGPfeynfuqnptPpRz/60TfuHH/lZz+zd7APSI1v6xgjYERVxcgBRWOMrW+btg0xIgASIuC6WiKSMzZ3We6cswYUlDlGbmPbtm1dNzGGtL514l0sJ6cnoQ0KWpaltTZxgiOiM/bmM89Y67Isy5wzthfgJkQsLwDksG3DKGCIkUV8CHUblqv1qq5D5BA4Cp/Mz6JI61uDlMTZssxZYxGRJSZuIea4Wi7PTk/XTbVerc9OzhJrIABoZGVJyS9Kdg4lXI6icuZslpncmuFgUA6Ka1dv7E0m167kB3sjm5H6qDEKsrI6Uya4V+asMQCoKoyMiKHdKL/oRtVaNnoPvcEGD5np/U/6xSStVETU1+sbY5MaWcJnpY2kD/PhbpisPzt2aqSgm2KVbX86nTFZUzHGwDEVhBuTnHlEIo7ROGvZOucIKR0ny7L0uEmxzHJDxKqLanW+WpyvF5VvWNhas+v4PNaQxs3imkaO5Y3O92ZwXFj+24KavY4eMxtjJDD0xTpb50gsdalIRERBE9E2AYAIWwOGgBCwk2rVVPytKqSc+BhUZCvnAIrYtGvd+CPbglkIENq4ZXDsVrhyCMGTtUQkISoLIqL9fGTV+vj0/+N/9bCj0l9hZ4sjojOcfJLESwPAAGSMdc4564p8MBqOJ5PpdFqOhppnQsCg4IxJXITWpk4ht5MA6tmxRCTbcG6mZ7xjmW2e48P3sRNOxp1fXYotJhSHqp4c3+uZK3SjGZ8sfhEJrD1xO27YF9KLlNxPdSl94Dwdx+VZVVUpRZOS3cPhkIiqqnLOJecEEdPanUZpjOx9k5Itm3QkJqdisVgQ0WAwSCcqyzIdGQCC90U5TMxjZiPbknDqdVMnB8l7z5Gtc4ZM8pqSnzMd752fnxtjRuPRehli5DzPzs/rPYsEghBB0SAagwZUCZggI4LESZIZGg5ybDNQd+1K4/1Zu/IhcIwGMTdpeYNfgNnjhtm/a2+6bQ/sLsV68RF1br+CIaQomyAvGrJpt04rizR1f0BCRCXChAFB3am5Q0AUUdaEj6ZksXSG8tb0kw0tNW4adJsHIBnIDSmAiC3KSGhHg5fvvNFW9cuv325W6yIvTu7dvX33rnNuMhyVLi/LPOIOMequGOTWy124Rx+DUAUi6cHPaYX2IiSYZUXdxuPVBYJfrCNjh5ODBB8hMta61157Pc/yyXRqc7deVy+87cUQwv37D3zbnM9nr7/xRqjag4ODGzduINH5Yo6tqaqKmaej6WgyfO6F5+u6att2dnbeNI2Plwm4SusyZ8ss98G3IXjhB4ul9DQ71IXp0z+TLHfWZllmM4eIDy/sbdvCRrVJewAYGt1Yz/3qRESWyKJag87Y1F+45ajsIA8RYbMsKyjLI0693ZJ/lEyFzifCCxRBfw2bZ6QICghZli3q5XhyeHh4uPZxenCYraqocTabnZ2d3bx5U0SqqrLWpiiMc24+n6f6vaqq0qgLISBCVVXD4fDatWvz+TzlmWOMZVmqcGzWyuCc894vFouiKIbDYQhBVNd1lZeDcoBV3ayrZlgMJpP9/qb++t/+ga96/5d9xZe80/t6dv+uEwYWBZeMAaKOsQCNSRaFQRIFYeFU4qhAwBYFHThjFZUte8MxSitRIGRWDCAbNCCk/IOvf+d3PftD6dR//t987Tk0rNh4bkIUpMGwADiGx7da+I9/eUf29X0//6GmpVxNgbaKUEX5nX//nas6+BD+8e+6vf0rJMJUyaUYhQziD3xn59K857/e74YTXJaf2tE+7yx7hi2YQxoDMcY33ngDOtUUvnPnTtu2h4eHIfjWt6+99tpHP/rR69evF0URYxwMBiIym81Wy3o4HO7v7zPzbDb76Z/+6R//8R8/ODh4z3vec+OZ57/vr/6Vt7/rneVkcv/sfF5VjXAVQmTxTcUiMYQQY7Ve13W30CmA3zD5IgCqkoCKKIuqREwkK6ypbnaD8UPoyEyJkMiw8EVgFEGdAUPJSE9yCbhxzsxWQvuSnZYZx8whcoyigEiGFYRVVNERaydxjoZwK+tbFoVuMqwgisnJT5NdBTYg/BQqwE2ZQNzUIhKoKgMoJR5zwCJ7ZTQYHuzvH0ymB/v7+5O9QV4MykHhMmusbxqtqiKzuTWEghzapglNFb1PwFnY6Pn0qRVjyt5RgUuW5EOOSgcsp07jWzvhphQPSWsEIlygZowxuHtAZk4UqX105uHQSV9tnyjO66bxwatoXhRFUQwGpbEmcnRF3rR1lmWQQaoQBoAOLCPqskwR2hjOVovZermsqhAjAlpE2fFG4KLWBgCAtz9CvBgJFjfb8nZ/Pdz6GEHyyRLusG/bWRfVrkdiZFBUJdUUSkezmBlnCTFuBPuk80wEYuy3il7DIR08bIX/U7Kgfxvqpn99yRYBBlERwun+/t7eXjkaikELBp64Z7y1TRFs5hjRS+SkiAxgM+eyLDMWXeayLB+UeVEMxqPBaGidy/LMWLuo1hcw9y2bAgGcvZzmhi3sIG5lwB7+Ajw0/5++pUdDROv1erVeGbooyr+ohyMCANmoOsJmmm2n+FOdTO/Z04bIy2aun4oJY3bv3j0iKsuSrE0mRS/s2DSNiMToncvSMdN9tW2bvrBarUbDQe+oDIfD5XJ5eHi4Wq0UIHhvbFe1LyJp6gKAiiJ2HP9AWJbldH//+OQYN3VBzjkidNblWSZFub8/JBv9ambadceasCnuFmEVMYRlmTd1G0PIshwNskExpBk5IGMHIUZVdcY4MrvUiv+u/TI22ppUBAiI5Fx6jdYAaDJ2E8dOvxaNtgJ+/Qjv/nWuP6CoiooigSEFXAV+mhm3PYWBCMBAx7KgTeRX7tx9cHY2GQ19006KYZllt65fX5zPgExQPT0/C237wgvPXZLT+iIbAigzoQ0Eq6Y5Xa3Pqov1NhuMrclYTN2sCc18NndZtpjPr145QjKvvv76ZDJ5/bO3b926ZZyNwh//xM8SwPPXn7XWTiYTUV03dVPXqcDMh3D7zp3lepUZu7+/PxqNfvEzn2m3lvfUTOaGRQGJmkaYVY01qpDsFMDOPiIiAirIInbaTMmC+Za//1X/42/qVMlv/cWbTWye/GjS40gLgiE0kliRyBB16ZRNtaGxG7GpRyXqn6bpNk4IYRtouLtoqzHU1xw+++yzIup9ODk+aXxAi8w8nU5v3bqVFs+6ru/du4eIe3t7zDwcDlPgJkWOYowivLc3XS4XqSBwPp+n/PPx8fFoOMDYIlyYSimPHUIo8rwYls45QmzrxpKJPrTNBfx8UdX/8qd/8uVPf+z58SBfzoYIljBxQ6cGgKSkKUMSAgtrlBhCEs7jyDFEMmgNoiFFjJFQkFQxI2soRmKrHMmazJDGEP72L34YiFqBU6wjqw+RCEXE13VoPw9h+p/4yn/ev/4D7/4Xf/IjHwAwubNk0GAg8ehDLZcnl8stqSGNgFjX8pe+/ef7jz71Pee3/uyAEAEpBSo/7wDod8ze8uk/Sluk9/78/PzTn/751eJ4sjc+Pz/f29ur69pae/Xq1bOzsyzLfMvpuR8fH7/++utEdP36defcbDF/7e6/dkX54z/xP62aRq1btb5VaTlGUYlddSsibp9aEWRLCdUZ64wFVVIQ0AAxUdIn/6Jn5UGF3JlEE63JIN44D6oQVWMIzKzMaa+ljfUp4WL8bF8G6oZ4Acym+kch5U6TS08kqkDAKqIXjCjKoiIoSimxBaCixJrInCTBPHehm4qAG06YTqkeQQFS/MqvmuWqvX8yI0BnzaAcTCbj6f7+aDDcy8vD/b3JYCAnlVMeOutA1HtpG0Mxz1xvQb1pG+xXpiXIfUqxzubz2Xxetw0iTiaTw8PDrMixi0yhNcaaboVk5o46GICsiaiNb87Xy/P1ctHUniMiWgUKIjueydPMDAAA21uZT/4FbjUASPXQvevSR30QlUFCSJnZAEqqxCxEZE02Gp8745Jl6UMbYlQVZgHFxnvZaEr0hxUR4SjhYpVJVSWb8CCKbDESdB8BACAYwxbRRIlXb97Yv3I02p+SQescPGXHvEXNZo5RG44AWgwH+WgwGI/2xuNBUdrBADbCvMZatEYRWlSQmJcX4tMIsJ0sa9oLEE2/svQuSu+oXJoMqSxHvwjMbPJOF4vFnTt38iwPQVOSETckdx3P3YbXotP0tTbRy6SddZMgNulFqoD33qeYn6qmchfvfRJLSTIp1mRFUaTK1zzP03xgZgAcDodb4zCmj+7du1dV1bWrR8mdrus6JWSSu79YLkUhIc2IKFXdDAaDoigMmVC3ddOs12uXZyk/k4r1UygiFc+wxLOzs+DrojCK7XAwoHjhqqXOTyETYwypqDWkgCJF5grrmjxriiyEuKiq1rcxRAI0kLKq8Ht+6EsFoSWjZINo0/p13aybpm78um59CAwpPiQqYo3NXTbIi8GgLDIrWl053B/meWZokGUWIYYGRQmpbkMUrNqwqJpZ3SzqZuVDYFA0lW9ENcYYO0o8TEF1BVSwCtiVUSXyyothyQiaDDVnjEUCUYmsoJHMtpu9vbAY49K87kfO9gBLNScJyNc0zWg0SgOprtdlljvnQNUiDYuBs7ZtW0L0MXoOy+XSZq4JIXFbM7OoWrzsrl9cxpaeQsoEpjHJHIV1g0boLjx9gQBz3fIDUohLJYlhW2f7O2HmyIwp00JEBdVtR3z3hPnV5+KttQRIiqCoKAAQVd1wsGiq+VltjfWMY8X29p35yXGWZ6u2zQHR2Shi4C2ut1NGsLgO/vWz07PGq8v6j+azVVmW3oem9sKMoiTqyOyNxg9OHxwcHFhrP/CBD8xms4ODg/v377/vfe9DhRKzclAm9E6WZVE5z/PZbHbojm7dukWG3vnOd/7Cpz4Foqenp/fu3h3+qdH6/7RKZ/zw3/2ANwoajSIRWrSW8NmjKyr6Q9/VuR/f9gPv3Tw+Q2gBkFUEIYpIZEH4mr/5JVXbnK2q2tdpOj/h9tN0TpVs1pCJwaT674T30y47pwDOORaBJ9aDfp6u3l6xEbefpO5QSmjmLEf2cW2NGQwGZ6enjaiCcXk5HAzX6/V0Ok1ujKqmhZSIVquVMWaxWMAWowkRheAfPLifWBaZOZWpOOcODg5ARYGbugKA8XicFsCkjUtEe+Ppcrn0dTMcDB0ZmyFvZcBaYYVQtTIL633fjHOnosa4HqgM0BUia0qhMElIMf2EIgYyCJ04EyuzQSgLV+Q2IXk2S74YMwIFkCAIzNx69j4ElsDatq1B2JuMh8Phf/Qjt/677/j4I3v+4M8Mz/74DtnX9379xwDge3/ymxL17ciYYpB5tr/t777jb313lzP5gz/6bigAUAD0kSkzVQVE89SOSmr9BrrdOlfZGAA4OTkZliZtc03TpI2mZ5T2Laf8f9ph9/f3x+Pxer0+PT1tvLgQKXNo6I17d8Flai1YY61tou/VF3ZWbARhTjyGCMAiqsEgJd5u63JWjiEKRyJDW6wJDAoKFyj9vk8AynxgVBmJkVREQ1QiJRJEgwY23o5u54ARQkLEACJCEkVKHJaIaAwgKBpS6rhcYUOBtW6bVEaiIs5YRwZEQERAGVg3tLGI2E3nrdBDOnFyGY011jpDFCT5LaiIHqBp6rO2gdMTRChzuzcor+1Pr07G+5kbkRkiWGUNwYDQeJwYUBNaBDf8lk85Kn4lW9qaq6qazWb37t+/c/9eXddEdOXKlTRzE/Oqs8Z2yWNJ1b9N0/QDTxibGO6en56u5uumijFYRVIgTmWPXeuD3Z+32d79eJSvkpxlQIAYY6K4TaXMi8WKI8cYYmQffAyhQ1erKGgIIVVaJ8xLiJGQjLHOgLM2xXJ88JvwiopqVbcbP6VjT4oxVUFxbi4ua3sa6y617m5GBQ3khlzLIUh853veLSwkqsmv0e3hmNL8XY37F8Qm+TSNFcCaYjIeFeXhlaPBdGIzV2S5M46JkFKoz7BwykWmyyC8ICu7QLQpAMCgLPvHnHKI+KgGu2nEPt+VhtHTr5t9M8bGyE3dAlDdtNZk/ZhJu1fvgTB3u6O1tkeIpQto2zaZ7+kaEpgwZUJGo1Gfk+l9nuRgUGHX63Uq0EfEBB5LN3V2dpYKb5xzWZY5ly2Xy4RwyItSRTOXr1dVVVeHh4fGmP2DA2adLxagoKpR4nq9FpGiLLM8HwwHa9aBMd77uq7Pzs6qui6Gg3TMwXB49dq1pvYSw2hYHq9ms9n5ZJzHuhmAWFALalTNpmgHASxRw5xlmTXS1A0IZZkDsKQuWMyLaV1V9aqKMVpjrDEp+yyIqtp4jyKTLNvLixjF++i9bwOvkVU1wWod2UFRDPIit44MuAFbixyis1gWGYpqaFk7LFMKtwsoiySjKhHXoAEVEVIQIADaKg0PiUk7qf4lXj3Qzl3ZVqHcjNsdat5HtRSkSDioS47K49rxf3IPAFZPW6Vz0fzjP6of/9H//NsZLAHgS/7yi1gWDcCnPvdLZ3fufcX73rd/eDjI7QaL1EUGN21nwu/IfIBuA+F6ro/0YBjp+Pz8wWq1JpQ8Y7Nd5kGZy60xBCjMaSu4duVqUzej8bhtmv2Dw8ViMRqPW+8VUBQI0eVZqgBxzmHbVusqmcXW2vPFvHDZerGc7u3X6/XRwcHpg+MocfqfT0cDxyGcHK32RuP12pNoRtYQWcI8o7/zGy/Exf/pb//kb/zBDyT/oqmZVQNzFA4qDMrKddtWbdu2bYiRmU0ah1vDthvu6Q4BHJFBtIYMEiKaThQuTYWLjiIi7b2UN5tRgY27ohfPoTtFn6ZJ7EttWzes5WQ6PTycr1sf5crVo7P5gqrq+Ph4f3//7OzMGLNer/M8T1hW4+xqtc6cCyGgQmL9KsvSGsqNGQ2Hs9msqqp0GaJKAHme28xM9ibWWmdtXdcPHjxovZ9Op3lRVMt1Zlw+dLH1irYsylYvMmCHV66d3n/ZN6EYDf7Y1/90+uPffflbk4SaqqAiqKgIgDIICkJgCIwiCGCNsYiBOUTPzNFHa22WOecyVeUYWTiGyAK//kqH+Prvf+4bQ+S157bxzIwqGpkAMmdGZX54sP/nX/2tZVkslos/9rYf3O75S15K3/7k1/34//Yff2Vp1BINikyJJNB/8A++hGNTZsbmpMyqUUFU2ehDMQJFA4hkhGV3w91GSDxiGKS2bcClcZWEwlarFUFmrTVk67op8oKIVst1ORgsFwtrs9FwXK1rVd3bG7etX63uAoDLciHrgw++rWOYjCcNc0CMIiqaiuATnssYQ9b2sWDKjG5MyxQBAgRCAkIfAhJZm1FWKCTMfn9XKCCiIKxERFtwLG4ZEAmQ0DIws3RhsE6MvDPDUiCo7y9yTlWjsAqrAgEpgjFIaEJbGyQwijZ5UN3kQQA1RpEAU741cSohIKoIXpDOAiqm3/WOCip15yVLllhEWg4ayVkRZVAF4cQ9S6mQEOq6ntXz49nJNM+e2Z8+szcdG5ODYuSBwTwvlDnEkPKH3ntFMMYM4CIk/avYLqrbsTP1Z/P53fv3b9954+R8tqrWzliTZTbPWKQochFxxjiiIs9STbJutBzatlUB5rMqxtli0TSt95FZMiQjoKLbBF5Pb4vaBAUjQucSzoHTLxHAGsqMbZAaH1hEYlzOF23b1FW9XtXMkuBbTdupXgAAKPi2TXkSYWHhTQgf047YfaSisuMzP4EkdztCJXIxfAFgGytDRNuoMNRKkdTg+fmDGBuU6EwOEkkhI0dKGjW2MYRgXG7IRpHI3lzU7cOW/kF3a49rO4gd3fYQVFmNzcdXrz7zzDN7e3s9ajxCZzUCMzB3hbmP6o3eN0uflkUngIqIrIzKiawEEcGQAjBo6vbt5ElCEHZTkQg3UTpV5cgpm0+bApL+V65wbRNCCM5lzLBeN8u1V3B5kTfrtWocDofG2BQ+CZ7VIhGNRiVsMjDp+hMiK8/zdElpJqTAeUKoZ1nm2zgoRwCwWCzquk2htSIfpDqWoig6/cpUjZNlKfeyXtfJ3ffeT6fTyWSSauuPjo6Go/FysVyuVyHE6XRPANsoi/XMuqxars9Ozvb29sZ7k9Fw7DnOl8va+3IwmDfr0LRVU1fLpXNOQizyPM/z8/Pz69efmdWV1s04d00GcDgQwyOLquBEHYADcIkTAsFkTkVY2LpEmQDZIFdVBjYZlVlZKqwXDQ2GzrokrcgizILOZM5NmSU3HJlFYmgixCK5QQWiK9OKENo2qbllzomI901OgoqUWzIGhZk1KkVhLxDUVd4vm7BqQxAh56wxwMosuaAVQlIPKkiKBpVUARUFOI1YvXDnu/VeOSUCrdtwJyAAdLwX29NmJ/wRW28QsyzvvJRtV0eEACxSZqxBQtHM2ETX9u/aw+14vXaZ+7dv3P7Ya68+e/XG1aDPRrwCVlhijJsoUkzQbVYF50QhBRdB1BozLMvRcJTnzmltQXPrUIEAm7YpR8PKt+sYX1uIkJ1FK6CBI+CWop9wEG7bgC4DjMvVejqdiEhV1blz89MVtzAYDhZn1WAwKOzw9dM7IXi85UqTHe2NV7NFmecH+we/+PLnBqPhfLWSijPrnrv+7I3plRmbydvfszpbvHH3rgKd160hfLBYecbSZQ5JVDMFERC4nMGoGi+qRNa6QWTxyi1Lw6HhUEffeu+Za98ApEjtFssDAQAaYQNEhAYpsya3FhENoNEUbEzE92Kttc51izbium57mUjYSGUwoG7CtN0ZEr3+oz2ZbqIgYgrUQ1rYiVjYh568G9sWFIuW23e84904KEMIzzz//Hy+XKzXVb0uiuLZZ59drVbL5fLg4OD4+Hhvb4+sWQZf7E1W5+cQ4rM3n6nW69b7jGi2WpaTETJMhkNDBghFsG5bRBM5BA6DwlJe3L57lxDHh/sTAImsBLGNq8VSVff29tTguq2tvTDW94Yjs7d/0K7/L1/x4/0fv/vFH/sndz4MGpTBkiMFCNzbARpFFVExcmwksiIgRTaBQVnQWgPORxBRJGuzwjj9UPk3+oP/h1/6E3/un385g+bWTgyD+uvjyXy1lNbb4LVZVeda0vTWlcuV909on3vw4Op0eDAsRMnX9cDmZUbqclIuQAqyBI5AEcC25j/9oS/9L7+zk5K88Z+XDEQRoZUi2/Y6wRpIWSOX5W2UFNVKWOgUwkv/8tbITNX1IpGIBoOybRpj2qIoOMI61AAoKnV1LqItyEobIiciVdU65xCsqnrPmhkUUEBV9N4Lml7hLbIQGIOgxgAgxD7cAdaSykYlEICS+CBHYCBjQFJp/eU5iIAGyACBgQTSRERDBhF5235TQEAVYNmUTHT+UZoGF8qYGgUADWwE5QEARNkzgCCrsnJnKW7bhGabGlsj77AxbsW7QWBrkuoGppPgZSiIhMZYRFQjoADCoGoQM0pSeJqUMgEpCByH9nx9/MqDxdXJ9MredC8f7NdL4HnpLLeehZPNFwwaS4pd1Uqy0HayTxshna6oPYSNKYhEuBFXSPotGLxX0MjssqwHmKWU6fYtp4q1S2kuVChMHoWttXXwTdscz+avvvHGG6cnd2fni6a1LiNjH5zNGu/r1doRxRAya69cu9ZkWeKX94FjlKIcWpeHEDJbtn4l6yCrYAIAmgDgCYAIZCe7AFsEEnk56HOqkOB8/axJVfKJXrZXlkhDhbQDYjVN0zRN6qyExpmdL3vITTr0xblFH4mzBABrLjgucJet+Qle1XZgkGA7FnhJWvIyhQCAoFKnWpayQ7vbBsBODiWxJFzmLv3imrPu2WefS9Xe3BU/Pbptn3ZbseGSIgpvcdT06ZGHHdPPi+W7OO+mIP7hCHf/mFRBReqqiZHzvPA+bjZoTF9IAImUnkYi3bCB6abiqP9yIvsaDAZJxD0pOYrIYDgGgL5yPa2MKU+SEBrpftPfuxMhEtFwOASAtm1ns1lRFOv1OiV52taHGJMqJcDUGLtardbrdZ5lxpiECmubllXUoMsyETmfzRSx9b5tGgQcDYYmc8vl0gv7ts2LEonqttHVuqnWMfrhsBzmRUsm8Q4nGCV0Qw0lVQdK8s9BFWiHQhfzwtloiMBuOB4SJso5BzEyxxQIaFH8xkMTEQMIAhIC+ya3kBkxGIkUHeSWpC+pA4gAKaEtiD5EHzlG4SiIZCxaFgUhQLCGIgZVRGFExI0eKoIqPFw304HykdKW0U/zC+/8aYbdo8ZhP0jeRMbvf2lNRIIPzrnx3pRGw5+9/fKnH9yu1Tfer6t1XdcJs7FZbgGtE0nKsgLMlsx4NJpMxqM8f+9z197+/HMv3XpunBW5dZhlDVElcl6380by0SQfj9u2HTlXJQ14AACYzxdpiU/RDRZ+485dIjo6PMqz7Mr168aYBw8eqOrx6amIDIajLHeT/b3cdJTizHx6crJcLiNz3dSucIbMoCyLvHDG7U+mX/vBr/uJj3zk9r03XGFFuW5aYNXBaFSUQsCISFS3l9Njy6qx1jpn2Icg3Hrfcmw5tBJ95LBJJz6yoQIRmo2uUaKx7wiaO7nnTRSwryjQjW/+Fu4bCF1ADpWgh1WjJsQCgc1yo/r8iy+tmtbl5bqqfAhFnguH6XR679696XR6eHiYwLez2UwR3/6+952dnpzfv391sidtq75pF7OzdpEbg02ViCMGqCyKxgHBcjkryrISmZ8vV7B65sat4aBM0z1z2XI5l9JX+bppmj4Js9oaHgAwHo5Kvcz2pwq6KeTRCycl3XRXbsQKrQ+RRYHqpl03dbNeDsoy8SOnFZKtiAiUOwcnQptlLnPOEhrUWg4nAwW1Ftv1ylfLejXf35/+1cl3/d5nf/BpnsPd+w84jgOPR2VhyIwQQgygnOdZ7pzBdBsqiqIaRf7Xf+uF28vl/XVTgULidAAwZqf6EAFSzK5tGyUHjwHAbK+Bl+ASxlhQFNYuVQ6AQIhgDMQkJwTdsh+TyYGIhGQMGAMJ0aDJKO5TCrCVB1RE7O0i3Pr3ctu1FrYveDsEtUMu9PnW9QtzLGXwdzaVSxPs4oK3gTDb+9WlUvInh523VMV3BmWXYcaeTzZ9rsLM8eKLReYk5YUQo8KybkN72rTcTEZliVKtV4qFtZZQNuSKKQ6BmwrYp8EXPNyS4ZDS1JfEVS87JE8+CkuE6Nt2Va3PZ+dn89lyvW58AGMkhU5U67o59g84BlTYm4xcnk8mk8T0lWD8KenHzHfeeMCRASCzzhnHElLaTAEQd3zCvj35Nm3C7g+Hw95X6c1B37YJqXZ6erpYLBJ3YYJFtk3svZFL1duk3cR72NpQ4X5O6m69xFMi1S5N6SdKFf3PouV5npLvT/Mw+napN3aWAN6x/vu6CETcddtgO7/0hFMTUQghIQEuVbAwc7oSEW1bn7IfZVk2jU8u+/bZ02C11jJ0HkU/kHqEWCKTSaO5n5kikqIFAGCMSWzCiRMzwayHw2FySzpIFXbhhB4+noBnIYT0wwSzPjs7a5pmuVwul8uEsExO+Pn5+XA4QupqSYEwz4rheBRj5NWKmY+Ojng8WZ7Pq/XaRNfGgM7u7+8fHhyMxyO/WIaqMYaQKcvyLMvY2sIVeW4TOG17xZGUIn5My7JMTMfmnBx+VU2zPS+LBKhLmS4i4g3/RMLLpXtJ2GXt+AStI5ZEYdK55BcPPbBnDqIRSQ0QGTKGiIWZUbNIbGKqinj8oHxo2PTe45tbYR8+IOzS519qL/2lW9GHzLphWeYuCyHUdd1I9DEsl0uTOR99qvxMW45TtNhVaiYSSOgmghagoJIZGuT5ILO5c4UzVtEQZANE0TIvDvemubPqI6oiiygsYtPG0NR1EPVRA4sxhmxGhK2vjTGIFFkF0EeOLErUtm0UVsQgum7juvGeodUusWEuR00uWmY6b193oxvL/2OXYlIWjRJF16aqlf3ipNZYxQh0wSMGG5cPEUmjStoZmEBR9Xw1t/XaIPzMZz5eEg2Me+nGs+95+zu+/H3vH4/HD06OXTEY712rfUiD0Fo7HA572FxZFiGEw8PD5XI5Go2qqooxXrlypaqrer3GjaTg0dHRfD5PEQogsMYaY5q2aX1bFMWNGzdO5uef/PSnRqPRZH9igT7+8Y8/c3T1hWef+9SnPvVVH/yawHz+T//JslqACpARNN77GlCtAwCwpvbtB//7t/+r//AX01V96ffdXGntxOWqqjGyNMG3MXiOrXISYHlynZ611qZhuOGr3B6iiday3936Je7zm2BfYEtBqP5tTzmayGfOzmZf9jVfXZTlyclZEDw5nU/G08VisZifv/3tb1fV09PTg4ODEMJ0Og0hDIajz33uc8NysD/dr87Ph5PxYeGGWszmpypcs6ZRAtYOhxO0DmKYjAdR1eXF6OoeIg6Hw8ViwSIp0jQcDPOsqNZrRByPx9bas7Oz5fICn5lq5B9eGJiVqCuo390TERAjS4jCLD5K4/1ytV4sFqu6huiHw0HbtlmWJb2XHVmFTbPWujwryjLPc5NnkFVkjIh672PAEOPsbL5eVoP8/M/f/4a9velkb++3XP2b20f43o9825/8+n+aXn/9ny89+vV6ZZzxiKWzBQCCWDKZs9ZaAAFJIFxoCVuAhqWOPgorEqEaS6ho7c7Cmvha0l5mMtdH+i4Ny50w7qb0NA28DgcVY69dhht5HNnVsE4x9RQ9TDVw6e8qytIVlCvgdkrk6UOcT/jV9kdv2v5+2nrax1/t9mW85fEv3RUjrqvYycMjWGMDS9WuQt2Gep3tlwfDcloOWuauWkE0U2s3PETwxTkqkuiJDV6SJL50hfbxioGpsDPEUNX1+Wz24PTk+ORkuVqGGExWIm74eQUCivfeGYNEyeIajUbD4XBjhLh00unBvo+RQYPwNgbq4QdwUVj+xKdjE7trinD3tmCMUUVWs/n52dm9e/fu37+/Wq2SWl+yO4Uvwp+XuoNZcKuke3u0mU2Vav9stvv0CVd5cZ+7o+0S8vMxmpG/mm3bK9Nd4OkT2hMmWJ5laQ9LWay+qxFRtgZEKvS5dBmPbCm0mc5yaXcUEUPGGMscqrpOKbnkFaSH27/oqw6ISLQ7SNqHiCihtlKCO+1zIpIKS9KCm5ylPtUGu+OhaZp0benFYDBI1c/JUlfVtm2Lojg/P18sFuv1ejAYqGrdtMkBSNUmiLi3t0dEeVEgYpZly+VyVa2tc5R18vOj0aiu62FewIBRdLVcToZDaOrb9+54ZmstIoEqcxyNxlwrCzOzMZS7PMtM6gHcEDEDpFgPQ6cKB6koq+9453JKaSGDTk2WWVExxjpnrQIRirIIW2cBNYSgIIDAHJKPhthVgccYEMll1mhkBelqGHefcqqHcsaptYiChCyIyEhBCCAaZVJJ0Z6naf2Iegsdld6nfeSaRR3CcTdo1H+qAAKmy4sCAJTOWSJnnTWYhJsy5/LcZdYOLLV1DcLDIs+tsQoQAylPJ6PMYm6sc876BjxmSIaMNYRERTFAQ/Ola1rPAD6ydCXv4JwVSOkFo0CkEBEBCQ1V0ZOxRKSZZU4WgqqogDxhi029wb1i+kPfFFBjrSkLGhYxN7XGykuRj5SFIycoBRlKkVSEDQuzCCoqiLKyiJdWhV2eeebZcj2cNM+rbV2ZucJNj1g1et+0bVGULnPe+23qz8QZMJvNmqa5f//+6elpok+NMRokZ60CuCyzzg2GQyJaLJfMobOoFDKXDYdDBk2BiSIvVFVAkob9eDx55uYzy+WyLMuv+sqv/Jc/9RMSIwJwjE3TsA8xz5kldyYtlF/x372U8MRMEmOIPkRRVRNZ2uCbEKJwABGRxEXxBIfcGGu6YPhW1Wc/AhG2t7C09IkImLdYOnl7Ke4k5LriPYgcs8Hwpbe9Paga65iBMCYs+Dve8c6Dg/2qql588cWzszPoJB195MX89Lwx8+eODgEkLM5m1Ty2a/AVx1CYLLTeR0ZjPd33LEA4Gk3I5eX+1biq0ODJbOEjO5cNR0NUJIMEMXHjnp2dpcX8ypUrF9evmigI/sJPf+iPfM2/SH/8O7/4IXWdxbMhj+jrENDH4JmDZx9C68NsPj89PVXV4Wh0cHRQFnlZlrThZk2pjL/36rf/5uf/UTrCX/rXXx8NI4AxaG2mRm2JMUTvoyPLDkTyGAvfxnpd3Q3Lk8XJ4HT8F+5+8x95/z9PR/jrr/1v9Jb+xc/8xsV6df/4wYPrs0VdBVEQaRuvnmsrk0E5LAfUgfSMoKhKVG0QaoJauQ0cOQI4MICABsmanWXVGEqbIG2gB9traf+17SlPWw0RLRIzc+Temek/Choh8ZtjylwpYhdsD96DVQUI3GWrtM8O7GCinnaIPmHZl92MCmJKNXxh3vzT24RPc4S31kuB3aA5dWAf4A21MRAaZ30MJ+fnsV1c29/zh2YvzzMFE4WQLFAGJsHhHhmTesomqiJ86Xq69tQbsyYob4x1U6+rarlaLdarJvgOfQoKAKxaNU2L6ohYZNXWI5mkuGrasmmjuN20bePb+Xo1Wy6W63VUVtOJPF5CLPWhavi8jsrh0eF0Ok3pmzSQUoh6MZ/Pz86OHzy4d+/e+fl5b192dmQ6Y+KSJyTYDt5fWM/baZ3kkyXjsnP0yehF9WCfUgdQ2La56TJ7Tx8rxA2ZnqbJQED9AVOUy1qrCiFE3pBDb8fDUtq2S56JGEMdpviLaL2pioh5XjjXJcU29/hmeB62x1u/usFmaG7tZxd63pcs1csZwc2s6EcYPGpUiwiCGGPatqnWayJUhbZtncvZR9rQW8lGvSiVoyQqOiLq1eIxCQU5TP5VIo7ovRdETEUyKWmQDhJCSKmD5Dan17IhfEuO3GAwiLGjAjPG9nw1g8EgMcGrap7nSS01pYOstXmWFVk+HI3ati2Fgci3fk3rwWCQHl6MMSOTuQyJ0qmbpmWV1vuBFkjUtq1xZjweN1zxRrc+hZxxQ13Vl9VaImFRhcgMLIBgiFiEY0ieD9nEoorUWeFIiOxb0YgIxqJNQxuoJ4J2NrPOEqFzhojIWES01miIyZYXFlCFDduMKAMkljbMrFEkRSISYWWjDRpWsGrFt4CGEoM5ASoiyPbQ2UJ4dQwr3fvHYwAS0DeNHBExKbyHyMwKeilV3af10ojaxKq3RiNiSvzyhtk8/T7BCC1dEOwYgFGWqUQLsXTFoBgUucszW2aZs3aQWQ0eQcvMDbIst0aDV5ZhmWUE1hAqxBDERwR2lnJryVomQWMKHIZYCFJkjSyRJYqsPLIIiwogC6DDpDFr1ZGKIgUFVYiZEyD1gZPG7eNbv7R1vBFb6ZHUyBjJbYUsoSaXMwIRhSagoEiH1JYoiiioQKDEYAwCSogaApKxZEQEFDTAKB+9+N73fOPXfO073/Y2BLw3m48mE2Oc9xGjAcKmbX0I48mkv4A/Vv9+gA1lgQO4DgAAfVlyD/m5u3mRaNXbLVHPBQAAvADwws69/wz8JADAOwAA4ArASwDf+ISueotbC5c5kX9lWr+ppeduNo87RZxSFqLbQ4175tZz4/39BiCIiNJqVdXV2WQ0TsK4N27cqOt6uVwm6cbBYIAIR+PBS88+056fn50+aM6PoV1BrIrMWANOmqDRCasEQXJEvomz+Rm6bP3gZO/wyvUbN4sic1m5qur12flovFcORuv1LAnmnp2dzWazlFfpb6dpmoMyN6FW1b/2r7+ObDCZYctijDAKAVPadpmQFDQy1IzrqokhNG1zPjtfzBfMPJ1OD/ane8MhASAnbWhEEEmBZNa/97nv8JG9D631wiwavK+tc84iKpAqKWTGiaCKUSCfhdb7eVi2PlRxtmra/9tHPphnhSV3Rg8QBG3IMB7tDQaFXdbNuvZBkvQ8j8t8MhjkRZF2MQBQpT/xrZ9Kt/xb/t47mxCY2QAhoLKAidbkiLgdNGSWlA4yxuiFqENnpOKGk+bhEaIbwb5UC9QXh1wYWogCyQvvxLwAAIh4YyalPT71nQAIYsqo6Jb8kuzK+HY1ipcNiu56Ln51CYuxjSPY1DyLcEf3u3WES7bN9ke7Iemd1XLHo9v+YNdUl91PHheuvdT/l2yo9O92V/ehtP6AqJABKAIjMEI3MshglMBx1obm9Py8ap+/enR9spcZcAIgSHIhpfXIJ54Stv0Vbtts0Hn5qeZbYKPUu33x2zk02IQUH1mUAUACEIVr3y7Wq8Vq1QYfhBOlGihIEjEGNYbIOQGIoImnJ4WDe8XtEMJytbp7enb35Hi+XLTRg0EEQkOgKrpD8t3fVDLXZfe5bz90+8LzL0wmk4SuSXBLVW3b9uTk5PjunZMHx+fn54nvCzdVJaqKF6JgCgK8XdG4KZzo/aS+d4w1eNHTmJyKHh0EPZ5Edvpxe3hJV4K/MdBxs5drR2HUb+2qHX+uiITgH+moQBd06AJj1jkU7gf+m87Q9P1blkWeGd1IzBIZeqx1sjNydmcsbEc5mqZJmKWeLaf/ffKC+me/YwXijr2pu9eZ4EP6KK3L9BDrum69N9R9zVq7XszLskyX2leMpIRJG0NK0yWIVyphSjYobGmqpIHRNM1qtcqyTBRha5imswwGA+99go4k3dP+o0SRqSoJcpY8irquy7IcjUbGmNl8kfpqMpkkQzZV8Od5XpaDxBWmAKyihGmCBWZVDSwuIwAdlOV8PlfC5XIx3tur1usrVw+TAb1qq1E29m1bQ8hDjCaqujQ7tr1HFHFkY6oEFEUAi8YQoQCLcgyJ99Dart7GGKsqMQbv66aprTVF4YxFZuMyyzFpZbIx6BymdAptNDcAIHglQ6qKKWgPm9IjlpSNsYRqCdAQWaebuKZhH8WqVVUiBCRUJAFEwJ0gWDdqun83owehoyl7ePz3Yw2R0srSY7BCWhzsTjLaGJO6N8SYavS3P40xElKeZz/zOz8FAO/9yy+oalqHsixbrVY2lS0hpnMUljioI5wUdjzIMpdKX6MDziVmmcmtLZzNLWWENssNAiGUmaV0L4VVFhFOihkK0RCAis2tFlmI3MYYmUIEFgVyLBqZQ2SvgkYjkgg4Zx2Cj9oEZoTCGLbQxoAEVpEf2vu3+21nvyTC3WUBrWFHnEqUQkAAkxxaRE066ZosEAUFEGAnpGjJ2NwJAUeOEgCgcO6dN2996zd+6NkbN4dFOSnHi2qtaNnYrCwAIyIFjpEjWePj5ZKDf9feqpaWjf5t/6xVVYRVu21UVIPqsy++2IQYrSWTrap6sa6mw8nbXnqHdTIej6uqSgqAiVlkOp3mzvJaw9mD2euvrY/vWV9b9RbVSGsELJIhyJyKahAJLEa0IA6xqasmtpVfL6YHh+O9fRRt1ksVzpyZz2eplgYRE01iKhdMrW1bGJQKmqBHxnYFvqAoAiIaQ1cZjAZjlDbyouGq9fVqvVwvfNOUg8HeZDIej/PMWaJUzmiMKcryNzz7w+ksP/zad4BxYEBSMhnQS2za6MS5IufQGkCXZQiEaEUpRskNDkvnYhZibH0b21D7lbjoUo0loUqrwJlFa9yoyOMERCklqQvLmSNE1I280v/1Qx/rb/nv/ObPfNl/MwQBC6igNsmi2axpw/aSyKlWGBKp1IWQQLJW8UIHeWdx2DYuvXCfYNmMEEnuUKcGigAAZCiphjMza0QySJROmoj/LgbbVqYU8RGJj237eOebW68vRiwA6BYFLVFvinRRq0fd1KW2HZCFXSCcbpSa+3M/7qouHXBn/Xyiv6SbTOm2xwIPQV22f5VKMpiAKaWQQBILAjkhrJiXZ7PGB3893tqfWudaH8D7kqW/u4d9FdniaN3spLj9LFSVRWRTiXRp37gUQLzkqFyyOFnFx7Cuqtl8vm6qqCIi1tmL4yCktFirERFLg4lvtR+K6ZhJGfZsMTtbzhsOYEgATO+MPQrN119MQm5fuH/bjsrNmzfzPC+KAgBS9LqqqtPT0+Pj49defa1ar5Mo3sPD9Gna9q8eNyJ/mRoiaueSxqcFO74VrVsyHird+YLaE/qqDzNv51JSS+5Q99u3ItGZ/Mm2bUOI0HmARBsR+mTrJ8syuSh9LDy5qb2mZx+l6DMkqcCgbdtE0lAUBW6OnIqmUkok1aIURbFYLJbLZeddqCJiXdci4lwOWxDEs7Ozq1evpnBXURRJtCgVlaZUOzNXVVW6zDrLzERI5IJ0JSJ12zKzQwKWLMsmk8kb9+4en52enJw+/9JLeVGcn5/nWWatm89OB9NhjBxBxlkGvNtpW/wE1hgEEGI1HQxSWFTEEIXQKjrrDBIkEbdUIYYEmKQ0CJDAWjIGmTGgJqhYz8jck/xeAAsREZEoZT63nAdDloCIDAuSBSJhUAFRYLZtxg2wMUaIHjf0NsPqaYnPH9m6UMKbWk+Y+bXvufcK3OnfIpFuuj4xVhGiJeOMNYQZAhXZsCim40FhDWl0BBmqRRw5kxkoDOUWc4uZAYtgAYgos0BKKeyjpCokHaFql0EWRFQ0qC5pGmME1CyVIqkCoqIiKKEKgCCgooJGBAfoAQgTXEwQntSNPegL4LFzGWGD3oANq2YSluou+GKjUkQrIsISJXAkhUFRcAgHB4cf/tC3vP9L3otRcuMsmbqq26qOHELdqOpqvhqPxxIVDU329pIKx79rvxwN8bE2lm4AEiLCAOjczWefPVutysl0XVchxOFg+M53vCt3+XBsl8vlyy+//Pzzz4tIEnYEgNDUen7/9uc+55fzEZkCogU1qASICNSNJFTVBBNU0ESmM84xat0u+SxU6+V5NhiNBoMst75ZIsBytVqtVtPp9MaNG8fHx+fn5/Dl3TUXeY6IwQdAsMaQUbLkKGWGkTdl9EQkAiHEtg2rRqrGPzg5NYiHB0cH08n+dI8QfdOQCiCCMc653ksBgN/w3I/88OvfmTpGRERZVZKkcGS2pMaY3DiXOSIDQMwsoiq6hyPvuapqbxsRIUIAQQkAgBKsSRuRIzKgNnlWqlrXSwTtssMiDwf26nVdFoPSGEUzKIeIJnBsSS1d5Jq2PYHeHJctXpyN5fBYoyUF/hLKAC5Zz9SBSkQEFJE67t9LSBFEwAvrDN2WlO2llXlbO+rS+HyclaIAYEi37rH/YeLff5yj8jB72CPbZcvn8S7Hpat9sgmqu3UKj/zypSvcvq9OcR1BFQQUEEkhApCiD2qMUwvH67W/3arGFw6PckPlVrf/6rbI3AS/rNbni/lytWy9T7aLbjmtCgCErBIZrLXkXFHkqS4XNpqkIYT1er1are48uD9bLZkTOvHikV+aMZdd38d/ZKfTaYp294D+09PTe/fu3bt3b7GYC39+9NgT2kOOyq+orwIJSB0/T/XkW9u2AyRE5gnLzRPaE8rUkvOdciCPdFRoAyH64hsRIVCiTzDWIhCzJjdjPB4nQ3mTAe8wYIjoXI6IyUVJBjRu0muwWZGTMwNbGdVyMOrX6JQZT5KRTdMURZFS3mlWpDp7EZlMJgCkqulr6/U6dUtd16o6GAyapjHGrFYrVR2Px0dHR8w8n83app3um8FgUJRl3TbHZ6dAncdvrS1cFpq2qluOMc/z1WqFCHmWFUVxcDg9e+NOXdfJPWjbhttQWuseogbXvh7JAGyKzGhTE59iQrp51t77hNnY/Bwmk0nv3fVdl75QFMUlRyXNXBFhIkhpK7y8zxmLBowqqiKRITTKKgqsEBnrwE6jtTYq8hPnKHUcqaTxzQjbGWOS+/rmHJUX/5/P7O/t/Zvf+SkAiDE655KDsGFkQYvkjM2ds4S509yZUeEKwhzVAGTpBcE4s87YwprcmtyZjNARGkBMXP4bGRkGBtQkvouIVVslTJwkLUfDRpFJDaphRJRNojndm0rCABAoQ0CwSBYYVVAFQAEF9LG+SggB+ijao76ACo7BIYiCAAil5538Fd6Az7tGKjZGEhVRZXHWPHt49A1f93UvvvhSVdXgMILme4PSuHpdFZmdDiY2z1ZtvT/dy/JCVReLxfn5uar+Cfhzk8nk/v3752eL+Xx+9erVJC9Y13Xi0qjq+uT87OrVqykFenBwsFwuz87Obt++/a53v3NY5nvDIbe+cNns7PxsPvtX/+aj67pGZ8pRSaIkmiu9+Nzz73rXu9vo/+mP/dj1m9eGeebb5od/+IdTzi0RA7ZtG2KgLO/v0xDhJhqqAF5831fbZgoBJAps2hBC9HElRAQDFjdvRJMDbDqmJEDUPhCzvUrHx8+auFtYvGMA6U6AdidO/FA0tGsAN289N1uuyLrZfLFe11k2qKs5kVWApmmLonjHO95x586dlE7x3ldVVc9P4fWfk8ViUpYlqJHojEkKs0CASbwJBRQJQBQNgiBYAdPWWZYzxvXydLmaTfaPjorr1pSi0WXuXbfelS57Pp9PJpOmaT4C/zJdcJbnVbXQqpLCiVJikhYAtJvU0AZGLiLr9XrVtLXky1VFxt28ceP6taMid5mzsW0iYW5zFSGiRHn/6J5JAWOWNHd8CDkazKlw6Mi6zCYqw2SHxGAgNzrKBCaN9z42LBKYQcRAaRCVCJFEJMYqqSmIShIVZGWRqCr8kKcyLEd7o4klE5kRMMQIMQ7Lwbq9EK02xvTS6bibN+gHISJu6ydeMpp7CMP2xtodwRCo9mqe8JiGiIYIO9n1t8BYuDywzWOOiaB8gTP7vM7DU53r6fYR3S2l3t59aFMyvV3d8HAgGDYmVn+ELeMWsAPygBIIYceZqaCKLFZUB4MBgVvXy1fv3SssvXB0ZPLsV9ogfkyLHOu2WSyXp7Pz2WLug9c0UAG3bXYFYFUWNs6azBVlmeoaACB1XQLIzBeL1XrVRk9EiE/CJV2Oe+6Wr2w/5Q0rDlEqyYkhrNfr5Wy+mM0RyFpDZGKM25X7j9k6H30dfUsnf8offvENscOxCTOwIqQiHtRHy8gCANBbwUysAEldFRHedOh5+wldckiSZE36S9q2+4/6+ry3yE9JpIeUAlTOOiLbNG2MsW0bdF0jorBpHdigtxVUu4vRzj/ZJrbavs7JZFLVrWzov5JrlOd5MoBoo/OY/t3f37fWrlYrZs4yl1RZkiGVhFmqqnLOIZnkzMzn855qjIjyPBfQ12+/Ph5PfPAnJydt8MZ1lGUPHjx45tp1l2VJjObg4MA5NxqNY2RkyayzzuZlntFkOBwv1/O4qijFDPpO2wqMqaozlLwWNUZElBlEEMAgGucUVDn44AnEGSIQEZUYCaGnew7BJ6RfCCGJahlDLjPOmYQZw6iAAgyKaNIAuMA2drarNahISQTCkEVEJVABVmgJnTM2GIOYSMNgI4u6Oya7HSGtGPyQfsVTjagN90Z6mjufbS519w8XTVgILoRQReRSBAVRCcEiOqTMUO4gs0SEHLwAFs44VGfQIhSGnIXCYuawsJjWWpNWVWP7nktx2sAxxiicAqiSyiYxiYQRE6mKWgQGEARFNaiMahUYlRRUMSIaQNpoij3NqpB8OXgCkgHACRCDKESCgCCk3ogkKqI09bpFD1A1RwytP9jf/8D73//Ot7/jxvXreZYFH248c32NQJlhi2zQlTk2IBwtZKOsPF6tzhcrETk+PavrejIZHxwctG07GI0J3cnJyb179yaTiXPu6Ogoxnh+fj5bLA6PDovhABFdkTfBD8aj1++8AYbeeOPO88/eDFl+/dr1k/sPqqY5Pj198ODB1RvXmxBiiI7slaMrq/P57Tt3RHVVrUej0Z037n3Ze941LAcvvfTSK6+8goh5nhGBsRSjawJvDVQETSqCqiLWdtS+QJp2oA6sqGgUKRXOESZiA0RMAHoiooQjRgSUi6wU7G7al83HR+NPHt5QdsLVO+bWluu+A/dNrMQqCqogCtdu3jibzfYOr9y5d18AT0/mVw+vrteryWjYtn6xaIyxe3v7eZG1dRXaqjo/Pb/7+n41Hxix0gIjmWQOJ/g0IimjqhBIigQTGSYABR0WWeNDiLUFUsLF+fFiPrv6zK1bt557+0vvKMvh8elJ8D4zFJrom4vyHg7Rr6uxNSZ3MdYGRVEDQWYRAEUwIatFxfuwqtplVc98jca+7W0vXb9+fW88yK2t6/W/t9cppfzYg+82ZPIiv9SfxajAYMii8VQ1TcueJaTkP2uGkBWFIqBBIIPd5o8wKPOUcFSEkk0bjefgQ9AozjsQiMwxwTGYRSWqqKolgqS/IClAQH/0f3jfn/u1n0hX8o1/5epwmo+KYfBh2TQ+MFkzKkseDGfbxM0XGRXcCk4hJFgUbqoVL62OW2MlywtAUEQfuQvSEACBIqoxwqypxlpVsLOWAUAIMWmbJpjQxYBDfjx5zzYe/NI1XbJSdGumbC/kohe1iAgAfFGlcMkYfcpcvVyib3kMAu3h9nmdIpFEqtc5kA+vvbIbQYYttFvXyWlSazodpJpaa2yo6wbVZZjlZc3+wWx24/BgWdfDyReg6rN1JwCwKUxPGDC4vHt+QU2YOcS6bVar9aquvUS0BnfrDtLMEVVmEQBjbJZlzrpUQy6iMcY2+KZt1nUt0EWd09r1WLqxSwDClDjtVA9ge/m0zloEkBAlxljVy+Ozk9fvnN25X53NrbNpmFqwF/TcABuyvR1MF/ZhcrNlwWz2S9Olh7S34XovNv1rABHSdk5RI2mXNAghMHWCLcl0QyRVjcoqGkJ0zlnbcaLFLsqLiCDIzjphMSx+tTasFm3wEhVsXpCzsZKqbUdtm7ncZmgQfd263G7xae9uS/j43Ij2pqoawsic59loNPChKopyew/b8ZG2Ktgu5f23qxK70N4mYhRV0g5DRErIsLNYpI5KR7iUz9067U6KM1End1CT7WJ/xeg1xrZZt8BorSHC6JthmRtjfYzaNkqY57kS5oOyGA7SiWaz2aZ2AmhTUs/MiarVWguEq2qdTj3em4QQZot55oqECkNEa21VVSGEvb29/f19AEh2bRoSPb1Y0zRV1aT6hPl8vl6vU+YkhDCbzUaj0Wg4aAwtF/O2qfPMcRycnJxY56QYVK03ZSyMyQZDbe16vW6b+cHBwWQ4TNHB8f5e1ra4svtHh6+99lqGJsyqlZshAmbZ9PDK9WduXr927fbHfsatzl2GCcyWsBaImDj0AMBoJ+ejhIEFVZyhGGNoGxJrjHHWmcwAQ7tqIM8IiRTWVW2MQSUCyl2RtHFzJyKatBFylydnL/ggogkU5gorrBwjgBCCUVEQV2TWZgvf+OCTa5dnTgFiCCGEyExAk6HhSGtrFlVNYARB0SggCvZuvTVEScra2tlsJridJd+x0+zWmBQVA0gqwnGQ5xw9gliDhIrQZdu66CCjSQl0EQTwHJUvwlcAYERzsrjJ5HhlAkEwyi0aygcFR48GreGCNCcBjdZkZeYy1JwgNziwVGYutzQ2aglyg86YzFmbCmNSGZsCIVKq+rdIqjbNDoCWlZljSBemXW0QKgKwIQGibuEiEfAhMHsf1dnCIlkFg2pEHeLA2FjXq7rJzEV4eBMu37zdVO90Ky0mx+liaW1C64NP10nG5NZmzlTDrAlRgjfOZWggikW0aArrnr967b1f8p53vetdw+Gwruu2bq8fHBAREvnZcjGfYynFlSvrppmM9+u6Pl6s66Y5Pj0bTyZZll+/ct05VxR5URRN05yfz5bL9f7RYQjB5pmxto0hhKCEg+GgbUJZCCJOhhNmXi/XFm3hCmdcQZlBO5svIyCVZbE3eebFl2bzuQKcH5+VeclREeD5W7fsYHQ4HL/72tVf+uwvfublV9/+9he/5Vu/7Yf/4Q8tzk4dag5QjkchhFZ3PGpNBL4iKsqJmxIQIFUbcfpIVMUZTX66JmIbglRGrGAFEFQFGOD/x95/R922ZfdB4JxzrZ1O/tL9bn73vlf1XiWVVCoFK1gqycjIloOEA9hAY9wywYABN9DNIFhmNKMHtBuwcbuhDQYPQGC3sY3dDm21ZBkLCUuyqiRVkqrqpZu/eNKOa605+4+5z/72+W6oW6VSWzJe7407znfO2fvsvfYKM/zm70eCSKheKSPqoqwL7KXnFYR7+0aXUSciagtS9aPeUa3N2M2V0PIjGWOQwHkPons2+iCIUZJmy9Xqa772o+l4d5EX5/OlQVMX+e50dOf2tSdPnjg/HIxGxkQ7k53GNQGdicKt3eTeO/fM/H6GLjEmNhhvOE6Us0YEQIwq9CFCCD64ilisiBEwlJCNEgwuhCDchNBURX6/vr86nQ2jG2+8ke1mRYkLbMoYU7yYsKauIkBAqbj4l77u7+ibP/jmr3fITeVcI8ZmLFg5bpzLS5dXzZ1br0wmk93dXa3+R8CPpX+qO+F3Xvnzf/He9wwN/V3z+z8a/oS++dODP+CocfNz5QN0ZcVI2XDcNE1RNk/mTVYSZsMBRRGiIUEyaAmArOLbEAAgNXYYJXVde3BsxJGvaud9IwyISNYigOJX8vm5AAW2LFFgKjyvnf/tf+ZuXuXWh53pcJQNpOHScZyQDK3J0nXgn338sHQXQ8VtHF4BNCCBWzExATBEjMRNbQAjiiwZAGiaRusfWquJsGw8IIIRNIiRQWMCKipVQgjWs3VsggRfM9c2jiMDzFxEAyfonPOeRXT8BVBg2FYl4lYot2ekXPZhLtnx2PNG+mFt3IbS8LZT1Pcr+ln6S1YlXzLGttKSPTuKSLZTTJ1tc+ni+797CWdr9AEF5sBIaHo2Efe9oH5GBcBHFtR50PD/VnC5htiSGHHijRWAh6erW4fVeGfmOKAh3/KwXC5Tiaw11rYgQ0IGCcGDRxssCAFZx+xAHELtg0EEgU4gsuvbrgdAFJYPzjnt2E2xMyMb34TTs/nJclEzCxl9gggQguvWKERM4nSYRYPBYJROr+4ejtMRMHphFqhdWBfVsqxK59mFmOLAARgIkB07L8YYS8YSduOhX5gnAMaaTls6BN1122aZ2SKxiGtcVZZFntdFGby3RPg0i+PFCP4SkirbT/aCVKGLPRtjkKX7CDfM4tJDyHTuTd9q796Ry06FzkNWvSxkAAYUQDRIIp0AJGwg/aCBjS9XtqtHura5JyD6yiSQZEM9oU3hT9oubZb9tPjzArHw1HLzwqaxlhaj1XtwLf9Uv+e7qa6V64rOQkTvveKajDFJlqo6iipglmV5cnKi5u/5+bmmEfVArcsMIShlPmzmm46KsiybpomiaDgctNDtEMbjMQDUdU1E+/v7tHHosyxrmsYYs1wutaImL0ute0mvXLl+/fpisVDREkS8enh1sViICAMkWeY39WeENB0Po4jKhgHAmoiMFY6TJLalEfF6+7wh8YAujx8uKHc1Q9JxIXgObWmB0rGIBOe9iCLfND0lF8OqlfTSXtKmWLUueUWeQBT3DERiiETrUshYYwFArBjTRlM5IBEaQ8RCCJYottagysG20Yzt0Jqoz1mWpbW2Cc3LDaGttOoLJoTpuPi0APypIWqQLFHHAYhIPgTaQk/plQsCI5AhUueqdfgQDJE1Jo5MbGxkKY5sFFmzYZttg5rWwDPniAK9gQCJSBGPAbvf3L4I2KxXxoAPIQQJaieLtEqCgARbq9YXjfY93WQT4W+zNAKJjUOQJBug56aohml2uLf/njuvfviDHzqY7ezt7C6Xy/VyPR6Pr+xfUfETYRgk2cHd/fl8fnJyKiJ13TRNc+/ePSC8cnB1f/+gKArFVdZ1U9eNc+7tt99ugq/rummaPM+TJOmY60MIaZYCwPn5+eHhYZZlWiyR5zkgAMNqtTLG2MiOxuN5vkqzDJfLKI53d/cMUmD2zq3zAoGuX72aZYObt27df3S/quvE2N/43b/hL//FvxCqQozRYG9kLkDvIsLcKrP1hXxBEbPG6LQKwtWmu1tXoNuJBb4kNaHuQTy9beiUDCEEvvxmd13PV6xAFAVNoCAgGRPFR2dnd+6+enjr1qPFygMIYFPXWZp95Gu+mojOzk8n03GaDLzn+WpxenYGUNtQvP3O5+j8yVCcbUOV2PLR9EhjWC4qCpCsjYiZSYRZQkAC5DYrSwDAwbNrqnz10//rj7umfvW113am4+lkUpTNZHQRHr517SpUhT8L//pHf7h783e/+jf+/Nv/kJJTudp5llVRFOV6MExv3L51sLeXZVmWJipjQESwzd3wvVqdEgAAflr+OWssOhA0BISMHMQ7L56jJAYjzkItVfC+cI3zIY0MgPKAqRME0OUbAQxgRAaIXXDq6yq7f2AIAkrZIQjBEAcMgE6g9ly5pmoqBmcjGaVRltCQAC0hghgL42GBcro6c9vmZ98rCNw9DeyY/RBbxV1NPTC2hSIa7UJEayIxiEhiKQAEloCojgoAkGxYNYigK7FmCSxBvXqkS+O189m+pPaCJQuf8/rv48bPuU9BAJJ2i+d2Z2Iytfe+pwH94vW/Wzcu7aOimXyNjACS1iS9RI9vTLk2PVXXdVGVZVV5H1rzGJ/SYmsXWEAga6I4ToSwdE1Z1413DOKCz+u6YQ7CIKgL6csvpe1vXSy+W4daEUFCEanKcrFYnJ+fLxYLVXLhL3nrfOq3L+Fuoe1uDUqpr9xmDzZCRYp50Fo2neCO2y+rnQc9yfM4Tjpi3BdcrGyQSIhwSRMHUANqG0Hxr0Tb5G/pxYPvJVtnAbf2KASFnz6d4jTPF/Tpt6ceyot+XJFmAKCikF2OuIPJdl/lnmy8PlYttdeuUOM7z3N9Z71ea2WUejV1XSdJokkJRByPx3rIeDzWkhg9p4KPUcltNyIqcRwrFDuO49ls1uGVR6PRer0GgCtXrlRVtVgsDg8PV6tVXRaOXVEUcRxrl04mE2vt8fHxer0GybIs0xIRdaiSJNEbSbMsIDdNRYhRHIHGAKKEEYOI2fwu9hCupFVKm+fFG7fncvK6h4lSl4kiC9ukH91M6ZQuW9CmMd0Jrbeb5ZKtxeAFoBX8isDGSazDSU+oZIKMhM4bou55uV5Y69I40YxW0zT9jN8XHWzUa/z8csnO72VhedZyS0Q/9/ve6v689y8fAcCr//ebzzthZIw1NjLWohhgg2iMiaMoiWyaRpE1CvbTwMeFdJptiQ1lEyHoTtgFvHVwvrj0U7tdEJ3TGAkTMKFYIINoECKkJvivCEC8uz6/LoxARAaRrl278Y1f9/Vf95Gv3ZlMLRIEDiEkSaIT0Bjz8OHD4+Pjmzdvjqe7eZ6riNB6vSainZ2da9euFVVZlMWDBw9GoxEzz+dzJYckojfeeGO+Wi6Xy3feeef4+Fhnn4qo6IxeLBYajDg7O1PCvfPz8ySO3MHhlcODOI6Pjo+K1UoLrkaj0boohllKgIvFInh/dnaWJel8Pj84OEji+GD/4OHDh7J/JSL62q/96I/80P9nMhoXVRm8T4eDzsbq4/Ivza9+ZIeEG99jd/zlASTLhuzR8+X39QUCRDZ6tlMkYJhQICAJoBAFxN2rhx/46NfWIIzQ1M1gMPDe3759O89zDcQkcVytC7S2cFXDFa+XqSvWR8dj5ACExiBeMET1l27Pl5E/tGGgunRd+lEIwRcFCf7E//K/PHny5Ju/5VuTbJSm6MOwcy32p7vReLpo8qfOAETIzEWRr/LShTAcD3Z3Z8PJMIoiXcwVCyAi8HySua/D/+wnz/53ZE2Okq9UQdQFJwQ2jhIQFA5lcBCaRZHsN8NhkpIYI2ACCD2jqFeRBYo9bptAYAhBlKtIkJiif+tbPqGH/IG/9lWNr9gXKfEgtlkSZ4QxQAwmGo4whLMQHuTLzz859ZQhPXvB3JglnUbrJVbSyw+FLiB7BIYAkYV98AE3hjJRBABCaBCIgVDAOAmBwTkf8Nk0uF9ee0El7T9oW80gsEDgwIIIUWREsKq9ZyYT44YO5wUd2LNgLxtv/Y+etglf0Lg30Nf5er5crNdr553iI1CA2qzv1m9dFMQyn6wWwLJcLivX2DhCoib4oqm9xpC+ostqW5OtTtVqtV4uFqvVKoRgiDj8Usf0pQWRtlXMoFc9xuKlR1WsAWPt906XQ30V9WS6kHPHmPyC/IVm/AFUx+uS6PsFb91XZMdCVJ5kXXe+fH6krl1yVIylbs3ais89JRf1vHHfJo9ernXVY/riYrZYe2lt6i5SwSFq/KkZ3V+IYTNDNNOSJElVVVVVna7OAcBaq/XreZ5775fLZdM0Kn2aJIkaiMaY0SZ0JyKK+9LTKiyqi/KqjHEURXmeawm+MWY4HK7KRrwfDoeIWFf1YDjIsiyO46qqlGRTTfauZH88HpPFOtSNb6qqMAixiZwL3jmH4IKfMDNj31G52H42eT/aSIjolYcQQs+E6fxtrYPEXn7m0i7V+X7dD3VLlWm6GsYgDMGyDnljrUWxkVa8tJwH6lJKYPSBlEksjqw14Leslu51izTb9le/aOs7Ki/eyYgIiUIISrL59FfJ0Nf/6fclcQyEq7JYFnlZV3C5tvaiWWMjYyyZyIgVJBRrTGSjOLJxksTWdNTvKjnaDlFrupF8Ofwh7XXCs6gkL74lABuXBggBCTx7xEDBOfYMFiFCNFoN1HUUfAmz8pkNAQYmrqsmjuhjv/bbvv6jX5fYKIkirt2T07MbN29oLk655pXS4NatW4h4dnamuRFr7a1bt5TmO8/z/b29d+89nC8WSvagNH2KzAkhHB4ezmYz5asgosVicXZ2dnBwMBgMjI3Pzs6qqjo7OyvLcjwe60/HSeyaRiGacZwEkccP7hdFsVqtBqPRlSsHSRSPx+MkirIkPTy4QhvsqPd1sc7fKd593+uv7x9e/cZv+rX/y//8o7PJNElN46sLSpnNTIFLuYv2uVy4n1tiDl9pX6XbntqAmlw2Orsffu4a3QZhAQAZiQGjLP013/ZtgWi1zjVY8Pjx4zRNEbEsS2PMwcHBcrkaxePJ7s44Cteu7a4f3Dv73C+OgIwARUYRaNwW+YLpIS6kr8/HItBdPHTU56CkoNIu5l6kLEvv+a3Pf6Eq62/+1m8jG7um6Z5FU5aT6bROL0PwNyICUhRlXdfZcPivfetPdZ/+aPn9OjIBgIh+Ev/AN8gfe14/Pz4+AcSl94t1ISIAImzSNImjQV2FqnJV8D74vCoq1zDHBMYIGAEIwD3HoTM5ulT2ZvJjCKzaiADAKP/WN32iO+qP/Yaf/31/8bVIJIloMEpYAkrw7MgYMcnifPGZhw8eN1XhBSkkybP5nbpl5GlHpVsc2kA6Ufs/YhMCsqCwEDkIDQfeRMENADMAGkJiIjYkBgKLF3EhdLlChC8p2P3s1p818pWrjP37r21KyllYCyEiESy8cwK4nVF5Xh/KBq7/dIRaOuP2SwhAb5kNIrwu8tU6L8rCea9YCvVSnjlKnHNFUcxXS99U3vnFciEig9EozVIgrILjr0Ct9+V2wfdVN/V6tVqvc8XAtBol2/fWvd6qZRDpvB0AoJ7QpjBLz0xxjvvf7LwRPV67u+UF3PDeEhELb1LB7WTuDu/2JNoUcHdXpWYfSCvusaktVnBoe1He+06zRU/C8mLSo2c3RPQbIjZmtpF5Zsj5kvPw8itF59SJiN1o0QCq7NXzT7K9GW990nvdjXL9tzV5jWHmqmp4I+bYsY0lSZKkiW/1DKVLF7SpMNuqeYpIVVX6uLsI2WAwUFkVTYaoUa5BXNULQwSt3dfQmh6rX9Z0io4BjcI2TYNoqqqaz+d6hq64P03Toihms1mSJMwcRVGWZaenp9PpNE3TyrOmTaIoUmCoDjZmRrRqpemn6/Vae7uu6qIqHNcgAQSCc85x7YIjUwYeI3SYLtPjRNep0b2jVWW4YcqX6iIQ1U0i7WpNZCkHpfZ/l8LSoXXJRcQNITIRiogxGAwYwwAbt1ba8hLlQOscp6B5ElYT3VpriTwrKpOMQehKnqy1rRPVQjQvDbQthGdnFOo167XpOiMbzCdtZDH7DDZP55q6Zk1bm+Q5OOeE21lPRNzBcHVPN8aYFsm2QbqwcoKlUZTGcRzHkSHT6hWgDhtUbIwhXR+YWbkftKu99ywXXkp3FzrrLYIKxwYBCK0+ChEBEJJQFIHzoa4jgRDECybG+DiuglNBzRcbyjrXn9fiONYVOyLj1sVsNPlN3/M9t27e2h9Pi3WeF8trV67WabqcL+I0aTNv1lprJ5NJkiRFUZydnZ2dnd2+fVsRXOq2TSaToizjOGZh1eUYDAbz+TzPc6X5Gk5a90Nr0tTVX61W3ntAAwDT6VTDDUQ0GAwmk8lwOCjKMsojIjo9Pa1dM51OdtY7Sp7x+PHjyFhmnk2nSRROT08Habper7Mk+dCHPnTv3Xd+6id/cjqZXNk/+NDXfE2WDX70b/1olkVKN6tTRivZus7c6rNWIaytqjdbayN29P7PiFcJQKcTv03V2oWKREAuw+Z7Zsf2+9LDPIfApmeedkOLiIyNvA82Tmrn9q4dvv9rvtojPjk7W63WMcVN04jI7du3AaBLREdRTIhFVcaxTWOT+9qt5gmDCGNkgQwICmAQFMHAsIFakAu+o3iQFvikMxxZQpvI12tnxauh4uWsscU6f/Pzn0e0X/f1vyaOo45ig5DyoqYo/cM//m1/6JtbZfq/8u73NFxDmx82w+Hw3/jOn+l39sey/+JH8t8rG8IVRPzR5vs/lv0Xzxz5v+W9f7X/53/0499kTGzjVMjWLqzzkkEEoairsioDDxTKwj4YS3BxS63Fpqn7blIbYyAIEZFA4AtLsd9QaJCkqcUEqHSBEWrC2uJ5UX7u9OT+qqgBkzQVsn3jUpQFRH+INmHW3pihTZ5cNDlvrWo7BgmJtSAEzAwkjALIgEE2nA+CcUxaPy9IRIYNMSAaoshy7VqX+RKmVfFg/VHaL3zt3+/z9bIu2TaX2gvWt+d91Bkk7RPqTb0XBIl4m+usb9u84Le6YfCsz7Z649ItP+8yLpc3i9dNUohEuG6aNDJF7RpmNP343dYpZbPydNuiyNZQAbioOu820O5BoALElBugtTFgc56LwczM63U+Xy7OFudFXSGiGvAdR0N/0dOSdSUHPj4+PiER5rquEbHwzZgnWZrKRn6gd2HP7adLlsPWy42p3+5ZxhhfN865uqrzoqjrlrgjBA/b3sj2DzzDLtE/+z4Di+Cm73QAda+1qdWlRoY+j0vxVxFR5KaaDp1ngtsCrk/PEyLyzqNQ4NDUTbcqQS+T473v7CJmNtYCv2yo+FLTBAIAioAa2d39PrPTXr5tSry25u0zv0mXKr22TtJbehC3AC29MgizgXEjYghe1dw7R0VfR1EU2cj5prNZOweyq53Qahm18/QRq38C1A5fZm6aZjAY6KfGmCzN9DJUAFGkdUSLotCKlCzLFHmim7S6MdbGzjktYVdgkg7rKIqU7CuEsFqtiqKoqkpt5SiKptNZVVV9INNgMEBE7/3p6WoymSyXS0RswVHMzFxW5ZPjx3uHO3EcN6VrS0HIZJOp3duD5kiXCYW+yAb1AQAobZyDSJVZL5aVfk1Rt6TqpHB8URHUjfZnuijduiMb1SciQgQOwlasVUwjxWYja79J7LTTTMQY4y/2SENkgAWRyBgURkTYOK76xNtpuFXpjvisBaGzyfR15+fQBhfX2c2ICKFDD24tjl3rMEsu+BACc7BGRSpJFV2pnSKotSiRMcDCrQMjSGBa8uI4juPYGn3ixlCfdoKxXT71ljv2rcAhihIy7WDuHpa+YEHNqBkSIkHockLkvSNDUWQitpH4ABAFiS0JxCsnQTb77hcJ6j976ehMc+89AE6G09/8G7/nve95rzXWIBLi7s5ulqaP6xq8K6pSZ4QeNRgM3nnnnaOjoytXb9y+fVtnGW0YYHV51ErHEEKapsw8Go06R1qfnWYs9YQ6962167wcDofr9VqXweVyuV6vnXMIkCTJZDIZjUZJmp6enz05OdawQrVcXtnf841DxDRN4zgZZgOD6Jxrqqpq1qPR6Ks+/OGf/9mfQzTWJtdu3/mGb/72n/npn6yren9vZ71ep2mqEfH+qLx43fMcDKCFLVC+bC2WzzWDnjnIQwitadfDkvWthy2p7M1+ox+FELAH48RNTBSRGpRokC3y4qu//uve+PBXncwXn3nrzWQwZMS8KF3TvPbaa7PZbDAY6PpmjJlNZ4lJF8WqWVfrxfGTt7/QrJeZAYJIgghaRhAQVBmTi4hc8EFg42H04I766DsdcyAigxikvQXfNKyeXeC333xzb/fgw1/zNbBht5pMp4vFerazW53v/Ic//g37GV3Z3Wn5kMnEcTwYCOAzwnnfOfxTAPCjxffrLAOAHy2f66v02x/85p/4v/6v3+ryStblfLkumpAmAxEPwQfnmTkIE1IIHo3lrcSRdP/CBmQbQhAIBkSABFRL/jI+Yl40kzQ2hFyygwiTOBc6XeX3T+YP1+sakShJ7EDsVoRZo+rUUlla2Q6ydMsjmpbgkMiISO2dBI7imCUARWqbsRKSbCIxAExIsaWISALXPjQcAgGKWk0bm1slIS/M49bMgosR0GtPRcR6n7yUPfMCiwUuhb/7P7u5wo3BcDk7+syz4TZfc9+2ecE1bH1ftssjL8l+v7QFJxcvBLRmA4kQgmDjXJykRd2UjYdNnRqiMnr0u7ePprnIrokIbjkPesktVgU3DQCkF/XDC13BdkNkFt0Bz+fnJ+dnZ/Pzqqmh9Rw2FCUCiFsLonav9369Xl9QcAJgXWfOUTaIoyhL0jppZRguOvbZHQ5bhatbi3fremkEubXtmqZRBA5vBPuC90+f92VaK1rXU4HoXlNP3gh6xCl9e6uDYZiNkuBFv2+cGdh4Glv29/MHYuAQvG8Fmn4ZEpTaaQCASEli4zjZ5AFeoD39K7R1Oa6maZxzIXBnCXV0N13hirbu/UuPSTmLu/hQCAF8a83rIavVSqUYsRcMIKIQdGMQRNQ6k6ZpNL2mpSy4KVPRmaYru5bRD4fDji45z3Nm1l9Rx8M5R2R2JpPGuaIoRERls7RAPE1TYc/MigHLsgwAFDPNIoPxIE7jsq4kiDUURXFTreJsEM2m/vFjdXj07rb51kgzLdJLL1z4FRdfa+9dp0mSJH35TtyE2S4N8r5/rhY/B12U0UYIYDYLH6EBH4JeZJerJCLiCxvl6db6FZr/uVg0X5jH68He4Kkql85FoS+GBHtme/ooInKudSdoOyfOLKbVCBYyGBkbW2utjaxJoiiKLFHromz7fhfLsnqGyqBijCFjcONcQS8uwALEm5sittaCaM2diGAIDoQZKLI2EfTBRQgW0INYQyAbp+5L2AQvmtZ3KdhyNBp/x7d/7CNf/TVElKapc85zYJDC1XsHB4vlIk1TTb/kea65Du/9nTt3omQQx7HORAUHXr169ZOf/OTNWzeNjeIkWa/XR0dHIpIkyc7OThzHi8VCn+x4PNak5XK5rOt6vV6v12sbJbpL6UfKJL67uzubTfZHE5VOX+XrxWIRQhgOh9baJMu8dwAQx/FwOESWxXyepWnTNLdu3OBVva7rKIo8y6NHTyKbvP+DX/WKmMlk+tmf/ztvfeFzSqShA7vrnK3HCluu4LZjveUkyvas3Bqx8FLW0qXW/6ku3EZEBEgk3cl7dOSubpzEMSfJb/3NvykZDj/+cz+fjkZ7e/vrsgKWpmkO9vdv3bqVJEme55pPNsYA4qoql4uFhZpXZ6HMhR0AWNFkEElrujwlgP1ULuh5N4KInXGi1H0i4lmKVf7zP/uzt27dhjbcBA2HSnhe+rUXKxgQnTB4H8cRCgWPcSwCz0WqfGzwX/x/V7+n+/MvHf3jLPK9hz/44q5+Ml8StST46XgsiOzRBB80XcIWUDwHEY8BOkelH2a+FK2XTSKOmVnwD//I1/+h72yBah/9o9OHWZ2LGbGN0FTel6vitCoeLVerwMHEwVpBGxiox7XzgrZl58hWkkOlxz1zXhTGWIpiEPVSYEMeoZ4yheCjZJShLYqyqV2F4AjVUfnlsHz67fnG6K82G+gr3VrWQDGMpMa5FyiaZl2VX94JtxOwWyOWe1WyL+55NckUeXt6drYuCud9IJDN1mYYAKCR55d/i3Q198RiGCLANB0Oo1SY8rIERSJ8kfrx3h/bl9efla1DX9e1Rp1D56g4/+XVeXY0RLyRxejc3Et9160LzNwXvNNL0k8VS9OZd7ANkvFP8dk9szGzD4E5EMCz0O+/1MbMcRKJiDEYx7Ex1F0w4suiBn8ltG5kOOdW61Vdt9CXzjjrgFh9s0qflFo5uMEm6ak0KjYcDrMsGwwGeVl0ofTBYFAURV3Xk8kky7LgWY/tjHW1I0VksViovpvCiDXuq4PEmKgreQ8hnJ+fP3r0KISws7MznU7VnxmNRpPJxDlXVVXTNKvVSshOZ7M8zxWvH0WRav0OBoPl4vz8/PyVV15R/TKlHWsVXary/O2TGGFEAyXrmC8Wo5hjEWGuKjcYDLTr+hYzRla9JugVomjn9I34bkirHYMs6hxqioY2yDrYNv2f4ai09bKi2l+do+LZo565FzV42ri/1DT6rk+8m5LtYHhR3vuCdPjS+ftm34uH4tMNNwID/TeNMVxz8AHpcoRPAgsJMzIIGRMZa8nEZKyxGoLq6Dq2LFreqhClDT7NWutCABbV7dl6fAIEqN1rSHUjkVi89yxiI6tKLEARIRgEIowQPGJko5ZM98utcNX+zPP89u3b3/Gx7/jWb/q1SZLleR5CSLLU5JHjkBCOphMy7WzKsky1iZ48eXLjxo0kSYAiZt7f33/rrbcAYDgcLpfLq1evpmlmTDwYDnd3d8/OznQMq6TX0dHRaDoZjUbqxqty0XQ6nUwmq9VqucrV5l4sFq+88srZ2dmDBw9ms1lkTSKKJuLFfD6dTufr1TvvvDMajUaTSZmHEHzTNEWezybT2NgrBwdlWSLCdDqx1gYvH/v27/iRH/nR6c7evQcPJpNZnA5ef+8bWRJ9/vOf73aQ/tjoXndB66c/urRxXHJUdM6q5Irp2QQv/8j6v9WPshEgidBFalM6X9HG0ZU7r772xuu5cx//yZ8eTqZpOliuc1c267Pl4dWrH/zgB3d3d5WiYLlc3rx5cz6fPzk+GU73dyaTvUjePb6XL84tuIBkwMZgGMBvZvFWlARBtqto+h1CT8UFOmuCiJDRsRcWGyXLxfIzn/40fLT91KZxhnZ1crSuXeJDA+SEg2uS1HbE5s67/+xnvvOf+9ofeWa/NU3zG/daz+R/qv5xAfgfHvz2f+zGn3tBV98/PrLW2ijK0jRNs7GQE5BQceOd9857TyrXaMzGTekbQyrruAUkaXc3rQPAla9//1//mi8cn/7i46MvVEta56M0S8kYAbH2fL0qXCNko8GIrEHwjfNVXc6S4cuA9juvmFn54S+GjYYeAKCua0EyIXBL8wUMANjjB2Px3jUiIbCQQUIyKrCCnv1T6ZKvWOvMs2fe15cRk/r7qIkxiEAGEYAEQYQDQ1E3q7z44kc/q3X7+NNBQ+4V5b+42zUYrSW+i9Wqamoh1DSOVtKDwjut6Z6rZg76pwAABCABocCNQ8/JMB4P4zoAbuD0/HyY0qVh02dOu5iVCrvQe1P7z7mGA3dhy34HCFxQGr541lGvMP1SXoU6cEYPHKJfTpIENiaObIho26RPZJ++pU34+dlpH6Wo12GBrUhNYBYUpl+GucqiFjPrUqPrGrR23q8mRyUEDoFBpK6afF2y35i/zLApmVCzvk9x3VmxuiUrNMt7XxSFOgAdDiqKouAZlCWTxTs/HA4nk8lyubbGbrJSqOxDaZoqt+lkMjk7O1P0iNIWd4rsTeNXq5WIaGg8TVsV7dVqNRqNNIQMAESkMLYkScqqXK1WADCbzRaLhQJUGISIYk2eMJ+cnOCmLCeyNraWRAjkYHevLgpoWlGLpmniyXhk9xYPSZxqgAUJtJm/oll29eK6lEg35vEyrwN2e9UgGxiipm4ERFiU+ExEQMRk2aVDup2A0IAKJIBYq3E0nbHERWUjA2y9d8ItnBLJgAAAATAgyQVgFBW61LkcGqTstxf7+92NbEeugRTGCUhPRQzkJXZRZd3kDToHAYgARJjZkqEW8ao4CARhYBAMAoBoTUvRQcaQPpBuvHWmpACAtKulAFhrAAEqBESDRKoZCuit516SHQEACUmQEFoZQQLPQsgsWZpxUda+DugEiFAMAiIYBGPIAHsVRFWmnpdenFAAEZq6Nsa+733v/97v/d69nb2jo+ODq1fBkOPgynJ3b2+9XgvAYrWUEKqqLopiPJnk+TrP8/F0si6KNBswgGZI9vf3F8uF5GKMHQ4H1hrn+fjoSBOMCo8EgMFgcHBwkAyyuq7LsoyiSFGUWimRpimaCBFbkuLFvKyr8XQ63dkpynJoo9393aZ2t2/faYI7ODjIy2J+PkekbDCUECIbTacTiwZFHj5+fPvmzcD8+PGjw8Orr7wyPT49fe8bb5yfLYaj5Wz3QJCiNP3o13/jnVdf++mf/unzs7MoimBDq98HFSBuwfBNH4WPGuUEUBj3ZpcHEENkCJGwqwt89rN44ZOizWVsyjv0TIhIF7EDxChOFLh59eq1qzdvhix7eHSyXueHN27YKBaB1XxZ1fXNa7eu37oWWVsWxb179wHg8PCQiEajkanqsqmgyhGaerEU14jwhoyXBFV8rc319WcbqgT1pj86VtJNbRRCqyyHiCgt7BwNKWQUWRhCCAxvvvVm56jkVS2YDKc7dPXa8t3Fo7NFHNn9nakLPnAIzJ5DXldB4D/+qW/JssTG9vtf/xv9fuu8FAD4rQf/3Z978rs4yJ9597cbpKaqfvd7/9Klfv6n//xrPnFJnExns8l4nMSx1L4pTFOELMuIKAijoGNGZhBRjp3O2uv+BbPRCRUEgX/1Gz6u5/93/9ZXL5vmvPH3zs+Oq7oxRDYKgGvnxXlIsoAJW4sCrvZgRYzBBNsigRcNEATowD9a9QTCQp2khLSFu4G5qmujuge6QNPmUAYhXROwKKsmICExYBNYg1bw/ITKi8vqLwzBF4Z4u33tGWf4+8VL+XINR1QxJgVsIRGIBBb2oagdP7UJwma+vYAwGk3LW9dO5XaoXvCCdI/jBZ2vRlpd10VR1q5mELIWCCH0xPkQ4jju/qqbprPl1D7YREkheN/UjW+cEUijZJhlzjWFtXUXSN2sv/3poINdLs63dXmdzc/MVrwT9nVVeFcDsEEBkBB8EkUFBxZkDtxB93QDEAiu6oKmrcdjLBgyxhDgcDAkoqqqDGAD6JwzNhplA6G2sESZPbz3ZVnFcZxlmTFGmZ3KslQsu+ZSBoNBV3itegQAYJEMGbyktYCgmeiWVYwRkQSwQT5bLwpXC7EhRghIkKap0vk734RNAwzb4L+tkWko6izyrVAxirVQljkRGROTuag9sJa2LI8XZeIuRx26G9Gauq63pQfUuYRko2dBfjdffa5Ti9guZCDILJFNvQ9nZ8erZZlGKQAUeZt2GGQDxbjXlTNx4pxTCL7W2obAxkBdO2Nt0zjlCHLOaaWvIsiTJAXALMuYQ1XVURTXRX5+tmRmkxBZq6uwNWY8GhljECBNU2OjVV4kgaMoYsC6rkNRApnJZHL05Ph8vhiPx0VZDQaDwRCSNGOB09PT0QSLqkzTdDweN01jIis1lHWFRNPROE2zNE4GV6/eu39/ma8HoyFZGo2G+9V+WZYu+MV6de36NXZ+KnA42xtl2bXrV4DwSfm4Erf0ZVPa4WDgJXJxnE2u50fvRoLWe2OiEISiSCSwq9bORzZqE7Uiys/b8U11Dp6NI1B5U+fZB8dVcA4CGyIb2cjGFgkDh8ASXXB2MiEhCbdbbpYMRKADxdW1q+sqjmMGjmOjG6A1xGjK2gVBieO6bGw88RR47Vd5nVcOTWIteQ6Nd4PhQIKv63ZKbtY+QNyCi+G2XGmiruxGLUc2fhv7YDzbOI6MDcx106BInCYaBK0rF4JzEsC06uBAbbGptixJbGTL4M6rPBCkaRqqOo1sDhibGATYM1kkYMKGUIvplWhe2HNkskFmIytpbGxiEIGR9XeENiRdiL43Y5lZENPhwCYxs7BDDgIGByk1rmbhJE1YxIXgGjTEDBSh896H0BAziY9EXBkPzTgeDoumqpkhxlpKIBfAJRQJc4N1QMfQ1g8oHy3ChbTFxVrea+y8To2v+eqv/Y7v/HV3796tqobD+ujJyXA4DCEMBoO6bNI4Y89lUZ+cnFy/fj0bTarGVY03UcLCzoWTs/M4SXb2dpVtz3E4Pj621o6nk7KumxB2D/aZ+fj4uI0lETbBR2ly9OQkjuPd3V2d2oZa/GSS4tBG5/P58dl8d3fHJlk1X6aDYQA0SVo27uR0PplMgmDtOR2Ok8HIFrULsFqUgyw7PZvnhUMOWWIHg0HlnGsaLzbJJs4166JmwN2DvcpVy9U8G6Urn0k6Prg1+Z7br/7o3/zh4ydP8vUqjaPIQEzknSNCMiaAMHQrNoStmBf0LcmgUHEBBLRElgyCoFZbGtSyZhHxbaFUG4gHY4Hb3PJ2IlEMsBodgqwlGqxFTIBJZLLBoCiq0WCWDsbTnf1r129ev37r0fHxslxXDQ5Gu1UjMcLZ2VkAeuP9H5zNZvPzU1811boIjWuauiaqjE3TNMlSYJ/Pj6Upjh49yiAygdMkZmMKlmq9gs32r74ld4TyBi+MYq0P27htYCIQNNADL6nAOZrHbhU4MEIARiQxfP/R/a4bKcrOTs52JqPRzsHi9GTN8vs++Lf1o//6F39d6XxF3sW4LMv8ZB6n6R/5jp+7PMS3228//O/7f/63974vBA4SnLDzvqnr5pWGmcmYJI7jJIqswVTWID5Kh6OUjHENE4EhlKaBzfKrEWIRCT744AOzSch7cQ27Rv6Fb/jp7hf/vW//2d/7ox+7/9bbj85yjC0K7E7Gk2xYzBclhyY0QAgglWsQyUIk4skYa7CpXZ+8IbZJO/A0PgGIZBFAfWIQ5sDC4mtnjImjOI4sEbEPMZtpNOTADgpCEmxXLkZCQGIQwDpAA22BggAy6NohAFtqP4Jbqo4CFx9dNioulqENgHIzUraqvDaHtn9u0058Gb7KpdqQLULp53tWuO0UvqDg+FKeU3dMBYP0A+JyGbq5zRbXOyHZfkjuwqtDAALTdWsEEKExxlTWF4C1oQbA51UcRd6zSrhbBsMgkSG0hKTc2BxAGNEYQssMLAiAAdCLNBqER0JjAdDauKeu1lmSDMACErg1D0xkGaRqajFQBicWQ3DiL8q/GWU4GOwMZ4ooWa5XoXGeWuynILSDlwwi2jgxaeIQc++hrjB40P/ZA7TaLIEDADQezCacp+CDrq+ZL2ybfmaCiFr1AGYOHORpNk58xpi45OptAyeUxqaVEejQt+rPRHHSRTEVFdYt6GrcI6KaRN1yryfpVhPZRva/oKFcJPEZOpFfedYNvVTrfv3piWetYQFjTJLG26D83trwq6NhCFxXTfCByF4qMFD/W31IIaN+iDqcZ2dncRzneR5F0Wq9Vry1kgLpo9zQoHX9hnEcq6vz5MlRVVXe1apDPxwONSnZRbkOr924fv36vXv3lKVAa1G89ycnJ977yWRiNtKHVVUpXIqZF4vF9evXFeWyXq9bjUXvq6oapuMQBxEhAGPM8cnZZDYdDod5kQ8GGSISIhlTFGVqI2MMCqyWy5tw2LjQNK52zWK1AGt3d3eHw6Er8sZECMrfwsLcFjoIszByjyX9BZ5qLyKlAUtCYmTEdkLrSn0JiXGhENbW7F6MNxEBYF0KhJkItFis9TMAVNdOAMkYVzZlWbnG6wwJwixChrqoxgsCZpcHkAAIWCRAIAHTas0zslgiJGgZmluom7koO9nEhLB3qv7datLMB68q4NpFIfhumyFAg2gQCQQRrDURiUEbkySW4thGkY2iOI6tYOtcPXMT7e5Ti1KwBYCx8x4IhBlJyCAAigFmEZYoIkSQIIzy731za9z8Wz/2kRD4//Zdn9A/f89ffB+HmkOIIQwishTVlRgEC2A27KJbP//FmjH2Pa+993f8jn90NBobstPJIE5iBkDE5XKpOZAoipQjeDqbHR0fa3X7eDJpmiZN0/l8HpgBsShLnbb7+/siolJa0+k0ny9Go1Ge57oan52dpWmqBfRKVawkGcPhcLVaPXnyZDgcCgDGcVlXgPDg4cN22BAu16trh1fFeV3WBVEE3nr7nSRJDw6uFFX1yit38/UqTbO93Z18uTAoo9EgMK/X693dvcBsbPThD394f3//Z3/2Z5n54cMHb7zxBgIXVZ2vllcO9r/r1//DTx49+umf/DvvvvPWIEvJSmApqyrLsiiKPPTS771sy6UBYOyG41vAAppN7AoBGnW5pQX7CWw2FQJBArigs+uf0wAAiKgHCkCIxloAYvaUpKUPw53d/cOr73nv+41Nq8afrtZni1UyGewdZHmel2W5XK1Xq9X+/r4+tfFwdHZ2trOzk8TxarkcDAZJHHMIi/k8G6UHe3tJnZy/Y7nKI0BdklxPqKGDPGxtpl3aR/hCBVzgArosF4SccRyjiT0lx6dn6/XaRibNkso11DNPr9+6HYKId2XtAtB/8m0/0X30e17/4T/6iW8NAQgpjeIQBd98yQWx/8Stv/Cn3/3NEjhL0sj42FgfJ2Ej5BUZawh9cAiMJMyBmZlIdfdE0LnAzCGw91pHqgIR7EMgdBwUXHB5KuZ56QOPRyNIIpPGg8EwQsJBWuTrqqkACQiNISAM7EE1nxGBoj6ecNvy7/sLap20Nord8Hb4puEQLFKapBFS1dRpljQMPvhGHR3oW+fYrSQ996OLWX8F2i8D9+zfg9bfzl5ya/sl/NilXbvFOTBg2Ew3zddqyYdK2AaRjlXw0hUKAG8e5wvcxRddUZ+GO7QBOwCgHvsuWkzSdHc2S7OMmQGkqMrKNRf31BtWGrCrXZOXBYfQNE1T1ZfYTfSVIQRAIMRtypxLbkV347pGtQ4iMwcfvjyodLffMzMAusbFNtJIKm6qDrTMMUbEC2KTtqIfUQlVTf8FbCAZnZPTOVh/rzKJ/SKBS+NGrcmOVfnvyeV9pZp3XhXE1Nno3te70z04TdOibpxzSZIMBgMl1ELEBw8eXLt2bTqdKv+P7ohKyaXV4U3j9R1mVj9nOBwqYmR6eKD+xunpqT76LtOF5qisyqIotGpFy05Go9HR0dF6lTPz4eGhosW0lCWEoG7Ser0ej8e62UdRNB6Pp9Opc87iJsXBMp1OHx49fvz48e3bt6Moik00HA5X+RoQ6rpC5mq5NsZMRkPZFI0Q0XA4Go1GQIa08J0IDYkS8zETCwYWFggi8sw46+XW+QOdoYO9ovPnFXX0z3l5LRPR2UREwTWEpLYVPJVTDoGLoliv14HZWMMC3jnoWPWeVWP6xZroAOgm8kU9Om2K0FowoXn5YhUtQuhAaGQIjdEnItIDzrWYfxV6psiayIA1pNhCa40xlpERn0HI8XT3mr70jQEmIAEGQEsIKIZE+J99rQXZ/wcf/6Z/++v/Tnf4v/+tH++f7b/+3s/+o3/utgGXIEcWvY3nVeMACZVMqR/v/OLuCiJeu37td/3u3zUYDHScA/iiLMMG1DudTrW6fTKZDIfD2rk4jh8+fPjKK6/UdQ1aWRfHi8Xi6Ph4f3//6tWrutLu7u7Gcey9f/LkyWA8OT8/d87NZrOyLBXMqYx5o9Ho8ePHs9ksiqJHjx4lSXLz5s3j4+OyKtPxRKv5tVhTSSySJMmL/HAyVZrsqq5PT0+ttffv39/d3Y2iqCiL09PTNE3zPJ5Op7uzMQefZdnOdOqcPzs729vbc87t7e3duXPnk5/85Gw2+/SnP314eCVJ4ms3bp4cP1ksZTab/c7f9Y995lOf/rlPfPz0ycMsSTMbh+DZeSTqEE1PF5R3Pe+apvVMBASJe44KRFsp627oMgghdeoB/dmKIkZVFDZBAh/ENQFAyBiJove85z0f/OCHB+PJYrFOs/Hq6OTRo4dVXY/2Z/fv39d4zXvf+94sy9555539/X240JZpdajKshSRJEmSKB5mg51Bmj9cVXkBRRkPkiAsnh0Lb9Cnem0dS82LJiBuMUnKBpItIgbklZvXjKHF4ryuiySL4yhy9oJEJIRw57VXH9+/F1w1mkwvnbhqlGgQhjbdOZhFNgL49PMH+7ObeMc+LIqKN5acsue3n7I4r7Swhlm8Z2MVMtrevnopIbC6DBrJCizMDQdgxxwuWxppmk5HExPHDXDDvlrngia2dpCkYqLGeS9sjGGAINwhs9BQHzble/39LHbDzUfWBg7sfPChqevImDhJjDUUTBTFwiwg+L/5OvUvu4WXlgL7ZW0d/IGI8Kmy+A749BV3pUREY0z6rzAToSFDREJGSZMRMYojNfy6OO/zT8iqr+K9L8g4Dkoj2bccdOBrfW+3+T7v1nS16dYo273lg/+lOCp6HgYpq5J6tGK0wfrrfXZf1kyLMjhBjwesH1dWcwe2Rda+jDLcr0hTW7MzXPr9670HlF/tLoo2rS1pmiZJsv4dtRQLGykuraDVqmJ9iE3T3LhxY29vDxBDCAr6UuNeR6T3LVu/jo26rhUBdeXKlaIo4qg9fzeFugHgvdNKEhE5Ojqq6/rOnTuagjs7O1PEoLSKpSsd3MPhcDwZKZ2XyttroYXOOlf5UHJVVY13w/F4Op3du39vZ2dnNB5Hkdnd3T09Pwvei6ZTENM0TeJEr4qIsmywu7s7GI3ysgKAOI4LS6wxWq26ZNZCJQUPdRmJFyw3XdFYF47tXP2N4f0MjYe+qXHpo66sSK1PshZUv0nkUkisKPLlalWWpTXWGOuqOgRGwphIvJdeOuVlYwQsUWyNNSEwISrgjZBMFOPGURFmJDTGdnWBX/SsmlFxbrNMIRJi4x0zbzKdraKr+iveBzLIhND6kD0O9IjUUfmid9StY8wMBMCMWmLCBISC9P3X/1r35f/jR37iBacCAJMkYoic9+KRyQBZhAjJIL1cH1y03d3d7/ve71O8VpYN5vM5szTB7ezuqjunLr0WiSVJEvJcRHZ2djTxuFwuZ7MZANy5c6esqkePHmkgQFOjmu3M8/zo9CyKovPz87t371ZVNRgMuudliK5du4aIZVkmSaIRhziOR+MRW1vV9Xg8fvDggTohy+XSGDOfL2ZxKiJxHLPIZDJpOOzs7JydnaWDwXS8c+XKlTRNI2vG4xEirlark5OT2Nq9vX0lNWbmwWBw586dBw8enJ+f37p1a7FcjsdjDkwmWi3meZ5Hcby3f/DP/wv/0qP77/7NH/mbn/vc50SECMm0HCAoID2MwSXoF9oL69EYE9voIqOikTJpy00EAJAQAUVg4wXBNtalzdu1LykiE4KHwHtX9q/dvPHGRz4IBhdVdbLK13kVxSvnebo3i4rqwYMHi8ViNptdvXr16tWr6q6cn59Pp9P9W7fm87lKaqZpOhwOB4OBsqKPhgMLUqzXw8EQMaB4FvEgzgeQ1q7t718bOPFl5dnuzz6BobAICIGEpuEQYj863N9ZzHcfPH7kXZMNhlrw3d64oflikY3HBDKKL2OSS+cjNLGJhslgkGShbv7TH//Yv/TNP/olTACAqij/uQ/9LX39xz716zbYDWohbczesRoa7CX4wGRAWiJp55mDeM8hsCKJghcfJAT2xMIgAYTx//I3P/Jvfkcbbvjn/8ZH500J3s8Gg5p9lCZRFCdJTEjwKt1/cnI6n5/Nz30IxlKEBgwREhAKbK0zAS9CRbY38rgtFtwUG4AgkYkU1yDsQ1nXsbVoqGrqwCAgxpgg8kvW5f7fYuuvtn+vYt8AwCwsosq2KNTnRpdNdF7DhV/p3+UO+hiC3xlN0FBkLVnrOQRhH4JGmnhTN65qVy+4Ee88+6AVH0zQNM55pxn+vsnRxV6fNqT7rbM6WoomaBnEOPgQVMRAU6Hdf5uT9R8mb0T9aCPL0PoYIj4Ejdjp1XTSjUp3q6ae2Ui8GWNYWiId6JkFsEm5qBHcuSjdHtA6xP1rEmBR1JzuPKioBjLkvfc+MLMwBwg9GrEQPGs5S9drz4U/Ij7PouKeyKO8PDjtKXbaS88JW5USJSF41jk3l7SJMT/3d/kSwfb2LG0aF8dxCIJIOkC7kaR9pV6H4j0UiacZFaUWVZlbIppOpyEEJPLeK7RGpBNkoCiKmsYzs/IC13WtyvGqhH1+fq7brZodRVkgorXWh5ANRsPRCADUEjo/P3/8+LFOmytXrmgCp/OF1DRXh0TrQKqq2tvb09B7y1tchfPF3BhD1rpNjFA/rX0rGcEsg0EWmWg0GuVNqJual01R13meu8DpcmmiVi2naWoyFggb32SWpA0FBIuCRM7zBcRxO5AbeuqHsIHD4oZMAnvEWd0UYGaRzSxAjQ1fUAZHkblAVOLF2fTLPaLN1qYSABEuy3K5WBCRieOiVhcRVEkgeA98kWjdHvo9MINCoNv8CRBgZCwKMIshgwCWjDEGWyFJ3CA0ImttK63T4yrpQhvSQ6kCgLIyONfoHXEIBKAhXg4XFhjp049Vc2aDo6N22Hfun/qU/dmnPl93ns0SsaEZRvQSgohnbpj/qWtbYnMv2SqM/vz3fU5f/4Y/fSuLEgZuyBlAI+JFQJABSC6D/NTN7gcOfutv/a27u7txFDvXsk6n6cCxU3BmlmVKLKG5sul0KiKqEL9cLofD4bVr15Q9b7FYAOL169c1j6pijtZanaQKmrp+/boS9zGzOv91XYO0O81gMGiaRgFgSZKcnZ9XjWua5ujoSN/XUqUsy5IoVpYwImqaRnOqIjIYDM7mc3Zy9fCQiOqqFBnleb5cLsfj8dUrV4bDUVmWCi1DpKZpXn311U984hOf/exnX3vve9NsUBYFCCzXeRpHDBAl6aMnR6PZ3vf99t/5iY9/4vNf+MLb77xVVhUSZVnWVBUBGSRA4BC8D0gYRZGAsA9WdA8UEKibJjiv840AwRIBIBIQiBhmDhJC6/2jbAINnS+HiIYMgdgoco36u5KNRq/feuWN979/7/DKk3yRr4soioqmjgZD77wA+OCPjo/yPN/Z2Tk8PNQsyunp6dnZ2fXr1wGgaZqyLCeTiXqJk8lER/XZ2dnpyZMU4OzhI19XKSKzsAQvwgj2KcY82OwLApsdsJ0EF9oOSWz70146VJGEYjXPBsNXbhx636zKkgxCL4Q4nU3ffuedyXhCcTzOdn/gU//0D9z+r/SjP/jDH/YxAogBQaDEWIlRmvDHf/w3xDb+Z77hf3rJ2dR5KQDwBz74w/ri//ELv1ENMDVpUEAZlb1nh94QEgkh+QAcIDD6AEFx7wp6Y2g4AKMEESbH8G/+tQ9XIhxZiSLLcLA7M9YyiI0jBgFCQEizEdk0TTMUmC8WjXdAFBGhITIGbep7qlOOg+JeENEzE7QRZgYJ6gsiAEATPCIaJGMpoYy9FwYXPBE1VY1kgVAQhFvnq83IbpOXyPNMEYHteFVvMQfYStQ8Bd25+PPSufsYpG0D4yVjMFvSik9zrfS+9qL6/94nl8FFz4d7Pc9me9ow2/psq3O2X2+Z5heOusIQRcQYk+d5UeQwGmrInkH6M6h7lM+ctnJBkY+B20pX3EQtuy9I705FDfRNU6FYZk6TdM+m6SCL46jxvmzqqqnzoiAiUHA2tc7/MzuntUVAWFg3Yg/gETgEvjBp2vKhy0OmZ8HCJjjbNewrLkJfb1G1q9plWtkgWn16fbffU9jrR9wwq6qfoHel2CHdmdR+8pu7VfIoY4xiDBQI1J1csVWIqMalUsrARtYANikgEUHbq4hSbsHu0W6eiaHIORe8b++eL2jNmDmwZ74QeLnU+m8+D2MDAICgyF16SuTxBa7wCxyVztvp+vZ5J2nvXVFDz6+l78bBM1cNNSacuOBDXVX67DQiK5sYvxr9ZVmqmTLb21cJBRFR8PdgMND8YOPcYrHQQ7rBoG04HPOmaV1+l1JU/ceyLI0xSZJkWaaZRAFI0izNsqZpjDHT6TTLMhVXAYA0yXQIaSJIA8kaWtNsj9pDymusFnwURaEpdUymg2wwGEhVjtQRKgpAImuiKAKQ6XQmzq/WBSLuzHbQhiYEa23d1KvVcjAaT7JB0zTL09NRZJmgCT6LY/XVCbw1aNEEaB0VRORty7vzRqCrzdg8dGUp7cZG57p3A7U/hjt7GjaRko11TnqqrtpEQuDAIYCAsk4H17jValU3zWg0chuCVNqI+gXvnrdpXdKc0hVCbbQITWyM94FELFEQSYy1UcShzUl675EoiiIypoNTSw/8ZjbMhv1RqvfrvQeDIuKDt9w6KtiudAgAZIy1JooiS2iNJuW0QCWKNvBF6IF0+64gbUIn0oPwdusmB/BBas//1I3neinf9Keu/8TvfaivP/Inb3oJP//PPNI/v/a/vPrn//cX+Ja/9k/d+9h//WoAX3tr0VC7t0kbTO1xpCKitVYd++7Nr/qqr4qiCBDG43HTtMJEwnx+fh5CUD+EmdM0HQwGR0dHo8nk5OREq1a0E9brdVmWe3t7jXPe++Vy6ZybTCb7+/tHR0fGmFdfffV0vlitVqqypfGLqqru37+PiIai6XQ6Ho+Pjo46sUXvfQhe9Tf1ITrnlstl0zTn5+fj0ViE8zxP05SMCSGMhkMRefjw4c2btx4/fKIi94bw5OTEEuzv7yur+Gy2o5qG1toQfJqm165dy/P845/4xHKdf+irvvrk+Gi1WownMwT+wpvvHB7sWxsdn53tzfbe+MCHPvy1X3d09OQLb37hU5/61JMnTwgMWfLsgQGNNWR98HlZiyrxOW+JrKIStUqJiIgMINkLpVRdslAEmb0AGBPkIr6m4yqOYxtHwYcqBBNHd269cv3mrenOTpINFovVJz/7i5xE2WjEDjxDuc6H2TCJok996lNJnHz0ox9VHScRSZJkNBoZY9br9XK5nI6G6lLqKqoXo0wGy/PFbDbdmc1OF2ehCaAVKqgmAKkjshUcaW2EDVignc4Xc1mpbZ8e5wJC4OtiORqNru7vyskZAzTNxSaeZMmVa9fOz84xBErM/vWb3/9j33n04N2R8eusATAxIgo1wTccLGGUJv5prNWX3v75N/7qH/mZ79RaQWLFwiMiMEvTeEOgXNNOTOA2i9I03vuOuhc9ibAAa92xCSBAdPvuq/Fw/Lm3HkRR0oGivbBHEUNAZrwzvHXz1ofe9/7Ts7P5cvH45Hi+WJChoqqcr0OPoTWKolYRFrFxzQVJgaEL7hAE4dBagEqNba2wQCu0wIQq3BkCg6C5cFS2TcHtQO7lR/js721/cvn11nbQOwwvWaFbLsFzbf1tK2j73IJb7tNz3YDtK7/0wUv9Ljw/wfKCK9eP+6fYvo6etSwXT7/NkAAQUVmVqvBmrKnLEqzpX3DfAnwmZdvGQbjgXO1ifB3oAHokYH1HRb+jGJOd2WwwnGSDASCeLuYyPy+KwjUNGLKqHobonAtP4a22HRW8uGaAIAEIOyaGi29c6uvNIW2k1bayE9BLS+iL59u2l9rzneK+hQTc53tog6PqaVhrvbsQCuzKGNqV3bnustSH6bIrCozrrDT+0vFpIsK6i+ja+ysCnfii1lls8MKpIptR+DxHq2t9F+XSN2XD7YsAeZ6v1mtm1rW4qgsFTQ2HwziOj4+P1+v12dlZkiTGmDRNldFLXY6ukTGdUrVyuKlX0DSNgrn0BjtfSD179UjVr5CNeAszkzFN3QRmTelo8k3P771/8ODBjRs3BoPBYrE4Pj4uikKDvsYYluCcU4GgrqxIrzzLsqqph8MhRXa9XmNkVP9hOps570aDNMsyH0IIIbKmcU1ZlrPxOB7EaVWt1+vatQNS8WnJIIOSkCgEYWERxMAbwl+GTdLj6Z5/QTPbOg+di2WMaXz9vKNUiLNzaztbhANzLz/ALdgBvPdFWS4WizRJ4jgu84KFjSEB9N5/KcnmNhtkjLFIsYkJCSFYYy0Z9gEBLRklSNVZ32lxd/yMmzDCcwv3u6VgM4xBpNWTYhajJmUrtUKEZA0Zg9ZaYymK4jRJNdsmIsGHTelQWzio6yMS2Sjm0ArEwcbu3PwKNV7K+rkd88E/sbem5iP/2b6xJo4ijMEzfM2fvMIs3ofSXWbNj03kvERkYmOqEJ5HtqAr4YZ8om1ZljVNU1V5VTr1apbL9XAyvHv3rvf+/Py8ruvpdLpYLA4PD69cuVI7l2XZ0dHR3t7ebDZDRK3xePPNN68cHup01i9Mp9OrV6+en59nWXYQxcvl8t69ezrNNXivHBJ15QBgPp9nWaapj8Vikef5aDyCpvHe37x5U9WNAEDdld2dncCsU957n2XZfLV89OjRer0uqupg9zCObJZlIFzlawI+vHJAROvl8hd+4RcGg8FoNFJsT9NUAHD9+vX1ujg+n7/1zrsfeN/7jp48Ho/GBmE6GX3iZ37m/oPHt195xZ/NHz96HEXR7Vdu/Zpv+bav+zXf/Pjxk0/9/M999pOfWC6Kuq4HgwEAKLQ6iqI0TazByJAxxhqbRXFsI01ukYAW4wmREAmzlr2yAAIURcEIURRpSZ4OKu9945xJ07t37ly/eStJB0gmno7XefnO40cmSQzbkFenxyd7O7M7t25/7hc+d+/evQ+9/wO3XrkNJjKRVcir7n2j0ch7v7+/L96Nx+MQwvHx8dnZmUaIdnZ20iSZ3riZCZcslgwZA8EDXBCDvgxPQ7cLK9gUn1MIgQAEoalcCTAapjthMs/L/tYcJfH+lQPHoViuV1VJgDuH1x4/flg1DUrNDJmNWCCqaxOZLE4owiimpir/xI/9+t//rX/j6V98+favfe2P/Hs/9k3CPEysFqohoHAIwBKUCgsbNoFbOLqORgD4ge/+jJ7hB374A8AIgHGSBM+e5fX3vX/34Oqd195f5mUSx+C5LEuIjFhau3pVlE5iMnGSJOmHMhtH8+Vyla+TLGu8K4rmfLH4z+H/qSc3gF5zOBrj7nZ5xC3LH9vYFjCweNBEq8gzbdZ/0H4lt7CtQqv2cAhhEMdxnCCgbAKRL7nnduac8LP3yi/a1MRKkmQ8HiPi7nSfmRfFuinKIs+LoiibOk4SQFRFrC/isD3zJxTwuvGeW8ztC0/Tt3s184EbKfCXdVRe4CF0FgYrlm47M8C99szDO/cDe5X3AKARQY3SqbejnGtfpqMSWEQUmf6lHv7//9ZVET1duN9vnQn7RbMuZqPg0Z25/6kqwQFiURRNU+s3N2XKonkJxZAQ0d7e3nA41Ii7wlH0MXXins65wWCQpql+X2N+3RUqM2bTNPp8lRlMRMbjcRRFo9FIEyPqluzs7DjngrQer5o4q9WKiBRPcuPGjaqqTk9PteJFN3U9swLhuv7BjTL9er0OjaSDLM/zZu3iNJ2Od5DoU5/6VF3XB5NJHCdZls1Xq7Ozs1GWIcB6vT4CuHJ9V/2r0chGUbyYL54cn6RpOhlmZNrYQRAGRkRGZAkgKIgXlKYvPwD6NAadMQ1fzNVRF64tgu/R+wQOgtSSGCtCEwQRXdPk+VpY0mFa13VZFiAq2CpVXeOXOFPaqIQxcRQTts+6qzHrrl9nMitthml5OwWAuemqQZ55m6FlU23XfWRABu+VtqcXfSHSAIix1hAaa/7Ixz6uZ/gzD36L9/4fnrY8p3998du+e/o/6usfWv9OAADEWMC3nkm7zihaMARpnC3qZplflhP+tf/VzRIIEZMdMx6ko9QOIpvGRtmG6hDVDdd13dT1Z2DZPzA25K2NjZIUeXhOfWdgBu/TNF2tV92bzJym2Xg8Wy3zNB0URUGGEMAYs1qtTk9PRSTLMuXsStN0Ohio6ZwkyXw+V9zm/v7+fD4/Ojq6cuWKKhQVRfH222+///3v39nZ0Zzkzs5OCOHs7Ozg4EAXivF4fH5+XpVNlmVFUWj1iE5M55yNosMrh59/8wt6uLU2TVMl3zs/P5/YON6JB4NBPZ+fnZ05DpogvXLlCoE5OztrmmZnNt2djknYez8YDG7cuMHc1q0pr6COkDRNX7nzypPz+dHJafbOOyj83ve8dnp6nBflK3fvFkW5WBcHB8NkOEzTdLHKHUPTNEk2/C3f99u+/Vt+zWc/86mf+ZmfefjwYQhBQadxHNvIkDSo3jKLbIAr+mfnMyh0rV9aOplMKtcoL6Jurmma3r1795VX704Or57Mz/OiKvK1Z5kYcj7UCMMomp+vOfBwMCxWxc/+zCeuHRx+5Lt/48HBQZEXC1fXdY0IdV2Px+OdnZ133nkniqKqqpqyWCwW5+fns9lMyUKuXLkCAHEcJyAjQ25+vHjwrnfe0obx8qXXHuzBLTZT85nfE3aNeF9XbLPBMMvqAMZcjE8kMtYORxNEWp+6JrBJMoqzUJeNYxBHQ2OEl03pck5dnVgzBIsoSOE//1+/a5CN/8mv/vMve9FPNeccAjQOLCCZwIgGhES8BJEgAnUwgbWYXlMU/O//5l/oDv+BX/fpf/eHPohItfNC9tX3vBpH6cnxqRdEFvJsBCmKxVAFEpFJ4jjGQTYYpWkaQLzwwf7+4eGh5wCIo8EUAP7ze62jEqoGDBpDgNBsIGGXo4cAxhoddZ4DBEGlJkJ6Cj7zD9qv9HbJNlMMs/c+jgdJkpAhvijefqmJeglP8WVflSplx1FkMSqKoliuV4vFep0rfljxUDaybd3aS/+QqPbohiuipUcUIOnyfs9ufbu381LUyrX9US/9F5eygc8Jc+q3LzJKLBcCVwiB2YeAwfsQ+jBN2JhfXRieORijsHK01iBhYI9uq/b/OVY7bl97+yb376bNeoFavAS9PJR+A1vszZf5zJ/bvszzdcn3Lij+vK9p6775vHZpWF/Kt0aRDZ5RcTUCABACq7mvKBEl/NF0xGw2A8SyblSIBqANNHaFKLPRSMOTCu2rqqorR8nzC3k43dS1Qnd3d7cs1lVVDYfDoiiWy6UWimhpb5INVWlHEV/GGGVfRcSD/SsKuvPej8djPbOW1J+dnSrTsfroSkAEANbauizVgXHeZ0TCEttoOpnUde08RzaK4pR57lyDWcbCjWsCexGI43hnZyfJBnGaNV6oLJ1zy+UqQwNthANEhNoRFwAQthVkXzKt3M+odHmA1kt//nMO3kXWav06bmISutsxqYeC3PLFIIv4IGXt4iyzcTJfrYuqAhMRGQMcQrDPXzefMQkFCNEgWTKxsSCCAIaMReVdR4uEiEGCQTREKEwbMXk1pKSfmH1eRiUE2XxVABjAMYc2OCIEQAikLKFIRIYM/ScbLwUA/tEbWyJxnZcCAN81+rN/bf6PCECQNj2ka6VCE51z3nNdh6Js1uvyX/zrH/7j393KPnzbf3mj8T4ZpnEU7Yyz/eloEGFMnFokYA6halIXSxmTS+0/8Zc++N/+lk/pgd/3Z97DhC0WhbAnFIDcF8cGiCPrva/ryhrTQJtU8d4bE3nnkzRdF/lkPE5TXle5Jidv3ryp4EmdDovlom7c7du3p9OpWtvM/M477+zs7Lz//e9/8PDh/fv379y5Q0RxHM/n85/7uZ/7hm/4BudcXhXq7azX67fffvv69euTycR7H8cxBxgOh3fv3j09PQWA1WqlMLPGu5OTk6osZTqLo2gwHOZ5fnh4uFquDFHtmqIsRWR/b08QnpycaIQiL4ssGQ6HQ0Q82N9/9e4rp08eI+J0OvWNm82mdV0vFov5fK6VMKenp2VZGhvt7e077+bzuff1lSsHSZrt7u59+pM/jzaaZuO68Xv7V7Qax9j4ys5eURQPHz9JEPYPr37jN39LYG7q5snRk4cPH+VFLkDBc0RorbVkSMA5x56ZA4pkSQYIoEqi7ajXrReXRSFAUZSkg+zWzZuvvvba7u5uCGGxXL757r1Vng8nk+nu7nKd50WJZGwc+8CzySwy0XJxHpnoldduv3rnLkooVmsXgvhQl9VkMinL8uzkFBEmo3HTNFmajNLY+/D40aOqLEejkTFUFOssG4yGg3ESk2uAEMkgqWHA+JR90G3Q0JkRFy/EbLQEDQIJPzOjIgC1qxGRnW9EbDwcpWnaC6/EaZp5Xq7yqmooig8OrxuU2f7+vFj64P9fv/ML+rV/+Uc+UpdF1FBiTBQNk8iS2KZyy+X8z33md//29//g0z/9dPvDf/tb/9Cv/bH+OwxIiFUTLAiRGITYkEVkDlojUAYtnfc+BHyK9h0AWAAJjY0D4Gxnd7lcxtmQUNJBWueF95xlqQcBX0cGdydjE09NFJO1QQQNrYvi/PzcWNs0zS8+/uzDx4/ga9sz746HNk2iNLY2ipKkqps8z4uicN51Vif24esMQRhEDKAB1Q7cPC8B2CgvyAtwTpumltnTUW2EDvgG8JWwgn4ZTKlfxc3YLXyEBowkBBtFJooRSVilkIFFNOTZ9V73rKR70gAtKBOkjTu2X3zx87/8qYZujTFZmi3PVnlerFbLdZ4rB5IxJoqiLEktGUubjMpGC1ZplBXt98zik2f83ktETPp2bz+jIiLWoAUG9oJoBEkQyBAg1a5RAg3eyEL17SpjEUBCcCG4rQg9AgN5DtzU6J01ptzgVrGnpKMA337YuHIVBjTeEFEqaRRFjh1jACOpjQEgsCsrp0YXt5FhEA/WxETkvVP9lc1MQ7JxAE/AyIKh8VUeWctigkcSio2NyITArvEuqNC6IIHflA20ZT397E1PZOaSiYnCsTUEYhAMIfcAqQz8vIcT9cgct9jrAeJEk4Peu8u0tgr+JiL13/p1Oy9QddQi7i5UphZMmqZ1XSNDqLmum8ViKR6yeJCmGbPUdW2HVsFXu9PJ2DmlJVVZz0maRXGsLorGOIlZtTsRoK4qDiHLMmtMZK01xjlX5LkxJs9XWZZYS87VTVNFUUSkbARJkiR144uyZsHGBStIRGXVRMmgLKoQQl1pHkZm0535fB5FkY1MNpgkaTwYZtobTdOYkgR4kGbj4ch7P5vNQghVqGwUT6dTQARaKNDr5Pwsz/PdnZ04iiNBQFwW1aPj0yhODEZZlAySZHB4cH52IhEsV4skHUCLQQpERsEYvq5Xc+99SI1BEwsbMRSo8Yjt/LoQXZL+o4wtCUtgr4HnqDcdmp6garsGbXCqRG1qQkQYWAtyFKc+GY1AJLhGfSbvG+99cA4FyiowAPsALJ6F0sHZ2eosl6OVH812H5+c5I0LZJ1z3DQAEBMCBw99jrBtJ8u0ysnqAZOgFRuhjSlKRllwrilWWZxFURR7O8wGVVURgrBj52MCAUziyERJXpbMbIytyqrDHAIR9BjJtZWBl1Vdu2AMASIRratizWiMSYgI2bCLBTM0f/l3fF4P+d1/5YPPmxFPt/PlOoktGR/FcT95q5cRgm98U5TlIl+vCv/b/vtXS+9FhC2nltJhPBuNDiaTaRwnCIQ+gHfiwaBAEYJDCElMUUzf/zfe3zRNXTcOSqBgE8rIlGgjjmKAqmEQE5FF9E1TsUhsoyiKJfBwkK3z/GKEeCrqPI7iunHOOQYYj0Y3b91aLBfTndl6vR6MhipdOp5OJpPJ2+++c3x6PBwObWyNMdOdaZIl6/U6TuMrV66cn58vl8uqqnZ3d2/evPnZz372zTffVLdBg3/T6RQAtJAsjuPHjx/v7V+x1jbeRUnsnHPBF1W5Wq1Go9FwMtvf2TNIgySLyIBnkxAKOOeWyLyAbJhOR+OYaJTE+SocHT8eDIdVUwQXaldVrjLGBkFXubPzpUE6PnkTEIqiyLKsqMrT8zNr7d3XXrXWNqF5+PjJyekcif7Oz/zMweG1q9eu7958NS9yrvIsSeI4QgN1XZ+en+Tl2hizu7vrXBONJMMkzbK93d0PEzZNc3xy8vbnPgeLkypfr5Yr1qgDS6AAAAbIGlJKw7KqG+8osmyxIRiMpulgd7a3v7+/PxqNxuMxALx1cu6dj6I4zbIg2cHuQRTFBOn5+TkZHEWDpm7WqzMy9tbNGzdv3tzd3W2qOs+Luq6n09mVePLuvXfrYm2RXPBRHA0Gg7WEUZree+ets9Oz2OAwiQ3w3nRijAnB18W6yj2G5hffejPNUldXMQQSRgiAgoCC4EWhwoBIbUmn8ChJCNkYQwAGxbIjQmIkAotoIkuE3gdlndHhxwCl9SiUIhkfIFTehTsHB/8zvNV+gZAoGg/GYRJW83OI7OTa9dG164uTo7/wW362G8Z/9Ds//nv/0gcMQhJHubid8XiYZmIoYlrm6z/z879zmGRJlM5Xxe/48H+jh/zrf/HrT1eLP/VP/qL++Y/9ybsPZss/8EPf/Me+68f1nX/2hz6SR5DGEXooymIQmwTZBQ8RNcK1Dw3L2guABPYgjBDsU3u0RxvHmROzd3BtNNmb7uzXznsuvK9MRHYQMQKwJMZGwt65ojlNBoMmD/cfPHp0dLRYFcv1ar5Y5UW5Xp4BSOeojF0eYx1LZE0UFUaIMDKwM6uCX5d1UVeehQ0tg1R5wbVESYZZ6okFvA0h8pxZwwgIEsVJJFD5EBAcB75E6LhdN4K44Q6Rdi3vLFzuC+ihSgK1f8kLwDrbR/XtHNyyXC/zTHaNiKgXk/F4sdrLi4iNXrb1d9tLyYdLJ98K3fbev+z+bdWkbF0hgdkOjV8cYqJYj0MBUuPUxpBSVbmjvH5lN0PvEFg8RwhGSIQcoTLGGQ7eNbWvS2nYijXCEHxoICCh5cDMgohRlBiKOJCw2I19yMoHp/kDkTiOQwjAEDgQUBqnkVHMP4YQFqvFo9Pjk/WykeA5EFFi7DjJ9sdjVzdSFKM4XgFrDKMdOcIISIKIaI1V14KZRcAEVCIHFBCB0BsDxIIIAoxEnV3Us45QGAVQEZsgoNQYl6FfWubVseE88/G/uClw/6I+tYdn6Jtil4plWyCp3pVnQuag0nkQeqNDMWwsyNJWXDCI2uEMWxwXzF3olTkE1vyuYnCfc+WyQeh2mYqXvOWORvlZBz33JJdYFLazHG0e4GmY1i+9dT4nbxgRtMaKWTgwAHoftIY1HWaaJOmC+hujLZC5KPkAgKqqFAsRQhgOBgqKUHhYVVWKsLfWFmVZlqX6GHEcd36ziGjZiYjEcdwlc0IIVVUNR0G/BgDOOa0xVYYxvTwAUDKisiz1BrXy3mwUyrIsS5JkQ7fX1vEvFwtrbVmW6zyPokYAyqK4dXgdAKqqzte525kK82w6HQyHq+UcJfggIkI2GkdxHKUucNM0VVHOyCjCmBlENEvAAAaeCiv0x0cLYXqJ57s1qrZX2/5wxZ6aKQfl6BRCspak8a0Pj2AiW5QVWbtaF2Sj2vtmE4q4FMghuLTxbX4XttCmKp+oMt6RtWRMCB4NRXGMgEmcoBYWE1W1k5biTEdg2OQStjpBnpWAct4FXRSoFc+WjUaktHlHRoAf/j3vdIf84Pd86ov2bddO1814ZAcxUwjW2EtLAYt4YY8cEMQgGrJgIzJxZAzBYJpNsnSamoHBQRJbk5W+KVwZfIgj4oDBl+yDgAgzCBgkIGQAQhXYAEIBAWo1y5U5zYiIIQzOGSTfuDfe896fhfaOZju7q9UKEdPUENFgMPAhlFXpnFNa27qusyzTeERRFMqYp8oqKr6xv7+voQpFWJ2enqqgatM0u7u7P/VTP/XBD35wZ//g4ODg8PDw8ePHR0dHjx8/fvfdd1Xe8ZU7rw6Hw5YiL/BgMHjrrbfOz8+jKLo+maRJkuf557/whRs3bqiTMxwM6qZ6fPR4731v1HVtJrP9q3t1U8dxPJvOXPDj8dggDQYDYX746GGSJAbT2WxnMhoVxbpxtUqyqCbSbDabTCbz+Xw2m5ooevLkSd04RmOsne3spGnaOJehP3r8WCWVVApmb2/v+PhYGbSGw+Eqzxvv3aZKYTKZfPQbvnEIPjJU14337v79+1VdPXjwoMiLyBhXFK52EtnpZBpQ0NBoOtnb27tyeH10eLPx/Pjx47Isy8bFcTwcTxUca6Pkxo29w8PDxWJR183B/pX1eh08LxfLD3zgAzs7O7qKfv7znz89Pc2ybDqdLlZLV9VVUeoymCQJAZZ5PhmNyyK/cnDAIdR1vVot0zQ1RHVVlWU5Pz8bDJMsjQ6vXnv4+c8Ls5bXIGxqai/WjQ0hHrYmpYbnEbTWXJOTaNQcEEYhAuGe0YoIWmdvBC2ABE6I+pxFwywdxiNi42vXVEUQJwKT3Z2H9rLJwYIg0jhmI2vnwFgM3HjnnCurqoiLhOJRPPyht36/ieyyLpevF+f5+g/96I11Vc4Xy8o0j58cF08e/ob7N4az4WCQSWQ8QFFVMcUmioqqECPTUWYMoUbzRJfqTRiaEVD+4F+++x/95tbL+jf++leJoWw0OrxxZ3ZwZTjbUciyqZ0XYRKrFjAiiBpqUBbrz/ziLzw5Pnn7nXePT8+FKLD4ICwyzKL+6jawJiaKCCJky0DMgiAgwyyZDbJVWa3zfN3UVnCUDSCzTLYGlRWHgOKN+MoP0qGJbOV98Bvpvy/Fqsfev8/+wib38kXrCn4p7Uuysr688z/z9VekXdq45XkfIfCmC1ELjS5mEeR147ykiAjIwChtJXHHJNBtybIRBZYujwsAmnVjABHVOv6SnpX6MyGEqqlr53wILBKEtTQltpFFMkR1aEttDVHYFnvpknuy3eACWHVx/e2L7fr+re9sf9THobx0Mf1LN+4p4F7yYvuOyna4VIyxyt2q9W3qYz3N/NPdQHtmbO3Xy+4ygt6mcpB28DIr8sLpeSHmGDbyji/TFB+1cd9fdj70b422iR3C88Ulf+mNN0xHrcIJt/frvUMiNdGY2TnPRRFFFhGrqlIcl8JgmBnQKH1Q96wB2rp8LbJXP0EhW3meV1XFzIA4Go20+hMRtfBUj1qvCy1cCSEo67GW1+/u7uplq9eRZZmW9Q8Gg52dnTRNleBL2VTX6zUiXr9+/fT0tFjnekgHYPPeK3gsTgajwXC1XCqZktYojyeTdZ5rgEdBLLPpFADW67Ve4UUFBVFZVrXTwg9GBEOKZhKNwj6v5y+lCGTDgkVELwgKXDrqEhIDN6wDrEIfm6Y1cGoq1cG1Atnak2SapmKmxXJpbVSUlZJ9dab5y4yiS02rUOI4TpI4iqLgHRFlaVqXVRRZ73wcx7G1LE3nqAQADi2pYnjqR7lXV6dNneGnL0+/wRpeeWqh/vo/efOnft99ff29f/b9BuF//B1tyexv+cH3/KXf3eZe/tm/+sbb2Xy0LF85GHBI9Ha6pUbbvFwvqjqvq6oRRpPEySBOBnEUxXhwMP53PtQSpP5Hn/yuP/ihH9LX/8ZPfvNiXgQXRMDaiJmDExQTIRlLPnhWwccWuymwsQsRoXPddSKEED7wgQ90jsp6vda5oJgrJSN+9OiRxgsePXoEALPZ7ObNm6vVStHGy+VSyaP0cT948GBvb4+ZB4PBwcGBqtGrP/+e97xHRN58883f8IEPKi5lOp2+8cYbX/jCF5qmef3114uiOJ8vq6qK43gymURRNMkm73vf+wCgruvT01Pn3K1bt5QobLFY6Df39nd39nb293YtUlWVyyVpQvjs7NTGEZG9ef0GIr7z9tuxjV67czfJMh1acRwH9qORwotsWZY6Z0ejUdVU6WDovZ8vloK2ruv5fH54eLhcLnNXzGYzvfFOdPLOnTtN0+zt7d2/f1/jF7PZrGmaPM+Pjo7eLnIUEfa3X7k9Ho1nt27HUXzr/R+qqqouy+uz3SSKjLWeuWrqVb4uqjIE9gDvvPNu7bwmlJhZC0sUfXdycqIIgqIo4jj+3Oc+d+3atddff/2VV145ODioqmo+nyu/2WQyee2119br9Xq9LvK8qqobN25MJpPz8/P5fL5arW7fvl0UZWRJa+u1Y7Vv4zgmgqZpONRFUWSDrKrLF29G1OoEbMU+sOP7IiKUvrDDpUkXY0QClowVEjLMUjcXZDnF2bk1WRbZ6WRSluvaQQi8v7OXjUaXTuVCIADnXJRYaMogHCGBC8ZLDOWSKAIztaN4uTTWFr4JBkFCCoaSzIyFdpOyqRZN3khYFXm+XExGg2E2SKwhgyQSfGOTNMtSAPAAzguykDACYEARLWMnAvw//ZX3AqJng5aMjfYOr955/T3pZOoYKhYOPMLUI4aNSjUiMG7g+ERFUTRVSQiEouY9GRTAzJr+6j7OUktoLFnCyHskQmImcE1ONjqcZqMIz5aSr3Nv44aw5MCs6FDyhIJkhIEQrBHvRRhwww/5gof9K7LJhuLpl6n9sp78MtRlmzes+0gQeHMZJNCncxSAxXJZuyZBINCQFZD02C9eookIc1DqBfPSUn6yAVkpO9G6yIu6aoJnYI3XJ3GcJIlWk1Z1VQdX1TUiwfOkcrd5MgGeW+DKPcbgF3zUnUov9SvvqGj0fUPq89y5cylXQIQiGIJWzwdl8tH49FYmTgP/LC2/EnEQEdFA64WxJwAtFawwM2rZnDB/URwn9bJR8HLRbtjY0F+qhfeCUcXPF5f8pTeRVptSUWSdMxxC8M4Jg3Mhz/PVaj2ajqLIdtkMfaB6p1GcaKalT/urhbOdvasQfy3MUjTkar3uwCR6GVoJMBgMAGi9XutrzXjoaa21SEapn5lZo8Lqk6iF1NHHKapytVqt1+vBYMC+3U7U0xARVWaw1sYNz2azyWh8tpgrr3EUx3GalE19vphPJ6M0TUXYGOOcW69K5c5umgbQKMgtG4wGg4EgNU1jALEs2yfFmtt79pO9FEIIHDr/9gXj7HLgYXswdPP5kkvvnfOtXImliJa56x9CRPm6aOo6jpKqamGpndvZtUtU+/2EyyVviQi7/JX6SMaYJE2LdY5EWuVPRNZGm8gKBR+Y2UQxIgZ/uYCNN0Qo3Ztqgr9gLiAhmMvrY9U03/KnbifWRIhsvQj/pv/mrro7tTTf/advZrHNYpuDD1x572ZxYO8QsavlaOGvIIFACCUyJBBDFNkkMlYBM52XAgCdlwIA/+E3/Hj3+rf92fdaYwnFKBEpEUkgAUtgSAhEbR4E1JyNMuQ675AMsOzt7L7x3te7s6l/HkJQy1gH9q1btxBRK8qePHkyn8+n06kKuh8eHiKichArzXFd13meG2MeHz3x3u/t7Z2fn3/+85/f3d3d2dl5z3ve88lPfvInfuInPvCBD2RZprDPmzdvLpfLx48fe+/TbKijtygKDQcoB+B4PA6yZubVaqVZU11n7t+/v1wtpjuT2Jo7N28d7h9ExgLhE4axXgABAABJREFUcD6MoljZ2u7du5ckyc7Ozs5kao0ZDod1XR8dHY1Gg+VyqQaipn3Oz891eDjnGHA0GlVVc75cS+3u3bu3XC6jOBka1iTMlStXBoPB48ePP/GJT6h7duPGjZ2dnYcPHyZJoqVrAJBl2d7e3pPjk93dXZsNHhyfnZ/PAUHL6IdZ9mSZSwhVVa2KXBdnF3ySpsxcVnVZVTs7O9PptE9TqWd2zp2fnzdNs7Oz8y3f8i1HR0er1WpnZ0cJQrREfjAYqMhmFEWvvvoqsqi0lKaXtfOHw6FIuH/vXc16qXaNzrvhcMjsV/kiX6188IQYRRH4C8/hGfOlLeRC6M0+3MAh1FG5tKpcfE0gEkQhI0gIgCJN0y94ffz2W9loh2wSgJI0jVNb1TTIsvF4+n1/5aN/4Xv+rn7tH/kz72UrgTk0ji36unIcMhtHiIbAszcBkNE3bCsjhhyHgFAHzyhoTeDgfWVimiXjsikJwroMxToHlngyEQlFWY6zZG9vd5Am3jnH8O98+0/qT/9r/+8PBgERRCFSQIsYBCSKiqrem+3uX70+nM3MYGgsSWBX1aZpBIGdAxBg4SCMJK3UJ52cnHzmM58BgDROgIwgoBCAJAZNz6IdJpEhNAiEYpkJRQiQzDCOAmBd5bM0PpzdCPcfHbkmr2sHaDAiIAB0ZBzyKLYNB2xqIURrIQgKEED41VYccolo+JcDPPLLd3LA5wpRYB+4g9Ch+vsV3NpW63XtHSACKUdo6/q+vNMpGjs1cslxenHrLExmds4VZVnVtXNOTQljbRonqY2sMbV3i3xdlOWqzHUtIGmdc+zZ05dTCM+/EN6WNnneR/0sBSLaPM/LstIYlXoLmnoiouAFOvHabTov0xtfRNTPOEVocLt1H9m+aX7JJEIUNqgaBpsBRkiC5IW7/hBAIdbnioICzCpkhwC0UXVlTZEZQiQkEAne94jMZSNgTT6EbQm+C8zV0/3bf7N7zCISgrc2ZWZqF+xtsxKfc4ptAOV21uwCgfb0ZXTu39OYsH5FoFxasJ6VYuuQLSDSNE3TOCQSAecaNdSiKB4Oh4r10l/TCKhaHnjBySAa7U6SBDYsSerDaIak+1Ha6A+oa1GWZZqm4/FYg6bqhERRFEWWNwRiRATI6oQYY1QPR7lu9LfUC5pMJsaYqqrKsnz77bd3d3fZh44HUOFhyn0MAIQOAYbZ4OzsjJlPTk93D/YdB3Vude9P08w5N8iSqiyiKOIAcZYJEBFlw6G1kTEmHQxFBFmaB+sQmEMQa3X1bUXiejXS3dPsnrImDduAwcbR1eXGot3MHRQJfQxxH47FwP2jOpY2AUAiixhCaJqm8g2i1T2BmUGCsS0zgYhoJ/OGDbw/6ghRAiOAtREZ06cvC91aA0AAgbnvqeqAoQ3fWodgYWkUfpkXpXMcBG2cWGtXRdHNj261ujTAFVgoG4ZAZgbmizo+xHf+D6t3YNU/5MN/bLQ7jfZn49loNEzjSAX+Grcqy6DUXt4ZkpjYEMYGLIpzTdNQi8ojREYdnE1VxUlinJgq2IjIpsDYcIAmNM1lHrBntv/xd37u1//g3SSyMZqYMDIUxxZCsIyJtWkSF5VruCl/oDUur//HuyJggMhg7eo33vv67Zs34eRiOIUQNAqgI5aZj4+PDw8PNZCv2qynp6fq3mfDwfn5uXNuf3+fiDovIooiTZUo48XJ8XGapu+++6619tVXX/34z/38w4cPVVN1b2+vKIp79+5Np1N9msPhcDabHR8f6080TbNer7WORddGnXcikmXZ/v5+NsiqplSqQNc4plAUBSImaeJD2N/fn5+dt9JMPujSEUKQEI6P8+OTI2UoVr9IhSmZ+cqVK8t1Ph6Pi7Je5IWNE2a+f//+aDzZfeX62dkpAKjFr2va3t5eCOH+/fv6ej6fL5fLO3fuKEEzkdnfP2xq9+bn39nd3RsNp865bJAJC5EZ7uyenZ4dLVfr9Xp/bx8EhCLPaE1889bB2dmZ9/709HS9Xo/H48lkIiJFUeR5fnBwoNCywWDw+c9/fjqd7uzsaGlZVVXK3/XKK68oT5rSGI6ygV75YrFQbzDP8/l8vrMzy7JM8W/aq5oWns/n1prgQ57n+zu7R4uFtRE/x1HZ2p0RyBjxIYSgQjGXNqluMvaJB0UkMRaEEAEYmBmJE7rY3x+/+YXrd97rKMIoImtDAAQiNIPhaDSefu9f/mi+WkjjOEU0kTEAgEEEhD1z5R0TxcYqb59BPD5bEFokEgS0RgwACIGABc8NekSExFAyHg/SZLleI6LzHoJLI5pOxlmWgkgI/K989KLm/o/8pk/9q//T+1QzF6wlYwTA2Khq2LNJBuN0MPKASJgMhsjsk2TgmirPuapaUF8aQwjCXJbV//y3//ZnPvMZRNTCRQGO4ihLM++8ldCPnwwiQyAIQihxZBBFUABF2BOgJYTgoVzfPdwLZ6fzurQYEQEEAUIhw0SUYlk2FIhs5EUCX1Cs9I0PFLwU5r14ddnI2a696EV8Zdt0uGS0PfsouGR8PL9I5ZKZgs//iLY/2rqMZ58bLvaG7nq30PX99/sfPfcet/8k2ArE94ttVCWx/SGtx9CjBQiIN1u2976oyrppIEsFMIgQAqueAQCIGCFuA8mKmMC+C6Rbtg8BEYhMlyRBRGX1hI3Ks95gt7/LBjGuf1Z1XTZ1XhaN98q8YY3JkjRLUkO0LPPT1WKRrz2zqMboUx2uS5lsFF2cc+1KolbQZdnN9hY2psuWaQSXq0La27UPHjxYLpea90ckbAUetfBaLhnTvYe05aj0kwOm96B7gKj2z+2H3h8cphuLXTwVAATAhx5aRhhYFFcrKCG4AC1ND3RFFMIiYglQQ0ISvPdd9o2ZaZPwAfG8bcH3fTh4Ybt42CIbMjWjnb49B3r3+/yp0r8A2WQ8nvmd7qNneM/9/nyK7rBrtHGB1Jiw1ja1L8tSXY58vfae0zRNklht6c7x6CLuygnb+9l25LXUnCEYYwaDQQhhuVyqwaTzp1P/REQAUcNagZJN0yiCBVssma/rWrUaq7rRk2h+Jo7j0Wg0Go0UV3Z8fBzHsf5cHMdXr15VfZW9nV3FPilJUZZlGvfN1zllVK7XRVWlaRqVxdn8fO/qFS+cDrPVahXCFe99HEfMMsgGxXpNRIQWg69qZ4yJ2rRBy7MMzHEcax9bY0IADoxGBKSlxeih47iPVNysFLQhuOh6cjvbtrVm8yXXGkRxdKA8tpvWJ8BoX1x4wgICZVkikYraqld5uWyslYkQQlKpRGb2gCEEFuGeo6KJzk1GJRYJHW+1NQZF1K611g4GAxeC6tN5RqB2gWvqBnsAwv6VX9z4xolSP9l7H5g7n/34X99yUd74D+nmwc7k2vDK7u7ebDpKk9gYEg7ONTUezDZio74RZgRdUoRADG0Upqw1xoC0zPeND7bxyMIhBAbXNCL4Z3/zz1+egy9s66YO4gNaMIJG0tiKkyhQHJksjaO8LH/gAqvw8F89u/IfjIkoTtI0jr/z2799Ohp3jgoAjEajOI7Lsjw/PzfGDIfDKInVxRoMBnfv3n306NF8Pmfm8XjMIHVdj0YjdSDVq0dETWC+/vrrb7/9NiLO5/Omaa5evbpard555x2FhE2nU63vmkwmyhiubsnDhw/v3r3b+TDvvvtunufe+529A/UkteIlSZLFYhFCcK6ZTidXrlzZ2dl5/ODh4nzeeLcq8uFwyMKaUD0/Px+Pxw8fPriyf8AhpGk6zDIRed/73qfT5OzsLM9zVWhVP225XIrIcrlAwOCDCKh07MOHD5PIFkVxfn7+6quvXrt2zVp79+7dOI6fPHnivV+tVtp76/X62rVro9EoBN7f2T0/n48Gw/FwOEjTuqqns2kIgQzlVbUo1vEgGxsDhoR5kA3zPEfA8/NzEZlOp1rzs1gs0jTd29tDRBWuUZxekiR37959+PChsjnr6pQkCRGdnJyoMRFCyPO8SDNmVoCfVvTp3FytVnXdzGazoigU73d8fKxr42w2WRchiuMrV66E1fLo3Xefl7LvgggiwgwRtrATNSv6q01H1tKtSN3ubKwFRoYgAMzBWAS5yMx85u/+XRsle7deCWJQwvli7quqKkoks7O7V+SlsXHjvCABWWvIGFNzqVxr7EPDLAbARtYSWOMGehmMAEitli0QGCISQxuoCZKJjGXmqq6Lshhn0d7elZ2diWtqXzXhWdJQSjXQ+DCIE0J7vs6XeTUYjW0yqBqPq/XQ2CgZGANJnBqDkYRokKr2FwA8efJkf3//c++8/alPfzqKY1X6SpN4OBg4V/mqHA8HhrdMtdQIAiu4P4kIUEBIEAEIsK0VEhAycGM6OlmuQt2gjYJgACVQFAe+9o6IQDgEATAbJ2FjvQEAgKBsKbNsFbtvh0EvGTud4YiXLfqtUXSpK7ex9xdfe3GNy/M/7Gdb+vVPrRT5xQleANvpv75kLr8gM//8dMAle27rqJ711fd8EEyHzVOK3s1PO+dqLy54MKS12YAEIJqvaB0JvgBNaGl/F19u8xchAKLZaDq3T3Zzc10cEwD8JszXfaTNNU3jXVFXDfsW9xXFwySNjYXA8/VyvlquipxJC+MvOBi6kydJoll6ZZDvgA89k2bLKehdG166mK5zLvkOVmHHKl5x6eH1hZABnuuoXPJH+44Kbmejts6wfR24BULjDhorCBBcn4OiP+wZt1Kd2ondY97EF6RlTG+Nwq9ABrC1C5/icfp7214w917Q0jTN1+cqdMDM3oc4TkajESKZ2DJ7HYUK8dr4GHARvN9MGdy4f65poihSomHoKYz2w+R6qVmWZVmmUC4t+VVlye5AZq7rWnmrAUCdJUV1ax2Lrsz661EUjcfjs7Ozu3fvpmm6Wiz1ItWa6fJCRZFnNs2X66Pz04MrV5IkQQ3oGeNCaKpCNZ5FxAdflmVHIh4ct7F8Uc0f0yYbASJrjbEGrbGWtVIlBCZkZCQD29v8M59Cn8PNe09Rv5rruU+5y2tpZim2Sf9rerXqu/cjUgLiffDOAUhfQ/DpJszW2NYnMwatjaxtmqZqtkQnWSQyRrkNNBcNAFrRJCCuceqlOOcm09G6KMqyBIEQQhwniOice67U8NOX1FuihZ971OGNw6vjwSRNZsNkklBCgdgbhIDeEKejrOtJ2ZTDheAkeGsvosiKYv3u4f8AAHAA/8mnf20EaBiYQ+nDX/pHPveS19w139RgEwpgxKBAZOLAJiIfGYwMRvbySmKQIhsRwM1btw8PrpT5hWTkZDLpCrrSNM3z/Ozs7PadVxTFl6appllUJ2SxWDx49FDJtauqok0Npcaniry8fv36zs7OarW6detWWZanp6e3b98OIeRVfX5+fnx8/N73vlelV15//fWf+ImfYOY0Gy4Wiy984Qv7+/ve+6Ojo/F4PJvNNDahioRaT6L9ube3dzY/0zTO6elpvs41/1B5l2ZJ1dTr9frGtetpmq6WSwi8M5vNptM0TX/xs5+Nk2j/YE9Enjx5osVpGpUYDAbD4XA8Htd1ffPGzSbIYpXPFwtEHI9HzG46nQ4GgzzPj4+Pr169enJysrOzk2XZlStXFBeXZdn5+fmTJ0+cc+qqWRuvluu6qotivbu7MxwOWZxzTVO6kl3VVEmSxGCjmCxF+Wo+Pz8/2D88OjpOsmxvb+/KlSvve9/7tM5kPB6PRqOjo6OiKFR85vj4GADOz8/VJ7l27VqSJIPBQKewc24+n2v22Dmn4jbMfHp6qlno/f398/OzLjKYJImmoFerlff+/v0Hu3uT8Wj07rvvxohxHIfy2RmVvr1CCAHAICpek1QtdQP92gombkfZBEhQPIGgBADZFiw9evedXxxNvuHKteF0R4yRs1NX101Ti8D+weHJyVlZFHGcBgHnAgJGRDGZyBhrrABLCH4TWzSBolHaXoOAiKCI0QsEIYskgEIoKALsnRFkABacTiZxoiTjTdNU4anOCAgCFA0TAapFhEMpMt47OLx6/ead18aTaeO4WZc12cCMBKEpgcNoNB4lWRbFSZIawLfefPNv/fDfnO3sZlmapqkx5JsquHoyHEYTrKtylMR9oyMhREAS7VINuSK24XkEQdaoiW8O0vS1nR04WswbxzYKgMyGAGrXOiqIDEBkLmpUfhXhvv4+bn2DWwD6iCDp2+wIPnjHbUhRqC2X13rLL8+s3DICnz8aOjOMmb2y93IQEUAwxqRx0sGDj+dnqzKvgxMRQaBeCFVNPlWeUHtMI9rGmLIOvV/58mi5tpp99OiR2nBfduHR5RzCtqOy3XHy7KMEsUeteymj8tzffSGOL3BAYREGDEGLIvi5TMFfatvY9J6I+iTZf29b/wm+uECo33SDVNl4RJOm6Wg0nkwmzFI2lRr6uncCAG8C55ahGzZa5hHHsWLKeSPTiYiqKNRlVNZ53j10ZeNRF2i9Xocgg8FAK1+LotAJoHos9x88VK99OBzqd9Qwqut6Z3e2t7en8zyOY32hSixFnud5roHMuq4fPXqkvzgajUeDYfDBVbUW3xMRENrIBg6W4i4r6p0riiKOWnmfC9OfBTfipNBFPmRTVgVkDBkLBo1Bo5fUunDP9wp0zGt6wXtvaMsmeN5Tlk02pks1XDqhujGBw6XUeeMalbF3zYscFRtFaZJoBTNpvRBiURQM4remNRsbqaMiAheOivcC0DTNzmwWx/FqMWfOggraILCwLmpPh0he0DobS1p5mGd/7fDq1RG6VFPSLELyL3/gR/Sj//bd3+SE/+lX/qr++cc/851atg9kCcha1tsEAGPMd6X/XXfOf+UDf/sHfuwjxILhiyw+z2xf/59OppNomibD2KaJjaIIiQKzsWTZREaip4rWtNo7iqJv+qZvUlXE7qOiKLoMmEqsXr9+Xe14tVyJKE3TO3fuLJfLBw8eGGO0wqQDSQIAIpZlmXN+79495dXVfIVWSgBAMhgmSfLgwYOrV6+qJtJkMplOp+fn5z6IKtyLSJIk169fH4/Hmng5e/CoruurV68WRaHl+5o6ODk+KcrcN83w1dcGgyxNksVqGWXpyfyMQdI0PT4+Pjg42N/fn9599dG9+/fefXcymbxy+1ZZle++++7BwYEGTfRKNKWAiNPptCxLGyXrsqIoLqsqz/PheJyhPT4+ns1m6p5pvcrJycl8Pt/b21PPQTv5/e9/v+ZAAODw+rXz+XlZVk3TTKfTyWTiXJOEtKyKgRnu7k7Xi+VqWRPYYZrMhsPXbt+ezmY1v77KCwDY29tTEhENrmsKSxNfi8VCRHZ3d4fD4Xq9VjEoFcZNkkS9TS0lGo/Hj+4/WC6XiKhuVdM0Z2dnGgACaZfcpmkWi4WqcO7t7c1mk9V6HoxJswwL9t4/b4z2HRVACCJxbOM4NiqP3nNUzFNFXxdnwIuwIBNcAviMInN0796bn//Fb7zzSjIcsfeLKDoPbKJ4NJ3OdnbKfF2HIOwb54goMjaiKCbzJ/6hj+sZfv9f+zAJiEq4m/ZWjAAFRgFCtgGAwJMDRgQ0TOyDbxpg/4O/TXVa3vq3f+xr6tUys4Yd17X/t//6V/+fv/tn9VT/4l9+nycSQB+CoORFZeP49nte39093N3dvXJ4FVC4KgSamtd5ngffLM9PnHdJHCOi816d3qO373/sG7/58PX3zXZmw0HW1FWZr1xTvfPWm5/4+N8Vg7HtqyRBYgigrffTojQjKu2mYo5ktKCafCiLuzt7IdhPPzktmJ2QCUAMajIGBINPxbH+QfsV0KRPEoDAmyQlCRBtSXY6733wzKxJl05p5MtmWnt5M15tA+99413jXQghCCMZZV5J44T+f+z9aYxtWZYehq219t5numOMb8rMl5lVWZXdVV3FHswe2JzZLYukSIqGZVOw+EOSbQgSBNOwaRG0acigLEi2W4Zg0rBNW6BkkBYIkyAsS5YpkTRF0k2qu7qru6u7srJyzvdeRLyIuPOZ9t5r+cc658SNePWyqguEQcA+9ZB1I+6Ne6Z99l7DN4iUVb3arCvfMuFt0WUAAJVyHY/Hs9lsPB4TkYZ/MUYfa7gBQdzKzr6/zSrmR2eurnjcnwjvn/Nt3tNnVkBfGmM5a7HP+2OIAbpOMQrgXtrJzIMImgCws8O3MJDc6JC85Pw7ZL+AAAOCYBSIynxTw5pO1RRvvgcVp/O9PvTaHmCJKEL4j0uiIrfzwO8xUSl3lfdRBNq2IeyCcmZu25YI0zRXnq61VttunQE82Q4iGYKI6DBdrVYhhDRJ6rrWWEfRVgPSYDwea7FQRBRuBAAaoCyX6wcPHuh+FQE8xN9aQCUiDVO0qbLdbjXpf/78+dDk0cLtdrs9OTl5UjcKOJnNZhqQiYjC6wFEmEejUQghctxttzHGyXw+m8246eTGOfbOrIbqum7qMndWk2thUfgMohLMo4Sag48xBhsRKXHOOJOQseCa0ELf7vyMOzLkFTrHkdzSx7tzm4eXIQQQIerM2GO4sTlVUTwRiKKFEhiydEEMIfoQBciHKH0r8gXor2TWTdJsVIyAEAnTJCUiEgneV00Dva6wiBCZKAzUe12KOOeChtExuMSRoTbEumnquqmqmqwVAb2GMcbfRAVhaJWK7CtonPwvx8//B1v9yB/8f3wlUkBnBDBwLNv2T33lhtT+33rtP9r/vn/lB/7m8Prf/MWfGhvb5dUA9oVmqYIzhHkfj/pdt3/mr32FY0sPYmpxlNosMXnmnHXrpjVEjowlsYYs4um/mV78qa5b9cX/zQOXurwo8rx47dXX0iQrihvFJG1RKse9KDo+g9bd9dooB2kymehyAoxXV1cK7nr06NFms3n+/Pnp6Skze/a73U6LYYeHh0rEd8595Stf2dXNcrlM0/RXfuVXfuRHfjTLssPDwx/+4R/+xV/8xfnBkT7+igE7OTlZLpdN06zXa+6J9apYpSjN8/Pz09PTJHda6Vhvtm3dnJ6eXq9XOjkYY8ZFx4i7fP58OpvNptOjo6Pry8umrQ8OZoh4cnLy/PlzbT/eu3evaZqPP/44K0Z1XSPWZdPutru6qpjjxdnZ6XyEAIvV6pVXXplluW+bt9566/r6GgCrqlKd4gcPHmhDJsZ4fHzMIGVTbuvSB78tt+goHWVk6fDoIMZ5nqZt2+ZvvlntysSYLE3L7XZcjATo+XJJgNaai7PzJE29903bOGufXzwfj8eLq+umaZqmbtt2vV5vNpv1eh1DOJjPUeD48IiIIsejo6PNZlPkObC89tpriPjBBx8ooUh7Ms+fPy+KXJvPAEBEx8fHk8lktVopUFZY2qatt1sod2QN+64ngoKyX9Xve4laLOQYCa0zBoEJhBCGf3sAzy6IIgRA9VNgtRxkZCARBIg3u4i+bWD7rW98/Us/8sPT2fTgcC4xbhbLxKbGmNFk4rK0LLcgIsIuRgBryfz5n/ml4Rv+/D/5K3/ib/yIEj990wgICXRGDgKIFJGIsAkVoBCTYXI2TZz7ud9/A8j8sz/9y3/6//WV0AbxHCMGlj/x178SRKKNngCQGKj2vmn58OTkSz/01ddffxPBOmNN6qrN1jc+d4kFyQjZ2GQ03243bVlvq7JtmrgtReRoNCmmU2dMW9WxbSQG4ZggpsbkLpGmRuH9a2+JAFADnlZR610Zqc9VBAEgtD43KQuc5MVBUS2rCsSACAGQsWroSWSYb8IgVLiN3EZ+62+7iGcPFwYqM6hV/AGcc2etQaHbNZmXg7/+UagYy+3Xd368C1B78RhefPvOh4Zcel/2986+/xGcx91gDECAAESxUzgcG8YoUSTqygKkv0TVqQeAvhBw66g638e9JV36e4dyR5/gux6kQk005NZLbIkSaxNrIUrrfdt6EVF6uTY59dIhQJqkaZKMi9FkPM7znFk4RkvGGusMKXNK7oYvtzccrsR3OWzr97rDvu36NdoCRt4be3v7E4AGbsUW+/f4FvTxDkUpooiEvhCIfakZkUxorHNAJnBgDsDMwhFEBBjT4VnZb7YAgHyn9JHAgKCYG7npWlwVgYFAYgy1sSmYOqIJoIJgXmJQcG78rIabuRkXBNaQygIKBmtvUHd4Wwsi+DgU1LHr9PbHeQd/r8BfQEC8ZaX0PetVsA/Ya4VpRHVzoW4NglsTTwAsyzrPxyBVp6AafV2XTdNUbaOphYiUZakUlDRNJ5NJ2wZMkrquszTV4qtqaiVJIgDFaMQiIUbrnKb4nZEfAhmTZGlHRkwcWVO3TT4qqqatmjrJUpcmcbf1MRhjJrOp0kuGlEZ5pdPJON47bdpGKW3rzWZX1RoP5XmOxqZ58fiN10MIZ2dn588v7t27N5qMnXNFUWRpZhl3VE7ceFvuDMC4yFKik9lU7j149ux5lmWLxcLYDsu02Ww2mw2htCjL5erBvUepKYitI5vl6WJ7lTrfXn57gt5lmQhnuTEEyBQBBAMQiLAKGwNBkjnvfWAOMSTU1QU0RmTm3W6nuA4JN8MmKitiGDaAzJylad00wDHNMp0gQuuds2Ioxlg3rQChTUSEyZks8ZGdIYu2brism7JuI5oIhgm2zU6EhRXAGkR4XIybssqy9GiUT/KMSJI8dUmi0ss4TpNkxs+3rQ8hBiR0Sdb4Bi2sy9W6Jmw8IW22JRHFEBuW6Nyyrr01n1xes3CDBqKko1GQWNY7NGAMKTi+I+tjp5OzP8tprUGo72URkjCHSP3T9PrPFfNR9uBoNiqiixzaNriEImD2vZYS/tSP/v1/99d+yoQgzJm17oW/8yQRGVAc4D/7n/6Wv/RP/LL+/g//X9/+6/+1b3av/8qbWWL/wz/cGdL92a/9THzQNm3tY0MWjEVAYfE1B0JnwTgOGWMbeJamO9y8/r8aO5c4hBBLm052u83nv/CFdDQ5uf8gmBuLWLImHxWBozowrlarsq6UF+ScW6/XitXUTGY6nZ6fX6QuzfJsOp36xvvGr5drAprNZsbQ4cGB/m2eZYcHB9vNxlm7XC4PT45fffVRWZbvv//+p59+9EM/9ENtWx8dHRRFvtlsvPcK18zzvCzLzWZzenp6dHw0msxs4kRkvd0AYVlXZVlmRT6bzcp6Z4wDofFo+q1P38lHxW5XGXKMMBqN6rKy1i4Wi8wlRZppUcP79vj4aDweee+14fPkyZNXXnlFaSEIVO9KY8z11SUQFZa++Mar2+32gw8/YDtbrdYcIxiXJSkCtG1EgbZpLqqz8Xj89he/OJvNtJxR5LnqayXWvnJ0r/V+l42996vzK+dcyuScW20rRIxNzNMUADbbsqqa5Xo3Go/L7RYlLq4WIYSDg4PFcpllWSsyGo3Wi6skSdJxkViys2mSpsfzWZ7nxWjUtu1ysWiqnSpQJ0ny4PSkKss8dc/OzkQEUbIsGY1ONQO0luYHMwmeUOpqV+4219fXAFAUxdHRkTDHKsZaApMrxhRjWdc5UG6y0NQNoQKqEcCQgMTgW2NMau18nDoUI601JjHkDBAiERBiF1jtBxGEQEYAPUcRCIBRMIpEkbjX37S5HXNMFhfv/Z2/cf/0j8Y0o1EWvUzSXEJ0WTI5OVxU61BH8mI51C244hbUHADS3KlmUmpG2vZvogeRP/8Hu2ftX/6/v91wU+R5lmbC2Aq8qDd0sRUCADAiEEL0wSMRUV7WtefQek6L0Q/+8Fe++qM/Op3OWYAYCdA4qpar8cEsdeR9ScaDhKqqwUO5KRfLq8Y3V9fPI3DkwCD0/rz1frtarlfLtqkJxFlKrMkJDcT9tZg17jGOkJw2tBGgW+Y1dGxBwGJGjMj+MDePT8cXT1alIe8lQmIxEV8KgE0MSpeCGGOAiMgFH9S23FkDKE1dIVKaJnHXjIo8SZL5dHI4n1lrnAGFj7bGrLe77XYXoja3ewkpNNs2hNZHEZskABJCHGZlRAeAQB0aX0AkRlFppT2B1cGIRURTqBs2pgZ/Hb9bRDjuy0nuhyl76Rj0iZd+5laDYj9MF4SonawuahPs40gSoJsYWRmKOET+/Bmpyt6ChLePMOxJ593Cswg4Y6G3cheQwAIAaAgAo8gHzy5fO7wnbWvBATEIkpBhZEQGDMJNZGZwYpDRiCE0zmaEaYQo0LAa1DOzRGZPJqnrWh20tFo0HJXrgzGFAg0nJJGjb4SDs5Sl6YOj49Pp/GA0Wu2227YECZaAgzdEhTEGKbEuTRJrzGQysdZmeT4y1gm03sddSd6PrE0no6quq6oKyIgkJMysekW9Al43qyilnDmK4D6DwBirxBsNCT5Lnvhu8iw3L83e+7eJU7f+7E6iQogCoH2bm5FKhICGwBoLhBIwEvaeucwCMYZh9rkDM/uMLF6GgYgQRaKqH/QRu+wN4Ju/gM+2N7q5BDEG5gjASZKkmXvZH8AenWggafzjtsXIHPW0bywdlSwohFVVKbhCR7bmJOv1ejyeDk0bBSwZY5SKMBqNejSUVni63CnGONTouNc7ht4nYTKZaCdH2aiwR8BQQr8OlY7iDMDMPgRAv6tK/b0q17Vtq6RVSpOqqo6OjhR0oYYJysNmjqq+EEIUkO1me311df/evavLyxijSofFGJM0Xa3Xz8/PRqPReJQ31c4Y27T+erEE45J8u67W1hKJcKgNiDNWRIhUarUb2xJ5GAX7o/fOYJC97cVf3rpfIejpW2MYUSKDiGa2ulcAsMaGboT36brK+XXfhqDMfsFOT2wo2xBBhO6muORgNs6TJIpYi84RWoOEzpN1dlJyVbd127BEBvWpksiCEpFFoFOXjjEySNSbGIIPsfsYotw66+/esOZeb+DWdet/QgBrTO5caq0lpCgun5RNs6vaf+93/9J3+LqXbNjBxgVEMPIvpP/8j4X/k77159/9nRe0NhZtEGfIV/U/89d/gBDunxyf/uDJb/3GFzlE4eDeptTZn3zni53/1giel5u23o6no3yUReDWN7WPHAJigogGjYXojM0SsYZAhDnWbS0AjUkoSY+OjibTiSDuyygo+EdxktPp9PDw8NGjR9fX15pXq2YxACyXywcPHgDAxcVz1TJeLpcaTM/n8w8++OBzn/vceDze7XZqOzgajV599dWnT59qV2S7Xpd1/fDhw81m881vflNzkul0+vnPf+5rv/SrqOrAzCpu0eGXqvL55WWWZ1ma6qOtbQTVVwjskyTJ8ryOu9dff/3s4ny9Xu/qOh8VFxcXlszl5eWjhw/VMYljXK/XIcTlYrnZrLWdm+e5qortdrv5fL7Zbs/Pz6fT6fHxsbZYnXOps94/PLteZkWeWFfWNQjMxhNdnKxzuRRFUeikobONsn0U0qmlmaaufdtWZclpqqQ1AizyQkQuLi50RlKhDmXvfPTRR0o7UW3u1WqlsgT3799XlJci5XqBTUqSpNzt9HbMZrPRaKS3IHiv4oSqEqZQSQ0oEfGTjz9Orb1eXKVpOh6PHzx48Pz58+vr67IsJTIynpyeZMnDptqef8rl8pq9l86xfIjTpJuRVNLdGENoiQyRNWgISJMRREL5TsbkCACIYAC5w2ShKB3/lgmsWCOxqj59/9tnH388euNNYN5uNomzrO3xLMvzYt00YCiI+Mjehzt7stYQWgSIQAbIAgmaf/f33TzOf+4PfPO/+x9/kYXa2AXYLxZwV9uKFYqDkKYpILRNW5atDzEy/9BXf/gnfuqnH732OCtGm10VmkbAxxAkSpYlhOzbplwt1svLhGzYynvvffjRpx+jwdnhfDyf5KORS6wAfvLk/Dd+45u79Wo6ncynk1FRWEJniRCAw777RF8PR7zbq7iJnEEDWwEUIeHM0jRPm0Yi9sIfcCva6zep652xFkSEY+TWEIysNcY4kS++9YXXHj66f3o6n06mk9FsMsrSNIZ2vdm0gdsQYwh6y3XqJiIhOtsstlWtan5VVZZVqVjxGGS58z5w1Tatbz1HAQBDEgKLSGJk79Ckk1oFANRwDgERKXIMIobIWENoQh0HCrLArUhS5Fb+OVw57LgG/Y+36ukC/QIh/WUX6DA59JJIT/ZV+F9896XvfFY5+Tt+4RCI1j4EESRCZhBkHB5U1IBVuh8A+68S6bzRlaWJ1BX8Na4eRI/MbRc+vm05qOuuBiocI7KgIWtMkeXjvNDJrfVt9EEim67NkiTOZUk6ynMt+6qZnqJj6qoK3oOI1YAQkRBIhCGKaIIKdGPd0B0YS9do2s9gXwyWv08fFYcG9p6Sm3ABeyU2GH4zjCEYCqV6IJqxaKJC3F3WCELMBBIis0hgiSHuwb1uk4m/N8YRMwffaZt+lqTD97wp9VYP375gtbu/6dDpHvt/LOGkg+qr/oi9unZVVRFEjZNFREMHzVuUDSI9EFMVaUREP6ldr+FrFfGvyYbWWUUkhKBJxeDoQkTaZqnrWsHcs9lM+S3X19dq1qbF4+HIEeDg8KBoR0SkynXqtG2MmU6nBkEx6Kenp+fn55p7bLfbqqyIARCdcy5xkXk8HltrN5uNjmh1uFf4r6qCjkaj09PTs6efJklC1tS+3ZTbtE5dQtPxZHn2PLatXgc935uBjShyc20HfcCuXnV7OPCe4txnpLW9JECpexlMG7AXBQYAMoR86+v1yxXShgCGtGPKzNx1cgVANRYJ1MetyPLxaJw7FzgCUZplaA1Zk8aY+bhe1zGGuo7eN7ruiAjrwcQ44FkHGYPdbqfabjrktIO0t333R0OhffTy59ca65KEiEDEs5wtd2jcX/0jvwlzegAYjSdGWolcl6VDsJZ+Ifnnt021KXdnZuOsSdAkhsBYz3x6ciIxzEajmUuaqmLBcTFOrIm+CW3btnUbfR0CQZxNR6PJOM3TCLGsRUcFc1+pITLGGCvWWkBrrYvRW+vyPBtN56+88goi1k2T5zc1kel0utvtBjvUtm1/5Vd+RbMFHRXaf3j48KF6oZ6cnHz66afKmhCR1Wo1mUy++MUv6uOsKYqqD4vIm2+++d5775VleXR8bJxTY/umad55552f/dmf/fTTT7Msm06nZ2dnasKo9YWiKIqiaIN3l9fL5TLGOJlMlNN/cHBwcXHx6aefvvLao6qqPv3kEwkxzzKdJS4uLr7w9heLUfHRBx/ev38fEUOMWlKLMeZ5dn5+dnxyVBSFPlOq/qfeLCHGhw8fvv7665qhrddrnWm32+14NNpVZR3LcTECgOV61TatJUoSe3gwh05Bqzk/P1c+aJZlBwcHqqXhvT85ORkkvKuqatvWOjcs9upaCwAqM7hcLA4ODqbTqbX2ww8/VIKKqgavVqvlcum9Pzo6yvMc+gCiaRo1gyIi55wKSau5it7TJEkuLi60wqLz6uHhYVWVvq79ha/r+vLycjKZiMi9e/fG43HTNNfnV3Vb5WmSWnSJc2kq3sc+U7nZEDSqcc4libPWGARrrTWklj4a9BAK4EsfN1akCYMAGOUB7+3EoBCg5/bi4uK9b33zKw8fFUlujWkBys2uahprnLG2KqvcmECmCcHV/M/91R/4D/5o58f6r/0XP8HIaExf9YGBPLa/5aORsEQGRPQhtj7+C//RV/6Pf/BX9N0/9Jc+t4uRhZ2zbdssNztjzPVqk4xmP/ClL/0T/9Xf/+DBgzZEQdqWdYicF/n2egWx9aHNjIltc/Hsab1ezicTI/Dhk49DbO89OJ0eHkwOZuDs5fXi177xrQ8/+mi7WE0no4P5/OjwcDYZGQQiMcq+bQX3AhXFUt1BVL3sGgMCCubOnYxni3oZEV9mwdld9gSdxVDXqbWTJC1S9+j09HOvv/HK/QeFGAJoq5LKXeCWLFL0DnFb7kZJNh9lWZpa1RMH0XkJEB7zHDTb6ktm3U0WrINbrXdnFxeXV5fnFxeb3dYkLsZYx3BVbYIyWDuViKBxMQOCSwQwxighkCiKhCgKoRG4wRpqoiL9FSN+eRqAdKt7s9+8EtDkWXNovEl3EOAfsRfkvlDn9x7pCUJV1z5GcmYgfn52sgS6mu+tm0OQiYiqj9rZMNzW440hDMst7BWLyRgDZK01iS1GxWwyLYoRgiAzClgyxpjMJUVeFFmWuqTI8zzNkiRBQ1q5bpqmLEulTSp2BpsmWEtIIBFEGBgQDXSh8K0T2dv2o+U7T/pnBdm811TbUxIDELDYIYvuJL7D1e+2vb1pR2U4CMVvDD+SEBFGZiNMHCUwMLJI5Bhv93P3T0C+t6SDmUMfI9I/irYGEQEYxI5QDvTSy7g/huA3M4L/v7ZprDCk4MqbV9C2y1INC4Z8YzgdBZaoYJfaZrdtO7zY698Z5dOrl1njW4AbnSV9QZ1XYxdzKynfGDOfz3W9Pzg40JVeeSa6I2ttmmXBBxX6rOuae/8N5cseHx5oT0ZdILbbreZaTd0QWRUTbOomcCyrkhYL59zV1fV0dqh5VJbnAFBXlXpva4SdpulsPmMwNknzooixYe/ZB996UpmdGPUaDgM7xpsEVWlzItKNh3CLFi89w/W79t8040JErQoPV7tpGuyke6PczuKZuwZGL+JOutfIcYCcgoAh0i6MtTbLUg4BnHGGbJJYZwGRDFlCIjo8mBpjYmgFQtSWjgjHKAzIsWtG98SbGKOqebZtS0TdFHvb9/27DtTY++G8dMPuYw1z9GHhab1bfdev3d/+ub/2avyKN8CG0JIhFU5g+V34l2EE8Cb8L5Y/nhpqjAQfQ91sl8vZdEwgFH1hKQrXm1UDYghRopVIhG6cZXmWZGkEZuDAkiYJiFib7Eoh6vQPmX0MgYhckqZZVoYmzTINUu/fv09I27JEujl9pYGpxpcKDX/5y1++uLjQJEQFfO/fv68k8tVq9fjx623bfvLJJwoxUqKXyiTEGDebjT6qSZIo8z7LsuVicb1YvPb64/l8fnJyslgsrq6uvv3tb6tylxLEVSdac5VuHCKNxxMyRlWMNWVSaeP79+8LsnJm0ixr6ubevXsRYVdXALDdbh89egQASHR6cpJnWQxhMplsVqvj4+PpdAIA2pYpikIf5zRNU8Q8zy8uLtbrNfRPjTaIGG2apBCitu9DjNvdzhlDZrzb7gQ6/6Wjo6MQwmQyKYpC8Wx1XRtjNEnQLOX9998nojc/9zlETNN0Op3qhQ0hvPPOO9PpNM+y+XyuuLWjo6PxeKzqZzoZ6oSm0Is8z8fjsfZJYownJyfGmLIsmXmQHlGdAK3jaPLJ3ClPOOfWi8VkMtHmkhaArq+vLy4uxuPxZDb1oambWiKhMUmSVCCB+c46ierQiuCcS5wzFi1iN2+hIPCQqMjLA0RC6lZmBgCNEPfkRAFD8GTQEP7613750effPr73OCtyFL+pSufSvMgN2qurxeF0gmmGSHUbA+If+ytvW4POmKXdOSLrLCG5PGWQTvH99ta0XDW1b72gYYEQmBn+8F/6XGSoYlhxqwtcjNFaU9fNeDz6fb//D/zoT/z04cGJS91uVwJZRxa1ohJ4MrapS3xZUYy7XZM7e3B6LyP68KOPmtBk00KIdk3z3jd+/cMnT55fL+rgU2tPjg/unZyMRyNnyFkyBCjdZTeG9jU/DAMiGARECC8v0vesXSbAkU2PR5OPLhZswH9WCMGCQYCdg7cev/LVt99+eHR8OB5Zhqaqd/WuaZrnF2fVbnvv5DgfJ8tNPS5GdazrcjfCEduRQQOISEhCxEQIEr1Di4g+tM7aJEn1kEUoFZwfzt44PgDzA3XdtByyPPccyqrOZ+Ombjabza7cta33wTdNU1VV68O3np3VbSh3ZVmVdV157znG2IYoAEkWv9Nwi/gSB2U959v+Lft9EhM7chCqfvOACUIA+EcmrdR/512IxPfyVwJQN3VkRuOEFYf2XfkaN4mKDMlGH5g567SJDQBacd7/K+59VIaCKSISYpK4LM1sns7H0yLPrSEJbNCkSTIdj8nacVFMJ9NxXiTOGTKODBK2MRCRhnY6mxGRVnw4RqsMVAFhRgQhIGUl7AfwfWLaQfL2ouXPSlSwF+nqTm/vs7c5EzeZ7x0E1T7PB+7A+BBIqS9d25mGFhUiCve4SGsgEkQUQjBIYEK8xQ+6den3jmofIoMAlix3vwdjjQbWevQC0qV9vWVhn0Uw0Q1xXz6TCIRIxnT1XdkTjb6Ttw0eF8O1JcJOGYmDxuhaYOM9J40+ngQRIJL9vucd46P947ttvnEbd3eri7qPKerY28NBYm+zUBSFSZx6/AGAljDVIR4RdTnXSEWlHgb6e7Ve99dEimKs0AjlekbhIT8ZWgHqJJDnI+o9g3RJVrJ7XdeaaShXWHMkPQAkzLIsHxVqmqbZgYh477WcqUxiRXRUVaWaobvtLjXJZDohleGUzrtgNBpdXi/1aMuyTJ31IeilyrJstVppacE4VxQTQSRrQXy53hY2qWJMXSd7pcaUw/U0xugFZGZ1GpXeF2n/Vg7lDR0kQ0QuvIf27e+y5vnSR/oa+ndfoifDAoREpvvODm2ucE8GJDJESMxxGK/dwUQBFkMkzKm1hKxTi7PkDDECdb65dHQ4SxKLGHDJu6oBiSTCIaLceEdCLxO32+10/GgS2M2Ve9ZGiCBK5rutYb3/AOqPXXgEneqXiIpgCJFxznUDIISmaWvJ/fcsdPE/+eXfBaG2r3G13VJqKclTm1gywPxj4S8OH/sf/sg/+Nf+sx/IrOkWk9BakISQMSKxzSgbjYGDcLSmM6BOilT5YpFjEzwETowVywhcW6YYrLXYei2mENI3/qUL3dfv+Mv3rcvf/NznxuOxTRNomv2rcX19XVXVdDrV/C3P82fPniGiIqMAQLtYqoHRtu0HH3xw7949zW+fPn16eHj49ttvn5+fX19fP378WFcX7b184Qtf0Cf67Pzc9JH3yclJjPHJkycfffTRl770JQBQ7d3hKRtsPZI0Ncas12vVsFKzI604OOfI4GazsUBHr7xaV11x4eTkpBiPp7Npnmbb7TZNEhap65pjPDo6ytMkSVzrGyXu6x7V/XA6nea9tm/TNLPZjPJcTVGWq1UTxO12mjA458iYNEtd4vJRMSry3XajYuuHh4cK+Pzwww8fPXqk/dXBDkVExuOxNkPqutYcDxFVcIyItI+qimdK7tcn1HuvEiP6qF5dXQ1N5ul0qlKHRKSoVOfcwcEB97p/u91uMp3q3Hh1daVzl/bH0jRBRBUTc86dn59rI7qrHHnPIMDclhX6mkEYQD1SmBmwC0102VBVAyJjDKLq7GO/uA+lkjvlkn04AyplGwXRCAKZfWyiM8gBhIAIrp+dPX3n26kZTadjX6Qtc7nbFnnqyHGQ1WZbltV0NAK0zhADMlAUboMQQJJwmrimahC7KOZP/J2f+nd+R6eN8d/+T756td34GHxQG2gbReo2NE3bhsiESDbGUJYlcwwhfvnLX/pDf+ifev2NzxvKrHPGmOl87n3g6BHBGTQo7Mu6brnlWDdpYicnpxdPnn7w6ZP1en29qy6fPNmUZTaarLfb59cLcDbP0tl0+vjkgJgTZ3TaxF6yB0XuOJh39pbd9bwNcOpjCQEBiRovgEAiMDbmMCs+3lbiUhA0xnA/x6qviGLbmKuQ2JFNHj04fXhyPLYOqqop67pprtu6jf58dXn5/EISmK8OUbjmgCQALBCitNF3tlHCGERiZGdc8G2SpsakzFI3QfcrLON0nFjnYwxt40jGo5ysYTSJkZExkGWnLonzOYD0gv6OBReB28BN3TRt3TRtVZfr9fp6sdjsqm+enbUMdVVXVenDDXsHgDwFUC061W6+cUQwIfr9jkqnhouIQFZEi+0dnBehq70jcGQhTcqQb/F5b0Wbd01absW6t70y9l4qMOE7fuH+JxEgxNh476OP7HBP+hZRY/g+TuOeOr6HSAIA7rxWujq4IllgjzCD/aCSPXUl6U01Bo2iUV5UwVPipuNJkeUWKHBMnJtNJkKY5fl0PJmMRnmWKfnZdKBu0Gp1XddN06jdsxa/VD4QWDo7U51KROGBpgtwuwgbGYT0TcQelKpnJNL9LdgXQ4GbH83Ntce9W4YChmS/SHCTIcitRPVWrAwA1AfgcNdiBQSNtUgIhgAxCDMIEoGw8C3/muEIBWFfl0yDl73dmeFj0Le9AIAQo4iunfuJiogwC+H3UNrtwkomUnsJw3vCVkNdXDeVAR1OWdcGDaY1UaFuobjJExAx7tkpamB/c5p7JS5NcoYf70hc71/8O9AaHDyDNNzb05vSEFPLeyZxg6e78ry7UYgYQidBy73Cj4anmmBoHhJjDMFvNhtEaFtf17VCvwY4EPTW8qZ34RgsIIk6d3DtxugL6FFD3ccArbVAOBqNjo+PlYvCzIqbVNy2QsZns5k+S23bPi8vqrgDBGutIQLE8Xg8n88PDw/LuiHjFJOmRzgajSRGZrZk2rZJ0lQMuTxFYyNHg1Ruy7i+pv5S6K73B/Z+dA57RQ5m3teslD354+GvtADSSTQMd5lIa7RDRUSvZwjBGBMV3yUgECV2+AJBQUTubzQCWmPIkEigwadKs15hY0ziXGg9IY6yrMicAFhLzpF0+u5oEMgSi2ubvKor7z0AkjHAAiB6MNpq0+9W3Jce8DCHxn5QMjMgCncQd108ZM+ifv+5w947e8i11VvaGHIu6aZy7uB2u932+M/ay//xXez7j//v7z+6d/pX/3CHD/kLF38M7zXiWwmN324skiXqgMAsd6p5FjE1SNYhEMfATV2VW4ec51mSJ4Rg0VqDCZGxxhgS0TYaBCZAo46R2M2iXW8ZNVHj+M1/dT3s6O/8sXd/5q/98GuvvqqDajqZkrnBPartqWbg2NtTamXdOXd8fKxtwIuLC0ScTqdnZ+cA8PnPf/79999XDOdqtRqNRsvl8urqKkkS9arXlENpFZdXVyHG3W6nN1Q1iD/++OOPPvroi1/84mg0Ojo6+tVf/VWN1NXq6/r6mqx98vSZAKgno/YHNMEIIYynI183J/ND5nhwcLDebnQkzGbT7W734Ycf3r9/HwCur6+P5wfO2t1uZxA32zVAN0sbY66urjQ5VxNStZXU2h4zLxaL09NT5xyZtK7rJ0+fXi2uN5sNACR5VozHaZ7neX59dTlo/282mxjj0dGRXgdtfcQYDw4OhjZplmXL1QoAFA6KAMVoFGMsiqJpGtXdAoB79+4NJfymabIsW6/Xmqcp97RpGjW11HZTVVXaoVJbzN1uh4jqQqOcIr3Rjx8/fvLkSQhhs90cHB4YQ/r9R0dHqpqo5177piq308k4zbM2th0zgEUQozD2VsJq59BFAwhKf4YeN7G3GN1KVO4U7UjXVkFAArprMWwQrYEQOcbWMX38jW+eHj+69/obYK1Ns4unT8W3be2tcU3TbPyuCTEkWWJtnqSpQJo4gyDRhxAjGdTmM6JikP74X/9SiDF4f8WrAMAMQdBH8dx6lhC5iRxFmia0vhKRJHGj0dwYk88Pv/3J04+ePZ9ko9lsPp3ODErqXJHnRMiRq1BLvcQYDJBBEwXe+/iTv/2f/a3lYpkXI5/n4/nh229/6dGjR++9997V9udVA3MyHqXWEBoDIOw1gJVOtFn49up7U9wXIXNjO6eFJ30BqlmK3RsmxDzSYZF/eLlkYwVJ1xFmVkP0rvaIQsZCjGnuUpe0VR0TjixtXW83m030ZdteLdeND0BmV1WTcdFyzFySiaRAJnbFdohinAMRZCCydeUhskucsggADIEBQi09MHsfWiakSN6ztTb4Fq0DEQJl3kv0AQmNsRzC3GVgCbIcoMMVdjjwwFvBum1Xq/Viubi6vlqv17tdud1u67a5iE3g6IMPPrCwsCCAS1yW2G0jA96LIzMwIREZQokxqDU7d141muqiQcLeNpJ13bndltm7WXKXrN9vKHgLZ7b3Ukkjw4+38AJ4K/kJMfgY6rYNRWZAuAthhUTz8l6YC3ioIMMeWb8PEmB4TdZpvQP62n1foLyFc9qH3PeJShsR8jRLk8QFEURn7Xg0tmmaF8UozzXYBRYSSFzSgrcSq9rrzKPfmWWZcy6GCJGBmRSdQSQdJRVAxBD2112QwQCSIAv2vss3m+wZsNgY7+JP+jvU3SXYO73+DoHC1/AFjgrIXTjWTaghQHt6CkNNXTcy1gmjNSFGzzHovxjUDGc/UYHb2y1G1D4fZm/jPegXfOYWQrzh2xDSyxG6L9uYZf+S3uly9DAPJavZvhZYE5kBgIuIQ+NiyChuvmJP2P6FkvOtU95/607Atz8UQgw6Xofd6bBLksRlKfdsE6WNKjKhaZrdrqSeuQW9GYsez6QP2YfnUwRURJW72ZhFRAFmmogTkcK6NE3Sfpd+SVEUKu6pi31VVbPZrG3boig05rPGTSYTzQA3m42aJKhrhyJhdNdKkD09Pa3K8uzTZ9fX10dHR7PpvKyquq511Q8hTIppXZWz2ezo6MigbHYbTZ/att1sNgdH9/JRnhT5aDRudrtQ1plxZ4vl1HS8lEEoYv9SD51Zvbz6o7V2H/p1Z9NHo6+u3b61e5vuUg8vhJDn2fBWjGrSjQAQsVOYM8YACKA1phvb3fzVZSlAZMZFkbrECErkPM/yLAEAlyb6bIqWChEQkJ0r8nQ6ymOIpg1RiIWGsdcBunreXtdEIhre2s+yPsO68XvfEKFP+yENnEZwGB/Opl/894rU2SxxqbVZmubOHH8pvXdy/LOfvj2fjNeLy6q6DG3lyOSZy7MsT1zmktQ5gyQvFC4cQgCwzlnjQmgNIbdt7QAt2xTHRZYYYwisQWetITKgnktsIguwRQxIBinebkZroeTOvoqiUORP0Lbe+sbwUUv4VVWlaarOQsquVpyVtjpns9l8Pt/tdkmSPHz4UBGDX/jCF9555x3lTozHY4UeXV5eajNQg4+nT5+enp5WVfXRJ59oFK7+RTotXFxcPH78eDabqZ99VVVDP/D111+v22a52tRNrbA0rcIURaHwMCBBlvl83jQtAtR1/emnn2bj0dOnz0IMJycnIvLs2TNLZj6ZIsByuRwXOSFZZ7RWoi2jYQ4ZTyZDDeXy8lITtq4JXNeL62s1B0SLSZ7VTbNcreq64npUFIWIqIfJq6+++vz588ViUVXV9fV1kiRa4BisS4YrrFUMLWR8+uTJ8fHxer2ezWaK3Xry5ElRFIeHhzodKR41y7K6rjWiDSEUReG9//jjj0PozleLMlqvUZTXMEuIiOL3zs7OiOj4+PjJ0xoAlPeiSoyDfc14PG59HI3z8ajwbYWx5TwP5Y7aIN8vzuVOqXEfs4CIolG3MGhtYe9ZcQiMGoNgbszZBx9vv3z9+R/54auqGc9mJLi6fF6VtUQxxqLEdVm2tU+tLVKfZcmI0yx1IACtN95b7f0OFQrmvvtvnEsaH9qqKVvfhOBFPEsUCMxV227KUgAO3QFGRuYyxo/Pz+td9XA6Pz0+fvrhh8HX08n4cD4dj0dExL7JoDw5OqrqdrXe/vpvfOvZ2fNV4HtvvnXv0aujBw/uPXr44P5p7mwg/MY3f90QnxwdctMKRwAQAmGdIQWhowny7bJ8uFGsuhUecLwjed5NzWodkzIWZBPCSl7KbkGBxKZVuUltltg0RA5RIHLlQ9X6sqp3ZVltKmtcnhSJyRylBtCKAwmtZ4FIhCzAPgISEQmTBJDAYFg8G2OsGTA4EkJbN03TNjGyyxKXpiRsjBGQVmV1CYXAB24kAgNLiBxHPV9HQNq2bZpaAKwxWZqYqjkZ5W/MpvLqIwUTtPoJDmexqUNbVlVT17uyXCwWl8+fX11d7epqZtxem8+IUAghtG2MMQoAGbLWWcMggkH6/omFHl+ktf7v6Wn4Xre7MdvLPoagFYS6bYBQYgf9Evz+Htbv9aiGlXdA9IxGo4aDF06dI0CDaMkk1gWCyXxmnbNEHJl6sQoFYijOX+d551yngz88oSIIKrkB2rPTTde9Ti8bEQC5w3VoU7eLl+B2tG/3s4U7icq+8vqdSDd05KQbUQXd6A5O5XaiAnQDQdzvqAgAILk0sc5FkaZtY4whqgkNM9OQjtxpFNzZ0U0WexsUpdE29wSAzxgFRCQvmQW+x02jpeHHffJ33HOyp/5DXVdjDzoFAJvNZqiS3gl8TXKDU7/zPLzM/A72oET7f6shosoM6IXVcYa99M22l/iAvnszUFP09865w8NDlQ8eYJF6ynpgnbq/iALKyfaNAmbNDXRfbdsq+Ej6uFYD2bbf9GqFEBTTpZ+x1jVtw9DxZ9QZbUBBpGlaVZVK8RwfH2dZ5r2fTqdf+tKXIcjV9bVebe99VVbMXNd123qty45Go9ls5utyR6aYZEmSxNYhYuPbHMAkFiyhxcQ6m2WTrLDeDJaIQ39MN+YhL6VhBGoaFr5botL16OBW5/DW2iYCfUvQvGAXuHezAXoGP2oR34vCMHXY9LJhYBCn44kBDEgSOTE2sZYBrDFkbTeha1+FAAFDkbVhFCLArg4BGt/jAvqtvwhdA22fQz9cEO3qvfTgP3PjP1Nr8D7/X88BgKiD2mPkGbj0+HCUJkfjyXxUHI7G06KYpIk1uKuWeWZjaDfnZ+vNGgBHo/HhweFsOt5cPsmdSdM0cYlK4v298r/+24q/orv7C1//8We4cUCAaKxhawwCocS2aSRakJSgGI/y1DkiZSdzbGMUZkAWbRgbAoPq+3WrIfxiUqS19t1uR0nGkTs4BAAAzGYz1ZLSKUV7GtPpVBsp77777nK5fO+99w4PD09PTxX+dO/ePeXTq7zE17/+9cePH7/66quIeHBw0DSNsupXq9XJyQkRjUYjIqp227Ozs8PDw/l8rvYdH3744Y/92I+pPeIP/dAPffrpp8+fP9da2jvvvHN0cpznuUtclmUnJyfaImBmJbujAYgcQpjN5xz5+dXlwcFB2dRVVRpr27Yty3I2m50cHp2cnLR1TUQHs9l2t6nrUmlOMcYPPvjAqGBGD7La7XbQK3cdHh5qhrBe7p49ezY/PMiz7ONPP0VnTk5Pi1EBIGgIBabTqYgsl0vNczQhGY/HdV3/xm/8hrVWM72DgwPtPomI2s5qPfvg4GCz2WhCooNZ5deUQ6+9GhVz17lO9dPLsry6utKWaew1BouimM1mWjAqimK3233w4YePHj06ODi4vLxUAbHT09MkSR6/9ni3Xg+6FPfv3yeis7MzRBxPJruqFgkffvRRltqT6RhGedimyBIjfn/k4ZdRhLHzbJDQF0rhFpMUDIIhIjSJMRYtV+Hy7LysSnRpkmUxbS4vry6fX1qb1KEh5yJzFX0jXMZgG0wrl2dJ5qwxhBxd3ThDGglZa22SdHUfwG0T6+Crtq3atmX2LHWIVdv6yGQT6zJmXm6215vNZDIJaEyaz7LieDo9PphuVstifvDg9IQQOLShbiG0J6dHvmzfe++D3/jWe5uyfe3Nzx+9+uZoOn/19c8//MEfODw6zBNTLq7SvChGmWGfGg7ogUEAQRBIA00BYQYGBCa7X08N3OElUMC9vGEFXXzFKITCiZjCuMSYCiK8nLIRfUQ2wccYOAq0MfrIuzZsG980cb1t6kYO5+MkmwA4FicSKYpBDD4GBq2QMpCPKIG993mCITYYBFQW6hb2z0gU9kxEKMRtjBzBYfCMdk/WVRApICKiAZKWbyYxk5rU5U1TCwElmItxBog6czZj0KSYumQM7t70lEG4lwCt+vKiIK3rajimyKzoj91uVzdtFbEJoSyrytfrzXq93da+aZq2DRwpF11eEQDoH4nG0rCJ3KpW02d+eRQpqwoNxdh1Pfi7kem/v20ANQwhJfYYn0kxiiBNDM5aA2gI2ZjEOWbMs8xYS4AMAUQiAApoq2TA4mqioi63XZkyssSuCwQiLEJ3TDdevDhyK1Hh26uhDXt/PWApALT3uA/iuoOm7L9Fbv0f9OHyjbEO3qQyKtWqpZk7rbYYOQ3BukSoq/HroIwiIL0+UgcvvElbBGG/AQK0lxTFm5ciEjgy812w4AubsWb4xAtpsdx+If0h3IYn3s4r7jSs9vpaNwbnQxahp6zRs64Q2COyhi/ZVjdV1QGz2O369sntH7wiH3RTgEdXyZYbKSrYq3wDdBIreoRJkqjkjpYSNUoYDmDANemm6Qf0/BMdx9p7kb1Nz3SP11sMqaYmlhoBbDYba0ye5+WuVF7KZrMpRkVdNSPnmtaHGPM8VxeXPM8fPnx4dXW1XC7L7UbJptfX1yGEx48fK9LDpvbx64/LqgKAqizLsmy9Z2bvg5acF4uFBg3e+xiCyTNmDhyzfLTZbvOmFRDvW71Y9Xob6jpDIkJjULWJh0HeiebvbdBn1Ih4F5C0t8XO5V1Qu78vKc8oPmTIMKHXPEGFyaLRxwyBfGQB7JuExlA0iJ1qT/eXAAKEmKeJRAZm4SgAXWEEmFCsAQFUCRtGAEtp6oosqzLftgEk+iAMLD1jrzt+BFUoBhASM7zFwijI0Omov/xivHTb/ulqeP3Jf295+hcngIRkLDBYk1n3YD5JEE+m09PpdJqmkyxLBCL7+cH846dPqqqJzKPJxCXpeDZLkqJuQpIkSULOWWOpEzUX+Vu7P/q7R38VAP7Fr/6Df+Nv/wCBMEcwmLrEGkKIWUoo4gAcCAQfagaDEAwQ2oSiRJGgOARE6oy/EUAiduMEQVAE3vq50bv//Z2e0e/5D9+mBybJshB5lKS1j8WoGM736upKI2ZNMIhI5fP1YTw9PdW+ytnZmYbRJyeny+USANbr9enp6enpqTHm7OwshPDo0SNjTJ7nmqUbY3S6SLPMGNO27eXlpY5b772G1F/72i/99t/xuzUc1z6DVvS//e1v37t37+TkeLFcaivm6OhI5wFNJ/IiC23btO1kOtttN/rk1r7NikLtX1ar1Ww6BcRytwORPM+vrq7Hk2K9bjUXquu6KIqqqg4PD7MsUwzbeDxeLBZ6HQBAexfTyThNX298S8a88sqj1W57fX1dt818Pm19W2422+1WWz1kzNHRka6OSqZ6++23de7V/EovUTEaDUUWVblRmtBoNLLGpGn68ccfS88xc84pJvbs7Ozhw4dpmm63W0Xi6ZXURopiwHS21/xns9mkaaqUGOpsoybPLy/LskRE71vsWS5Pnz7dbrfqwlkUxXazCQDOmeOTI4kBDLkkdcYKobqeqclfp3ALCIAkiJ29BMEwFPcWuH7d339LFEtOBKytFEadS/ZLfP/67/36C8/rN+AX/3c3Px0B/Avfx0P/m9puTbEVLP5T+Ju33h/f/pQFsACKvnwE8Eh/+wvduw3AL+39rQP4I9/PMUVQyjciYoi87zzYeyqgIEjn56EFfyYA14kd6FSJd0vCAADgy8ZaV5dNWbUixjNBjE2MdYxB0EcOIi7PrUu9gA9RJDLgxFLwgUmQXOSobUDnnHUUJXjxKIgdsbbbEQqM3JhZCIwh68haMABghKwYCkiEhgwBGUBARsSUkkBY+no4cAtWRNrYOnKUECAyYeTYRh8lEhA5Y8hYIhu8xI76mIKMklRcYq11aVqGMFwKFYkJMXjvOTKlOQtG5iBxV5XrzWa12242m13dfHS1rDSlqaqyKmvvu5q72gfeBhMNN2g/g5D+DuhvlCN+czdvrdgvLX4rlLEJAdEI4AAnE+zXzo4Pjipgxmq1Jzda493u7hbnv8PGrMBtwCFEQdUot2mWjThS9MYY3R0ZMmIsATMYQTIGDQhzDAyd1QxyZK0LawSiVdp+de+CbSISiQosVQk72jtaRBxY64BACPsh8v7B20qMNarq4AGArOmCKYDWN6S8WzKAGGPQYzLWehmM5GUfmiIIxpru1wKkd46FiAxRwyyDABF3uZ1qjcRyF5uAPkYlYaiVChMKoHXQ41O0XNqnLehehoNChRhIFObIMfJmW1ZNm6R5jAy9/zoACHehOSIS3QDlAV6gQDEPLSsCsM4WeZokiVaZRSRKMOq0HYKuQ2maGtyvSAGADGkA7LGpNeIEQCILAIMFtXKJ9rOR1O7VYEQ47Am07wkl37nT0d+I2IbWh9b3eCQCBI1vFIU1ZBFt2yLZJLUaVfvARJCkeZLmOgzSNC3LcrvbYa8DBgCDzo8mId3MkqZ9sXajRWJFUrVtO5lMyrJUvpAGNCpYpExTDb/SrAi7crPetN5XVZkXBbbeJknVtGRImbsq5q1tDRGpqipNsuCjSxNCU5V1U7fj0YSjbMpNkaeHR7NPP3kym88BIEvztolnz57n43G1q1579Mp4PN6s1pvVdV3u8jRhZgRa1B4ADYvxIcZWgm9W1+2T8zkbtDZCdAmYVMCgoZQZWBqRCCoSYciKRUIKpM+2aiVpTWIAySh1iogMOWGILBG6wamXKEaFmgMICbMxHd9JRIzKVAGQQNSRpkQ7YRY0aAGBLRARRE5QDueT882GnKTidvWuiW3mktlklAJkebaVeL1erOOrRTE1sSXiIjEAVpAYiJFCaJnQOsA0yjhgCJVpiwQ3u8CMbeudcyLRpmnZVAAABKzmYNYYMAwQY0DhxCSMEkEYbgSV28gg4pxze56LqlKgr+k7yYL7KEKGrEkIEqTjPE0JU2dTbEOzrCGVaBBEYvShKTIzn86yPHcucc5FZu9Xk8moIchSSxZ29aatmyAxHRW/O/+rw17+9O/6jT/zN3/Q+9pSZl0Chr1v8+icQSccyqrxLSTWpM5muTOmqavALAFQRWJVVIkNMpgoCZpd2zYt+EC+RYvJV//8CDmOi3RRPf/Br/xwVkzFZlUUm6ahbYbDWC9Xo7yYT2caDYcYVIR3u90qq0GhjK+//rpqgqnqtyY23vtHjx6JyHvvvXd2dsbMDx48cM6VZalFa30MR6PR4cERCJZlGdu4W+82m83R0dFP/taf/Ps///9GxPv37x8cHFxdXekAXq1WDx8+PD4+9hzPz58Jc/BN8A0RxRAun59bayFGizQ/mLcxXC4Wy81aZceDSBsDEK7X67Pz8+gDsiTWcohZmomIsckoy4hoPJnps6OdW2PtwcGBkt2Xy+V8PlcW+2KxWCyuR+NxlrjJuMiK9PTBvbqprxeLNElS45qmrepmW10DwMlpbEJsm/ZgPrcuDXF1cHjkvT8/P1dbiNZHaQMATKfTxWLRNI02u/Mse/rkyaNHj2bz+Wq9ts4tVyvtcY2IXJKEGFVMTAFy6r9ZFIUKG7CIS5KmbS+eP2+a5uHDhyLCMVrnppPJwcGBb9vDgwMRef3x47IsESCGUG42TV0VeT4pRm3d1LtScWWNbxa7Rb3Zfe5zb5YQW5F6t6WmStkbF2vCCBhQRMQKINhCXAFZgbZp2kjoAB0hgxgCQ+iQDEEILWLHokQc1kQBgJp9R703CCzIYl4ekP3/t2FDxh4LhkMRHTSB0WzPGEZo2ogsRkRYGsGY5z624NtpPt74qP6OMfgo3FWclPbmcl/Vy7K+uLh6/PCV1ofl5eV6uaybel3VV1cXSWJPjucuAQn1LlTGYPREzmVpxsJ1aK2xYCgCGwRjrANJR05EQMACWSBCDCG03u+gjJFd5uqmBhZfe0AADyDoY0da0OAhSiAklsjC4yzXWkCMMTaeiEYuJWNi3cYQIrIxxtk0IQR1A2T2IbIwx1hVVZbnIahojTXOIZFD8G2bJImAVNVWhWKscJIlnr1v23ExQnIZ27mdmtND55wxdrXZRTWbYWma5npxvd5s2ra5XKyWdVzuduvNpmVfB1+HNggH4ShgkkKQQNFGRNo6U5dJjqShOAAYMuqI9V1AYCICkKTpZlf5AJmkKF4wRopMCOgECAwARaEoIoJW0AgahxR9DE0bQxAWRmCEYNAg8C1/EA2bO8CEGKvEjC5LJgsxxBDT0dj7NksTG4mQfGgjIhggYzNw1uUACBEQSZBd4gjRe99E9iFq7KHCKhrjhRBYmFIT6ogWJQgIJK5rIAsAcwRQyetBjAo6rg0ZwRg5Rh5C4m6zdds4x0QUOYoIyU1xHUCYBCMjRw2StNALQvtQjf0bwQIqJ6xvKPOGACUEBIj7giKo4W/k1nMMuTGMYJCsS7QBFDsusSRZPogSDfC1btf7bZk7Q8JLBFHGWRAmRIVXCaJ1XeOYiH5zU+tLGnIDfDaGoIwOIkqcS5xrm8+om+99w+284mWv4YVe/Gf81f6P2pLTY9MOSV/XJ0Wd6ucH2qgxRgDyNFMddCVqm54O0batCnd2Xs5JAn0bEQdyMICG3YrjUmkIFVTVdAj7tiNoAyFG/fx0OtWgvK5rxWFHgTRNbeJcmiRponsx1o6ybLlcKjBM4zO9JhqsTEdjBRop7kJ9rJ1zTV1F34hIlqcXz5+7NCuKYjKZNk3DUay1SgJeLBer66vD2UyZtRdXV2STk6Oj1CW+qZMiDTGybxNjMpMGsZ0vcOf2SKgkvH6YYdQRT4w3PZbhsps9GcHuhdxqxGn2NYzw/a4U98x1AbKJG1qPquAj2Cn9CAOjiACLCAuKkCI2OiEgQjJISITOGEdkLVprtlXVtFGN3QnJWsNIAoaRfFsT2cS5cVFElrpuQ4wxeI7B9YoRgNiBu/rK061HFBGVo6LuRntNFb003/2xub1Jr9OHCEiQGsitLUZZlqZ54vIkSRIDIBIiSKql9A5CI4FAEosGxVgkQhAOHAIHHwLtAa76p8k0VajrCixlRZrmmRVwBq0x1hgE5Bg5UPAeJKjRJrMIA7MIc4zMkZkZuFMu4w7TC4NgzeJ6cXh8cu/+/cjimzZNUkcmSW9wpFVVLRaL0WikonbaCSFr9LyUrNW27eHhodIeQoj379+/vr6eTqdPnz594403jo6O1Djl8vJSlSqSJDk/P9dAX/XEVJBqu93O53PVq/j0008fPHhwfHz8t/7m3/rtv+O3L5dLfbSNMU+ePHn8+LHONopA0/urC5iKZr7x2uMuUY/Bx5CkqcpnpYYKREHIkpSItGNQl2VxmgPC88vLg4MD9XK9vr5eLBZFUUyn08lkYgxOJpP1eq2OT5vNZrvdqmrZbDYLKu8xHqOzZE2WZ1mWjSfj7XJdVhURCQAzK6gsSZLr5WKU5YeHhwpNnM1mylr59re/7b1/9ZWHqskRY9ST0usjIt/61reKosjzPMuytmmsc1VVjUYjVRoYnnRdvxQUnmXZ+cXFkydP8jxXSUPNvnReFZGB2QIARKRclM0mXl1eZVlS17WqiqksWJZlR0dHlFJlXOLShmNkb4jSPB1l2LIpV3ULEmL0wozEKMwxxNCgCEEUsF17U6WERAh75th3qNUOdd/hF7/Zp/X/Z7d9VilCB0TXkJd7SYKeUqSpIbo8Y0tRJPrQUgWJ895DiGisQSORUbAr3xpK0rSt+dmzZ09OT169f6+YTlvflk0dmQkBQCLHGIIWtgCQOQImQCja3VFYCpFa7cTgcVCC60cv9GIngkKWHDiyJsY44Guol9/UxasvBJP3nkwizLAHPICb/+4FWPqKlWAuLKIvWZgMWWsBsfUevN9fHFGlwZCAxOgpYEIEiJAlTq0CxHvftsezaV/6ZyJ67f5p7MzcgrPFpqzXm82urTfV7mqzulxeP7+6XG3LVRN85Cb4tmnV7EKJ+ILI3IenpBJWsdM4Zbapw+Gc9toyBJxYIxyrqtptd0SU2q6L0l0HHJ49vfwGkVDxUagkagSAQedfviuCGocwo4sfYgwxRmONiB2ikf0/2H+0tRErIIIShZu6DiEQ0aCF2I9wFSlDArJo4i3QKb8cuCj7ycSd/M7OZjOdc4cwaAAgkcHhD4Z4yBjjkuQO/Wj4UkHwzDGEtm19CBA5NVYZ2Bwja5/JWu2Mi0hZltvttvWxIUTm1JmsyLM8Q0TlXINIlo6GHd0BVu2b2r2YqKjiQ2QOHHW61+CJbsbT3QbT97fpQ6hBT1VVRKQ4it/UN3wGx+BlB8m9vMOLH7tzagYTTU9lEM/uOyoa/WhMP1xAYwwQpmna9pSPrjTSn6OG78zsnFPJf8V56weGzoCSvIcc5vDwUPstzJznedu2q9Xq+vo6z/OZm+t+1RtES79DG0F/r77a6nXQydeI6LsaVE2nU+/91dWVGlAMkj5t2yqKbDweN027XS99CA8ePAA8X212aJzCXn0UDbCOjo6qcl5uVtPZNMuy7XYbY5wfzu6dnoam9Y13zlTrzW61PrRuMso268RaDe4TIkvdA00Cqo53k2kMA496JWI9EX24uLdlNC+MHe61wrAXPOA9bjrACwwH1ULuQZMhsKAwf4fEHI1B40CY0Fhrk8RliWujS51brVYnBwdpYUHLIcwRUROVLMvIOBFxSQgC21IzlWitRbRJjFVVWefi7VnqRZ2JYXj4PbLckMt9RjUKAA7/rcn1/6jDND74ublMJUYGESQ0REToElMUxXQ8zlOXOpsmFpAlREukZRfNk1WaL01TMuTIGWMkshYdvmNFLE3TXRXato07sIkpRmMXwVpwLnHOojAgB2HVHgAz3C/g2DnPxhhDiFFuZAeisO4MDQHQ0dHRbD7Ps6xpmmyaZ72hx3AMWm5QN4+e8hQEIcaohQZlmIhIlmXz+byq6rqute358OFDVSt+/Pix9k+UNa7WK6qIr8UFbSCIyHK5zLLsC1/4wmq1evbsmTEWQLRv8/jx47OzsyzLlIPx7rvvPn7zDRHRDu3l5aXeYk0zPvzwQ2bWTEBRYSpkbJx1aWrJ3Ds99U07nUx0JmGQNvgsy9QpRYkiBwcHOu9VVZXn6Xq9VsFi0y8uiOicKzdlmmV1XY8mYyLabLZlXek8cDSbA8BoNJpOp90BGKPsFHXSnM/nKvurbvE6WWn5QMk5ii5TuN3V1dWgK6DWkA/mcxFRQTBdxXUUaay2WCzUZEY9VZbL5b1795T0ooEgM2/Wa50r1uu1smiOj4915MznM2Not9upHrT6VB4eHtrETubjeradHxzM2Ptmt/X1+uwp+51xNEtcw1KzVNEjMhM1HHbchmgTNEYkCBJLJCFhEojfR6kA4Of+y58AQB+YRaJAZIgCu6pqWp+k+WKze+u/8rt+5+/72W++/+5/8H/+i03bSvDEkQILcwsYRGKIbQw+ei9RyW7CiKYn6fbPo+2xJhCDuVnS+5VdJ1l3o+GusOEf+IEfTJLk17/xjS//4Fd+7Ld8ZZ6NtovFenktwkcnx/Pjg0j46HNvH92770YjjxBEqqpOwI6KMXtfb67ffeebj05P/ty/83NQN5Zbw9ExA0BrWLWeDBKBmhcCAKAI2ZtoDxHjHlvI4k1buDtSfY3QkTaRGcD7pg58NJ+Ni3ztYzQeiNlIbGsWQnQDcs8iQmIk2IuL86997Wur1x8/fvWVk/sPDg+P3//owxhaZo6KnsDU2U4IJ1g3UGR1jKlMv7VWvB96I2omqHOmD0GFZWVP0/LmvHrVSv2q4ZFEREUT3GFyvrgNWYQeVZ7lemBadtFwawBuDB/TvVCvpujbRp846EOs2OuRrlYr6EMmPSk9ztnY7S43J6m7Pz5FayJCAG5jbKNvI1/v6rJu1uv1Zrd9cvbs7Py8bpqyrtoQ1rFGMEhGxboFwVgEAEEbfEAhuAGodekpCXDTRB98VgMiGOrNiO7mGzfVfdJEDLvihw45IEvGEFn6DDn+O6vYvolZTJME9/xY9j+3r/AwLMr6Vz54ze70WdQP6E0PvYe4pqmfvY7f7CvGoR90d0R94YtvJUmaOAed+SiHEEMIzCpWF5Ua2zRN09QA4JxLkjTLi++YqADCpq7L3W65XAbvBSDP86PDozzPQSQIWOfU1kpL8tfX11dXV5vt5mq7BBEkMEU6ms9T5/QSIkti0v0rtX/0gb+zZBkAOLARuhNogy9Go46bvmc0+eJd+f42BLBkJLJv2uiDTRODBMxt3cD35uSAt5kut4/q1k/7mQndphy9UK3eS1Ss1VU8z3OtaN4kKs5J7+eok07btqPRaDqf6ZebPSln7CkrqrSjC/lwMZMk0eBGy4HqTq1gEm3IWJsoB456RYGiKBR7DQC6nKhJs8ZP6/V6Op3apNM12u12mgcOpccsy3TO0gRD8RVDy0jnrAH6AgCqZFqWu6PjE+99nucsWPmgmqQKKcmy7Orq6vLqUnWKNpvN+fm5NcZZu16vy80WCdsqWz+/qC+vT44fjGfTXZkaIkNkyBljQSwRg5AAMBEKD4kK7xPrB4t6pVGFIAMf6bZ23nDx9xOVIc/R9oWxd/8EkXreErJ4kS5RuQ2/RUALSEQWdL521lpKnXGO1utV2zaS6xiW/SGqB+y9L+umrhuETp2wCNIESJLYQeqDB7r1V3eGqA7FO2IPQxGBvxt3Zfo/cyzgnINMZ4BOroAMhegBUmtNlidZmqTOJAoksxFFACXGyBIBhSUiYpI6QgC0hBRDDCGqWp219h/QH/9x/vd1j3/5yT95nqxc4sH7qq6Syo0nhUlSa8AmzlqDKChsDaIhIGDumC4s2s7uJtgYYxSOIhEkigQtDyEIosFOsGs0HjvnDg4Oi9msbpqq3g0nPtCsx+OxKoNZa42z+nxp39I5p6IXxpjdrtQWR1mWRPTw4cPnz58fHx8/ePBAmwbX19dDBTTPc9WVOjm9/8Ybb6zXa+1ULJdLEXnjjTeeX10+f3793nvvIeKzZ88AQLXFlsulgsoGIyO9xcYYJZHfOz7hXtZP8Z/akBnbsZqrZi65d3qqC0SaJD7Gpm1HRaaiW8ysms7aKYoxnp8/S9O0ruuPPvpIiSvaz9Hov24a51xTN+tyG7SjLtL6dleWDx48mM/nGjYNjRERubq60gRM5xltknjv7927V+42gyAh9hLhOmMg0Xw+R8SDgwM9dyX1OueC93ojNCsDAFUpXCwWPgRE1N7LdDodtIw15NpsNnme62xWlqV+w2Qyjom7vr7abrc61KfTaVEUiLi4XqZFUu7q3fbputlyrIu6KvJ0NkmsxbqKbevXEgxjy4zsvVAl5JmnkKCgpsokwixMEJmB4PtCcwkRogCyoilglOdN06BwnrgPfuPXZuNiud1wVVsEJINARFEA0LDhGNSBzlgG0xeKoUXiPtsHAERSVBEh5CYxhNZaaywSInTRGxJ5YKUJqoGlS5IPv/3tzWZjiD56/9v3DuYHX/4hTJN7r72aJkmSusl8Nj04OP3c51yeV0EtEiTEIBBzydu6+gd/5+988K1v/YJvoW6kqZGAWPsizMLIXScY9xkEcnfavHWpbkNChoBO21UAwECIaBJHQr/nZ3/f7/1D//Tf+8Vf+Plv/MOn5+fXy7WxibF5ZBGE2LFZIsRgLEYP51eXmksfzg+MoV1Z6mQrICEEZjes+KrJwb2pKPe68CJievNyawz2AT0CROayaSQE/fM7c7jeJ61HD3gBfb5C74/+2ZXcIUvhXvOmi4D7sun+Qe4nKppTaUiTETrn9Oxkr8ODiCw41E+hZ+TWdU05omMkaKMvq1oQTOJUAyohfHxygIKADwAxMtdto2LlVdNuQ1zvdleL68v18mq1XJXb2rdV2/gQM3ODCdoHCyBwam0S2URBFCQSYEHh7sN36877ebjmFYBkrXXk0jTNkzRLU4gvFc3AG74GECIZIhAUMmhN50VGQzQy/FHci7ERkQhjjAoMGC61NjaGbkefLzTDYPgew+z9CP5OZmPffPN1a521VmMDAI0/tOznRSRG1thuV+6YY54X49GkGBU4xFKdxoUmCrioqqvnl1VV1c6Bkel0eu/evdFoRIhNiMZanZTzPBeR4+PjJ0+ePLs4X7ZV6wMb64Fcmo1GY+dsDMHXnqDTNnuxurlvq6Pi48OWaDwiwiJOkiRxeh2ttfEFt069B59dQhIRY9QlxwPAIMkFEklQfIQQLSBYlxhHgNFHBCB3w85HhH3CId0K4G7dyn2Aj069w1vG7DNbboVxxuxzVG4dvO7K7rmYc1/MBehqEoNMsGI/QFW2Yoy9WJnOMsreViyZ6uTou8YYnQjW6/WQmdyZa9o2KEpEex0KBmNmFfDRc1b2qgbBnYkKGU2KlACj6ZZOWNpv0fTp8vJS13Xt27DvOF7KuNVEpWmasixBOmcPZgkxLhdLAczz3KV5jPH58+cAUO7K6TgnpKap6rou8ix1ifd+NBlLiJbBBoE2JFlm0zRLR3VznWWOyBlyzJ0EuAg4a2MP94K+Cabzo/jQ3+JuGhraJqDIY9TJ9Gb66L/mpiEjg46cfl4dIQWBbEQEBVACpmnqJahwh5Z0siwTgBjZWEM2kRiRDIBYaxJnmJNRlq63VQhBd+dDKPI8SVIWakJ0zrQ+GmOctYiAhJo6JmkSIBZFUdd16Jt4NwiSvSd0WGDg9gz1HZ6H/ZHcnzj2yt2IFGOUjvcOLMwMhjrOHhEYi9aSNWgM9S6RwVoigrZtYwzWojFkjCBSZCQiz8wcrTUuSRCRRX7e/PGfiP8+APyxR//J/3b1u4lKAPCtDyFwZEzQOCMALJJYTVqhSxRjf6ZRWCTEEGPoFmyQKBKZowIcCFnkl/87TwHgF+HsX/z7P6NSVFVVLnY7ldO9/bybLMs0SNXHpyzLxWKR57l6pOoTrXFzXdd1XetD570/OTk5Pj6+uroqikJ7jx9++CEA7HY7Ff9FxNdee80lGTO//vrrT58+XS4WxhjFVcYYLy4ufAzKyw8hKIRpqP4MRQf9Tu27jsfj2Xii0mExxvVm3batelCqhu/i+VVTVhwiM6vBT5pl8+kMEGOMZ2dn6r04wNvKslTlcTV5zNK0GI2ePHlydna23W5PDk/m8/l6va6a2jnXlqUWU6y15+fno6LQAgf3BlBnZ2cAgNPZcrnUJOTo6EhV1DXBa5pmvV4rhi3P8zRNF4uFEutn8/nx8bGuCFrp0MSsLMuqLNWPJU3T2WymkySr9vpotFqttL806CvqY66rpJaNnHMD8EGbw6vVylqr05oi0HRbr7ZPPzk7OpyrrXDTVHG9TjOaTLJxQgGNkSQjLIMvQ/C+isBZlgZWKgSCI0sE1Gm2asxN+9CDW4WGfVXQWzE3krCG6gxBxBJkaUKE4yxd++bp++8e3r//+ddffe+jj4QRGJASgZiklmJADwQios5y+j8ohaWDRSm2U7rCF1LBaACNMUidTqY+4QKgjNMu+bcGgcng6dGc0MQQYozHpyfj2aSHeFgANGnRsDStL9saiKwxiJi5NLbV8vKCmmrs6Of/4ddm4xGhdJVd2ZMkUY0QJPMyX47bARj3kuSCoM2j/keMEQg6k8O6aUYHR/dPToLN/qmf/Znf9uNf/ua33vmP/5//+bc/+pShIZOgtQEMx4ixZe8JgAiZZbXbPr9ekEuctVdX18HXyhclIu6h9UN1EpQ627t4deVzBOMsGXU6Ho3GoyzPAcC37ahp1SKJmU3vy6Frrr7Qx0Gzi2H5a307xBKDuCUzA2Lro0sTVUgf2iB6VTVg0PV9X/cce8CFflhnPO6174cHynuvF36Q5Wx91MlKoxT9Bmb2oU0maYgxdanfRR8DpcZawyJpkmAAiQIghMQkLrHTdEoHUwATAkdmz7GVWHNYVeWzq4sPP/n44uKy3LYSmbkniit0wVpHNJ/khnmaZIl1LkkyawSZEQTFISGi6mqoppZeT0PkDIXArffHzHUbfGCyzjpHZIJvY29JBz1So39GeahRYid/IYaUp39zPRFvWSKVVUmkFw1EWICNAcAuO9Cbrk64AwVAqzN6GF0zoP9CZlb42TClDFG9dKlX58fAffLTZZKPH7/Sw4BIVAAuhBAjx9D6FhG8D3Vd7XYu3boQwng8PjiYz8azfW+TGCP31jNhuVovV7qPLEtUH1OByGXdIJGK9yu0WgtjLku2HM6fX4YoVdX4IER2lE04xDJuOXihWy6Kw0Yvb3VJGJpjnWwC9MiTITPZT/ThDkTyhW24i96LtZ27nN5UDiFGDt4bQGOsQcLIhois4btfsvca7lQUbnauy8zNCLsVs70c33VLWuDWF95oRIvow9wXJyRGUFNqLcwrdGQ6nSKRb5qhqcLM2rLQB0ChdFpN1JYFEemXaDCkPQ2977oM13UtgnVda/VX66waZ2RZluYZESkYTM9L6zG6fusIVaM6PQwtbWriocevFVzotciWmy0RjUYj3cXZ2Zmu684533SF/N1uu93s2radTGdFUaT5SDPzxWIhwlmWW+dCaIui4BhXi4XL03v37qVIzgdcbdLJbD6bmSTJsvF2cy3i+hGnwW03deINMLTLUqRricCwVOCe4pnWC4YRR2Rwr7ewn50OOSQiCgD166MAgnEGjfIOA4u1GfjahygABIiAOulHrhgQreO2EgBmMMbkLiFkz8ViWy2Xy1fuHYbQusSITuiMIgF7IXaN/JxzgtTfKclcUhTFer0GvJWo7I/e/e5QjPFWEtNPYS9W3egWZE70AsUYY9cBFmaJgTFzxqCxZCwag8YiGr1IwqCOuoplDUiQWkvGADAS6hX03ocQE0dJkiRFbtPkh+u/MBzDv/SDf+vf+oXfFgDLtlksFsZhenhs3YgsqUAyQBzAscN0rMRQ7jiCyMyRhbuOinpnwLf/1cWwl7/wU3/jp/hniSjJsqasNFEf3h2PxzFGlaxVinYIwQTje0N0Ld5778uyPDw8JKLZbJam6XK5VFtDZp5MJufn5/fu3VNZP33GJ5NJmqZN03z00Ucnp/cVcZTn+ZMnT9abjSp9M0iWZ1VVvfnmm0VRhBBULk8LCtuq1JYC9/J9WnfQ9BURN5uNRthJkii7zHt/fXlVVdWoKIpRURTFarUSwpP791Ck2W31TLEXuFutVuoVo2qEXeOUiIhOTk5cb/Su12q1XNbBR5F8VGip5cGDB8oJRsTdbqfj9vz8XBsyChFp2/bjjz9eLBZatSnLklAmk4keuWJT9XFW2t7Tp0+VvAcAyqJJ0/T+/fvlbqfms3ph1Ufltddeu7y8bNpW8XLb7XY8Hs9ms91up1peaZKMx+Pdbici2h/T/HC73dTb7Xg8staqKrS2gxQTO5nO55NZ6vI0h6aWNrKzZAmjb4skdYCOkiKaPKauaZZ1FTgENoFtjJEZiUxinSAKomrt6iQF30lilehmuewc7Ycf1YKPAQiYJTIXaRoZGICa5vmzT2xGP/WTv/W1N954591vX5xdEblY14E9ADmXWOsskgZbukplSubd27q5EWCWZMORqVaoQSBDghh8AABQBDsZ6FmRhownSbNsNJ2kMAakJEkRsNzuPFPLYgDROCIAkcSYZrslpI/f/ZYv19/6tV9xJCSBUBgEeuW+vcdcDN1yTuF9F5vbfn/7iYrsFWIFAMAI9F1iayazqXWGCBOy5LLf9uXf8vbjz/3n/8Xf+3u/+EtX27KKraA3xkDkNHVERiJHHyPz5XpFaXY0n2siR0TWWGOMIaPPgvfeukT6doTmGEPXohgXJk1ERAyCQSFEQ0qpG0okusrHXj5Uq09DZjI0//Wbh9ao/n6IRBEgxGDY6q513uhDLIm9k9tQ2xrGJPdYAwDQHEl7yCEEDUgAQJvJCuPUi+CSDKArAoYedZymqXOWIXjvjbORIyGmzhlrY4x5kjaxZYjMTNY4YyxjjDEEL6FxER1AChAMjl1ykudvnB7/2Offqtu2raPy8gzRgG3Recb7JjEmc0lmDckwVBgQIATuecXa2h2GjSX0IUZm41yM0LaRBSKzsLjUaWSllVlN6jQFjr65Ub2Sm+EmAKv19ubhvSO3lXThygDaR0RrTZansuwSwoG3rDdLQb8AcEPYTpJh2MeeR6C3rw9yyACUbQvm5q3h5iKizfIU9h8zBiJrmJgNUgfsE2HvfZK0iOCcdc7t51zGUOI6e4QgeoVDCIFFkiQpRiMtPiFA3fphslFAUZIk9+7ds1lSkml8vL682u2qals1acGuIMCUbEMdSWiIbG6u4st7IPsNErz7Vndp6DcD/SIiUVdp7GjT0D+HoaqHeEufWOdcOhrBi2DD38S+OmrQZxyhrpfDj98xl3txGwrSRIQIZJzrzdQVta9Qh1DHwKJqWtCFbsH0xqjUm6RKz5aDfibSyAn66oWu6EpWqaqmaRo1WSMijSd0aUdDd2JfEdEXm10JPQJtMpleXV2WZfnw4cOBV6NZjSa92irRwEvnJr0dGtgRUQg+hMiizvQmxMjCKm2sbSXfVIvF4rXXXplMxpZQDxJBfEBkKcvSphlU9W6xnmeFs66OgUxKlCASiEUgJfMp9Gt/BGBPTRlSENgbjfs3KIbuvmtKuT/mtfS1P1Swq11pmaT7ta7rKjFNgCKkXHlABAZdAEajEa53PogAAhIzxBgR2BjKjGujG41Gq9Vqs9mMU5skuQh47wWM7rHrKCIPiYpzznnGhkOM1lqXJLFtXka07fOKG0OV/Qul24tDGhFRDQYQEckYa517/ifXW/DPYXv0l17fwwCgtaTpChESARlgBqJudkAGFC1ZkjGqqyHWWvFRqVlWNeYnE5MmUN89/jRNDw8PF6vrsiyroi5GqbM2AocYiQQFjFXHyO/cixcAH6OP4mMIMQSJL16mg8NDRLy6ugbnsjzH2wLkDx48WK1WmkXoGkyr5eHhoYiofpfW4Jm5rus07Xx+lEimzQFV8Wrbdjwef+5zn7u8vNxut8p7uX///quvvnp5tXDOvfXWW++8887R0ZGCKBARRJIkqZumKArtcyZJcnZ2Np/PkyTRr9IoQSu4igNExFdffUU9W8uy1K/S52633Z4cHWn16mA2b4OfHR5keY6I0psnaBlCl4CqqmKMRVEURXF1dbVarfS8lD43Ho+ttZvlpqrrtm3zvJhkCVmTFUXbtixSrtaKTNB27tXVVQjh85//fF3Xygl5++23Ly4uNIip63o+nxPRZr1Um5cY43vvvXd0dGSMOTo6Ojk5WW82g0g6Ec3ncy0JbTab1XIJANoSUZTaxcWFpmpIpEwVAPj0008//PBDbddoaqe3VRlEGl3VdT0ajV65f1+EFeOn2ushhKOjIyITWn704NHV9aXfharaIYeUyCAjcJIQsMTACScZUpIlYMy6bUOIkYREWEBE41tNPAgEmIWg1wCg78luAgF6l2IRAUKx2CFfEEQ54evVVZbZ3/P7fs8P/vCPnJ1dLq5W3/rmO8+vz2L0sQ0h+ABAjACEYA3yNEsRuuPQNdcZa52zZPLE7nshaLKtFFm7V7lT1hoZY60xZDNnDZHJEjI2IgAZEEpyBJtGRoPGGUpSCyH4du23m3d+/ZvNZvvNX//GcnE5mUy25XZU5IjQG8MhAQx1Y01XepM4baIMVW28G468ZEttGoVbbnwIgHB078QZqtpmNinG08O6aSank//mH/6nf/onftt/+fVf/ds///efXDxP8yxaAkTvfdt4iZwkae39s4vnAOCIDBhjTIc8taSVsuGSYm+/O9izCsDB4aFNuv6GSZwgtMGLSBCmGK21o9FIT3lQgKiqytl0WL/u9IFpD7WFPSAixigAhrroQsuIds+UTPaQRfvAECIaIEYAoPxY7sk2GjoDgOYtA0NSL8IQWcXeR857H6MT3zCLlzaW3lobpdZIK8RGbG+JIUhIZNECOiQkkdajUsUJogj7IC1bjlmIpwcH3ocYIpkubuwBSJKSNURWxfOsJsegPYe0oL5rEO8EgWjIkSEQRAKQJCFhFAQRQIMaWekaPQDtQDhz8yFuj73DrDEGDTGbG7Xb2/erDY2apTCzBm/r9Zo5pKmbTKZIpEuG3tP5fO6c0zKcRmUKihlUjEmVZuFmX0P11iKWzNLzy/SwjTF5nud53sm5Dh3AvVaRDBmwprNt2+qCEVov7sYDm/e22A8+HbUaGek3ow6IPjnmnrKfJMl0Mn1weu/y4nm12rRlXW42TVpwPk5dCugCBn7Zs00vT1QE+uoyyO1YQUe8jvI7d+UzNmOM7weN6XX3+vpBd4BakNAn5w7G7De1/aYO7PveBWqjCRPNRjRMBwDloweO4+kce7EOvftDM0op78PJwp4Gg45OXWJViFBngdFo5H1UpIRGMPo4dSpAHDU5gT1tN/2NAsO0J8Mch5lI66Ad4ihJJpPJwL/33mu9UzOink9cxRgNmfl81rT+7OwsBJ5Np4Fhuyu99/PDXMsDp6ens+m0adrlbgsSJ5NJniRNgCaGzWZj2gCrzdilp4dH4/FIiNGl1iQIFqDjpHXuxEDfMVHRsxPk4Tf7t1tEPPthbhK51U58MXbv6hOGjCE1TmFAFoihM0nqUiEkIgJEYdFK0mQyobPnbYjgLKKJ0Xvf+raNWWKMOGtSlyQj88knn7z9+dfbtnXOsveAgmT2imeMSIlLgKL3PomClY/ea/ZS7ynqvrgN5bEXE5XhLt/5E+wE13vXVGcv/uR6ePfv/rMf/pH/29vgCEGsc9aStWT7lIqIABgIhHH/XgxEQBGJIXLrYwiqfK1lOfTtncNo6joS/du/8+v647/xtWMBiCC+qmNis8TqpSZD7O+Khg1biMFH8Vr6BJEXShKr1eqomN+/f29d1WfnZ4eH8+Gtd999t2maV199FQC0qI+IxtnpdKp8cQAYjUa6tIxGI+0AK5YsSZLj4+OyLFerlVKzRGQymWy3W31wROT8/Pz4+Pj1118vy/LJkycnJydpmr7//vvW2pOTE+vcBx99cnV9/Uu/9EtvvfWWc24ymTx79kxVxTT9ePDggWYO4/FYMaK6KLzyyisadiiR3RgzmUxOT06ePzu3ZKbzmYisVqvVdjOdzw6PjuqyCk2TWKc4rsViMZ/PZ7PZarVSspyKBDDzoDyjldeDgwOt3pV11cawLcvlel2WpUuSx49eOXv2rKqqzWaTJMnjx49VzXm1WmXjyWg0evLkyWQyUXjVarVaLBbb7bZtqi984QtKvZvP58y83W53u11ZlnlR9MswKiCtruu2be/fv//GG2+kaXp5eblYLPTWPHjw4Otf//rDhw81n9dSji7zCku7vLx84/XXNfXSPhIAaIjQtu3Tjz9+/fXHOicDwGKxePXVV0MIiJy4nBnun9xryT97tm1itAatNQBtxIAGDKAVNECMOE6TlmPVeu5Z3CFCiB0vG4BAICNHg0Pc91rUE1BjcpVrRSBC0/NVkoQ48nqzePf9d6f3Hs6ODvPpwecw+aEf+dGyWl09v/z444+fPXmyul74uuEYxUThmBnoY1M0ZJD6lTfGurmFoe9al4RkjdkDp3WBr7XWGCJDSea9b9voDQcAIpvZJMkLZxMEAgYRljZmzm58ePcbv7G5uLz45OMP3vvW4eG8aRqb2DYGcrb3aIBkD48hClzRQ5Jbntjmu5HIhy0ysACgESOjyejRo4eISADB+9AyC3EbKcZ708kf+B0//Xt/8rd+/Vd/9Re//svvXJyvdrtQtcaSGAdExiVNGz59evZgPsqdYo5sjKGqgjWUpmmWpc2uHMpGxpjDw8ODg4PdbhditIlTBIQ+1PvZgoQuZ9C4UeNjHZafUWAdJnZFTFCvByMiEVC/eRAIuQmxELSpqF+7Dyu6U+MbUpoYo00T7tkyOpmbXuaHDO5XyoaY0BojkjrnCDFknLokhEBAqctFE1ARZEBEjIAiJGQEgaBJuruMAMTMMTgyRZq5xEUAFI7Y6ZWR6Vd8ltAE7GRCIQorXEIV9cC3gKBXNfbYPN2aINY6AOTIIkTk+pAJNXKgnk10ozTA7PbIqdy3STU229XtwKq6E43ot2m2oNFRlwUwX10vy6pSMRLt6muvLM+zoih8aDVmG/aohwRohjxTGzVKaGliFJcAdtX5IS7ShMd2dgtRO3GsJJ1+NAREECFjUP8xi+IoAGWo7hEhkWFGFjQsmpAEjixgjUvSJFV+CHOSOCRKkyRJ0iRJjTE+RjIhSdLUpbPxbFFMqm1dVW3bePU3tWT2i9B3R/332FG5k4/2M++LX/iCy083zaAAEqjhjXXGEBgEEmGJECNpxqTRZ4yxbcFaq043AC90dL77NtQbEPFFAt6w3YnkvscZcPiwxq9IHdlG5wgAUHiG1i8BQFMLnVmG+oQC0LEXIx6A1/olWlZUeZz9Xo2u/cpZH4/HzKxQLu+9SxPFYmo/x++Fd92B9jwN3a8ekjpSaxakuXtRFABQVZUmzEpCVXjraDRaLBbLxSJLqGmaoii223Kz2SwWi8l0hn3zMITw1ltvBd9eX15sN+vEuZPTYjaZHJ8+OL9+fv7sbLNal8/OXp0eOOtEOrIhkiEkLSECIgihEAhF1ZpEYIBBnZtIYdhdoDz0N4cxKbdliPdumw6zfnm8eVcnO808gQTREJHr0YWmbiIRkRAABBAVUB6lzqDE6I0lJOAobRua1ocQkABEnDVpnl+efbLebIrUWYAYmEwnuqKLU4iMCNZaAXDGOFIiF1vqtHpfNgLl9vadBud36qhAp5UJAIT0ItlXdX4RBi1NY4kMogHpJJuJUGu9hKqTqeaL2rat6xp9kBhT65xLqjZsr5aI8jfoj/7MuHNT+Z/+3d/yZ376F/d3+qd/5B/+ufd+T55l1jlC6JGkWj1C1XcRoE6BFJARBDCyRAaOwsyABIj3/u3i/E92jq7/yq/8UfPb7dXV9VhwdnwCiC65aZ++9dZb2+1WbQfVfTVN081ue3V19fDhw8PDQ3UiUmEoANDOgMKH9EETEe3DGGM0MrDWFkXx/vvv67O/XK1ckqlsxsXFRVEUR0dHSn8v62o2n51fnH/rW9/66le/iogHBwfW2oODg4uLC88xxnh5efnw4UM9BoVXee9X1wsRGY/HiKjs/OPj4/F4TIgqRnR0dLTebq0xk8kkS1JDNJlNTJGH1isZ4+TkRMu9TdM8e/bs+Phwu90OxouKB+s0M7bldrdLkoQMMUdn7Wg0KrKchX3b6l8pmNkYs16v1XVepzKdOo6PjwFgu90y86NHj9q2VuWxq6sr69zBfB73OrpKyNECs05En//857VtpcppGqIp1yhN09deew0QN5uNzlQ6Dygx7/T01DnXtq3eF51ImfmVV14pd7vnZ88UKjafzzXRevLkySuvvJIkqUPX1lXbyHJ3HX0rMRpUHDHE6Amoc1yNkSNbQIfQKr4LhAEYIIpExqDzl6BNHHUIAhKR20bPMjzdtykq2lFB6AwbgKA3awdwlsQQoLk8O/vw/W8//sIP5uPDuonZeJKNi/nh6euf+4KE2Nb1dr26vHj+7Omz9XLx9ONvEYBmS4CgA3U0GqVZGgwOaUAIoWlbLQAH78vVZljSDZGzZAitQTIUNJC1xo1ysZbAolCKTgI7NCQQG99CIyJXZ2f1Znvx5Mk3fu1XRkVR1TsAk2VpYGbs2ckI+31j2SPd0W3IK+4t0yhwy7VPzTe7eAN924BBtGiTZDKdHxwdRWZrzK7cJWlmnfU+5EkyMaMYA4d09iM/8lu//KWnEs8ur99999133n3v8vJ6udqUuy0Z65mrChMqjDHOJS5JUWKIAX0w1AkVQJfmSZIko/G49V689zE4SUgFdYxpVAVUmABzmxIRd+zTVtc1LXxwVOe7jjeMiMMIIaIQI4hYAFR9cJVsEkHrdEFU2okisjSWNdYN1VuNUoZExdw2bNBj6ENaDnt2hF3l3loypq7bobQ6dFqYOcS42+2yvECAsm7Q2BCiEXEi3geTOGRGJiKCCBxZzwsJxVlWNL9CDmJs27aNjIGzSU4GYiQkijE0bdMtTtg5AWr3rasl9jFo6qCTYAtRAJ1LFBAOCE1okQwRMXuOIhI790NSAJ6AFbVv7hAICIBoIA5Nv8Q5JOquAEuSOOljhb562MUVkVvhAABKR7AGR6Ox935Xlq+9+ipqnhkj9NpFTV2XVSkxrDfrGGMM4fLq6vL586Zp0jQdjcaP33jjBs5EVJXlkydPPvroo4vLS8ryNM+mk8lILSKur58+e7ZaLqv12kIQAiQ0YEzsmiLdQVpVrCIIFBy5xCQQgYSgY4uRXtjOBwDV0AyhaogBTdL6RshChMSgtbGNPrUsiASIYkASQYsmupwo43nZzKazJEvTSVFJWMfmEGJh0YDNXBH7Fpj0LFsdstyD+4codqjyWouMHUXeIRCh1v6REMm0wRtnyZq2bRvf+hhcmkTmwd5dUARYsLthSBxDgNg6I5k1IweOfWiatmk4eBQxeYaJbdrWh4qkXi8204McEyeS3gB5b6dGt0Mz2J/q/SDdQEqou/kg3w5b92e6/S/UivPezzcfo/19CQYftP6nVVhELIrCGCOIaZ4iwXa79sFnWWatGY3zDhNvktArfgyrLPXCX0OurEgGlVUVkdnBoUsTNBRCqJo6y7LQxul8FmMEQc3IY+BdU+oNXa82m81mNpvZPM9cUu7KEIIwS4hNWaVpGluvqREJSIjI4uvGOXd8cNi0NTMvl0sfWjIUOYjnpq135batQQCZeTqbLj95ookTACwWC4v81lufTxNLKD5yko9OT07nh8eAsG13BvnNRw++9cu/xiHk04kdFUDWANB4itZV9W6ejz20EQwgWDQkKSUIkSUQQQBB4UAApEox1GUjAxdQerwfOScCgZl9uAXwQ9jWjcaXvmlD2zpjAUyMTSF5REDqe2WEaBENhRhaXzNBmjnDpmk9SGTBk9k4+ObNg/GvfXJpUrTMLsl2vn22XBej/LgYT1zqsV5vNgdHh88uLqezOVnwvklcGBdTDx16GAVC3YbAaZIGtKWvsogIllkqHyd5UTZ1FVpBIGM43GocaRUEAEKMZl/ObqCW7f0y+qDJTwjBJS7LslB7qO4Cq9qA0iAhQ2ZG+aSwifFt7tCQkciAFo0V9IYEHABCCAFEjDFN29Z1XTVVGuJh4orR9KvZ/2X/m//cr/7Ev/xDPw8A//pP/zK8sBFjWzaGjM3SJBnleQ4g1jnxhtlHqevQNAEC2gbjzte1MLtR65uqbdrArfdNiC3Z9H+eB+9HiP6/MUmmhwLkvT8/Oxe5tSRrPK2PqspGGWO8D4hU101RFPP5gfYZ8rxjZF1fXydJcv/+fe+9OhSNx+PVahWinJ6efvzJk5OTE+vSh49enc1mV1dX6/U2y0dODU+t2dVVEG5jWG7WTdMcnpx+/otfeOeddy6uLg8ODqq2WaxXQfj09PT+/fu73e6b3/ymBg1N02RZ1jTNeDxuq/r58+eLxeKrX/3q06dPZ7PZ9fW1iPgYMSGb2bIpT+8du6SDanBdHxwf17y9Xi+9b8bjcV1Xz549OTw8bJoKAM7Ozt544w0AUOZ6URSHh4ca4rvUjjAPIQCwBG8RDyfjLUhkdobeevONi4sLTa6appm/+so777wTYzTGDeLyirk6PDxsmma5XB4eHx0cHFxdXkWgNjIYe3B8kjg3PzgCDm1XFoxFniv3ZrlYMLM2fNI0rapqMploL/rHf/zHEXFXlkqWVQCeMWa1Wo1GI2ttXe5Wi4WWgVQeXZ1knHMPHtx3zj19+lTVkHXuKsvy6vllYp1JzPx4WpBZfrrKYkgJhcGZNIkkDEE4Sqyj1CH6EIz4jKSNgXRZjGiNSa0KvBokqdtgDDojFpgQqau3aKJth4eZQeKehwNjoguo9i/VeAFFWMRGAQYIvtntLn793ePicPLmxKKJEsUkhGCtoEg2mYyODw9ee/g5+DIZ2lxeP392nmcZIDLHyWSSJomw+BAoSa1zSZI4l4iwD0Hrx8K8u768PD+7vDi/vDjfLJcUOXfpbDrO8mJRtsppFsTpfIZkDaMVY8AE76WsM4N1WT799OP3f/3X2mr7D37h747zFFGsEICEtgboTU908TZGfxLNOPbX5T1AiMQIELsSCqLrhGZ17SZzo1AEbdwJWJMXkeMrr7/psgKd8W2wCYqRwJEpRo5N6KrONk/HefoW0psHhz/x5hvhZ6Rumo+efPq1r/3SN3791y8Xi+16kZKEUb7dbZPExRizLG9jhCAuteKIyGyacjqbUp7U3DYSXOay0Qi0Ek3YxiAIlFjS00MSwrqsA3Na5MxcVlXVNm3wKVoUgcgcuxhMRBSr0yJrDOOFnVqhC2huORpNtG0yCIdoCqFkNgDQ6EL17rQ3YozRPowCUCNHAOzsrY0lUgtutC6lAaDOEDkaazl4jkKGEtc7gBMG7/M8zTLXNG2SGB9qNMgIZbMjonpXjseTgMFzi9ay2pLFKBE4ikucdY6ZgdkYzPNOrrapGgQgMMLAXnHdIASi8kqEqK5FwQsIQa9FhikYTc8NATRto12mLM3z0QxAIrMxaQxcVZWxpmxKRIzBE5FvxRjTNio0H4nIGtuKYI98GY1GHCIgorFkkJuaqGPvABCREeGmaa21zGSNCd5ziERkiELbIsA4zwUEVGvboCHTtnXTtlmW5dMRh3D/6KBpGgT84ptvhBD6Xqhx1rJwjCzMrfd4dPCDn3tT5Kdb3+52u0EW2BpT1XVd1+Vud3Z+fsvduavH9ts+CcHsbdRv2HdohpIwEFgio7adfS9UhTotkDHAoFb0FpEQCJFRDKJY0zWqgChq+dmQcdYhhibu15v3m6et90N7RA9sAKFh5KFo+z33rPUadP07jcK4m0hEhEnd8SAG37Ln6NvgvQTvyECMMUho29i2oa5907L3Jrlrnv2P44YQQ1T4x52eTIyR4EZkaUgRRWSxWGRZpk+OUttVMhgRh3qtDhJFdqVpqib0KgQ8wNZ15RaRqqyhV35QbD32LHzV+FKzSEWpDSUQ5f4y8/X1NfXUOgWMaRFFiz16apqpFnn+yYcfjCaTqqryYhx7TcbNZjMhmh8eqj6Soiwmkwkaw4CEsNtuUmNSNL6q5pPJbDZ3aSoggYVuenECIJ0bmupLiohWQghRiT2svWnQTJL2sJdDvodqk9h3FYbz1Y6KGgZGjpHFkvQ9QsrSDDRRIYogQggEFigwIqtShlaYyFlHApM8O5qO0+SqrLbWpW1oM2vLELbeTwVGaTICZB+S1K0W1598+unpvZPpeMwAZdN4wMDsnCOUQSaIDBmiNE19iL71vvFsftPtxGGM3em0DPWIm48BWEtv/NtHH/zJK/3NF/8P99pZ9B6CExY1CRNkkcgdBgUQiZjDMM8REguHEGOIDOBt6n3lkuQnb2cpAKBZysu26EMTWcv5iIRIzBwZmCGyamNAFIgsgSVEDjEGJu66Yn3BEUGQGCjJRsf3Hmy2u/sPHgqZ7a5erNdxT3ryo48+Ojg40GdwNBopDKlpmtlsFkJYLpez2UxEtJGi5oBHR0e73S6EoEq4SoHI8/z9Dz569uyZPtFKGHvy5ImiOFabdRELpYCXZcnMq9VqPp8jkbDMZrOHDx8CgDHm5OTk1Vdf/fjjjw8O/j/M/WmsbVuWHgiNMeacq9nt2ft0t33vvi4iMiMjMuTMtNNNGqebyuowUiHzBwSqEsJQQgZsqgSFkCwhTFFZJYoq+FHIoilAiZCKEgaEKMtkYSd2ZtiOynQ4M5rXv9ude/rdrW7OOQY/xlrrrHPuey8i01nYSxFP59yz92rmmnPM0Xzj+xbr9TqEcHBwoF9UBSRt7h+NRtfX1z/7sz/b968/e/bs6Oioqqo3Hj+czedacdVmDxUxjCEkzh0dHfUIBAUYaEkWAFQoiZlPT08nk4lOm6qqdttt7CgK1ftXBIW1tqqqLMsODg5Wq9XZ2Rkzj8djjU9ilBDC48ePz8/PdT2qFspkMinKEhADx+N7x8o3oHIrDOKMmUwmOkSaLFssFnt7e73ukxqf+XyurfMqUqF06mp8dIYrldn+/v5ib3EezhU6qzta59xiVVYako1GI7V7WgHbFbvz7e7BGw935W578YrLIpGeZQq1YiIgncqotBUSllZoVLRrjkIUAy0U35EwCxAK3/SZKBgeb2XMBs30CMzAeu7OMSBBBiQCQyQAjoAFLk5effT970/29u18zmwiGG2hQxFkZg7ee4ZorEmS7P6jR0mSZFkWvGdmpa4SADSpcVb3hd4BEBGRuDcZHRwcwFe/Vhe7i9NXzz75ZL26ns+mWZrnMzdZLpqyWi4XqXVANkb2TfTR17tKgpfoVxdnTz/++PzVq2//nV+bTEbTUR7KNXY5RbxFH3Cr+QTvqMzd+pwucxKBCGAGJ5Hb/O9kHSOE4Ed786PjY0AsqwoiZONxE6Ool4tIlnDQuOsEGUQMRhKL8K2v/+TP/YFvffDBB7/1D777N/7jv3V5dW32941Iuds5Z4EFOpVAY63mv2bzeZZn1rnReGSMSbO2h5luN/SigEVjjLEciS0iRu/JGpsmgmjkpp8ucozMZMiSRUNNU2tFm4VDjMZaY01qyDjLkfvKDN7uRl7XTe8VmI6UDAD6H3oo0dAm+xD6Eg3chqbodghdq4LabfUWEmetNSJWcQ83zm3bBBU1hxaFtS2Je25fDTv5NYDAIIlMRM66/hkRbxBo7bN0Y6xwUOp4yUJoKVhCCCHKaDSylpQ0VR0qvU/VgBeRGAMiph1VYM8roO6E8773kYwxLY1W1LXFGgEaQ0niisJLN1B3/EMY6ksKI4g1ZAiZ2Rmz22ywaxLWrIUAg4jvaG9EBDgKgMRARIkxe/fu9X+K3jvE6WIxevjwvbffvh2o3KmjYTsJ+ufRo6+jUdf1cvMVAWedMa0oRyeqScaAEFjLDM5Y7WgzQERAACxASZLkWZZlmTUmxgggGkZnxkbgGD0R9e04fYsIde8SOwxS/8rFh6ilM+b4IwU7v+DArh5GAjFE12EZfeNBgsQQQsAYIQJb7xl9WTW7st4WdVWFqk5G+Y+lS/+P9dCFqgnaOxMxBG/ActdF0MMTy1LZp53uFoq22m63IQTdMm0nCa/ASiVL1TKm4kCk02larVar1Wp/fx8AYoy+aZhZVUGx69hWrFd7IRFjrXYMN00zm80mk8np6alqv+hFFTU+m0/NgDORO46RLM+ms2lVN+PxOElTDWyUO8iHYJ1VpEdZlpr7VFePCD/7+P37Bwc7xtQlD+4/mM2mrb443RY9uX103QfaewcCN6qzyHJ77bS5MUSFa9z0vfUeqiCgdS2xo5bMb1iwSLhdcgiA1hhLaEwIwbIo7WMsyuBrskmapSQ4GY8O95cHV+unJ2cAHCUy2SKEi/VmlKcu3ctdtuG1RNnfP/jBD76XZMloOjZJ4hGdTQCiiOx2RVVV1jjqGDLIxMBcBR8k4kCGlgA+v6/8taOviw7HR83OnT2ADcamefvfnlTS7KpQ7TVlCAVyEVTuXVW2W08PUMgQtsRc/WtA3Z9CCJElgA0RK/ndpRh++e//wXyZK1NNl5cC7vEH7SGsOsBRZVrYewhBq8Q3p2r++zsAOIemeFGs1+uj43tFUSVZfnx87L2HVfuxr3zlKzrPF4uFc+709FQbRbSIURSFNpKqVqDishRGrBG4shIrIPMnf/Inz87ONFWp6QOdimdnZ5VvNDZQYq7lcgkAr169AsTpLI5GowcPHux2OxWJf/PNNxUhtlwuT05O9E0dHh7ev3/fWvvZZ5+p4qqKqyjcXA3Obrc7Pj5WZLwOoNL49kZJO857d1+LSNPpVJvyNer46KOP9AFvuDLHY/XvFWSvQGhNfJAxmr8gIk186HdFhAiNMZ9++qki2ufz+Ww2U6Cp4sH6PJ1y4OhLn+TZdDpVxg7v/WazOTs7u7y83O128/lcMWk6kqpxLCJpmk4mk9lspnlizaSMx+OzszMtaytwbrvdbjYba+3+/v7V1ZWi47S5SIOu8/NzBZ5Za2ezWV1Xk+Vob7HY7jYw6BCLwiAKV1HHKAqzRF0kkRCNRaO8sTH0jJQJiACGtt+ky/gJDV1quO05CEBqHN9SlOtoD0GstRABpG3AePHZZ3Y0/uYf+vlsPF7HRgAR2AgIx+Cr2NQowJYkcrkrJocjiMzMGk4DACEmWUoDz6SPVUA4RSBjxHsivJ+62Wx69uJF0zR1UZ2fvlytr9/5yntvvv2kqKpGpPHR+wA+Gg+xbsrd6uknn7x49tn/51f/BnKYjEdNVTpj+nbkO37bEIN6J8NyZ6D6zBQzx9tbx/BbSBYtBpG3Hz5e7h8CGQ4RBYhMbBrsMNi9D6Z4k6Io25QZoU2SEOP64mKxWPyZP/Nn/vSf/qW//f/99WdPnyZJYp1j4elo5Jwbj/I0p+l0ulgsdCvXkVTFWNupo/Q2ub/DNE2060AnMyL2xFBNdTPxvPdNXYdWaTFMZ1O94Z6Zo/UkiRw5zTj0JrQ/HJm+gbYHIPQhSp8VvTPaat8Uk3mHkwYI+6srVExVX6fTaagrNQvYEY7BYHeOnUzwHX+pD67aRPkwqMNbc+PmkRHVCvVpyjs1c/1V7VIXfgszp1mmA6VnU5y8WlRDbVuL7sXMLeuGKs5BF6goer+ua82VKPlH7wcCgFrL/v32jvdweEO4tZ9rSkgtLRnT99dpENgPfotsQlSnXToZFjWAvXXVjuieqfVuoDL8tX8fvRXgLv1sO+IF7EjoOvAVmL53tU0SqBUjADQmIhhD+hEjRAAEQAKiKfk0TanDJhqiJE0za5mYOQmtpEdbClQ8nHU3semNc6CdEhl6VZeO8cs7eodHr4jTepPSQsEQIDCTAiU5RI7Ut32LER+liUwSqtpXVbXd1VUd6sawJqp+zIv/4zkQbuzL50zEbkpoMqN/46pZ1rNzqJ/HHdVDn4kEgH7z6EkA+wqYOtyaOiU0va/gvY8h6MRV4Uj9d72KrkMVYtMuVcWF98w/LUoQ2lZXXfDKAQIAwTfT6azxl1VVbbdF0zTLwyMACCF87etfHyfJerPSjJ1ylaoFcYYOl8uEzA//4W8fzhbj0VhtFtxmhX794K4mR9pb0nnIAhHwxpwNQhQCAJKbQOXWtofAiHUITdMQIIowm25IyVjTV1TAEBqDhkTEMld1RYbGo9xa20T2MQBQ6ux0PHrzwf3trrjelolLmxgQ5Gy9sWmC1t6bzMejaVHukiR58Ojx2eW1ydO95WI2maCwcpj6GHwMZJwybZGzVfBVaDwHMAadhRhIfnf0d58bqKgVup2qkoZjkphNsTaZYeDahyqEwphdpKip40GYoAoRSIR8a4PRt++9B6S4rUyIUUqY/Vi3+j/6Oz8D7LO9jAYSvMNNq9+HuBMsCyHEzpgpR3F/tqu/dEMM8D978O/81dm/p+8/hJhmyfC65+fnmpW/vr42xkwmExUkAQBNw+ucV2pd3cyUtlgV4lWO8Pz8PE3T8WQWQhiNRqoK8uDBg0ePHmnS4eTsVFvIrLV5nldVpSzGIYRXr16RNd7709PTnu84SZLz8/PZbKYFk3v37hljtttt0zTn5+dN05jp7PDwkIiyLFNGyzfffFNPeHZ2pgGGeh7K2qchBKUJAMxms7IsX716td1uj46OmPn6+loLLCKijGG6vbWtbkmiZo06BqHen9M9UtWpVfZRXf+iKPb2lppt0dvWG0DE1Wp1ubp+4403Hj9+nKuCIeLl5aXGG865y8vLuq5PTk6ur68Xi4V6A9pGsr+/r6TGFxcXau60krzd7U5PT7UvXyMZZlahmD6Tql7IeDwej8facacQNa0R9VDb/f39o8PDUDcBghvbXb27G9ILtypDov8XZgZmYBZmJAYBIhLgwLHdtQQiIQq29UhBQux5DGWYKL5VUADvQx+oDM0aiKAF0zYLAyE1df30o/en88nDt9+R0YxRvQjtsa249pYBVKwwRmIhwtByXRilno9444TETn6AmUWiSxIXMtBdO2Tj8dgYu72+nr81F/6djz/99G/+jb8REd54791gKABo/3tqjIA0VX1xcf782dM3Hj/y1a7YbTkGNDcF4jueMfIQ1Ap3kN03H+vc67Y7YtDfLLfy/RBAjM0s4VvvvsuAzJCkqXj2TRBmGUBLdPm0/E4xAuloo/eenNUSa1XX7PlP/vFfMGS2u+1qvd7tdtPZzBiT52k6TpyzajGUBkA6GQMYWOM7iezAkbRVmZBBJLKAkDXIlM8HROpEAOBD8E0TYsyTxFnnvV+tVrqyAEC5mvJZrlu86ViJ+5MMu+fN7aaUvtbxesrfdqyD0qk93nyRZRgz9E5/kiTldqNZVOh2h34ENF2uHk4IAb8gUPmiMBW6ydk/i3rXmp1p84/dob6H+lE04EBTPxxea2HtQp0b9BMMvHfq6NG6tKYZRgjDsGc4UfsML75WUrtz9EkfvW7TNIvFQs+sZrkfmd5d188zsyabdDQ0sNTqmeZiNF6ytxog2l6d9hZ99DotXIsBbSXMXweASUdMJAKJcxrP9Q9MREnimhicSwRdkiQuSay1jAjCiEZE8jzP8jzLMmdtaJNtrT9KzvjQ9ERhsWNKISKVY6NOR4K7oFlEHJIT1iUqBNhR2Wrf4DCo1RcWY5RWSaXHenXaO4iIYAZKc11UpEgwoSgigiKWDNhEsjxxSb0rRQTuvtlbjSS3//T5ITjcajDpuvs/70+vGccvudbNwcIKrdb51IeCaMg4q1u17Q6duM45Q+0q0sKiukS6CHsOsRijVr9EWOtj6+1Os4YA0KeflRrC2URvIITQeK+3qzZL3RHVgvDea/hRlqUqPIhIn6GMHc+gJoB3u51mlJVhTF2H8WiMzALw/Pnz1XqTJtlut4tR9vb2qrIaJ4muHxU9UC+hKApnaJKN/K6od8Xy8ZNxloO+dNMuO2ttbFTVpGvfEoGAhIRdxA4DdRQkUvoLHrCO6F9ijNwVguB2Ek4E1MXVrRhZPKD2AgGIc844IyJIJIR9Sdpam6G2uEtswyrxUYRj5szBdHS8N11fryMgkotAuyacrdbMMrX5KB+VdVU1fnlwhNb+8IcffP2bPwVA1lJiEiICIkHwHFMERiBny9hU0QdhMehDiKIkKTcNpv1UHmqn8IBRADp7OlwIOkQcI6rAQozGmBj83nIeTovgg0EKPmzKaurGNXMTvMYAMXKMgUjphwS7diC9HzUaupMZY+6Nx76Ean35H1z/kf/8V//28H7//e/94f/yT/wd/fl/8cNfSlwSmiZMyuBrjQTUpPTyOMYYEFFfUyu7CoPUn5lFIxbuoAKvb26IWJZVkmZpNsrHEwVn66HBhoYQAKD0FUQ0Go1evXqVJEmMUSkl1L6pDKvSR3722Wdpmr711lu6dlS1bX9/fzabfe973/vss8/+2B/7Y0p8fHh4qBGImvc8zy8vL7UJ5Ozi6uLiQt2gnvanLMuzs7P33ntPizBFUSgZsTIgI6L2PyhhhtqER48eNU3z8ccfMyfqTIzHY6W2Vlcgz/PoGxHRvpqiKPRZjo+PrbVKjmmtPTg42O120+lURF69ejUej8ejke6UvXI2EakAy3Q2U1JgveeyqnRIAUDl4fM81zqGdoDUdb1YLLLxSES0caUvDmtQsV6vT05OYozqVRwfH+d5/uGHH758+VLtkt6nMUYT1ZrpVBdKox0RUcybRlyvXr3SGaWDr6QjOlGPj48Vy3F1dTWdTh8+fJjn+d7eXoxc13XNDQTOnSOiyJGFIwgBeIldZwFiFASwSEIGgLwQK3LfB3IUY0QQYyiI+KjatUhkowBwW0xRpOdNbCIInRIIiCRJ2gcqvTtFpGQSUW2GISwbnxrwvnr6wfeNweU7XyWTkCFBIBKDCCzEYAFm+cgmDgKH2ORJSs6qHS2bOs0SGhw3BhOwqEohcsaQMb4sik0ZREaz2XRv78mbb5KhT549+9u/+qsi/Pi9d9UmR45Xl9e+KK4uz18+f3Z+dmo5xFCN80xiIOB+xyVVdR2Ys+GmynxH06z/+ZYjGyQOxGhutZuKNQFg7+hob3kQQkQKBJbQcGRnHbS4IQzeN615YRFx1kZhRHSJQ2Pq2CosE5FL0De1ByCU2WQ0m+RZlomAJrNiZwZZRLfmlinbJIikAZoxLUFie79goghZ40MwCGio7Y1V/hi19wJeGBDAUmLzFMBBi3kaj8dZnhui0AEyNa0gIuqQqA+phoV90FZSjVj6TLwCc3r/k4haJxZRfUJdVl2k0Xl3IMa5PoSWjg+jj0NaV5Oj6gz0h71xI1XCC7UbQAaCidbaTu4U+qkSOnJkHKTU1bAoP6o+Gnds0Xo/PauQBo29e0DQooo0DEiS1BhSNZs0ae9QfTn1hfpfoQtvemPS++rDAAY7xSF9KcP4cLiHtz8jICBHJkN9CYVbfPtNhNPHn75T7tb7V9BNlmUalvTPKJ3IeBvS0JDV+KYAYhCxCU0f92isojNDj/5jw9SCCLgkSZLEGgMt905bXIsgzqFgX6a2EQTEMIMBybK2ycE6R3WtkFdrbZokYAAb6N2XPrJHxGEzvc6jm9kRotKVhBjRkHRYGgHRAKNNSHQbOTMjmW7kAQRAjTyAJQMIChcREUJqteNIOs+YGIQBkixNyKTGGjJlaKKqy36ewYK7Mcbd2AS+4LgNf70dptxxA3+sOAUAQEmyscNjqFsvCMbYustwqA+hKKwkSXwT+ymohFpaIdE2Et2ijDGIGo63AWGe57qXazFECyaIWJbldbXSIokxJhtAjXWRc8fyboxZLBYK6dYUpu3kt5VvJISgvkI+yna73Xa77QmOiChJknGeW0IWUW9jmueXq7UIvvfeez4Gbb5XF0pJgdR+GQBn6PT8YpyPpuOJIwOaGyACQkKy1pZlZGZnTFTLwiIxGGtULF1D5H6JIZF0njl1RdU+MgldymQ4LZhZWiFTBeyxhEAC6s9JV7fR7nAio246thp5XkQQEBMXBWyIZdNwwDxNDljeODy4ulidrbaQOCFgNOuiLss6ZXjrjTcgSXzwIfJoPHnv3a++/70fPnn7rYOj/TqE2WyGVR2Ek8RFkE2x2+6qhmMAiQgMUvsmMgNhm369s2kP5+vtjN3rgQp2gXRijJYFrLWEySTPaTlfbzfbKgQfP/jzpx8AAMB/6//11bIoq7E1ES2lRATGELP0QBRmEQlddoOZDVFm0SYkIxPL8H97+qcmiyPjEl9tkWJ1yP/hyX8W0O6q5r/0lf+HnuTf+Qd/nCPq7qJT0fumKNr4U2KUGHUDjlHVu0LrVSjlVzfPP3dhYp9u3G5skg4FH5V6WEFc6/VaYYoMEELQlIG2ecQYl8ul5hpEZLVapWmq3Fzvv/++1kWRjDJkNE3zzjvvPH/+/Lvf/e5Xv/pV7/3meqd+toKO8jzXToyz8/MQb9DhZVl+5StfOTk5McYomfj5+bm+IE00nJ6elmXpvT9c7qsDtN1unz9/fn19fXx8PB6P33vvveDrJElWq9Xx8fFqtbq+vmbmjz766MmTJw+Oj5Q02Xt/dnbWa7OorLtKK65Wqxb80IlMq3OvLToq5f7w4cPDw8PtdkvGqDCLtj0o4kUlIM7OLhTdKiL6XbWQzrkgrD0t0+lU0VyKheOOrau3RbvdbrfbHR4ePnnyRHOZmmTRRmEtjDjnXr16pf8uIkVR7O3t5Xmu96zGUAvC6h1qg59aJPVv1Ebp4798+RJEFtNZlmar8ipNTYwRIkeJDMIIXiIikjGCRAZdS2MBsQ4kUDcNplniXF2XRKKoUiCoA4sRIkMsAMCoun+AiJZuJbZvjg5D0C5hgF59RRC8CDBaVOl5lzA2In63fvnhD9PxfLRcjhZLSmxVN1XtUVOZUdXsIAiaxAGKRLaJ00oCmYbY9OiP4fJpOBISx+irChkiUDoaj8d5U9aTxew4HF2uV+cvT7779/5+luWHDx/UVR05hqa+ujz/+MMPX754BjGEWBsE4UC3NVDUUg+W6s116bZqAg8UkoRVcLb70+COcWDuBDAg5qP8rXffZUSTJGRdZEFBFkhS158kdPhqPbz3GsMwC7Mvq5JB0jStm8YgJtahluEhEhGjGKtNSLcAxn2qkVu55z4IvNVFAwYBKYaQ5CmzEGH/V0IUUI5mjX6AOpbr2PjAotYy6QJL3elCE7WgGjuVD3UwnHNtrgtAHQz99zZXNVDx7qbcIHndPUX3XtQPvFWW0V24P4OWUzRoC3JTNsFB+QW0hDKgoIyDBkIN2vvfNFToBvOmlVrDG+ecMhL1ZQe9lhaX9HVQV83Q7xrbUkJ3DnkbKeltaGCmkYZOid6V6m8pdulOzT6rCm0bE7ZSyG2kMQxNtbdtMM/b1wcAgVvBFr2BxFqdlv0Wpq6yzivqBD1lUGDhTh5D30Ifoen0+DIodh/D9cWHYeoCB7W5YaDSlzuUEXlYOSIS0WQzEhGxCCkNKpBIqw7T5U3bt0XGWLDRhP79wTCU6prp+1vqb96Xld5+xuw5BuA7H/iigxGM4nEFgIEQlMJjqOWiiw91lEGiBAaMhAaJnHUCSCR1KJraJpMfecV/vEc/L3UzHo1Ginwo6wqwVYbpDUefNlAmk37x6EtvK2BECnxUalRNJ2uwEVhms5nuvn11r63Ooen3bFWR06qfZl41+FFvQJvv67rebDZKKqr5SGstiKgPJCKjcUt2fHV1pd29y+XSGFPHqLCuuq7X6+3FxYVx6f3797MsG1l3dXZKpmUz7JlGRaSsytyYy9OzsUtHSYaEwF/kXGrtnQhICElQ4YMCDELCHRchiErMmwHiVldKb1OwO77o3Yn6EwOuxvYH/RluIE6JU5yr0vN35XIgF41Fg8v97b1dVT67KAqwSZJlLFRL/Pjly0h4sFwKc+3DKEsNw1ffeu/ly5dPnz9788mTKLzd7RhAXW8FljQcgzCDAHbyWDoyX1gP/7GO1gvqdhREJILUJRjD8WJ/no+evjr/6C/u+s//z3/pB7/8d5dlYdNRwtGFGFFDAsRb2c8uPaaWnQXAUTqb0DgDTE1CAt4b/09P/hpMP+eu/sI3/+a/9Z0/TmTVBPZZKzXEBEjakdJ263c7oAJxXssfzH95svpX2rLJv5v922maAsjqehUByTiFKumhG5UGGKreOJ/Pr9drjeR1DU4mE43PR6PRbrfTjz1//lzB6Ih4cXHx8OHDqvYKDNOE1HvvvffRRx89f/783r17ZVN/+umno9FICTM+/PDDb3zjGzHGjz76aL0txtPJbDZ7+PChlnoODg6+/vWvf/vb3wYAIppMJpvNJs/zg4ODvi56cXGhiJ3RaNQ0zdXV1bNnz5j54cOHo9Ho5cuXJycn6qxoj/vBwcHh4eH19bVWRYwxo9Ho4cOHSjU+mUyUFUBjMADQ/yqg1FnbI8EeP36szGObzSbGOBuPEbEoiqdPnyKiqjHqdff396+vr8/Pz5fLpUJH6rrW0x4s9jR40PzIfD4HAAXRLaYTJU3WLawsyzRN1fjM53NN/ShJl4hsNpsXL16Mx+PJdKp5O31TZVlut9tHjx5tNpvz83NtIlImdyVTVrS9JUBErUpp7Kqls91ut1utk0l2tb1oRklsmnwwtXTKMyofByWOEE0IQWKdp6M333zjp7/5zd/8zf8kRs8SGCQws4gBRGFDQsQiaAjRoH1ttx06A/wFqCe9C3XiUVBALDCRSYzb1uXq1Ytn3/udg4ePMUYcZV5EhCNIjCH6QAQQOeoVDYEwEwhAYIa61k3KDFh2AEAQQmQEiSH4xkPwjQ/GWGvTkEQD6XR/fnh4cHr66vv/4LsG6Y/+4i+m01kQ8ByA+eLilISTxPmyQgEEJrhtin83YgCfPxat1sznHIzgRZ48ePjmk7e9sCVjrSMhw0QgIQTpjCkPwLH6q3MJIq4368gshgChqqooDNYEiAaNGARAIWSt/goPuyx14xOR7XY7dFLv3jyAb7xxVhCMcxLC8EEMACh5g/SoQARmUOQtdImhvtmYiJkbunEVtLNCc9xpmvouPQedjcWuNyPehqIMIxC6VfJq/6UNS25XBvqSCDMreqE/m7mNhx9+64sG587RF9L7h+3PMHRfpRN16cOwob89fBd10/Tp9TvPqNdSp79P7/ZO+BfdYS9F9frD3nrM20+sAZjetqawuUMhptb1H+vfb/8gPXqC+Ra4aTiZe89Hz/8jAhUdhVs+ECJ2xAs6WPJ5gQoO2Ayg7ac3FIVBI+tO5KZrpmeGZBioMIMIIRoyjGL5pom2LwZpfHbHRetvnhuP1lhrARGDBw6tbf0cONbgRdz+E3URy51viIhENtRO5QJYAIWsKKKRDQKUvrnerg8m+18ywv8kHIqm0Pc1Go16WZ+maWzSFr8AIM9zdW408LAdg4SGIloY0ZhBu+r7tdFH84honCnLsigK0/Vy6WrURKxmFGwnzKIngY6dMMao2ZSLiwsAuLy8jJ2Uh753bXDS6SciH3zwwXw+Pzo60j6Wk5MTZXFNnJ1k2Wxv7+jo6P0PPrIhzhd7y+VyuVzuyure/ftEoB6bNsUi4mQyQYGnn37GPty7/whFONyi070Dx+sMDyncocUsCwgCUsdPDiK3MbIwyMr0CYJ+BX3uoQtMfyYiItMHKmRMb5pEJaZFGPpOSzGEzqABcoY4TZ8c39sUPrw839TBV9FlJk3zKMUPnn6yLnez0Wh1ffXmvfu5c74o3rz/aC3l8+fPT05ORqMxoY0uKMP1al3symLXVCICAr9nzdPXj7Z62c06Uu7J6C3APM+mSVqV4SPYDb/ig/e+AUgEJPignaGIdyOm3qY5m4QGBWzAKGisza1J69D805O/9iU3Vnn+S1/56/rz/+7pP49d5YeZU5fEGNpIJSj/je4bikP4nC0w/Z+MAfBP/NzPJ/9CkmWZD2GxWLw6u/joo4808d+PhpYfVTNEkYppnitmqaoqEbm6utK+rLOzsxjj0dGR9mOcnZ01TXN8fNxV20nrA0mSrNdr59y77777ySefMHM2btvldU86Ozv73ve+9zM/8zNf+4mf+N73f6hEYY8ePTo9Pb28vJxOp1qU6BGbxpjlcjmfz5VG7/T09A/97M9lWaafsdaqKSiK4qOPPjrYX+R5/vM///MxRqVdfvr06Xw+3+12Cm1i5r29PS3DrtdrzVZcXV09ffpUUxW6XmKM4/F4uVxenJ/r9qmPbK1dLBbj8biqqt1uZ61VcrPFYqGOkeJP8rzt/tztdlpsUX0VALi6uloul9Pp9OzsTO1YlmVa+UkNHR4eapkLEWezmfa9aGOJUu48e/ZMRBaLBQAocwAS6Xn0zhW3ttlsttutNtmrA6FVaO0rPT09ffzw/v7+vrVWpdaur6+hzXdgjLEqy4cPH85S8/zibDivGAE7agsiYsYYozN2Npnme/f+qV/6pxaLxXq9+q3f+k8AhFm8CAJbNCCGgkeyItR2ZarE+e0W4RuH5ks9OCQSJWZnBETvG2twlqcY+dWHH8eGXZYu33iEia3Fm8zFEH3lyUexVo0mJs64vnH/BvNzJ6cjCGicGouGuS7Lercb5xkTCShvfH58/+jl8+e+9k/f/+CvnZ699/WvP3n3HWeTUZZmiSOEqixRAJFJEJGNST7/qX6vx5cM1P7h0aPHb7okjRxjhKrymUkTZy1S4Td9ReXOYKdpGjhWVbXZbdGY0Wwi2pbtrOeIYNAgEAEaQWRCEInCZlDzUaCBxgCvO/rDw1gbY8zzXDmybzYvacGBXRim8AFFTLE19kaDb5DoZGaTW/V0Y2cn+4JJn33vH1m640sixmGVo08CqoMRwy2eo/4eYowq69huzfiFI3Bna1Yoaf+n4SfV3A0KOzeByjAUkb7tecAOxcxKXD4sp0sH07rj9A4vfecevjxQUZdJM8LDW4XbY3jnDDiAI2luF7r6j3lt3IYRl3p9fXz4uYGKep4hBA1ZPy9Q6ROOSug5wJkNUrYIjMyxTQsiAiEAIiMZ5a4GBG3dgxbjqvys2GZ7VWUNhIAQhVDYGeOsM0QgoJR5CIiERgyRJeLOMdNanlLzGWUCpVazbRBbkzFkAYAdMELwvdP4o8sq/RtWRSv9OIqgVlfwZo0QESBFFjAEoII7whIJoG4a3G4PB9XSf7SE8n9ah3IHqeqZ5gI1eWmtizHarrFJ3a++zyl45k44Vp2Ysiw117jdbjU3qdAUHhBrknWqyKYgMZ2jGhWAtF0K1lqtisDAJe2NiBrQ8/NzGJDRgS4nES28qFdRVWVVVUqLrBj96+vrEMJ0MsmsWV1fhxidteNRPp/NjTGbzSayGBDrjIhoK0jja0vGAHjm1fnl/cODt956a2jW9ZB2yZhOAqSrhLTs3YC6QFq5+lvEljQof9NNhRe1+MjMd2Yr9uhEBRKQcIuXJaQWnKtN40OoQgzaWy6RITLHKDGqECVMRzkzPrBZoNSk409Pzk6vV3URHI4aCEmWvjg7vbJuLx+B5zfuPyCh9aYskzDZWyLi1eXVZlOMx9M0zVfXq11Z7cpqV5a9H2OMuc1kerue8WPXW3TJERELt/kuIl9VzoxRKLFmMZkBPB9+ZbUrRpkZpy5LLCEKM4igsMDNugbpT0bWmCRJA1iMFIUlUON9WVVw9GU39j/4Q7/W//xfefx//6sf/jNN00ThJElCxhmCmvIYY2SRjhFUBPpOWgFVe9PpAQgwnU2NsdY6lUZJ0uTedDaZTOAH7YUWi4Wm+ZVmt6qqyBxC0A4u3XKstZPJJISgACH1d5WDS4ny0jQ9OztjaTM+u91ub29PGa6Ojo7Ozs6me3PNGrz99tsffvghEX3wwQdf/epXDw4OlsvzzW772WefaTmCmZ8+faqb0G63izHu7e0dHx8z86effrq3t1eW5RtvvKFNHVqiUXmlEMJisUjTlAgmk4m27BdFod1lSko+OtjX2qnaDepgVFmWjcfjvb09VbfU8iwzq6+vdFsxxtPTU+44N7U8Yp2bz+cPHz4EAAVM9z0zyiugwpdFUWjgISKaqdEmYB127WZR3mSLcHhwwMwKo9XNXpv3NIzUMFsLMjryMUZnjPbOnZ2d5Xl+eHioX9nb2xtnmXbzr9drra4sFouXL1/u7+9rHHV5eVkUxXK5PDo6an0FY5D57PqCkJR5FoFV7CMiqtwpARKgQWLmsixdkszm8z/9z/5zB4dHBPL1n/rmy5OXL0+eK8oDRDwKAgchExkRW2x0r5Lar03loenMXsc++DkHITEAIgNJPsps45sYHdnE0iQx9ebq1dOPPcXp8XGaj4GwdiGYwJ4BAhoCQuOMIUIi6ff+gXPSX4g1eBPm6B1iw4ICiU1cngaJtfdo7Hg+Pzo+3lytX52cfPbRx5989PGDNx6/+c7b69X1y+dPOfgQmsT0i/R2RWVw/F5rKwgAHeWfAnPbczHA8f0Hi/399W47nk6tNSgYY6hiRMFIsWcnuZPGquqqbGrvvUsS46y1BhBjDNbaKlSCLMg9Ebogi3CEQGB6Q8zM2+1GEaRf7ipZZy3YqqqIqKrrm5Q/AvLNBNAtjVGJsRkt6kMjojDHDp8CACrZRIZCiGkMqgvJQbz3qXW9q927o1oDDz0X3eBF6MWHoDgQwY7LS38d/EUAkZAAtZDYV+xVzfAWoctwBIbBgB9IVN8JErIsU9CKOvEwKBcMpy4PujQRsarrNE2tcwoiiHwTMJhBB/idlzJsMrkDb/uSBILCwz73M3f+ZXhF7prG+x7F/qXc2c2HEYQGn9jxQOgbuZNlgAFLW7uXmSTtoyKNerRMoE45kZYJxVqX2CRSsEAkWHux1hrnJAbvPQsTGbIOERtckzGptYZIiNjaWqCqOXGJcRSFBA0jBIYALNg6+4vJhKtmmmYjm1gACR5CMCjOWQPGkGtM430dWTPoQAQEJpFUt3aRdqfvoSZZbpXaxKFhNIy2qBoBY21KZDCSM84Z14CXKChoyZKxLVOoupSEIiovjgbFijhrkVBJ2cg4QGAAYbA2Y+GE0sY3ozwvvOfgZ8buLq6ao202nWtXRlAD3r2O26LaXzKLbr3BW0mjYR7r7p9eTxzffFAjhGGWV0l4FEvdTo7ERUmstePRuFUjYfRNRV0VT0R6cm5FhwNA0zSCZFzinJO6xsjU1RVYBLtmAOrk6tsW2zQtdqXOQyUb1R90F99VZZJn1tnRdBJjrHxj0yRJkul0imgUHgYAgojWOaQksrN2NBqVHZdonubLveV6vc7TfDKeGJLN6rooCmNQGhYOu+16b2+WZxkxIEnN4eziVZalae4W+chGf/7i2b3F4t5yCRxdloLBqDKnAAAmWCPpJG7WaTK3ZIxDJGDGKNYiCEmUKCSBg5IzMCGgoLNalvHeR2ZGEEK0hkBISPOaIhFQjNH+fxRB8IFDjE0I3sfIxli0lpwzacLO1iImSRCREQFQmFv0S5IrfFUkEprUYdomaKgMwVBmi/rwcCT20NpAUlys17vNNk0zxCRN8jrEF9e7k031wdU2S/MkcXt7M47BhxCD3Xn36sWlmi0Wabx35AAAUIwhAPG+QURL1qIBhggCCBEkdgAoAfiRuUofBRAIxHtvnSsbv1uv9ibucrvbXxwQUkL1L/yv3/pb/9LH+vl/7n//6GJPxp7ysiGUaZ4Ie5ImhjQGSpLUGMPCFi0Lg02NUAyh5IqFkyQFj78w/RUA+DHpv/rjv/rO/1N/+Ne/84smncZqg4QcMEYQwRCFownBcBAIyBEioxcsfCi1nQ4hhnhw9BDIVU206ShJ0jcfPb66vqYBP1hRleNp24uihNoamaRZtiuKoiwVMsEi1rmj4+M0SbR9yxhzfHys6avpdLrZbARIqxCqdKTR/v7+PiJ+9tlnT548efHiBQA8fPhwsVj8+q//uvbQHxwcoCHsmiN3u93jx49/8zd/c39///j4EICLovjss0+MMdPptGmq8TjPsuTo6IA5bjarsiy323UIzcHBQ8Wn5Vmm6z3P82fPnqmA48OHD621RVEpxbn3cTSa7Ha77bZwziVJpnmTPrup94+KaxdsfDw/P2+asH9w5JzzIUaG8WTmfa0qihp7ZFm23W51B3XOJYklouPjw81m433z8uXL2WzmfR2Eu7ZMCKGpa/G+BshHo5FFi2QReDLNtBp8+uqlpm/Ho8w5p635aicPDw+VJFofMHFOs4bFbjcejzWJeHp6qg05h4eHWthRho/dbhe8r4rdYj47P32Vp0mejtQ+N02VjzMENA3EokkD2hgihAJQIgXgkbWu5hzQGGShfD4/eufJt/7wH14evF0UdWppdnj/Z3/+F37tV//fZycnaZoSiqcYEX2QJoYkSOasgJARAiZVIjaEhLHrthAEBmgGNJtkqN+XBBC9GDTWOLQYI7Mha0gAxpNMbIWuWp99XBWXb/ivje4/JpeZPJMgDBY5IkpqOXXM0Pgo3qZsk3GW6kan2GBhQUJjDBKCNA4gZ9kU9e5iNc3S5XQWBUsA9jazOeTpo7ff++3f+s1AcO/ekQWcZPb00x+enZ2BcFOWmVWyFARDmnnFjgCTRbj3HQUS66BrSWeGvmYgCESmJyCX2w1pzBC7DggwGGLMRnlVVfPl/ptvvS1CRozUgcACgAAH6EsJHV0Hojqyyie7LTaj8cgkpq6rPB3VddV+EgVDTNBIE9RKJ85ZwroJFgCtFMWuqqq9xZ51CaKDOiIxEZnEIFFvFm51LIRAiHmSIJHmrI01zMwhNhwJES11wwfUdetKCCAiEAGEmfM8DzFs1sVisQxC0UcBsYkbpa6p6xCDOMMhhsDAEiSmLmtTgEjjPEFCQ2isretak9hN8NZaC2SJRlk25CpQlwgBIPIQmxRClMiCQViIwZBVx8hai3ALJ4wdA28fVPS9IolJbtLoMqhsAOzqUv0Q7yPiTS+NiCRpHhlckvnAIghoVIAIQJoYQ1UZa62xAhgZrLWRY/QhTzNDpKJYWjMnIpWbW293zjlCrOu6rKubegXdfhBA27GVqnpH5IiIGBWiHxGRQYioCb7nIpKuRVzzLBJ7lgLus8ya0Y4AIQRAyNJMRCrfsk4jiOm4EKgTgOodV02lac7IdBRn+lyW+/LZ7ZhGbtcBhjlIlPY/LYEOETJodgMRyagEpYI01BMRQDJIItpg32o9IBAgg/6XxZBxNrHGIhILNpEDC4Jps8Vd0liAUfWlSITb8iIriEwlc9syCKIoAax+jwBaQh6izwcd3j10QBAiSJuIFUYh6Cp0OnLCQmREBAVaJS0QZTRC5ugDihjtJR6UKf8xchbL7SN0HWnUyXpKpwRE0NbjFIetxU394Sbf0LnCfdSkWG1FY2sSVIlH+hXVg0G1/UP/GzueBzWIaZqqcdTguyiKg4MDRDw5OdFIJs9zYwyR7RMVvbOi1BPjUT7Kc9XFS5LkjTfe0A7d3WYLmVVsWwje+2a72SCZGMLs4KipapdaLovxeHywv4SmtiHmxiRIR/v708nUGCOvh5VkUBEFjMzCkUkbIQSHlYJ2zgADowhjR6zZZxSo66rnCD3wWge2TzkgoEHqNVDbd9omNRXaCAAQuySHnjMyt0II3RXbe0JBAmswcTgSuncwz/N0Ns4++vTZ6cVl1dRVU6ExSTqiNIksu7reFhWLnF+cS5tPaWeOtLuwuIFKCbQtaIRIhmyMjESIIIjCkbl1blpq8y+ft3jzpN2/4Ga34yS93Owy58oQqhDe+eVpDZxmrhzH0nPlY92E0qIjQBQkTBgArAoy3szbrq7CCMwQIv/C6Fd+V8vq9eO/9wd+9d/9wX9ubGFYlGUBbm2DMEtkYQEWMc5d/YVWtnL6bx7fu//gerUGpMPDQxHRfoxhwng6nWpT2d7eHgBcX19fX1+7JB2Nx2+88cbp6el6vTbGaOdJURSqm66MUsodKSLj8ThJkqKs8zw/Pz9nZq11bDYbY8z+/n7lm6urqz/yR/7I97//fe1if/z48W/8xm/84p/8k331RnFKJycnk8nk3r17zFwUxatXr3a73cHBwd7enoK7VEFFBV6qqloul0oIpnXXJElm06nWgubz+XK5fP78uWLVdrvd8+fPFdumxVW9bQBQgJk2lyPiarXabrdZll1eXi4WixBYmXDUImkJtzMvTn07LYkAwGQySZLk8vJSacEUdpXn+Ww2UymVs7MztKZ3UxTepqXjzWZDQoioOpuTycR7r2+hKIrj4zfVgilYazQa7e/vE5HC3i4uLh48eKB9/5rR1NaX+XSqRM+K8lJkWowxy9PcWkTQlhXueI2ttT402902cQn4YIGyJMEGkEAIAWk6zkJRIlpBqmJglxy/8eSP/ok/lcxnIbJN0+1mHepqMp0/ePCoKquq3DWNd7llkQiKxAYf0BpyIVqBSK05EcEoMYQQRaJwhC8DLfQqUu2iaG0aAMJsNgmRmyLU283TDz6IER49eRcMZov5zjYhNBIrHwMFQ9aAWGQwiDHE/mK9OYoxAkg6cqFuRpRgiE1ZKd6YUmOtzecLjLFsogDOFgsESZ2DEK2FLDWX56d10xCCMdSZet3B8fYD9Fb0bqH4zkN/7r8OSuMgyk/gEh8ikjm6d68lAxTR0hZATx2pTeEtBVOPkmJm5tgEb5p6PB67tKX51iIkADBI8L5PVGOSpEmiEqhRgg/NZDpGhLquZ7NZjEGDPWaJoVECzCH6CKAlHhMRFBFlQO1Evq27aT6R2xCpjlhVdOspyh0ATKZjJEQGQmEUQnGpS5ypqgqEg0jwHfEIc+skqORle67WgpMxtpeXAQzxBt/V47h0EHkA/dL6p+4Eyl0R1AWPd8FvIXhGCKKgnht+F2ZOO/FHRtAUef+tLMugK/dpYAPdph9iWxDCjtipfekiQITGIBEaitrdjqD8a1o+VaR90pGwa/HWdNxcwyLG6/WK14++1ANdKrl/cbFjhIOOhE1BMQTS1210HPo52X93WGjSYxjY6Dl7nE6MseXI6XjSXCs9aWxfhVGX6Msf5ksecgitM8YgKs6KFaeBCERmKKaAiIZQ0GieJUYxzro8M2kCxnqBMoRKJCrqi9u+IvX0iTrWatcGVIgKoIU2elLb3JF+khAN+LB/zIdCRDSkhNutxnQnfag3o5MDWkY5FJHeZujbEOa6rkc3IjNfhqf8/+fBHcEFMwfvFZjYN/xIJ1DIXaYqdAqvVVVdXl72statddRyXLf21G/QxQMA6vcQkSYFdX+1X6DDg53t0xWof0rTVFWuEbFXPWuaJs9zzZ72Dr0yhWt4o0niR48eqcMRQtAewRhaGQsRQUC1Teo8nV2c100T2I/H48QlsW4yQKzD5vr6wf7h/t6iF3m4M55EhCo2HCMFiMgGDbUbttz+GPZxna4Y6Kg8qGuYM8aEpiWJ7p1pPYOIMle1M3CIH339FceOJR1fY0Mfmq1EorFEWZJYmgjNp5PFdLycj09OLz56cbLe7nZFXYWNsc5YZwEZyYIgMwlqRlVAgAO1iDNyipYQEgBrjYjUpOR+2o+KZAwYohgkDEbnd9/NIgCbctcEb85ORmnqG1+W5S76QCABt1WzrapNlY0dWAkUtbUavBdjk9jxJ0rX29Du30gi7H2E7Hd7O59zbFbr0X4GIBEpEkbAyBAEPEAQCSIROApH4U/+Gyc33/rvvvJbr0opShN8fHx8eXk5hEHrhlFVlfJHzWYz51xRVmdnZyojqG69Lm2NBFQnpM9H6DTI8/zqem2t3d/fj4Mu1adPnzLzk3fePj8//+3f/u2HDx9++OGHMcb5fL5areq6fuONN56/fBFCODk50eLA22+//fDhQw2QXHdoPLBarXQ5q825f/++Ovrai6IBlS7qV69erddrrXIsFgs1Fw8fPtTIQR9cKZWdc9oTAh3a+/DwcD6fZ1l2eHjonDs/v9ztdo8ePVLoBRFp9iRJkvX6WmOY+/fve+/7Jr3Hjx/3TMF6KFJLjd71Zl1VlcY8yrem7IUi4iuvnT/W2vPzc1162vL3/vvv68grmQcRpWl6dHRUluWLFy+I6OzsTIU7NSkeQri6upIYT05O9F/UqGrChTns7+8bQ0VR9KALxZv50CyXi6YKV6fnq9W6Lsux2nPFJ6+3qbVpltYhsjFvfeUr/5k/9UuYphxMUzc6OE1Z5M699e67gPIP/8F3jXOCCCCBowgDM4oQiiEClsRiAEEhImIQjVI0n2zMTbr6S5wKvKPL4YNEHrm0DHG3Wn/2/oeG0idP3kFCmI/ripoqRG58ZBMiSXQpA4mSVumhecLQ+qACRZim2ep6XTbNweFhPp2MxmNPYJCgyw2PRqN79+7tz2fOmHKzvbo8Q3Mj84dfDJi5c/O/L4extm7qxWLx4P6DdiwH0nD9x6RTytNKGgD0M1bkRihQbZripY0xLk30557u6CY1RnJ8fKxrU11G6tiSQvBRWDPotlPwaO+28xj7jWY4OP1e8yUTgIh0ek+nU47K7H/TbKxL1TkHzKGM3Hb6BRg4nIC4qyuBNt1JHaFWCAERLX5+/wZ0soP9v/dX7NsnuBNtHH6rd1T6NyId37TaFh6A1W++JQLdjFLPpB/hpiO178G6vaNvhE2nYardiWpLm6YRH2NHIDSMBrVqIT1xczfIvaP1RUf/jP0n+29hJyfa56x7Nwa4pYo2g95gHYF+oHqsTX/YgTyjdGRLvZKvZpn7oEgJGJumaWtYpmPM+D3EKv2kvB2oqAPaNvsikjEE4da3tIyj48MCaBOXZugytklAWzCUkQIlRABGpakMqq4SgfpEgKLsS321h9pIhYmt1lv/UQIVZdGOMbb6QAPdn364hMUZGyEC3Ijx9tal1z/WOPmfhDBFOvyVHj4EbVrSVpPeEIQYGh/79nRE0hnTSzSYTjOoT9L38ZsyAqsCnQYYuvaUcc8OdGf15EmSxMD61xCCujiz2ezq6qqqqtliT112XSQqv61X18tprtF0CpJE1DSNSxO1HSq9ov/ovR/n+erqtChK5QDQIhszF0UhZChx6SivqsoBzKbzXGDri1hUqv8NHaqSuvZ3Paid8CIiITKToEG6G6fcaEK1tqCXdyQiQuYWVCAiwl4GkrR8E+vejPOXW5/e3LcpjQ5RToPEiU6HBESMWKTMZT5KiJDN8pG7/+Bwfz6fr3e7s4vLi6vrza5sqgIQkQwRWrSglN2ARuVyWgJKE1jFAUgAp9Opc8lqvdltyxgCQbs1GmtFJEDoW3B+bzkSzxKb+vnlmSMLIj4Gz4IITfDf/u9sAS4APv3X/ta3EiDiyBxBIARIM2SWvoLfbyqIBIB/cvp/+j3dy+cc2+3u8CDXyi4DRAQv4AWCSBSIIAHEA4fXrO7JycnB/r4irLRDXTus+g+cnZ1pRxkRzWYzfQSdpb3SiIhcXV0BADNfXV3t7e3NZjP1fZlZ14sx5sGDB9oR3jRNlmXz+Vxz/1VVnZ+fHx0dnZ6evnz58vHjx3q56+vrX/u1X/ulf+afffDgwWazUc/m+vr65OQEO5IZzS8cHh7qytVJu1gsSODZs2daBTo9PY0db7L3vqlra62GBOrT61qbTqeJsdpvAwCq69LXfjWJqOdXzXtjjFqee/fuIeJNRplZiQc0+FHlmc1mc3p6en19rRWVPh2j6gF6D7PZbLVaXVxc5JNxryemwFRjzHg8ZubLs0u1CVonUV4B7XVJk2Nr7WazGY/Hb7zxhnITb7fb9Xo9nU7zPH/58qW+vn4j3t/fPz05UeXHs7MzVVzp99kQQlV5JWfvvQft+BeRxvvRaERF1mDLrilIQDg16Wgy3vowOzp68pWf+PpP/2w6XwJjsavKsojeMwc00MTgsvzBozeuLq9PTl8ysnAEhsgiIEYCIRkfkaUhJARiQRAkMs7quzcifNsufYmvP7RgHKJETtOUIzKK320//t5vU+BHb71F0zmyIUmRjQBEDwjgmDFGylIenJC7CSgiwftNE4rVKkvcZDwxVr1DsUTE1MToQ4iRj4+OmrJ48exZCCHLshevnikEmrtQ4Ytu/tbv/8gdqALAMRLRo0ePRuNR7FyO152Wum50SHtSCu66BdI0kVY8KvZtA0mSpGlqE9d7aKpTroDDPM+VrbhPYItIjMF7YpHAYJ313qsa6fA2qOOu6LM8/RE7Qir6vLzecAw1BKrrGoFc4oQIhJXdGLV/BxHJppM0ePa+8d4D6BZEuuOANdbZPogaGskhul7B5/2vblAd0hCClIeWyFgrADpQfHvwiVpGTwFoPduuY4SMEWaF4Wln7+DSmrBXZVW0xqlrb8jkdkzGqNpmX1XwITCzmqC+ERc79QiJHKRR660hWU/L7pwDamO23pfoXYUvfxF9HrN3oqgTn2iaJsRoiJRGlYgUKVPutv13pcMZqXekLJEA0DQNCw+bcoe8ZMOMAHShaQ/w0TS0PovtU2v9wuseSRTA1QaIxpDiPgHUEOGtlmCArt4Enc9qjOGuLtY7ZD3PQSsX1V/UmIghn87T8USMi8YEcpXQxss0JUbj0QbDohgug1FiDGGsPMgC3nsidMaCiIYEZIwuoO5mSJcidQQU7bTrshExRiTNELRgN8Q2sDHGJGQoeg3+ENF0Vky3DlDicJHIfFNsI4ohKv2OKERMWBihBW2+3qV067cvmlKvzbDh+H/hx+5cSoS1/BSi4toktFoc0pc7QghFUdouJ6oOATNrY6gOBXRsM8xtTsU5J3gjD0REykbaBkXeq5XUVCveokJH7NTZlONY0WKj0Qit0Y49EVHoyOHhob4IDTbUKNd1FWOrlMTMKiKhk03LKerYCcB0Mh2NxurqZTaZzfcmk8l8Ph/P5gWHYrtO0RCLVM16vYGyenh0b7m3rELTg7SGIlAiorGDdPChDugnXTe99Cu5n5BgjQWDcCPFo+hVIhK51VRniMTavmRPpM1f1M9q7HJXzJHoxuKoR9WVUJN+ymFH1oGI1pC0skrAACRIEknEpW6UunH+ThX8erO7Wq2vV+tNUTYhRGXQIGSGboHHyNwtHKoDgCBHaXxIyD568IjkZaxiEwUMJmmaZplxNqlrAKiaWlfNcIYObd9gDktL+4MIWq8XZsAoWAVGaABaLCgilP/Dm1rTX/mF3/wf//rPVIFNI0QhciMApqOZx05zU1jImj+e/R9/zKX3I4//2v/1J3mKlQ9kqI4RrPPceJbAEgEDYSPBc/TMXu5Wxn76Wz8dGl9V1bNnz1Q88fHjxy9fvuw/8Omnn6oAvFYzdHexrlAuYMVq6gQQkel0Op/PlX5KCb50vSu1XZLm2g2vHoOSjGu6Yb3dMvNbb72lZRNrbZqm77333q4o/uF3v/vk7bcV0DWfzy8vL6+urg4ODhT4pEvv8vLy3r17R0dHxpirqyvvPftw7969s7Oz9tJJoomP3W63N5+rU2WMGY9H3nstIukq0EtfX19vt1vFTKuDri6pNuRon4mKTiZJMhpN1MhoIoM6wpkQwvX15fX19de+9rXlcplm2f7+vqrLaxuJc+7k5MR7f3h0ZIjyPJ/P559++mnlG2vtbrdTu6RPrQ1CSsRc1/V0OtVTaVPNaDR6dfJCh1pJApS0UF+N0iVpDKYFor5VxlqbJIkGlmozFWhnLWGMm81aXQGNiFarlYhkeYoGqtIvJzNlllc7YdIkBkFA38hovvjWH/6jb/3E18s6boqKApVFGUNTVSVAy3+zKwuTpO99/esVy4uXn6TOsbBEQYRGGNETkhBaImfQobOE6hhgL583AFfHyDKY3ta50El63ykIGzIICJFRokMCkc3l+fNPPpiM81meG4N2NAKR0Hgl+hYflMezqxEajhxiS2PgG48xrItCvJ/tTYq6RE+zPAWW2ARFa8cYm6b2jrI8T5IkVLXKaMogV93T66pZ6r0jRKvFbf2VyHCn1gednVe7HgZ5CN0D+p9FOkKNDmo/n88XiwWIAGg3bOhj8oGdb3GMCqsOnSRFPsrR0maz1kmuuDUR1tUBpEp83PvQuqc45xhITygdlhsAmbnx3rgUuw5pTXCo4xhjBPA6MoSkW8FNWIVtLah3LLmDDPAAOY9IzrUbNCKaaJDFgCBoXQIiR+89iolgRVQwQoiQrO58hIhZnvVZORlkTuF2MKkbVb+tVGXVtTsgWgMAQgQiiJascbqNEgGzEHQDT6RvnYzp7sSY1ttOnBs4n0R9vzsAGJLILEKERIZMm6ojxChsSGsphsgIAMVIMXBsCX+HSUkNF0HEw01pIQ50wBBRIWd0GzchXeHriwoSId7gJ3UkbSd4osUf6sBgOtkAQF2yllopBDXFN05LBwlTK2S6BnoRwa6o0t8SdFzV/VRRrhTdibR92prXhG/6VWQ6ZeWbwI56ccoWLt9/RaRfwwCIpKtiIJDJLMNAhQh6KyUIJk2lCXWMbjQ6evwGkYNk9NnJ2enF2nCTWJMmiUtskro8T7I8NSoo2cRR6rIkTVJQLWxHRkCiRDK2RW0pBwKZfrVwF8C0LmV3k9bKMFAREdXKsNZmiQWPGtA75yJz7EqHKBC0OThGLUOrmbPGNG0CQOeQEdEovJ1kckuI43aY8mPHKbd//ZKszhCApH29DAAcIxJyiDo5dFL2qcqqqmzX3gQA6s2YTuszdgo+RBQj9QZRtZn0VCpSpgw5SZLUda2uCSLudjvFcsxmMyIqdqXisJXrRjEVmpKsQyuIpvNQCUOVWUhto20F0bz3TR9l1UWBiJrv1FWXZdne3l7wPgJodvbV2XmaO0RQDH1V1ZvdxjfVKJ9wVa+q87DdHu7tjcZjAaEucSs6qwYHtBsbRY6OrL5qaQVPbwKVPkVHRITWITKHPpqCm4LybSqbbomKCLMYQyKmC/Bu1ja3WK+bCEdfjTFGJ6102S+dBjeFQSQECQwgQsIWiQwzGitic5tHGlmznIzqo4OyrouybkIUxBg5aBHM+7qpvW9aIEoU54wwNk2IjXdIbz16EwJggO2miBTzUZ7nOVqTprXOuhC9fF7bWJ/ggO7xW0L+3kAzCJMgABnlBGybWAUAbiX/GgasA7CIYAhKWhR6Kxm7I8tHvy+Irz/3f/mKiVKTMNJqVzhndnXDaErvmyhe2IsEgYa5luglBo7TfyPf/Kulfv0vXv1rbs8aJCJSHJQ2S8xmM7huL6Eqq3Vdq++b5/m9e/euV+uTk5MQwtHRUS8SrNCgLE339vaUPGq1WmlHinIZ667QiwxyR5C1Wq2opFevXqmiwg9+8INf+IVfePnyZVEUx8fHf/87v7nY30/T9OLiYjabvfHGG5eXly0CrdhqTm6z2Tx69Gi73W42GxG5vr5OjFXSjrIsr66vppOpMpsDwBrx3r17b775JgBsNtvr62sRUfa/UdqqxWdZdnR0pLmJ999/X0Sspb7cqqUkLZhMp9PT09PJZDIej1VdXnFcT548ubi4mExG9+/f1+qTEo+ojKN2mFxcXIhIlmXOWg1CAGAymRQX5xoTjsdjLV9o1nM6ndZFzcwPHz5UOZQ+IvKdrrPSqV1cXGjqVEQ0OAGA8Xisai1Kua7uIAAQ0fn5uQYq1lpdwmRQ61rz+VwrzyKimSDrDEOcjMe73e7Zhx+O4w6xWswyRIzM0eUP33z7az/zBw7feHO1qwCNAwl1wyF430Ru6jogoCVj0iTP8r3DQyFzvb2sdlsUsC6BGKJICFKDZwJrKQKBJUSr1u2Or9Mv2yGSwFirXil3eJL+TwwASD5GRHSO2LNFKDarD374O+/NZvP9Q5flPjCgE6wkRuZgmCKz2khrLRvGgG0ejVmqmhsPhEzohSXy9XplrEWRXVEhiLPWTCaJM01ZIGAI4fzivAe33DBE9U/SPQ8AqNw0dDANa+8mfNtxQBS5oYm8m33pGk8EAUQS55TVra5rm1rmli1Qk026zfXxNnRUwpvNRnUd0qwtu3HX9S4iyhoSQrCJ6z1IzRjqh0U5hzqldnWINT3PIkikmIgeQ6H3EGPk2IKjsIMW98WHjlirdbR0e+ojru4z7VC1OT4RX5X9uMQYEYBFfF1bmwQGMlYMARsV+SEAjSKxY67XU2nDaltDGDDTxRhD7OS+RNI860oyHYa/OxDvOGPY/5NOXeqUymwrvSWKn7/9XgdnIIoxGgTnHKKmBZGQgFCisHZBg6AoN5MorY4lh4N70DG31oJA4z12vR/9S9S6cZS2AUY67q/+Nlo43CDpefMn73UFDea4KPNKn+3irl8FEdVMWUIFw/d3woNGgH6uQteZ3LprHSYldMot0iXKFa4cOy0dPZt+9xY98a03dNsH7mM7RESi17/V//XmQz36S100+jLvm0GaGL///vubop7Ml1XgMuJutUPeim9Qe9SRjcE0S/NRmuVpZsxbxwdVhAmYUZabPPN1sy5La+04n0j0LU6mZy/ubIox9CV3cnNLzARtWzkSYkdl3c/s1q1kIRaX2hAjEil8WQuL4TZX9z+ZR5+qsR3VrwbHoROs1RmMrx29beqRhRrDBB/68kJvZLHL8QOAtbbHgGm2WEFlmpXUXRy6LgtjjOcIoEUzUkA5AOgmXZa15laJKMtS7YjQ62pfigItFFmuU3Q8Gl2Xa604v/nkzbPzq816U/swHo9DlNg09WbL4mBXXu6K/dlkuVwyQeHrjiEC6LVytqJKsiz1jc9ui6jyQGvpjgXUPUrHXM1Hb3SMucH+wsDiq3HXikr/InRjrqrapkn32b6Q2Al03n7j0pWGIwuABUGQKErgCCgijGyE2XsEJiMOaZKPBKZFXXOMQCYwxigh+BBCWZVlWfrgm6aJUdZVxRHryluhxXT+5sPHGCm3+cnJq1rqJEuTJAFEzV6rls5r+/ePexCg5hNuJMsYjMCdhVcHtoiRKTJyBI4tkwF16Dgloh35AIvf030Mjn/h//xuESpisLmtYsyieOE6xLKpS++bCFWIdQg+SCOx4ehD8DFEkNG/ORGmLBmF/2Kom8YgaaZKWxqWy6V67XocHx8rkEnjgbIsP/nkkzfefBJjVKCjgpT6XotorTZ+fPjhh5pESJJE07fXq40Si2sTufrf0+mUmYPwbrdbrVZPnjx56623fvVXf/X+/fv7+/sffPCBiJycnDx69Ojb3/72ZrPZ398HgJOTE2XgVTZkBb6q8GtRFE+ePLFI19fX+/v70+lUYx5NRhhjJuNxnueXl5e240rWhVZV1XQ0nkwmqn/CzPP5XE/CzFVVaO1IlVJijAcHB1prci5oMKAVpPF4/OrVq+9973uHh4dVVc9ms46Hva1XfPrpp1/96lfX6/XV1dXR0ZG24uCgF//x48cXFxd1XZ+cnKg4jJqX8Xi8nC8B4OzsTHd3HT3dsKeTkVobACCi1WqVpun+/r6qoKhp1VTO3t7ep59+en5+vlqtDKIKWeoXVcqmKIrNdp0ZAyDeeyVagM5QhCCzvdmzz15sr67TNNvPsylW7HdlUUzmB3/w53/xJ7/1ByqJVWAiF7yvm4YrH5pmtbkEFCKrvUWTyTLNMt/Ee48efeMbP/3DH3z//NUpGrJotJMssohIFSIDar+vIUIB0zGzw4Dccui7I4Awm6717o4hZdQOa2GByJGRbYp1vdudFOOPPpqNZ+AyFJPkiRBxqA1xy4bVHX1iCBENog+xqqrJZCKESZ41TaPRb5ZlSZpVZeGAsiyzBNvr2lhzdXV1fXU9XMu3zZL0WRC43WEsHWS69+N7Bx2+1O25cy2XOOXWb5oGTEZG1LzrHtp/THtf+0LEdDrVTFxVVjZzuny0XKkll9FoNB6Pm+C5Uybptw/dwUMMfTCsRVrtb7bO+cB6NgWHU1t+JyKypu0FDQM1s899rv5yIQS8CyQZgoLqfqMSEWstqfsukUxG1iAiEIYQWoomEEJ0AycWByUIQTTW9BejGLFzf/vNdFCuGBBb38F6dTqGzAyDb7XbByICuCQZYr36td8ehnQ5UEeKpW3WiK2gAJBS1zIACIhqYtKtqQdwo2ofeRBW3Rn5OxvpnT/1j89dB87rBxHlea7eyOseLHXS9dZaS9hnP4cha++Z9EG1rpR28mBbpQEAReNrBKuO3J3bVoRtkiR3A5X+E8M1qX/rOctfF8Gh4Qvvf9YksShpqaKePndkAACi4KYof/jRxxVDOt0TtAAG0CBRMCjMzCHGACKwLWW7tcYk1nz0ySdZksxns+XeYjmf7y+Xy8W+Naasm4wisqouCAkQSx/w3QnPvujQ2EodYgI2xmCWqZFVFKCaJ2EOZT3CvPE+GaXM7H0ovI9NY79Y2PWfoENad7lvvVBzlqeJS7OeYFuBWPpfHQEc4NHVzHErHt/mL1tbQ4SIqp/db1EqdJCmqUoyayuV9uir/dUFoOuk8m2Zu6fc0RRvCAGAFOiioYIyYCjSIwYPAGrQ1V9pdw7E+d7edrvN8/ze8T1j07OLyzTLdrud95EYHu8f74+mp+uniU2ODo/IGs8xNH6SZr3wxZ1FruWa0WjU7K7hdk6+Dz/Ma2QVfTihWYR+22DmGAQ6fEi/oxMRQNuW068y6HrsiHA8G4u0lqIPV/Ruh7oG3DVmMHOMTGgEMSIIsDIjagAuLKEuBcC2tSQQYDHEBomsB2QGZhs5Tkap92PNlPsQkiILEYqiMmgW8/n943vryy3vi0SsYmETi9aEGF1IWLgoy1YW93c/c1HACMQegootggIBsr9sqr/cWvP/wn/wXthHSq2x1pqUrGFmGrgUCrMpy3Kz2f5vfvBn/sWv/vXf/b0AAPwfPvwX/95H3/84vPDeGzKUOEZkMjFGRirrxrOUPtSBax994CbGwKHh4ENkYUIM0ir71mWl8/nJkyc6nzWX31+rRzwuFosHDx5cXFy8//77H3744XvvvXd4eNg7MSqJqNl3ABiNRo8fPyYiVeG4uLiw1u6KiplVo7AsSw3ydY4lSfLWW289ffpUizY/+ZM/+Z3vfMcY895XvvLGk7dfvjpBxJ/4iZ84OTlRfNd2uxURbZVBRA1UdrvddDrV2iY5q5qJJycnin7Wks5yuWTmJEkWi4WuhfF4rA+uG1ie57vdDgD0VH3WzTmz2WyWyyUiTiYTTSu2fMf5WOXbVY0eEReLhRaOnDPX19fKGj+fz6fTaY+8UmvWC9jpRltV1dHR0cnZqYio0svFxYXu6MvlUn04ADg4OLi+vl6v12rBsCvAKrbNdOQB+i7yPF+tVgcHB0VR6N6/Wq0Wi0WWZW+99VZibV3XSvKh5lGDyaZuXJpcX181TTOZTCaTid5w0zR1VX/66eUon66ZJ5NJsTmFuJ1Nkm/91E99/Vs/N7n3rnepr0trjG82Uvu6KEJZCUSAmOf5eDxNkhTAWJsIGs8BjH3nK19Jk/Q7zd9dX16QdQgYWEQYgckHAcKmSy0TAWJChhDjLcfhJq0rACG0dytDCAaAIEQAQQjCItCE2PgQlRuR6OSzzxaz5cHjJ+lsSUkmRMELSIPO8CCn2g+4ekLB+3JX7O3tISIgaufAZrPZrFbrbbHdro+XB48fPAgSAKDY7V69enWHvetWlQDEtA8BMDDsrQse297O3tq3HmFsUdY/8jDG5FlORE3TYIvJzNTaq7+hHyOi2le6FnQMdXUj4na70YYHDe/1rwpA6AMnRVoqYkfvUPP0ve8oHTzYWssATah7ws++TV9XnzB+uct7Zw5oQs0M6LB6tE833LdGo0cBGJcEIOucOr69T6I7YDIgGr5VGyGUgaIudYSi/T33Zxi+Zbi9uUvXHa7/ruWa/ovQZXL70evPcMuR7pKKWrLoIz1AdGT6K/Z7PaICvm8mtt6D+pMxRmMtDu5wWA6Kt1HEw2fpn/1uHHX70OXjO46lO39VX0VhwIltiyF8m2OAO/ol6LKi/XMRUWw8DRrA+lCQB4RMepW+ihhCuOtJ33pJw1wFDtrfX6uoDI+2pEftq+KOba3Thmxfnmi5E1BQBHA8HhFhWTeVQKyrJJ8hIhmLYpyxuqCM6JptQgQ0VmwaDV6VxatnL8yLk8TaUZYfLpePHj1+cHB4LzcogMTEggikSnstmksGd3FzO3ovN829woKgkxBEENCiQyQtK5NOX0QBqOrapdZ7n2FmEIF5U+wsS5IkoLhKwDtYlH/SDhzgXxExTdPReCxIu6LQlnTtowohaKASOxbIO2F60zRFVQ/ryEO7UNe1Wsz1eq0XPT8/d84pQFaZTDUy1Oyp9pksDw8AQIswvb1WwQEAUo4vDfE1Q68IEOTonIshqEy1wjyauvaN91VRlrVBmszngjSZzs7OL05ePD88vPdoeZgjXb06pcgP7t0b56OiKPLZ1JLjJhJ2BYuWBLs9RMAliUuy7ToKUJc0EgSIItpBjkiIBkA38Y79QYCQABEERVC78ZDIGBYBIjbGhhjb5UekKizD5dbZBW4azyyILWJquI/eSewN037MgpYUcy1AzBxDUKAyiDirUEBLxjJA0wRHAoBokVooI7IQgIvRVbWxBprGMJoQmQDZ8yQfTbIRx+hMMhlNE7HkSBAaH4y1jQ+JS9AYifH32o1KPd1ly1HZ2Xf3l3EvT4+neXXAVYgliWWwUAGbxBhhaCXctNk0y+q6vl5vJpPl/+r7v7TdlsWu3m6qf/2f/60f8z7+5mf/7d86+XB7vbEmgRCBjM0yMq6sqsZ7QbNa78S6EMVH9iE2kT1zE+Gz/+ZKz5D/W6kowWAMRKCJUmmBqaGqyuGeXpZlmmbzvcl4PC6rEglH47FLXF1V55vNdDrJ8rxuamvNYrkQ5tVqdXl5+cEHHxwdHc3n877OmSSJD6xNDqpM770fjUZFUehuFEJYLpdnZ2c//OEPv/nNbz548GC1Wh0cHgLCN77xjZOTk3fffffjjz9+/vy5ljjG47ExpDy8/Xy7vLxsmub4+LgR0CaZZ8+eAYC19q233tLSwWw61dCIu5b0w8ND9cIT65TNTNmTX758mee5gsGUwrinzbi+vtbtDRE3m5VKSWZZpnAsEVkulxcXFzOtlDKr46UN+n01yRjz7Nkz9ee0HKSArr4lQMNa7YrRnr3xOEc0zHE8Hh8dHfbEgwAgHDXsWa1W1AFpjDFVVWngpNZvvV4r+Zg+skYp6ijohUIIo9FosVxsr69ijMqTtlgs1AjUdV03/vz8Yn+B77337gTZXyUPZslPf+Nrj958UovdRqyqgoBzgc1qVxcbiT6xZpSPJstZlmXOpT6y99GHaAxOZtPQhAZlvjd/+913PnkftqsrhdFHZhT2zBCRGChGRVmo1gghRe0nALhJISAAAAowsO3QsGRIuDeEIKjs7cAILnGC2BSFCDhKd9eXLz77OJ/PRvO5IRCHAgbEICEJGGkzFIKg619QCIFjaOrKEmq9uGma6H1Cxo3GSZLW5U41hKuqvL6++uEHP9wVu7oustwOYh+lve2jqRufSOG/1BLKE3dsUa0XNABE6YPLaw75wAsCADDW2ST1IVa1n47GTeDbJ2FVrAU02kGJKnPRNCF4lzjjLIM0RTGejJUCxzkXOYYYEkhdmoSy1GZx7z0SQceHy8yjbNwnXqHL3OvK3e1248m4Rw31ZFne+wCRFHVnSBt6+7d8W8JNEMCQlrID3YpqZPA/sIaGrnnwjf5XBCjLyKC1RpgAUZj7usZQbYJEjHNtoz1R7Rtut1qNXRFFYmRS8e4O/SOicjbtlO3iagSQGAPHSMYkJiGipmnb1rtYNIqwENKNT48Agors6lcAoUQFxBOIgDBQ26tMXfqybbgHAZBWfCbemoVasRQRYWmaZhic34ms+p+HKCzo6jw0oLj83EMZVjT3al7jtcOuwTVJEmOo30fuzHmdJzjoNZWusOa7kD6EgJ2Wd+CITdPntRGx354AoK5rO1w/jK3YTHtPDABo0Ko+SUSKSECGiayz/bX7wWoLYYTJDbuzALTaq+PJdOeDMEQAH2sTrctyAdM0jU0SkXBwsN80PpDlOkbTWOcAgoTg0PXmDlDIUGJSAKjrYACFRpRkIrxrwrYur3anH51cpkR/4ltff7B/kKSZ2IgxWGQLJjdpigYlkiFnESSGUCFGjg1IAImmb21TJhOLQMLAgF2DoDEuSSimxvsQg/GBY3TWoIhLjDTe1wEiJ9atry59jBlFgeB9GGcTiaaJLAzMUQCHU6Czd/1sG84MuM0W9mPxkOi0GZxwMH0FQpcF0QyuSNtSQh31R5ZlZVVGQQBQ7IT2jegurgEJDGiptNseAJi5acJmtd7b27PWOmMNUtM0IbbCzzHG8/Pz3W43Ho9VC8V7v7e3F3zUVKXe5A3jalEQ2bqui6Jyzqmuwm63I7LaZTUajRaLhd6MQrystUnijE3LojCGsnGepokztkGEGK2xm121Wl1DjHVdG+ceHd+bZk58OUswrXZ+t22K8ujwcDofRwnOWK4aRGRgGbRjtTi3ELz3SeaCSWZHD7ZNdXpZ7O+N8tSgxOA9GMOICEYEtVmKQIxFBCEOyhMnLGiMJZFeT4aRMCIjMNiE0Cbee8FGQqDEE6JEicAmcb6JVRPSHIsqVLtCBTQduaqpyJABIywcBCwCIJG2j+sbDGrFdtuVZqB98CpmCggq9IqSioiPzL4iImuMEo8KQDBQN411lkWaxhvk1IlBm6UmH4+vrjc4AomQjVKTJGjNrqnmB8t6tyWDQZiwweiNaZJsNBrP6nCllMbSYRvUiA+nN0tAUKUvLKvddDpljJFElAIQQIQVNh5B+99oXTWEJklqQEPL8TQzwBWFaOKYyGH0EsgmzjojhHsHC5Nnq6IofNzWzaZqmsB/5T/+Ez/1ztsjQ3/6wV99fcX95vN/CY2Z7R24dP8fho8+O3lxuVltjYilbDyqfcPeWwtNiGVdlAGqugoMXiCyRIC6MT/48zf98eVf2tBfSdN8tFxOl8t5kpq9+Xy1up4vJmmW1nV9tb7oPzyfL4uyXBeFuVqlo6xBHO3NE+Bit8qzdDRKN+trlyR5nuepret6/2B//+Dg5cuXddNUda28WAcHB7psF4vF9fW1evNaujTGGGvW222W5+PJJDInafo73/vez/3cz11dXb06Pc1G48b7umki83xv7/LqikV2u91yf99SNkpHoQ7j8Xi33jHzqxev9vf3l/NlWe4UuNU3wr169erg4CBJkhcvXhweHmoW4+rqSsXar66unjx5crR/oNUeBcprJkWDk80maZpG6Y9dp0p2dXXFzNPp1DlTFNvpdLy/vzg9PW2aBoB3u81ut7l//77GY4r629vb0y02z/PJZFKWpWbFlINYQw5k2ZvOXr58ee/x0eFyf7VaWSRkyZN0u9tYY8uqEuEYeTqdWmt83RS73Xw27ykKNL+jVd/NZpOP891uN5vNqqaa7c0EJXI8PD7ssTdahb66utIs5mg0Oj46IuHGN2RNWVcff/rJbDYriiLLMjLmvbe/YhG//tV33nvyMEXOEufStCIbGWzlc5K6blbbumkCY5JPZvkoS5IkcUYEQmQQAfGIQGTrsqrrqql26Ow7735lPJp+8P3v77ZbbkJdVYYIKPccY2PQWGutQ0MtB2dMKLnRYUPQpHRLdUFY+VoIIktVVyH4Ln+JVRMQdBvCEGoU3ktTYfE+mKTZrj45+SimtD24/yjNRgEgAnCAHCxHChjZYLASkYnYChCYqrg0UFfb62mWaOrEuqwRE0IECY8ODsaTkTVyubv+rd/+zadPP82yFMlEwygAXXuxASBsleGCr9QHJVXNUnMFEYS9r62x5FxLqxMDABgCA8aCY4DAkUUZdTSgAgFgi00UALEuwTSndGyyWUS83jRpmm4Lja6jtWY0znbFzjkbOKyLXZ7mFihx1iJMJ+PL1VU2GU8W01iWdV1OZ7Prplru79XBl1XlxunF5koiG6IgDi1udmskmkwmJIYSwwCqgy4iPkayNoqUdZ2maZY6Dt4YA4ghxtS1uLLpOK/r0hlLJD7UIB2sBpGQmrrWfBtqBBN9jA0B5s5iH7SpE8sBEa1BBCzLoOURFQzQQN0aF5mBGGItEJFMYpDRACIIgUAcKBkiIgCyAESBGNE404MgAEEQUaw1IEh24G7FiKSwESXeHfjABCgkACECRE7SG4L4yCJCxqYA4APr3qpHhyVrIx8iNKqALECIibv5pISuYweQhIABGGKIESQSELRRrjOmqcqqrLz3vixHeapgPCKy1qi5EJEsy4qi6HPHxhhUpJwSF3Grc6IIArVvw2KIflK6jpEW55LkiSVLLS4rhKgKsxy40koOGQFo9RgB0VgEGE9n0CZlERAVHVBVlQDYNBORIALWtv1bxmSjCQBADKaTjxuNRkp3qa7pj4tN0kBEb4i/OBoDLXO12o8I0AogRmYRBhhAENtEKAKAANR145ydz2dPz67zVGLQPlcRYLiFW7l7tS6VSmQdAAhiYOAY/qO/9WuP7h0/eHD/4f3jxXxuCYroY+JqACtAqo5nCIg6SXvse8Cgm1+qLKKz/9ZVjbWAZCxREI6i+XBgBOHgQ9KA2DAeBZbJdAIAiCrZbhCo65SnYUwIt2MJvJV1+H0+sOdm0TYGa2NoOTp09gNAWZaASKbl6SMi6PqY9VBwvBY9EaFpvO6p2gSvpQ/vvfeNCPS4pr67dD6fj0YjPYMuG2vk7OwsxjgajXSHvrq6QsTpdArGagCjyUit5ygSRuNhDZM0g6tReJ7ngpKqRjvzdrslwO16vdlsCKCpG2ctItZl6dfrzFqXpkfLZe6S5mpXbLb37t2bz1vRK7gpf9x6WXrom8rzUQzNbDJbLI8uTp83NVsEa4CMjcBaqgMEIAHpNinBwKzONTNjq1Cq0x1EuwQJybRWAJGQDFI0QtzxfQkDIgGQNkdWVdt3q8GkablZAPBWSm9YkAEAa42WnbVWejvXcuulA9zo9BpAJQkHAYMASMCMRCgciZIkiYzWhTzPI0cRcUnijE2mMyTwMZKvpSqRCNAgGSADrzFffe7RJ2YUxdenJNWy4ACxiohRpI5cNP6v/bkf6tf/nW//AUESJEASbd1BFEQia5PU+JhGaGKDhAwyn88fPLw/35tPDP366Z//+aN/T0/yw4u/0DRNNs5Hj2YNSkTz4YtnP3z60VW1qbgJKIkbdcYfAlNgiQyRJbaUXxBFgmDgu3bNGkMGmWNZlsu9vXK3qavSOnN1cVFV1Vtvvgnvt5/c35tvSveDD95f7i8PxsttUeBkInW1ODwKIQJIPlJ2r+1isRiNbFGWo9FYQ4LRaDSdTnUCbzab3a5Udxw7bl8AcM5dr9dX19d5ni8Wi6OjI03f/sqv/Mq3vvUtAdhsNo8eP16v19/97nfTNF2v17qxFUXhy2q1WilJBhGt1+vZbKawqKap9vb2tCUjhJDnuZZuNpvN/nKpiY+eSYaIjo+PNX+hibfFYqGdNrHlNTKaW9nb29O98NGjR0Sk0CxjzOXlZX+G2WymlZPj42Otu6qh2Gw2vc6M1mQePHiQpun5+fl6vdb9e7vdTiaTrIP+av9MT2GcpmmIXqCNsvM8Y45XV+vRaJTl2Waz0UJ0Xdd5nit1gSLliqrQqpEyAXjvZ7OZGjdf1tPptCxL7OSZ26q18Gw2y/Ps5OREo7WTk5PDw0PtbQBAYX7j8aPZbCq+FgCPJIIhRgkhBF83deObfDxWFsQW9R69ShoLAFkL2sQcQ+RIxjmXTkfjvdliOpl9/7d/5+WLFy4dhdBEMCQSGEKQYCQCc5vhwE4XoLUgQgAsageEPXfyL4CYWNOtX0QWQqO5cDYoANYaFok2kCWWWF68ehb85fNn2WQ2ni+m82WWT9EEYxANRWRiQCICQuEowRobfLPbbPYXS2dcbDQSEwTOExfrEkK8PDv75MOP1lfXibN5lmrxsivQtBFUtwWwApVUMEpar6TNbOZZDoNmlVtJ7pvBgOE/Sq98jUTGWuvIGMWuEhrnUk0XMEMIPgRDBN43q821zUcCjES77QZEyrJI88wYqus6szZ4Y4xZLJd100QQJPLBQ9fZD60jJzhA3Sj40HaCGD0+It6mZevLLK3XyyzEInSLMIFIgPWZ8VaGdfhjNzd0GFuMAiDieDrZbDbG2WyUiwgaEo5CaBBbykdlR2p9+LtVqdeu85of9SMUIl7f6m/VK+784UtPBa+d6kef5PavN5MmhNg0TVWWdV1H741tYXv9Zi0D2ioYVA56AgNmbkrff5iZnXOTyUSpVuDOLj+4DWXXFL6RRhk83Rf65cOuB+668Psz6M0h4p16DcWW+yd2nMXYoUN/N4FK97U70/e1T3YVOaIYWZSMiIe6TJ93RLbWvfPkrU9f/t3oA2ODhM6QMP94CE/Q7a0FyvsmT8ynF2cfn59MPxzdu3f4tXffe3D/eAMc2E/ZJYgIhtAiGBBq/3f7SsaYJHFd54aYwUvq2wCMMaDpXxAS0WpziMESEJEATsaT2DHwGmeNstoDCJAMYPl3RvU/7eaWLvYARHLOgbSE3PpQKrIzmozVtHUP24YxGoUPAYVap2thi0nSkzjrxq+MYXrFNM+MMQoA071ZKd6VRl09j7IsFYginUwKkmRZdnBwoFdR70cR2xqc9CB+XQzOudFolOZpXZYhBGetr5vNau3r2hiDItZal1idLQiwvl4pxk95pheLxWg06hft5x4iPa0wEtHqajWdjRBxsVgS+3J33QQhMs5SjHVf2kaUvkiAghwGKx3vnh+6PnsYMHQREaBlFmOMc7apAxGKQNM0iFRVlXMtjBXa6lZjjLmD1YRBs5rCWvo96bYlAuabuOXOaFB3DO8TAACJxYxHoxiLUQ7z2SyGIAKjNEuTpCqLKKKx5c1DIRLhjxen3DT2qCP7JZ8kAo6xrsvv/8s3Peh/4Q9+53/5937GBWZkCAAGxLOY6IwBQ865qUkFa98QRPSNP331EppyfzzJrf2t9V+EyJM0NxOzvbxYr7Yz6zzw+Wb9/Y+ff+/Fp2fFJhCQtWqLgIUjM0gIsQnsA4fIntmLqtGj93ero8oGvlqvynVxdXGxWCzW6/VoPZpMJtWuWNvr/pMXp6dROCXMrZ3kadNUyDZwMplqyXGbpllR1pvtlgWtdZvNZrvdMXOappvNRoUFFaK5t7enS0/5J5QFGBGXB/v33X1dU0VRnJ+fP3jw4M/+2T/77W9/+5vf+unf+d4PPv300/F4rE0jL168UKf/xYsXy9kcEc/PzzUmiTFqimGxWGw2q6Ojo+9973ubzebNN99ERG3S2Nvby7MMumSqBiQKCSvLcrLcVy6vk5OT2XRKxjRNc3R0pGhPEdHyLADEGC8vL51z9+7d0wBG1VpUATPP8/Pz854z4OzsbD6fHx4eao++DojKxgPAgwcPlKpru91q0KVUwm+++WZd15vNRvUc67o+PT19/MYjRFQLqfwQesNVVUkU7cPR6o124mmPgSaMZrMZImpzy6tXr46OjrIs25vMeoaSuq6VGy2EQAabxgOIcr7t7e31kvbX19cEZIRjjE1dW2RjLIv44JvGN9tN4txsNmsnZ+c6hBCG/d7UNcuKCBljTcocwdB4NH7rnXdG4/EPvvf9jz/8EJFZokRBjjVCQhjQBLQOAG7XQtWSd75vhMgkYACRjHMuSdP+kzHz2KL/EQCNNcZYEY4+GOEYJAJCVXjv/XpdXpxfJxm6/MnXvplOp3kyA2tqBmZCpADkAcbj2eZ6VRRl0/g8d8xesToxhroqEKWuqw8++OCTTz4O0VtrQvDee4cK3QBNLiECCrQNA0SIrem7A55JbNu6GTsi7PbxAUO8cY/Vq+bOYe6L88aaXqJHRKxTbptedVG1gERn1/zwMDHWCnrA1fX1xcXF/GBZN01VVZC4+d6eDz5JEh9D09TW2qaqUaDfQdq4oONT0W1CN+vWpek2uDstCqZTyDWdiAd3kpRfkmbtnY32LfPdtgfutInTNNWy53K57BFKRCTCZFBAQDhGQSTEPkEFP2YL0O/twC+W9bzzXF/S9fElx/DkfKvbR3gwUDGG4H1ZlkVRkNy0ggC0LkT/vu7MTM3b9sXhYTSiUhA6V/tdtU9h92cQzY7cjot+5DEcDf2i2kbFbmDHCuubpm6a/pMj53BAZt3PN2b+XQQqfTz95a+EOk0cHLTXaM3zS6ZUlmVF3Xzlva/87b//D0LjCYmtYbDQo11/1KEYBmzljZImFBGlKqsyblZF8dnzF3/qT/7i43feBZcqozWARXKITlpDRAIG5AZfaTqtUABlsLy1/G48dTBoLAAgCAkjYpbHxFprEySDREquH0Wccz52ZZvbMM4ffwb8ox/DBUaE1toYuG/z0OZRZnYu4dY4kyZTVQdNX2jv3fb8m6oENAy3dMb3JLlJklDHh7NarfqGE604bzc77ZFVrDYAaONaCKHYFYreVuDZaDRSmYgY4/7+fi8BURSFuiA9MYDSklpjokti4ysARPR1LQjB++12G0NAwfX1ypCZzWZhW8qmvHd4BNq/9cXhYv++TKfEVJV1QggiST5GgtiU2p3C0HR1frmpmgCgiHNWGau1xydyHCaHhiuup1VhJksoVtMnDBh7o9N3CsIg9aUbgBt4A9BtJP1n1J3qw4bhVFRVls8dAYNokIzuGV2pGwUQmMWYLG2qwBGn4wn7AMx5llnrnDUMXDUNE8SqpM5QINKPuQC4IxKIA/Hdzz2QUCL416CSq0YEOYkhQNMI2MAJQIbEwALQ1B6CJAby1BiRst6+eFls8tF8PCLP5GOT5ZbManW9KXbr7SoaerW+/vDs1WUod6Gy09FoMnbOWiIIzCEyQGCJkUNkH9kzBwBmiCIhxuNfXr76Vy71xpJfHgvJZrN5+fJlcb159tnTLMuU1ibL0izLEuvgF9un2BvnLk3qckPsuSkX4zxmwmKJTJKkde0RTZaNAKiu6zTNVb1RRPb29pbL5Wg00lgFEZVwQiMKVTHSyL+qqhBjkqZa/Xj77bfH4/Fms/nGN77x4YcfvfHmm9///vd/6qd+ajQa7XY77QK/urqy1q7X68PDw+VyOR6PkyRRZxoAvPf3799///33P/vsM81HzGazp0+fGmMmkwnHqHCs6+vr1WqlLFhqT/o4ChEFoAcSEFGaOuUZ0+720WjUovM7IW317abTqQYn2nafdiPgwScAAQAASURBVCtiPp9PptNit/OdLGzXl7wNIex2OxWKub6+1q/omRFxPp+r5dlut3Vdv3jxIr2tFV2Wpfd+Mpn42ovIvXv3dLkpk9hut0NEQCjLUpuVLy8vVThFXYqyLNfr9Xa7vX///nQ6VRKnuq5F4MGD+1VV7u3taYFI93K91aqoMpeuVqvDvYnCvRkghtA0zfJgv09CB45yQ7HOOqotGClGH4IOeJalvinz8RhFPHOSZY+fPJlMpuko//TTT7arc2EQ4Qah8TEx6IhFrMCtNgREZJZWZixGoxtrllkVj+h4mRCExVPXKmmsdYkzxghLDJ7rRgCZxTNEJAEIXIVdGWX17IewOL63zw/taGZtBjZjcAEIkOfzvaYsd7uiLCtjLAuzROYAEoNvimL7/PnzZ8+fBl8DSvBN07Cz5laUAoAC1O3WhERaAEFU6NLQLvWu/+0k12BsEQSghX61gQqAsrgaHY8bl7GP7rr8IMXolXc7hDDO8mZXKtv+ZDbbPzjQZr2TF8/q4K21TfAiwpHT1PimMd207NPN0lMOqIaJMUrBpAF/n4kbWk61upoKbOoaekLXTjqmd4pu2eEvTfn1X2TmmgEIbZIIobQlFERDyEAE0mrytOdUsO+XnPb35fiSOx+wFv/+nL9VUvu8Q0SgCylHadaPGHY0Ofpr6GS79VtqPJMOV3InKOpdBRrga15/orbo2l3uy6sU/ZEOExBdQqSvk1AHpblztj6prUZY42T1Yeyt8EtuEXMN24X75HEfzN0AMO4MN93wgwFA0J5CFY40hm4qwiQCAkJEIGIQLZn7R8eT0fhstXVk2AQGIILYUSlTR7OgT87M3BEUqL8lHbqOiAgTRElTgMjOJij41/+jX33vna+OHz/eFrvgdK47z5C4hMlFsCxI2ILtiJAM9YUqzY8O5430bYAAxjrRHilBEDE2AQLrEgHYFTvjss4FZFRsJQDArSawLpDrX+2QIA+GAd6QafZOI8prx+cv4+Ebdy5JnPNNwI4GsccOqQKNSxLd73tgmP5qOiJj05EXm05mpK69tLgvrzt372erjor2lqhZVH9IZ5RWcjQf2ZNp9ME3ESkThekOPZUShdV13TS+S8C0bTOJyp97X1d1DzkLTfPZZl1st2VRcgh1VUnk2WjSkE2sO1wsVU4OAGKI1rVU+jr9u1cv/azQK2ZZHnyo6iDcoOB877DYrs4vTieTDIWEAwA7Z42hyD6EYAy5NI0IwNqZKuw9MwgIK+RgEEtQp5DdvZR4s9SNDcJaq2waH1KjIJZhjVWxefLaHOgTJz2JCry2qWhGog9g+pmjyI6EDIqyZhgWEGCN/oVs3cQ8TX3Ds8k0NN4gCnPiXFkFnct9EMXMTd0Q3bLRAp+zCakdgC7z5L0HRGtt4Njd/621oIEfv1ah3kaSMuQZ1RBSxjQDjxIBjCERFMbEkMmzkUuq1K/X2/V6ty23l2u3Pt+kaPIkJcCiLJoYaLtrkM+36xdXr2oASq1LTJoYg0ASgCODRCYGZMAmxKppIuF3/+vneif3/409AZz9T6dlaLwwJ4LMAPCDH/xgbN1qdRWbEQJkadLscIvQVE0fqPzKv/+/3dtfHN+/t9jfdwSz+SzPJ0WM2/XGEEXv8zSlPN+bz6u63pvNp9PJarXSgFYX+Hg81o1huy20CU2dFW3vBoCXL17uLRexK9zXVV1VlcrhHR8fPXv6NM/z73znO1/96levrq7Ut95sNt/85jfHaaZdInmerzfry4vL58+ff/Ob35xMJs+ePdOkRpIk89k8yzMRmc1mAKD1k+12W5ZlWRY9JoSIHJnlcjmbzfb3933T6J6t4RNiuwX0E146RqDdbnd+fq70xxrYKM2XLhC1RZvN5vrqqqrrPM+V1XC73eontVKkQDj9uoovHR8fK8+HtXa73SqULs1akSjdIlX0RkMpTDBJkul0qr002mzz4Ycf3r9/PxtlmmFR/JiWTWazmTGmWG+vrq5UPIqZlX1ks9kgQmJNWRaanuw1arTTL8/zo+VC6WiRQ4xBYhQAJPLM/S5yg7wxSEKeGxRNn4AYBRcYMAatTSAnIlGWDhBjzPGbb0CWptPpP/zObzRlgcw+hIqaxFFiODIwQIi1NZaMQXVDJbB4JLYO0yRLkiRJUmONtYYQQ4wACm11Kr+mWd4+UeW98RZFwEcW71GELI2sE8QY4fr0mfEFNVW+d5AtD910wZbIUWIyG+a70dYYt91uASRJUgBh8ZGDs3R5dvbZJx/VdWksRo4SgzGUGEMKYcMuVulcZgAxhARgABFIG/f7qCRKGwC8VuZFJBQB1fQQVvYgUEg8QFvTSJJkNB5Dlzlq3Ruv3mfLtaWuFxFVZWmRrKCIGDKr1SqdjIAwG43mi72zV2fvvPsO7HabzcY3zWQ8LhufWGc7nW/NHirKgzvmpb5IovVPjah7ItDhvtB6WQDc59gGdZjeN+g9xt5i9zGSnkrtv+mIv4wxwjBf7IUQETFwRERBAG3VR1CVT0JLBjvEf9f6hDed0reAy4NN7fXwafiz/savMZhp9YY7k3I7bXfLre+9/BgjMxhzs5necf7vVDxu/v027ktx1G0SM8amvgHb929NRGKIZAjhxuXmzmJLR8ClrxWEe6IRfSIVgwIALSb3tzT0B3Q2xgHFsL4sY0y8/SC6a+txJ2HdR8h6wn4EFIPTfUmou0R/9T7cuJ0zxrvByXB04TZipP/AnZwrYquGo39lhaYhgYAhor6uhCDC2oIlACGExNosSSej8avLlUQO3hMCWgwSet906C0BgHQat+1IDZj1TCRgMWQBomE0RDGEv/M3/87Rnz3Yn0yLXVFVVRAMjBg4BIkMUahVk0B0zjnroJPMJCIauDt3UrnWWGABZuEQRABNiAEEWKCqmpFNNSAOIeDgi0M5F2YYlqluBy0wbKA35hYe80vRST/6D0pl2IMC1QZpMFDXdZqPbavn2CpPUVc+5o6zWKl41L/Rf+ROoLffYsuynEwmMcZ8PFKXQlXYNJjRbpM8G4UQNpsNIiqgQl93WZYmSafTKXYKXNZapRPV+0TE+Xze1wrVhY0xOmu18JIlSbkrdkVhO78/y9Jyh6M8r8qy8AECV1KMknQ8mhh7o5NqrOkXzOeOXv9zno+qsizKOs+SyXSaJDaAuLLe7LYjh2mapalDAsRWfkejuxAitCL3wIQ3kAAEY43WW4dLjJlVAkxNkjHWJSASAFqq+xhtD8zrc3umxT0PZsNg8WLXbnRnafc/98/Ot+v7ANADPLhN3iAABhCIIpET4wjrPE2L3Q4FOEaDGGM0Xdijti/GWNfV5/QAvTZvdYr2ZlonpLEmNO2avbNPMUdAAgH7l234y20Z/c/9hz9xNeGIzCQUfc7QiJiKi6pMnLPGxrLtI7IAiZXJODXOXu92q11zvr3KkjwxDTCXRVGGJhooQrOrqxpKY+1klLrEJQjGEIfIyEDACCIUBZoQfIy//S9f93f48l+9Pv7lRUv7Bro9gHPu2bOnX3/n7cSisyDMxNGRQQGX3BBxfvTD77vE/f3oXZocHB8ul/uHR/ff/eo30NjxaBTKspKIRLmh/cm4qgpE2N/f15Stxiea9d/tdvv7++oUqtO82Wy0djqbza6ur5XQYjwe7y32NDvAzNtit9mVT58+HY/Hn332WR8YE9Hl5aXbPxCRq6urxWIBAicnJzoni6LY31/q+dM0tc6GEMbjsZqO+/fuKT0XEU0mUwDQpAkRWaQQguohItEoz0ejkQqnhNBUVdXbk7quszzX3W6xWPSO17Bv/vj4eLVaYUeC6UNYrVbaxNKviFZXZzQaj8fKKbxarZQHVlGL2owHAIo+zUdZX+YFAFWD0dBLKcK0cKTegIgoKE59iPv372uBRflAh3C1/f19LXzNZrPz83NjzHJ/kaap901d10qmvL+/P5vNrq+vlRr+zTfePDw8DDFiDNBl5RGRcbCqBhZNEDQ9qXkzBDCJyxBi5ODDOM1FtMVUWMQYx9ZN9w+/+lMJ+/KHv/Pb5XrtbBIlND42hhphw0zEgEyEWihmDoiQps45N53NnHXWWhZWD068AECrNEzqQ1trjXUOANATgwQVPkdAshgZSWyCDIDIh7NUQlWcPa9367TYJosNTveS+V6a583WgqA1yfnq/PLy8tGjR7PZZLO5rsrq9LPPnj39NDQ1oXCIhGItIRFwNHjTl0jqjUqbmrFAgJ0jpcyPfYZOkEHiQFylHV4AIGqpvwSAEPST+l4A0RAiqgyuftkY40OIMQrELhCIPtTO2SRJopAhs91uH997cHZ2ljinNJBlXTcx7O8vBGC92Thrdb4ZY1Agz3J0RjpPUndPNaS2k+DsMtzSl6z73UcfuUcUxxiV+wUGaXs15tTRQ+OAbV86Ql7sUmzQdW9ryKRUPWisAJiEACACt1UnQiSjLjczGAet3ySiwGT9/413e3vX6F/QHVdp2KtChCI329/wk8bcBCd0F1X1ORfqBqRFD/UZ6juf7H++W6AYnN8QtTWrGKuqWq/XhkizqEHalnfFBLal5o7vmzupop7OuM1LAvYvAgBCCJE5hqCbgunoqvsKhH5L36DmjvtBsK0gzOChiGjQwvBaUHCT1dX5pqftR0Mv10Mf2xsevLVb2qv4Zen53+dDlBqV2ly11kct0XQ8JsBWhQiBIxh7E+H1i6GtHEELteyjPR1BYUhspmYaYiAEjnE+WfzGb/y9e8f3333zjd1mp6wyo1E+nk7Ipgw2RIixIWTN01tLLXsQANwOTug2SZdBKyIQWZhiZDDKdYcArJMghEDOfUn14/WFdHugblGP/6MM++uHD0F76bS7nbsDGHWic8fhnSSJOrXMrMBoxWDo56kDN6s+Wr9ovffK6QkAUVjjEH1TaZpqK23PiqhcH4rhVrejLMuD2VzxJNbaoii0/K2soKpGt7e3pwPV01nsdg2QRB/UUWiqWpijyG63Q5E8z83RUbXdQWQYTzZXqxjCOMszlyS2zTfjoFDeJYRuVKLuuuxgnHXWWDIkYGvPNp08eDR+8fQzCQWKAzHAEqUR0VqfYQbtTNeWSqS2xq2IADJW8KYPSgdTtWuMMQAYYxQBjsJWo2Aclvh+xHF7qt2p0g5xycPPmds6MMIDu4GkaAkGNIBpmiDaqvIHi2X2/2PvT2Mty7LzQGyttfc+4x3eHGNmRlZmDVlVrGIVqziUxNZAsy1SEil0y6IEQSYMCKAlwIDRNgwZBoSG4BG2BP+zDLVkGLYESBRVLajV7YZIWaRIiZRYxSoWp6rKoTIzMiLei3jv3fmec/bea/nHOue8c19kBJNkVcsGvBHIfO/de889w95rr+Fb35dkT87OnLHOWGDogRHUDY0thiXEb9No0RYCNgKY/9wWCEdF/t7BomkClMn/4b/3FX3f/+7f/wBCSBylzjpryZMBMErCwpEMkANMEo7waFvF7YobHxvfNM02NAGELZHDl/b2EoNJlrokIWMYwKP3IIKCYGMMjQ8+Mhp37SwJCUGohV0DKy20yHq9MgSGkAMbEiOiqlL9B61EDFKmzjqzPH8yOz19/bd/50v/7kujyeTo6DBLsxdefPHOnTuSUBOqy8sZlZOqaRBxPB5r9lTDAERUpmCtT+qepLgslyR5lq03m0ePHgGAdmhoc8XJzRt37ty5devW17/+9cvLy4ODA1XT0/UeQlApSQVN7e/vv/jii0oRfnh4uFqt1uu1DDTydD5oiVWb1vo9TFOAm+VKlb9OTk4U+vLNb34TAJxzq9VChS81nOhpiEWkqiqFhj569Oj8/FzbabRepOUOvUxVTdGyjBZSRqPR0dGRWr+qqqqqGo/H2oI/n881bFOqVu6k96hGIlLA2P7+fl+0qet6u97evHkTEbWJrq7ryWRSFMV8Pj+5ebJcLmezmTJ3IeLR0dHFxUVVVY8ePdIwaT6fz2az8Xh8fHzcNA1z1MILIi6Xy729vaqqLi4ulLw4dem9l1/Ossz7rfgaEQKzNrEjXm3v1/Yal1xZgA70lTVNs16uBAhABCQioDEeoG4adHZ6dPx93/8DqbG/8dUvN+uNQWxCbDw1NhJgllpE3blUCgXTNMmyLMuzcm9irSMt4CuqHi0RWWNAgSjGkjVkrXEWCcFYMLZZCaElCEbL0ABRKY8I0lFS177267BsluulnD8qT25O5JaZHCBCnpfL5VIEF4vFW2+9cXR0uN1uv/mNr59961t1XSeJJTLana2WGEW0xbeFg6N6KB1QW7r2Fdj59XlmCFusF3emnqFtxBcA3zQupfF4XBYlEalD2zSNAHnvAVvYfAi1D/VoVDrnMpdGMhzCarUqimI+m2VF4ZwLHDd1tVytkjStNhvdHw0ZicwhWCIh4s71xK6oohZgtxcFW7CNulK7eaveG+nzZZ1F33lnT889AC23eS6W1t/tdzdd5sYYNOaqmWcn3hNhT0a/hVkikYYabf6utaVdTfV5z+P9x473de1n7HKvehW/94Nf/6ZhzS10AvPwlBNIpAAKYeEQQuMbSyaEYABdlkKXs1Mciv5MHdvvEILYZ42NtTxoiNcQqA8/qIOCkzEanbTNxtIqQXGv8XLVtzxEYwk8JwAbXLtiwLiDC/auuwyyKtAVHvpwxX7bHd8POPS0VKUSiZAFEKy149EIASByhADCRBAj9mzImmDrr9B0wjT9fdTIPoTIBoW15Eo+emBOEdEmv/hvfuXVl17++Mc/0aKEAZyzSZISGu+jiVFMC6cjggE46znNUtjyOgqD+oxELROSkHNtGY6sfX6g8qwHcS3E/7YPTfs1TaO7r95kYwwZq8AD0+lY9wG3dCo/WnjpoXeaktG0a6+8dufOncVicXFxMZ1OjbNJkqhImWK49YPQKTMq0TB0GRqdo5eXl3me90GIEvBp4+9sNlsul/P5HAA2m02e50dHR9i2/ofoPTOnaYpjQJamrpumURNXlmWzrSLHGKMlMy7K1CXWtB2Nesk41O1iVvLtvho+XKXe+6IYWUvb7Wa+WKZpUo5La83dFz+0PT+rq/V6VblE4w1nDRFiDNhx1rXjyoKAWEsykGfSh5LnuXO2qjcAWj9FayFGiJ2+mveN91brVDRo6Lw2rtnKYcwlXRG//8Ozpg3HIUKMe3MDIFXdeM9pmmb5KHi/3WxHRUk2FQGqCboZ1e9zmrL5TkzxnpqSBSrhi81W01T/9Ce+2b/nf/n5f/u//nefNyyBhSJDBAJEKxYALUlVr7Z1FckW6Y3ENdu6rpgDEKWUWMpSypwz9ghdS1aKEIUbjltEBgnIBlzYNrUPIQo/1YmDRAaB2CC31MwhRhLZrDckgCwoYAFJwBGZgT1yBJbQIMamYRBrjQ8+VsuK/TuXTwjxwVuvA8LJyQkRuqz4yPf8wGT/QJee1j/V79/b20uSTKuaGrKWZTmdTheLhU2Sqq4A8fDwEBG1g3w6nTZN8847796++4JS7t66desXf/EXkyRJkkTbLY6OjlS+XW3y8fHxeDwGAGOMLtgYo9ZwFPV0586dGOPB/j4zz2azb3zjG5PJ5O7du+rr6xtU4JKIlGnjyZMnr776KgAkidUiTIzx8vJScx/j8VgZO959910R0RClx2UtFguNhYwxiviCLihqmkbpy7TBRjMv3vv1eq3KTtrrr13vTdMcHx8rPXrdVNvtVpWgmFlFwZfLpXPubHl2//79qqpu3Lhx+/ZtbYZJ03QymWg/nmLwNBGgcd3FxYVyhxDRwcGBarlo2ns0HiFHa1uOeF2tyiXw8OFDKg0qjawxTdPaT2MJmIYFfHgKrd3/rPZNba91FmLbUKE4bZ3eKICAZTn6rk99moP/+m/8+nY5JxRP2BhPwt4L4ZUfrCs9y7Isz12atr6pB0RRSlhrjbMuRrYddAIJGQ0Zg0AWyJmGIJLBIGglxhgkRCSwifWOIzARG2AMta88L6A2Xtbzsrg7Hk/quh6NRheXTx4+fPjmm28sV/Nqs8lIoW0GCZCNXjFL6OiqkLR1FdEa0wmDyHPs4fOsEFwlpHpjq3keLdrnee4SxzGScYLYNI2xSdM0gIo4Uj/SeO8Xi0WUkHelPwXIacidlYXLUrRYjkdN0zw6fXS4fyCRLVJo/Ha9Lg/2oNu4ey/wWsZNh8YYroOKDV/qE+GAaPDKhl87gu7sPEBS9bn2uql07fNA0yPLMm4Zvd7/HsYYjSHjTAwsEgGoY8dEZu4RJ3Qdd/eBxjXva3dptIWRp6/0aYjBBxxDT/I5J0xEzApKat+vMUkwTVgupBMnuXYava8/LGHp0TSGwa5fBTvRZ9gNVGRQP+knwHDL7j0i5Tvub9rT9214StIVczST1QcqQ5xO9L41WV3toXMqdisq367RN6INR88i2iUn2q4MQSAi6PpV8iwlRR8yCAgxEAToqDbUG9aaV4yxSDORRq8khoBdLzhADJFFgCWKcIhhUo6ezOZFWV6uVqePH79870MuzZq6ZmaBSLZt1yJAjtDUfks1FGlKFlD0UkJHrN5Oio4zWcWkkFk4QpdAAkQgIAFnKUThEMVxq8QiV/rmQ8P3rAdxzeMMoXnft/2+h8KottstAPTYKuecsfbJ5UzTjdqiqrupztSiKNSz0cmk25s6QNYmuuuri6DXlaZpjBENKYONliypk9313guDegDT6VTzeQqjJ6JN3WhhRDd4Xa56qsraqWyh+l2aIh2NJsbRermsqmqz3SJLmqaGiJkT65ar+eXFReocAV08OZ+Wo4PpngFAhmGUMswfiIhybUGPhR1YhzRNADhGIWtTymOM2009mozJ0XTviOOkqrar9axuautSY0SQowiDZ5SICCBCfQMndBGMfgVqK5pGi2maeN8IRSI2RqIRY4RIa/RSNY2GjkmaWGcN2J5OeIcnctemDHMfGmcP3hq7VdvXYUXbCCVeFXAQqEVKIAgKh3h0dPOllz90ebmsqjrGWOS5TbO6CbRBRAqa6VEOc2l5Rb4zwXjrWyAaFqgkLhufN9dpZ7Z1zZGEIxszMqUhNAasIWFvnZ3uZVLHbd3sl4ay1JlyXJZplrksoSyt2a/W2xFmoQ7bqq6auo6RGKJgE/H/+SO/pV/xPX/7RhSOUV76W5O3/7OF/vHu3zwE7egDMADMIsz6v6auMucAGBFQk9ogduhQoqSpY5BNVQFhmpQRMLHkLDa1N8b4au2sO73/DiFuav/l33k9yYvDw4Pj45PJ3tRae3h4mDhabzZNzWU5StPUB6/eMCK6JFksF4J4cHAoIpvNBpGsdePxaL1ex8jLxeLg8PCFu3eNMZ/4xCfeeOON5XKZpunp6enN45MHDx9EHzTwsNa++867B/v7t+/c3mw2jx49unXr1s2bN5lZ877L5VL7PaQjRaWO8kXzULPZTCGm2s9WluUrr7xyeno6mUwmk5FGBZpMiZ0SonJ1aBDiu6FQVU3N9L7UsFM/xlgUxaNHj3rlbyJSI3NxcXF5eanl34ODg+l0qpkR3WvVKQcANZi6DWlfSpmXb775Zozxzp07zjmFh2lVR2pR9uTVajWfzzVZ0zTNqBxtV2tE1HxNnzRZLpebJ+vUmRiDnsn9+/c3m83jx4+Vzmt/b6oM4zZN6u2ajLEAxGjaVTuY9EMLsOs5sci2qkTEWMfMvQxyZFVINT6Galv5ZlttNq985GNN3fz2r3+lbrZJiGnkSFI33pgsSW3fagIA1hGpXouwMDShAQA0SIRkjXFWggAZNBaticyBxbAAEAMZdIQGwSNiRGBh9p6cIUQzKWJV8aaRIHlmRzZh9vHybDWfyVGeZCMJjSEE4fMnj5+cP04Ty8GTS9n7iJLnOToUZgZhQRbWq1VDjK36RufPiCB0DGAC3PGDAQICo1z117e98gByzQ8a7PmCkKQporEuEQEfQmodoHjvkUwIjCREBpFYOMbAHBDRRx8Aizx/8OjRycFhZEbEzWaTFnmWpVVTNXWj3JsCUJRF6pLL2WVkRiLoYDm67erSeMpXbvfurmlhUNYAEWABFhESQ6Zld0WdXO29EASo64qUzcwQIPVOZ2Sl1jeK/TPGdn7CaLvdXu//6E4MAZjZWkdEinrqzlSZwDySASFgAwDYSiko9Tx8kHHN9Xq6utJ7Atfe9vsIVK7FFYm7qrHLLnaGlFEAWgaO7WZriVDAkMmyPMSoFqCPNKBD8cmgSx76Fp2u+wu7jiD1pXnQPqQvKftIH+pQ12ygr+pu2rOADU9+eJlml/evD1mpk5wfhqltDIMYRGhwt3nQGmSHdYL+2roviMPX0BAQxsjAUZ1URTGqy4g9WDNw6ZJxWmgo70Oom2bTVBOcWBEkRIMQQwyREsMQoeXVIEBKM2NICH0kzU2SADpBYdCO1KoJRtvWjEusa7wnY0NkADAuiawm0iRp6r1H1cpFciatQ2OztAoRAX/tK1/+vs9/DoDJQJIm1lpEze6gsAOxdROqel17Ho9L56x1ZAiJbGTm2OqHdkIxSj7hjUFGqUNtBKxFYGRBYsiMm80Wjy7OX/7wx5omgCVGTdpKQvJUk/P73flnj2sZkSEt9bV1NTzgLpITnXXT6bQsy6Zp+sogMy8uL61p++A1qBiSbtU+FKO2EqLCFMYlq9l8b28vy/PVauVjyLIsCq+Wq6qpsyLvY2iFU2uwoZnO9Xpd5KXu8VofU9zqer0uisIYNMbOZpeaoZxMJhcXF1W12dvby1wSbBOsU0piBdn7ECVxo/Ger5uyFNUINM4Aw7paF2m+X47HLjl970FO9uTgcJKXqXUOTWadRDapUeowXU7YcVAAtVk1HwMRGWeNMcqmglaFTAEJDJGxRER1VSGCK3II1lhXZvm22m42m1gF60yWueDPrQVnJPgGIiv4i4wlQK5r5mCd895HiEXmkMg3zXZbp+lI1wihB6k5ViEwogEIAhAR11Xl8jxhEe/JGGOuVn4PaRsu8xCvppCzDlHhfzEyGwNd8VmZitX4owhi6lj5I9iEKIEByYAzBu1Ld2/noxFT4jJLkW+9kFRVhcjWMIpsV+sIYpGcsQ5N6lxmExCOqhX/7KG3WgAa740xaZatViu0pr8c5uurBgVa9CYGAWhEzv12M/fX3taItUD/i8/9qv76f/nSHypMZlwKkGSZGI6I1VFROECDOJ3uZUVGxgjCtqmIYDQpqK48BIPBktgA1Eho4G/90Nf6r/jS//j05b850gV772+OiRCQxKGIALO1jplijBGCj8wAfruZ5gcIEiE2sUmN8yDD5kVjMEQfBMkmTLiqvSDWzdbGJrHWIKKgiTFziYQIzCTbsNlcrE6fvPWbVdOgocOjo+MbJ+Pp/o2br9bj6XgyMc6SMUnqbJqmZZaXeYiw3Vbr9SYET0RFMbI2uXFjurd3GL2PMSY5AeJnvvu78yz75htvvP3O2+Pp5PHssWdfjksxsl4vj4+O8iyV6C8en82WCxA5OT6eTibaXF5tt87abdOo/tJqva7quvH+8ZMnxphyNEqSxAhoacUYs9lsLi4utMnk4uKirrdKYtav1vPzc+0s1/LgdDolotlsBgCqUnJ6eqoI/uPjY5VaCiGsV6ssy8qi2FbV0dGRhkkq8yIiSk+s0LInT55oE8vx8fF0Oj09PX377bfvvfRSnuYiol0lWuM1xsxn89lsxszHx8cAkKbp3bt39eTrut6sNk/OniDi/v5+kRVlXoYQnHHpJJkUxdnpo+X8EgB6LcvQVME3jlLhwNELh8QZKnNjTJGn08nk/PHDplpVCVqTpaOJRG+7TAXzVTofcSdqEca+F1GFtrHLmzaxAQBWFXZEZQTzvuEQFvVm7+DAmOQeJpKNvv7VL1dxPXFoHdw8vpmliapKw6Adjj3LZgsGrU1c4gJDjAI2ISIQ47LEGAsAPgQko+X9GCNYa/KCYzDRQfQcibexir7h6ILkzTR3eZVUYqIhImCCEGvv68tVw1m51yw3X//tr7/z7ntNqMeJIWEyYqQZFw4A2Fe92SEgA5gNC0wSYoQ2Nw2U2datFASB1pFmEEEhVk+GBSAIewYBZEQGdtaBiEFAYRCMIsF7BkEyy2195+4L44PDwByiD1XbacnckDURZL6cT8bjJE1G+TRJkouLC2sJQWL0+Sibb5cxhrIo0zwBiXmSyGbjGl81VTnKk1EWfFj6LTuMFqq6ASIgM92fKHqwanxgAfYIIhAje0Bg8dZa55KmaQSMRTTIwKFuauec9w0yj0cjl7hqvSJggggABo1INCjWQFNvDEiapN7XwQtYl6S5JVfXdTkaizBCuxP54COLoKyrCpDEhz4XjFpWUwZZwG0AD0ypK8tRl4ZH5bPaNhuQEAMIk4hFSI1JrUmITM2N1gChY2eWKybM5Ooh7/pRhNTvla2TbQgAAke87o4TtXwPPs+LPmeBA8ZO2UXEEJmd+TXY8jQG6JYobOutIXDOYDS5c5mhIs22cTPO0qqLSXqqVQXSG2OSNPfeNz4Yo3qB0Piol1zNl0VZLpbLJEkAxQD4qjHGtREpmhAjIhqbJEBXUI7ENXVtjAmRAcFZy6D5NFbnUC9W8z56N7IsU3Ot8TB1VIoaURMgCuRpJiJ1UyNiU7VteIJAziphcd+MCoaM+cCCjx98ECIikUobYqtDelVEEUACYdHiZ4f8hI7+V/p/So4hcFWjlK4JmLq2aQnXk6N9mHsVAyD0lHaISMZsN5u6rrjrkh9+XJAEhIEEZb2tgGg6nRi0UVh5CZGA5KohrA0HUVA4Ro4h+uAdoSE0Fq011XpVVRvmEEIDaASi4taxbRX7/ZQOv71DL6HdlppG9dQ0v4gd9sl0KjyIqNSlfTQMANZabVnp3YX+/ugKaRUYRTRlCADMrAJzmvvMsuzg4GC9Xmt8omDuvmKjVEVEpPlRbSHVrlZtxlUZBNVyzrKsqqptXT18+EAJOEPjkaXMc6XuCd6TcAxBItd1DSya3TfKkjvIOvyuN01/1k1sMNpdWUNFHyIgmiSxaZoWZTFqld18DIiOATAKxwiSGBIURmEQmO6V50/Oo6BNssDKAipBtIGdAYWVhAfFIBtkSxxJI4rIHGPwwhEMEYI1RMZEjgrB1nrNDuf3gCaCERBFSLdhwyplygzIGuvEGGJkLS5pgCpIYMAakyZFmpbOpraYAFGIAmSEO9mT6EMMzjmXpueXF03daDbOOWeNQf9B6yn95qHxybPXz7WaLgqIADAgI334/3z4zf9pq/L+F//ZJy5t9X/sSh8A8Fe+55f+9q//UbYBgK2lxIDJXZokEAQA8swmidX9jwgsi0EUg9bZjJCMC1UtjX/fE0NEg4gIhIiGQtdjSyLWWHJJjDG6yBwsCmpGXzOLT6U0qNOobY2kek6m3QOlg/BV261BypMsSkUgAhANJnkqCJvl7M35BTME/mpRjG/eunn3xRePbxyPptM0zwDRh1iO9hPrsiRRhcT5fH7uG9W2AyBrrUscGVtV/tbtu+u6fvOdd955770Pf+RVZm584733IcwuZ0cf+pBamIO9vfV6rWAtxVlphWEymZyenp6dnWlTu9Ltq8xrlmUQW44vLfiom3Xr1q2maZiDHlAhWNr/tl6v1WgURaF1lePjY++99p0/evSorioejP581uv1YrnUwsvBwcGjR4+2262IXF5eakVXRLQwokVmLUytVivv/cXFhfbeYCeookWY9kFUleLrbty4oeKMZVmqYoyeg8Y/o9HIORdjMAJZlqlspeJyiejw8DDGEJr6/GI5n8/VCCsBtDFmMZ8fHxxMJ+M0TRmARXm8dDHIsFJ6zb71Fk86WY8+qaT9/X3dO3TsNYgw3t+3SY5k9w4PP/7JT0A1f+8bX7MoJ0cHSZoY50xH74Mt0AgAWTgIGMZA2HH0sgBIlGgdAII6qNdz1UQIJBzVWJMlUlCZM4SOwIAQS9RkB6EQiEN48ui9i+Xr752en17MGxZrHQIYEAR0ZpiQvTLm2P67CulAKypdbHdVX9D/Yv8z6qd6fBijLkyMrZomsiCzSATtoie0o3GW5jlZA4zoO75oZBFpfGSQosits0qSqdOsKCbn5+eHhwdE9OT8yd7enhJkIeKbr79xPJnUkW1iLmYzNliU5XK9skrCgcTMfRK9lw1gjr5uif60m3mY9df8N1Hom+YBYLvdOmcQOvPT6hwYETLGSAx+u20QmqbpAk5GoI7GjXecs0Glz+6m4X3H8oKIeV7oxOsZbPs3qllrxTOFgdXGxx21ye/86GOSazniP+DQGyzMVVVJiBovzjYbcjbGqCmMfvHKoCfedCI5V4cikkEzPQzKINr+2tPVDK9C4xWDiLTjsIoWNrrEZ88jJyJVVfViTdgVUnofPk2zfnvqT+9aBywAIGFLa4GIiN/+QEW5gYkMmesOnwgLY4xAHD+4i65u8XBf6X1o2Z3Z/eD36ydpF6eIwsb6TPnuDboy7D741WrlnEUsjSWroNKBHBK3rG1sDRBwCBxiJEAkYo6+ig3zxePT5XKVFCVitM7WoWGIgiRAEa84iq7dqF1qr+/s0F5LvbEalOu2FGJIXYIAGjD0BkJBWTop+5KaxhhKvKN/NF1zpAIneveiNz269SoZcVEUGqDr9q8PcbVaKSJi/+hQw5X1eq1YCE0krNfrzXoDAEo/KsxJlk0mE2ZebdZnT85Wy6X3vswLEA4hONMS84FELR9pbz11yj9E5LoOY4CW1uV9b1pvzbEtcO/MQ+iKk4gQYjQGO8ZnUdc8xhhjs1zUiMAQQ4zWOGeNCEuIIHG+3GT5SB8EmoRj9DFEJiRnTC0cDUU2YogNSf+PWSAy+xDqJtSNUSyZsUjvexHtoKeao/SZAkBka65wySKiKK8IAOtVcC5L0yLN8zwrk6RAMIhGwFyuVqrcomxOusoUtJPn+WqzzrLMC1ebxhiTpmni3LZB+EBFxNbkKTcdEf0e7Ej/gBAD0If+T/uZM3vj7HJUx+x6j/u8qguQUeH+0sv/rf7lH7/zxwWcCEiM0XtQAbKo8swCZNlAEIwWGmnWIW789RwKdHtAu1UghXB1zdThWplZgMXXoIAHY8x1bEZ3H4gw7ly+QWMQgEWA61CDdWVRaHeWRbREYAAQGYFRokhEFkJA46vlt75x/o3f+io5m5fF0fHxax9/7ZVXPkwcyjQrs9Q3zSZ14zJNkjRN07pqLuYrAfTez2fzJnhj7QsvvvTR84uvfvUrZ6dnhrBpmjRJFSaKiCcnJ3VV/eqXv8wgt27dUgio8mM+efLk1q1bSOS9Pzk50W3v4uJiNpsZY8bjcWrs3t6empGjo6PDw0MlEnz8+HGWlbpBhBAuLy/158lkosUQa+3+/v7Z2dnDhw+1tDKfzzXk8N63lGLWqpnSSu94PNa/KGhtMpkoQ5e1tqqq09NTFajtzREzn56e/s5v//aHP/zhl156Kcb45MkT7b1RRgFlG9OzUizcfD7vaQO0Vc9aW5bl0dGREh5uNhsIoao2t2/fVjuTJMl8Pr9//7615uToUC9QHY4sy8qyXCwWi9lsPBmPRiMiisHLrqdm6FmdylfJZu64HPuXNFus12utHY1GplOpIkMMABzK1IyxuHu8Z5dHYxMnuSvz3HQti9CJSMYYBSCEWkvTBpDJALTLOSJx06SdxyPXYTDUEoQKIVmRNMaAiEmSKDer7vpRAJAV7EBGxZkCQiAEQ2ANoigU6VqT3gCV8BSYh/rxXCCRACl9IwAIEosIECNpRkNEHT6OzFGYlU3W0HQ6VS1UPcjVJSNuNhs0rWepSkEqm6PSZ+v1Wps/dSM7Ozvb29vb2997+8239vb3JbV3X35pvl4BgDBba7GFfrRajZoH1L2+aRplyFTYc9M00hEU9SemP/R9qlmWLVerZCjjGNst1Vrb1HWWOFTxtDQzSRqiIEmSJNekh69NNtrVvOpvfBfoXomH7PpLGvGypt9YInJgMcDxv0NyKIgdSdrTPvcffOh23JKkkTk6OhYCTa9Qx892LcKUp3qbdXPR9IqGvpqDDh3xl06/Yfp+eEx6ikOotQNdo2knbNW2/PUPV89ELQB3LCnU0RzrKYmI935ndkiLvNXz+Q5UVIhIa3ZPRZbtNCO8ZiifP/oJyh0RQU/y+L6Rq0Z1Q7Vd6U+MyACkWabtidSV53a+TvtokIgcc5wtFlFkMhpJG4AN2bJb+ovZcumMQRQOAsBRoKVrYKlD3DQVJelqvS7GBIKiNSYgYCc757i79v67Gjy4vdxpOCKiqDFVVmVEve2mYy9gQGXCpY4KQ38wHfsEdPyD3LXuqRpR7xlQF4jrl8bAGoToRlXXtfInKkhM06tVVelmOR6PLy8v67qeTqd94K5zQ+OoJEnGoxHHuF6vdVuOkbfbbQihHI3qbaN1oe12m7vkyiASGWt7y/ic58ADzCXtVmB2/w4SmQdqR4qGF5GmcWn6AgLE0NTbTQweOHL0Eb1IvJhf1Nvt8dERkK2bLaLzsWIhaxCxVgYXokjERIzIiEza98IcQvQ+1HXNLMyi27VYAkRGVFWpvgYkAEOxRU17dvPcQCQWQGACbryPIRJZ5yghs3+wT5Q4l1ibWJMCkG9iXfkmBgBUiL/GkzollFim8R4BtU5tm8p07AUffMJfpXmYjTExvk880L9392dsWSOFGhZnk2Bxvm2isEB57ZOLJjI2/5NP/Xz/lz/74r/8pw//JDMaYwyhD7EJvmnqn7j5X+kb/u8P/5P11q+qer6u5ptms/V/9h996B//uTf11bv/+xQTvBaowCBQUavVXaNY25o4IiJj4ClWNCJifZg7HmfbBCzCLO1dIiQyBllIBesIPbMPAQEMkiBIbJCDNbCXZ2hME6vTt18/fef1X0yyaEZ3XnjplVdfOTk+GY1GuTMgwW/8arnyHpI0T/IsE04g29vfu//gwWe/53vWm/X9+/fHo3I0Gu1Np0WRK0pBz/nu3bs+htFodHl5qetxMpmMx+M8z2fzubJw7u3taWwznU5bSZDYOtDaT6xVX5Vt2WxQYwlEzLJsuVxeXFyoV314eHj//v379+8rN6AGLTFGJUfWyq3GUTpFHzx4oKCvNE3LstRd5uzs7Pz8XKFfRNS3ymipRGfjaDS6fesWIurJn5ycGGNms9n5+bkSEuokH4/HT548OTs7Y+Zbt25hR8jDXVu87vTe+zzPMMYksSqLtL+/rwiK/f19Irw8f4INAoAWdhBRuRPzPMeunGusQd5BEOMA7SVt6v9qLlHHQa9/0bOSThNQk1DQ114QRKQJAUCgqar1vLo4XV+cHo6zw9wkhFmRkXWEiFEbGCjGwCDAEmKbWxBERALstOqAm8jSMWpe25RJbVcXqACw95aInHWGSOsaMTKSEKouIxFR6kzqTJq4xJEEJEBCQEHa1a3r3SZ4ygz1q5WI8Omy5s5bryjBBFgQGdtmFhZgBhaIAlEgCLCgJYPGpHlGLbN8m/XrPTnvPUS8c+eOtXY+n6vSERGt16u9g70Yw3a7VRoG5ckEgNNHp0VRXF5e3PnQvflsNtqf1lXtkqRq1olz0HVR+061ucfmlaPRfH6pW3/fO6ovaT5I9+I+1677bJJl/dUPc8TCAgBa/8xyssY2oSGRJEnCrhm7FnLE3cRNf8z++P1usnvfuzJY1wsuyMwRCeD5Kbpv6+iD/L6+8W08OBIFH3yMRZpFjlaZQnVyGuojAen06zRf06dcdWhyuc+rUtf51g8Nh4Yu3DAhe60+A11LM3XAco182v6oAbkw0lWdX1P8sSMX7ae9GrHRqOgPri/17dnPDVQGqxY7Grrh97XnAUhI0NG0t7EUGX1mSqwEAMzRoBPhGIJhlqcWvSZsNfOqLxKiKHNxV8To56vex9RczeZ+dCd51SQEIspmKCJkzdHRkSYv1QPu74UAqLAFt5TnJjJXVU3OZXmesHa2oT4b9ae1bWOzXlXbipnTxDLztq6UN8sakxXlGBAQF8tlWpQCbRVFxZr6W6wU2Dv3fsDRNpwfT8Vmz+pn2jngU6vm6nd9jv3TVHKtNE2BiDvcnSoi92+w1laN15d00qs501/1Z10wWlDufXfTAavUivUXWFVVnhUasWBHRkGd+rjLUoV1qXS9pqB0e9OlovUc7pjERqORj1FazCeuNxsDmI5GHGIIgVmcddphBQAqnk0dmNAMUjjPvGW7Gxi9H/Srfxztvs7C0C7+2MqVSpKMRFjYWkuIDTALeUOBORajg83mrInGOadZcCFgiT5GJANAzBgiRKEgGAHJJeKZDIVIFg2gi2KRiZhMRAmAxmh4LEQMiHKVSpCd01fqKhQkQAqsaDhEh3lpjbGahUAghhyERCBEbHyIEZqmaZoQQ8jGRZkm/W2kjnkdAAC8S5JQV9plixVaa5M0NcYYMDGGoYG7ls5gZmh5nVsDaq2FZwcqhFbhLt1cCtYkxtosL5jROGudleiX28aH8B/9P178hb/0jn7wf/jPP3mZ+PcBDpA11hnjgEwIYev9n++iFAD4yVv/5D//yh9dbar5ptpUvvJhXvvv/7+enK3WITIa7PaCntsNDJnIV+T3ffQLKCpw1Bo6vQ9PzUlqZTJVABQB0AL1aBTrLBnbhOCMsYmDmjtPCxMyhBg4+hCAGWMYZ7mxtvZ18E1uTVYmjfd1sw3Av/XVX/3al345L4o8z0ej0c0bNw4PD4HsrZdfQyIBSK1hkMV81tTb7WZ16+TkrTe/yZwTEUc2xo7Go6Ojo7IsHy4WZ4/Ppnt7WhCrqm2MMctS55I8zw8PDz/2sY+pRVWIs9J4SAcCGY/H6/X68OBAeTabptnf31cK+D51p9RbRKRqLQBQVVWe5x/96EdVgkD5fCHPNV2yXC71ZmoaJU3TJE2pq1SEEMbj8dnZ2XvvvcfML730knJ/EZFvGnFOZ7Xuzb2H3ecOY4w9TlVZCjWNDQCKXNXY6fDwsO+wn81maZomiVJ6YM+lpl348/k8TRPgeHZ25r0/Pj5W+jIt0YzKsg93tSWFkEQiMyt/5rNGzxMtnTJGn7dCbvM1ZEiBpdICnMQ6kxB4v109frB49E5YXRQJJlTmWQLGAKEgYhc0cERjUCIhpN2cV9xPK7omgkqUrwzRRZHHyNoZLKyMY9LO847aXkQExHsPgswcgkeDSdoySiFgltmstnlqizyFKoTQHghE4o402bVbc0WQ2vthIoIIRGYH8YXQUoGAcAQRCCwBIAJGkdgJfQAQM0TVL0AQIAY2NinKsXNKUhoGfovEGOum2W43+4eHDx48mE6nymKnkfNqtS7HpXNW2fPUDCrbdZal1Ww+Hk8i862Tk4vFjLsNOk0zFdNs07hEiKgVEgDJ0nQxuOTej+o3buhAX3oO3vssTUHBXd1p69EQEYS1lR8RvQ9CjT5oZla8qJo1EdGuwis/jUlPD7tIcpBrfw4em4wxHKMioxFQIMboQRhNOvBiRbpZdC1AGjquMMiFDX/t33rtu6VDVQzPEBGG5czhEfqOdB38ftgfPW5/PJ0h6htbJGvtlhlsW5EAaW1X39nbr99+89UL1GmmNuoqALC2Dy16j0vzqoqj6ZPR3Spot6EkSVQdXWeg5nf679Xj9HGRDKK4Pn+tM1PrOZocV/OIXSVAY2a9qOcFKju4F7xqH4duOXVdOIC045xdLXFCDYwAJMbokkTabM31543YSlNvq0q6HiPtGkDZmTpD3x07eb4+Sum/XDnddPZw18pCRMGHVz70oT7ctB1ZuK4Q1txMy3MiLMiMVe0Xq1VuS2uGc/GqVWY8mmxWq9Vq1TSb3NksyUEiR/bCLimnSbmtqhBAGAkNt67ILgs1ynBmD1FS127U038ZjGt3Fd/3pWtrTV3zEEKe5zp1tGTvm9q6lDquYUQMoY1DoCsj9s+5p//SKaj9J32ji0Ys0lVL+uKyYh6UtEf34z4W1UYOERmPx01sKcL29vYUBa6lFWvtYrHQzhNlIVsul4olS/Osj8gtEUQxxhB0wFyy2rnrnC1HI8UmtRXPHat07e4OcpCDVAQZs3urr+yLiFhqKWN0NV0x1gvWdQBEEGOT3EkqHICjcBSJWVEcHN7ySvHM7L03iW/qhkMjNTMkwhbEcax8DBEEbQrWzGdLjpymKSWMTjI0xDZiQpigGEAEIAKyZK11LWMLoRXqpx7ucjMa66x1SZK4xIF0HowwM3iPqmkFAD5w8AGQkixDhKxM+wUFnZaO2sc0TcNm45zzcqWInCaJtTaCiTFw13yiRx7acf05DNbFU1vXcPtBQKM7EwtIYDLu9u07iLBerQE8IJJBYyxH8RyWm+33/Rc3DcnxwVHtDAo2q+3uwWG+qm0K2ygs0gS/qSu4sfOGR5eL1aauPFchLjbVYrFeVXXslHCMMdYaXTjMDIBkSOAqDXFtP+uzACxCz0zRXTVKaWqizS7qpksIiAwQmC2iMisqXDVwZBBhBuGEjBMm0aYmCSEICHJMEJtmWzoEZ0Bqv6nPVxdn999iYRET3L+a7B/cun375MaN0d7EOptb2oZ6f1q+BaISJS/efSF6f3R4OJvNRCT4MJ1MX375ZS1rjEZjbckAgOVyud1uz87O0jS9deuWBhuKO5rP55l1zLxer9977700TVV40Vr7+PHj7XadJMm9e/eUA0eNjAKrjo6O1uu1StH3C1ztz3QyGY/HDx8+3NvbUyjm48eP9We1Ucx8eXmpAdXNmzc3mw0AbLfb8/NzRCyKohyN1MJotWR2ean0iVrptQOe9729vRij6jPGGA8PD6uqUlRbURQqxqIPUYMZZk7TTHzDDCEErQUpluzw8LCut/XW9566wsHVHYGB2lqIEWIwIC25rSZcu/nVbcr90nqfqUU0JF5qF+DVXAUxXMften1+url4GNeXuRVHEDkyUOSoHJ5KEAKEhAZQ+2KLxvsQQi/A0eZJkMSHartVTkg1790cV4CC9CsDkLR5JjJvqg1wq17njCIl1ScWYZ9YzDPnLAJHYBAAUkiJoV4A5ZoZUUPdZaAGJkWADPWBiogIthEUi3CEKMICXiQCRoQIHLTeKcyqhiGihRckl+TFaDzp89b6Rb2LuV6txtOJpueUk1Pdx+l0miRueM5ENJ/P9/f39/b2rDGlsXqG8/lcWti8cc6laRoZAWCz2XR7n+O21bPywev9lAE2THHg1WbTIyT7GMY5J0LcEUz1t1E9XSKSTiodEWKIaNvwBsj2U2voB7bejnMA0BMP9r6Bws6vOXiD7zXG2ICCCLarxYlEYTFw1TGvnvbTj/vpOc8DiY+nvuv6Z/U9diA+0Z0kvO+nRGQoGvbMc0FFPUifw8qzvN5sicgQVd4Dt8qJes+hy8dZa3o0XX+79NcmtAxv6jCHoVfccSTqD5pk0ZnQutO7m5TOgWq77g1OX58BAJ23iKgla+rozttdEKkv6w1mAusM1PAGu2KAzr31ev3th359R4d0OFqdRn1Z6ul3DvPi/fpZr9ev3Lv3sY99rPeS6TrwDlvohMIdARmwqpsY4/G46L+r/2/3LWCMS5KUo7HWOJdYg9YaQ2ZTeRFGWgMAR2OMIVEOdRK+6mkWuT6z+2w97/LZXfNXnrPqPuDIi6LfShGxB1zVTZOXpswyVVaWrlLsvd9sNmRbXVudyno/tduyxyVrSlILkfqSdqHondd4XWd2URRpkqn7og6uakUrXmI0Gs1mM0W0908TEZMkuXxyqfDu3oCGEB49enTj5k00pMhyYDGIeZLOL2dVVTmksmjNn1pTkTbwsM8QHnmfMah4Pg1x/CBDEOomgPa3oxBwS0LLGAEFHIOAMUiYGJMIpDEEHziGZltwDJlvQogq2aTrPMY4WyxiDBo35nmeJKlmZJ1rtYeVRcU5q8iiNqCCK2dkkOtiEfTBIFKIEKsrLUgREcDIItj6OoxMCVlrE5cYY3y4Tqulh7XWEkUVTVKXUQWSrXPO2fo5GK7hfROR9+sUhOsbGMZuHyRsc/Oj0dgYs16sIHrQDCmhNRYEYgzbpuIYN/WjcVFORkXp6H/033zX/+1HWuau/+2vfmGWRWpqwbrxvgm+euoyn8xW67qpgqyqerbYbBuPhpxCbDubexWDATynLUeLt+oDoVzDhfa34jqRfws90eNrVwC1QpzUd/qK8hRBV7dGZRk1SAIYgPUgxCAABhlazWYJMVqEPHchhKpqCPz88YNH99+q65oSe+PmzXsfevnk5GSUpAcH+w8fPFKk6HQ88T7ootZ8uff+xo0bCtAyxqjsCQBoy/itW7cmk4lGHXq7kiQhQJUfUUxXmqbr9Xpvb28ymeztTTSjoX9Xr11xWW+99VavwN3jGYwxyl+s6MTHjx9rcUZdt9lslmaZsiD2e3YIoaoqDT/quj49Pb1z506apgcHB6PRSDN/GjYgojbHA4AGLRrthBCePHkiIgcHBzHGPM+n06kaMbVdi8VCb1GWZTdu3GCO56eLpqk1btHCTlmWr7/++uPHp3vT6QsvvKDV434jUycjRlUA0zC+LcX13vCzwCjDV7hDfOl05UGr1TBnTBDj8mLx+N3Zg/txfZmZaAURKYqtGaP3qFAFY1CzBSJIpExYbQxA182mtYbFVVU1n8+dc9pTBABRgACF2ywYSOw9TgKqtlvfBABIE+vc0IC3LXxETCCkXMOCKjYPXSc/7NqNtsiDV4HKcHFdu2nc8iFyD+tq/4EwtFgvYWCOAsgCgsgiQCYv8qIYtezPg27jqykX43a7KUalZv1U+DiEcHR09PBho85cWZaa0PTe53m+WCxu3bwZQ3z3/rt3X/2Qtbaut01dmyx3zgkzket7jTSFpzO2rmsU1vmjGcm+6qKzCzqQD3QIVWZmicicF7kKlfaZeyICBjC23SLJABmFYA1j6X4T71NOO5naLiHbn8nwzncRrtLXEqEltIhMNHAF+5L81aeefob/AYaa5f5Xa58pY8jMhG1rk9aLWhgCka9qgraGrDtLvycOfRjZuQGAMfSOZV8yhUGE2Yco+n7vr29w14YdCIJfe0mDnLacsvtqT9igPlhRFNrsp/lrbZ7RIqHq8Kp9/v+xQAW6uore4h7fZjqBmP5tbc6jq/z06+2P/JE/cuPmTfZeH+pTt1hJuNswEQANGQEJMQaOzB22T9/aGbKiGJVZUZbFdrNh76Vl+QAATNMRkiFTWGtijCqnSgKCECQMVtHOEjJmh+tsOLOHJ0zPq4d+0GGMOTk5SZLkjTfeqOta0d7GGOuuXCsNUfR2KTS8anyWZZp06VOValM0nAgdwzd3fS86NIBRlyVNU01/pmmKgM45JcbRiBw6a9UH330bqx6ciKbTaYv18l5EtClf+1zzUa7bbfShrmpf1VpvGRcFR9bAqbN5oJ1/HzxQGUaSRDtiau+7bt93JGkaYoi+Dk0DwgQAHIQjiwjaEDFGtGAMGVGOPEtILrdZu/OzKF0gIupNS3OnYs+Ro+YgI0dmBpZJYQlIm0/6eaWFSIRh1hQjA6u/w+xcogAM7z1fkTwCIKK9InxIEtcVCiKHONwP+gprV4JriNCgwdAmzJIkSZPEuQSuFzDef3R5I3vN4uu3mKvWTNRCRJIk0+lUWwvG43GWZRdPzuJiTkwGgyWrt8EigrPibGB8spg9ubwo0mRaFn/mpz9cpK7MsoeO89XCOYNEIcYmhjo0f/m/+fh/0dGF/emf+dDldrOtw2Jbr6rGC1KSOeeMBEMtm4IZ0gwKPCdSMT1/F7OooMPu6NM0V5e/q17VJ3EikUGCLisiCIKoMyoSIEOIkZAEMYIobRJopkbEYcvKDa22j5BEA5JY8rFOEZKEYpJ65vNH75zef2uyN9k7PN6/+8p4PL64uHj3/rs3j08sYp5mADCfz/URPHz4UL32zWaj0KzVavXuu+8qtlM3qpaQN4QQgnrbaZreu3cPEauqOjk5Wa1WdV2vVosbN25st9u6rvf393WrI6KmabRl/8GDB3t7ewcHBxcXF2qCptPp6XwOACp/eX5+DgDT6RQAxuMxIKq8LABoGYQ6AgwiOjw8vHPnzmq1mkwmAKA69zqTVXWx3+9PT0/rur5x48Zms1FtTe3BU1r28/PzPM+1SXq73WpS5uDgQNnDqqripnbOKhOJLsD79+8fHh6Ox6PtenV2dqaBn7V2Op2qs7JaLjVPZK1FQGOsJeAYvPfCkUzSz5XepOvYrNbDRdSnOUWEB0tsWFEhCGZ9GdeX5BeFY4cmemGxAQmYQuPVJKp57ROuSIa4l6gi2FV1T5I0zTK9RWrk2yI/CwFG6ZAUyJqoJGoFc9WJp8moyJLB8cCQWGRLaAkNoRhska+AYnpBt11VBhECoQHpy9UO+5RRl7a8zAwQmSJAZIgiEZARggAzRADlzECjNKiU5tlkMrFp0sSQ7KJUdmLjeQVEmjpcLpc3btx45513lstllqU++qapp9OpiOzt7c3n8zzPl8vlgwcPj8fj0Wh8/913jzikZS7dI1iv18VoagYSnIpKiDESoeb4RqORJgr1PZqvNB17Zx/DcBuacdY1Z0MHsdE7RsYgCpKioQyjUd40ZhaJQ195Ny+2E6joaWtqzOz2peCOEHMkTBSyzQPZdX1cPl7VCntM0X/Y0cdmv+tg5rbZkKXxvmkarbDEELIsBXNFO6GlFV3RdV1f+7r+512PZafwQl2+nrtuUgDon/6zRp7nvW92zU1Vl68t5e3Wb7VWo5kdGHBlIaIxljvW4/6ALTTmOefRSzTuXDm8z4rd+dTgs08P3D3IFX4QoG0y747QbqvXAExdZ1VXV9EUCHXImsHJdWgxEfF144ypNpvv/fz3fejePUPUhKDdgT3IUgcDCiqQFCKLiFjnkADbWUPaqafYtD6yDxhtktx/+N6/+pc/d/rw0fHB/o2T45u3TvanB+P9G9alLOBMEn2FZFDRsaKXqNcncPUDAsDZozNoa6ek6PCBbhS1N6dTohzew8FvH3RNhhCcJa1dqGiAmjPjnKJOdcI1TbPdbhXnnaZplFYbsU+Q6GbZh3+aHewtoy6G0WikyFrdUIcs4MG3sxMR+0i6Dy91SQCAosj0qWkzDBHNZjPNU2oB0Rjz5PxJUReJc9ptX8W42VbKhVqmWeZGMcQYIyqbtppFQ2TMB5eIwkFRZSfxttNLoBMaBw/k6qUQGxHt+TESI8cADMJIIMtNiEFRcOhj353FXVWZtDoSQ2QgY62PYNL08cVMwUWAVlAAhKzTyDvUnpBIkJgERCmGWxTX4JKZJcYYYgghxBDJNIasMdbYNDGkW48hg0SbenvFcUzIEBlYmW9Qdsk7euusuUokACYiQ3po8wFDxM3/6oOFMrujgm0F89Phn/4IAMAj2AJc/m6fvvjgX/TP/tM3f6/n9pxxH+bPf4MAtopO+ls3sPu9nS6EJMAghAbbKAUAISKKgGI3K+8FxIDEyIICSC2QH3lISULGxBh93RhDozyfrbYEfckaTGK3ElaX5/OLizfeebR/eDKfXVbVtvHBJokP8fU33vQh3Lh5czqdaj1kNputVqt79+5p/FAUhcqxa+ugStACwGq1qtbrxCVpmioll+LKZrPZbDYbjQrvfVmWxhhFgcYYp9PpbDZbr9eIePPmTSXXUuJj7716+eouOOeOj481wMCOe11xVoq60W2798Y0va2RldolrTYvl0tlx+rjK2UC2G63akVVqGq1WunVAYCWWbQEpFlGPRQArFbLG8fHm816vd2kaaYIsbIs5/N5U9dZ6u7cuaPBXo+bJSKOMYYgbTezcIxNYEKw1iFa7wcoyhBjFyQj7FBdWWOtMVGz+sKhq6gIgEtcluW66C34028+aBbnxlfWkiNCYwNTBASWIEHQkBhS6QEAQSEii0r4YEAEyAzDbxTwoUnTzBorzL4jwddIu4d/686CqBUSREDNAFbbbZ4lHDO03Z4oQKCqskLEBoUBUXv4BTu3RtcEdH4H6o5AiASoaPernbTrwu1l+FiEOwXEtoQCEEGiNtADMAC3HrzRzj/rXJ4XeV4wwmazcVmK1BI0c0dqIyLCfHzjRJ28t95667WPf7xumhs3brz1rW/du/fiYrV0zpyfnx8dHYmIltfyPDdEp0/OkiQZTUZnp4/u3rvnjCFAjrJerbNiojBITZdcXFwolX9ZFtaQCI7HUwDabDbOWUD0Ifbur05p7OgfRHsrnWuaJlX/uKl1HqEqzoBBIkLV8CKlQQMBkOjSzA6avBGRtb7LIoLcUhkp6BCZNbAxADuBSl9R0W+kFscsXQcIa1UYOPboKhTq+aP/A5ZWriWXVfT8fYdw2wMFzKHxTV1pApFFxLmekko6tJ4xJnIc9msMoxEAqH3TeywKZ+jdmP6x9gEnAPQNdc8aGkKETk1l+JKiWIkodBS7/UvKL6fJHQ2A1W4TUZI47WqmDvfbNz9bGKrPEA4DjJY5S33kIEYwMZYpcIwhRGPFWEQkFgBuw1xEiR6tsy5JyBoGCDF675nFWIuAaZKEaltVFbpUjM2ds8aKNqiEkGWpTRwbNEQqWOINIQt2k1NPumUVADCuRGEIECEwsLbOqj5JkmSb1UZCVNBxYux3f+wTP/Yf/4lRmhuyeVH2uTpoUYAiIgy1dHr2iGCMVQ8WCR+db26dFJlLWDxwsEQgBEAiYFMHwC5L7j969KVf+/J2sw4hpGlalqO96f5oND4+Pvqe7/nc937v92JXm0YACoDqF4bovU+zVJj/7S//8s//v3/+9L1TAQkSxnvjg5Mjm+QHxzd9wOnefpmnCPIf/9Afz1NbbbaJo8yaGBpnbS228QEAdFPs0+fGmBjrK0guDKCRgsBt7kThDdpY4r0na5qmSbMMALQztedQR8Q8TdLEOee8B0SUGHwIOvu1LwoAzs/PR6PRdrvV5LdCyEJHdqz7d9M02inIGH0I+ajUzEcQJqHJqKyqqqoaRJOmVvVOjHHjcV5VFSJtms1yudTE5IPTR5PJhJo6gkz3piF4S7hdrwjROVOvA8dACCH49Xq9Xq9C48dp7gQtkksSTGwwkFjTh8E9v3YHcmv6wo4CBJ2xloxuzMMaC3SxNDOHIN1LLQiiW16shrMNZQwiWWATOYBAnlpI2kP4ECBGEdZayw7jCSJHDzUAgJ9XiOBj9HUbOg6VfZt6R6lkN9XQcfwiIBI565xKGoBLkt71FRFmicCRGXiHVlJEUDB1iQhoh4NyXocQuuCq/VI7yiyERIAMgATh2KTp3nT87sN3rbNBYgQRxCv5YfoPtqP8f/loBD3HKAyGABkgCmIlV2UT0FQKoEFUPV0GYa21qTslrdUrbMIiJkQDimAOAWItkYUdJTuKO9amJhGAGNEwCIggGAANo3OXsDEsWFfb2f23GOntt99EZ9ji/vgQwBTjvaPjoxAaa5VjKozHpXMGUZwz+3t7B/v7i8Wi2m7X6/Xt27fLsry8vJxOJprK1dHEcHTjZDwem8SlRX55eRnWm/lqvb+/f/7ufS3zLtYbcon2ueV53my24/F4NN1brFaLxSJNUwOS53mIcbvdTqfTxvssyy4vL9frNaLRMgii8d6LtBoOWcZpYr33y8WCOrxKXVWaH8ny3DnnkkRpuLY6qipN0zRNtdkdEQ8PD/sGjM1mUzfNar3WJFGapurUbqvKuuTB47MyL1ab7XK93a7WEvnFF16YjKYVrq3D7Wo9HY3zJE2S5N1335UQX3zxxYTMQZHML57cuX278T7NMmYW4RgZBKTy3U6nbZKg+sUiXG82xpCzzljjYdtwnxZDMCbJM5dnYjCE0DDnLpEQZ48fNxdPZLMY53mWJr5pyLJlQfax9mgtN1GQbWrI2MAcIpMAG4NgKXGGuaprCaG3UYLgyIR6K6GRGDarZZa4UZFnWSrWVCGwIBpjwSJrqAEqVVJm5u3VzDec2uPUEUEtAiBggTgm5MPE5XUe/KpeccNgGAkIUy2bGK1oaK9J2xmbKFWUCMQosYX2GjKIIsTM0kG8JIgwYBBkwAZsAIjAEQGNZZDNZr2tqxBiarPY8I0bN/b29yKIS1Mh5hink5Hz3H5rZGsoAASRi4uLumlwbg8PD9erNVlzfnFx+/atECMQujTNinw6HV9eXi7XqyzLJpMJEKIhQBAX3zl9e2/v4MbNm7ytJuMpRwAhDkiIyieuBLIatNR1jUhk0yTLqiZUTQDjsnJC2hhA6GNNqLAiYubIXnNMiCYwWJdp07dLTbtpIgFhFE8Ane0BFG7l6wFIpN5sASDJUiCKIGgNBPEcgzCSdWVOCL5u8ixxgCEEFLDWMbcZhL4hVs+fY1XHqj18uz0KABCgxeCMqzdbjowmETLiHCYWjeVd2DB1zRuwW4XAXQJl9ZTUEQqdplD3zuv4/M4lxnpb9cGVltWvvheN9P2cwwYAgQStQ1xXdYZJtdw4k1TsIU0xsYnLuneBsYYFrUsbHwGg8VV/HrZjGdGhp91agC7YVo9Fs8AKPsKOWkn9NM0ZdeSc0Fc/NptNmRd5VmoNR/OzWuEJISggUL0+Qgwx9iXKRpqqqZ1zgaNLE+MsM7eC4GTSvDAuWa/X1XpDRDZJyboky5+ZyOyvVnBQpbj67zMdCFTVZcKO4EBY2k1RMSbYhbT9DwKgFZHBLntVaHjOqL03BNZaYxOrxJwaeSPHxhdp4kbOV7VB+vCHX/mJP/c/yFwSvR+2cPU/YNcB/X5fq/JMhgUji7nquL7KygjAzVu3/rP/+f/szTff/MY3vvGbv/mbr7/++nK5PHv8+PTs7PU3Xj8+Ofn8935+mEMyZN59793T01PlotmnfSK6cXLj05/+9KOD07PHZ6vNkomfnF+M9w6/+vO/cHB4q/bBIYDELE1/6I/+R8Y6XZmWTFPV3sByuXzrrbcePXr0yiuvvPzyy4hYlqWGRVe94DgseGGSJMFHJf/tW6OYWSLUTS0AxhiVVuzrcXq7+p/VfBwcHIjIarViaNe2Kk/PZjPtrNKWFUWNK90ndvTb3nuFGKkvwh1fp1aWZ7NF14vcMpLFGNfrtSJ3uUOE6xLSPv4YQ1kWlmi1WsUQyyzf29931i2XS6fpl5aooeXcJ0Nann7OZMPBUGhK3/EZ4lW3Hw5Yy/RCupc0/bwTL1z7PpXtE5DUua603RYf+sjH804VdVhU3Sl8i9AgUZoOqCSvjeGnzK4EatM0O9n6nQLejjVH1Mws93X8LkMzvIMgAsYYCREFLFkiQgBjTJI42DzrBP//431GX3wePo/++fTF2T4h3KV+NdcrEa9+9eqYCirZsYAwCBJiq7l7BU3pN2CAlh5CbQkCAF/VyRNnQsN19KvZ5bvvvrNeV7duNC/efoHIPnr0kLlt6hiPxzrfFABmjNlut1oatdZWVaV9HcrPW9e1QqcWi4VaDLU21BEwatlB6zAKYplMJrprqkbKYrE4Pj7W/od6s1aU/9HR0d7enjYrxxiLojDGKZDMOaelXd2JLy8vnaXJZFIUhdZpY0ftlSTJ4dGR+gEKal0ul8vlUk9pOploY54qnyhOQ2/m3t7e+fl5COHy8lKrLqPRSEv9aGk2n1lrDdHB4eFyPtfO1MSaxWK2Xi+1o288Ht+5cwcA3nrrrZPj49de++h4VDLHQSKzfXxFUTR1vdls9CZDD1IVib4xSN54Y4xqfbTNY8buHxwYZ5nQS2xCiDFWUjfr7exiBiGKgI9MURgNIwoJABsCQWTd/ZWpzxjh2DTNJoaMrOpZERmGjuZO5xO2rSHO2hCCJvDYWmpLG4SsYUWbOkEBQQzR51mGEoL33jc2Q0sUEIJwDBEEHLk8TbMkaaIP0voz6qZ1DV2tx6G9K++/CyAAtjVMXTXSokBAAEEwXJVQgGPYNvVqtQoctUVqf3/vU5/6rsDxzbe/BYaAMcZIiFYMdQ4HASCRQ8yyjKwJIbKISxMGCTGEGDW0WK9XeZ4rQltrhlmWXVxcKAPeZG9aNRVzbOomz8rEJcwClsbjWDeNNi3qvNVqoW5SkaXxARGtS2OM6jMTGREe3ou2F7qDEhBaEdEUvyYImqap6zo23mrquduDENWNF50Svbsl0j0A6JwsgsgRyLBIDOy1K5KjcQbxanuSwbiO+RnYSEIBicABIgMaIGpb8/DZH3r6KH9gouE+sro65348w+VAAWHlCuXgg0TOsgysSfLUOGcG+od9sauzyoM2zd6tfb+LMh1P17XKybWPKO8iDFBh1CnN13WtBrYvcPVvy/IkdLSu/L4X3p1Hf56mY05Td1G7ptWeG2O+MzoqxiCSIUU3MseoZdJv7xcJQCMxATKEYIghcgw6AVEYo9gk2SyW+3v7n/qu7/qhP/bHMpcAwHg8ir5S8mLa7aQXEeBnosapU60yBLjLz01Ejfe6Fd27d+9DH/rQD//wD+tuF5o4m82Oj4+1N2g4CXzw/+Jf/Iuf+ZmfEZGbN2/eunXrtdde+9znPvdn/syfoWhY2CaGUqo5rqvmH/7j//IXf+nfZ8WorjbjIvuFX/ylP/yHvrA3LsrUQvCXl4+zNAu1Pzo6UgTXP/pH/+jVV1/9yZ/8ye12630zKp/np1bVWqWjeisQYwThPjbQ2aO9pKour3lE6ODOMUYFP2y328BXgowqR9A77i2ozBhlxFMqaj2OcW24DwC+U43UKqGmMXr2D72N6qn0WK8kSfI8L4ri5s2bVVW99979GE1iVb3VNU1DAM65siwz5+rNppd4bKmvNPnxXPAodRJFfU/OsHjSP9k+ouhrqcN4+DnHHw49OA941fpjogwUsoiu5XuedcBhY9y1RMswMtEnODyN/me8Dq4d1q9lGLvC4CZcu2qdSI3fEqKz1iKRgCVTZvmTZ5x5+r8p8KlV2VauCGOLZNPGgJimmaKAJpPp9PCk8eHlV19pgj84PIwgTy7O79y5U2/Wv/r/+q/9el6k6aTMMkeJBYuSEBIKq4Y0M0cJITILgAo1oErE9Lda09UKPyBjdK9lBBZhbHvkQKBME+rmGHQtWyGEGHkbIbIM+Sf6CyyKggCNMQRoEA1g/6sQkjWwO1Wpz/g8Y/Snq9SGV7NUxEMUYQACxeUhEwECWjKxiX2gom/XmakTr09r8+4DSpytY0wIVst5WozWNuXDk+Vy4cgcHo6MQe1S05W7Xq9VWnE63a/rWmVVVDhChZKcc4vFInT0wcfHx/q4TSdJxF1b2na7PTg4SJLk8vJSUabaDay9cGmavvnmmwcHB9qVpwGP0mopVVdd10VRWJvkea4c6CLyxhtvIKJ2uSwXM5VYWa/X6/V6f39fMbEqyaIleiUJWC6XmmrZbrfbzUZzK9LJHXjvj46ODg4OvvX229o9NZ/PNRxarVZqNKb705Ojo4cPHyYuMYCEqL0rZZaNxlldtz1a2qjDzHfv3v3BH/zDY8MirC7INWR/TznQK6L0a9MmpmcH6WvC6rtvq63jhBInKM45awwxBKpFJHjvEHsKUT2atVYABEyvJGYArDFoyHtf142IlzRVCDEP9ekAGJC6HJDeJQ0XrXVIgoBABlv+rwgCgCQACCZNi+1m0dReOE9smmWuqbmKTSBDxlgBxQ1mDJHBa1X6/YSJ1AsfAuF2LSpG6UVRhAEFu14uhCjMurqFA0ffeCIyIhL55u0bf/gHfzDLsn/xsz8LlsgYMBRCMESx07kVAAZhkTTLDtPUWHO5mCncWkVy9vb2VF9os9kyRyI6ODjQ8n6WZfP5XERC8IRw986Ljx6drVbryWRPZdKcs0WZr+smSVsXUMsCSrRd1zUap62eKtmsV22t9U11DfrTzxBE1Aq/Dk1lckeJyzH2Vn9314AYI5lO01MEzHVXqq5rbWmDDiYUgmeIaZqYjv57OJ5il94ZIhKZow9E7vchqiK7rRf0wdpLrg3tBfK7Wtg63lfMt/9qXbPbbbVYLMiarW/AknHOmWT4tmtmeXi2z8Ju9RlV3YyuuQfDdyoaVk2omhRuhc4ldHr2xnQEm53boycTB0TnerT3dYGw4wDoW80VlKh2DABWq9V3IlDBPuYGaLGHwvI0JfEfdCDYNBEUDxwDEwkZAhDt0XNGLMDHP/bRL/zAF1595UPW2CRxdV1tthtH0BYHh1QVbej8nPZWo6V5TAwhDikd9dko4ErRxpqcm0wmwLi/v1+WJbf6dFfHz/P8J3/yJ3/wB3/wK1/5yje+8Y133nnni1/84s/93M+9cOeF7/ue7/+BL3z/8Y3jqqrZYJ4XP/qjf/Lr3/jW+eWCjK2a0NSLt995d/TRD3/pN3/t17/ypffefWe5WFKSjyeTw8PD7/7u7/5Lf+kvffGLX/xbf+tv/dk/+2fv3r0LMuRUGs4V6vf4frro+QtjmiUt0QSiQhd6y9j5WzFNjeKk1U455yREBcJqSNP7r2ocNaForVUHRfekoijyMhnOaX0imvzT4+utU2oIjZ2UGsJ1nIbqgqzX6y7uR42RyqKcXVxeLJdN3YjIwXRq2noKXRndLh543nTbbUqRntKaWeB9AhWdWsMYhp6Ccj5r9EWJ4aF0U79mR4Zb6TXGj+Hbrl3a8DT65jnoEi3Puvzdk3+6ogJ92Nmf8853CZCAtc7DFgUSaw0RCDhjsvSZgfS10Wd3unO4ui5E0kVnjDk+PknysqoaEsiSdL1akTFFlpdFuXjyxBiKuuSZBYiQrEH9J0wiwMLM4qzOxpYhKGfTtd+I0gpLC8jDAMgIoL1tIKywNmYQMcbSQI3hOcHkB5kbAsCofe0tartN6kr38/CAvQQdXgUqLMIoDN0sBQkcumIekojq1FkwgBAk9NHPtbWJ2MKhn0LnMRqwlnLjto1//OBBmuRPHp8VWY55sV6vYgxK5adi81qC0M6TGzduXF5eqgJ3Hy3oTqkcR5rpUFkSlXtXo9qXCN57770sy46OjpbL5f7+vjazrVYrRCyKQuONxWKh5GN6w/XV4+Pj5XK52Wzq2q9Wq7t3715eXiLi0dHR2dkZIp6enjpLDx8+fPTo0fHx8dHR0cXFRYzx4OCAmTedwPze3p4x5u7du5q7UUEYxc2KiArz6Tp97733ttvt4eGhiOik7eFtak4Xs9l2u40hJsZkWZal2WQymZQlGQZoCdwBVL+oKYqirmqCBhFUP/7aTGMQtCaxJs2zdrW0vEwUMMrOO9vZiAJcCbOmUlm0Z9moYGuyCd4aDCFQE9LMSMfVgUiemURx2MwxWudSZ5k5xLiZLQyRxlE4FF5EbU1oOTa0mV6JFoxLkAwII7Xdjy0fp4AAZFlOaLabuszLJEmLclQWae0ihC227exBJDqDeWKbKBQlQgzxWnH7ygUf8gdA13DIAAgQu46UqBRebVoUWSBCYIEorE5CU1V10xwfH9994e5nvvtz915++Stf+UqIIc/Lft9BY7QpDBSCzbHxHp3VFXp4dKihqeYH5/P5vXv3JpPJcrmo6nq73Sovxf7+vuYBT09PX3rpRRB/fn4OgNY67SkNIRS5AJK1RmO/LMvUg1wsFtqd5dJcm6BUCDt0Mhc1yzAKGPqgiFhXoV+P3IEgnHPG0Ga5vCqV7W4czGwdEVFkll1MgT4C732apHqorYi1NgbvfUjTRB3razsjPHsgIggIc4jRRv79BSq/9w+9z0G0GaOv036QT+m6E4Gqrrz3ozyLCEmSGOf4ioapDTmo64/nQbbqORUVTX1qRU6zh8NPDV2C3iJhRwcH3ZMK4LEjHUZEVUOmrr/FdzKm/eXA03tcx8qrMypNU62W91ekXxpC2JGupN0DDTUZsRNlx1ZptZ0lSoOOVwNCZOlI0/RoIcYQw3W7Kax1qhgjWhIR21UVRfl69CE8lSXErkikl8gSWKUTBXztQaIly6H50Ev3Xn35lc9+9rPHJ8ci7H2zrRrnXAxR6SV6HMugJnWV+Zaua5+6AQDB+6Yx4zJBZeLpsBVEJnJHVkskHf1UCEGB4twxFPVJNedcU22zLPvkJz75sY99bLvdPn78WHfEvcleZvPDo6OmaRgjGisix8dHH/noR//tL/97JLPdbpwxP/+vf+mX/80v/cov/fxiduEs+bpJi1HsnIkf//Ef/8t/+S//w3/4D3/mZ37mL/yFv3B4sB8jF0VRV5XuNEQEIDFKU7c8M4pz6H3rxnsk45Kk40aTpvEAoBnr/nI0ztZoQWfFarPVYAYAlEMTuvSAhhz9JqTpIoVx9+zGOPDqeoY7zcDVdR2CRyRFhmjEMh6PNQ2p52atXS6XuvaSJCmKwljjnN2uohruuq6c9niFQGkOIGRIQxp9ND2PPsIOIZZIyzdlrbVdTkgx/9Rm4tpb185PEREIwV+zF4P5ds1nvbKKcgWdkms/XzM8w7gi7rLDyTNSg/18fvpT10z/swovAOrTSvdFoETJw845auWNsXdHENEgIqAzljEwc56khiixbm86zfJ8U22xZfBjZuwr/M/x34VZfW5NmZdlOZlMkiTJstQYu2hWeZoB4dGNk029zfMiTTNhNmTSNGEffPCpI+3saGtroGxmFgBUrFabXCGCNdgSAiAIQAvwZxTBGpEBIksUBmEAsSBkEETJf3fQU33QKZ2Z7m7p7iTp/3vFFAIAoFEQsHCvaQuoZRIaVnoR26YjRO1i4ZYVR2IMvRwqK0JC2oRuS0siAswCaIypq8Z0corDEyaiXvbOgDHCbR0fJHJEAocQiXzlH7377qgo33n37cPD46PDaZYm6rtrx9psNiOi0Wg0mexpjWW5XCLS3t5Uf1D7YK1V5WPudF3X67Xix5j5yZMnzFyWpUJiVquVemPKyrVerxV2RUQqS79dLdXUnJ2dKf2gvmSMaZraGKNt7uPx+N1339WCSZqmRZ7WdX3r1q3bt2/rrFZaqhDC6empFiuqqrp582aMUQnW9Y9lWY7HY0Rcr9eLxQIAiqLQPAsz6wmAyHK1ms/nas1e+cirx8fHo9FodnE5mUxIcLvZaCx0evZgsZiphSHC8XhcFMVoNIox1LEZlUUfD2On0QYANklwaGEABCCIYIyYmd7S+BA4smm9DyqKAgC8RriIHGOI3DQNMyDZuqkEwCEFQSKMACFy4iwRsDqUkaHzOYqisM7GbaVhmNpbY0y7zSMoHabpaAw0tc/MhEhkBQURmSgicgDgyG28YEQgBI6RYxQQTJIcQWBkrSEyTpYrayhLnAgIN9YCI3pM/KA7fCdxo2iLdmFRy4QnDKrYKMIikSECa+c3MzACWuOrmowxSICQZdloNPrUJz/5yU9+shzvMfPe3p41tiiKKALDC28XNQCgSVzV1C5JGt+U47KfY2mabjabt956C1p6Ot5sNkVRaAzvvT8+Pn7nnXeqqo6hdi6LsaUO07RdCMG5xKR5T1JnjNlsNrPZTFOryqWpFcU8zxXSAxpRc9uJgR0RHHbCFz3oCzvtSNMya4k1dpjN0WAGAGKUK2MCV3rnXQjUhj36cuykPMqyrH0lV1m/qyzz83N/+giNMYg+xkjc6trgQJSvt7fDTz17w2mz/vDcMKCdO13yLnKEFuGcXMsD+qaBzoHuYWAxRg5BYhRmBFBR2nYhd7jHFozY+d69r+86na6nM2LXgi7pZBl7dKuOzjm8AkoMYa69b6/f2NONdBFLy6Kp2s3QbWGJc31JuX1qnYcgA8x8X5QTETKGiPr5uROowDVGgt1bP5gTV8yYu1EKIoJyCak3p+9vt/trsaluagCspL9XClPUKbqKXDuJq0mARAQCm83aOWuIQvAMPCkL4Vhm+Re+//Of/+QnD/b2rbUCzCCq3MwcVVAAu6P3WgTDudXHG8ML4xaAZBQgQoh9oCIcbUfVN3QriUikRSjq1Wl9IM9zjWWZmYEBQHeyO3fuhBDKvDw/vfjWt7612a7vvnxXONqUsqy8cXJSVZVxSZIVqbO/9tVfr1ZzX22me/u+ae7cefHg6Oizn/3sK6+88uKLLxZFsdls/tyf+3M//dM//c//+T//Uz/6p/I8j2GpLJzMYsiKMINSG1TUMc/0iEPn7NVKi1HXgs42lVEb3pw+9lWghR5NkdlFUbQ+fYy9BdRQW++SAiSSLO/d2Z7qQbu7nEs1FYSI4/HEdyLQTdMoNFbrznqTN5vN+fm5XsvZ2ZlzLh2NyrKst1XwoSxL9r5qatWF1BMjJIVzIeKQzE12QnVQQ9wGZonryxc4WDTX7B3iTpWjf1u3fK5MydNzHZ9SIm9diUFccc1QDt9/7bPX3jm0YsOXaBcM+Zw6DHZApq6w0AYq0N0otW5tkrJPxQGiSGJdNL7yPnHOGZNYtzeZjIri4vJC51IIQqTe8jNzZogogKxcPgBZlk2n08lkMp1OsyyLUWaXl0f7h2WeRxESyJMMAZwxd2/fftNZhGzrV5pZZeYWTa2uRzefEzAtt3YQQZYmChoERiJLhM6KcIyoO4hnoRgkKsZVkLTUsDM3dq/lKpnU38mdZ30VqOyoLIn6UtzeBN0tkQUBaLAJIoAqPhogRGRgNVCI4LtdBFu5PRJhaQXx0ACwdhYKW5NWUvdf1M+KNhzF9puwZebRq5MmBgTkEKxAZs12u1nP59OD/TRzeZ6enZ7t7+/fvHlTZ3hRFFpzrmuvWJSetEPrpefn57rHKy6laZo8z8uyVIOgQubT6VR7UWKMStqrbWxqTHohxd79CiEoJZd2y2BXK0bE/f1D9e0AoGkalaTUeo619ujoSDWd3nzzzaZptDFPRE5OTkajkbX2jTfe0O8qikIb69erVVVVi8VCGY2n06kWio0xyqesSHFtawGAg4ODPM+VCWc+n0eO6/U6MVYFrGJTz2azJLE3b95k5ouLC32sDx48QIBX7570FMk4FBpC1JLZ1SNrO8hRkZNdtY0R0VgrID74wIDolH8ySRIgiiGIBOVirrJiXa0NGTAW0BjrYox1vY0MiWudOdatvEOnlEkpBwfL+UI790xL94eILTUYS2v/1fG9ypobSwIsqN16StbBHKPwalNvNlVVNYvF8uI8K3M7Ho0ATJpmhtAlKQBojtZutkWesMhquQFE7croN3roYEKBY1tpwrai0pIQtzRfwgJBIDJH0c4sYoQ6BEoSg7hZr5U++zPf/d2vvPxKmqWBWUQeP35sVKKg+0aOHAGV7FQEbOImk/F6u2ma5sbNm8vlQuekNnbWdX12djaZTKw1r7zy8sNHD7RM9+jRo5deekkDobOzs5Ojw6beCoNrKeNjjL6qQozBCJKxGpB77588eaJxSwhB0GgyW3N5iuUOISSJi03d+3i9EeOWQ7bN1mEXD1OnBmOskVZath0dLyv3zoAgkDFIqM5h722naar+FXNUVr2qqopR3jS1ziKRK6v6dP1/aGMNkURwznkTWFhjFeW0YZbezj+9s7zfhgO99Xvftw1/G1pL6Dx+zZxe2wU0Ide30Q9czQaZUcQ3zWa9UVo/AgGRGALH3iGn4aNh5tRlQ+fqWRu9dNAvvQMaRl47eY3ltJGpf0k6IEl/NOkSytba3oeRLsUPABxb97gPXYxpsaYAQF07Sr8D6jPVXxFRi+fffuiXVjY1mnj+I/+DfhHAOC8JBEXEQGppmo8+9fHXfuD7v/9of5qgCPNmvbLW2sRh10su7UevDjM8R9sJrg+fcbvUgJmRmVuU7Ae7tGu+nS48zSc1lR++pPlObd74p//0n/6z/+qf1b6yuXvhQ/c++vHv+uznv//d+/etczZN66oalTlK/p/8+J9+9d6LjoQQbt+84dJ0Op1qig4Rsyxrmuav/JW/8k/+yT/5u3/37/3kT/7kycnJYrHqtmRNioiyZiGioqq09pokyagcRWn7wtWc9ZbIOVdVFWhzTtMAQF/Q1NACOqkmXQbqs4qIxhhtTaKzEbqda+lmuAa6BDAYY5WRTJerur97e3vL5VIjw9FoBB0qTNNIaeqIcL1eW2uzNO3ZvomIQULwdd3gLlq0mwBm2FFwzWvvx3Mm9jUjtfvO59UGrtkvGUDInv2pZwYnz//UH3xcO8NBtI/Xbprt6KrJmOADARoiSyYxtmkqZ6xBctYlSdqjX4Z28HcdaiJHo9FkMtHEOQBYa6eTyags55ezm7dvZUlK1iR5pjSaWZbVvnLWGqOYKGQGZhYtD4uCpthaQmeYMWFi5mgCALX7LYcYtH4pDODyETKrOnIQZJDIrH23wzF0jAjJWrriV9qdNs8ayi/cE8frXtQb3GtTbfjveceEnkS2e2oALKCsdOq1UAey+t3PEIAIBYAEGBEM1VVzdvpofHSQl+Visfzwhz/cNM1isRjuebobKR+lcg8qW8bR0ZHyGimQIM9z5xLmOJ/PHzx4cOPGDfXv5/O5LvbePqiFKcuyr5ZowKwN6GVZrlYrVTLRpOB0OtXYoGla9sLVajWfzwGgZ3RdrVbn5+fz+fzWrVtlWU6n0xdffFGPiUTKPqxRBxEpPrZpGpWP1G9cr9caOOnGPJvN+sWiLY5KIeCcCxINovfeEMXIYFFledeL+fHx0Xq90sYefebn5+cXFxcg8vGX75iOeOda4XRYl9T8aFs2MTayJwEG5BblKN6HxjcSohdjraXEmdSBOhnWpsYlYbxIUgBiAQAl5sm999uqruramnzo0ZrgW+JOwjRNfZapi9zfK30JuO1x5q7VO4RQ17VLcnGJIAoq6IsEiAUDS4xc136z3s5ni+CbcZke7pfeR2eddc5aY2y7PZWjcrFccfQxxtwl750vn2nGW06JNiPUX4g2o7FAZNVLwSiiq4YBqqYuEldVdZKmH/nIRz7y4Q8f7B9IjARISOv1+mtf+1peFiEEO4DZsB5AgBHWy0XD4fD4+N13391Ula47xejrJJnP58YY5+xyubx169Zbb731wgsvfOtb3yrLUgGEIhICxyiIRmv+1hKAYebG15YSC6jyABqra4myruvV66/fuHFD14s609BaJEJrldMZupRlb/CtQe3RUh2zIaoCFWHaldYRUVWAlVGm98REWpkHIgJA0wkXAopBgtjmVrabdV5mOp/jUxKQz9npQggGraZNY2ifI7Z1latxbSZ8R7fOa1POJYmukdAJZ3fOpyBHiHE+nzNHDd19XXkfIsc0yXsTB52n1F+FbjH2g6tXt6w57TDPVguQAXmxnmff3DJMSj5dzHnWkEHR5tqd4U55Vo/5nWmm71qNv6OBCgBsV6vom1FRvnTnzmsffuXzn/3My3dfqFZrbCJZzIs8TZImBAZW0ZGnJ2C3SNphoRO66upc2FU8CUWU90PVCz7YlQ1dYaWkFJFvfetbX/rSl37nt36zf2k0Gt27d+8zn/nMyy+/LFF+4id+4lOf/tRv/NbX/v1XfvXtt9/+8le/9l/+s/96//CWoIXAWVFsqsYR3Lh565Of+nRotnlifdOy4qgpoa6ZpK7rH/mRH7l5cusf/IN/8KM/+qOvvfaa1ouhC4UVNykdqMN0ADxmBrySBNIYQ/cPPWzfXAWAw0YxFumr9rGT7NFUqLa7SJdgM8ZocaYsSwbU8/edkr1ehfe+qlqOoMVioc9Ce1S0lbZpGpWybppGs57j8Xi1WiLC0dGRSlBvlutquzVksixtRDbL5ba66skZDpG2YE1P9av0Fb+nX7o2o8wzODSuZVOufe/QC8RBa9pzFtG1lMm1g+/klp5LiP77GE8HKtKVDa+dUv+e3pO2SIm1HAL7kFinWp+K9+gP+8FP2BijvqyCEnXWEYEhOyrK6f4eEXGMjW+qui7Ho6PDwyLLmhU654zmZ6MwQYs3GwjHI4IxSAYBjAi5PBcZOi7tiAJAzrJ4YygEI9pQy0qsORx9oEJEAGKg1WyGpyoqz7H1Wonr9CAFIoNBSwaVX+X3aHEF34/lUIAQogACqDAIfPBG0lbgAlCEBC0Zmoxn1fbdd99ZbzfHe1NDpMKy2gRy586d0WikVQjN5qr/NJlM1M5cXFz0SCGV4lbjduvWLQXYqJN09+5dtU7agaqhgio2agOeOlXGGO99FNYGd32z2g1NIV1czNQKFUWhvYX6OJIkyVJ3cXFxeHgIALdv3waANE1VnUl9LLWNaj3W6/VqtdpsNuPRSH/QkoiI3LlzJ0mS0Wi0urjQfVrdjvF4rBXpO3fuPDh9qD0DTV2TYOJasiZrHXQ8QnVdKybt1q1b1toQfOSr5PTvuvn2l+YsCQkCIIP6rzHGFkrFHDkiR4yerEUFIgIpy7wicwBAEW7K61hVVSvQBCC6CprGqS/ChIAaEAK0rVOtwSQUULgDAED/KKuqcmltk5KFBCNgSynGAj6y1sm8b9brtffNbJKv1lPf+DQZJSaLXImwPsfDw8P5fLaYz0Rkb7q35TMyK91rrqVFELHn54DegokIi5DTBccCkSWyCACjCEJeloKwf3jw4VdevffiS2WWR++1177xDVkzmUyss82AdkIQYojQZR9Y5MmTJ+eXl2ioCX5/OtEAuzdrikfYbDZvv/320fGhUlq/+uqrjx492tvbA4DLy8vJaBqjEKG1zjmnKJ662fq6EUobHxTkvFqt3n777TfeeMMYMx6Pi9FkOp1WVaUa4Vc2CgHRYoeg6UMFna6ELYPCNcB2jIwctQ7TNy2oR2uMjTG2pGsIQGSgdRQFAcmExjvnOEZkAcJ6U4mI4g/7CPxaoBJ3m92Hj5KZiVowYS0+REZmZIEYEXbo9Yd75Xc2vb7rcPbTjzpiT+ywcBAjxHhxeRlitGS6ExPpLrmPJ4f50wHLqHxQiw0wrKjAU7d0+LMmg1qrZSx0hKs9Lrd1Wj7YN/fWQ43JEIFGHbcYM2+322cGKtj+Z5CjBeA2/YagOsfv53QhgvayUN8FsuPVy1DVEUBhDS1HHyP3SUCNLBAYgXDwV+W30VRkau2dF+585tPf/dlPffrm8WFChDGmzhISEUcOVb0NMaLpYAkIuLuTX0tE0lVXPcCgJ1hEhLD3zYYhDz7dRrN7/P5ndb/quv57f+/vffnLX85S194IhBhiluf/5Itf/NSnvuuv/NRfHZXl57/3cx/9xEf/9H/6Y09ms7ffefCbX3/9S7/2G5vKi4gPwSCmifvK1772iU+8NskzkOic1Wy0+nzqwWtqsKqq7/v+7z86OvmFX/iF2Xz52c98Rm2FCGiFELoZo+8nohDCer1J0kxR47oPacVjtVoNCyN9l5VmE8fjMZorAofhfdAAgzuheg1sNIUTQoAWftUaNeUdVukV59K+5qjAbmPMxcUFACjuSxe5yrqFEMbjcbdFhvF4TEh+W3trDRlmaZo6hui919T+YLYDAPgQCFqba3a5entb/Lsmv59dUXlmtkY6qGP/az+e80XX3vCcQOXbPoZneBWHPHVn9CWdXSKi8lwKWtdgWG+xI5NYZ4310HiOeuLd2T8ryaAvttpVWZaNx+O+nGKtm5R7q/V6/+jQGDOZTlerFVmzv7+/Xs6tS/SDBhk4au2AGYQEBQiEBLFrxUXs/BiD0KmyocGunM2GQcBgZAERa0gQGQVECFXL7erc274RJCIBNkj91ENAhFZvVP1H6LdzvOqhh93UuICwgAEQVJxDHIZGqF/43Fmg0rFXOU5oeSH6b+mD+evbXic4q/sBtuYaSAAMCQgyEEJVV8lobJp6fvHEOPPO/fuR4cbxCZEJIR4eHmZZVtfVYrHwPt65c1f93UePHqkda5rm+Pi4z/ICQNM0SsY6nU61Z6MvlVxeXqph0SkRQlBjpYyLKqeo+LE8S02HgVYYGCI+fvwYAIqinE6n5+fnSsygTSNazCnL/OTkhJnJGB9CXVUhRt801tr1ZqMtMdpbH2NcLBZqxBSe+uTJE63bEJGyLccYJ+OxZvUIseiKP3fu3Fmtlq++8kpomouLC2OMI1s39cWT8/V6Xea5c2lsVSlxMpnEGEPw4/FoVJZ6OYphg91wtxc5VMgNEDJzEzywhEauJjZiYiyYDvfLyCDKZ22tNUTIwoEDM7iU0UZhRgJrKU2sc0WIxrpqvdBDaT9HDJFsjMwEko1KJLqYzWNdGTIuce0pkQHdkxAAwVpnTFNVVfA+hGCFsCv8obT+GrPEyOvNdrHaXszn1lJe2IPD8cnR0kJKqZjEIJK1lGUJiCBIkee+qWfz5eHBHrOs1uvNumGOCvNSFyEisCqpaawF0PKXSYsYbzmIRUSAUUSEkYyxt27d/Phrr03HE+UQGE3GeZLOl8u6af7tv/6V2WyW5plNE6vttQAowF2nPgCUZXl0fPTg0SNjLSLWVa0PVzdK3SW13pim7vLy8s6dO03TaM0wxjgej/emeyGwuhlkyBhjLCFh3dQhxGKc1U1g4V//9a995StfPT8/r+vKWMsxTvemL9976eT4qCgKBBGFFqH6ckY4YqeSAR2qx9kEgLTmo80tveVXfNxwG+1TlkSEciXT09oo6PQ7ibwAkUFB7+txWTrrTh89qmtK86RP2CNh1zdwhV9sjzVEzAhyZEFBssYi+SghojAosWP/9jYO61fK+6Qvv71juEX2pHkannGMCkDUzCVEXq9WBpCBg/aHkEFjmqrRxE0fn/SjqivsUGTwgROU8dl48uEYJrKJiADV2vTpod5h/oChXt8Pw08hR9S91HLTarWyOie7rx/CBAYOOIKAgLEmScmHhiuOUTgYFItARjn3ASQCt3B7Q8Zaa5BiiHVd+6YRiQyeGY2lCOCDt8HbwGmWA5AF77kJYBerlTOpSzIiCtGPjQlenDEWSZhBAgIkNrl39869ey997rOfuHnjZP/gIPggccNgBAAMsBYrIxuXGgfc4Wq6+9f2P4gIMO/gv6WV0yCiyIBR8akiIogWoK20EEe2es2IgsYZgNYbQ9VWEyFAJIrM6vcbY/IsEwAk+thrr/3O17/Obbe9WOeSPF1tNmNjf+O3fuedB+9+4rWPRY75qEy5TPP9u3c/9kM/9OM/9VN/la2pUbxgI1Jtqt95653FtrII+6MEQgQyQNSCQwCMs6UbAUCSpXXlP/Tqy7dfuP3FL37xjbde/xN/4k9oi956uxI0IbAIElkA2m5rrbfGwNk003uiucnNZgOdbNBoMmbmxvuWNjTPjLMA4GMIdRvTz+dz7fnr69eaGQWAHpzWw8CigKoZdBlxYmYl/YyxlRDSTKpCicbjsYJ0iejBgwfabqhhvffeOVttmqrZcojT8eTGjRtVOaq31Waz4RAt4iQvt82Sm+DyJHOJI2uJDKKxbjgZ1P82xiACERpLZNr/Eu1Mm2ctxfB+De76YW4VVTUCpxigaRoQsMawUUFTItMpqCjpLUDcJekafhcNfiO8EnwEACKjiVItRg0/OLRl1yKfayS4CFeNj/V2ix21MwiEEH0INAB6QVcm6qMXESFCkSgkJrMk1qV2u9gU1i42q/3RdFpMq2UFAckQoAEQIRAR6yx0C1a6bh5tw3NJDkCTyV6a5nleqrgeM/gQk1FRQYwYQaAJdVakZVmm1mBRFNPx5u3msChTosKRhMaAoECI6KEiRBYiwRBAvKDy9wOMCFAQ0ILVJiulkdEVRyjCgUPwShxGMUAMEjlLMxDtEIAoumEzWRRB8HVinQETfRQBJmo4NiyB2ZJlQN09g/IFI1otVNSREDskoiEyUXeaGFUSlZRlFduNOAiDQCAxqVE9ciIwLaUIGAB9goLskT0Lctv9TEgYg4QGSUJsQgSXGCJiCWTQGisdq4p6garKERkCI+tUAUEL3q8Ly6lIEjYPzp9AWlBSJOnYe1xcLk6ODspxJtA8Ob3cLBcS/OPHj+u6no7KUFexqYuiECKNQLSNfjqdIqJmRqpq05VnEVGm07Fub865GGU8Hqv0ooaye3t7q9UqSZInp2dacMY20E2TJJlM9lQ2/uLiQvtStEKi5BwiEliWi1WI4ejoeLa4PD8/H08m+/v7l+fnaeK0yqELajKZrNfrk5MT5SmOMS6Xy8vLSyI6PDxUW8rMB/t7RBi9jyDrGBccm8Zba7I0swBnZ6dIuD+eWGMuLi4me2OX2vFotJ6vZpfLosjHk5FIZIneN7PZLMZa50SfD9oBCxiKoeUTkw66TICIqAJ87dusAdFsHQhCoFY2lLqpBSRgqDw8MNsXF5dLml9A4G29MZJM83Ri9uqF3a4XBEaiCEfmAIKIBkzwiBsB6yylWV35atMQ2MQ5sC4ANWCctQ4hRC/eFzn6OmxWa2cduTJJslg3GDlBEjYBrGc6PZ89PHv8zuX52lkGjLNNcbq8cTDfo6RZLZOTG0gJEvqIxpjRNIshbjYbMkUMxoRmRn6B9aqKlfdVxWQKl2fb2rNIFIkCWlTqUrJEQYQhMrOwcU4Im+ABIkb88EsvfuELfyh4H0XI2iTPmLBBKfb3cjSPHj9ZbyuXF76JqF5Ka1GJQaIPniMLFuV4PJ4+fvJ4Va6zfXd+fn58fPz48ePDw8MnT54URUFEIURrnbCslhtCi4UZlZOL81mapuPxtBxPnaXVehEk2swRkhq2w6OjVawhS//dv/nVf/2v/93Fk/m2qhJnBUKa0H//ez//R3/wC0/Ozy1modkAtJJ/1prMWSBq6pbmxDhX5KM+9+RcQoTO2RC82iQAMYZIa28gDLEJkZkFmYiQhJsKENFYQgLfMIhLUgEKQTwEQ04YybhinAaWWiSbTH3TzFbLsshDCFlZ+BDItby6HKPliNBWcRU6099dAykHqCECgEmTIgUBgBgkRswKBCJgAhIU7JxrfI4uSxdX9GNnr8TrOc3+V95pRpV4RY0tSZpoDg6FkaN4LzFCiI4FArzzzrurxYKIinLUbDfkbG5tFHZpst1uBQENGTAAEOowrMpqKhmHrHq7o4eNXfkkiOrLqVQ84pU2aHfaLVSnx02gMUmW+hh88GiIRTgGANDqqAYhIQRh2GzVNBkBtI4Uj6OumlZOnLXGGENOK9vMDEjaf/jbv/3bZ6dPnhM7PhUUdUmza7gnzaz1T7flfYWON2M3yXv1SdSPohKMKtQTu7miuCAJTaxrZ1PhaKzd2z/Ym0xeuPvCp7/rU/defDFN3KR0ZFCEgUOLNnjf0x/mZndTks8Z2NVbftdS4Hq9VuaA7Xb7a7/2a48ePVqv16PR6OTk5PadF27fvt23h2oJ4i/+xb94+/btn/3Zn+1ZMq21ZVnevn37lVdeee3jH0dgJGz1rUCa2o8ndn9/Gi5nTMIEDIQCZ0/Of+O3fudP/vAfqdYzjNE4wmdk4hHROpcT/diP/dhP//RP//2///f/6l/9q7qZbbcb7HCiGhnrVueSJDJT11MFuylVzeLYjmtYP9vF0y0SbLVaKccIdnBGTfVpfsgYoxnEtp3LWhHpGMbahhMFgFXVRlm/+phHm1OXy+WNGzd0zejqaqVqmYkQM/FNLSI+eAlR01FJkrD3oSPuanOEu5PkGUMJ7vqiyvOCkw9YypCnst39r8Pnt1PW+/0WSfQhUsfH/ayzvfZq5B1CsH7ILlZVQ241ZM8/DaWL7VM+1LXTOWtTl6j1JI6CXcZk2DkBAE/le7SsX5bl/v7+aDR6/PixMUb7iZ9cnH/kIx+pqqrp2OQ062OsKcbjD736ajWbybYySC5JmYNIjDEwgoCIDGF+ejLia9+fzPBGCQBjw5GFg8rbgggZzIwDQNbqZYewEm2yFwABY8ggWkAiYpGoS0x0cQ/KGppEbu0B7iTQ8FqF+P1nsYYR1/7YTzYDKAiMKIimw3MGZoicOyeASEaGX9tRqAB0aR09Q0EGNC1mrC3JI6ncRIzer+YznBwrA+Sb33p7UhZ5Ofrtr3/97gs3ttv1wcGJAjiPjo40TatN5+v1OskLjRYuLi5EpLcem81mtVpoz8l6vX7hhRecc8vlUi3tdDrebDaq5wgAi8VCaybal6+yS1r41VhCBVtGo5FaM9WmUOzo0dFRWZaXi/newX7TNHVT103jO6HGg4ODxBAza2yjBZyyLAGgLEthfvvttz/1qU/Vdf3w4UP9alWM4cjr1VrlXCaTycHBQZG3zJ6LpsqzzHtfbbfaf6V9epez2dH0UMVStpvtfHE5Ho/WmyVznM8vt9ttlt3SeovWxq/Wb+ceqTUecnL07sj1JYZgqJ24IiIxSpfjiCKbCGxTRguMBskIIgo66/IsyTJf1TE0jEiKltacOhOCjQA2cX1OKkQ2UcQAAHILhcTI3DQ+hOCb5vLyMiRJIQV6hhjBOQBmrCNUjTSnl/PLTbWJDEjGh9PL2dv3H+xZe+twv1qvgKwhg4YoTYgSQLGEzpjE2My5MssEmRGD1FzF4EOkOjKwYBSKwpEpKg0eAACEDuMhAnVdOeu0uf/w8PBjH/moMzaxDgg9R1LeEAABSZLkM5/97Fe+8hXVAB0mhuq61gRfXVXz5WJb12SNb/xisbh5dKg1Q23+VOEyJcUKIdy5c0fng3I2AMDp6Wme54cneZo6l9rlamaMAcDEJOUIR+NphvEb33zjG1//pkELQkcHx5H9wcH+Jz/5kc985tOAMh6XIXoN+7MsiTE2Te2o7XVWFSPdr/uN4MrC7AweVsRpkKhiZmuIANVNZEJ1AUUA1Z9H1vnGURDRGpPnWZo6g95Zq5B8pRwGYWGlglf+WAV9XXM3oasTX0OFUdD4U/SfDOzh83ZYY3oI1u+yy/8+dmpDhMZGAUYGxLqq5rP5ZDRerdey63Srx6h+V9dpZrBTmuaO8e85juvT26ju42oP+0o1DZSmAWDoy4mIQrWh02jaSYtY23fQDfOV3f7RDp3PGvd671HaXaYX39N42Hv/nelRaXnCfw+81cOnGpm3q3WM0aKMx+Nbt++++OJLn3jttXsv3TvY23fGgEjqkixLV4uzyLF3fL+9FzIMi58/7bIsSxL38OHDn/mZn/lX/+pfrVYrdYuzLJtM9//aX/trL7zwgj5sfXgxxh/+4R/+Y3/sj6mtAQD1wtVTD6Eha0BEAzljYDyZrNerT37y4z/387/go2cgAQIgjv4X/80v/8gP//HKx3GRxRDxGZ6iBgC6df35P//n/87f+Tt/42/8jb/+1/+6NqfSYFrrvPTeV03t0qS/A0QtVWU/qOvZqOtaVe0VJLbZVFpB0ilojBmNRto3WVUVd6Bk9UqlF3wk0891bklFSLtdQ2gpDrFjF1FnFAA0+JauwUMj/ul0ur+/Nzt/sl6tNpvNdltBZAnRagqkT0a3NYcPCkjtZVeISGRH5O5aUeKD9Bw/f0S+UjZobX8XIfw+D9hmyNpyx9BOxWeTGsNAX6HNYPWnIRI7V74/Pa2DPa2s0Q99rIq6sZ1EDxElSaoIGedcZA7XiZuvxrVkVdM0qiegk1BT4FmWhRizcrRarWwntqNQb2utMP7AF74Qt9u3fvs3v/nrv2FQnEGOGGIXkncl7L4w3Z58jFd5lx1LjwhASNYYAUBGBlFOBgSqa9aKCiOgiJIbcws2CI7QAkUATbMZASMirKpz738b+3W3u/X+LoPjzoy6dsD+L/2e1+fZTAePbuOirlY2/NRwl2LZUdMjop6HdLVem+VycXF5kY4Q6OMff21vUlbfWr/zzv3tdp29Mi6LkUYml5eX2neuLMPns4ej0QgRtYsdBrDm8bh0zs3n88lkokQaigUdjUYhROU+VusUY3znnXfu3r3rvT86PASAEMJyuSSisiyJSBvfZ7OZov/n87mumsPDwzRNZ7PZfLnQhnhELIrixo0bypI8n8/LLO077jabjTKAabRzcnx89+7d7Xab5/kLL7ywXq/v37+vM39UFEVRHBwcaISmjc7Ksm0JrLWnp6ePHz9Wai8VFTk6OrJilJJ4tV4KxPV6aa2dTqf7e+Pbt2+31fs810u+mqM9i8NuJhh2EerXXrLOqv5O5Bg91/VWUxIQPaRpMp2E1UKiNwFME2MdKXUmT4pxuQqh2UTNjoj3YAitAUJjHQNmada4Tb3ZYtNQmmTRCiIJkzAioYCiYdI8a5pmsZybwuUWLJJwiHVT13XVVNvFfDW/eHQ+m2+bYKy1NiCeL1avP3hYpqkYe+QsEaF1RkyE6GPDwrFpODSqsjUalSZzYFyA1aaSbRX9tooGorSFQnWEBVqZoYaQVR5GGBEQmOuwv7f/yY9/vCxLJXZLXGLQcZfmFICmaV599dVf+ZVf0ZanEMLOHdasmbO8XFTV1jgnIpvN5vLyUie/NmuJiDbTa1/QaDTSYstsNlPLpnjpyd5BkuxrLLHZbAAwTSVGBoHGN9/61rfefvvtj7/2qc985nPGmDt3bpWjbG9aHh9Nek0VLccp+YRS+6Rpqls/dnDop3eifh+XFiXHV4FK19Wg7xEDjEjAoFlsZABW9g6JPcgAdmevhBBiCApEB4C+IwI45nnB0Svo0XRKCe83Bu4cIDP39vWDW1HbCc09/2393WjvwAfrFUFsOb5FhEO8uLzcbrf7+/vr7ebpdzrn+rhRYYHU8Z30y/zplT48wrUT7t0/LTVrjgYAdL7pvcUOUNojEtu0xVNClv0mNTyZ7o9XXJf9OatVseT6jKoO7T/k70gz/e5pfUDPapgXJJGj46NPvvbxV15+6dbNm+P9wzzPR0WZOAcswtEZKzFuVss8z5V1Tuf0tzdWwUEZQUTgqZTk1cmLNE1zdnb2sz/7s+quKTPvbDb7kR/9U3fu3NHlrXuwypVst9uyLPsQy3YiHt77yEzoWvA4iCMTxUf2P/CF7/+VL/27atEgQARiAptkr7/11n/7c//y+z736ZoBmambf9fiaTVwm81Gm+d+6qd+6m//7b/9d//u3/3xH/uxLEs5xF7D5FrWvJ/o17yia/rlylcTY1TKYJU5M4O+fD2+suOrx6x/791faHzfQB8jD79uMim1VqgocPUgewUDjf61X3a9XmtmtCiy0WgUvN9sNnVdpdYByGw2894TSAgheB9ijCGwfZZde2o+9D1k71eXGE6GD3jA5wzhK5hnHwZw19H4+ziggmF05cuuquNzKirDtGv8/xD3p8G2bdlZIDbG7Fa3u9Pe+7r7ukxlPmUqJaVSFAmSUKFCAodUQgK7whIEhiqqqAgHyPwj+MMvGxM4CExR4ZIDFxG2FUFAIZUkQE4kEBKSokANqVQq25eZr73dOfvsdnVzzjH8Y6y1ztrnvnvzZiLZK17cd87Ze6+9mrlG+43vG3FNysF04SyzZB3QD9v5R4Tkh22oAJm+gSZ/tMomSSrz9CEGIqDHVrYOFjYCColClmXW2tPTUykLmZ6GTgzu8fFxj1WwzuXp8bzdby3C5z/1adFoUwoSYxGUwevLfeOLtVKD9z2YX2IkQGKwRjmmwByZIlGkSETSL2bhMleAoBRTBCRWrNBqpVEhM4ICYsWsEVnx4y/htQ94cs3sxja+r09IVAYXa60FYzSg6hJ7VKgAQeakGQgPP3W9Mg8TFQCgXkih3ZVtuTeK67qaL44+//oXTo+PjhfHNCuQqSyrIp/IlRd9+s1mIw0Wl+Xe+6urq/l8LsIpu91uu91KU0Uwn5eXlyEEqV/EGNfrtXOpqEMURXHr1q27d+9+4AMfYOaqquSz1trJZLLb7ZbLpfyaZZmMGg93XzzLO++8s91ud1V5cnLy/PPP73Y7MfISyQFAkSay+GVKHgAePHggx7m8vJRUR5jNAEBkT7TWHONGoB15TkRSdhGzpq3e7XbW2sViIRm4kJGUZckthdBaa5PETafTLEvu3b+73W6/7aPfnCSJwuvRlINnuf+j6icHrtfGyLXdWFF1WTFR8CHE2LZNjJRm6STLXTJrKIXQtstl3Ky4DmHXKFuBUtq6tCjK3V5ItJVSHBAFfx+UjowILkmUs+12i0ElQkEWlQAkkTsdRQZEZYhxtdoAQoK2sAl5H3zYl+WuKi82q4f3Hu5bIuXS1GW5UxSB467xbz28DETWsu1VWbCj6wPvfVv7GLphttSoiMqz2lexaZtAECjKgEoUcSJEaaEQcqNEGIbkODnwbDp56cUXn731TGSSEuRuu81nU6M19bcgSZyomqZpKmHA+AoL6OD09PT01vm+qja7bQgBFOz35WCxxdnJXFOM8fJyvdlsbt++nabpcrmU8TyRErq8XB4dL0Rm3nuvtQk+tG2oqiqbZEBcl+V0kt86O/3d3/30tHAvvvihZ2+fYSytNRJTjsG6smxEt1SoHeTxFHCROdQXvvZTTGrM0NGXlmQFthRQocIIZJQ2mrX0sBEIOAAp6XNoBKWVmFAmYgrRe60AOFprmSJQRCYian0NxKqfvYaDjQZFYOYQ4wCeQEk0x08EPMVmev0J6scy3/NtTwgPnrARsYRDbdvG1l88fCjx0liNUbYhURl7YfnG4cCefFI3XhJIm8RmQ3tZvmW4s3Lu8h55qcM99SQ6430OU6mhU9++zggQr5mLY08iJy9ZbSVvkXBR0tGiKKxoZfRfgDdqeAcn05889BkVjG7wjY+NEyYfCABC6KIcVJpDJL6pEmqMAY5107zvfe/78Ic/+sHXPvTM7duJViE0JstCJBDWcQZkBsWICoDbNijdfdfNuzIueDIy3jTZXQZ5+KkDvFi/9XsmrW2e5z0DfSdSJSWTosife+65H/zBH/z0pz8dY3zxxRdfeOGF2Wz2Ld/6baJmKLA/MQTiIIcit/gM770EcLnLKHhgUAqkE16VO2OTF1989lu/9Zv+9S//GpoksGooAmJZh5/+uU/cevbWB155MUGl1HXsOD4vqRdmWSbrbDab/dk/+2f/9t/+25/61Kdee/9rsv5k2FT1WKwkSYTimnqiraHVqJQq60pAYrGnUBQr3LZt24aBL1zcvzAtitTaENeKY4Y+vRSWpLIstVYAKMUkgYwPnShBdg0Rs1CWSWo0fJ1ANWIMJ0cLOZGqqlQKEKXCBBrRaBOJlAwIXmfUHGPEUaqr4FpSaqxiP6wN7CFMdK0e1ZmIYSfxESLzzqYwwKidI/MEYmv4MEQebNDwcXjMdljlv/mSGBxEZKYRTPagNXQjOh8X/7jnwRt2OBTJ5Oeh4qL1tVzUUMeKvbbUcBbUc9O1bSvI5q4FZ4yOwExC9UDd7ENXwh9si2xaWZlTOj4+nkynvm1lhWulqrrWWh8fHyulkiSdTAqpERprVuVWRconM0+M5Nm300lmjQYGDcykxte8u3TA2piho4KjxYAoNBtILL1OjgyBWJFiYo2GCSLFIFVY7LynYlT9dDIiogJAdApjoODjIfL0YLtx03lMY0Cdr+rHSfv34OGdPdyP3IgBNjDeoUFlEJUW8Sn5HCmlmBVqFa/VtK6F8xSAQsXX+Q9hr03knF0vl76qps8XSZpcbdaT6TQCpi6j4M+fPWXmi4sLMQgiJC8kNnmei2hjkiTb7dZ7L/+en59nWfbgwQOxroK5Yub9fr/dbpzzs9lsuVxK/ULa14vFYjKZWFQMINwbYp3Ksjw9Pd3v99a5BBEAVqtVWZYD2WCapmi6XtNQqpCWXYzRIDCzNUaWetu2Uqh67rnnYghHR0fSMBEjLyPRAJCn6Ww2ExultT45OZGIAQCEggl7NWjn3Hw+l0r56uqKOTKzSyyzb9o2z/Pz8/PZfF6W5XRSSCiJfTYyTAYON3+weP06p2vj04c7shJC3UicKllclqTGGI1IxDaf2MnMTKZ+u2kbn7YG2hCCD4hp6kziUCtqQ4zROme1BgYl+oiIaI1NE9ZYt23StlmSusS0BFrw250vqJqm2TfNxXJzua0bb4/nC2iDb/2uLK+266vt9v7Fvq7BuWwyLfLUIAflW2S42pW+bm7P0zyxMgk5rGoi8pHKGnz0gMCKBUaY58W+ompfRcBIGBkiAStgBcDAKHzEGCACkQam4NM0f/7551944QWjdeJSqWT5GGIIrJCABc5eVdWHP/xhmTBBVMxhTB6YJwUzp2l6cn7mY2x8u1qt7j24N9R06rre7XaTyURQzVLvk86euDwJFl977bX79+9fXq0l2M1y1zRRawUIsmyaujZgplmhGTPnXvvA+77pIx9arS+in02yJE0TcccMoJWSIr33nkNI07TT/fR+gEqOMxM+LHUZbYiuHQcxY+8rQ/SE7JQmVBRbDRyVhgYAFPcC4swIhNpoZbSSEUMAVLpsavI+MkXfUIxEkYmAua6C7q/V4I86lweRerFFZh7mRRkUGwNw/Qgc2tUxyOrA2I6rdfD4Vgx3HKrIB1Jg3f/Hn4pEKA6OOLYeiAS0ud5dbbe7NEs7AtUQFYJBLMtSW2NdKs+17umJoQ/LB9Ot+hmV8QFzD6u5EUXItN7QsJIPSsIgpZ/BiXMPaZHMEHpUOfdocNmG9hr0bmwYcQE4KEPLD/KECqxmHFRAj9Q1w7sfvebjP/EQi4yuyPX33ZhHV9cFP6nAheCHm0dEkcF0146ZCVgxMxqFQX3sWz+aFYskySygATTaEZNU9hSQ1toojQzIhAqwLwsppW5GZjA+eB5DublneOhikMNzvrHarhd9JFE6R0XczWx10EbxVbPZ7Id+6If+xJ/4E9Jh6GA20NH5jTNLGFFfD18nvgQRQ4iqlzRSiKi0dTpya4z9vu/9nuVy89uf/rw22ihNCm2W31+ufvJnf+6//HM/8twkk1RHINrjM5NjGP97enr6Az/wA+++845AoYaHfJhuR63TNOUe8yOtDMlGAEB6zdATd4oDiJ0UdJhOp9yLqEiiIjEB9rmu5MrcV7u11uvtbrFYbDabsqyE5lKeCslGpIzatq0Y0yzLxLuL0ZR0SISlBUEHwPfu3ksTR0QUab/fcyCR2iTvfV0xs7HWWmuslaFzJiaI45E4UqSgy4Gloox963OwboM5wNHM/fi2xvcC4/WGY2DjBKWUNlp5JfwKypphwY6r+3hI/ntzO6gsjNkwug/KR4mA+dqRxHgwnT9eNuOOyo0mw7giK64IBtibVkSxf/91T3kwPX3H4lpugihCr7ejlELCobBAzAqVFFmHXY0vpUg9TiYTa0wMQaAL3nuT5aLWN5lMksRJYdU5p4xGa5IkdVn2oY9802d/699nSQJIDKyl4zHqZY2/CMYI1f5CdfVpBdQ1XZmZABmNMqAAkKOJRCGgJpliZkSIBMxgjQNiYAaNSiY9iJoYgCKDkeFU7LLfMfjqPQipu3fSiG9gdCtFxWI4+BsJjzz1Es10k9ZioJiNwPCVCiEC89BXYQBWiq8FnnsqM2YAREUKkJkVgrwuxkEjFom7985bRydnTYyT+SIiv3v/4a2j2WI6Wa1WAvUUHP+Akr13795kvtBaz+dzY4ykLicnJ9LNEMTgZDJxzgl7xzAfEiNL6iK8NCIJj4jb7ZagKw1OJhMEkBKGMebo6Gi9XgsVYV3XMhgjNgoR17stAIglHC57hzlszGQycUlCRPv9Xlp8SqnpdEoxitmUizDAHfM8b6pq2CERbTYbwY855xazyWQyKcuyqqr9fk9E0+lUhCAtmBh927blft/6el/uXnjhuZdeeskak7iE+/JQ16nuAehj9zgEE/KGeNgBk5kEmZ8kIiAy1mprUGtlDCsMTBiBPKbT+dkLdx7ut/VqmbXB+qB9JAxorUvTJEursKcYFaJRmhg0I4eISrFhY412drNa05qc0ooBrI0UiLBqG+GVbtq2qppd49+4u7y7jSfzjWZsm3q5urrarWvvt/sG7WSSuWniisQoVkqjZVYErQ/v3L07SdPJZJKmiZYkE8B7H9pY1gxGaavYKOKO8NqYKhJ7higcBV1sIpNYwMh1VcYYNaCzye3bz9x59rnnn3l2sVjYJDHWyJrIdAYiaSCPHkBdVQDw0ksv3b17VylkVtAT/spcpZQyd7tdPiksWGPMrVu3YtMgogy7EpHMZ4pEadvWMsElVfCmaY6OjsqyPD8/zyYzIdNbb5ZdLKFQaxdDNFrdef7505OTLHXzWTGZuC9+7jPf9JEP7nerSXYyxKBFnks8I4CfPElML080oH2G+vrQHRo8OzNbZ0I74rftE2ZEjITMHjQiitRUCLGNIUiAppRh7KgLCIxB0FpF0IFaZ1WrOYaaooByNTCLIopWXXVgHJQqpcQdUTdcIYfdeToGBSzFwvco/N0E9Y4iyfh07Fj9BRHxBhAwqhnJngxvYyJRxgRiikFqOiGE+/fvN03tg1dKMYJNEu20EKynvRwq9zO9Qz1RrLFch2F4eAhXxvbnxlkPhzTsSi5jNzoyEnIYYDLYF6eGnGToXkDPRi17GAZguINy0Lj3NTj9oSYOHciwK6ZorYui+H0iYsOhMM/Uk/vdrBPDtYwSU9t61MYom6emKAqnE4uKg4++1TZBqT4zKCYcJm0ZDhOQ3+tzOHTn2pgkcYgIfBN0mCRpXZdS6pAsc3C0TRtu7vdrOwiWvMYlummqF196/k/98A+vtz/xxTfe0mlWtU2apU29/fVPfersn//cf/tf/CkAEKM2VOYe3aSTuF6vv/M7v/N3P/3pYWXIWhRarSRJlNZ100g+vVqtiEi8NcuMO9MQqEn8Jxpe8kDK6hRnnOe5mDzpfRORdEXSND05OXnzzTclJ5EsIsYo12273Uqxc7/fn54WkkeJD97v94Isl6stXcIxStIYE4K/WK9xPtNaT6ZTJDaIRumyLPflXhMTkQZQhwTET96Uvi5D3kgexm+7Ees/+tJ13VpdAyNRXc8GRCJtrplhnrDDR/d//XOHNhp+Hb/tZg3saQ7+xuPwBDMt9TYYnS8O3PCHOxwKMApI8kBmBoIYY2QCAKWU0/Z6X4/UsYzGGGNRFMOwKfQwp2eefbZp26OjI4kDpKMdY0St8+ks1k0I/rUPf+hzn/wN6yxASxS0VgrMGBJwfbSs4oiXXI9YGhFRydgJIIFS0CnBdVrgShNpo1RkHSgGJi3FQGaltPADAjEwegAmNB5RgXo89O3r227cu4Pb94QeHXf/yYjzUA1ihK9nDIvBAYL3n/vcZ27deflOMblYrTD4XBtfVs8+96wgvowxIhkhvvb4+NgTCy5fbIhYVwmnBA8mACpJM2QZ1HW9XF4ppaX8MZ1OBTxDRNZa8kEaFNvtlogWi4VQqw88yN77o6MjgctmWSbz+iZx0hgU2q7VanXr1i0ims1midFjxpTZbMbMVVWVZUkxLpdLoXyYTqdytA8ePACAuiwR8eTkRGstRy5FTSISsrKLiwshWdnv99KlkWJZVe232+1mszIWZd5mPp9nWQaxE5yWoFNKOaIy7A5JV0d57zVrvDSxpagkRrWYTIpF4aytmwYQlDMyI46IoQlZUeiT0/XR0W6/3te13uskMcZoIjLWuDSt96VvvPfehohaARFGJmAiCkxoTdnUm6vVxKYcYjIpCNj7WFb1vq53+3K73108vLpcbb549+L1B5vE2DxJDKqqqfdNhUYb487TfJ6kR87mTjulNGvFSrFSTMur1YrXzl1NppNiUmRpaqzxPtR1U5WBkI0zNk/AWIm1xIO0dRuBGSECa22U0ULWR0TctLFtF0dHH3rtQ6++9HKR5ZpBaW2s0bqz2MLWiFpRf52V4vV6/dprr11cXAibyOjJY2vtfr+PTC5LmytPwHmeK4P79aYs95eXlwJqretaVrKAt8/OzqQL570XLjuZP05cYqwW9ZXdbuOcRbQKLYLR2tx54YWPfsu35nn+wW94/3q9bE6mR4vpdreSSFEa2uKdZZmlaSqQG2kSDh31p3ea0Ie81CN8CFTkyMIWggwcgRlYgSh59lsM3gM75yiGpqkNKKAoigvGGARW0E3CjK/nEED3BcQBgcb9f70l+rq2p/SAT9gOPSwfvgTlfl9k+dtvv/3w4UOpNQBAXuRojFQTJDajHvnCfX9j2MmQNvCoMa57CZrB8vNXw60NGenTnMuQpg5/HHo7Q+bDo2EV6EFfN3Y4tHokRBr2PJ1Of+8TleHadXMXTBQjEcVHAC1dBkXMyM5qBmiDL6toXK2dci5JjSOtfM/JgANhP4PipyXv+rq3GyvAaMyELBxBoRp796apO+lQ7+U+DaNdAF/DI/2em/ctKtBaMdNmu7p1dvaX/uv/5v/6P/zfX3/7bURVt6EJ8eTk+BO/8K/PLfyZ/+J/I9nCE54iWX/Hx8fM/Pzzz1/cv1D9/eL+AVBKKa0UqyF7GUh4xCBqawTDIFk7j7Qj27aSoqBQ3Q1FxyFdln93ux30c5zOOQIUV50kiYy7EJH8wMzb7VaAEPL8SCe6LMv9fi/wDIHk7vd7AMjzfDxCIxfCWpu6JMY4m87acq+15hiE3/Apb4RW1x2VG4nKDd8TH7PPIUvpLkXsFhECkA+h7YJpuWLv2VGBJzqJJ9R76PAIxzuMjx+mVwdN8JvTctc7f6T7D6OSzJCo3EiBxoUZxZIzyqRqVwbuih0KOEamOOxq/NXCQiHzdvIGWXgSxZ6dnQmW+vj4WFreSinQar0tE62N1i+8+OJ/8gf/4Kd+/VfzBDRCCD5J3FBCG99ZZDJ07eq6Z0Q8IqDVyESRWchMrVADAQCopo4aEbQEL1pdmz0CwX1p4AjAqAAEh63g8WQCX++mDkVIx8sjhqcqpowXAAPEr/0YEUAh+6Z55RvvvPih19ClbRuQKBItFmfr9XrgEZY1f3V1BQBZlpkkBQApJ0vPRCn1zjvvlGXZtrWskxBCURRDyNU0TQhRNDAFHiOkXh2p8b6sqirPc+l7SPrhvX/33Xdl0IV7lsKmaQRvdnl5+XB5mSTJycmJdHQl7RFkgmKSWSmxV2L3iChN0/1up5QSUVoAuH//vtAhIuJisSjLUlo9km+v1+uuoY0guVOMcbvdAkCapvv9/v79+yez4xi9tXa+mJflrqrr3X77+c9/nuJLZ8UkBDdUvrGPMm8YDclJBnNUt14y+bZptdEyEWGtRa3SSU6RYoypMwiAClnqHMSGTd36lmJyvPC7Wbu8rPc1GE0AMXOMoIz2ITRVlTgXvUeQIjwxQGCSZN7HcHlxkSv7zPmtlnykWNbtdrvf1c2+rJdXq3fu3b/78DKyhhA1qKg5SWyemwAYmKbT2Xk+Pyqyo6mbpOgUITKyUqwAsMn0dr3e1R6ttxnkNilmM0Bsyqau7nlft6GxEJVLmoBt28YQY4iSpYBSRiEBhBBQSR1Jv1CcP/fsMy+//PLZ2ZlC1bQtc0c+NeSBDABGQS/RRYj1evvu3Xsvv/wy9sRKw40wxkgmbIxdr9f5ZMIIZVneeelOW1aIOAzKy9vEsYbQrlar2WwmPN2iiHp+fl5V1a5ssjxFjJHa+XyqlFbKKHQIpvGt9/5bvuWb33337rvvvnN6tnAp7HabLEtjDFJVlAQVepMeY9TGwAhEIPV1EYF9ynSFR8ByY41KuuVntFUgbQRUpBgBjRlsr6RG0ktkirGVmYVWqgmDIDp0SOMDiz0kKvAfzWpzY7sx2/mUBURBvF/7/cdsIYSmbpDh8vKyLEvVtqiU0KsqpQhhgGO1vpMZkAGnG2QYcpDyxzDS4hwCvCcf7fjNTz7BOBrcHzKWoVUobZMBqsM9bNtaLTNON+tlh9OS1A9oaK0Xi8XXm6iM63F4/S/KWBQAqI7OnxiYkUnCF+wDd7xGaXJEUsZYUAqiiRRT56w1SiExUyQY9HD7L+QR+c7XefxPeZbX15G1wsRqBYyASiHH2PV1kE1f75c7MdxgpVT8uiKOcQ6GCM6Yuqpm00lVt8am1mV/+X//l/67H/8Hv/XpTytnZ/N5VTegzS/84i9v19sf/ZEfmRapQu7496T+1dPbSe+7g5kBiO+EEcqcelVLJFGFr/vlZaUdn+f5fD5P7bVAMjNLO0XmVdKUhbFnmBghInHMEmgOIDfBM2w2G2a2SWqtXS6X2+1W4B8oiEytr66usiwTSh+pjEKvRy4NFkGmiV2Tyy6o9KZpmqYt9ztnbLI4AmDn7LQ4vbwftDG+btu2DUl49Jq/92IQyZBH5Njhkazg4PEeZwjXc0/MzIqZhZwRoKnral8ykeh01XU17OLJaedjv/fGS4dvezSveM+Xbjxfj6sn4WErWY3kMnmkf/JoR2WwodhRsCEziKaPtkZbIwXm1Gii6H2IIYQYaPRQWWvn87mswDRNjbW6L+Bled627dHR0RhKhIiAuN/t86NFjFwH//5vfO2NL3+u2Vwyc56m2N2wvgHd48AQtOvEAcanAIigEDR2WHbg7q+9jcI6eEaU7plWiKC0wkiRQKFSQNChsAERwBBplFTlKW7koy9eC9pyl1SNPPiNKz/e5VB1HH8Jg0w3IyNyr7nRX43rZsuTlQeu3wwAwKFtk8n04uHDs90uXzgROrxar53W2kB7tZTxcQRMk0Rm5S8uLs5u3TbWEpHoZ4ufE0BXmnZUxQM3l6Ss2+1W9PLE3F1cXMxms9PTU/Hu5+fn4tFlJ0LPJbGgEHZJSOS9v7y8fPXVV40x+/3++OgIATWqpq5jCIlzDx48mM/nHKkqd0VRSCNFSDvkZyI6OTkJITx48EDsnsxVi32TSQA5VGPMw4cPxZqdn59LoLBYLMTuSaMDAGbTWV1XWqskSQqbLxaz9WZVlruLiwvgePKRjwy3eICwC7fsuLImEc9gx9qqo3gaulXdClG43e+dtVp3z4FSKopmNoJT1iTOWlChblbL/WZT+QC7khQoJmM0AzZNW7etDzFENkYGOwm501AEUID64nK1Xm6qslkcL3yMm/1+td2ut2XVtvuyWq03keA0L/J8MsuK1NgsTZVWD5aXm2p/nGdnRTafZEeTpEjRoPBeKgANjElqQmTd+qPT09PT08XRfDqbhhB2ZpssV230lffUeiBsItetr0PTBq9RodJoNCoErZM0mS7mRyfH02Ly4umZMxaNBmaFOCsm2mgtlbtHOirc34jf/cxnd7v9d33Xd0mmoQ9LBsfHx1mW3XvwoKzLZ6w9OT0JMe622+eee7auq+Pj47Ozs7Is7927N51OEbGuawB6/Uuvv/TiS5FoNpsZZ7U1VV2fn5+nxbRtGwa0SldVo7VBFRWywtDUjVaafPvaN7yfmaJvT05nxqrt9orYak3GmEjUtG2IQbDrWisJAKB3E8IuJU/NYF340E/c8FWy7OWsk8QF1bIPLETmiEyCxWdkkevrVmlijQfebrda67zIKBAFaOu6McYZgyxhJXf2FhB7kw0KoZOPREAaGTMC7B0H49gujS0Y49gQ3jytGxXJJxi98TZwC+me4Wq0AHj4dmN0nmer5dXV1dVmvU6VKqaTLM9Qa2utTV2apnVdyyWVepzYuvEO5SuGXyXJ0SPy4q96tHKcQ1f2cVVXGOUSQ4IxDoqIaAiGh3hYEDcDbdKNwAb7OYtxnQUA8jw3Q1FT/niIyh75SwYEkYLSCBq1DQRtiM4ZhYqGu4gsqGRAFYiUtsbYtvWt9wyqqWMxNc6loWmYSCnUGq1DbUxoPSoDxBh8s1+7KbLRpHRUiiEo6AYesKcRE/4GrR4bwR0so8MVddNJj26eGTOrMoTgJWHdbtYnpzOjmtSmrfcxsDZ6UEINoz0QRwQ0IrgLoPR4fwci9jcGCsbO/pprgEExUOBEJ7GODpSPW8Vw55npX/jR//wf/U/x8196s2lbFalu+NLkv/Q7X3rn7/2DH/nhH3rh1tlsmrdtaVJVt02hU2mUkgJjNTAhmtB6RWCUFp/dNM16vc6ybLFYAEBZliZxlcgsOjedTGS+M8+y+WwmSsxt3TjnwHFd11VZZmlqlFZKCQ5HUhdpp8iyCz6KbzbGOJt47ymyVkaGT2TaRD4FADLxkqZpUUzHVQEp50gX2Fp7fn6e57m0XAaWaq0No16td23bBt+SievderW+bJp2mmdt0+z3O4NKGy2Vb1SotQatDvMK8DFEJm2N7YQmibqZcsCRlMoNINA4mTl4FAUAKem59MF7QWhAtGkSY6QQyqYCOkjMDwymfmxShPjYLsfBc8IsCLa+IjLShQSAx7CKy9m9Z1noxl+cNt3li6R615MYK/HJ8LbWt4lLZrPZdrs12hSYTE1Rl83k9ChJbTopitnEWYcM1Po0SY0xIYbgw26/q8qKmauqvHXr1q1nnltvt6x0Npl671nhdDY/Pjr2McjkNPQGVBovbdMmLa3uPXzmmfMQYEX4B/6zP/Gbv/RLXJYYPDVrY1Abo63WRmmFBkGjVojjnrAM4QBE4EgMqIwCUAosKK2N1oqII0VmhDxrfYgxoFJSGbRaa21QqSpGFq4bZGCFEQvtLsu1JUvKAKJW+jo3QNQoORhAh8bqDDozUCAEMNpI4ivutvPGDAA4YicGaVZd/2oxEkSKgMCoZKBFa60AGoCWCYNQJ5MOMXEusc5qQ+u1YU1KRcWRuW6aQMEYVzb1sF6RQaYLmTumV5XqstyqcrJ+8ABZaWOzs3Ob52VTU4inJ6dJkqRZlrrEN00o6xdeeHG/2+/LPTJkWebrBomdNlJbNKh8jHmetW1blrVzKRGs11vnnHOpyI9gL2SmtZYxNmOMMQP7nKqqBoC0xjxPAbht67qmuq6rav/cc89927d9q1KqLEulAIl32y1EihSNNoHbRJtys1ORAampa63Ucrl84403Hjx48PLLLxdFMSmKLm3OMhF5FOauLsggOj49TfN8t9tt9/t9VaUycq2VcJEdHx8fHR3JwXd+nbncrMv9fj47K8u9TLqnNmsq/9ILr85mM4TrR3tAinvv6bBvJrdYiCgSY2EUHwxdXwK2abLf7dIkVUqFEJIkASaxYx6btkIGY4pnFy8VdbAP3vj8cQi3gKvtxk2PnE4JXBPb5b5pYD2dFZ58krhApJvMh7Df1tuKdpgsl6s3rj73vvPnjDYNheV++3B1tStLhZim+clxcnI0yZI0TROtlLMOgI8nJ8srTK06n9HZsSuKLM9Sa003MuQDADpKsiTLkuzk6Pj05HgyydLU1TXVFuZnp/fXa0+aydZ1rHxY7fZ7X7KJZ8W0mEyOTo4X8wVrVbVNZLLGJBp2211ibYeOzhNjbYwRfGDAq3avZGlZowAzlwoE8eLy4rOf+6w29nNf+HzV1IzQ+FbJRKJSaPXl6so/fGCMSZO0qet6Xx4fnzx8eD/65uz22cXFxdt33y6KIsmTwOHWs7fu37+Pyu5Wq6vtJp9NNmXHlz2ZTPJ6GgHTLDs6utW2frW6aoOw3TbAnGld7jZMzdXy3ek0n+aFbyqj3MniJCoLoLb7/Wa3YaYsS1pqiDxQbNvojBtm2AQPJmzazmqRnxc6xNDUqNBqDcTa2MFnBWKlVJoXkhxbTKzrBKC10p6Fzk7HGE1ooCdlicyM5FILACEGDpEZimIi8SR2pPYGEAk19ImG6DpFhsiMkYNn8WlNEwTr0zlAAKprpY02VhmNoqbcPRiQTHKh9gmetNZGWwAlmVHwYchp3jPI7n2lBuh1F7Qmin2kGRHBGC1PKDBnzkbfUhvaponeG8CvfPGL9XarEfLFzKWJmxQhBLTGJomUNqyxDFprW1UNdNom3eOMiMaozWYzhElDlRAACEFZIwoDiKhNBzGVm6t7ZlpiRoS2l250OiVho70eQUEWrXPsTM2Q/0h5uq7rgSJMEhI5NmmKhZAAgLVJb5oiM9Z1S0RGdTm/pF6SFXvvv4YZFcmNhvOp61oUDwBBeLf6SAVdYn0ERKV1BwqKTCFGL4byPQrXBxkFMlAMPnilvVYYD2P9997Bf9z2uHI1j+aArTPOaoUMHNXvwzF8lQMcZ/gUnHPNdvu+Oy/8+R/90Z/9//zCL/7SL+dpxpFrpbwP//6zn337v//vv+Oj3/o93/2d73vpjvdV5oqOWQhBoSJiRNRK1RTb4AVXIKVr8YhD+jsEoFJTEQONiJvNJsQo6vLDJP2QWItFk6on9P5P0Air1er4+FgyexzxRDGz6pVVJFfRWs9mM9mhkIFCHyvLXMrw2EhGJLLTQ/ZijDk7vbVZLTebDVOc5KlVuF5dtW2zp4CsOq73/j4+oTbSF/6RiYaWSH8z+o8/Uk4Y/3zjbde/0kGLRf5IAPRELOzQBBsuyPgLxt/19CWfp9n4ke0J73yal4RUTbAQkdi3nolOjo7n52eQOrBaWzuZTCZ5QT4kfSuZOpXSSkzQNEvPz8/Pbp0DADFneS4or325V1ovl0sRtRA00YDMvLi82Gw2L750Zxfrk9vPFAbvPPPMT/6/fsK3YZZlCMTIMUYEUlqRAtEztGpEnaQPWK3zNL2e/hdRcACZrjcKSSEQaqWk2CtlIrkU3Vw6MwMhKGBAQKmxPa0u7Y1uHlx3Ufrfb77t8R857LwhSpopRUcCVIjEHIkQY57nMcQmtLEnShkf1LCnoUDZKbsBoYIYvG/bxLrF8cl6vT45WhwdH5tEa1TCrgYI0iPdbreh9ZPJZLvdyuxKCGE2m4nZiTECd7Nqwqokd9k5J+8BgNVqJfMbYlhML2Q2rqQIikYqI5vNRnRp5Q3DVLq19uT45Oz0zDn3zjvvyG6D75Lh9eZKYGl1Xd+6devWrVunp6fM7Jy7urqSMqpYy2EOZzKZSMAnujEd+pxICJfvv/MOc8dV+vzzzw+4tei9pOgXFw8l/5nNZldXV2mSXl5evv/FZ65v3yEG1TyCWhkqKb5th0qQvEGCj8i0vdg1vq2TOk1TmZRQ1xybDKAYNIFy2fTk1nPN+kG1ur9ZkUmTeleWZVPuy81609QWeGIMGp03dVs1nrhZ76vldr9abba7artvFIa79x+6xLHRu6ZGrWfzeWrdfDKd58XxIk0SM+gFC1DNV84ZPZ8XxTTLstQliVIKYwCtgBWCass2MGmt0RibuiRPjTXgG0Le7UsfYt340sc6xoZjBDo5PZ3OFy+cP6+NSdM0L4qyqXflHsWjxUBMm/0O9ruiKJrQhctJkqTMYA0BE3CIkUMQfrkQwtnZ2e3bz37u85/7qZ/6KYEViPuLMfoQpkeLyXSyXC6rqnJp4r1vvV9v1kmaeu+NM3meS8paFEVd1/P5/Pj4WGn78suv3r9/f73eJUkSI9V1PZ8dPbxYauuqxq83O3ki0qwr7wKzpaiVUhp9aNvgL5fL1jd5nk1ni2wyQ60BMctzrTFJLDO1vm6qJjN5X8W+5m+U6BOIGXtHw4AKB+ALP+KJ+pqdYurCKoVSLgnQc3GMOzNyiYYIxCijNAASKoMSEV6LiuN1ZeSA/+mgcnfDRClgBAKITAx4XQ9ihmq/ZwQApQCBIHIUPCHi73ngJ0WmrnCJgLvNZr/bxRAmRaG0Rq1RK2TlZDoaoCgKGmsXPLKN0dH0yLTFsA3hk0R9N9om49snpVT5WSznAHuO8TrAoxHnmLDDiblTIxoGPESPQ9+NGRovMt0qKc0Nn/J1Qr/S0SYnNpRafV3t9rW0sKFfcGJZnnLnIYS6rhCNNSoCOP37mBbgIeQdDvULVA8jybNM1gr15Hf/f9mQkduISIVLdlVza3Hy53/kRz7y2jf++P/jf8yNabKsjSEyLYP/qV/6xV/75G/9r777j373d3z87OjIU4OoUCmtNIU2xuDbdrVatb6VyXsxoAPXITMrpcKotYeIEhAIACwKsVJP/RF78llmFrbiYQlKPXK32zVNc7Q4ZmYZRR2SHOldJs7aXkp5t9vJjOytW7cePnwYYyOXXYqR8rbhGZCqQFEU4uYlpwcAo91sNkuShCmmzmpko5W1ttxuRD5KK/NkIM1gnbXWorDM/XxKZ/377dFV8VUBqdA3Irra5eH2BCzsmGmUeqLw7oDpwD2Mdzs+uq+KUn3CAY9hb6OdH5z7jaGXgz2MCvsI3YS91jpEH5gi0+LoKM0LTq0gxRWAVqqYTrTS0uweCiVt2x4fH0+zdDqdWmurqhq4X3vvBUIANQS1Eiwy4gc+9FrkuNyuGYLiWJjUFJP/7Ae+/1/+9E+DUUgemDBG6RB3fBZ4cOUjxTECTZD373nKxhh5Tbre3LOvEJPiEe4KYEC0Pn1+edN8Pf6TNwAnT7n/UbbRJVWBSFEk5sK5CEwk6AoGlEzrq++xH0avNuu1j3R2erper7frVTZJ8zSbzWZVXW0bH9tWShUAIFJ33vs8z6Wbaq2VkeKyqaV2KBUNIhKARF3Xx8fHVVW98847QmLunBOa1zRNrVbU65OKSolYD5FtEWGW4+NjUW/c7XaScsQQxJuKrRMGkZ5UXZdlmSTJ0dGR7FkGXZhZOEJkajGE8PDhQ2bO81wCVkljBOu12+0QMUkSY7SiiAibzUZagpJ9GWOaqkqdOzs7S9NUkjcx2lmWeX9TSfAAvD56Kgcwj+RgwpUvrCRVVQl1MjMTMCNoY/I8v337tjHm3XffpRH967BDEe547rnn3lrdX62ustlst292u7oqq7quiYKxSNQSxUCw3zV1216ud8vNbrOvFOmzk/MiL85nRZZlKnG1b/fljkKcpNnZ7Gg+m2YTkyRucDeChSvL0mg1KSYypXYjBmLmEINEPEJhFWMU0lEibkME1G1stDZFkZ3O5sdnZ9P5wllXbSuXJNJ/22w3nmJeFM45HQPHjoNbxnhkJQhtFyUORsnefr+X0aOT05MPfegbP/PZz5RlySNweIwxMl0tl8R0enp6cXEhsGqh4GdkYxXWOJvNVqvV8JiXZRljnBfTuq7v3LkjbHWTyeTOnTsXFxfK6FuLY22NVO6ELqILKxGb3d7axCZJVZdNU4XYorVl68uHD45IOZfkRTqbzohjCK1SaLQDh4oHEq2O5FeeNa01BT+sgRs+hR4RLB6caWibcbA7bI8zGPIVuufL0j3/TfcphRquGTJvOKbxkogjbn3ZL/fdAB5NbjBAaEpAVMogaoAALNG5PUx8fm+2oX0pXuH+/fsipjSdTkl1KCwYOX1jTOufFEhTzzX/aDFxHG8MYUyfchy47HjI9jn8O9zHPti7vqTSqZZRbeiJzobjB7imazo4/cNZ/Lqthro2HFqYp01UhmRDuEekNinhKfQmr5v1aeqyalfbUoibmDmGGMLXkKjEENumNaZFMKzw686mnma7EXHecPRDYpokReKcMOrdDA7+f7vNiklV1llip5lhVFUbPvrhD/+d/+P/6Sf/2c/+yuc+v9xvGwUXVZka/aXL5U/87M9+6jNf+IHv+95X33/HKOXYWAUcuW398upyeXVlrYkUBYtljBkESTpL5MPgkwbrIJlAVdfia2UxUM9wGkKQcGGc+QxEIgAgQYAwpCml0jQVpp3AJAtdHjNJgEXGUUpTMse/2Wzks0OSo3umecFYi66qMQZYbddX2+12OskB+OLhw9XVUimlFDa+pRgBNcABjfWNDUdoLqUUMclj/mj68YRE5bCSffNTQ13z0a++/uXw5ScUP+CgEHLTTo0/8nUk20MV9oZlf/SAb5TTbu5k+Eiv+WOMKesGldLW3nr2mfRolh/N0jwfCC83682Q0si0ktb65ORkNps51U12itAEIgptgzGmqmuJJIbgQJR/tLW7tooUp7MiNpjZfHl1efvkeHZ+/u3/6Xf/h1/+hFPWKnSWLZDqpMcYEcc1aYUYe8QzPlK7Gm9GayIS1USjDQB47xsKUXBxcllG/xIAPXXp7ob5ehJ/13gdPtW+AYbWMQMgEKJSwMAhRoW0qzuKFFYINKC/v8q8CgMrpeq2reuOr5wB2rZ1Rg8QamaoqrLc7hSgc242mU51N4mutZbqmJQ/Hj586LJUvIzc9yEpFUultZ7P5wK1Eq2Aoij2+31su2aFSLIMzkuSjcViISLiq9VqMpmcnJys1+vlcumbjmJeFBuTJJFBFERUqG7fvn11dSVRPvXaApLDDEZV/Hee51/+8peLonjxxRclk5H5YBkwJSJmNZvNQvBFUUhZR1IvZrbOKWRl7VCJCCEI9vXoaDG+1Dfivxu3RbIy6Sld3H/AfR8Ye0iYc05bg0rZxGVZ9swzz+g0HbpDMcZx2GGtnWWz5sIsl0tH9cPl0gdo6liWNaIq8hyYLy8v27atPZZlU3u/Wm2Xq40nTorp6dmtk5PjZ28duSxBpaum3u923PrCJqfT+bSYQMLGam0MRfLBA0WKwRot6IZIxN77EBBRApTgPaAiZh983TSr9domxsc2z1Pftm3wSZ7bLDMhnpyfn99+ppjP83xKiG3r9dQIL4I2JkmSWFdicLIscyYLolyJiErlRaGU0sZoYzokaC88PdDH/fqv/8bDq/XAQSzAmC7UQxOYLi4vETFJ09Z769xemLKtDgQqhC996UtjahBxc0TsXLJarbIs996HEC8vL9fr9fnt20maEvN0Os+ytK5Fn0qGTTRok9jEZplr891+632TZk5aUUTKe982gahUClBB9ynU1NJgPyWxl8dNKeVHXu+GQ7khWCyXQve0lkN4Oq5mPppjDPvUWiuFBDiQrjALvaJCpXjkV2URDzs5dL43kFrMnd3uZluGPShUkcm3NXXIIKuNVYCgFcLvpaQ4AAyzrkTUtO2Dhw+7taGU0kqiMuhVyABAdFSesMPYczTDI15pHG+onuRNAvvx2x6pLY4Bz12TeXzXhleHirbqJVa4Z18Y3o8jHjDos8dxlKVGEk/jw+jUNsanN1hV2YsknUKoXJbl1dWVBIvD7B32uWmXnsZQN35XeWE59MG3vpMHGqVuGInE3hERin4zMcgsCsVI5H3QKirVIfBYVv4Nx3y4PTbovJ4xld8Og6fH7a6/tSIqjIhCxiMHcDhucvCp8UuCzx62IbAYzmK4MqiuAVRhJJcDN58xTtOUYvCt19ZZ4CxLE6N/9E//8Ie/9Ob/9DM/8/m33yBrTJ5HZ3eB/91nP/eFt9/50//5933bN3/z8XSuNIfGXy2X79x9t27q2dHMUDdfIRNy4lmlW6J6Cjx5TmKvwJhmaeu9dAylGyOTJ9RxlhsBKQ7zWNPpNE1T7/3VciWOfDqdAoCYbCkZtm3X7FNK5XkxnU73+72ovCllqqqSWEIeAHHqslzzPJcUutcAbSU8ratW1n1ZVhV34y6IuN9UdV3HSGAgxDC4c2KiyKq3j4MZNT2LvDMm8rWCys0l1m+Pyz2u798jL90w3EPQMCwP+UV+rkcFlcE0dMdMj/3Sg/I/s7Tph51cf8thzegmoXj/fvnfeIfjkzrs5FyX3CKR1tqHIFUfmdnqzA4iapXk2XSaz85OsvnUJs5a2zYNRzo+OpY7LkPPzHx8fHx+fj6fz2PTlcPVaMRzIE8TJrosy7Q2bduIo5UxzbLe29pADNF7bdNtWc8m81c/9JE3Xv/d+29+5SjLNbJT4BRrwSczaaWu+TONHq4A8oEWTeiRwR3rB3mLbLQWugAGBgNMCIQMmolYcyQKkYC59Z4RWKFS+loMtL+/Yxsy/uPwM40kVpRSWr23W8XDKUbFA+YCmYkZ+jWFqJGZmZiJtUalNct3IDa+gX7VUIf5QCLqjkmW1yNL3RjTBI4xVlXdtG1VVa+//joFP8kzmxqN2nufWOebJk9T4e01Stdts1qtRBubR52TxWLhKUp9ZGjnygMryipENJvNHjx4sNvtRe5WSmzLy0ullKCwJE8oioKZi6IARJnXL4rCaC2DsJPJZDKZ7DZ7pVRRFDIBH3virLIsb90+G9ylOEchGknTVPgS5TadnZ0JAu3ll18es7FLNiIFI1GCMsakaYdGu7i4ENIIpZRvG4xxvbqSgSthK9lsNvP5/H2vvo8iGdNBs5hZsju51/qwASJKKeJxirzAXtBWNFjEggkxFyIKqYBUnUZWjhGuVaJDCFdXV8Q8nU5N2wLpmGFbRCLWBuu2BOLYBiALoIDQaDPJc0Y1XRw/d/v86GhxfmuhrEGtQwxNVTS7vSNcTIvMuuii0NZ5jkjRaDQaEqvbulltVoicJCkxxRiljBpjBIYIDIghhuV6xZrb2ORNxkRV02wbXyzm6XSmrKvagGWDyqVplqVZQ9X05ISZq6pSxpjEEbOEjk3wRmtrEhS8h1KRiRWygjTJYl/GGhrdy+XyF/7VL2zK2iWJcMYMpRNEdIk7Oprv9/s333679e2zzz03Pz7ywS+XV6mzxTSzVqdpKuCC6XS6XC7n8/nZ2fnVant5eTUpiv2+Vgqnk6T17Z07LyVpHgOj0ggmeBYJcFaCLdWAwMpobVPj0Lqq2ocYCA0r0zatVtoYa4xSCiL5GFkp5UM02FWixTFhL+RFRK1vEVCa2LKu5IcYIyolclTSLFDQBbVyZSSLG6p7qgcTXm9KCYBcilDGGG0sURtj1DZRClvfUiSl2KqDsdIb+iCPd9MqMjF1B88gEisMAAyKQmRiikTEiLobdlfaKetFrnRke4c9H1o6fjSupEeAGAAQKQbvJfxeXi6Fk1AyB0Gwy/URdyYXXxHLlAv0kArdC5UQEXPHxib7hLF/1ypSHIJkMZtDzDm8LZI8N8jEMkk13CnuC5T9dCvfKLZK6BhjlAb1MCRDPTYHR2ppw9UbFkNvXgTSH2O8Hrg3w44GIzt89263G8onknjVdb1arYSKQUrX0uCOI0VMjV3S0kWuDEyk1LWAl9i+GEl2TEQSCRAQsNJaq8g+RO+9Vl4jMndqQdwjvA8XRL8En1QcP8wlbpSrx0nh4YfkgvZV/wbHWcpBF3Hckzl4ifh6Hdw4ojFz3HDxJRkdDX0eyCoBQJCQgKKxmoG0Ro6N1WC0/qY7z3/4//Bjv/wb/8u//JVf/vK77141rVcmzZO3t5sf/3/+v7/9k7/z3/7v/nw2m+235Wa1aeomItVtY7yi0EkpDwBu0TEYOJfFI4pKo/hgAdhIRKi16tDkIVhrfaSqqqTwKR+RDmAI4ZlnnpFERYIDkTMbkmk5QamXtG1ARFldZVmJjIBEIUMPR95AvUil4H+22y0zO+cmxUwusrXaGgd5LngP8s3dt+62vtV5IVd7MKmS3cOIaAsRh0QFrBkapjfu5o3AcYjUb7zzRkB/Y6MR0I4j8yGX8fBD4IM0QPUUW4jIhxnC+KvHISwSHuTt2J2+1AJ4fMDv1Sh49PQllB3/On6znLUxxscwLoUQEPJgmxC1UkZneS79tNliXhSFihxD0ImT2NFae3l5ud/vBRSktc6n0zEHFPS3DBGJeSB0kp6ehFwmcWRUkiSpTZI0j03rmzqCImWsdd/xvd/38z/7M7sHD4zS80meKDaGAscQW02jiwZ4bW4Q4uFdPihlxYCIxojoHgOiU9YAKPYQVQAgkmYdM0ATfQQABUqP0dVdAj9c+WG9DanLcBmHTymltBkhHx5ZNtfvHNsrYUK5ZmOTmxVBenQAxhogCjG2FLnHQkKfSsst4P6wH3XX0qdlhqapJS4XTvP9fv/GG+Xt81uTyXme5242mxVTSS3W6zX3uLv9fi9NBhnqmEwmrFAWAyKKMZF4WmzparXabDZXV1fMrLUSMe/pdDqbzUQJVBAysk6ol7GTEkxd1wIipZ75mpmlOQN9iCCTG/JSlmXS1ZEFuV6v67oWXKI8vAAgMx5ElPTSkGJRT09Pp9OpVAPFxEHwDx48UD3zO/R87qFtNTAAiKTMZrOJMU4mk4997GOnp6caWmM6Kd4BdNEZkD5MFL+TJIlkRDFGgwfsfEPJE1Hw86S13m63V1dXclXl+ZLYh8AoYFRcb9ZXq6s0TaeTYoZKoWPW3sembqt6ryHO8iTJMrB5G7ht26Ztd/uqrKrJdHZ+PC2KzDABBdSQOZ3obB89tEFrBowKSMDyoW2Cb5GiQchTF9rm4eVFoHh0dKSUar2PIUhwzAyMSiUWYtjXFW4RFJVNCQyeYh3NblfVdYvK5JNmQWBsAqAiUWKMUsp7r7QuJkWGRY8hiTbN5LoQACmU7mIbg2XabtaqRzQxs6zAZ5999sU7L3729S+J7ZJu8PDYKqU2u93iaDE7WiyvrlyWrjbryWQync/S1BmFd+/eHR5/MYDr9TrPJwqNQr1e7+bz+dnZWVnuy31rjUcVssIkaUZEwKiNBWZkzSJaaWxEZFBowCilIyMFkySBGUFRZK1VlhUAFKImCq1vjLYYu1kR6JFX4gFDCAqVrFh5OqR2kCSJtkKpc90SkZhblp8aNWdkt0MKBCOPBgCSojAzokI0EXwEZFTKWE1AHAAVKAN0XSR6QtH5OkDVGhA1ah8DQGAAIh5XmiggACBIrYghBgBUxBqxiQRjlvYDLNnBfB8/Eh8ONx0PPaxE9jGEhw8fSJlGPmzMNfWWvFliM2JWWsWRzKLppSQBQPDP1KM5xt+FiBRpgB9LYD/s9jrf4O4uBOrU8CS7loxoSEqJSHzOcKpDzVfipbEfHFIRKQYJgeEw+3d9hKN4nKiTupd4wLz99ttDNiJrbvhiiVa7NKtvmPhumK+Sp9H1mzCmaa0Tq32AbVnv6na3L+tqb52zo0v5VTcmDjFg8C22ijnNBh+N8Ei4//u6yQl2sxNPjxwfbarvllKPHYTDYvkQnsq/EtOLEPvgPMY7pOu1N7wQAQBBzTINCv7UH/tj3/4tH/mV3/zNf/EL//p3vvC6mzvSqib8jd/+nb/79/67//J/+6Oh3McYsjRpMUQiDdeNQlnl8o1t2yZ5ZnoadWFTGRCiaZYNHktCBEEmTCaT2I+IS5ZCfbMYe51RY4z4b2aWwp7MEjCzmGN5GzOLtqMxbpg84Z7RQb7Xe3/37t22bYuiMMYM1xkAQgjSq7laXtZ+r4HAdhx3gyNHVHx4X2+UecbbYI611jeWIY7UkeQ9w5Llwwh+nHIIPGucjUBfII8Ux+88eM/TPQFPyIh+T7aD83ri2w5OYRRVH7BaIhBCE/yRtU3TpMEjYPShyIu6rGRkedibaAsIRjwrchkm7u9L54qIqG4a7tvKUm6QkK4sy+Ro6nSiGFQEhToycsAQgQDy4+MPfNNHfvF//pnpdFruS5cnqEEppVkDXTsjHB07i6h8/+sA9em8hTCkMGPP/ChPMDO3NXSYeYmtUATM4MZNjkTALAbW9NLs77npxwjdwBNREKrHXQzubbitUXACiKChlXHwxEXPZVMFSaYjMZECFCl6IuKOH/Yx66Fn9ZAeyHQ6PTpaaESgSBitNlrr1dVqWhSpdY0xi8XiaL5YbzdiRoQbUGv9/PPPX11d7ff747PTgfEvxijzJEQkiP+qqrIse/nllwXW9f73v19Mq1UYQnjjjTeEicsYI+zGMcaiKKRJS0RS+ACALMuKonj48KEMyYho/XQ6zfNckp+7d1cnJycyOTNwGBpjBI4osYjWuigKNUK5iHJFWZZ3797d7XbSed5sNnfv3j2eTYsiPz4+lpagZC9KqWQ2g+ir/X6/39+9e1eY3F9++eUPfOADdVUSRAA93GLx7OLWNaIsIenkhMeI5wyGSBZ2IELCIcgYNgA0Rg81P2NMNinOz84//9YXLy4uzk7PtFZaW62sJN1pYowFkzgPOkENkCNiWVWb7TZJkkluUsfoGyQNQMwagY1VMXLtK6WY2iieNPo2es8xGsTMuZinV6uV2mwAURifqev/yTGCNkZbQ75tmma9ZV2iUooAS87nxyfH2i6Xq6ur1XqzW6+35+e3hRpbwMnOOTC6DV7cExjV+E6tUi5R07be+8iECje7MkkSGZWUoFxylT/5J//k/+0f/I/v3n1XEtEbZnM2n4NS1jkGuP/gwdHRESh1//79k9Pjk/lUhrLm8/nR0ZGUWpRSggG0NiGCpmmXyysBC+R5MZ8tuilxEYJBLWyWRhvUmk0iTzsq0FqblIiicQkypUmhUcUYt9sdMzlnGDh4Qg2KGXpqSsnEhuMX1SD5WbyzLFFldF031nUxaKQoBz8kKm3bylhU2zT6kbmF7uIwX5feARrvIzMB+BgFm6islbOhNj7NWN+QqJB0RRQCsBQOnHNqRPfK8bobjMAABBQp+hi/zhmEJ9he6sOG7Xa73mwQUGoBADAApnjURVdK9QuQh73JYuuL2r7LZ0aBpWyDK4Q+2BMjIFn04KMBQIqzIL4sPPbaDjkPHc7KwlD3HLV0sB/wDr08N3wV6DIPWet0OjVvvPFG/54uGxnHWNjrIQxoOflZOCUWi8VsNpNRNsnqlFJGQYi43lX7Jlyt1lfLC4XIcFhl/Gr3VaGgcbo5uGHy6in38HuyIaDSXSt8RGPztW1yPWX2DnsmGeGuEbiUjAUPN6xL+2wqH+dHUEZ08JuULAkAFJBL3G6zZmqPnf2eb/3Yxz78zb/867/xMz//80uGNoQIuNlXu+2eqh1RG3Qgw6TR2lTojMSlDXqoTdNoZ4eUQw5SrsbQDZRXxf+JXIBSCqAjNpGgwfQyQwPIYb1er9frAaTR5R7WCoahrussy0RNWYhuzs9vSwVUZKRljH5IBqSQKeBvuVYycfj8c5MuzkDQWoXWJ85qra11SilrrNY6BH/DYdMId3tjvQUfInU1+xu9N+x7YuPMU+74ow/weyYqHQayfzLHwT0qJdez355KxIoP6/q/5wn++LzwiXsfnQv74KVROI6HZKvquvW+rCtMbNO0dV1ZVIphkudegWC7kySR5HO40dLTK4pit9tJe+26CgBQ17UMQ4sA37179z7ykY+cHB+3iq3SoWzYx9Q4QzoojAEC02q3xiT1CGmeh+22bVpkIIPE0YB+z/kOZLiB1BrO+snpYpYmIeiGmVr2fU+KDjM4AFDS4+jX2BN2+Oi04rA9oU40lO0f9W2RIiACoNYaiHwMddP0ixVGnlxEALt/njBTHykiKklU2rZ9+PDhq6++2lRlmqagua2bhw8f7ra7Zj5PrLu6XG63WwV4fHoiz3JRFAN8SyKMzWYjzdvYqxxWVSVNlYuLC+99lmXQP8tN03S1mBilkzOfz0VmJ8YoZln+Ls+gKHyfnJzEGFerlbBOSRtkNpuJnn03IpWYIU0Sg4a9Lt5ms5F5aGF+H8asRXF8tVqFEE5PT2X1ytlNp5Ozs7Pj46PlcrlcLgFgMHHO2uP5NLStdK0vLy/lfj148AARoo6I3SSP6vnc5XFLnZNbwH1ZV6K0NE1pNIV/I1HxMQJe19GG7rdSqmlq6aggcKYg1FVd1+v12hVut9sljp0DgK58ntrUWECl9nXFSmullYY0RWDHFKPflX4/dTkazRgBNGvlEt1ELNtaOY0hDt5zQCJIcCwJwHq9Fr4EvMbAgJxokiRKIQDFGLyPxhhlHWqNxhWz+fzodL8rl5dX+3159+79sqzPjhdZkSFiJEpMYpztOk0IWZ4JwCzGuN/vhSFGhjDnRydCNiMzkzJVkqbpV77ylZOT4325F8zCjVh/tbraV5Wg6K21u91Ozq6u68vgjTGinyORaJ7nSZJ4H4lgMpmenJwsl8u7d+/euXNnPp+7/v6On2txu1prZQxpiz3HNSp2wETeZRky2MihbWOMaZoB8H6/Iw5J4uqytApVH/Xd2P+QqFBfnpcAQDpRMo2mlNKqi966gCEG1ROK4uMjOjlluafMTEwDZG4otA/x8dM4t6GAJTWZtm60NXL7BDl8baOiB9lpR8KLxMJX3IK5eZGfZtOP0DyMf5ZTkKBokuUKVZqmqVDYjaDgUuSSijmRkAhjn9LgEEKoET6FD0dJh0kR6JseADD0h28URuHQFLznNry5ez7GjmNE88U9Sk3eLDxbYv24l6fsPkXjYKy7X2KxzVtvvaV7RlfpHkC/xKfz2fCSNVabbkqhrmtkmEwmx8fHi8XCjSwgM0fvlUZAjsGHIDP3FAKFEDrCTEn4Rf71vc5faWUAldLioWOMiL/vFeL33LRCq7XRSj1lHfuRTdTZr66u6rq+e/fuG2+8cf/+/XfeeUdqwDxioZarJ2irF55/8dlnn/3gBz/4yiuvTCaTIeJkBOoRJz1/KQMAMhDyrt7l8yJU3oFN8jQJ7of/2Pd+2zd/y7/5tV/7lz//L5d377784se0UWVTE7U1NZDqrMh88DKXIH5aQgHo50DEKEvfQxIViWlkZEIgE7L0RRCjbVsfSUCKOIK0iREXMJhQ5SCigM6FDqVnZVGSpcjzJkoIWVa0bStBgIQUsSfrsNaenZ3J36fTqXydpFVVXYamaZrGaBUilWWpANMUQohlWRoCZbRziTLm0ZZtF2Ie4l0jBXpkaH78weFRHKc68ZBP46AqOfq5y0n6bfw2ISQdjAiap+5MPp6Y6z9+u/E8PuGyHJxLjMbarudADAqk8MkAZVO3Iaw3m/nJ8VtvvPnOm29984e/ySmdOGeLLE/T6D2FaEXXaLtJkmSS57vd1lpbFMVkMhHC4uFIBGQox1BV1UsvvTRkgJoxMY4tW6Ot0ruy7JB/wGmW27Nbf/g7v/uNT34yibxv2ogaGRii1Xroq+KNibjR3JtC1EpxP60xwogxMHEEROQQOMS8SFvlRdK+JmICQGBkYlSjbGXAk0hS/YSUY/zSDTdziIs9uHnDKn3UxhKxEoA5IGoTfaiqCgG0MUKryXLro+jKdBAj5O7oh92xOH0GZtG5ZIqhLPfZZHJxeVlXe2qDTbUzRnKAumliCPP5fLFYrK9WknLUdS3GkJnfeust0ZVP8ixNU4nnyrKU2c1nn312NpsJJ/VAVCjZixi3pqq2261Ivw/hzjBcHmO8ffu2LCEiEqbB6XTa1n6xWAx0XjKILyCu6XTqrGXiuqpQqSzL7t+/H0LI0mwynUwmk6ZpvvzlL4sSrrhXoQARwyUQOLFjk8nk9u1byLxcXq1W6xAiMStlFkdFlmWpc6vLB9V+f3R0BADSsXn99de32+3RYv5NH3hZHi4xsBK4iIPmfoRmsFEy8NM0jR3NMvE4GcZu+ErMlTbaaINSe+7sFyFExVSX5Vuf/Z2rd97WiG+/8+4Lz+qQIqWg0SilMmed09oia45WwKUKgYRFqW0bqUeycRAINJMipYzWulXgYxvZQQhCrB+DpxiUUlqpxBkAODs7u7xarjeb2rdZloswqLRUKEKWps46pTVAJA4MhEoZaylEAlJKuSSxLpvM5lVZb9bbq9XKaNTOJknShsB1o51DrYy1qBFcEiKxDwR+MpslWd40kuxladph4KXDZozV1n7+C1/4+X/9r86fea4oigcPHkwmk8hEANJOljzQpSkz55NJkmX7/e7+wwebzeb973tfkqZluU/TLIYYxSIwzGYL59zVVVXXzeuvfynGeOv2bVTapZnSWilNAIOmNqBSxqDWyhhUWmkNSrJMVgqNcxSVMQ4BmLyxTmkVYksUZrMpUWx9PZ1ONqsrZ6wzxvYktsKgDoBV015eXt67d+9qtdbanJ6e3L51fnp6ao1pfautoZ5Yb4hwQghAcTKZSHNpiGIf3bjXOZD2s1JGKSNDdDHGEEgpTQwhRPNYz4ZjAVyUpjeiOGrrjNa6beoYo1KgrwN6dM511krqewTAQDFSiGhYdvE1Fa7HzvHm+fadh7Ism7o+XRyzIOicC2rUcEAA7NSFkVSMneEdJyp9oVkPUcSNrx4KDTjC10m5/IaPBgCllDS9DT62+CUfHO6vPqQqhRFcmfuOCjNLDh97VfvHFdfkgzIY75wz691OckprbUKUAqRpamUqw+ioEIADRR8ZIgQfdvt9VZYpYgxt8M1uux7nowzYRm7bUFZlU++BWuRATKvt9mK9TvOHWmsGaHwg0K4sq6aa14usKLRSoEwMuN3uj89ua220MsZYEHwOIxGEQL0QWXeTv77wS/X8gEMNe3jJuLQpS+sMxcAx5pP0aJIZp2PbIF4nVje+lWK3n6FkIjWV5XL5uS9+4Stf+crrr7++Wq2stUdHR+fn5x/7A39wsVgIe6DAOWQ/Q53ms5/97O985nf/5b/6hTRNX3311Y9//OOvvvrq6elp27aiEN3NJIworoHBaN22EZVmIObaKODQvnKSvfz9f/R7Pvy+n/mff/r5W3PAmkzc7UoGmKrckWnKmkw306mUkgxKFkq128fWG2PIB4Mqz/NJlltriRm0EsiWLGvJQCSnVb7TtRX8gxTthtF8CSCGPobkQmVZorEhBFGbLctaMm8AWCwWksksl8vbt29ba9frNfVgWe61n2VZS1wixJ2r1VIDPv/8s8C8vlpBpLb1zB7JTLIpEu2q2iW5V+iVMqgiIxKI3AMiADEq1KgUIDIAQ9t0ja86NlKnREQmQESrjTgGYkJUiMiRfGw9gNLX7dE+J+GudRsj9111jUoLtqEN4ZG2DI8KD/6RjsoQwo6H6W+U7g6TloPmZARmYPmXicYM3TcimPFOhumpR8vwniKOlOlZYYzUBN/6Nk1SZq6riphRYQjMABGhCi0n+sVveClJ07IsF9Oibds33vwy4IvGmGey29V+G9paKTXNM6U1hWSxmAcfEo0XDx+Sb4+PjydZKloWaZpud9u6bbXWiTN5ljBzDO2dF56z1hITAVLrQeGuqabTWeKK9cMHFtPtZntyOssW2Yc+/p0f+paPvvPFL3zmk7/57sW9SZIuphMor5wCpayzFoCjD0ppsfl2BOFCRKswavQEAXTJWmljjHVGGwBFRME71lohhagYtbYBIpmUmY+OTvZ4/3K1USodzMyNZjL2Wiuqr20PFuCgzaVwGKZHBjcqbDBiHLS6mNseny1FOwnBu2kEQAwC045KoQYtvXGKEXtECBN1k/NSq0MVAwEzR2LgyBT7vIgUMmmOnCkLShH4e1cPdqGZJEW73c+PphSFRJ/msyNA/fDy6vJqrYCef/45pfK6TmL01uosS87OTvb7/Wq10s5eXl7K+pQ0RoyqNE/EKUq0VFWV7qXE2qoEgBDCvXv3JDWSCpE0SQBAIGHSJRb4ABFN5zPUKjJprYP3bfBaa5GS2K13HKlpGutcudnXu/p4dszMQtfBzEmSlGX5la985c6dO4JKFdbEAQ04n8+32+1XvvIVQZednJxOXJbk06osle4q0HVdB0bU1qWZ1INCCKvVynu/3u5OjhcvP39LayWIsuD9OCaKonppbdu2BCAtBlle1LV25QFHpTT3YArvg0JUSmOHvPJaa1ZMSoGzmbG027rQllcP2vtvQbl95tatt3z9xbeXd56faA2ns4R8bZCd1eh0VJBxbIKPwaPSjApQK5MY51RmWCkGYAJoIkQARYaUInx49+H58WkM7H0Inr2PRF7K9EabSZYwzYD4ar2pm42xDpVRxiKqiXIWEouGUcfYApFCB5F9WVujVQjchgBkncvS1CZpMS8i83K5qQGTNF9fXfnN/uT0JElTIMjTwrgkxEh+D2i01omBWTFTSoGCxrfAIMgzQLUtm1/5jV//17/8b2yalu1bTGSS1BMHZuCorFFae61PTk7KsmqbdretYgy7XXnr/NkkyRFtWsxXm3Kez0IILpsy8a5u/b2LYjL58pff2qw3THR6dppPCpelVVM752LF89nctxVqxQrBMDrFCoIWoxQBECgSMaBy2irtFCtE8Dqg0dHHsmqBg/agNSZJUu22aZ4ggOfomzpxGTFom9V1++Dh+t/82q9/4fUvL1eb2kdAlTh3frL4jj/0B1+589zZ8VSjqvbl8fFxExprrVaaiEAbH0NVluJAJRqWOVilFLH0ogFAvGSYTuddiyxEIJbqtTGKKPo6UIzAQCPUllRUYi/HniRZXbeIGIL3wWullTbGJQqx2a8V8ul8ttmsq/VKavQucdoYpTAQE0VgEBa3NMmYY13v0VeglFIalNbGGesErA+oceQ3qScTGx696+cQe+kZImTCEBLEuq7vv/32JM+qapdlGSAREmjbBiIIWZYZa7TW2joAYI5trBkgSZKmbdI0RY2ggJgIiVlJb1xsnfhlQcqIZx/7iGESwaACRNAKNKDrsyPrACAyKGP80K4ZIQW0QWYmJpnEZibybdfSsYaZPUUKXjwRA7MSEDQPQlUxRpl4F6PHMKJQ1+B9W1Z7pVFpMFLOkRBT7Ka0TZqmqa/acYlXhljKsiz3ewucukSs7biKyYCBMUTy3t+7d2+zXtV1RRSttUWR1/tSuDuaNjDqJC8m0/l8Ps+KAhFRW0TrPWXTeV7MhIeuB9YNYxkH0RIAfhU6zPfaZCfjvPN6ScVu1g0BrLXOGGaCHubwuA1HKk7GmLIs33777U984hOf/OQnXZZ+wzd8w/d8z/e8/PLL4g6HGG58PJKbSsrHzB/84Aedc6vV6jOf+cxv//Zv/72/9/ecc9/3fd/3Xd/1XYvFMffzHrIcb57dUPCSziUDAHzg5Zfv/Df/9b1797bbrUvcBKfM3NSNs44ikZLYI8roUVEUiCiDH9h30nE8cq2uLx33Lb/hjHLbjaJKH5x6AKXqp+iSJBE4+HDuTdPM8oKZy7Lc7ztqnSzLhAxHFvHR0ZGEHfLH5557rixLURKQncstGHgIkiS5uriU4kSaJOboeLfZxhjb0Lz00suXD+7v9/uqqdowiUwkjA2P3Fbsod7U42uHUsThsrkuSN94lR+/AV3/PB5J5Efwfgc7fPxSPKyZHzwpN34+eIie8F2P2QMcPkQ3D2PUFBIPJBWjNE0VXJsiGdwTQHkEQq2NtdLoFz2K7XYrg0/6Pooi8mRSCHVbcnxsrV1VK4Uo3IPUg27lYZwUkzasyrKUkYP1ej2Uf7z3DEpUgRKlAsWqqtIsa9s2xrC+WudZNsmSdJa8/5u/9c4rr3zhd3/nd/7Dbz7Y1idKRcBpmrYhBu8NKs2kgIEUR8UAzNjDnpABURtELjQCR6AYG1DaKKUR2TprlXlYelK6Qo1ZflRMvu21b0wmk3/2cz+33laPuyPD5X1P8/WEjWKU9UEAoBDVe9vN68Upj/boTdzNzPclNI5yF/tJ+o5TgYHHd/nRowdgGUX3bZvPprtyfzI/ee709nSROWNCCIlLpnm+mM6MNkSkgDebzXQ6kTUgwo7X8A9Ui8VCOLh0T9IlEbzUtrXWWZbJMMl2u1VKtW17PJ/JMEnsJ8hVL5+83W5l/N05l+e5JDy73a4syxBIELCSt4ilyvOciap9ee/evfPz88AUmDSgth0VShsaYTF+9dVXJR5qmubk5GRA/Ooe2dy27YsvvigjN9W+BAAZyDk7O/Nt24ksB1/u90YrYarlfuqvqirRRR/qlxISDRd+mCeUWT5+TCV76C8xc9u2MQQasYsapUlYcJidsUA0KfL6Ynv14D6QzxKH3J6enV8s3/3ym2/mr7yyK9EqVgYIWAETs9EYSYNipRWg0RHquo2hziYTAgTokt7oQxQgLoPW+uFFxzkWKAapT0VCYkRi7ECAeZ7vq7ppvUm0Q2WM0X2hCTpb2y0/YnBJgggxkhNeH/KgALU2Cl6486IPoQ0BtVbMPkRsvVIKda0j+eBFkEegd11wgti2DceO5QqNXa63v/4bv3n34cPbzz5LDKKU2nqvrQnACnE6n8UY33rzbbkjgjgIIb7xxpvPPvvsdDp75913792713jvnCMG8X3Lq6vd668bnbjEFUUxmU7TLBNgeeeYmBFBKdRaISIxIShkRogKaDxipxkQUAMCoLEWgBEhy/OmKhUSIrRNm00mdbmV3gIwNm2b59OmDjHSgwcPv/yVty+XK1auCZRmeWB+9/7lz/7zf/EX/uyffd9LzxMFrfXV1VUHnu+366J2F67TyObctGby9xgjMLAcP4uo1fVbnoD8op5YEpVSSqtuiFEBiMijUEvbSEwMxBAjA0QfySWpMaYq66pqFErR3CAqSTIE7qq10sYQs/c+ckifGulweIYAzOV+D8yDsozukh9FwKik8onjT3To8/diaRpkxHDUb5Gfx6MX4ziEiOAR7pZha1sve5CbOMZ9dM2efv9jrzSgu4dWz3UQGOLgYobjvxmTAAzDJoL2NLPZTPcb9J1fUYgEjXx43MID670P3nPsouTD/h0G1EQsg4/DdL44CfZeEpXWx8ZHNOvJdLfb7bKiaJqGURudoLK3nnl+OjuSRjNoba0G6MB2fIDS5idgsp+wDaM8j3YeQ/TGdKDANEucswAcRQDu8SGB3IPtduuc+8xnPvNP/sk/+dznPvfxj3/8x37sx55/8Y7ctk7cox8FkTk5uYtStBNLJPBraeinaXp6evqH/tAfWi6Xn/3sZ3/yJ3/yH//jf/zd3/1Hf+AHfuDOnTvSrHjKUxa2nBDCw4cPxXBIODhAfmFQ1O6HSQRHKEOlgxcXoh5rHfaQ0yGwxr7VKB3DoeOhe/oypVQM3aodCGQHXysufID5yvC0QOb2+/18Pr+6upLpfJl8lfk8GWiRSydZioArmDlNUwl294hFlmOvL5k5t7+6mkwmcvXatgm9LIDCg46uWA3uEW6h52R79PKGMMyu3NyGx3XUUel+hkPBx7EFvzE5M16l4yGlG9+oHgfheGKiotRjH6Ibgyjjrxs/RDdQRsNjJe+R4W+p8t4gzCUaWkpkrRGWWOfc8fHxbDa7devW66+/LoGdxARXV1cyFCdR6fHx8X6ztdaKmDcAiPzOgCEUIjipv3jvq6qS24ejIpyYKSIScCPaRJNBsmQwy7Ikyz4yWxw9++yv/tK/efutL82LZNXsiiRJTRJ9oyMZhUp1fl+iQyV1I20ByWhy2AqqPURqgwWbGueCj9uqLpOpTrJJXrzy6vt0kmjrmuhn02OD959QGFGjOYHHvunRDa///1XJD4Y+7YjU+poxorvdfKDJNTSUmPnJ2kS994oMbKz9wMvvy3Sa22y32ybWeu93vGur+vzkdL/fLxYLCi30cXPbx+ty7lmW1T4IgIqZB9584auUOqLkLdwR6ZiTkxNmdloRkfSB5bkWIxZjnE6nMtckQ3RDDkNEUkmQ1SWMsdKlkekUIhIBFu71UkLP6S+OUngyxfzKQ0FEUgxaLpcycCWjL2maGqXv379fFMVwU2Q0Xyus99tJnom4ikz5L5dLRHz+ueeStCtVDpd6uPJyCtSDCB437KT6qQax0kMSNQ6JpKSy3W6D0aDVxf3769VVlmSB2s1mgwxZmt6/d2/3zLOJM5gYzar/bsZrTlJgIKW6sSJlLRo9rM3YqwrKka+Xa+99p7jVI1W6/SiMBNYmxUQbl7QhMCpmpuBNnnTERJ09JEACAELYbbbHrkiSRCntRa1VsFGA+3KvtZGBkIFnH7pypFZalWUpqUU/1qVAkjDobKtv2vPzW9/20Y++ef/uerWaaJP0NTtf12g0ImpUr77/FZtkVVWtVqurqysRQWbm7XaLiEqjWDDn3Hq9lilQMV/WpOK1Bw3coS/X3WtUVhuFCJGQAbQc/WMeSQCjNDNpZVxeZGni23q1vKr2+6OjuVZmNK2hEJkhtm3zK7/yb2OEcu93VWnSfB8rJuJQU5b823/7q6+97/kksU3TTKdTfyjToUaRw9huAMB4ZAVHk58xRoDr5fc1VGeIqNeIND2fE/fEVrpXT5f7KD43xIhau6TDUymlkiTtcy1sw00iEzEIPrJ9vF9+0sZMROv1GvowUm6l0ZpBobrZTh+uITw6iQ4AAHK1ua+ZSszTP7wHhn+ITG7EwMOtkW2ICVWP4lM9u51IbwynPDYU8gbqp+epH57RWjODOFwx40NZJMaoDs/G9Fztu93OfOhDH7pOufqJHDEEngKLpFcPPg4h7He7qqxiUyUuKYpC7Oxg9aSj0vrQNI0Yegk9xZ5OsqxPVIJuAqmO41jMd+MjsNHGdaP5xmilQWutzaDoQMxPpcP8xI1GnM1wGMOFEFzivA9aQ5JY5yxziJH1Ac3PzU0GQ5um+Uf/6B/94i/+4rd/+7f/uT/3527duqWUCkxyHaRvoHqJd8ENY89+i71Au4TsdKgDeuvWrdu3b3/Lt3zL22+//dM//bN/7a/9tT/wB/7An/7Tf1qA1E+zycDoQCetOlpeBQD1bq96Igi5EfLrwLKFiDI0MixrpdQ4UfE9EbhcUgIMvSbUOAWCHlAxUCFLa0WORJCIsg5lfFAukbCRcl+bJ6KjoyNr7bvvvtu1a52TSqocm1Tcq6oCUDJH69s2xigDo845ZUytDXaISQghxL6+iHjQOcN+lE3ub4xhoHO5EYoN852DFR4vtuG63Uha4NBSjMsUY9vUW+p+Oyh+PLYdIl5z9M7Hd1Qev43fJmno+LxwxIp7mPlcs52O81it9fjyMl9nKUyke0oikS2SWPD8/BwA1uury8tLSa3feOMN7/0HP/hBIrq6ukJimUKOPZGR3ALnXBs7dpGBSnu5XE4mk8VikaS5hEf7/f7NN98U7cjpdBpj1KwRDIMmgDJQkmZ2nj/3gfx//eo3vPU7n/zMJ//Dxf13GWyIpAAToMhkohQy5bEQATKWmWYEDD4AM6NibVm7SllmnUzni9uz2y++qlzSVE16doYM3od6V2dugmyecHuGROVrcIf90CQAEEBkGpNcH95xuI4bEMfL5GbKTddrfvi7vKSfLIvGILerLMvtW2/VTXjh1vPJTBttsixL05QjFXkhtYPNZhPaxlqTpsmgeTwQ+jVNUzetBP2SmTjnJpPJMG0v484S8Ilxk8UvJRJJA8qy3Gw24kpFtOT09PTo6Ei4+GOMMqDinLO2G9IbLPYQXGZ5/uKLL643m91+Lw0Z6Ot6LjGyevf7/WQyuXXrltCBxBhnsxkiSrkREafT6Xw+l/oReX9+esrAbdMCQpYkLnExBt+E2XRa7ndS3pJlHGM8PT29c+eOs05AiHJfxgGH+Bc5nSekuDwa0vXeh3Ct1+Y7uSpEREZQSQparS4v18sVMKCkEJHKqtJGBaavvPO2Ni9GztAZzQIDjRR862OMURCCyiZZlu12u81mQ2kyTlQAQJqlWmuXpU3b1r5NXIIIIcZhtQViQGRAkcVGxMhMBMCsQSmjAJkjETBBhzcghiTP6qa9XK6yApK0QKMY2XsCjEUxr+tG2N64J4OJMeoQUAVpKg4GrYsjFWYqYwYOkRl85BjDbD5v2sY6t1qt57NpURTaGg4BGWIIFw8eNHU9WRxJACD57Xq9ns/nsn6yPDs7O5PppvV6LctMiMX2u1prnSTJmEdbAi3quZKM0hqQiBlIRB3Gvk1mXREAgQAQIscYECBxDo012qXP5tW+3KxXWaKxczNdSslMTVO98MILl1ef9y3Vrf+h7/++EOnnf/4TQPo7v/M/ff/LL/gQjOm4HMaLEEaubQhyhvqdHq/KPnKQFEIpM5i7pzd9w1ePomRxSYRKodJKaW0d6jZ4z1EmCKmYdpIMDCwBquq4W+N4qDrGSE0DXURnbrjUpzxCBo4xiv0Zw5q01kEUcEas9ONryCOdxBvfe309e+SOvDPSQeFynCjePKrRuUh1QAKwcVqCiFJlGP4yTlTGzmLIcyS5SEwnNClVJDXinFT6+lzEzksZmpnNyy+/PERIzHygQ8kReuhqpBgptq3f73flbu+bOk0S4WdUSo1UGtSubkKg3W4nwYFQiywWi9vP3D4/Ok6zzHvfhljWLWo3my9ms1mSZWmatoGkZz6dTeWEtdbQUcF2twpxzFAs4mPDeOvhDTscdb1xm29k533oxtZq4qg05Fmapg4ViwwlAh+kSABSxx3C6AcPHvz9v//39/v9X/pLf+mbv/mbJdkwxkD0kSK1NI7nsAcUDccDCAq6GxzC9dD2sCJjjPP5fDKZvPrq+z/96U//xE/8xN/4G3/jj//xP/7d3/3dA9Wv8EFJpYcfIWEQhl/JExaLhexTi+AR81CKlnK1dE4GKg8RqaCe+TfGKAtc0jNJSoUknhmMcxJbY1+6k758VVV1VUmndgAZDlyrWZYzU18oSsSXM3NZlkdHR23bSoolT46kRjL6Lz7eGMMMeW6kLh5jrKo9KS1RS1vVcv1DCBijS5y11ntPIU7yomnaNPFJkiitKERB4VtrsX8OJQYaRtyJKFKEeE2GAyNei2F1yb/CJzE8/OOigNQDZGVzXwflXl6TRtvh8PON+sf1z3EkZ3SjfnLDaj6aSkGHnj343GD1pCT5qOmlEfnb+LuGUxYsJQjbdZJw6MvwzGqkHRaJkiS3vZwtAGit27adz+cAkCRWqJNEAUNWhTFmNptdXVxuNhtZG9vtdrVayeiXZLB1Xc9ms0HpTyZYptOpVCiJGABeeOGF6XT69ttvZ1k2mUyMSRQqpTQDaKNYmZqjRwMaPvhtH3/ltW+6//abn/r1f3f/7TcybRmipqCBHELmLAAgKq21961zSYwRtalDGoh0mhHaZDJfnNxy+XQyP0HrqizbluW29LaObVWtL5eJcXkxz9Kiqvfj+82HTUvocc6oUIEChPGrKO8Y9eVxNOmoAJgRY89oc7igBL2FPYAYD0EWPNqGhTROUTrLFjpA1Xi9MTMhMHQLRlb4Sy+9lBfzrqXsrikyXdLReTERpsl0Osnz1HsvJOmz2Uwm0YkoMEiDQmILYXjL81zIaqXpsVwurbXyKSkGFWkymUz2+33sucKGxvJ8PhcjLLGgMBFLyTMEEqMkC1U4mmazmSRINkm2u11VVy5JlFKLowUyZSZr21oaNWKs5EEQXGvbtnIMQw9Zzmu32VoFb73x5mK+mM1nIQbnXPS0Xm980+6266ZpZrMZEckZzefzF154oZhMBpNLRNhHDPKr7vOWIS4ZHIQoSEHfbRNsrcC/nbNDkJckiTZdrUEZU7V+Yu1VuPRN67SmJoa2NUoZpUBBZH7r7r3J7LglYKdtkSQaqJ+radsWEImV01aEubZlibGj9+S+GyyhubV2Mp3uttv1ZsNi/7v41XsfCBUzKoXGGGedkWDPGq10VVYaFVH0xJFZkLWoQCmLSmf5xLpsvdnytjo+PTFOM6q6qZvmSu6UNO25H9cBhT5EQEzTdLlcGmOm06l4Hx+DNsZZF1sfI2nA1bZcLpeJc4y4LfeA7NLOqQGAM1YbU+/L2odiMmnbdrVaNU0jFHNvvvkmAPgwE50f3UtYCHlDVVW7bSXDVMNkKXSKYVaQGkOhup8uAgCGGGKIWmtiQoVAKlJ0zjmbMHRTCkppY62OgcjaozzPJ9vV/ejbofHVW4LwsY9924svv/ZP/+k/+8Ibb3zlK28kac4M56eni/ni9u3bSZISBSPSz9YSM4fQpQp0YBaGoIh7jofOeTFTrzIJj7SRhw/K0zTsMBLhiPyQRzqVoutCPduYcSlIRRUUKuNjwxCzNEMQMvE2xmi0sWkSQmgbaQqhTax4QWQgCKhRiWlFlImvR5MKENrGkTEfIliKJHOGwqWOSqVJIoVXQEysA9XBAsf7VErpnlxqfEGk+CK0T4O1H1edzIg7FKCT6ooUlX5sfxUAbC8sK2neUIplZu/De+ZjiBhDp1IB/ajtUA0f3MfQ6JbSibW2gxMDQN+2lbiUiMxghhCRgVmPAg4aFcaYiajRrYqEkb1WaZpOJpOiKAbjBQAMOFloABQB6aurqwcPHsQY0zSdz+anp6ez+bwsy0hQNd6m+eLoeDabGaFIAwVsGJSxdpiCQIVEncbqI4tAMfHBjMr4xXGecghGGM91DHViSaCNBoohSdxsPnXOMIVrgYTR9wxoAXFv9+7d+7t/9+8aY/7iX/yLH/zgB7GPwAZGrPF2I6qDUdQ4PGDjI5QpNMRh/amPfvSjH/zgBz/xiU/81E/91L//9//+z/yZP/ON3/iN2OsQSaQuaej4W4hICpaSOUhPQ5zcMOkhiYp0fgZFZEQU+I3qkVq+9W3woQeqDX1nKWkvJscSN0D//CDifr9vmkahZmaphkmHRNKnJEna4CUQkZxKHlfVNxlDiKLxLAgfyRykECXfhR3kBoa+fFl2+MimrpuqUoAcKYSARII4t9Z65hiDoL9opFIiByZXnnuhNGu7xnGXqMB1omL0tY4h9EUj+XkM4hqSCDGd45duBHzDlw5dgtE7RwsbDxC6wxQNjKKQ4a3Xezjcy6GROliceggaDsPTYf+PRq4wMkZy90OIkrQTHXBrE3MMwSVJjNH7VqmJ5NgdzWA/zZWmaZLYPM+Xy6Xc6MlkIquiqiqJPnXPBF3X9TPPPCPfK2BLcd7QT4oLFEdpK04XEaVOf3Jy4r3Ps6xwubVGaxU5+hAIwTprrYpRlxRmR2fvOzqeH5989lOffP0zv7Pd7/IkC0250IZM4kNQgAZVzaCNIVRgE06OXFqcnJ6RTqYnp6wTkxVNIGXsptmzSbLZ0bqquPVl0zKjTWwEOuiU9Rf3usLSy8oiI6hrGAP1GMJx9qiUwpFkMw9L8TpRuZlR4LVJPDBfjxou7lN0OkQLyC9ju0skU/Vda1om1J1LjDXTZJKmKSuvADabzXw2p0gBogK01l48uJfnqaimiPauDKqJ8MhsNhc/Jx2DzWYjXQ4J/na73Ww2E5V6sW9iW7bb7d27d4UvTq6G7Xkv1+u1GMbLy8vtduu9T5Lk/Pw8yzLvY13XQi683++TJDk5ORFLu9puLtdXLk/TaQEyPoto06QoilhXR0dHWmsBaMmhbjYbWXtD4RMRZSW3bUtMV5eXz9w6BQDfVtaaar9t28Yamzg9uX1b1HWlRibjN7I35jb2zC43nk0cEezwqLsLANx20BcpMMkfhfpFEpXhCMcVUGMctO29d+/GtgVf6xg1am2dDzHGnUvcw+X6rfsPPKIr0gUohxSih77BTgyoDUUCA2malk1dVZXUlIfkqpulQXRZnlDEct8EDzIpjhg9tzESQIykAKyNWmuLViu0ShmjIU+YufVALbICVsiMSlnlXJIVWT5J0inoUFb1m2+/c3J+8uyzt1FjYtxms7H9vBwRCcqgbX2WW9ODCYeUlZkb3yIjs2DRIxErpd55++3ennLZ1Kv1ej6fIaBgjEPVKGNeeOV5SXRPT08l51RKvfDCC2VZusQsFovYC4+IHRMDOKAw5CAFiSApt/jxbi2hEq681LliUihFZVVlaZqmqYyzIAB734aQZgV2oSTGEAEUoAJQJtFGJ9FHRCXU2XmeA1CI3lh7cnJ8fHJUf/azX/ziF1ofAOjeg/sv3HnBWqu1othDEAEEmCPHFuiAC3so+cee3EjC9GHoAEdQhcGyDasXD5v5PBJ7iTEiXvtiRI6RhoiFGCIzo3JZjsYSqLqpGXSIvlrvBQkEiHVde19SZOdckqQxxmFuTymjBg8IzCN1gSc4XxhFCCEGFULTNNJr5Z7WnIg4hDQrVA8Gu9E50brDn5teenWAAnK4nqTlHifZI7UQR/VQazqggXPuAON7uA2+YAC8wFBONUqGRLIsG/Ysr4Z4ENvAYe407DOO5n5vAC7GOE9r7ZNmPA4mKRlAojj+KuPrCpHhvW+YPFQhhEAslbBuc857j50PwycqzP/+bk1TZ4nL8yxJrFIQqdd4YwDseXMAtNZVVYmTWy6XP/7jP/7w4cO/+Tf/5q1btwTX+/t3hNhPvPzgD/7gxz72sX/4D//hj/3Yj/31v/7Xv/M7v7Oq9pPJBHv+/vHFH6LGLMsElj083tKACyHIoKqUu7IsW61W77777tHRkUBihuUOAKLIq5QaiGukuyJyV6J2IlmNtFyGOc4hJpaQUQLx3W5nrSVUQ/lEpuShF9xs2xaAByCpsIEJYnuwX/IXqapqrWezmVKAxGLltTFOG2RgZg3gECEEImrrJkainkO5ZRDKS9Orl8ZeC/U9KwfvuQ1pxntmpDRqiYrR5H7gbOhBQV9sGGz3gS1+fId5MOLwmNLO9S4eMZ3jgx/t8SlP+mAbn+M4ZiIipE4xjYja4MVOhRCCD7l1whUr0nsSfcoErbVaeEKurq4kzZaSdtu2LjOLxeLevXvr9frhw4eTyWS1Wgn95cXVUhhs5dtlIcmCBAwCCJbwVMa9zs7OFKJNsFO7ihxiBAKD1rkUgNu2JqNCjLNnnvmOZ5555QOvfeZTv311eVFfLR/sNrpulVLWGQfOJAUX89l06ori+dsv59OFSZLleg3aqSRZ70s0tmrb/b4ximOIdVUZZOM0QSzbKtB7i/ENl7er4Xwt6C8mvh6mf2rQ7OHi2xjAAAEAAElEQVTCu85JuJsovX7pxlJ/0sFDF5oYY+TxSmZpjBGBfQzT6VQLR7lzeZbHGIssTVO33+9kMm24odJeW223MNKJlxKMdCq890VRHB8fI+Jut5NyjOQGsW3kzcwsrQMxg2I6QggyCSNLEXqre3W1LopiPp8LG/J0Ol0sFuv1ug1eOhhZns/ncwkoZVpGPrjdbkXcSRiBxetLviTZi9htaS9LwOHms9lkIilT27bR+2I+n8/nl5eXd+/fV0qJ9UDEpmmurq6+/OUvv/TiC8+dLYIP8tRI0Qd76COPygdhtBFRrFu5MjIhpnptK+dcLzDQSWRIPCRfyqDe/OIXv/i5z8N+M3P43Mk8sda3vqkrJjLO2bRY7kq+WM7mkyr4FI02Kh5WZ0IMOkZjTJ4XV/s9QFegkSPv+l0ASTHR1uSToq7ryGStZVbKBBV1VQUiVgwA4L03WgEHiCEYDUYzCnKdQowhBESh4HMuyWySJlluEu2yNqIG1Ovtrq6rWtVZmg4jOkO0FCiKyZAqvjg18Thpmvjgq6qaFoVmaELbto3cWSbW1iqN6+3GWrOYL4wxVhuOhADLi4vVaiWQV7H86/X63Xfftda++NIL0lSUySv5IklUktEmxyCmzDmHWpVlqZT65G/9h9/99Kd3m+1uu81ccnxytDg7Oj0//cAHPvDKK68IQFr8vjGGOUJfRWDUoBQBAigEdC5RUt5GQYZb4uicDYEuLh7cu//2dJp7jklqKYbZUVHVu7bVAPnjLMDYHTyl0YBDIWa5I3LWos36dHtgomudUxL2LqO11sZGVMbVtfeeAHy5I2LxC03tmdGaDgb/lEd7Y+PDKh4MUAViZhZdETFBw5ultqtGUysHiYq7HpSVdUg9EzQcBgAD3sQYI3yh1631Ue5HT4gqHr8NLZohvxruaTycjx1XWvEQJC/Bj3x8jP2Tqoos+6IoHpuofO1kWv0HleSx75GoSPHbex+IKdI4DEqSZOiogPp9DPSfvKGCLEuLIkMcX2u6EbJJJiDe4hOf+MTnP//5v/yX/7KQeklV7PfvCMW95Xnetu0LL7zwV//qX33ttdf+1t/6W7/927/9X/1Xf0EwWsLOeSPIkEe9KApxmdSPN8msp6CzYozS+pATFEcr/syYDkFurWUAH6PkS4MImlyWwQDtdrurq6uhXjKZTJbL5eXFcng8BKQhAE3nXGDI81zKpbL0ZZPmxt27d4UnZ7VaHR8fJ0kiM4gnJyfyWErwKrOP4puPj48hklLKaH1Fy9h4WZEKYL/bixmKFIeHzXsPkbS6HkLFvrk8wEKecht8LRHhaDHTaAaMRkCvYRvvhPuG+COJyriycmC/cKQ7OeQ8j26PnMtjI077dT2J40RF7mAcaNMYOmnn3qIJ/4GMrskHJU8WWybrAVFLXTNJkkGVT8qK8gwmSSISzsfHx8vlUibwBAMGPe5xOp0CgNBDMbCgg8QiCRAWAFziWEWAKBOSHEkp0IE0RkZMs7SuS620UnbftM+88g0vfeDD9+/efffdd1cPL9q6cYmbTCaJc2ma1E2DiIFgQ7b1qt5tL5ardFLE9dYkxgfSSnGIESIyp4nj2EaIxmiXmtPz4/vv3sf3gNp1l3eoqn4tN0X0loEBWD3tYn4UEnDtjUZt+hsdlSfvUCMKQK5t2tb7YqqD9xWVqEnIrI6Pjvf7nVWz1Wq1XC7PT0+Y49tvv312dtbNbxDt9/sB4CfODADKsqrrShybiHkvFovdbue9lyET1WHNw9HR0TB/onqGDCk/13UNAFpradxZa9frtfTuEFGY6LIse+WVV4wx0nNO0zTNc631brfb7XaDYey4Z+oa+4EWUY6S7EgaPpJNSS9RLLBw1XzoAx/44Dd8g8SpZVk+ePDg6upKkpPxBKCox0wmk4cPH/7qr/7q93zHf3J6cqSUGlRZsO+tDc/gYIKGHsvR8SmMwikeqX+2bTPOHAZE3H6//9l/9i9+49d+rQB+5dbprVdeTJ2rtrumqur93jjTtO3RySnq9HK1fuv+g+PjdFbMU+eq+iBRiSFGE40xk8mk2m70qDU9BDEq+KapmXk2m8nzboyRUNJEYhBRCaau095yQFINaqUSx8BN45u2bps2RtAalDLWOpM4RghEAFpru1gctbEtprPl1eVuvTo9Pjk7OxPJOK21jIgYaxmUSxLh5JAah0jKTudTH71CHUNkBqVUVdUXFxdKaSavjBF7t6+qPC8S60LrDarpbP7+D31ovd22/bbb7YRAQoh2pO93dHQk/cC2bTebDTOfnz0zbnMNMV+MUSvc7/f/4p/980/+1m8Bs1HaGVvB7vLhQ/4y+Bicc3fu3Pkjf+SPfPzjH5doARE5EiB2bVyNCAoAGRQyWpsl1u73O+KYZVkILSCfn58+fHjxv/y7X726euBDkxSz177xG/MsvfPc7eefP19MiidYgCHTeEqLMViYsdtSI3afp9wDIvQ+kRExcYksbAlCBH8oAO+VipvNtm1bYFRKFfk0TXNjDAASfA3HPGzxEVabIax3xghWhR+h+jTGdnlU30C7PpdDyz+YXyLyQgkjc0o91eqwDUkCjaQhlVJ+dIRPX/+Sao746CFcib0My/jwxp8afy8e8vGEcECdLKWKzt89zQEBXM+S4+gvIoyOI8JUZADsZrf6Y5WPKgBUPZiHgLk7BooUVYxEwn6JDKAsqO5R4SfyAuPTlwZvfKwHQBz8XTFYa9LUOWtjaDlGe53iHXxRXdfOOeHF/7mf+7nv//7v/8N/+A9LQ/89WaF+D7f9fn90dCTZiKy2H/7hHz4/P/87f+fvlOX2r/yVHzPGtL4F7K8mdBTOcr+H4o3UmBPntqu1DJuKzZpOp0OhqCiKGONqtSKi+XwuiYoxhoA3+x30FBNEtFqtRFR+tVp95c23hDZn0IgUXlFmztK8bVspYSLiYrEYRgkJ1Xw+l29UPT2xeHfh/ZT8SgZ1JMTcbDYCApHDMMaEGIXFrqqqosg0oODXmVkbrVFprQ1iMS2uLiqbuLZpvfdOSMNCjIrbtqv1ElFPo9oldU95g4bCs3h367oBMR7hu8QJ6z46h17Ubxh4VSP41o1EZcxP/GiNZ0gUn9RReeQz449/3XWjGzsZdqVGSCTmnuKWGZVigH1ZllVlM3d2djKZTCRDFvZquewhBGKq6gpRuTTZbre73e7k5EQp1VR1jbXkrpJ4bLdbZn748OFisajaBgC01tLoq+uaiCSAm88Xqhe0ku5NN78YPFpA8sDs21YBoNEQQiCOHMt9M51Pyn2NiLPpoqqrq90as+n0/LnnX/2mhw8vAMAYU5b7HdG6jTIJPZkVVROWV5tdWbo8NVbH0CAoCr5InTUGgLfrVVXXIYQsdfkkP7t96/679x93ealfOfgIF8gTtnH18sbw0tgeHiBrhSx2ZCqZgYAH8HEnTY/SbpffER4vhoaAzJGRCYERIxETt3WzalbF6ZlLHMdojPFtG4y5Wq3yNFssFrvdPsvc7du3BcQlwZwYqKqqCBUzG2NkrkAQYlJqTZJkNpsdHx/30FAlRmO73ZbbrXNW5BqFckOI47BHGwpODAA2m03TNHme3717t67bo6Mjweqs1+ssy2azWYxxuboSMNJuu5tOJ3lerNZrEfPJkqTd7yWiEuN2eXlZFMV+v18ul++8886dO3ekU7Rer5Mkubq6MsZMJ5PE2c985tNHR8fPPPNMMclPT4/b1td1FUJcrbdvv/POdrt98ODBfr+bTAql0Dn7+utfeuHW0dnpH5QYTlC+A6Ar9gOHsSc+kWhbax1Dz5fT12V9r/lLQNg1lERcBWLwn/vyl37pl//tZ3/3s9M8yygeH82cMyH4qqqIOMuLt+9dBOKWw6TIoGq2ld9Vody30QisqFtPPXMDW2uM1nleaN3NLw1tf1nkVVUZayfTSSSico9aIRJqhVopbQACQod8Fja5qBADA0RiaNpQNQ2jSvLMOJdPZlkxzacLVFZpTQRZnmLb6Kh2m9XxybFi2my3q/VmPp8VRQGIWZG3ra/qJisKa0yDWOS5JI1FUaxWq7vvvLtYzKazufceELUxbfCb7dZNC5loCCFmSep9vH/vgT86mhSFQVXXzad++1Oo1cnpqSiRC+eNJNhJ4uRJq6qqmBRyX0RoiPpSDxE7Z7QRQHVsW69CePutt995552maVKXKECtFAIEonq/my0WzPzum2/+9E/+0wd33/3e7/3eo8XCIKoYQSPwWMmwm3I01hlly6oG9CFGRrTOUkOT2ey7vusPE9OzL7x0fHp+dn4+nRRFattqj+gBkve0APBEedknbEMczD2OSDK3/X6f54/r3hy4P4mMZQ9Kax8iEcdIMZJS2mWFtZb2ewVwdHxalrVLsvlsHkJUyiQuEa6qQ14yAd8yMONYwuwxBz/83GOniJlb3243u6ZupXpAxMJ2q7RGF5XuyMqEcWrYyTg9GxcjmFkZI4TGSilA8DFQJAIGRFBdS6o7/tEm4KBh5/GaHOtJm1JKBC0G5tWhvjAeHLpxBYZMaWj4DIDSpGd8gV5wfCgWm/HhIiNhn/1gp1UXKTLJ3QDQCqzWzurQGlAGlUFlhd60w05jVBCJbOJQ6SzNjXJtXYUGKGgiquoSjaHYolKA0UdP3UioadpIJOecK2VNohnZU5PoBAAjE3AHNJcokDuVbhxf9+E8D5tZ18EdimJi9ybsVa4ACSnGO7dPjEYdfGIMKUUxDlkWsBotfSUVgX/+z3/OGPeDP/xD+7oyxqRFzofkburxt5qeLowEPIgfMmdFrQwBnNYeWDF993d+xzTP/s9/+2/+nb/7f/krf+XHvApJkhKRCNUiY5JY34a33nyzLMvZbCbFxRCCQiyKaYxxtyuFhss5p7VdrVZEkBZ50zTbcj83+vj01GWpS1MACG2b55PtdrvfV977zWbz1ltvff7zn9/tdmmahkiTycTZpMgnomu5WCwEYpumqdQ4BWzD/VhqCIGVFt8pT6Y4WmnsJmkq/oCZJY8yxty6ffvq6ooYffAxxOVyqY0OZfnWu3djjNV+l6duWuRnZ2epS9q6zpI0LwpmTq1N0vPAAQ1W5b5qSqOgNjo1WkSCJXZBxBDDkHUQEQUkzUDIGihwVKS1BoNKox/hU2Mc+suotaEQsLuHaJUy1rW+bds2+tBU9bAmEZEBrDYKkNSBzM64N8IAY/QnRIojdCkaA31v98Y6hFEVajgjeYgSzHg0ljA2TuOuOgPwaIfjqvyQHckOTc/mKeWrIY303oPWwYembSNwYGpiWG7XZWzv3HoOEXa7zfHxsbU6xo4HqSx3TduitTbLt5utUkYbt9vu55N5xdWkmNRNdfv2bQkaxLyKfdjtdoQgqbWcyG63kxMsy1JbM5/PN5vV+fk5EQk7DooGZRtclnofQBljLRtbAWtkUFqDK7etPNOb9RYRlTLee2PNw6vLgFSVVYgdVrgMzWQyaeoSqp0x1mY2g1y8UYwxL5KqqbR1IRIRzY9P67rJCtzu90U2XRydWJdIp0hYa5MkQUBmREbXAymJ6NA2AMp8JBMw/H+J+7NYy7LrOhScczW7O/25TbQZSWYmM5OdSFmkTPWvJBgll/BcftYzbBT8/vxXVX8FGP6o9+Gvej8FAwX7z4ABFwy7VECVrWdZfpJlNaRsS1RjNSQzRWYXGRE3bnfa3a615qyPufe++97ISAZp6dUCkbxxzz377LPXWnPNZswxlNZCBs0ADMzSyqI0IgZmBWyUCqjqprHDqVTaIPgQFIE0KzBw6JqtYVDf9yF0DSd9cCsnN0DobNsgCWhE1TnVTeDKswKV2CzRaZNX00VWlLlJJ4ywK/IkTfOiuH18yyg1m83Ih6YqRqMRANa1Y8bl8tDaWOAfaZpKe73QBkoiQ4BMrglN7V0TJC0i9AkKzXy+dK6W0kftwziKx2lW1E2apFI/4cah80opReyIk9FYGvcnkwkz13W93W4nk4kI1zrnRmkGChFxOZ0XRV5sd3VTP338OI7jeLE4PDjebreH949Fzyd4RtDe0eHBsQDTBScmrHTSGVIVRVFXR8dHWhvHgTwYo6MssUkUQjg8Onzw0j0ifv+D9x9+8MEHDz94+vSpUvrenVsvv/SS0bquqixNRYPIDxQC+iqlmFmZGCIKodvmClgBKmV1FEIgYE9Oa+3qxiptjXn65PQ//cff/sM/+MOqrKZpOjJwez6djQxQvt8RA1Wly8sGMWrIr0qfQx2Pj7ZN9c1vX1CjFmM7noJn8NoQAREwow9sSFmtx5OpLKFsBFKpEENKASI2ijVXYZZNR+nYOecpKDQEKqu8B0VMGpmZnaeA7eEayhxQESiEKMpGk8XheL4cjafaWO7y64ioDSdp7Lz3HgLR/Qef2Gy2681mV1a7sprNZrPZzER+NEEFXO73+81mt1lHUayUms1ni+n07OTpkz97ZzeZTI+OME3iWbRp9lEWubq21iBhpGPptXY+nF2uPeNoNGrqBqqqdu7i9DxJEm1t7V1RFmmaRmk6Gc0QpcWuurw8j6K4LGvX0Hg8Y9DpaOICoImidIQKq6pUyhDg+eOT//jVr25Xq8hYZq69c95rrREhi0a+aCd6V29//X/5NZfXf/2v/3cI+1uLOViGBLzBMhTWpIpREShWjDFrnc1MvbpofK6UoQCOLSv6wuc+e/tgoa1N02S/XvnyzECSGB0r0BgrYwSpAQBSBZUH7pmNMTYyxDUAKG2JORAwKCTWRldFycxJklhjAUBrZbURk54kiTFasooAoBFGaaq08a6VODTaIGLwPbs6QZe8r5qGiATz5r0nXwNq11Ta2DhNPUFwwSYjRKV1fO9BFnwwkU61alyzy3cCyzw8uBOEqjIQoldCf0qErJTtneybqDYdaZDjiZiDD8QKkL2DxgXGi802m0wDEWij40Q8ojTNysYlSSaclsxc164/sk0UCbLAdKRqAlOP41gEK5XSSrHWWsgRtNaIquwSMUqakYgRwZoYAT1Rn9K1NvZUC1JaKUXMqFU6yphZ62uFjboqxJ5g13arOvIn1wTbkbAL6Eb8Cq0UIgoAW7xNMYDyvZr6qvPeO2oaL5eqa/dxFRUpZ/AzP8gJRAiMwEJ0d/UWVkAMoDkoCJrZIGgAxYQhILNiQmZkUkzIpIAkv9am/gEJFCNyH0pcr7UNa1gfc+cf96WunZ6sDUIg13hj7Hg0VkqazFjyhv3fDf7bDqXUer3+nd/5nZ/92Z+98iP/PBLSLz5kaYoj+JWvfOX//H/8P/2P/9f/8e7x7f/D//A/cO2M1iiuBLea93meC9BLMmcCM6iqqmmaJEn6NKEQmm23WxObd99999VXX3355ZcBQSohwoHjA6/X681mc3p6KuDvw8PDz3zmM4eHh9pYiadNJ/rTZ8pDxzPmO2E+qd40TYPmqmuzL2VyJzwv+XL5AyGgEJTFbHkQmIy1d+7dFb9hu91uNhtmAt8Yhe+///56tUpslMbJfDq7deuWi+OmqYw1y+VyfXG532yruk6iWNw+vj56i4PYtk7xALWFbdeNBqS+BnJjAWhsG2+YKBAQUXCefLgRRdA13auP6Fp+kfVwI3Pz7Ks0aG/o77aP/J8t2n7MBT/mpdCRjwFACCS0IeJHqo7k1CRRHKXFbp1XZatc3kFpW3hhB2y11pTBBx8Ck1FmebDcb7bSq9DUjdhxaTYVqxdCEMwGaCWpWUSU1u3dbieUDCIrJKn0GxMxyjJm9t7HcWyFKByBW67Ba7wFumMSL8rSGFO75vD48PLyMoRQlMVoNBIGp1KXx8fHo7TVE1BKeQ+u8VVVh0CuKu/cucPk4ziuCt80bjqdHRweZVm2Wq2IqCcrb8f3277XRhJ4sw59o/zxrKW7Mv6SbpV9wUws2DQGGGaBoPvzwad2P0pdlzp2oelkNs7GSRJHxownozwvImuFd9hYQ0wAqmkaDqSUkoBNqD6KopCsR4/23G634se0soDe7/d7YHV6eio3LMLEUmkR+J8UQxBxs9lMJhNJCjrnptOp8Mj1zI3r9bplDkXVl5plfnvmku16ozuWMFmcy5c/0Z7QxFEUCW2dtD0ID00UReNJtlqtPvjgA6niCva1ruuz8/Pf/frvHR4eSConhDAej+/cuSMooEmaJklSFMXnPvfZ11//lPf+6dOnf/Inf3J+dtr3efddDcLb3mNopTcGnpFIet6qUUo71xijL84v/uD3fv8Pfu/3Hj96FNvINW45ypJIR0YhUPAOuHWjCDSgQdQE7AGtNkane3LvnZ4/Pff3703TNDbaNL7hECJjIXj2NSBFkb5CnGNE7J0DItbKMBH54NELdUkUR6oDsTlbKWDmFsbWWuzOTXCNR23S8WwyX47mB9lkFqWZUiavSuzI8lxTy0Qnaaa12eyKo1u3Do6OHj9+fHZ2dvL0NBAvFgtgGqeJ8IuUZdnUjVJKK7VYLO7evXsJcHpxvq3ry6rgOPqjb35jn+ez2cLVDQ7cO6V0IN5sdz5QlmWTNGGA3W632+4IQUfWRtZa64KPbLRcHhD5PTlE2G63IbBCi0rbKGZE1IoB6lZOTQFg0zTbzfbi7Dzf51e0BwPz1btvCtV2s/uNX//ND95/WBX55998/Ys/9ENf+okfdcHHUUTUNbQxBEAFWmmTjce1a6oq10YRAbFqXHPr+PDs7Kzau1Eak4XIGiJyVRlloyzN2oZk54bZsc4btj1X+EeuvBCuHZHUtXVR14HdL1EK1/j9rxmuQR1GglLxiZ1zGkUJk0HEeQEZEBAZFAMqbUT/MQRX1UXjmiiOxuORDwE6YhI51Ns80HUSmptf6hmTK8lvAPDea2Om83nfTCLbM0lT0/jRZJymaZ+A6z2EoqoEySyIwT7/qJSq6uqq7tBxavVKIf3pLz/0JVYJG3qOqLqu23vTmoIX62Q6nu7BYlaDFOpzXZQbU6mgTad+JEqFOgoNWS1lWcpdfT+Cid9tECAxEACBZtBASAG850YBK2Bk0swBSEu4AqSYvIIgwQ9c/e/ZIU9q4Gz910YFgp5AxUlqZ/OpVrXCax7qc96FWuuvfvWreZ5/5StfUYPGoP/K+/leh/j9dV2v1+uf+LGf/Hv/l7//P/1P/7c3X/v0T/7kT4ar1Luqm1p67KbTqelgkT1AU/pHmTmKoouLC+GmvHXr1sX6QnD/ACDIqx5H+6ff+JZz7tatW1/84hcPDg5EHFeaB0bjCXdaXXJM9tq01LUDyirsMy4hhCZcsapXVd332NR1XZRlD7mWPalUSzp3enoqPaBCXpEkiagKaK18CL7xt2/ffunefVfXJ48ef/Ob33zvvfdio6fTiTV6mo3E+1EEPX2tjSPqhjisEusrpcQahSE5CYDcM2CbLnp27/VhAHXinj1MfPhn1EnN9Bakf0l1HAPteL6resP5GFrtLmxoQxEcUNnSYCCqF7zgxzg6VVX1eZGeu0PaS0LjlDVZlpW+KYrch/Dk5Mnt+/ca8gm2z8p0KnvyAyrcbrfW2Mlk0lS1tZFS6uTkxBgzzkbOOWlEFmSXLCfnXJ7naLS4npJNl0Ui6Zzzy4v9fi+EsDeGJOllCsLzSRSM1oAoaa0osqfna0C8vLyUhivRQwCANE3n87nsGkSUw0D2UdM0BwcHnKVN0wCH8Xji6hIAkiRJJuNbt26tVivhQHtx2OFf9KDB3gh0De0wXKL4HA4ZRggQWLWp1iiOmRlRNU1TV8ZGZrvdjsfjx48fT0aji9Pz28fHi8VilGbbzVbo2qRakiQJdXKN23x/69YtyYZIh4nkMoqi2G72h4eHkvAjosvLS7FReZ6nWQwA3vv5fC4JF+iWjfwg1Y/9fn/nzp3Dw0MAODs7M6j6XjhElGCmLMuTkxPswmwAiKJoOp3OZrOmaTabTVWUEqJLyRo6Nsjz83PoNE+gk5QWs7BYLHyTCxetUE7tdrt33nlHiKGW0+mnP/3pBw8e7Pd7oRa4c+fOSy+9VOz354/fPzk5OTg4OD09lbZ+MfVSqOln6mYyZdBUeePVUZrmefizb731i//qX0uIMkozDnT3pZe0d1kcJzYCIteQ50BEjtgxBNCgtIl0lMbJNIutCk1xWlxCne/c7vhgeXSwtEorYkUefEBo2Bs7yaizP9aqJDEAPgRSCoL3cmeeQpQmRkdKta6n1ahIMbNWKMgLIUchBs/o0aTJaH54NJoudJSiNiGwC9caG/oKMDP7EBaLBTF472/duiVMxDIvTV1ZRIUt24GkP4TxP9/vCdWte/e//fCDf/U//+LOu7JpjIm8D+p6m58cuyIURkSaiRXev38/TpPArK358PGjsizPz893FztUfHCwELS21qauAwXQSqdJ2iebttutRMgAULrm5MnJ5eWlHDRifj9yJ1prhXHk4uLCKPWHf/iHD588vix2X/mpn4qUkaREAGBiVhhCS4u3WCzqOimrfL0u9rttjTRO4+l0aoxuynycTSNrHj9+HEfWaC3Zopa0asAiI/GJkHZ+jGW74U2FEATi9ayLRR3UuXfDhi/16BnV6js34vPorp/We2eJbjRjSlTgXO296wm10jTdrCvouBJheIeIImvf/Qufd3DcGNvtNs/znnVDDTnEBxfovQ65uORosCMNF9SAZOuUuXJLRDoCANofOoMtgaKcLPLQJL/TdOq3PZmQMWaX73t/+8bDF6fuux5PvW8jwznuk9Q3/rKbkSuBSFnJ+kYp58XHsMwCAIO2Tw4IASho9oqDAW/ZmVCpUGEApF5CDHkYWSpSbYmGFBBckRLdeAb9KmyDSLrZ6/lid49d5oad88yUjeLxJI0j3ZdyPj7kEMfoT/7kTw4ODu7cudNPVZ+x/n7u6nsf4nVJgDEajcqy+fGf/Knf+I3f+n/9i1947ZOfun3nNgOQAgBApcQ0iJkIAzE+WaBSpEvTVECHq9VqtVpNZ9Nbt24ZY0Qx4Ozs7PHjx9IG8Prrry8WiwcPHozHY6nRi61M07SqG7FQ1LL6trouEiABQN++36/gEIJSVxRbzC2VYb8z5Y3c6UtCZ0pkhzvnpNoj/SrWWkRQkXV1y9Y6nU4no/FysTw9Pa3y/QcPPyjzfDYaI3FqY1RKmmHIh0W07E1qH2D0TxsGrB39LGitJVBpk3jPRAjY9RIIwKOPgoarRD6rj3aupWdukMQ+f3Vdcxav/yUOQDs9ZF9sQdU0Uqoaso48e8Eb4ci1z7pebRCr13cBDkNT51xktFJKuht2RTFdLg5uHY/ns+XyIE4TyTfLWm07MZQ6PDjM81yerbV2uTwA4rIs15erB594KQyG1loUKvb7PV2/caFwlWQ8EQk5GHb0xP2QRTiE8n/0s+7mFBEBcDGfV01zcnIip6kkvBFxMpmoTg9Rst0S20gUV9f1YjrZ7Xbe1b6phdAiSRIDfO/+/e985zuSsKeuKeX/v6PfFNQ2WV2t4BuO73OzawyBiBG0VtYa4RLd7XaR0VvycRpLdDcej5koy1IJRRRgkiTT6XSxWPTNS+KCS2ADABLGXFxciFOeJMlisWBCiWfkzJYsxna7XSwWo3EqG1M6s2VeAKAoiizLxuNxD2d/+vRpD/E6uHW7TytiF6aKW3n//n0xwnJvUuUQpRSjtFTwJGsTRdE777yjtX7jjTfOzp9K+SXP8+12K9ovYhKticqi2m53R0dJZBOtVRKn2+12vV49fPhQ4hCptBwdHT148ODBgwdxZJfL5eNHH65WKykB9SyIsiWfl0q7cWANZ7PMi2+//fa//Bf/8umTJ0ZrUjpO0sk0I+8n1maRTawFUVQAYoIGwAM2gVnZdBRND5bZcplkEYV6s1LcZOvVJWwrUPl8FKUKmD0yADcUFFFE/Z0gIUoHQAiBMICow2IIAdiE4IOvqqosSwqdOR3w4DEzEVdBZ+Pp8uh4fnDLJhmhVtoGBuedUoo7H0Rro5VuxWdDYNVYE0l8KBpl0kHEFCIl0q6tnHkPPkziZJyOWaE9PS2dj5OUtWUG70ISJ2GImGXuk9O73c5X5Wy5ODs7U0ZHSZKOR/v9XmvtKGQmM1YRUVEUzGyMBdBMKstSqdTJhIYQoigSDGGxp4ODpTyHHjL0kRtRVjsi5nmexFHt6s133qmCPzi69ZkvfAGVEe+OgLVWgQSZI6UMk6VjrcwkG1O1tQqMMfl+RyFMxsssSxCxrkqllGLo7d4wkytmsPfLwzN0Hf2afHZZShpCaoz97/uk58cHKj3WsYW4G9N4CiFUdaNtbOy1ngo90DGL41jrlJk3m433uhc2hGE0hYjq2rN+QSdQZJSk3NG7HABAITBdAYjErGHX1CGKQAL9Eleqf7Y4UFuWZG7v6WEn5iv2sCxL7Ib4b9Txd4WuOb5HdlHPFX79KQ2m57nfEQfYdejSNPo6D5CMvnbU5w76wrWBoWrMNeJ76O/16quKLdBK0BqEzEq67VrHCEFpxchoNGullTaotGfyTAE4oGIba6PZhaAYlWmIi9o7rM7LdSA9nx0FZg2gWqFK0EoPj73+9iQkUP0j6iDUz31a17p5dCBHRIhA5LWBNIuS1GoL6KSH7GMKWe2oqurp06fiWHRl0u5df5Hgrxuz21ckPAUV23iU/dWf+6v/j//7P/xP/+k//nd/4280wXOnIi9RTb9o2uPQ2sChKIoeuylmVNhpRBdSLEue57vdLk3Tw8PD+Xw+mc6lXbUsy15tTcyEcMiKHyZmVHf8xVJh3G63SqnlcillTckEmLj1BiRrKORm4qkAouA65OI9/XFVVQGE6bzta5QOfq11VZUWyWoNAKMsGyWZQSSig4OD8f17Hzz84Ftnf7q9XM3HE7s4SOO22tDzBcvXkR/ElTHG+LrpJ1YN5FcBANUVFlEpZL6CkBlU1Cmi9PUZmUixQ0PzBJ3tU8PKBl4PHoj7+K23YjK/Q+pPGIppMAf+iNFN2TCN+ryjDYCviZl3nwshiMcqnbjoPfWx3KBdB5oWogBSTvIhBKQPHn9456X7rMBxgI5WW04juSXvPQNTx1O8C8E7FxmbJEmrZk0ksV8fIko0HsdxUVdtsKSVTKW4bkLaI2GtNBFKDkkhErPE1X0s0X9Z+YEEVn89kkSFVVXVrpHrO+dk9Urgt9lstNbT6TTPcyISt1h3wtLn5+eI6L1bnV/MJqN2XYVweHAgAJ6oEwbmTnhOviYLL0EnEdWtw8GyIQpd+1O/6wez3B6xWmtP10597nEUAr/ubA4OBgOIbH1/b8OVQnzVf8c3Ql8E55okHmulUSl5DmkclWWBiEJKDsSz8SSJW0FopVQcGXmYsshlURVFsVqtnp6fzWYz6bubTCZN00i5I0kSISYWFi/o3DJ578XFhTQun5+fS5bEeydXUC1vcrDWzmYzRByNsrpuxJ8Qni7nXI9BHY/Hd+/elfdSpxQpnb5iIZuqFgN7cnJSlqUEXUmSrFYrISBZLBZtbwzzaDQqy1Irxa5O4iTLpkRYFMIkyUqZ2ewgi6LJdCIp3tVq9d577/3xH//xvXv3fuLHfuzl2wfj8TiEIL18zCyOnZSS+pVwI8c5HD14DAAC8de//vVf/ZVfQebFbFZXNTBoRAS0SqfWREohhdAEVKQQm0CVD3WgMgCbKB2NpsvFaDHTiWVwmGikpjCpd/Vl3hDRPNGkApFHi3Fkq6piodvp0b8s8QlbbPlgmMhx4Lr2wdd13bgGO45DAoWo0GhEZKIQaFe5Gus7L0+T8SwQaG1AayTGQDqKQqBAoI0GbUErBYDMmhFRCc2PUmo6nUwmEyEIJs/MrXif4G2k8bIsS63NrsjX+30TyMZJ6XztXBIlSRy5xmlzLcuAnSinnH2Xl5ciRrfd7/V2LRG4pcCaJ9OR7WRbAjEFtMZGUZym6b7IxVQKikGsa1GUQm0sJtG5xhh7dVjQFU7Fe48KBRFkjAFkDOHi9Ow3//2vvXT/5XQytUkcEAJLp1rbGtF1CGsido3T2igULUkwxjrn1usqiqK6qhrnkqQFWVDH4Slbzw1UraAjvRTLpqBNtPcWow9XevSHMQYVQrg6szrN5FaVpb9V55wPHAv9D5H3Tq4qX3m72UigkmVZnCRSKeOWFgSp1UlTxhprFQDXdV1VZZYutG6ptKCPDRDlRBhWVIYzzt0RK2eH6KLKWXB+fi55DZmLts1GISAmadyX08WwqK4HnbtYQhx6qdFJfGIiqwZMX/3TNsYo6Pi+mSUu6v9Mfi8VFTkXeu4Zghbd0H2pq+8p/ZbQBYF9hpeZFao+vyZz3U0Wo7qOGRt4QeSDENxBm9gNssVaHRWlle4IwoaP+OrEkpOpOym11nGS2CS2SWzjWBtNwkPBxEQpRUqhUWYSj8dRFqsIg4aglIoaZStlFOpd4F1RNduy9mdN41ygy/3O2OS//bm/oSMjxDJErLTS6poKTL9wu5P7upV9npN1/SBVSoUAREEp1Aaj2FirtCbEAB2RjbBmPS/kkKUgTIJEJBqffWPr9bf9BVZX+ixFG9YbDtx8/vOf+exn3/z2W9+8vDg1Wax1TAF0aMHu1DU9y2kkK0kwDELVlSSJwLWbppGTfrfbiSD08fHxYrEQYMzJ0zNRO5EsoLxRNpKopAlvpuDKxK1kZgFoSTpHWupFdy9JkjgbAYBkScXVgy5kT9K0rtvurvV6LUmsKIryPGel+1BKKGhFiTwE76ucvC/LcrPZPvrgIfmwmM0PDw8RMeuwPTaKRCZSFrYkNtSAP1G+eGs9h23rwygFW547aJflVa6FRDlkAPq6MsGDQmcP+uqN741y6nD90nXq4d6s3/QWB+8VS3B180rBALwr6lHt3d7IYw1+JGa4nhrsvdbe1hhjiNwwEpaVxh3JcmRsIG7Yu+BLapQxi6OD+eEBK4ziSNaSTKi0AocQlFZ1XZdFiYjjbGSVdnUdQojj+PDwUFpfxOkUV0yyiZPJZFfkEioDwLbYSsAssffleqWUEnCCxCoyy71oRs/xAAAKFSpUSpFvMXty1PWnby2Nv9T2BsjTEIyQZPQlMoFOs6hnW2Lm6XTKzHVVvLtZp7EVIaPjgyW4IBpwsmVkNWJX4enXyY0I5FqNjhmeKQoNwoqrlcbXkTD9OuoJ5oeBiuwOBYCosGsbvZG7vQEJG76kNDKxsVZp1TRNURSLxUIc9NX6AgBGo5FSOJvPsjhN4zhJkiSKq2IvsYGkDBFRNJSIKM5S7hqTBIojbUiXl5e3b901xsgTDiGcn5/fvn27hRTCRPb4crmUBIqE4VprgQj2IeLp6emHH354eHgo64Q6bmgJaMVSxXF8eXl5enpKRLPZzHufpql0wkRRVJeVBM/j8Xg8HsvHSYxd1YUYXmPMbNYqVyZJkqXp+vzi/Hy1221n01mapuPJOIpia5A4TLJou91cXFwAgBheAPjOd77z5PGjn/nxr/zA5z/X4w+ZWXoO+5OdByvgaqlcx9jIXBtj3n37O7/5H37j5MmTw+XSGqtiZKK6qmJtJtOpRbTAigiRACAwVD6UjSsclwQYJ+P5fD6fThZz0hDYp1kGHKZ2Wqwvq/1m7xz7utY0jTQDlK72jrWN4jiK45hIFq9RSvy8zqIyhQAuBOdd0zSOAgQllRTFgMSIwKxqj0UTTtd5/uRyU/ovfhFn88VoElsT7zbrxWLpmVmSa9oqbZXWDNzykQ0ejjj6EhMWeVitVlmayOkjObUoiqqqsibKprM/evvtX/2N38yrKihlbOQZdGCt9FVrCLRZp969QwpEVFWVNga0IqFwUGo0GtW7uihKY0yapnm+Q2Rq5emAKGy3WyGRE7Mmwbm1Js8LgUnL6u1zWNhyb3Q3otp5J6LGOfYNhTCy9tvffOuPf/8PvvjlHzbGolWude5JeKTkIiEEZuU9jaKEfGmtHY9G5Bsb2aYOm81mPBpty1oK6di1WRtjfMfyr7p2Ee701OXKClCsa1/Qxi41A13rIxGFjsS2NTt4RS4CA5SUc06ZqLfSYoR1R1hvjCnrkpm1atUQudsgClHKd1oLexaH4NsWMmuNaeU1nXNtRx8iKnXD07u2xbqMDjBrUQeSEzMEKbz33eTyjSRhlxr7rEvAneN7w9EXb17+2eca+rqQvN03rves4KMAn7rTnpdoQZyTzW6LXY67n5HWFGN7NOiOeQw6h6TPg7dhdocWwb660LG39VU1InKdWG0311cYk++Bnlh1ZM9KKUYgYGL2FBRoY408ZWCwEFNgoGAwiaNJms3TtCY26135X77zrjbWUVhvdtvdvnI+eGq8J2Jt4M03PqOtbYIfp6Per7rR63lj0PXm4Bcc3URrY9BEOklsG21SeEGAhTxlwagQkbqJUPsLHP1JI/mDQfRMwTtq3CyzP/WXv/TVX/+NJ+/82f1PvRJ0aLzX3mIn3d2nc2Qpu8pJR36e5yJhIS0lfbAuG2k8Hi8WCwFFCIZb/AzBcfWqutSNNE0PDg4Eri2ZSNl+4vTLPVxeXjZNI8k/0EY6beTAFg9Sii2AKAnp9Xot4Appjd3v9+vdvuelxa4iNBqNiPzk1tGHH7x/cnISnM+yUb7dvvvuu5eXly/fv+e9E6S76aCP2JFi9QT51KEk5Zk75/SgytFPgdhHYup3B3VYUu7k2PpABa7nWvqL9Kakf+lGvnP4LuIr6as+3SLrsK9uQ7c1+tD041fUx7z4vD+TK/c5HhqMvgbbe+3914yNoeCCD967db5Lx9m2yMewBAAJZafTKXQ6RRIw2Mieb3diXlFh3TSmM8HyrcWJl9BaJIB6oyl90jKzAjeX4sYu3wtKUCBDiCjSpd77oQZub5pVB+TtAxUhj99ut2VZMoBSiryTZd/HARKoyOaS0oHcibi8EqILz8R+p3/0R3+0LguFXFXVycnJyEQHBwfr9Xq1WklRvn+M/HyJq2vRwkdlnV5gxr+fMfR9uUv2dP/k4QnOzEmSxHFkjU3TdLlcJknCwTdNJegs7KD/Wre8w2VZyva0gyHunUC2yrKUc1qKrqFjyZQKsOTkmHk2m52cnDDz4eHhbr8ZjUaityPpZ2utkFyLTIpguqRHX5gYtNZSkJGzXBaP3JW4hkKbLnwekiUdjUbb7dbVzWw2k3TPeDSO4/iDDz7Ismw0Gjk/Em4SOdHF8TXGXFxcjJIUCIAhTbOqqprGLRaL+XwexdaV2+VyKd9a8v3r9TqOY63wm9/85t07t5fLZd8dKwvSdQ3NMm7ahMHPfTLl5OTkl3/5l9955x2tgHwQqfA4iiJjI23qotDj1IC2RlmNRKF2rvKu8lQGyj2PJ8lkvpjNZuNRBkoFpsCBmNGO4zgr4jRU+yrfNFVZu2A5cHDK1BISpAkrrUIgAGQ2CNA0TWAmosAUgH0ItWvquq69L50GVFppVNhmGInqui5rt698E9Qff+Ptp+frv/SlH3rllVeVahhU4z2DQmWMRqUUMXDrIUlkfi0hJWhSZs6SOLdWYesKU0epAgCsgJR65VOv7//d/9L4wBqssl3XNAI/VyRbKRWY67qmutLWHt06bryL45gRtdb7/e7dd99NUmOtrWunjUZAInbOy5KTo7mPVSJj3vz0m3/8x/9FbniInebrSGNJqbZZbM9AgYkUQLnff/U//Marr3zKxrHSce0aow0g94mtEAhRGW0iG7tmY4WURSml1Gq1SpO49e+7qt0wd94/Uh6IEnYuLwIAByqKQmoLTd0MK1FiRfsgZLiY1UCXgzsKlhACopLkqSQUhEmiPy+stdZ6IrKR1c8H1nrvIQSlBKhmvbui8L5hYF9wELHWSs7V1WolxgcAZIfqjvj0BiC5zym3/+yiCN9JJcp3N53iSn/sfq+3B9cr54goUnUS6Ql6RXVjlCXyBKSM3KPXmLkqG2YWn0e+YN/30nQlbgDo/UyZwT5khUH2RKrNLxyodMGxrCrJF8pD6Ss7sue3NeVlvc33D1cXJ2VRp4k5OtohfuvkqYcASnkXiqpmVCpKiEgiySg0h8fHySiDoF3wWqkXYe/t81u9v/5i30ZBWw5TSWLS1ESxZqZAQaMBftHFJ9jiEIKBvwhOgo8evQvYe7fd4ggKSmi8r/2bt289nE3XH7x3MEtrDSUR4iiyiUQp4vf0eW5ZZLLipVdVQAvHx8dlU65WqyiKzs7OHjx4oLWWBhXZNvP5XAqsEjSLPEsI4Z42skClKWW32wnoRVATACACZ67jzWxdOlT37t2bTCZnZ2eSBxW/0BjTOCfupjiLqiOmEH0D1UE15LGUZZnnuUC/kPnOnTtpnCjAfLc7G59eXFx84xvfnC9mdV2nUWStbUGLSvW0GNB1jMgd9mdSZK4UcvoIoX3+7HtzecO7lbeHZ7rnAQDoCvQPz3clb9hlgiv7KH/Wux3Phje94RhesA/AZITnd8wDXrvn4UWIr8nP3whU+qfX57raPw5OWwMA2/2emI5v3y7Jrffb8XRq40jKYj30q63GAC+XS+/cdrsdj0bkPADK+hEHVOpyvSMr7xXieVknqpN87uXGBTPTE2oZY4RqQmsdDbh6hWemn1NXN7JrxD+WY5iI8rIAtFIO6p3m/klKAA8AUoqktu5EEhqlSVwUxe3bd6oiV0zWaiIaJXG+2ojPKvBINRDNDIO0yI0j9mOm8sba+PONVfg6G8zQdN9cvczjLI3jRE6Qs7Ozs7Ozl1+6H8f26Ph4OplcXFyoKH748OE4zWaTqRB5Wd3CCKUYKxB/AJhMJo6CFLjiOG4a1zS1UkpKFtbEfTsWEQlUbDqdXl5e3rt/pyfsEtOkO1Gj3W4nWFYA6L3A/X4/mUxWFxdifERoxRiz2WwEiSrtrdJ/v9lsbt26Je0Ni8VifbmSP07T1HnH7oqTXRaMENBJRUgyQRTH3ISDg4PlcqmUEm1K6RIMFEK91UY7587PzwHg1q1bP/ZjP3b//v3Imph9VZWbzUaIHCX2hmdaLntPsZuVq5/lOHjy5Mk//af/dL/bxtZao3eb7WwyidMMiMl5pe14NBqlNrFolEL23vu6aZrGV64pPWIyniyXh8fHi9ksjq3QKwSGwORUmMxNmqZQV02+K1YXu80qVKVBo/IiMr7IvbUtc5HWrUuEoQ7QBiqE4EOomrosy8L5VQGMRimlUEELp+W6qqu6yckUVR0AV7v9b/zWV9//4MMv/dBfGo/HeV6gNmIuxJ0amm6lNV5/UJL8gixNo8i7Vv9XGjvF/jgfajABMMkyzvPRaFI3HhkB1JXI0HfZQu2dS1NB7Z3AB87OnsaJvnXrKElSY2IErOpKayVeuyxU2SNEVBUFM9+6devk5ER88au5/qhbkO+uFMZGhUB1UY1Hk/OTp+98551bL933zNZaxoDQStYTScHBGGvjONlsn2KkiqJwTa2AtuvLNImXy2WRF1q3D/aGngYMMu7iSHjvBSWbpql3DrpQGZ8Rpe1dTXUdeTsMVPrMfdM0qtXV8dxR+8h50R6XN06654wQQiCnFBhjlEJpe4Pv1sP8MaP1k31QSl1cXMi9iQcrIbEcOtbaG3Xp4SfyQNNZlqKcelprNVAg+P6MvPhR0Fl1QQpIGkgWpxzucgjK0SYJ4mGgMp3O+vCGOozxs591A2aSJalcuU/7AkAURfv93rR8bN3/hl56Sz/Z1rekgR5JIWud19RoCt67xq2quiiKfL/f7Xdl1TzZFPu6qerq9HKVN7VnyGYTT7BtGsWMGICVt5YYRSyZtVaMGuxnPvu5IIzUrRI8AlxPx33UM9Xfo/YZAgAEBEZkpSCyJo4ipSAE5kDwXM3mj6jrCenkn3t68uNHYGHc8eQdEwUGDszEzKHOTyNPZ4+fKOdfPprtnnxwnqmNa5zS8fz+dL6UjF0SJxoVo1KISuF8PnfObbdb6LCGkoaUZysSuUdHR+JjScDgvU+hpYCQyEFI+mUuNtstd2oDIiDNzGVZShlELiuHhDTiy11JymS73Up6ezKZiAkmovVms9/vQwg9LK3vzjfa7/d737j1alWWpXPeRnY6mVit79y6LfYMmYPzsbXjLI3j6OnjxxdnZ2VRZvO4zTlxG9ArrfqgQrwiHvQ+Ml0LJIajzw/Jq8NwpQ9a+BmEDHS/eXYJDd2+G0kphivUVs+PIebbDWVPnhnDl/A5ufZnxrWXblyEuq6k/uP6L9ibM6WuYKVEpLTal8Um3xdlQZGO4ijNpqQQESbjiWsaqdT15q+qKlBYB4qsZSKFigJZ23aPBPJ9OUVCVrGwkqaSSKB1XOr68vLyjTfeEMAhACRJIl160LVQSyFx2Ikj3mE/m9q2VzPGBApN05R1FSgYbaIkg04mtY8rxD8WB1S2FTMLHlIWszEKEefzOSJYa7NRVpVFmqb79TrNsldfffUb3/ymNsZ7r7o8UYeDec5sXY9vr0/kNSjCtb+8DlJ48SHNyM/2NvEgKa0G/gACECsTZzqKlbEAMJ3N6rpmBKV1WZTWmMja4P0ozY6OjqQh2Fjrm4q6Ri/Zj30vEAD0+oyIIJgckfgkz/l+TyGMx2NUqshzYHZNc3R4uNvtvPcC37LWSqd7WZbye6WURLlJkux2O8nySqOCOF7W2t1u14apeS4qT5eXl/0qKopCVEeTJCEmWWBKqcePH1dVdev2rbZ+G0X37t1DRHHUnHOSZL13924Sj5hYFo8xkdYS/3vJ/cueGo1Gn/vcZ3/gB37g3r17zrnIWip3RW7kgeiOvEGuf2PzDqsoLH2mDACQRPbJyckv/eIvXp6dWaNno5HI3nvyIXiDKoniNIkSo8dplGhApsYH58gFbkj+B4f37tx56cG9l+7PpmMFyERM7AkJoHQ1U+LryFVRlqTz+aLYbC7OTvebSygL71xRtcUfRIysjYzVGtMYiQMFImZC8BTquqnqpmr8LmdWJIEKActZWNd1UTdBJ8pGPtRl1cSxfevtt1ebzQ/90A/duXUM2jAqVIaYWPTZBOB5PbAOIkitlI6sRkwi21S1b7n4pMM4eO8DUbDR4ujor/21v/bV3/3P3/jW21rZwap/7gjEoFBrbTXW3p+fn9+5e2e73TbeldtqMhpVtVpvLqLILpcGwTJ7LKu8KKUTuq8uinSp1vru/Xs/9uM//q/+1b/K89xGkRq0KQJCX1YRovG2WztwRWGcZuU+N9r6wA8/eP+nIuvZZ2nq3X6wbIiIlGGt0Rpro8hEWBZFVRZpZI4Ol3m+b5o6BEonsShEAQAKjypIWYlFe5YpCIpPa52mCSI0deWdi+O4qRtENEZ3JMkMwM4FYqGFsMw4OOmunbP90UZEuvMTlFKRtU3HgKe1VoihVXvkEIgErt1e7lpgaa2NlGHmrqX06pj7Hhw/bteBHI0KVWCvUe33ezncJRuilAKBvdR141w2nvQXuOE5UAeH6SNtIfxQg/Urd/giwdiN0Qcq8gPqKyKy/vpSCWmA+u4Uidv7g74sat2JKff5X/EKhhELDpQSQDS7O5nX/iA2xlRVZRLUygMyaaVYKwF0iWSYwRgQg0JG8Ey1d7umOt/u1vv8vfN17amu66ZxZVkI8scJ9arGq9gmighw1zRC79U4QgYAYgQGIg8ge4bw9vLezM6hZoZg00gOZU8QmAyC6M62czBYHmkUyzog5+G6STD26nEMpxmBvNtYo5IkybIojoxiAM8atNHptQzy9YXoBx4MKvRM49n09OK8ck0CV6KhNyTYrieyrrkL1/7u+ksKPjpeZ4CizpEcVzu/W3FZWtIa4qoI+W4fmif79alrct8UFmuL4eRbH+ZFta/48M0fmcSffeWTD97+9ntN5efjcYTofSibwpsmBIpjKyIASTKZzSbW2qLYK2ukvHh8fCx76arGF2BflABQc9t09fTJCSLGSbLerp+cnKRpenFxsVgsJLo4PDoYj8fKmN6zlHRmMkqLogAASVtKL4qQHYsbIegv7ARKi6IYjUbz+VwMEAe/Oj+ThDoiZkl069YtYNZaTyfzcrdXCvf7XbHfGeDlYuabRbFdffCddydZlthEoR5l40ibEJgA43Rko6SFsRJow8yMSgGi1srXVyVLOScE+1eWZRYnoEBppUAREQEppeqqds4BD5LcAD3YGgCEC7Wd8etVDmWuwczC8CLY0nr0wUxfk1HXwWPDaEcPaEyoY0SVMQxv8DqK0sRXBWhJfrQJTkTT0R9x17ArS4WZy7qUGrHVRimxOAwhAMA++J1rVmVRER0uj42Nx6NplKXHt47TJFGIeZ7LdAuPguCwqSzBu9koq/Kdd83F+el4PPbsN/utjcx8MQ3kfGgiHSkNZVlqrdMseXRyYm00m02fPHlS1/V0Oi/LejqdI2LdeCbUWmtls3Tcyk41wTX+cDGz1uz3+6qqJNTBDiftPKO2TNQEIuKycVGSESgTMYE6PT1NksSHYKOImau6lmbxLEsAQClomkopNZ2OAYCIAShJEo3A4J2jIs9dVRtjg3c2Sleb1dd+9+vpdHr69CkyaEStbAiBAzvw2LE/E7CngIiMNyOT3ui1mEOrevFZkfUTxxQZtDbETBSIWXRy5axmBIXyZ8gACpBQMbDwL4ACZlYMhAwGUCkClgqY6wTXkFkkhrTWiBwYeXbLjQ4cKQ1gOay2qyiNTBKD1kfzRVUUGDAQpcuRtvFoMqMQTi8u2NXb9frWrVuSK63r+jvf+U6r6e4CIlpjmzrX2lZV1dSeiKu8strMx9MoskSMiMmtO41rkjjO0mxb5Gk2Lqtmn5dxHMeoozgtq8Y55+pGMGP9llFotps9IkrQcu/evfX2RMJdcREu11vVNen2Eivr9frx48cvvfRSAIiMXu+2ZVUm49HhnVsCyirz4vLy/PjoyBhTFqVspWKfJ0liTTxKJxLT7nYbREzSWGmom2qzuRhl1u3LUZb+1f/tX3nzzTd88EzOaODgbJxMjfXe20gBgLFx3B5NXFaFamdfwgDVLgCgmpo4ioC5Lquzk4tf/sX/+Z233gpFMZ3MUqdos59nqTNQu9o1jYXGGMgMW8UUAgTFpIzOfKNLdluG5PDw6O7dg+PDZDoma1gxKgwhKGQV6IASCGzmE9+4uq6sMYhwtFqtzs/e+6Pfv7w4Y4Snp0+1xtuHx/emC41KE7kqd3XtG79cLMvGaRNjmhblZV7tjE0dQxNCCE0dfAgBddupRqyY2cSGmBwHbczjpyerX/8PLz948Nk3P50miWxwQDRaG2up0Q3iOMlsHFVNjYigVWC2xsRpYqzNzy9ZGba6ZjKotY1QB20IgRXyZrv69OuvTcajR+9+0LjAbfCHbQN+Z2CH+9QTAnEgBk8MofbN08cfxlHsqsIwVPtGGzPNZsXOGVXCNIqSURPIBW/jaDqf2SiScFT0EqM0UZGNx2M2xiSJCyQdXVpbbXFfFVfWAQGVLARWjPM4bVwISl8W+9F0vK9zVFyu1tl4pBQyYAgt0ikyBpGqYls3lY2t91WWGqo81YWOxofLGYFqQmioTkcjYADNVVNZa6umalyTYByj1kwIhEAEHFyD7OM4aprKGsO+thoYWAEYI/oTHhgAnKREyyonQoVGKR1FFlEFIgImCkCBAbzrpEUUIiMysufGOwoBAlAgzaoJfpOXNopBqSaQdcGCQq2C9855Jp+kiXe+FDoWNEohoFKISade0NeF5Bz0TZOkMXXqBfqGSAgFZEIKwOxdg8QcfF7Vq/MzIDDWQiBlbBRFyhpltDUWjUatCSCwSGHrYUVFISFy25XFlI0SpVQUJ8IIEYIzpsV8OOeTJCEKRAgKbRzJISA99wOkAwUKgSToJq211OAIOEIlOAUi4kCdIg8qVAhaCSu7joiop27f7XZBAOoKT06f2k7FW0BYqm3qUfJ/3PeuINZ1PR6PpTE4jhNrSWqGl5eXxuhIDiFuu8gYEbTShOp8V9ZNsyuKXVVsyvx8fXlyeb7b71zgXQOBbzb6gDKsdOCuNbPN27H8DAOZdmRggv4lxRCZGFgZbfXNWRGIJ3yv42PiXQ5eR1EcmSSOdEtHMGSpeaERdcqd3/Od/VcMBIhAcQiuLP12XW8vVUPKm3zX7Hb7/f7DqtpaC9qQYm8QI0UOgwk+Ndogj7P0lVc+We7Kzfmlr0sVKZNYx+7yciUg7CRJ+iKpUkqgMlJblLSiJCy32y2CluyjgLuE8p+ZTWQZeDaf37179/79+8fHx1JMkILmvij6nSxojS565tVqK5DrEEJfP5FbCkUhuj+y0AXVfXl5eXFxcXZ6yszHx8ez2YyZ9/v9KMukzz7f5cG5y8vLpi4jY4h9yw9GIUvTyFgF6BvnrDOxstZAl8WHribeO/r9lr4xHWFA1SXfS3WjzzGoQb5ajihJBveIIBk3rn+jD+G6D/rcJRqew+QDg6o3PHNYDjtbboxhKNVD4/q0Cg+AZ1KxlYfQ53LEjZYcFBMH5pIINK5224Pjo9FolA4y0Mv5Qi4bnlEvOTo8lOrWer0WLNa/+Tf/5ktf+tLde/eQg3B8KaUkaS2RbV1XTeOqqsYOZU5Es9lMvkXdNCKnKNtf6JustUpj07iiyKW/+caTKcqif3rMLHKQAqdcb3ZCfCxzKky1csPjUSpxTv/fNE2bpkGEJE18XTdNA13ba1M75xwRE8Crr7369OnTy8tLJOBnMF3fU0qvS6ACQAs4Hz7fVo7qmYt9PLhBAXzkaruW6kFkpQiBJEWHejyeRGmmtc5Go+VyOZlMxNdHAIU4m86karFcLgWY57xn4PVq7V2jlBIy4hDC3bt34zje7XZ5WUsBRLIVZ2dnFxcX0+n0YLncrTdKqSRNjG21DkXQ5uTpSeXcaDyShdfjT8S9EHjDe++9h4gSdQhqS/r30jQV0Ukp2YnRQ8RRNpLUSQhBZv/u3bti4kYIAhSczmbS2iRVjtFoNJ+M5rP5fr+XTj9mfuONN5qmSdNEaz0ej5lD01T7/Q4VK4Wr1aXWarfd/sAPfO6nfuqnZrOZdFG/yBrQWqTbudfv7Cj6ITKmaeo0ih99+PCX/+2/fftbby2ms3GaurIm58FoHRlltdagIjOx8WI0no8zUjURuRDqhj1Gq7IsUEXTaTzJbt86mk0mkbHMBMRKYdXUUWRee+2VH3j989/64z995513tFZC1uK9t1F8dHT06r07337rrd/7/d9nZabT6SgbcfDBB2s0MCDjdDyZTee2rPa1Q6YoTqLIBzJiO4lZEQaFgApRsUIk8cQRCJXWqJARNtvNt95668mHj15//fVPfvKTfcpMJiuKouB87OI0y4qydBSSLPUUoGl8CHGSUsffyJK+QkTFitnEpgl7CuGbf/qnTVWBFpwwX+NRfWYgqsGOQSTgQEykEIhDZExZ1UmW5ZvN6dOz1Wr78idfGY3HUrmV0xm64rbUkja73etvvPHFH/zBr331q3VZjZJ0lGVVVbE2MPBynPMhBCPyklo3dcMUsvGoqMq8LAmorsvIGiACZXvT0MN4Gtc415B34L0mv1jM6ny3222wyON0EqUpoQIh3AeWVkXFYLVO4ohcAyDTRcC9ZjiDdD13d+jdFRkuAyRZ4lxDRMZExmimzgbeNFvXNDoUqkAtCBkAROG3LMs4Sa0NPpD3Pk5S2XpIzNSWrPs0n1QVrLVCnhKZSHye3o25snvdqXfjeAVk7OwtMhitq6ow2jx58qSp6zTOdAdwFPgaIIq5ljNIHKfvusflOAghKPkuOAgGrpqCrvkbfauVpBqVUsJfMCzLYEcypAdsW6GTkRjeQJ/BlAJRkqX9LwXD3MPAqqKEruO95/hSXcQSrqtbSuSz2WzMjlkbbaLIGlO5er3dnK8vL84vtvti1VBeVdvtdlPsi7oKCDqOGCEQeUctWEZrwUq2uViF5MMQPzY8TT9mz06mE3kiH+M2fU/jBlx7+JLUpHo6lO+hhNcNoTqVNlwhXflfZyBDxMiefF1QueViS94HB+W+3G82+3LTNHma2VihUmAjG1nwnkzFRrFBStMoHc9Gnxi7vFpdnD188vDpxdMkmUynU0kiqk4USUhvAEA8gH51ymG/Wq1221wE6eTvEXGxWBwdHc0Xi3sv3c+LXFhZpUojlIta68ls1qO2hlXatsiIKM2skhTvrYBSSjLrZVnu9/uzs7OTkxPvfZZlh4eH4qf29MqyAYqiQMJRKhCILDYm3676jvM4iqxp5dWcc7GxKlZ9hCYrZ9hi0cYe11eUhCKyw/vwBrrEqlgN7/2NQIU6mmbxz4YvDSear79r+Cq+WC/1jdF7yc9+3DVc2fXtcK2BbwAFxo4esf9vGJCWuND2BTKz65p8mCgAN8SXm7UyenGwTNN0NpvZJD44OjLWbDYb1YGPRY2kH4LXGo1GcgOTyeTnfu7n6ro+Pz9XQNLTQkSyH+M4FqGJLMuEyE78USnlyfWLLmDebDY9iZzkjXa77WQyXi6XumNz70fb0I+IiJL1kUksy1IUHqXzuyxLuZosANEG6eM3rXV38FCRF7E1SZK4uiEVkjQhH4jI1ZW10e3btyeTyenJ081qNZzXLrcCN8roHz+IQp8tQlQfx+T+5zyQCHwgo42JEm0iIhJskqQDRAGJQmiMRWhBSo8ePZLww1qrFCRJUjEJvEo6N27fvi3gUkatOoWyJEmiKFoul977oiikjW273c5mMwHxtyxwCMF7gWN57zebTV3Xk8lkuVy+8847F2fnkh+R9npBSJ+dnQnLiGjYM/PTp08llQOy76i1AOK+eO/Pz8+FFvLW3TvYwevlPqXvyDduv99VZZsMkkBabObp6dNpOpFlORqNGCiKDABlozSNo7/8pf/m85//LCIKu9cLToM1BmTDCj9nkOKZYLqp3Od/+Nbv/+r/8iu7zcZq45yLtEmiOIt0AKqAXF0zBINgAa1WVmuPqmIq6jovXe55VbpksZwfH9y+9+D+rVtpnFplfGi888gqBrUczz/1ideUjR88ePDo0SOBrolISJqmoywbHd89vnV/tjz+1jf+yNX54ShVddVUBTuGCOu6PlgskySOk1SVFZVFQrEtqtoplH65QCxmSimlFCtkuGpmkO0vbp9kbf7Lf/kvjx49+vKXv3z//n35M6HWiKzl3Xa5XEZxXNRVcVnaJE6SJLZRUdZG6yFtA4gtRUziOKqbPM+/8Y1veO+Nts+fiquhte7CB2LQRO0ha5T2KnhXp0lc1dXRwYEn3ux25D2Qr6oyhJb4q08/iZkVBPXP/dzPXV5evvWn35BacdM0jmpj294bBoiVYWUYmJx34EExAMdJ4plsFB0eH1VNra0dYqKgy8dhJ4a722zvHC/zdbHL91lksjRr2tXFphMkwK5BXJyKuq41tMS+1LHO9GPos/XfC7ruA/lQrY1WFrTiFpswVKkHCVR6SnfRzhKTK+jQEIJIDyutyLvQcYtR1yZKRNkoo47wU0Dp/dXX6zUM+A+HN08hwIAC62MmPRBpxY8ePeIOWC7DWquN6cGyUSdeLE2PEpQ+O3p6enFCdHe4604aG3oxj8ENyznOQ87YgRKJvNr/sn9v//c9CvfaEyCSnSUdpNRJw0mLsjzJOI6BWL6s6fhv+tRkrJVMmerEJfucr9nEar3dnLzz9PT87OzifL3bVK6pq9oHRj0iQAAkBRQlqFStoHGNa1wCGq9raVPX4a2tGnIFXSMXHgpDDrDRCHBwcCBp0X7pfMxMv8i44bQNL5iNshbE/FG75UWG1vry8vLk5OTNN9/8X7mooskDh1hBMKziAOgdNYwbT9v9fs0c0swkSWy1SuMo0pYJy5rYVUhehdD4ovTQFLXon/gQ3n333dls9tprr63Xa+yojcqyHI/HtW+l8Zh5lI3EIxck4mazOTs701rfvn373r17wniTZZmJrGsaRJxOp4ityAkAyBrtA2V5aGrATDcej7XWw257ABDleOd90zS73W69Xgt5jtZ6NptNJhNrjPde1ABHo9F4PBbHQhokOImNMZv1Lg/eVTlTyPNcsqHQUXACANEVcaFwA/QlAjVQqsLrK6p30+WJ9Xu4aZq++GCMGUK/JKQXQ9A3BMugG92ug2hkaDXkxeetjY+pqHDXe9cbo+FLw7+8HhRda2WROFB1DXzDQGV4QVc3URIrpXwI3nvXOkfEzKuiyKtyupij0dqaxrmL1WWSJnGaSqlku93KAxx6YIvFYr1eK9WCeoXRlYguLy+Rw/HxsRTfpDnBe3/nzp23334bddzHwABw584d6XevqkrU4qXhuAcWeu8BaLFYpGnSklUMS60AMtESwUr1b7VaXV5eMrO4yPv9njpmfaFdOj4+lmR537krfgMAxHE0Ho+K/T7Pcw4UGeubZrVa1XVtFD59ejLJso7X5Vr1Qg0kvb6HokqXrCQGBfwXGqgIVBwAGJAYAjMpE2XjyWxhkkQbI1QH2BXllFLAHMfJZDw+OzvrK115nqdpOhplqdbC7WutFbmSOI7lMYqus4SFwhgrWYC6rkWk2QV/en4mKwoBQqBAIc6y9WYtxBtKKcmnfOc733HOffjhh6KLcnx8LCxhoihVFIU0qfd9TcvlsvcPomgiQNA+iJWLPHr0qCgKMVBS9a3rOs/zoih807x8//5kPF6v103TzOdzRBQGMAAoy7yuK0QgDlpjFJn15pLI//TP/OwrL7/kmloqhzcwIR8ztDEsOVTuelS6hPXZ06e/9/u/97Xf+mpkTGSMVTo21igtwD8kRmLNREwKlEYWwEfNxnssarcuitJxlI0n00ms7d1bt8dRbBQiBRQcuXdWa6jCu9/6tmucFMZlw4rBJ6Kmca72p6fro7v3lVZv/8kfREbP03kwmlxzvt8Ib01RlIBqt93v6hKsUkpLerdpmto1rFAb85GBSk/fAgBN06waF0Xxdr/7za999cFLL332s5+9fft2itl2u6VA1tqyqhyTdDkDQ11WTVm5vKXAFudVDjKxh8574X/b57l+4WQrInYmRoBKV/KFyITAwKSByyJnBqDgXZ0kB6LqIzSJAAPySSITR2J//vbf/tv//J/9P9/99nfKohiPx4qhrgrs0C1Kt2cKIgKwUmyMCkxJmr7yqdc+/dnPuBC04H7x2oHTH9xKqdF4tN1uR0nS+Dov8iSO0yhCHQeiSGsx/tZavKI/A+ikqD4SoXAjR3blmiPUda1US2WLEExHScoMcC3R1opiidMs9ykJAu5QEt77unEOlOlImOQvqRuyTgTlLgeEvLe/oJyk4ov3H01EMNC5et6My+nWg9h1P4wkMjR1j0J39B7fxchj++ltxaMjuJL/9jEAET3rqPYnSB969Qa5j0x8RyrdF2G445seXkpCu76YI7QWwhYrBRn5lBCClKy541qQrtTeaPfIHdVxWBtjptOp+ee//Et10+RFUVRl5epAARSCQqVtzIaCcEwRK2QkJ81J2mCHFZCPxAHtj7pW+4d+mcshMYxUEFHUhBIdzWdz7ChxmFmoBrkFTLcfdDU13VL4mBmkQUuJ7sQHlFLW2sk4iyLTJ4CfV+fpp6p17FA550QUFhV++OGH5+fnP/iDP3hjGbUibB81bpYp+fkvDf9Klo5Q2jEBeOYGwGlLNgZPjasLD2XD+81uBUyzRZplqdUYG2OUSdIoyxIODZLbri+KBjiosqhdXSttbt26myYTcXpGo5F0iEr+wzlX1ZVkHLXWAueVgEHSYK+++urh4aG0gUoukJm1Mdqaclthx7kuG0CYSUKXklGdNGnf9pCmkRRe+vCgqqr9fr9ery8uL4VaR1Ijd+7caVOS3svMCm2O7gSYlVJZllV5VVkznU69a8g3mESuqfpMfz+/As2/kWCgjhUNOpYSADTXSxn9+mFmbNVpQQQQqe2oRmbgXk0Pr6g/lVKokPzAzAENQTM0aJZSSg31H9XQQFxfe9e6TZQaQKOhj/+ftaFq2Nx2vdFrqK/Rv08+s2nq9tedoeTBEEc/EFWuUUYHgkDceHexWU/ms+liPp5Nl0dHcZYUZbFerQ+jaL/ft2mVOB6qTfdHslLq6OhoPB4LsS8ALJfL05PHfYuk807SPM65H/7hH3772++JloV4tPJ8hHpLSnNSTjk+Pu47AgMJRo4k8aaMYmJiIkfA4Kjlm5ZgQwiOpQZojLm8vHz48OGrr74qSkEi9BFCSJORdKAxcGQiKeQaY5Ik3u23Russy8q8YKbIRkophJbSuixLSfNv1mstzKviVnQmt5uOFoDXex4ybqQkh1ZJGIZ6r4WIGNqLi4AUdP8Uu4SIghzrPxo7wlP5M9X2v8i5x4yBEEm+MyKBCow2GY/nS0jTKEmlb02IOuSWiKiqyv1uF8exaN2IK6C1Vojj0SiyLVKUmJuqku0vt9EfhNvtViYOESeTCTNLB3wURWmWWWuVVnmeV7vyfL2StIvES5KznE6mjWsODw+l4COrRUBfu91uMplIGCzMDX2OsE86IKJIuBhjlsvlZrMhouPj481+J1EWdIxGraZKNppNRgpwNpvt93sAEBxXCCFN08TY3W5nrVEM1ur15nIyGf/ET/z43Tt3mPu2n2t7GRFC8KL2I7PWB9ry3663GAMAAHrvtNa77fYX//W/fued7wAxo4pspACbqg7sjTGowFNAoEhrZEy0mqRplkQKIVZxyTWRUhi9dP/24vgORvbkYrV+fJIE3G3309nUdrgOjKIqLx++96G2bS5SThPZR0mSeB/m46Pp8mC/X9+6e5+a4uSdt50K0/FYAz3dXPbqwE3jQ/BpkjRIxpiq3DloeSYkFSNLmqAV3u0TtP3QWjvvwTdQQ+2ab7z91gePPvz0Zz7zxS9+8ejWrRBCXZbb3S4Kfj5fxHEEAI1rdpttELPW8R317lSaZbLZjTFV01hjXFuvAoaPywkMAhX5y1Z+VymFAFZr52qtLXlv4wQQvKuNUjWRmEFZbNAdUn0ROEkSo/XP/MzP/Nuy+vaf/RkiVmXJPlz1TjAoaNPkxmjCECVRVdcvv/LJH/ryl27fvYtahRCI2QyPHkQC4M4ye+8tKiliUAiBAgZME2tEc8yTJgiNQ8SASgGmUpXKd52laOlDAUD8VI2tsOAQH46IgYILvl/DwFprKzwd0lbXOdziKCqxDFEUkWp9yND1UsrcGWP3RaV0EK9mmLwXh1tikiiK4jgCuCLPVKiusANESmvqixWdVRzMbGegO+4KeVVrva922GkMSLykEK010vqhta6bllxOHtGNynlvgeVkwQ6v1T9VGJS/+lx871n1hzV04Yc8BGYWaRQxaHJvQNxfuf92/UEQOuYYuVtxyRAxcBvylWVJRLaTpzPG9DWTPk8tPmccx9V+J4zSzjml0BjbT415/+Hj9rhCYNDSqcIATOy8U4wAoAEFah6DYgQmCOEavxANi0fhGrHwtZ8HCV8GVqjAewoBVTSdTvrrIGLvmckk93MM3OYC5YkDPTeFPBz9t43jOEvjKDYANLDmQ3Da4A4HdEZKKQYU2eC6rler1T/7Z//stdde+/KXv/wsVu27y9p/T38mphYVAwcKwI6odKHwVLEKDTeFK3NXbIt93VRAgSlorYxFo5UCMEZnSTSdTVTwTx99WHhIkqkrvQ9BJ9Fmt5vP55LM2+/34nWJ+ROlOWHCEXxLXdf7/f7y8jKE8Oabb47H48lkojtePGxp8pT3bTuEBB5yfjPzfr8ngKqqxJOQXKZkLPb7fQiivgyXl5fioJycnLRUEsyIOJ1O+x4DY4y03VOn4sTM0seilErTdD6f79Y7V1dS7bXGJFFyeV6IneJuVTSuCaAMakmCIvEwXFE3art8LXjArp3OOWdV6zR08XObZwUAaxR1PH29aaAOGHp1caJr6ZnrXP5Dj8Q8U9jpfx4GKlpruG7dhjZ0eMHhFYbGCABA39SdHMZyvbkZxnXt13eOABjBxFFZVyaOKnLvP/4QRyObJTZNxvNZnCXG2tOzs6Is7z94qQcySamzN16+o4pfr9fW2p7uxne6NELGgIhMnOe5GNmmae7evfvuu+8+efJEoMmCPZDatACEoFOk6m03IlIgMG1J7cYjCoybzWaz2RwcHFRV1buV8peS/k+SZLFYiC1+7733Pv/5z8eRGV5HdWwtiBBHEUqxTmHwQZJxxCRVAgjBOTdfzOMoDs71gUq/TvAqVXZVJVMDVoZhoIJ9nbuNT9oSCzIQDlSrro+rdSJsOF3oDhKW94EKXg9UlJKkComKijLWRirO0KQMKC6IUOseHR1JnWo8Ho+0dU1jjNlut0mSSMDgva+q0lqbJLFSqq7r9WolaRRZxnEcl2W5Wq1msxkRSdFsu90aY3b5PgCPZtMoilzT7Lcba21ZFnGWTmZTOUF7aEdZlsQ0Ho8FbL7b7Q4PD6WJQhRX5DCWj5CoQ+CyvR3QWh8fH1OneDuZTNoycmSVUn0hqF91VuvN5UVVNyGE1WqVZZkIT0m9ZVtVRZFPpxMA2u7WR0eHP/yXv/TSg3vIQJ0fBt3p0C0vCIFCx8eqBiyuDEyhK/YaqwGRuGE+PT39t7/0b/7s7be1UlYbrRQHImKjtWJgINZKgB6WMdZqkiTzURYbE5wDVIatZvPgpTsPXv2UipPLy9XhaDqLEwXM7JM4MtZqpSXBFEWJMcZR41zTA9bFQ9psNlEUJ3aSjUfbYnN6eTFeLA/v3Hv87bd4lIWqmsxmhzYOPjBT3TQmilRsN9u1oEoYlVLK2gitVsYI6zvcoGAG6JnQUBj8ED0wMmnAXZH/5ld/6+1v/9lXvvKVT736apSlt0ZZ07jV6nI2nd69e7fY5xi47pjTJeQLIchOj+J4tVqx0lEURdrsixJN1AcqH7GvPmpwl8MiImY0WjGRUSpQMFohheA8eZfE1js/nU4vLi6KouiZ0GXSiUhQDGmafuLll+fz+Ztvvvn+++/HUeSAQiAGiKJI6A2ICQHIUzZOxpPJK6+9+pUf/ZFXXnvNxpG2hoh8CDiEY4nb1AF966o2sfE+NK6RB16Wlbaptpa9Y2atFDmvtWbnUSmtFPkwPChV1xcq60FHsUQIfcFKTpbGNaBanndjLAA457U2zEwhoFLSVSJGu9/UWuvgBpzpHbw8jmNUmqhAxYKu5E6RRjxppVtfERGJALEVOgcACO0EKaV0R4XvvSfmJI154C4ObCgAd+TTzMYYVzWXl5dEFBiapjGR9d5ra5iBmRQa+QhtNQ6w1s+a5dY3xusHeifX4TvRzN6TCYH6pSL2SnXa1rIN5ZeIJGkaudteSL7/Xn2oJrvJdKIu0lUoi1CUFfUgkJNbUkph5zAPI1Xoikg9WDHPc60bKb9EUWSUb2N6hYygkZGAvERc5Ig7Ckpm6fpCAAD0fA1NOHyI6mOA8urKc/LeB/ZMjAwKhKMTEVG8ZPVfjacaTq08LCkzZWkM0LzIFcKgPVrcIKHh//a3v/0Lv/AL2+327/29v3fr1q26rl/QEn1/o1+mRMQUlK/Al+Qr9s43VV2Uxa7YrvL1eucapzU3rna+SeJYGTSoo8hEMbkqL05P9qjMaGGN9uiIiUOQWEKQ1i061hit9Xw+DyHU3u12u9PTU++9KDDu9/vxePzJT35yNl0MqyLYZXAFAi4RTlmWIQQJpiU1stpsZFeI16iUEgSaUqpp3H6/f/r06XvvvSdtZPK0p9PpfDYT7k7ZFX0KUyk1GY/DQLKjruumaUSY0lWu2O9CCFqrJEk0krRLhhBc03htvPdMzIghRAJpU3yN5xoHTR0AoIaBitaq+8pEFMXtPpcvdS0CCdec+/7nG7vmBnrqYwIVus6SPLwIXQd08XN24o0LPi9okV88+xIPKr/Y0QNIu47MjnMNADBCQCjripBrDo+eniST0dHLL6dZlqRpnMTL5TIvii984QsffvjhfrtLx6PFYiEMDRLlit2UgFkyr9LdEXpFkRCqqjo9PX355ZfFb9tut/P5nIiSJNmer621h4eHZ2dniCi+LHTFJd0ROks2/ebpAgAA3nkffP+90nQkMZIcJL4TL2+aZjyZjcfjw8NDiYVkTWqty7KMoyuWSYmxO7sPqJTuQA6oLYQg32KcJu8+fF+2T5qkSRLnz0RNz046dtVCekaW59o/GQgIoSMB65qroauuUL9c4eM7gT9uILM0kQZCE9vxdJ6Mxo65yvOXj46kH73PZVprz87OShuNs5E8Uslrym6yxpydnY+yRKJWABiNRtJOkGXZ6fmltfbo6EhmVhwdY4zSKoojAtDWbPe7PM+TJImNXm021hbT0ViKYJL4EBZ1Gffu3JVeFMmSCMgwiiLp0RdWOmlTWa/XIpsDAGSUBBj9l3r55Ze32+1ms5GqCwBIJkXOlDiOKYQ6L+qqYmbBrF5eXr733ntpmr700v3zkydCheRDM5/PfuALn/vUp14VU/Ixj10p5M6R6sPXNv2pQB4R+eDqRgN8/Xd+95d+6ZeasjRKKUCtlEaFkqPt2n8DUsCATJrVKIqW4/EosgYhEG33Ve6ag6PbX/jLX87mi9Vm++Gjx4fL5d3jW6XmO+Pb8/kyeLJRjIiACkARsNaGKPBA2kKK7avV+r2H79y7d386m1T1Lt9vDl56yfnmnT/9RoLwxmsvWdTnZ2dlWYXgMehi31RlSURpllU+OOe00dpaVIqEOp/Jh+eQZ+K1ZR+ItNaj8fji8vJf/Mt/+fKDB2+88cbnP/PZg+WB9DSfn57NptMsTYP34r/K6SYVOefc05MTZVUyGgsyuSswfo9bpq38BGYGYoUACJJLZ1SBGcgjQBJFOs18CJeXl/v9vtcSkIne7XbZ4RERBe//9I//ZL1a/fzP//yv/MqvPH74YTZOgw9OClKNS7JUMjjz2ewLP/i5e/fu/uAP/aU4Taum1tag0UiocdjfflU27xJ5iIi73S5GnM1mxBSrrn2ua9pEAB6gsG4cqTDAuVhrFbS2Xf6eO7AWiccs2AJUFCCQl0KHD6QHzRuy8nsk8LB9XMIh6VAqiyKOo+lsMR6Pe7dbCuOj0SiQE4BG29I2nKOuREMdDkqcCtT6Y/YlESETSREGVVWVjx49CiHEse3b5dNRprRugmcMvTNw46R+kWFtZMyLYcau5y77Cfqun4hdAefZX/aJy+FvuEOsdFWU5z6p3ouQWmWe56vVyhjz2muvmRAAhHwBgBEBNQUgChQCQLhCuwy/NmJ4zjNAEHjSRw8avElyEu3DQsjSTLZ9eIbz5/sbN/aDMLckSaKNuoZoef5QA5QeM4M2u93uF37hF377t3/78PDw7//9v3/nzh1oSZO+T/WfFxk4qOtR8KYpoK5tXYe6gcJT4bHGiKKIYh87axRRaFwFEBmtrTYUg3dYB99Ue7IpBF/mOZPSSpdVHSWxMUbkzCQgFkxhnudPnjyxSXx2dnZ+fn56evr++++//vrrn/3sZ2/dujWdTr0jyeWIvRY2m7IstTNREkk8IAe/9369XsthL048M8sBL9ZEgP4XF+vLy8uqqqbT6ac+9anlcimGI4QQJ4kxRnLYtlOJls3QNE0fqMiUiWlbrVanp6f5bjudTpMkzbI0NJV4gYGoca5WtRZf1cZKXUEwBSakOhxqXxgBgFEy0K5i9gPSjIqr3ieQcKX/w6YudSc3CwjeXb3UQ5jgelkSPjZQUYNo/8YuvBF+DG/jxp89L1C5aad4CP9tgzc1qDLL6KGrck6Q84RtoMLMAfm9994zsV3OD5MsG8+mWZYprau6Ho1GElUqpeIkwa7nWIKH/gATt0b4wbArr8udiAi3bO2LiwsBuTrnZrNZmqbj8fj09FRMpzEmSZLJZIKIjXP9RHOn222MueGXK60Mmj52lRYFANjv9+Jxbrdb8aens4X0vXjvLy4uRANkuVxKYq+/YF/9c85JdpJRjnPcbtf5dpfEiffe1dV+v4MQmDmK42dj2sFiuDow8DpnNF7vngzXm+l7kAIyALZAQ0bR8eyiamANL9qsPxzYCmG1d2iixMSJiWJjo8PFSJ72ZDKRZg8ikuJqU9d7YhFAlIcm2auyyG2aCBwLAIqiaFvXnKuqqihKWXubzWY+n0sucLfbFWXJuqVekKkXwce6rm/fvt2UlTHm/v37YpGEDkFrLeSYZVlWVSVo6fV67b0/PDzMsmy5XC6XSyIqikL6+larldZ6MpnEVjOzgGYFoiaGMcuyJvj+/NZdt9JsNvON+3Czhq4vbrvdpmn60ksv1XV9eno6HY+M0UT+8OjgjTdePzxaVlWlNRqlP8b7UErxoIug357MwTdOWoPWq9WHH374a7/6q3/0B3+otY6MsA6hQaVRAZOQwsnRX4cGEdIkmsTJIhtNssxaE5qmqqu9C9uq/Ikf+989eOP1bVVxXY0PD27fujOajpsmb4ILSGDRJlEcpwgaUCFwU++JWhy/LFEBOt67d/fy8jKvtsuDxWQx3e7Xj1frowcv53V49J1ve+LYKte4uq4ZFDlXNjUzjMdjFXQoyhCC0hqUImapqEiWffhkhg+qB8XJS7KWrLXj8Xi92fz7X/u1r33ta5946cFnP/2ZN1/7VBxF+a7d8uJLSU+ahLK73e707Gy2mDbnF7/9279NTIDf165pmwSImQOFCFhrBFSgdAAwgMyskYtif3j/5cvNRoSYhfajP3rG43Ge5wcHBycnJ2+//fb/5qd/erlc/q2/9beC82AgyzJguLi8XG/W8/l8PB475+7dvRPHRmlEpQKThD1IKHptEAaMqNcybsSip65EYxBd7VipIs+N9wo0PMO5L+NGmQsHMo7B+Z5WVNL5AGCttZE12gRi7733jUJjbRv8K7q2G0ajkego0DNxg5wdkuAoq3p2eCzpBh4Qk0ji9SpAIgJA/QysQH7ojTkRUQjaPJdU6SpQYVKoGuckf9Ej8aQ9wzBra7QxssZcJ1YrmRf9YrwpSl2ljOkZVMjgz5ScsD34ahhXfLePUH2Ccvj73jdQSgmPAg6IvFSPEHv+lWXi+oy5IHHEMhsvx7Agk6WIhtxwYGbkAEwteSVdJWgRlGh79veH2LdcITI/j5fID74YhaB6SmZuv1uf1rr68vB9liuGPofROo5sHBmtgIJ/QSsidyLGyHv///7//H9//dd/fTwe/52/83e+9KUvibUKz29f/r5Hf0hwK5qOChGYNQUIzrqamso7p11AR9pDBGZss/look0wBhVCcB4YjNbGKLIqirR33qIZWeWDRx0AURt7fLjImzo0TiDXXSkAA0HduNl88e133nn/vfeePDmR5IQPIem457VCCRLEN5LcQ1VVSitlVDYaee/TNJVCh+z/7XZrokgSG/v9frvd7na7s7Oz/X7PDES8WCw//elPHx8fizTkbrcTy1I3DQAcHR1J/luoZtv0ZJcOAQA5bOSz9vv9ZrOm4AHYB1/XlatacY/tZue99za44Jm1A1fWdVyVSmuvHXU9M+oGChxB6k4yes9DPr1sClRKK620kmPmajsoxcDOex+kky9I1wMxB+/7igUqpQZiowSdlnBX2G3/xTBMSNywKdro573r2gK7EY2o5wYqeL2igoPRgx+o052ViFGql0I5SQhNcB8+fULAB4eH8+VyNBnfuXd3Npl2zc0YQpBmaNRaWqSEuCYMhlRIxF535em2JGKMkfhE3pimaVVVi8XCez+dTpRS6/X6yZMnVVVdXl726e0kTSeTSdvT7H3fVXmDUq2nY5J76H0UQeIKqRQizmYzqbQkSSKgozRN67q21nrvkvgaW0tfC2IRahXgHFGcJMF5q4333jUujmNBRmdpmiRpsc+HEzG8Wu+P9q/KshweUdgJRQJIIrn/FygA6nR+Bbpw1WwETNdDN4bOGt/ArXYxD7a0xcjYvlMIbZgBUcVxYq0djcZaGwC01jZNX4uzs/E0jqKmaVqFuA4JY4ylEHwIIVBRFvv9Ps9zbcxysdDaeAJpCrp7927V9a6AiHUGapwj5vFoFCcJM6ddV4yo9JydnUkk470XzgOlFDJMJpPj42MhXfjkJz8pq1poHg4PD6fTqWRGiEgoQ7TWZ2dnYpGKoijLUmBjt27dAoCL9ery8hIApKQvUa4xZr/dUeAsG6VpFsdxnu9F33Y0Gi3m89iCRqjr6qX7948OD7QxSRLVdUkhIHy088HY8bkpBapNz8usEpExGgEeP3r0td/66td/93cfP/xwOh4jIoSACEohIKMoT4BQqgIyBBcio7M4XU6n0zi2SiOD827flOuassXBK5/7vNcQWYNZ+sqbbxwtlgogq3BzcsIISZIQsgteazBaa2XQtQXntqzUmVDn3GQ6Ksri/OIsMJkoqasmd3T84BOnT89W660ajcu6CsHH6Qit9QpTO9bZ+L3Tta4bQfYHYOe9UHcEBgJJvsq+ACW6Pi2W58oB9yGgUkYpH7xSmkNIkgSY333vvQ8/ePjbX/3awXK5nC+MMYyw3+2EqHo6m00nk6PjY6kI/eff+d33Hj68OLuIs8wTMXacat8F4N2/Kta141YKqBAQUWmFSitmba2NIk+82axnt+5MxpPXXn3trbe+df/evWgxByamAEohQjLK3vvg/f/wa7/2yQcvv/mZNykERGUj6zmYOE6zdLyYvdI1Nydx4r3TBpx3VusQgg9BW6OF3DV4w1eBsYS9RAGAmAiIXWhmWaqoYfaoUBtTd6p/cnaiUlqhUldqmq4J/YEkLMnWmg4MacWoil/e+xU+BGxqRFHb0FqL437txJQhVlpwHHEc16W7agFibpwvyzIEipMkiWMAkBKoHOVSK3PehRCqqiRi4TS/Og8ZEZkYlCwiYkIpXRqtMDx/nll6VCSGBpImn1Ga+aYZjUZRHMt3VExxZFuFX601mt7vf/HcfQ/3umLi/ajRl60EAiDHopzd3/Wjeh/APaPAhl0/WCuZ0rlJ8oN0zzdV/bwr2yhyTSPno9yHnPjj8dg4f4WDkifJxIoCE2utmFQHVaFBETCIwhgAwA0Kfr4Wp8h7r77M4J4MYIuNYzqcTbM4TeMsNMGgIddKYGqtEbk7ABEQ2zMXmIIHAE3U+8GC8Os/KFTBaK01KsWjUTKeJEp7pYJCJE/PmwutW+l0yfMJSOk3f/M3f/EXfzEZZf/9f/83fviHf/jw8FDcMu7wby++jIbjeeVhBEYiRgWopYdGOQf1TlW7pN7h/iTUOde5q+vGhaA120aP6DjO4stN8N6AprIut2UEBrOY2TGU5PIkmmpMVGScsbuAuW/2m0sV6Xk6HmcjQKW03ue5MnHdNI2nR49OTp6uN7s6jmdRTLfvHB8cHqOxeVU33llthPcJVRzI7/ZbyY9GUQQMu80WADhQcF4hurq5PL/YbrfEYK1drVbn5+eSMACA5Wxx584dNC3to9YIQHVdTiajPM+VAmDWWnvnjNbeufVqpbWWpEGcpqL14b2XzmkBUWRZtlhMq7JQGn3T1MzkCVhvN2sfuCEfkQsVJVEUpxErzuvCQYi0yaJYMSKhUirQNQMh8qTdOrkWTpd1jqgkM3mjNuIpBCLvnA83y5B64Bf3OQD5Bw22VBs8dC9FttWc6pNAV1cMw2Z6VKj6dxm8MurDaESCjL7P+kagklwXkZXIpHGOmX24lk2BPtOv1c41ylqbJk9Onnz7nXdGk/Grr39qupgrGx8dHRtlEbVShggQwRPpKDZRVNelPL3dbtdjZPf7/Ww2C40jJvKhbhwipmm62+0gUGicgHbOz8+Pjo4kSW+M8a2kvdnvt8fHhxcXZ3keQnDjcaY1TibjfV5KiCIao4vFQoKN3XanZ5NQNVprJmi8wHA5hLYxUWBCfRx7+/bthw8fAsBoNAKG4EOaRHEcN3WZpanonWsApbvCOiAxKY0KkFi7AEVVM3OR53VRIkNV5S6E2nvvHQRvjDFWf/ozb3z9P2+C93VTplHcDCNVkOOSNQIyGt+ABJ4IzCH4qzSKNdF1IdpuAVxXiqQWM4DCedaQJAICtfHPwNYrscSMzBoYEZgAEYiVN3EgYmZrrI3jODIaQ5WvI6MbYm1TYxPA0NQ1M9vIBkYKREY3RLODgziKpqNxVRR1WXvvkyjSNjZRXNe1ibOEMc7GAi71VUnM1DhiePTkJAgFglK3796bFsXl6gIBJpPJerNuqvr4+KhuGmaeTaYK0BhzdHBIHV04+SDBsCTLtdZZls1ms7qu1+u1UPRIEjTP881mI+18RFTX9XK51DZWLiRREqejJaJQaZ+cno9Go4cPH0qq6/bt20QkNb2qqoh4lC2YQvBu35Sj8VhO9zzfZ1m8OX9irf7hL3/5pZdealxtEBRBrKPGN8BsrAUAMbni0kkZTWmD1ippstVQFLlCDN5FkeHGPf3w0b/+xX/91ltvedfMZyNjFBEHpjjWCtFood8wee1c49Mk9d5bbVLQB+NZZiII7NDv6tprvqDm4d59+pUjPZorwKYq7z94rV9FxtP9uw/qqpmOZ3Vdl3VjrSXbaG1sbIpqX1XVeDwOEFxwaJA9h0B1UQfPDBjbxGIcmVEUj1xTT4/vPfyT3ysnZd2E8Tg7PDosiiKOoyQZn1xuzs4vc+fqpgZsWCtCICZPgYQxCwAZRNNZ7KthDcDeKG7Nn/DBCvrdtiB3SRFq7YkuNtuLzRbgPQTw3itxyJRCAGPtaDSaTiZxkrz97XcIOB6NAnMADhBQag1K6cG+u5kk6iH0oquKylrRsGZUZpTGu83FfDFtfENIAMgKH58+Prh9J01HEMJyOtlent85OphNJ/v9HoCboJui+fe/8e/vvHTnx37mJysKxmpjjNJaV40PrixZa81srLVRZIkDI5WuUQo8Cf4Pgm+CbyTQItYIAEgA5JxzrmZg5gDEylEaRcpxsc+9y5NRqm1kIr3bbZl5Mh7HWQSAdVMX24KBszTTWmmNwbc9jd67DigRHR0dgWVBfkrVUeg9sSXjSZvGMbOxFgFclVdERhtrI3cFkmqREZJH894jtdleQOWJSWmbjTNrbRRHRgVXQ/BVU0kKP8kS8SJsbK3RxFzXZb7fArbZFqsM1N57TwzaGG0iNFZrNAYQFF6Pmq7S+swYOEuTpqqrxgXmfLM7XCybqh6Px8ZapXVRV+NkDIjOe/ESlNEIigFQISjE6/GG0TZ8pLKk2GUGpcxoNHkGcCHoqavOEHlKRFRVtSw/ZjAmYgbpBSLiNI4F2o0djKKve/R4e0SUY7dzjDnJUh7IUotHJLBYG0fcYamISASL2/ScUdoaE7W1L2U0A8RpUrvGwKB2hszt6UPQ8hIyE3P7++F3Jn5OqoCBr2aM+RoB1jBdqRQqRO8ce6+V+ti6yXdNS3zEiG3kXUOAaZImSdSmipi4LbZ89McJfqnHrJ+cnPzjf/yP33///Z/92Z/9b//6/36xWDCz5O1esBL3fQ1U2gB0OZ/guMm52FCxpnqLVd6UeVnkdVX5EFChja0HAmxXgHNUlk5hGQJWtQP0ztVNRehQOUsVcuwxzhRgXdTFZemiUZ5laTq+deeONtb5kCTpo0ePL9eb7XbHjEmaJUmEqMqyEhewIK+4TYn1+BxJIU8mE0F+9yCoPM/Pz8/Pzs622y2q9kydz+f37t07PDyU8qu1Ns7SYWVZcIBS+zMm6n/fs5sLllHaQwWrJi9JhbEsiyRJrNF5nltjttuNTL73Id8XxBQkrmUORI13kr8l7aWfvs2tXj9UBmLxoCjgoIbZeIco5CYtc0j/Ul4U1DF343WErh4sQnWjs+XZQKUbImzX//21mt6whY+Rh6Hw84VZrq286y85vtnN1WdAeUBC7qTjqDWa3DCn1rz/8OGTpycmimaLxXgynUxn2XhEoaUfAIAoikQIQqILa7XADqVDVOhEBYEzStIhuqzvVhqNRheXZ5JBF9UUaWKRFVU1LSuUYBqFJVYw5VEUzedzKdBpraMoklqcPF6p9ojN7etFwt+w2Wzkn1Kst9aKXLowdAnpk1jtvuyjTU8DerMOUZaFaxwACGl1ZCy0ySe9XC5267UAnORpUNcJ9pETB/BdKs833/icP/4Ihg98IePb69yj9AC0SXlASe2H0IRQ2P1yNmfyTV0mSYLAdV0BUxRFkTV5kcfG1k1dFoVvnAIQArSt80ka75WSCkYUxaenp5PJpCjK6XR6fn4us2OtFVkJSYVUVTWfzWSzRDZKkiT4sN/u0jS9uLjQqMRkMXOSJMvlcjqdym9k//aog6IopCtPa315eSmgFJllmRdBc8nSFYRn36smlA9SARZQym632263WuvDw8M4ic8en8dRvFjM1+tLAFyvVyH42Wy6urzk4H/0R374E5942XuvUCGgUHwrpfrGXPiIHBlKfy0wOBFlU4AIu+1GNc1v/odf/ePf//ry4KCCoDQao5iZQBnJ5BMDEiqNGhtfc4NRFCGBRhVCCD7UrsnGCViz2lxerLfzg/uHx7fzomIAQu5x3Qwwmc7rqiJWjQshgPMhEBsbRUnETMpY1N4FUgaUsYwKWQTYSGSXpHpGzKBQWTuZL76T1z7Q0fFydvuQNGicKFKn5+uz1aZomtKHJkhXBxNCAJZGPi230yIR28YU8UhkN/Zb4VrZcBhHDP7J8rQRe34n59xms9lut4iotGYmBFAsDpAUoFts5XfZNjf2GwAAaGPjOJnde1A3ZRTFZe2aEFztq0D7fZ6mWWRNmsR1VXnndtvtvXv39nleuvo//ef/lCTxF7/wBWF167mB0yztQUQSjrV1VARJyHErekhXsRoAk2MQVUpCYKNVi6sDBg4QoAp1U9f7/W613YymU7QxIx4sl9773T5HxCiKFstlnueXq1Ucx6M0jeI4S8dKIXErmDsajZraKaWlWVSsq7jCcs/OBWlzLYtCDqkQAgKjQtYfXTQAAK2UDyyYGNAGjWVQDAhK4k0WKsweYNw0TV1XcWwNotLaAPjuWQExkwuuaVwQnGGcoDW2e04fa3wROFAIAZgp0Hq9znf7yWQSCx/GR72VAXoWfrEtzwNy3xg9dutZ8Nu16w+Og4+v2AiUOoTQ+za9d6c6kZa+bNKXDZ79rN5kUdfBcvV4Wk1GJWVtQVioDngvx6sJzxFGxAHj9bPf+eMgT98N4jb8uOA9hjCdTl/wLS8+tEEiNEaNxkmSxICOwTMz0ccBr+WwEQjHN77xjX/0j/7R7du3/8E/+Af379/XkZUoBTss+J/7PctgAEBpj3MYPFKNzZ7KjdufhWJbnJ+URVEUBQGj0Urr2BpWqkI2Jq0plEVdFvvdtkmSPM2MtQoVK1AMwRfeYYHxXo8XJhuPEbTWSWSWs+l4Oktiu97sLtdrra3QepZl1Yq+A5XlXhvtWyW1cpSkPWq89xS996vVCpWpqurJkyfCfiOH/XQ6ffXVVz/xyVckmyjA7slkIgII1tq8umrYEEyO5FqIKMvGYrPEaZNeF4Ee9a23khYVo5NlmTEaieoKoijabrZWad80vmkkwiS6EsnyztWBvXLOOa0URW3ztHy14SzH9qNJtABA6nv9Phy+1HSS8PLLobkZBio3UiM4ML43ggfyrBT2oNVre3MYSnU9be3d4kcDbeF600t7EsvPAMOiSW+V2oDBXjmwzntmMqg8+aZy27r+5p+9vdlsDo+Pbt+9c3h8vDxYRmli4xgHrGhKqTRNN5vNv/t3/242m/3oj34lTVNJRYvop/SJpmnqOoF57IQmJZkkEqUCGBNMoIRAk8lkv99bi7ImF4vFarWSUFaeM4M6OzuTiOjp06fSZ390dLRYLKoyh64yLpR0oaN7StO0t6TMvN1unXOvvfba06dPJbARYJj4ytIQFUWR0QjPxgkA0LKIGqWUVkoqKkBkrXW6JlaCsWQiK1iyqmpt9zOAhxcZz7PzN/75527WiChQ0MZGUTTKRrvdDva51DwFhSy8LlVV1VWhAcuydHVDPkxH41c++cnpdFruc8GmSoSZ5/l+v4/j+Ozs7OzsjJnH47GsGSHglwOemYsuR7BarZj56Oiol/WsirJHx0k7rORcxKSIRZIa2ssvvywNcmJkRL1ENCUlPtnv9w8fPnzppZdECWqz2YjvJeZRuHcBQBTupR4oGFRXu+ls6uq2P0opDMEThbff/tYbr3/qR77041maiFyptA30MFroUpXPZhzEK1bcicARVVW9mM8N0O/85//49p/80dFsiuRHVkycZmaPkEj7KFMAJialAAxWvkIDCqSaHUr0CuDk/GKynDeeX3n19fndNz71xhtaawLWRvdcIwzATQPCLoWojc6LvNMOiolbuhHuOJqkHyCEIPUrKdRLFkMgdjZOosWydHUTJVuCYr/X2jpHbz/88PR8XcZx48lTi+wKTKBQEqECnFDcdk0BAOBHhQYvPNQAyt9er0PXKIUKtMA45Uly75x9fz23DOfn59vVapQlUZwExoZ1YAOg3n7rz6QBbzQaAcDp6endu3frunau+b3f//p6vf6RH/kRodWWdnkZNXkNmgJoBERQWgdhKibQWktrcRhAqeX78VX9loTbj8h73zCRNlobXVU1cRiNMlZooghMpBmkUytJElHFlaV77949pZRRpq6boqgFwRVHWV1Xm/Uuy0btdFsrmNu+VOicszYWA0sDbkP5jQ+BnxMnNE1FLPxmAMRIDNgnIhGgJflUnapPXdfB+/16G0VGd345A7cOA/N+swNUWuskzV68JaGtGDhHzBRCXdXynIuiGE1mz3uXmBrVEbe84GfJI+rzejduo/+5y3W0T2CYJL3xrmHHoyz1ntJm+HvVyUC3pR57U2Vl+CiwQ27LL/sfyp3vk3Fy2IltXK/XZhhX9N+k60sRlTZiainzrz75+efZ8Hsi4POms711RJ0k0pX+5zucq6LIZqMkjo02QITAKhAxk1bP1WOSydtut1/72tf++T//56+99trf/bt/V/rVPLcEptglVP7c7/nq5htP5NjV6AuqtiG/bDYn5eppXazPnjyRin86HqU600bbyDKCD55IVTWtt2VTB6NtnERJYrJRlCR2OkpCcLXb1VSGvMB8p9JROpqOk2ycxonV5OqqQOcaa8zZ+TkgTiaTT3ziEwcHS2ut0ljX48ViJi4FUYuDzPNcEoSCiDg7O1uv10pbOWaMMYeHh8fHxyIaLeoBPdFnkiQSoEqe0lHoF32fSJbNJr6FpCqF41wP2I3kCBQ+U6XUeDxO01QprPJ8wEzFxujpeBlCAIQeh0/SE++DRuWcU4jsgyTULUnpcwizGbCLBKIBNbaWhEuLkbxmIGiQ+LyxZob/CNdZvxRcCx6GW0+o88Tw4Q0Q6uCKdL2Rbtg31uc22gsOFDaGn8UAPvgrpE+HN5VIpXZXoFyhp9RaF0Wx2+3e/uChtubOnTvz5SJKknSU2STORtlkOmVUPSOwmMgsy/7KX/krWuvJZMzMIkIv1RIpdFRV5apa8tPSFdYHhNghYler1e3bt8WAStCSZVl+sZJzTmIG6bOXFVVW5Xw+lxN0NBrNZjOhtb28vDQaxZ0dcjbIqKpK2q7k2FgsFlL4Fq9UwipJyffOpbXWqKsm1Bv1iqqsBP4qFzRaq5ZE1ezzGoiiKEriOESxOLtKqeAdqu+nljuc8Y/L8f55mzUfPNS1DiSmIxpP4yxN4gQAvGv2rnFNPRqPJpOR0bhbb5qmUYC3jo6PDw4lPPB1k41SRGya5unTpyI5AgAigCM2YbfbSSJWiNQ7P6ARyyNqwlmWbTYbSUUxcRxFglWI4lgpJXVa6ZAWHKBELCGEXrExhHB0dGSMmc1mQggm+RTxJ6qqEudbbJf3/unTp2VZplksdHNN04zH47t378oibKqaHY+zNMvSyTTdbFajUVbVxSuvfuKzn/t0ksRSq9GDBl/ZBdC5+LIlrx+4AB1Wuqkb8gEBgPjDDz74o69/3Rd5NsqYWmCGMZqJPYByJNz3xNS4BrTOsmizy4tyF0eJ1rqhwAGPjg7dTn/7/fdffvWVv/wjP4bp4fzgABGRoa7rHkjBAEZpTySKN1rrfVFcrlb7ogjARutAQTz8wBCIA0MgIIKyrquyLMoyeL/P8w8+/FBmE4hO9kWZ7967vAAMdV0aY61JiqJ2qBG0qHEbZQg4MCEopRA0Vq4R/jJu1RfaoaTN4HsfatAzQB2hOYB0hFsE7hI9CpkCt0xP389HIdhYHR8eHx/OLs5O6zKvPXgyDRvPSHV46623vvSlL0nc+/TpU+fceDz+xje/cX52/vnPf+7llx5IOo8EiM8ADN570kwIJoDS2nbHBSFESjGDNHz2FRWZTBoEKhCY2DtXN00dvFuOJolVdc7G6CROArMHJEJANMZa2+bFAVA2aVmWRKzBJsloNp2KXBUzaxV5V5dFQ+zKsuj3HbVyZC1lqNQ/VUd/IieOJWYdP89maa05SDqfmAkpiIppB5egfvtI3pOZtTHUOB+CY26ahhGstahQK62VPlwuHTEzG2P1C9thBAyh1YvcbjZFUUiVlV7A2PKQf/xFPqs7wW+c8vBMoNJXNp7Ndwzf2FOfDeelf26Dh9k6b+3Cg5v+Rv9xoWsDHn5BiZQk89hHj6Hj59ztdgZpUHoiYgRgBgbFEJxv/azuptov3JX4r77zVZ99373W/vuGGv3wYfQg+zt37sis80eRhHKXm4BnnDZzpVMjLktL9KEUxrGOY5MkFhUTeeYgyjhtcXxwTyyajwgAIAD0Dz744J/8k3/y0z/903/zb/5NkUMuy1JHFlqOr5tItBdURHnme137J3YIyxACOqKmApeH/LLZndXrp/n6pNyel7vNydMzYk7S1KYJGm3jyFjribQxoLQnKKumKBqtfULEKrFZHCttImNRoUcqPfl9sy/99pImy+nioE4i39RojE1GpaN92ZxdnAdSqMy9e/esNSGE8WQEOEli2zQiyAh1UwtF42az2e/3zjlxLmez2a3bd+M4FshEmqZ5njdNrZQWPxK6fi9hyOkblF2RhxC8D4gQAsnCmM/nACCM6dZa4QED6YTpfHERoASA6XSSppn4LkRkjDZxREST0bguq2K/Z+bJZPLyg5fzfCenPkcRhcAtYaswnrPx2odgvBsqISoAhqvWpkChb2pHAERGFuLgdlZbpTwG9iSt7cMknPyX6eqcEzdo8HFXLw1NCSJKPYNbii1tzDDR0JqP4T6S9zny3c/Qp/qYAZmVUZKQkPtBhdAKFIJrT1kEaImW2wwGQg3kWTI3oSiK3W6/3+8uLi62+S6Ox3cP7i4PD+7cu3d063gyn2lrAnNZVVGaieMlOTMxfFJFEZZqADDGKFTM7J3vn5tkldoWybqWFgLpSTDGvPvuu5/73OekQi05GOpY5rz38/k8iZO6rs/Ozj7xiU8IsEeY7HvmOokEsNP86UUk+/nq7Y8EFUQk3qe0SPVYQUkG6wEPT2RsL/rBnXhWO0daa+kukJDbua7op7z3illrrY1B4oODg5MnT+SrhQEj3I107Y3S90em0Pg6ez1cP5a4q/6RpBAZW6Z6WSHtyhBrTM++q129SiGRtL4Sc13XXDdVVTWB5koZreoQAMBawwBFXgdX+6qK0lTOQq00IozHYyay1p5tWn4C4eza53sK9M4770hNZrlcihSjFNOEcUvKF+v1pZS27ty5IzDrxWIxn8/LssySVGom4g0J/55Ijoq66HK5FFi2sMZJYwkijkYj0dIRAyWCPP1zllrxcrkUENrl5SUzr1aXYusAoCjy0WgsLgsyT9JxXhTb3frwcFlV5Wp9sVjMvvjFL4yyVNIlPJDNvposZkHIjMfjfrJkWpFBa40Aoald0wTnRlm622y/9lu/9eiDh5MssVqzYgzBaI3UZi4ZmQAES87BA5I12hquqipoHULY1XWUxHFdOcR4OnvjM587unPvYutWq9Vms6ldsy+LthnP+8b7J48eby43291us1kzc1Hk+zw3xozH41GWAoiMndBItNyJQIDAoXHOuUCklNrnudKqqRsFSIGACVQwBpQyNQE0HnQsAFRSqABRK2RSbWIKkFgr7jcBQyvSh4iszE1R5mu49ms7SHVkFXx9s4n33O5luFr5gIgISpxT75lhuOXhOv/Y81xJBNaWklTNj49iE8jTdl9VDvOKPOjG8KNHj+7duzcajZRSd+7cyfP861//+ocffvjjP/njn3j5ZfCkLGhUCtgoDcQUHGqU4i0iCo+RmFyNQsAT2lbAznFkYPaBA4swAgCj4kCuKvZ5niNAZXSoOc/3wZUII1AqHk08aRPFCokJXUNNQ+PxKOggXeTBB22teA7ilTrnJpNplnFZFqi0tBnLFIZOG1oeoNyt6cR5mcH7QFSb1AK2vrK4T/3EGfkWzMRAbQuQ7ShSblIAS9pilGWnF4/SOIrjOIljIgIGg9oaK5k4VtoYY6NIGy39/TKP6jpmYTCVECigIKaIVquVc00SJ8aYyFpxOaT5jUWcsUOea9RSXZRZlsAMugxdf+fc4QtuxM+9rwUd1U0YiD73j6urL12jMh+O0NGTyMFtOnr9/iFLErmPi2QKpKLSO2N9ahI7NYt+cNdfR0RycewUCKDTzFBKGRy0ZtINjlR3rd7Egx+GsSTRlXZKjwzt/nl9H153zeUxTcbju3fvatPmjZ6NIIeBClxv/RSHoEset3Gb7MPJLNNKGYuInQwnyvzpIZlwZ4Gu7vTy8vIf/sN/+Prrr//8z//8ZDKRh2WthcFpQTf4iP+rs5C9wfLe+7rBoijWZ6FY++KiXJ/kqyfF9ryq9vvdtqy81iZVSllj4yhOEtBKU9CRRW0IlQcgiXmYTRRlo8lommSLNLKGGdO8Xq+L+mKz39bFel2sL5OqnB0cp+PJZrPxaNAkk8kkkAJlppOpUui9t8YwBKH2AwBr9ftPTiTxbK09Pj6WfpL5fD6ZTBrX5rx73SVJMyNiFMe9mq8A/WWh13UtStLQbT9JmQjoQnLYzLxer2UpS4RTdfJbPVLLey/Uos41RiFJcy0qqzX7gMzW2uNbx3nx8qOHD5mZQqhCZToxPARw3iutja61MfY6J6AdQr9unDC9WsrARshwZSWt1FcWra+TNlf8g8McAwA01dVL/TNpUxfDyJ/Je75xG7Ij+tIqilSf6jFdgp3GlsSTuCgqIWXBro+ivQizM1dbtrcpIYRAYR/qqmnyPC+Loqrruq7qumFmZYyNo4Ojo8Pj46Nbx4vDg/F0ko1GzjkGQG0k7S2nhekUk5RSVVX0T8l5x8wOnGBy8u0uTVPh0ZYKyWw2kyUhO3S32+V5vlgsBGpcVdV+v0+ysfd+Op3WdW2jtsrXJTLUwcGBdIb0lhG6xIeciLJQZR1KMUdCmv7UlMQ5dvkFWeRxHGdpJtQxsjh7EzxcOzJH1pq6qoqiUACRscBQNM1ut5NaCoSAiMF7o/WDBw++8ad/KovgeeoQcD1QuWFFJYi9crkGY/hPuh6oEKvWwxtEKV1Ra3hw0NVHC95GKWVMFCWEump81TTOudr5fV4orefzeZqlURRFNlIKkQJQ2Ox2WZJGURS8L8tytbpk4vl8Lsg9mZTdbifH9na7VUoJrcLR0ZGYFwkye3dQZlZaibIsm8/nkshUStVlJaZpt9uJHMd4PJaPSJJkv98fHBz8/5j7r2fL0uw+EFtrfWa7Y69JU1m+utqgATRAiiNIjMCEhopAUEM+UApx/gC96F9QMPhn6EEhPTLwJlLScCZoQAKEYTTQAAF0oxvVplxXZqW55tjtPrf0sM7e99xbldXFRk+QX2Rl3Zv3nnP2Ofszy/yMhFN1XYvYurTILi8vxWJS0piyLGU7krxihNdL+iqq2W1Xy7VJIWaMpVzXb65Xs+msafbed7v95uzs5Jd+6euTSZlZO5YVefAeHWMLMaZIA3iVB7y4OHVrUgjgQgAGQizz4i//7M9/9MMfGWMQiFAxMCEiHmATiDpCNJmlqNx+xzECJ45+OSntcqE9AEDTd030zYtUdz0z//4f/ckf/cmfP7vY9iE653rvAicgZADnXOtcmU9STD54Cf60NgAMLuybjjmN5yUeLkNmDWt1Iy5yeLMxklYAqHQGkAAjY4ggog0KgJjQs0M9pFuJU0yKSPSPbYBBCYK11ai1854BiBIyHbNP+CWZyriIbpbA0aq5tXDSTcVXph4fssrDm7pJJl/ODzy6Aq7bXVvpMqj5oozOTadFYPXp8+vp4uzJrr5cXf3hH/7hN7/5zYcPH67X68Vi8cMf/vBXfuVXXnv0KgJaa5EBYsqMIVIxBOc9Ga01ZUqjKFZFDwCMyIgBuWnqrm1HuheRSoljiCKSLqzllGJwXd80lNLyZJGiu1qvjIKqmCJA3XpbADNaW+62113npKgkFNOmcUqpyWQavZdzDIC9d0hQ11uldAghpn70coWh1i7j9PRcdmlpQUtdSaK6PkTANDYe5bGHwB1QFG6UhpAYlRGHRyDkyHc+dun/KKI3335LCm8hBFSkiDghR9TMxhimwUqVb3LOz0atxyPFSMzW2qaum7bVAwU6yzIgAoAD7pQwSal0SMbwRimK4bblBh5lv2PYTEeGCjQY0cgTpiPsKA4syjTg6GA4lcJggHMcSIw76ghRGXOM8QOUXWh8fue97JnjAYpH4G0c6o/yPIKsZmY44r045wQ6iIjT6fQWR0WCkMMHwUBHqcWds+04Nsfj9YuA/Pn0oDvjEB+E8Oabb967d4/gJpKDz5yyLxs3Z+qQfgGAMSbLTJ4bko1ZqZRiPIJdHj/Dze7PLCHOP/tn/2y9Xv+Tf/JPzs7O7ghF/y86xrfgXJdWzy4+/qDbvsigZb8L7ZY5oqKEZPNMkTZ5ZvPMWEtGoyIVlNIaiBMkJM5yo5Sxuc3LvJoWk1k5PZ3mmSEFVevz0hCBd/32+nq/3WoXQgjL9KCPADoHNG3bMStlJdOwwlH2oZdJ75wjyr7yla9IckKDa57Edog4EuslvKNBKZ+IGA5bychUpsGvVERCu64TlAUObMUYY997+ULgZLLqhDovLySlR7l96/W66zoAVggkST8gMkTnRKQ1hvDGG288+/TTtm3rGKMPmTLjnMjybCxp3DlUityOX985pbqmkT00Hkn0SpIRe09DmnH8tESk8QbxjHgLxGUye5OZiCLNqFDeuePLOI5NI8chXTpkFOOOo/JsjDjTEYY1pZQiyysRURyEYGOMgZOZVWl4VEwphhCiyCzHln06CBIc5DgSsFE609aWxYNXHj589MpkPsuKHIl8ioETIlZ5Lh9OGlR6x91TKtyCg5JzSD7Pvu8FpiWQP9nspB8tHuGTyeT6+lqsLcbPiojW63VVVdvtVtqkcXADnM1mIXLf95PJZFRfGKdlSgewgdxf8Q4LIez3e+n84CDLOJZ/1DDkDsYUJXAUavWdzgMcJSqffPJ4Np1Op9N6v9/v95k2smtPyhIppGEiVZPJfDoTbgOmO/vwlx3jSQZHh9zxVY3ffPknPPrm1o9STKR0lmVlWaG2unfYtN77BKgUMkfXtyn6dqD2lmWZ5YWyhegFn56chhA/+uije+f3EHExnRljrq+v67q+f/++1nqxWIh88OXlJQ4NsUNVcgBfSd9MkKKCFmNmAfH2fa9Jya/JLxCRYA6ttZPJZLFYXF1dAYA0RhBxvV4DgLVWgkJEFBCgPIkAFEdg6kjTl2Q4z3NJpGWH3G63cjG+d9H39X63XC6KMsvyk29961dOTpfW2swY8C91JRZBvNFR+/hGoABbY0ohcoiTsvrpxx//h9/93Xq/nyIlUCFiYoaYMPAgUhNJ656jMsoWuQ40n0/vnZ9n1jjX93V4dnWNRm/7bnV9hUpnJru42sSQtK2kIoaECAL40UopMtb1EQCVttocLMbHrSx+Ri3wMINGp8nhnRxhNgBJdEZRcFwMgMQIREhtdEhAiIwEyJKPxwQIgC4qokz0ZxFcCCQlZFQ/7zJ66RjPA1nhElkQEQDSYO0w1sK/xMCUdNfGzrjKKpNnTd1o0g/Op6xx+3gjGu4//vGPhXT+67/+62+99VaWZR99+OFyuZRmo7VWDB/G+J4SawallOsdAxdFgQDBdzWH/XYjfCpdVQgQvU8ppRj7tlVKkYIUQ9vWPrjg+xDCfrfVigFiSlzX9Xw2Uyr1fWidBzJVOd1s11pzWU6YIcZUFKW1drtdE6YxY7fWVFUpwaj3YTqdIOZShpdNePxblrAcAcdnASldTpcMh1NSzgXZvUMIMXFMEEIIMSmbl3l5ILoAkFIpHSiXUqEQznqMIcvKLLe2zFerVYhRCRJEUUJQosBFB63lL5gMN18DA6I4YDZt27WtImWHxg4S8lBWRjh0upgZjuL+z8TetyfKECF8tggl746PO67DdjH2Uobo94BZOCbDyPYSjrhwfGTdKA88funjq4qDy1z8QgOP47CHmYFuRUQj+rosS33nyo4+31sNkDsh0a1E5bgS8KXXPzMrpTiE115/XWutkhK8R3q5Sc1nRzoa8mmK9ktVZaQiAgPGmO5+iMdjTA0lWPnTP/3T3/u93/un//SfiuX8l7+Sv+EYYxfnXHB93F6n+lq5XWYCaTZVluVq11lsHYeISiGJQYfsfRA5RUjiHYTEuc3KosoLO5kWRWFMbqJGzkhZlWsALDml0PvYhbjz7X7z5Kex6frzh6/ZzO66LgRvrCmKYr/fKzWLMcLBkJvrBvb7fYz+0YOHYsojE0uKjvKtNVaOfGMM3Mac9M7JjiPVCykkSKJS17V0YOS8l41GfrnvDxGbBBY8tEoldDtUPgbAzxCmRA4+huCc885ziAowMybLMqV03exk8gTmFII/QhG3XXfQM/zMNpTZm6L4nRVohlIHD67tY+hqqwnBTdvkuAc6KcpxWY5NIRmkb37tOPhGRE13a/M3VwU3ebtgXdIgOJYIQ7qp5t6UTJj74d9jjJgShsjBR+8hxqt663nw/Rgb5USokMjIp8CRjbXq4AQsaDG0WcaESLhYLLS12/2uc71Yl4inXkpJxLho6B0rhUK+Eln3NHiWZ1nW7PYCcRYNJWGDKKW2221VVaenpx999JGcXtPpNKW0Wq1g0AGTmTObzaqqEqTiZrPxIT19+nQ6na7Xa9EBk23Xe094FxklVeHFYiFqDThoX6aU6rqW63z77bfH9SvXpj4jfnL7Y0+J+fT0NHi/2+183wNzGNK2OFjHHDQfiRSps7Oz9XqN+HP2b8dMDI8AEuOPxq+/dCD1hXoq47MRCrCTlCYi0kYZLeRIoXYAgFi81U2ns85oY4zZbja9sb7rvPN5nvvze9PZZLfbdV33ySef5Hl+//79kWJ0cnLy6aefPnr0aLFYbDYbIdwLz3i9vpZv5V1LPCRXHn0QZTBEFH7RbreTo/Dk5ES+lkoeDCUksaOdz+fr9fry8rIoirOzs8lkIr8gjVxZbqLTUBRF27bb7bZp9yIeIK9yeXkpC6rIrO+6k+Xy8vK5zfQ/+Af/vTi0VFWBX3iOytyTNXLnfhEiMqSYYggc0367+1f/0//8+JNPcqsZMAIxY4yHAtBwk8Czb5vt2enpvdPT+yfL+2cnpbWYYt/171197Po+MSQklReA6BLnZWV1vq/bw4xSlIJ3McSUYox9CJzUTatkqNFIJu89jDP4zrnM/BIzOGRLQgCRqE5a1EZTpoiWdkEECokQDZEWz8qYICFH8s43bdu6noEJWCUmBE3kftGZSoxxNCMSmedDXIjAPnxxrPk5gwm5bPagQg+VyS3mtrCZrdtucrJ8uI9/9t3vL2ZT8Xzs+/473/nOa6+9Np/PN5vNd7/73dPT09dee03qOLJbEmIGZCKQCwzRIiJSv93vdvu22a83V1lu5/P5iIAYus3oXa+NSi7W9W672+S5PTlZhuBC8G3bNdvd17/y9vXli4uLy86ls3uFNZnWxhgjZaOyLIXT3/f91dWV1qQtKQUpha5rmX3X7auqEq1RgXbL/ilb5Yg7ItKIuFqtQgjz+XzEZSCRc35ELMlyls6qc66rG0BFRIYUHXG9EgClKLyRUfuxbdssywBg5+oYPDAvz8/ioREBAKgAuA+Hfhm9lH0Nt89lBEZAHwIiNnVdN02Z5aKBjohEisU2KiUpY4JkDsCYcCh13WWcHo8xThjqifHOZYwhwQjQGmEFEjLFGCWUDoPNJQ6lVfl7vCNjuDJGJjhgz+7McOldywO/QAlgDG9gSFTuREo4oMR1OtLaJ6IjhhCTP8ZIAR+v7ds76c2LveyKPjMkaUbS8/lJ17ksnyAc3vOXPyzTkT0ZEmqjssxWZTGdlBzW6SBSPqIeP+dpjz+plNJv//Zvf+tb3/rVX/1V9Xnmpj/HuNNcuv2x8VHhCJmBU4IY2Pfg9qWN1mSFNcjaR93G6FVL2110DcucTIe5RaCCSL4SMyREMNZW07Ios7y0pBEwtZ1ThoiAU9AGJpN8sahc7Um5T3Z1513kxEim2qtidnZyD3XWuRABmVPd7GPyxipE3tf1s+fPyyJ7cO++ZPwH7tTA7NRaC7VDIu+hJXKAfiGpETwjj5Vlo7VGIjnvxQJS1mfbttbarjsoxhxg5TGOYf1sNru+vhaeAxE552azmWAzjCr7tg0heO/aukk+KEClVGZt3zVVWSpZdSJYOEC/WB+4UgPckMcbp9UAu0KW7sjNjUzJKGWMPWiFASutjDaKlGGkoyLB8RZglBpE+Q8/HaeJseZWooJw2B0Ri7w4LjYe7w9K07ArSV0vhRiD9yElViRxcAh+lNaJMSXgXdcgHsBfggz23vfO+RDd1XOVYgghxCBZTYrRx5hiUoYQkYzRmQUAH2KQPhKgzTNtTUpJaa20RsSqqkxmsyyrdyuBY2mtBSczNliyLBM6smypYzAtKY3MGalYy2kqpGdSh87Gdrt95ZVXRJVrNpt1XXe12kgw1zQNDQjDuq7btp0vTpbLpRyf+/3+WEcus1oP/o+yS8LQ1+ahvz/u5pJsS3VTbqIk2zxwAVNKt8Ti+ICVBwZIyfXC+KLpdNo27Xa15pTKqrJGp7pPwMyc5zmR2u/2p2dnH374ISrw/UsyBP7cHe5o8zkCfPPLOipfevDhv4OOknwpr0MKI7Ms/IyMIHEYARC0Qk7xwb1zbYzr+67vg3cArJROISTEAOzadhsiRK73tVL0/NNPXXCz2VwbY61hhO1+p63W2kxns67vldYxpbqu4yCc4HqHAHleiNj0mKFJkinCYlprMa0fU3cRDfPer1YrIpKZ9vHHHwtsTKokIkh4//59aWuMctWb7bapayJy3vngtTGb7fb5ixcAnFK4Xq1ijFqplNJuv5cUGpgx+KvLSwb+rd/637/26iPXtYvl3Het41iY/KU6NDECs1G6Dz0Ooul8+JMAiDmmEDjFH/71Dz764AOjDTIDYQJk5pAOfM3xCSP4ala9887bbz56hbteMViitus2682nz583MTpEY7NJkW/3rSIqi2mzb8qikJNVYjFQlFLyPnjv54vlGB6JEo+UI5RSkUczXJAgCo7ewBEyA46jCQWMKDwaJAVaG6WsUVaTpuRVZIWgETKg3GZFlpV5YY1xcLBXT8zb/f5yvdo1TeP6GDyyftmk//lKAXy7LYkMYtkIiAEjDC6BX1oBDOsm7vpuA2E3MaeLqshNzgioCJVWalaVr736aoyxruu+6z598qRtmvls9qvf/OYvf+OXxOX2+uJFkRfz+Xw6qawxUWft4J7hnAvBA0JRFEWRf/2r7+ZFboyJITrnXN+1TZs4KUUIHCF1Xbu6vooxVEXu+653XYz+/OzkfDkXNuPZ+flu352ene5q19ZNCv3JYtE0Teid6zqIyWid2ywEt91sjDVKqywX4/msbnZFUSIxJgCAGKPI4tHgfKC1dl1PSvnehRTHwmiMHGOwWgo/t8pzzNy1bde0SluttTYWEVIKKQbgFFIiToLSHDlg0lPN8wwQgCjG2DUtAB96GsyB0RIhEiAhEooI2tDi++yEOPwfWGpPRmvX9753Ki+11korZkZFjAewNQHg6N6bOKUD0EGC3JdOlCFb+GxHhW8PHFDKfNRjGXIq/GzR/5AnWJNlmdEmhBBTxAMBC8fIme/2MH7mQXTr4uEoCOebEAklenTOTadT770uMjMew8yRbyHBwiiVwYmBjwDQR4oHYrc5Hga3wHrpFqwTWQHwQZM7JYWKQX/lzW9onADSYdcDZMI0LGoEsFofZgJDCkHellIKEAMAGSXpMcRQFtXJorIGumaTmzEDRZYN/OaCby4wxJRlGaeY2eK3f/u3N/vd/+3/8k+YELXicGt24H/+cc4I8TOPktQEmRVhjCmCQVIATKlXPmQpkuX1PBhrCqUMhOAQndpt6tW22dWe2laXWXSdb5tYZAgRAoW2DW2T2k5FzKAAD2We37s/RxWNRUBKe6xbFzNfFqQIC0vnJ2Xsuhi7qvGberd3+9zShIP3XVnY6elZ0+x6ZS/W/dPnT+/du+e3PSC+uLp6fnFhjX3jtdX52UlZ5tLZ2G63XdeXZU4KUwqooOlqFw6MZBd6pZQPgRMdV03kmNdaN01TTmcp+b73RLooKoGNpZS6riPVyW5VVhUwdH0n6CDn3KSaVeXUey8BhFZ2uVyu1+uqrNquzjJrMqu1zrPc9/1us93vdxQZgjegi+nSaE0MdHRox+OyhTQP1ME4VMVEgIro4JwNfEhAELWmMQVVWimtbzrEcOgYSMAEAONKAeQxhVFaK6LxkBSQ8QFHiUfFm8NmfmCb3MmX4LANpZRY9usyN4gYUuy9Gyeic871buSoFFUpNlPaaE6JiMQc4NmLF69Mz10KnXOdd30MfXAd94jaWNKjv0YCRDTESAfN+9OzeyYvT87uzeZLAOIEmc6MslIM2+/30n6p63o6nYqQpeyP8sVsNqMBoRRjfPLkyXI+TSkpjZUppBente76FJO3Jj9ZnpXF5P2ffPiVd74qVBZEdP1+Op3KmSdEgldfffWDDz64urp69913FcHZ6XK1WmVWb4JLKVkjLDkIKSpOqEiUkXwM1trgvVIqo0yYCYIHk0rPIZ9RqLUau4ghRA7RZrYoiqbutLLAEEPwPiqlUoTMFs+ePbu8eDGfz9u2fbrZaK1d3+d5AZr2XUvKAPKmrquy6pJDpNffevvP/tNfuL6n42AHB15RiAzgb//keCc2mgCSaPgQUZ4Z6UiEGEmZG7j+eCgKnkeO6KERJCZbESIDkLGc8MAAYJG35RgjcCRllFZN3bRtb1rHpCKCssbawpa5JgqcXN8RYVYVWtSffVQxVEW+39eIOKmq4Fzb7gHAWxs4hm3I8jwLdqqm6OCnn26NsbktEFVRVa1zDFgVVZHn9X6/X2+L83M0qprOtbUhBE6AyvjIXefycuLcOgE2Xb9YFLu62e7rGGOWZX3dXFxdyzqazWbPLy61zXxMT5+/CJG7tlVEVVFcPH/e9/18Pv/k8eOz09P1drvZ7+q61lqlxC54QvSiywcwnU/rZo9Ii8V8Vk2K2aRpmnuLh2WeL6tpmeUP7p/9d/+739SUijLXsTealNKUWQaMMYJ4cQMqRSnE6F1qW6N06FrveooqcJI6Q8TYuX1ljGIOzXb14vKPfuffhe3eIChFSJySBH+ktU0pDrXVkCf3zXe/+re+8c4kKw2ZLC/2XV8RrPljbz6KyLawnjD4qDBOioqUnk7niCGmFGLyMRIgBkiRM1NwIpMpAiAi71zXtAppmhutDafYOS9ioIiolAiLphgTp0QJhuYzEDBxIkAiJGCI7WBtTlppQsUx9G7bMVtjU0wKUq61B58icmQNlGt69azElBSQoUw9enC9r19st9//8P0Xm13wQRmbjpS7bo7neIsJQCiotgN0/qZ+dFuVRw2RDiOoBDrxWNhlZkAARQDkvQ8xqkHPLbykLckIpjI19HXr1uvmRduUeXZ6sizKPKdsVlVlZueTKs+zT5/4VlE1m+w3q//0ne9EH1579dVHjx78nf/V34qua+rd808//cnHP1ZEs9kJkZrNpwBpPp/fP1+mFBfLOSKz96nud841bev6PsR4wB8Bt753zjVNXZTZ6enSWDCau7aHlB5/9HGeZdPpdHl6L8VEvQ+h0xQ3+8vLT6+a+RwAzs/PM0Xb62dE5EPwLuii4AQhJa2yGIPrQ55V1mSKDKmoFMUYCTi3RkDdQk0k5q7p5pMyL8uimiZAH5LSpswLQuWcSykSYGasUkqMeDhxiKwNElHwjmLUUokDjin2gduu40Hc3DmnFQEn1/cQkrHWkgbg4H3yQdyTkUiZ4sAQ1Aa0lg4AKELEhGPJGfBgh8spRuDkfK+UyrT95P2PCmMBIBFEhYkhpEQCKNBaaQ0MKUZpQPbRSV8XBiK7AJWVUj4G2aIjpzhs6QdBMzhoOqeBySaJVpZlKTEAipMjIjKD9wERrc0ic7vfy1l8AG5oDQBSEwRmZS0TReeAiAEiQGL2rpdfk/KxtTazGQCEELQyOrNIpMCg0XiIFACATZ7t9/tc5daY49YuAmRWztyYGCOj6702GaPykV8q1It3GWZfdnwRR4UHGXNkREicprOF0QYYb3509+le/kIAxqiUEqeICFlmyyIzRmmlEBg5fpnqBRHtdjulVF3Xf/zHf/zNb35zsVgIb/LLvNkvHjJlX3IRKFCalGL03iBYiCl00G+i25a5TmgzTOy5j9D2fd10Xds556jrMqtTiN577zxpJe1+RICUgDFFJmJFZKwmRYgQQoxtJAXEVNhMIKdZbqbTvHfVqYcU/aZp1xdPd3V98vB112yf7HZ2MqmbLjEUefb4k58+e/Zsv99vNpvnz59rRd/65telZzoSoaRaCYghJMHh8KA9JZVppdRu2wgpWUomRVHIJy8KTqLtI7V2Hihlxhg4kAcOYoUi9CRC8rvNHgbPEFGYnc1mJycnveuYvVFqv98/+eRx33YKMMW43W4//NFPmrapshwRJ9UkN8Z1/dhRAUXjjR8TKmOMVkqnA0B1zDckyQAAPM7hb1NKMp3RALTlkfYqhW266aUKNGJ8EnNUCFBHiuMAAOoWAu14ourBiYmZrT14cQJAlGjy9qMO9c5BnDHGOO6GZqn7pquKwjHkCjPrebdJDElDiMzphgw3vuUYIxDJn8712uhqUh30OrSWC0OAercVyrs01sbmGBHJdfFg6SgXL//SNI38joTW8mxpIBMLt16Ukfu+n81m4s6xa2oRXZB3SkTiLaBEvGVgaorSlPxLVVXKHFiGh1NhKHGllCCxfJ4ppVEUWy5G0S3bLEQUTxsp2h1zJ+QzkSaPZFACQJIuEDPHlHrvl7PK913X923bPXvy6ayaWGMms+n6yvPPhlz9jHFcdaOXo1u/cPdnOBhXHN7x8O/IwMF7qQbZzCpj2hBciJCiC6ltO2Os4AFEjCPGoLUpsqLd101zISflvq61McraEELX9/PTEynj+cTr3b7u+qIoAvvW+Uk+aa6uFouFIJ0gpc1mQwyk1dn9c2PMfr9/8uSJaHM9e/ZMMAm7zUaasZvNZsw2v//978cYxYXWOff06dPNZiN0qevrayLyvk8xAsN6s+m69tXXXttsty+uLpumqWZTH4OgKxHx5OxMgF5FUSyXc0GISdwgneG+73ObnU1ms9nsm9/4qnQ/bUYEQCLLh0cdBqlfJE4pxRBhrHYBjLVNqcIqhd677Wrb9+0f/Iffe/zRx9LfNpOSWRpH8mdowAADw+lk8dZrby9OzrOsUMowqCKLhGoxrbOsZPKoDSL6AJQQGTABMmirMSaGwIiYIEROjKhIKYUARBiC7yUd1QYFA4NYZjYIyGQ4OMa1jGjldwiBABWCJiQihUDAakCd4A2mHxKCKFVFZOREWkfEwLxp9srqaR+LPJ9OJkVeMtLi/r3Tts3K/Hs/+tHHV9swkKHvlqs/Uwf4MuNm7cOB3HsoJiHQEZKPiBTzyMf9oidUSFoxogvRx1C3LROVfd8HViY7Pzt99MrD6+tr750xum1ba4z37s//8i+fPX/euV+5urp69OD+ycnp6elp8s4aGxNPpjOlldbU9y0SbLfrpy+e9W0bu172sa7rYBCJkkMhcMjzrMjNpMytQe86zJXRtN3sYoh2Oq2qCklx4rwonr94bq3NMhOy7PHjT4qiiDGUZblarUTmxMdYakNKS00nJT1E0pBSmk4mgh8WbyU/+AwSUfS9SBwSUdu2LialbeS42+2KvJTGi1DFaICUW2uVMnJwSCTt+g5YGvgR4GDPKh5NMgMPp6ePXdtJBHKAaos/OZD30eaFMUYU+bVWIAI3hLcC2EOQCzCANQhxs1rRQGgUHjYplRIxABzE4o74ZnwTYNzNpW8PPqLUw+DWIGtKthq+AYDdmMSPHZXDSwhpdlD0ktDLDb5z42aBt0HReDscQsQxGknMo3gL3pYBkHt0eOxtCLElPZ7LNHBHQwir1eqlicr/4gMxxnjv3j1rXyqD/TMHITKwQrK5nU6KqiyMUoSMiuBLQKhhEBnM8/y99977+OOP/6//4L+fTqc0SDj/fKCIW1fIQIduENzxeO5jssYWRkXfoevQ7bXfRLdSfZ0ZiFor4K7turrdrHZXL66uLq92m33BTmZD8MF7r7zWh+tEQeYcMPDAipTNDAD4BLVrmEOIqO2UVK5J2dxOFxNG2u67vtTe9z524LN2s3oWQh/Qg9oGarr+9PT06uoKEReLxf3797/2ta/lmS2LMssyiRoFb0NEojseI4ysLAGMSnsEANrGyR5U17VIiBKR6OFs6wYAYoztoD0imcxkMpnOZlKAl5UDAPv9frvd5nn++KdPJJeQz2S/36/XayLq+7ZutixwHYYsy6LzVVXdv3//bLF8/7331pdXVVXlWYYMk2oyIhfRqBv4AaJQEq21Rikz+NnKghzRboiojzz4xsV/iObjrfV8s0SPEhUcerLjk0hALCPd9nuSooWM4/UPAKP9pTyEmaXqH2I8dpAciW4yBEYlTCHJNuV+TcoJFkVkrtvGBQ+KMIbEDMEDor4tsnm8611eXkobXZJYONpGy7IU6Wr52nsvd19id0kbJJWNMUqaUVXVbFLKJyBTTpgnstWGEMqyPD8///GPfyxpgBy3McaDiotSgmwWVbqRV/3hhx9OJpPz83M53kao4TxfwOByJafdeIwFd7CAlGeuqkpI3s+ePfvG194ds1YeeEqIKLLd47+PunlXV1cppevr60M7sSwnkwkNXhxaK4l379+/X5WVb7vvf++v/tvf/M2Tk5P11fUXbTdfboxgACIC5l84sVg+vQRcGnN67xxNtm+bpu8S06ScGW1TSrvd1rnAHIlU1/n9vpsUmTVZEHU+Quc9A5vMVta64JVSUl4VaKLsD957YCVs9U5rrTQBVJMJAnR9f3l1tdvvhSl7cXGRUppMJh9//LFkxtKDFdrS1dVVWZbb7VaWw09/+tPr62uBlyyXS5l1VVXlVW6MmUwm3vumaSfTib26MsbMZzNrrWxoEl3JnHnjjTfm8zkie++Fqispq7zubrO9urr46lfersrCtXVR5coAIjMxA97xaEA8RFE+BB4QxULZVqgSMDCnlCzpdr9JKf3rf/Wvv/u97yXmIstc8JIOjNHOcdyDgBar08VDW8zZGl2WijUx6QiL7KrQJjEwqcSsABQA8UHXE4mQxbIkHVIfBMFdeO9VZkXBqcwO9GhmVkQAB0bocYULxroPMBEhAQFoIqNJa60JzRC7jPGQbHSRuU2cmAA4IiatPIFSuG3amdLTs0fLxfLk9KQoC0RUCPzJJ6/du6cSXLV/vdrXcmzJWX/0Wd9S7v6SMcCdAO74R0TH1r43oklf8GzIQAi5NclmHDykoBU19X57ffnq66+fP1wqY2WvGBvUIh2x3ey3++ajjx8XZZ5pde/sdLGYlVk2qcrM2KoqvXfaqO12HaP3oe+6LoWogIssr6pKesVKKdmR8jyrqqzrWu9cnlti5uiTd9G1HN2jR68756+vrxGxaZoHDx4opT799NOTxaIochGlEIGclJKwDVGpNhzIciOLb+AoKvHkTSlJ2CCNDumK2/G4YbaZUUwJcDKZVNNZUx/U+eRDkOpPGHzGRnSx7MmHaIET6TzEQ1NRay3CKm3beu9VOoi1ZFkmtdThQCdj85BS3/faGjJ6oNaT8Exedjdl5j99+lRCTTUwe01muy6O5+adR91kET9rBo6RAw5CL/L1aDon1cDx2I+DlI4UYWEgYkgR7fgf78zSzxYoxxq0rJQ4aEOPh2b6DJVjrNallPh22DO+4vFq6vv+yZMn/8USFUIMKZ6dnUls8XM9RwoupBiNtfNZNSkLQkjRMzMifDEfcRx93wus+dvf/vZkMvnmN79Jgwzx3zxRkQ4gDh1hHnRWDh0nJAD2bteur9rVc2hWxu9VaCi46TzjGAKn3ba5ut5dXq2fPbu+fH5V101xWshMGusEGKVrcZBnSomR2TsfYqhMZYxxkffbpm0756PSiAhVURils8JWKZ0vKwJG4L1DB367ehE2G1bFrvWPvvGtX3702quvvppSssYopUipGEPf9xwdAFxfX1dVFWMUfQbvPRIpfZjuYzU9DkNmLQ9GB1KzOfg0D1BR2Z5Wq9X19TUAlGW5Wq9hkB7e7Xa73W69Xh/EoNyhD3CsCrrb7ZAAIEBKRJTbbFJWZZ5Pyurk5KTQ9vz8vK8bYwwpwsRa67FpK245Mkgpo7XNsjzLrLEGiY67KEfMk+D6m5s+nKmHDOR2vnz8ozuJyvE48gOGkVF3+NFRs+XOY8cLG4vEg7QIHSfJhz1iKLRIJC0bHDOL8u8rr7xSVFUd/Gqzbtu2KkplNPStj0G4E8cmMyL/JWUhIJJcQqJ/0Z8ZZVjQO7mqNFBTUkp1XWutiyKTaGbsPEgmI5oKwj6U5FDUt+q6lvkjXp9/9md/xswSy8pc8l0vpG0xMheTn81mI3pfv/zLv7zb7WRnPLBTBrbJyGcYr1CuVrLo8Q7KEbhcLu/fv5+COw4+ZP6nAz1xROSnPM9FhUzsBUUhoCxLoUbIxQhqvLC63m0RkVOaTKe/9mu/9ujRo+Vyaa3tX64H9SXHGH4hIiGm+AvOVKy1LsYYQowRAa0xEzWZzKaks+XsfDqdK9EF7lpE1FoxQ4zx8vq56x0D9M5tm8ZakxdF2zT1i4uTkxMi6l2QmMEYo1yoqmo6myMoZTQyIBEjOOeBmQDbrmuefdo0TZZln3zySZZldV3PZjPphrV1LbVGoc5rrefz+Ww2E1eo5XIpWpSipyL23qR1Fw71WqHOM4LOs/l8PinL++f3Nuv1ixcvhKG0Xq9lEpZlaRRC4qdPnhhj5UZrrb13Tb3/2htvfuWdt9v97vz81LleK2QIDOkzzawDFlx2UUYBT4+JCgBDTJFT8sn1Xf8X3/nO9773PVGeSMAmyzwkxWk8Eu9ERWLBUGRFJIhdn5JXEV3TXz17igyYmENkThwSipskAwD4EGJKIUUfk/Ox987HhETOuT46reYCXDHGMCfXO2Y2WteuuaGVyksP2yrwIVEhBEWgFRqjrbVGkcED0++gtiQGfiklZu+CTwmBlVagtUsxszb0XbFY3Hv0ldliMZ2XgCmxNwDvfuXtAlO/35dFvtrXOPTqbycqR19/aVwJvrwPQ0eS8nS7vvNFz8jRGm1mVWbQ923f95pQWfPi2TM05WQ2K4ri008/lXhUeiAxJELVuVB3nW0aH9xHn3wCAApxNp3Mi7xtGud7BMgLi5hOz07yPJtOqirLVpt13bavvPJwfrIsiyLPi6oqM2uffPK+d/2jV18FTvvdNsuMa5v19fV0NsvzTG5cGmiEJycncmrXTTtdLBiJtFFaFxMkbVwIvuvL2RzpgBca9UKEAGaUEkiFvB3hUkqhkEf9VURSKkbu2q7v++2+nk3nsiolkBuVwUIIWls5QcaA5LDvEcERQ0NSPhjqqvV6l2WZnKF8q/JIRIJeGXxbkMZEJX5RZRwR4eLyQipxpHUCICJjrHP9mH7fCTjHmubYM/n8aXKrJ3kL6yHbxZ3JNpZR8Ejloh84lmNsoJSSj/S4SJpuq7CMD5dERe4jHNkbHqcr46MEDuO9l8P0OCdJR4rM4xsXn1999yPgW/8//ozuONrcjIEmNjzPl4ruxSPy/PzcGE14N19igYJ9Vqr4SGSACDj6sshns2lVFloRp8ApSkLA6tbTvWzIS/R9/1d/9Vf3798/PT097KEoEDb8Mk9y58qPv1FilyRyeJxQESnqvQcAgtQ3uxePP/z0gx/062czFc6n2ekkLzNlUNV917Td9Xp7ud4/v9xeXK7rpgdAa6y0TbXRI3OdB6FrAEAEUbsaye6hd9pav09922ptM1tYDYoUUCrL/GQ51UoBImzaOqBSZZ+0Lad5DrNq8rWvfGWxWHZdS6QY2HlPAKCTynTbtqIOTIMbkcTTWh/6IZKCbrdb0ehMg5E8Dg1cmaybzSaEcLXeaK2fPn0qXhmyT2mtT05OSKnpdKpIVVW1WCx48C+vqkqT1Nqw73sRZfLeX15eaqOUgq6pr66uLl9crK+vM2Nnk+nl5WVpskVVzmaz/X6f28wYO05sSrcwV0TKamO1scZk2mTmhuAuH7jWGgETpNxO+GjAEUPAGDsuJmkDjIlKhHj8VPpoxaqXrTUAPtrX4PbixSOetB6UxwAACY9N0dNosjbgyszBQliso7RUr4uqfPz8xRYpM8Zm2abde06iXtL1vZhMy/TDxBE4xcDICvjs/EwmgNSoBNcHR6A4gb447wQfKBuTfD3urcaYkR5tCCW+lDaFtVb8wlJKITQxxslkIpHogwcPpMuXZVndtWVZyutKm6iqqufPnwuXFCSedk4uTxIYANDRSHJFA1RvBADoQUX+OD+UmZxbPRA6QJQPxmnAnAR+Nr41pdR8Pl+tVoI6KIoCEXf7HScezgZf1/XZ2dlHH32klTo7PbX3TdM0v/7rv/6D7/0VDT1xGAzmjibH0eZzO1r67Dl39BbwCOeajnc6HkiG43F4NM1v4Xb46CXGXN0537SNzgtrbVbk2hbACIBt28WY7p3fn83n49x48ytvNXWDiKv1qq7rvMgBQLAom/Vmt9sZhs3lxhgjPNQsyyCxUsoHX2aF1VoRceK+abVS1tp9vZcwSClVVdVbb70lmmxlWfq+Pz09retakpARdGqMEXCgzNKiKOSFQgj7usaMUClb5KBIZ9Z7nxeFtVYhjUJhiJhl2YMHDwCgqiprjO+73PAr9+/LpxRjvLy6iiF89e13/ptf+1UNqSzz/X6fZRYQCfVAJMfhbjIApyT82uScY0w2U3FQzJPJbJTuurptds+efPqHv/8HKQQRbQgxak2JEzKrI5DGWMtATheri+vLi8VsqpCE1OtDeP78+YcfvieCNCEEF2OMCUXmm0WUiAMnH4KLyfnoRA4WwKeYOLVtK4dCiJFDDN5zSjGEGEPihIDGaKW1UhoQUkqKVGRSwN57BC4mldUELJbQVFgL8bBf4cEZLSWixGBRUxScoSaAGBxlGfVZE6IyJaD1oH3oOHqffOZd8q7MTFmUAFcwWBrcTi1uvr6Tp+gjHwkYXaI/M44fNRz9N0fDcY2cvqCvkgIqMFpls4lRM+961zccjc3y5XJx78HD58+fV1WljfYhxJh8iAiglAk+KKVc8Jp0Sikmzoq8mi5//dd/5Yff/z4ArzcbpKi0XZ6dn52dFll2Mp9u1+uqqk5OTs7v3ZNuRuLUBzeZTIvinJCUUeflvf1+E6I/Pz9PiVerdZ4XQimUTaBt2/PzcwBInKbT5Xa7y/NMG22YtVF976ppobIsDqpTKSU5JmKMRVGkEORwlDUovREelGDleBQTIVRGPFgjH+C1En9LyUlyGxocOSQQkohCKncxJUBwwQuM/BhiwIMfbp7nIYSYUjz6xxij1lYNN3RUE+ZRIBkODsljnA4pIkLbtvt9PckLpZQIeSNACF5O3uMsRY2ujupw/TQgHWT6EVE4UsAaIwF5j2OVbQwzpNzmnFNKj78W440KfxxsDNQQTPIRKEANXoU8oMQPE5tZ4cGQcXySsVQqsQQcUe3HbUeMPserPy7C+qYb287MLE3Cvu+fPH2qxzUzLqTDMwzl//HmIX3+oiKgccGyqCUdf4ovWYbMrLU+OzujARJ39LPjtX7rfMUhUUFEhWSMnk6q+XSiCVP0CInoIMX+JXshkvy1bXt5efkbv/Ebt7A06Ra/5GfUP26u/WhrY3DOG62V1omAEzauY0BbZH3XfvyD7z7+4EcfvfeXBbdv3p9Wp5PKUKaVosSR6np3ud49v9q8WG0vNvt13UWGaVnmRX5wWtTGWmuMTsONE3AwDPKpnHjoYIDJLDN1XdzXoci5yMkYJFS2yPO8A0QXoYvk61hWUw+ZLuYLW1qbQ2JNlJksxuicj94jYJkXqFIIXgQNabAWktq/MLNFM0fcTgBAREJPTk4k+pQ6d13X2+12tVo1TXNxvRKj5ddff72qKnmP8kams1lVVVI+H6Pzpmn2+32RlUQkcLLtdrvdboXkGlM4O1u6rl2v17vNtt7tLl9cPH/6bLfbVVnR7eysmiilhMODA4hYZC7HW6mQFKBmUIz4mZRgTP0h3iKHwO1Zf0x2R0x01EXB20W44+l1XIEYwJyHEYeqAxztAjLodlsWBgDoHc4YDUhTGrSwjh57YxxbliUkRobZZOo59dG7ELz1iOic85yUMmQ0AxAnAsUOEnME3u1rqVHxYDg1ck6UUl3XNU1jjJlUk6qspJPgnJvPp6MMS9M0osp1ONKUOoYaW2u7rhM3qNlsttvtZrPZgwcPhPjRtq3YX8j0ExNx+fb+/fu73U5CSenqjJK1ZVky82w2a7pWOpbjPiO7drptr4uIIknHR/4k48crwbFgD+JgryEPUUqJ74c0duQcPczz6VSYKsYYqyZXV1fT6TTFWGaFJqWVyvN8Pp+7ppbP4Q7wDz5TS/kCcMmduTfOr5SQ+VagdudcOErHb//oCCodQ5ATKAS/3+0TqkSojDFZkZuK+aBADch1vZNDFhBnZydX6818Nn/9rWXTtjBk0a7rdyfbp0+fAiBpM58vUorMgIT7/T64rppMMmON1kZpTDydTCbVZDab7Xdb0TJ2zm02GwFfSZvOar1YLNSgiCCAE0lUpMorjT7hL0knreu60MeTk5NJUe5jSiFOFgul1Op6tTw9PZkv1uv12dmZSKPudrvr6+vpdFrvdoZUWRSTogRETvyTn/yEgS2pd9955/zkJPg+BX8oUjAlYqVun6cMIAr7kuumSJlWmeXEanCUUkqlrteKnl9e/c6/+bfr65UGzPNcomSfIsJNCj2m2WPosK/7Dx5/MK8ym6CvW60wIV9cX4JyqJAT9X3feOd8jAljTJ3EBgySqISYfEg+cRykGEIIwvzUWruuhxBRWPIxlmUusY61mVJKBDy6rpe1pUjuRRB2sXdBprFBJZa6iJA4xhBGvUSDCJQIQIGWKlNIKTI8f3FxvV4Za6BNfV8T+8Su2W2D7w9mgACyQd0JP+62UI5W0S1810vzlFtBAA+rbQz1jlffS1cosiGdUiSELLNGUZFpqHIOoe1d1zbL5fLp06cAYLTJ5tnTpiUEUip4bwgZmAiUVimR713X+6vV+o//5Dvr6+vT09NiUuW5Xa2uXlxcVZPpYnlyen7W+/5H7//kbXjn/qOHqKksK2sMItSZjcHHFBNCH6OyuYIMkAnAmjzGJOanbdtOp1M5Sowxk9mcrC1nU0WqKAtm7rrO5mVRlru6HtMDCZdljyWiXV1LFJEGIvhNvcB7SwpEXtIHYvJB8gC8blZEJErizCyhrYTmIaS6rhHx/PxctFXE0iArcqKs3zkRdBHO5H6/Z7F0ZA6DF3tKhygKJFZkJRUZUoSiHXU4hW/RSCQKlr2dY2Di3W7HwwkyRud977KsgqFZelxBgCGhPY7PRfWUiJiPD31NBGPPfwwM4mDuLv0l59x0OhuPG4FGwxBCHJCZQ440zlJB04254pjUyd+i7SnfyhE/LhA84quMraHxXov5j+xpfDtoGeuDYfCc+MlPfvLi2bO7PZpbBxiRsCXv9kZ/EYOZs8yenJwkEet8+dPzgfl3M2T6ZkbnGVijkRMnRk6IR8cs40s5/UdDPg6hib/55pt/k3f0+UOriBBi6H1gQl0VV6vVt//jf/jwRz/affCDe5We2XRS4LKAWQ55BsokJqyb7Wa/ud7tL7f7F7v6qunqGDJtdJHneSEwGCMdFSRASSNv1eCZOfFBDgKJlM6VLgF912Fd86RSeaZJK2VsXuZMZMuUNSln1kU5K8/sZFlNl3ZxHpx3Xe+93+12AGCtLYrcZsbF3lojR5Gc9JKQZEVe162gd4SgLGgcyWHWq/V+v2/b9urqavRQWywWZ2dnb7/7VWaez+evvvqqWFtst1tEbJomDbEgD6LGIy9FtKSEfL9erx8/ftz3fVEU2qgYHXJi5uXJcjGbv3L/Yfj6N54/f/7i02duv9vzXvohSqlRM/KO8oEiEmMm+ftOoiILD46QVOPxf3wjjr+lIx1nRNTm9gH55TLh45bOl3zIF487MevxIWqUMkpPJ+Vqsy6yvHeu1wYArDE+eVSEioAZWOTNEAGRaLvdCC5ZzhvZFuXzQT06H5N0fgUqI4OGDr4gCcX+bz6fq8H9Q04vefKu60IIbdMDgFLq4cOHzjlxC5W4fxCqJ2HvSQIwNvpF+lB6HWpQ7RzRCGMiSsOPvPdGHdgmY/NwOp1KunKcjhLRfr+fTqeSjwlCWO6UQMskvcmyrO1q+TSkrj/atBVF0Tc7rfVyudxvd5i4LMtJVTHz/fv3L589Pa6W/c0nwBcM2V4AYMzTbo5S1GMidxyE3Rm967vVqg9eZzYvpr5/Mb26UoryomD288V8zHviVtmi9Mzdft/3DgDyIi/yAo3Ji+rtd969vr72IWpj+76XfktRlIv5tKyKB/fuQ2KO0WgDMZVFMZ1OOcbVapVl2enpqeAPxd7EGLPfbqVoKvlJ27bPnz/XWp+fn0tWI/ShyWQiR/JsNrt3757ODs3G08XSh+D6npS6d3KmiLTWDx8+rOtaKsGS/zjnQojL+ZwQLy8utdbb7XY6mbz//vu/9Eu/9Norr0IKwEmMiRExIQhYWJC842fIzNLlcM4RqbIsSCsC5BjbpiVEYMaUVpvNv/u3v/Ojv/7rs/nStx0hhbFOwYCKcMCx3CpwIBez6fd//CNw/utvvVMaDYQxOsCorPZ133Oofb9pGhdSYlRitc5ACaL4wDJ3LvQuJBTHbvShDwDGmBgCMRCg1cbIYiBShgCAEAlAIyUEcU4V/nmWZa7nEKJRAxeFOYWQJPAanOmUUoYMALGPEFNi9omN1QTU7Fvn3HXXf/8Hf56pX530eXC91ZB81ze73Xa7qeu6bW82ui9YRF+Ujtz+xZc3MJPYYgy/8GU2bWSQiWGMLjJrFAInrSwktnl462tfa5pGJLMFpiskUkRUnJg5MDMjcGBAhYljcH175VoEePz0qVZqMilm80nv/PVq/fDhQ6X1W2+//cabb56cnDjnfAhd3/ngAcBWM3AueXeQtsYg6k0E4EP0zvV9Lwe9RNIS0SXApu0OfiY+ICIgaWN8TCLXKbrh4tMqat3CdB3bI9I/l82/bVvFvN2vAeDs7LyaLVxMXe+994QkNaZDqyRG4UZKjePBg3vX19dSEhV7Je/9fr9fb9avv/HO6enpZrORPV+iFEm6DCgpksLocD+SalixyHkqEv2r4zt+0wG9Ha+mlEYRfBgLBETEt5BUelDQwiM59S8xYTgdjTuvK4fmWEIdlKnDuGmnwWdcYqoxaR9jGz1I14zPz6OHvTVS00kpfVHSPbwRefjYUby7EQGIHpKctvL5V1X14sWLtutuJSp0O9gloi/bmPg5BnOeF9JD/GJ5rhhvlNfHSWOtzXO7qKwiAI7SKR+E4RIjMNAXlhQPQz7BpmmE8/CLeGM3gxGYkLWKzDHii+ur7/z7//TtP/2TbVNPc/P1ZTnXocJwNs2WE5WbSBgCI8fYub7t233Xrdt21bQb5zxSWRbVfFZUZVEUWZaJy54gdojoDjCPjzpuSmmlwGaTLGdiBVAw5zFaAK8DK2MpAhlPJisntmNji2p5cg6mVFqP6B1B2hyMigCcc5KoyGuNybQIuVpEAYwCgJRPZOZdX1+///77u91OePlVVRVFIRj91nmpi4hIiNRmDrl1jBJrSqAvy0zW208/+kRI2JJtAoDWer/fF2W+36+DcymlIi8MKdd1ruun0+l/83f+zo9/8P2LZ89TSs67Ms9pIDTR7cl+U3f8vIk0JioAEIMfQ1u4fWjdgWCOD/y5Q8xj4tovJE5Vt2mgdzIrwSu74F2K1pg8WgCwxrY+jkEPD0x6EKpAiGJ1t1gspM97nMLN5/PJZLLf75umGffuyWTSdQcRBbmeruukByLAANlw5V6nIw+TtukRcbvdhhCeP3/+zjvvCG6hbVuVDr1+CbKJKM/zuq7laBxpUXL9woRp2/bBKw+HRvng2Dh4A+MgjSLHmLRKmqbJ87zMq+OPVLZvEG++GMaOijGmaRrJo6R4j0OLRqSZhY2TUhSRgMvLy+lkSumQejHzm2+++dff++6dAtXffA68bMj2cvztTVULbw6wUTXhs6Pv+4QhEfq2bTtHgN73xhjTmLreFEUhfosmL3VKddcdoCME8sV2uyXEyWyWGaOUevXVV5fLpXTJLi8vsyzrXfv6G280+1orNZ8v6+1uu9+tViul1Ml8/vDhwxBCXdfyaUsxb7PZbNdrsaLTg5/afD5PKV1cXBhj5vP5AZ8gIT5iWZZVVTXNXhF1Xe9jt9/X2mhjTN+7oiga5wZvovjixQuh7W02m65p3nv6KTDc/EvXAcC3vvWtmGKCADFKowOHnmoSf+qjcEe6IdKIzvNcGxNTAiIfg/N+WpZ92+22u9/5t//2L//iL6yxm81mmpcSrKaBFYl4Y+g03NnDk3cugiq+9/Hjx9fb0/lsPimqLNtvt5eX6+vG73zYNs22a/uQGJASIgAyttudVAMTQ2JiJCAlO0ie5xpR4KxWm0wZLfk6kfcHG2WBeo7zn4gSIwBnWRaDCBKQzC4GCBDjMMdwsOv23jNECJh8jCmkgMl7ImzaWinsuuaHf/2XlY6vPbhfahuQg2/rtrleX13va1HBxgGM+rJFhLebpV8w7uzztxOVCMPp8AUp/Z3h+k4pQk2asCqLZr/v2/7s9CQP8b333vvK176xWCx2u50x5sGDBx9//DERISdliVP0kUNMLkROKTNKkSLSKcbog4Axeufbtu/75vXXX19vtptNWRT5+fm5nO+Cdazrumna03uP8mqeEzrXphRQ4ZCocLu6FH1FHNrO8veDBw+2+1r8E1NK2+1WOpld1znnptOJoKq6rluv10qpyWSS5zlJXyAlqaNLW3K1WsnqW8znWVHGGJNopTC20nQ1dtyohU+PwwwU1RNppGw2G1meRVGcnp5+/MlPHz9+PF8uiUhIg9PpdLFYWGu32y0xyc485j+ydUtHBUgRERIG4ONbGePBigL5rpVFjHG73VprRUH4AMkmYga63YqHwV9Y0oaxDPQFk/A4i7iTq8jKGvHVbdsK3v6zuccIb4Yj4O7xZJa/pdHBA1pbPhY5m/DlYPU0dGxkzOdzGBRKP/eCZY8S/HbXdY8ePTJZpoe2MgMzpHRcmCck/kzs8sUDX07lQABAllsoaYUxdjqdpQj4RR2Vg6QVAIiuFSEpAqspM7ooshRiSp6BR+wMo/DWv9Q1S+wrU+FlZ+2XHIcGzvD+iYEBPCat9dOLiz/4k29/5y/+04vLC1FisZomuS455sCFxkwJQTD1PjLE7W673u0ut/Wz7e6q9x0r0NYUVTmb2QyN0VorrYgUIRGyeCkS4E1uxpwgMQAjssKEgNbYopgiWJ1PQZcRMYYAbTCoEhADJuDErI2xebFr+vlyfnZ6tt3t6t0+OK8k3Unc1k3vepd6gAPWkAfqFTP3XV9NZowHzlbTNKL9sl6vU+IY43w+v3fv3tnZmWTPY6IvoJcXL14I4Ec6GAKPWW93TdNKx3G92SDidDpt2ub68ipF7l2fF0VZlNLDlYev1+uyMrv1Zl/Xiij6sN/vry+vrq6udqsNAihFs8lEkeJDAI3jrRsxWBwTi1OAjkwER/grPBo81FI+t8h9/C3eHiGGOz/6MtNsLE6M0fPPfsgXKIa/vKMCAAhQFAUCTspqs9sZrTVprZNWCgLBoI/KyCzTDxkJi7xwfb/dbPq2IyStNDMjkTKGgYU3KS0FrXVd15vNZj6fpXTQ6ZKGhkwn2RaLPE/DGTZ6lciZJDc9pXRycrLdboVSImtZD4gC+UeZY8vlUk446VZLsmeMGf3LQayLU5LLEEay/EiRkt+U0+vs7AwAptNpnucCupSRYpIgWJjTfDQAQJ5QYAZjhj+2XJxzTdPcOz+fTCZG0Ww2885Pyyo4J15sJ2enIFOREQjhhsnwc45bUx9uqNLyMyQUv1xAxAOChRGBCBPKcXEDSh7+3DwnAuR5Nl0ss0nVB7/bN947TpwgOh+7vtnVm6IoqrIyWbEweYoQXCqqMsW42exsVkxnS+9cUVZEZHKXAK43m91uV1WVi3FaFGRwvV5HH/Is2263bd2EEIxSeZ674H/yk58Ipq4oS+ccA89ms8lkkmfZdDJZrVa73U6CJKWU/Gi9XpdVJadv3TREREp1fb/dbjkGBNjXtbW2a1sA0MaUZVn73cXqWgTrSCtE/Pjjj0W/4eLqand52dR7IoohlEUZgv8f/s//eFoVBMwxAiYcuLnxsJyABxvNw2AQ76YQgsBUg/eodei9ImrqJjj/e//+d//k238MMSmlI4Pz/mD2AYfjlW5Ai3cFPEKCPvg6hu169clmRTFmjDrGGOI1YBtT7fs+hC7EFBmBRCFGiTALAgOh0kialGgIq8xoQ5KoaC1SHomBmWNYTKbaGADourZ3nmSRIiogifyMMahIEpTEEBkiQ0pJOiqJyIqSYQjO+xBSwkLgLBw5eESCtm6n80kKse/bxz/9yIQwzXMO0QW36+rL7fpqv+tdP34CX5TtD7I8d5rtn/eLL/15Soz0ktPh5fFSkRcpBufcZrt2fVtkdjqtICWFsFyeiLJIVVXLxfzVh/d/PK2UKJ2GLqboXXSJM8OBMTG4EJ3vY+LMWud7RErBNXWzPFk8ffrs/r3785OTut73zqm2XS6XeZ6Twuls4nwsJqedgKlAkRFktKzxVJYVpIRIUnYBhMzatm1fvLjIytLYPCZOiavpzPV973w1nabtVlT4pFsSQhDAtnOu67oYQt87Of2R0Gi9ODkp8pyI6rpW2uZFYWwWGX3by1QpqyolbuoaOJVl0XV4eXnZtG3XtcaY4ELbtm3TBk6ZyWbTmVbaWvv6q69frzbNvp5Op1VR1HW9XW+sNURqNpn2bZ9lufiTaK0PMTApIs1AIIY+CjGl4733pqMCn7mpiZumybRGQB4ExQER4Zbar3Bg0oC5GIOr9IWApvFwOe6QyJC8QuDNxhjvg1RJBLAg6dwBhOa9zOERFTbGNmP7Rep3gj07gGaBBeEcYzTmVqJyFE4BEWml4pCuiBuvbB1Eyhoz/CKE3ksWJ1xBqTAaY3JjNAcn0BcCBmaI6ZAUMCRWCCDOTSPiTQYdwTqPS8sAEGI80pO+uXkMwOyQ5aWIAz04exR6QGCjtJwBY1bH6aDcxYjRWBJmfXQcnLFqOcmmpbGa2XUIoA50zzHfkX4ZvnQPOBryvkbBn5/9gMN7ucOxs5E5Qop8MOfWiVWExOlx/fxPf/zX//L3/8OT9YoyoywXvZ9GOtXTimhmba7KzBoGy6AZM+diXTfri93Fxf4nF9vHLW6wVJVZWq0nZV7N54toLeaFyosMtUqARmVa674PwWfA1vstEYS+D12P3inuMuxCgl4ndbrssOop3+gsarAAztfUpr51XdNp9hZZ51BkVC3PdTHtXciKMsFBXkkp0oTB9fV+N5lPDBmNGgASpzIrBYqDRFrZtmujT+IC3jV9SkkCApvlb7311qhcPkb5RLTb7bquk1JZVVUCy9ntdvt98+MPP95ut13bTmezoiiKqsyKSWBcnKrOdRXPY4ht33vnXNcToLXWB+dDfnF57fr+3vn5+dm9Ii9T5KZpLq+uTwvSxH1XT6Yz55xHhaikK6WZAQ8FA1Io8tKMiTFpZfF2JVtorABAQMhI4lQqq27o3gYOt6YNQcKEhICAR8ajd86wY5Kl2EaNTxij7CkwBMfHe2WU+ayU0voAlzrArpQ+3uq0pJ0AAMdWqCKpcvOL98/ubfc7H0Nfe6O11SbPsshpUk58gL4PSJQ0hhgjKNRWARrSmmC33qbel8qAD/V+X86naHSIUafU7nd5nusBONRzyo3ebzaT+RQged973wvx6fR0ycxlmde7nTSChfSMiNfX18vlEgBcSNt637r+/MH99378I9TKFnndNCfnZ/V2Z5VmbfYx7dabLMsybWbVpMqLTBu0jIk1UggBDW+32yLLQooxRFFlmM1mWgSOkTQpRqqKDAAQUgoOOSGzMSYzWYwhAiHifr/XWtvMylqQoiAf4ityztX7rXedd52c1lmRy3EreREzC9I6xkiMkVlnej6fAAAhoeXVfn/2ysP5vdMnP/0kxpirjGPCo9Q6Hk02hNvOkNoeT7Zbu1kIePMjOHYQ9d5rIqUVkUkxhhgTMANH4D44ASkRcpGbsjiU1mJMsTtoUkUCq1VhMNMwKcuTxaSOGBMOpwk750lhE2MWw+7yMsSknLtMXE5ms/ncqLzQRfJsM0sIZZkjwuXFixT61dX+/OysqnKAnGPKbdF3/bQs7y3vaSLnnFaKFErX5fTkxGbZarXK86L3wbnGd13vnJCF1tutrJFZ31+tVi8uL/que/DgoWhOAGDbtYjYd/18OpUPqu56rbVIF7bOA3Nofbdr26yNnPKynM2XkdNHj588v3zhuq0mzHXG5D/85Ef/w//p//jNX3rLtw1wiiD1WWJIAjQ93BGEiMyJOcQYokKU4styvjDGuH1X5Lnvg+98prVz/g9+9z/8/u/+PnGaZIXYiaSUgtQySPaNA5teOt9GaRF3iVGK7mC0zrNJTNCH6ENwTF7wR/ttrjkzlgkYKTFHTmJmqEHjgRB6KAZHZq2V0bokpfCAOk5i5qiJxCsXOHmXUiJmwsTMtshQw65ugJTzvm73RMTA3c4DQA9tbg0qImYA8N51g+pGiMFHXnU7ERqAmLTSmdHaZL7jKltkCtZ7/uufXuRZFjjVXVu3zb5pGtez1kJTsdYeEwykQTR+PebeAIAMmm7WmhR/x5US003wwHCU7ktwmqTimhSR0gcUPgMfB063qssMstTQJKVJmTSdZRpoXkzazquyeO2112KMH/z4x5VRLz744d9+6yH5ttlt2zR13ne9a1z0IQYQ5B0xYgo+JU7JMLPKF85506QHp2cXHz2b/G9/YzpfLmaz64sXV5eXRZEVVW5zW84K5zsGns4qWSzOud51VVntt+voE3KKHJx3sW6N1dT1WilFtN1uqrIixMhRkTo9XXZti5zoYOkOXd/mlCujTs5O+q4DgLPzsxCZSMWUECCEwMAhhMv1ZjqZRcoSqOhBJR8jZ3l+PpluNpvteqUUYEp10/neNm2bGQg+BVd/8MOPwIXT0/OqqJrOBR/63Y5D4Mj3zs9d60Lw7HqLCNamlDBGTIxI0+lpZEQCBkggbowKlQpMHhiRCUHBgNeUyQCg9EEQDAE4phiTnNmJ+emTZ/Vqky1PbJkFgJhCzsagIqLeO2OsdOA757z3pFRWFC4ESunQxkmJGZTSIYgqwIF5AgDS+ZcOmLAYjkW6EHHMfBCRCKfTiRrUiukgZnDADgxSAVof2ZTBkc/JWEOURAURFYJIuotSv5COhrxFBe+lMSUOp9Ya76HvOpsVMcYUo9JKI6WQnHeKlDUmMhMAIRqlQOuiKJ48efLw/n1FJOHL7Yj+OM2Anz3GYuHPGMh4o9iPSDrPCkWEoL740cEHgVAphDzPJqUt8iwzpAg+20bln1H4+MxFSYdaa2FM/mc9dhyROQFDYkqcmJu+z4uiU+m7P/ir//cf/asfPv5pD6iM6XufAQAhKdRaaWJkjiH2DoJXQVFqQh9828VtHXcdtF51QB41kkYyllSmKLNorc4ya61JqFI8jjOFhSmbotCmIqeQYjSkNVFARaij0qAzUJCiCx7Ctg6uDa5PodfElqIGT6lPoXdNtFmmkNCgMRrF2IhQGzOdTiVZH+BnQ4MvwWaz6V0vXgEHf/SyfPTokdaalBYUqVQfd7udaIYioqiBaa13u50YcbRtG2OczuZFnp+enEibWCnV1k3XtIg4mU7zmHVdG0OYzyqF1LVdCkGTats2gZtPKmd06LunTx63+zrP7LQoQt/HZgMpMCQODhG1AkImUHSYPp8/hfiILgx3or0vJFn9Fxnj1X7JRs3njiLPu75r+871vdQRlDqoyltjGImMVZoiOAgxMRADGgJI+/3+6uJyv9vN5nOZiYzsggc+uCjI/ivt+LIs5/N5H/rRJFRSLIn1eVAgAQBRXxC4oGSJvb/ZWxeLhQCxAECy3BHqmlISuWQBIYyYXdmdt9utdMZ5kD1Vg8Eoj/JuiIKrFjTzWJOWBpEAI2UhNHUj+/jFxYXWmjG1bSt8myzLPvjgg7OzM621tGLSQIIcDVvKsvTOFUVp1EGNTfAJALCv6+mkOjs7//jDj8qybOtGI5lbBN8vqU14axwjG+88g9BpmDmIUCEiICZEBaBpdBwazmskJKWAoFAMmBASAhME77JkCTUSnk4WPh4MYYXYaoxZrVaWaLu6Mnm+3QVm5YJHhT54ZE4A2y1rQ23bhhB6H+bzJSmyWRZiMlpNptPVanX/3r3T5UmmNcfUdZ1R+sfv/+hAlUYUWLxS6vHjxyGEB+fnImX+5MkTmV2iGlfX9bMXz3e7HQx7kcBUBB3knVsulyi9e8TEvK/r9Xo9nUyMNU3T1E2TgNfb7dMXz330bd+7vne927b7FOKkLP723/5bv/G/+Y0Q+jy3Tb1T2o5tVsCj5hgLF+Owt0tvGQ94DJ6UGSRu2jp0Td123//ud//gd/+dxqiNZgwAKWFi4ghRcGssfQ9MCSlhSpgiRABIkIAYASpWUpANhBmRV4qBGIER9WyapKyLBwHomFIETgn6xo2N2kNTglkBKgCFQMMfbQQLfBicMHCSsrIBnegAr1JG3dJ3HQq6DJAYWh/oGEx1QKH4kKBLIYm0ZmSVogvekDLGKAS0tnE+7esI3HvXe88IQAjS5Hn5+DLs1l/A4FsR1q2vEXxKWlFm9azMq9Ji4hBib+Ls9Mye3VcHy+PKGnP/3nmRXGrWXNk6QO983bZN0ze9dzElGMKuzDIzJ0gJQojzoiJUu8vn9x7e/+iD99/92ldzm83nc+/7P//zP//VX/uV0+K0rvcpGqW0QjOtCmau+/Z0uXTOVWVJhembbjqbOddvt1uQz1VATSludvVkMmGg1WaXkJRWIabZ4sR5n1KKHjoHNlN915+d33PONU07qypm1izKbwgMVVEt58sQwm7XcooJU4oUQmibRpRzV9fXhggBXN+XZdk2TV3Xl1eX1mZny9PYO2IOwbuut1leVZUL8fryqt7ty+msd8GHG8MxIhL1Uxyq8IILZEJxfmEiYw56Xy54/DxYoKxZDgGJUJQqEZt9LRKJMUY0YsMtxfRbjz3udh6XRMdvjzvz45AiMgy10eNqux7ENkTxEgeg4xgSHEP3x0l4B514HD/crGIJgYjkJcYIcAyNeNCHBIDgffBeztBbwhUMnBKnRIBSZD2SamFEFKT3ZDK5f+/eF/moxC/nmciDz8v4br7MoxRRWZYAAtyMX4AD5RRSSqTYZnYymUwrW+RGoXRrfjH4bNHPfvLkyc/xWEbglIBZxZRSQsLJYvbJ1Yv/8d//2//4l392nRpmyCnjgBwEogba6DzThQEDAbz3fewtpRj6uGv70Dr/dNO/aHjjVccqgSZSmYJMQ2kgxRgjhhBUFMDorWu5gTUnCCHGGIWFyKwET0BIGAETEGvnuK27erWi5BP3GhNpyFTKwJGvGRFsldkKVQaQiJT3wTmXgPOyED2ccZFLWCmGj5oPmuIyKQWBekCBM4iOpxp0nIqisNau12sGFFO29Xqd5/krr7xyYDK0rXPx4uKi7/uTk5P5fH56eioIGUIkhJPlsswLjTSdTKwxwXkCbNq6breE7Jxr9vWnj59sXlzE4PVkklvb9ppJASDHSCYaJAUsXgzM6mUT+LgD+1nBpf/axtgylj3u57PKsNZqkRIe+vVa8gJOWukIQFonRZrTwTISlVIqOJ9bo5Ta7/fbzUZnVmUG2aSYUGskEql7Y4yIikgDbb1eC2NBLjgNfo6ybY2Ww5LfAoA8SnjPjx49ur6+Lori2bNn7777rnDc5/P58+fPxVpR+qXr9VrSj1GUTDZ3Ivrwww8Xi8V8Ph8FymjgzY/AWWFk4gCRH38qxSTpisiTC79T9McuLi6ECyGqOPfu3WNmSXhGy1Sh/kv+NpvN+q4r89xqJQk8M0tU3TQNIZyenR0qbTGC/gWEVMeT+W7lhw4ZYzrSmgOAxKzpVuP88OtEzKDQSpsnEvTBu6YN3jOCDxGzypq8KPI8z0vA+/fu7ev92WuvIeNVsfMholJt5/ouXl+l5fJktboWFenlcimg8/2+azo/m82ycrpZbU4WE+HzENHTp58SQ/QhxlgVpWSz6/X64uJCJOCaprl//74x5sOf/ET0P6qqGuHXUguMnIqiuLy8FAKVdHpfe+21LMsWs7nW+uOPP14ul2IZ4b2fTqfB+/1mG2KIKV5eXzVd1/Zd5MTA7X7fNNvc6sV8+vZbb/6jf/SPqqqK3vWh11rjESYbbh+j0jjlmAiAE7e7WiFlxsToMfi263JFzy5ffOdP/uS7f/GXwbUcAkNiCwlZ8OCJmZEFLEGHbJQP8tMcU0ySX5JCw8QMCYCYlUarFCMAUALI8mlkjpxCjCFFnyIAYGISeP2dROVIZYQGhbFjZOOdMEuqz4d2PVE8Lroxp1FHkZOPAUalI2HwS/k2pTZhTMwpQWJkRkBDynitifb1Vi4DFZFSlFsB3sgH+zdZMr+o8bIQiwEiMCFqrUubFcpkef7WV9597ycf/OTJJ//tN39lfnLaN21Rlo9efXW7277xlTf7jUp9N2Hune+6rOt92/Wt85FZXKB75/gA4gFmo5WOMYUQc3Cri+dnv/F3kPns7HS1XiXgi4uL3W53cXX99jtfL4oyhDCZTMSVSOoyTZP2+/1itkClymlezhZ934tASQgxK6dW2xijUTTVGRlls2yz2WirQKlqUijb7fd7ZapZOb/a7E9PTrJi2u+39X4nm4xUJfb7PSK++uqrN1FvCFJd2mw2AqfcbTaTqmrb7vmnT1ebtUCCsyyr15t33nm3ruvnzy5sns+XFQMhgovet11gCCHc+KUM4G0ipZXIfAIcz2ciICJSwIf98E6WItG5YBQNqdA775zWuq3r3W4rzEZmEOGNA//kM1a741kzFuxGbK2ciXeQTTBggsYM57ijIhUWcTCXI+YYVDaeXN57yZ3GLOV4kd6hsI4U2ZQSwaGGyMxSExwfO+LQaKA1yqmnbyvsjRcvVwtDU1E+SOEWFkXx9a9//YsSlS/VJ4G7QKgvWcFVB53s4dR/yYMI2CoInDTRpMirMsszS0gx+Ri80n9Tw0oJBabT6dnZ2QcffPDzPAMDcwLZzYGb0H/7P377X/7+v//p6qJHDsYUyrjacUxAgBAQoSCYKppO8ix513SIsXeubnzddrvOtR4+rdPTjq8D7EmxVplG1GAMWCvt9MMRAHinAJpGII9gekNIMaTgOfjgHHjsI9oInLSJRG0d1qvWN72hkBm0VpFFS1FDT7xLPoEywAFT6r1ngN4FH0KW52LjSoOp/LA8YwghMQOoxAeNf3E+ISIBR4o2sYR3Mq3btl2tVnVdb+smhPDmm2+en59LgbNpGmmthAgP798rq5KTiO6FFHxm9WIxXy4XohcTfYCUXNdxSkpprdR0OkXCGEJm8/ls/tqj164vL7fb7eZ6pbPS5B2kBCYDMkiKEKR2EV4+5Y8Tlc+WUv5rG+OWMQDGfp6DWXQs5GywmvxwW3USrQ+GlBIeZIpijKyIiHyKvXf7pl5vt3lZmiLTuc2NsVoXRR59EI1gUfdKKW02G2vtbDYDACISj/amaWQHlA1adLHEBRnF31cpRBQPRAlVJYcRxa2u64BZKJXSExcdOSEpStwPQ3O8LMs33ngjyzJp60m7TzonMiRYn0wmxhjRJRvzwDTo9Es6JK8lzUBRs6mqajKZXFxcTKfTLMvu3bu32WzOzs5E3EY2eukCwbAdKaXEJ0n4+hLJybVdXV9JMrPb7bI8o19E7fd2zexWna93ByNLM6CSDjOfGY5wL3IoDR6gRIkYkBEUAmodkUFRiDGlZGLE0PZt2wE31rrlYrffLeYLJFVNy2q6vLi8dhgZ2ff7Z0/388Xy6vI6s2XbNHXkzrnL6+uT01Pv03bfaqVct8+0zvO8a9rMWA5ht9mKRWlR5VrrpmlWq5VsRB9++OF2u91sNno40a+urqTVdnJyItoeNs/m8zkzL5fLGKN4k8lp5XvnvX/77bfrun7vvffW6/XJycnJyUndNOvtRj6K7X4fYwzOr7ebk9OTs5NTXE61xlcePPyH/4e/f35yGlyvFXnvNKEZYpGhwnrEzQ0RAEjOl5TapimLQpOK3qfg+v32R+/98I/+8A8/+uADjejq/Xw+t8Z2vmZIwCkxA0Q+4H6SAlQMClExKIGyIhABkSJEn0ICSJgiMBMPqiIJkIj0APZK0YcQfASOKUGCGBLAYQ6oQbl7DOkAQRxgI3NwbkTQK9QRxFQ+JeYAg6nT7Va2xE+ympzRx04/achSQgghJkcqSWk2JgJURAE4JlCAlKLRymoy1oLC4XRkFO7JL6bI+Tcad0Ks45UYNSZkCDH1gVGZXP/u7/4+TSavf+WreTVhZmVMNZvW2/zJk48Y3wwxEjLFvlCQlWZa6hAy50OIIUROMbZOc+KUQETIAFTf9SFAaWD7/MX6xcXJ+WnXtU3bfuvX/vZ0UhBgihy8C0Y3DWfWWKO6Nuy2mzx74FyfFVUxmYcQmMAai9qaFLMYOSYiRgAM0VpbEnZ9Z/LCupiQJlWpScUQF/O58971XWZ129ScWDOvV6s8z5cnJ1qpLMvo4cOrq6vNej2ZLJg5xsScXN+vr1fPnj+LMS3nc6uzTz746dOnTxeLRYwx+pDlWbtr3n7rra5zm+0+K4pqMmUkpY3ONZNOzFopBlTaEGLiREoL/5C0Jq1vhbOIQMSICtE7J4HCuB/eGRIOcYhWa05Jtpq+d1JiYwQ5gD43fjjuqNBRCWNMWuDz4EvyqLGcdPzMOPSKaVBMPWrRwNjfkNqcPGRkyHzuuxvnp1QQOu/kl++kN5KDjVBGqfpJxe3OxcvvjJVuOtIGkOUvuovf+MY39E1HCe72ou5+Ii9xP+Tb6ge3CUbHv8qEGEPiEPJqFuNBaEUuQJ57jAXHv7UmTCGzVBTlfFqVmSUASAeBhS+bSr18SMSc5/nbb7/953/+51dXV+L5iIikKYXPD+8UHZw4D5OJ0aXoFb7/7Mnv/+kf/9l733u6XXkC1Bo9MwFqDZqBGXyYavtoUpxpmmaGUqSgkwtN07Rdv6nbzb7bB3ga82vG2tiONCNmkBxw0jGCs1lmtNZaK6KEpBRIiRoQRZDFGIUIpDDF5H3s+4BIMaWU2PsuIKGG5PoeuO9j0/m27koh6BudZVrpBGGHTimLRXZmNDBERewjA7LJrMkyJPK9y/OMj+TtpGbQOUeKrMnGniANBhqifSSrYrfbXV1diXjobDY7Pz+fzL3WWpwu9vv9ixcvLi4uJpPJG2+8YTNrtX329NnV9VVR5Gfn5688OFdKT6qqbmvvfIrRaq2MQYiQqMqzErKkMXGKPhRZQQBnp+f3HzzYrTfr69WzZ898pKbeo7FJqT5xIowomjVDYxQPE2ysBd5Bdx0vh1GVf5i6OE5mxjuL6Gie3+r147FUyO3EHXGQiEVByL5kHMpCt3e0eBBop5SSsHKPG7Wft3V8zjfWWs8RHSqljNatc0REnJxzusgVKaUUMGutY0y2yFJKLgZ5dd85KXJnOiMkn9JBcVIpSVyl/+C9l6Riv9/bzI6hT4wxeC/VLyISMy/ZKKfTae+jRPP7/b6qKrHlOcBtkbTWoo3Tdd1ms1mv16+99pqcMSMdTkCGso0aY+LgVFWWJSfW5tA9TyktZhMaLIO0kgrZQetGdJN5qAGPGLb9ft+3nbSPdrtd23XLxWJ5chJTKopCHMcQUXT80ugbkGUS8gt5sW6awz5OhIhVVQ1tJVREfMty52hOfqZrf/z1WEdkZlIqDjr6iLcABmOtDo4kvxDRKHWc+SZOCQflTQamxEyAkICJY4oRgSyA0soezouUmFO9v9htgPnFaoXawCS3ZV6Uk2WVM2LdtCqzvt66ep8h9TUBUAqcG7Pb7Op9e3J6ypwadoXVxpgU4nK+4Bh3603f942tZ36qlJI6SF3Xoj34/PlzIkqIfd+LzNFsNquqqixLUaILKUpueXJyImDg58+f53m+Xq+LLJ/P5wJnffvtt+V+XV1dbTabXV2nGLu+F9FtrfXbb751dn6WZ9ZCnM2q3/iN//X98/O22WVGcYpKqRRvNBvg6CzjAQUh3ypUXdekGDUpTgkhrVer73z7P/7xt7+9WW8QUtt0i/k8z3NkzkmHGEKMdLDEYUIQ2DcxKCalSJNCRiQU+QskaoEBkYlCCEigFAryLAaf/MHXUwGKMBkBIFIiiCngSK7jmw0zhOA5Ga0Q0A81YGZOzJCYQ39QJSGUvkFMkZkjAvNNCVkyc4F36mASHUjIgBBCCDEMkxQ9J6EGkFGHorfSpDUpzFQm7iKsSFJwJfEfYnR+XA/HmyAzAB7rd8WRwTLwU6QRdTBuOFoCN8vh8JkcvgEpnN8K416CyL25DGQGMaXBFJNR5ivvfu35trkOPp/NUdOuqcu8mMxmLxC1Na+//vr3Lx5ziooSJFaIShNkiqNKyUROnKILhkghUowsXNq+d03T2sIUr7y6X63Oz05Unp2cnTJA17bny+Uvfe2bu2a/39cns1mZWUR8Vj9JMabottfXJ/cfotbqQE+CmMCY3BgghdH1bdvYLDtwtXt/fn4/hPT4pz9Vy+npYuFCZ6xF5+umPSDHmKeTaZnly8XS967v+77tSFFm7H67dU2IISTmcW9fzhZPnjz56fVqmlXBp+lkAUxW69zmsqn2XeibbjKdAhBpk1cTIKW0zUsdQtBGq8CKiIEVgjIGtUJtUBlQiAeUq9j/HP5jRO8DMR3D3Y9vOg9KuUqTd77ruqIoVpeXSJhlmVLqQCEfDmUAEHLs2CcZJ4Ya9uSxiyJlu+FMPIhAjk2McOQBIFmBHCtCix/LbWOuMhaL5UrGLGBMLUZU2B3m9ljmCyFouuEY386CUGwD5Am10VJdP/6sRt0wPPKNsYNAs5QhaJAHPD8/vzFgvi1b8DnjuG2S+KUF2ttPwrfSFmYGjjGklKzJz87Oxg6RJjXuF2rwnUkpASNxmJbVfDYpc0MEUhAAAKX0HejX8Yt97kbwudckmqF/9+/+3T/4gz/49re//Q//4T+UHDGI/vdLnkHyV6WUD4GUaSH+0V/8p//pD373o8tnQWMyxDGCC9qTKaij2IbWUlhk6q3l9Ov3Th9qNc0Jkskgq1Nf79v1rt7u+9W+W7uwNqmhzKHqOSqlkuKoEhlmjDjExDFGIFTaAJIUpIiAFOS5ZQallPeha/u2sXlhQmLGGH0IKeqMPLBrsXPNvuk7z4rIJcpRaWO0pZA8ppawYAzIPQNprciQhZysTYDOezVI6cnakKKj1hpc733I8lwCL8n167oWxfR93Qh35dmzZ7vd7vz8/JVXXpnNZiGE6WIpycxut1uv1977+/fvn56eElG7311unyLSa688KIoiy3NFiMC+b62iRMAxBd+HxMAwKUuj1G6/VZYQiYPv6m10Hpm7tvVta4jfefPNNx69urpePXv2rK1rQIVACVQEyA7488OGcvt0uTWvbncRbyCed6YY6tvB4lEWcSt2ZOZbk+3OSjzKPb7AtP74JYbrOKwpowAgcVKgxusbLuC4Wgl8e2krUkRkFHk3AGG1ZmBjTERsXGsVyUasjbHWphS3zV4jdn2/b+tpN40xht65ptNKNXUQQnyMcbfb8SAzfXJyghqVUtKh1kqPgFdpwYkA8Vhkkp9ut9vpfCkK2pvNpq7rFy9eXF1dHXrcNpNWjNTON5vN+++/L2YXJycnACB6x5vNRr6QjoqyJqUkov5VVck0lmsQnTrZYb33vesBQHBxspsfaDN9L+BaqQqLKq5k8rPJxDlXDGAYybt46BqN3XkYuvCSPjV1vd1uhaBPCCIn9eLFC0gp3ba2vrVfvVwCewyk0mDmO7JxaBA/lB+Nff/jPVO6arcTJKIb4TAhEycQOgCgQpLVYoCVxKuJU4oMbBCBAIBT9L4JbbfvVisgAtLa2HIyPT89e/vRw66LKWFk8Baq3BaTWVHNfEzWKqujAgghPPnkMTJYpQBAPkYR810sFq+99pr3/uTk5Gtf+9p2uyWiTGtmzvNcenqiQbRcLrfbrTJ6sVgIQUV4caKULfjv9XotBJvZbCbUo8vLy77vP332VOL1k+VyPp9Pqqosy/l0RsgZ8S//0tfOZovonFU6hSAyL3TkJzBWHyVACSEYTV3bckjTyaStG020nC/q/f7Tx5/8zu/8yw8++GC33ki8XFYTm2VKa2REBo59kiVPCMw3UPfAgCqBZtBE+qj7gSlGIiU3C2Ii0oogcARmIpUkDEqJGES9J8QIzHQjd0zjvGLmEFPb7MXoK8QYxdntMDUg9getXgZIwBEP+pwRAVGnASUiNkeS8EdOnhPS4eVijCnxcPkYmIlQIykkQlSkNJHVRsAsiAyKGG8qRLI30lGhSfLmw9cIIcXxR8e4GkBMCQ7WW4e66i1WyfG4CcvwsKPyEWnwViZzNG4SFWCDaJXqeqcX83wy/cM//g4U5b3zB9V0kRAZYd/sJ1W5OFnW6/mff/cvJ3nebbsi1zEEThGRtdKkFQICKAATQiAleokx+ORDTBgtxXa3CpdlTOntd9/ZbrfzsxMfgut6ZNJE0bmu3ft+8vzZ/vr6yhjz6JVHKcXtZnW52fytX//bB8IeYdf2RGy08V1fFNb1GL3nFGNKn3zy8fn5qff9+z/+0XP0J7O59365XJrMXF1dCeSyKMoWkEhtV+u6boqimM1mq/WqrmtOnKKXhm3Xu3q/b7vOGLOYzjYRGEhrO5lYGKyBRxVHjSkvCkalrTVZ1vsA2iAp0phAkUEp2x2Y5koxakZiRCDhMd3kJIKqHxian6MLPyYJQqbnocrTtK0eHIRJUYIECSXjgsMzoR9Et2DIDSSaklUg+62cYjJzvE9yXoz8dTl65Onk1NCDfa3EAM65yWRyPD+ZWaoq40YkL5qOTOGOc3g4slUZJ7CwVtMADL75ezIZ0x5OHDjwwIQ5jnzuvLpAEuJgcj9ma3cRY19+3LlJX5AVHI8QkyIFWd427etff1v0PUMIKXFm7po5yH6NHCelnlfFrMp9jDEmPajS8M/JHb01pPEEAN/61rdeffXVf/Nv/s1v/dZvNU0zn89H05/Pjr7vJfLe7XY6M+89e/I//+7v/OkPvldjjFYlTiwCjgwTpRIEl/rIfa7oK4v5r7/68N3lfAKpKJgD9hTYZ621RntjwWaUUyqAHHGOEACR2CJbZIOgEV4apQIohVqTsVqq6kLz7bosAfuQUgJkSMH3iWOrfeLeh7rptJ1EC4HAJ4ioMqMJDWlK4OvtKiGBMkjaVhMyFlB3IYWUFB3iMD0kwcNxy4U1+sgNw3svohCXl5dPnz6Vkvl8Pn/zzTen0yki7na7sixFIuzp06fMXFXV2dmZGFpdXV36tp3NpgIuFx3DBFyWmXMuJJ9iJGBjjCL0nWv2e46xrrcYduvri+12a7VRSN553/V913nnp9OFNtnMqOzB6Xab7ZuOEzEgMkP0IybgTpHgdtfwdlaPL/2RJAb/VQ3Z3UaaUHi5hgQRaWO01i7FMahVSuQ6wgGFiORTxMEBFzmZzCpEbY2xVvSsd5ktOWmtjVVCF5nNZs+ePavrOqVUlmUIwUUnPZMxRRmHqC/I3Zd2sCj/brdb03VVVQnCSil1cXEhDQet9frqWtovkuc8e/ZsvV6Lsr6QSUIIfd9rrcWzXHrNMqUlYRZmguz4oyrgUAk7HDBd18l2IXTtUV5itLNs62Y6m2232xcvXoiHTBpo+nlZyK4ty2cymVRVRUTB+77rFMKBNRGj976u66ZpQnBVlp2enr733ntVUXIIX9KQ7niMMdNYSBsP4C+/sR/Tkfn2Rsy30yU1pNYo1AOAhJwkiByfBGGSGx+jCz66lJBC311vtpvnz7SxD195LcvK6XSalzMyWd35vtmWkykwv3j2vG1qmRtKqe12VxXFZDIpslxbJTNqMplsNpu+76fT6Ww2I6JJURDRdrtt21bEPFarFQAYY54+f3Z1dfXVr35Vmi3COJKui++dJMwppY8//vj6+nq32+12u7Zri6qcz+d5llVFWRblZDJRiAoxOP/O199589FrzjkfQ2aVj+HQfLj90fLQwkopcWLXdrnNyKLv3er6Ks/yq4uL//H/+//767/+/mp7aax1EVKMk6rUecHauMTJR00mKWZDeCC9JCGLACJqE4lIayf2u8YAHpSLpmWlUQFwcH1KAYFT8ME1vgv5pJC0BGJSRKSp8y7F6HwIEcZE5famx977EA8NQGNMNnhqEYAtjTBMQorOex+cRFueI8ORtQIzD9MvxghIKYH4umltxnYrEmKKCIAMhEhIGlCTOnR3EBKCkp8O4ng/E/HlnRtvjSzzIRvD2xKJP88Y69Z30DJ3BjIYUtOyVDE6Tg/eeuPZvpkuT+fnD+bVwhjrXGjq+v79ewnAZtnJ+VmWunp7nVCJCgIAaIVGa4QIAAiQjAZE74PniJAIIicfvYsuYNNe9U992zAhaZ0Zw5EVao2oNZ2eLK+uLrque/z48Ve/+tWiyFar1XIxX+/rerMiIh/8a6+/vnFtF3oqy+31dWNwfb02xpycLIs8S65bXT7/zne+k2d6oo3rO2vt1dVlWZbr65XSKqVEQEgmRW72tXNus14/efz4QO3zvda56KOIExEzC7tVK5UX5biNaK2ljSPAXdYqyzNmJGOMzQDRx6SUQlJK32h4wlDjV1qLkyOICSuJnOfNfRGOIgyY4eNbllKCxCklYSwPrY/Yte0xFe0LJtA42+WZBQt9k7veLfnfeFjJsTiGzV3XzedzOQQlr5C2yWhtBwO0coSKSbQmy0r2NzmhwlGVQV6373tZ78YY33digideZ8dsFnldPjJgOX6Sz/0ajpI9iSqlFySFpJ8zUTl+YfrS7nUShRiTI/C77747n89TTJTRsa/zeLnqoKBMy7ktckMYCdIvij1//FpKKcF8//2///f/H/+v/+c//+f//B//438sIjAv40xLmbau677vv/f97/7f//W/uNxttNEMwD5oImaIDACJo/cx9jpvQQABAABJREFUhtQXGl+flL9ydvaNs5OzSlsdNcTkmYPutNZG68yapPKUJZ2UoinpCsyOyAWXhbZIUCTI+ItSM2VIG2WtITQpRWZkhhAiOkwUtVImAx9C14fWkwdCbbMiM6bQJoGNyfiIyASoKHHsXBuMh5S0AWWVVhqUQtJazHVCONCwiKR+Kbm11iqz2SirVxTFZDIJIVxfXzdNI+XMb3zjG3meCyfPey9G9QlJWorn5+cnJyfe+4uLi67rJmXx2sMHxhhhuQjQv23b/X7fNLW1hpkza3NrCTCA833f1PX68ln99HuT3DyaziaTwmrNUQWnfK9CSM753rd1F6CPJeus1H1E5zl+hqFCR+O4z3tn7YG+Szi7+c1f9Iz9m48xAftsSnBnEJERV7vultuaZDgDWwrZH0h1vvfAiThpQheC8773rmlqUBSBTZblxXzsSk8mEyGNVFW12+1Mfshv1WB0NV6G7LCyg6/X6xijaJjIVnh1dSViGI8fP7bWihWPkEystfv93jl3fX3NzKenpwezZOckhBKv4t1uFwcxuj54IY3IFiyJSowxy7KBpcxjxTeE0DSNpFuyBERfeL/fS47RdV30YbNeS3VfevFSGZHPU1ouIxnm0J9xjpg1oZwl0hYQkT1OHEMUFg0ixpSI/rMzYR5ojmNBSwBIY19lHHc2wFsZ+G0K/q3jZ/gCWXbzm2cInA79FvEPIRyCDPb7LQAaJAPIwEqRynIXfFvvP/7xD7SxtpjYolqc3luePcgAr54/DTHa0p6ent67d+/Z02d5nlulkTnLsul0miCKR4pUZ4mormsJcSSNlDcu3TNJX6W5J2A/IQ5JVHR5eXlxceG6HgBWq5XkvWKGk+d5VU3K2UQZbUhNZ7MyL+rtbrlYVEV5//XX333r7b7rQgja3hFpvHtTxgSSUyrzPPhQN03fdU+fPP2z7/zp+vo6hqCUns5PbJ4Vk1lVlLPJxJAyWiFjCNEUefAHgXJjjfhREBGhMllGooV80CdVh/WLmJxXConZuy4FH1y/324uXzz3q2vvDiBGrXVk9jFISqBJ+SRdDhyLr+NbqaoqpQgAMtvH8IAArLJSbE7MBXAF7Lzr+76PoW1dGgFvSo1zMoQA2oy7Fh2FfUSk48GqCBIf+ioAxAjicAAgPRtioHSTW6fPJIqfnb1wm0uNgPA3c1o7vPQw7hwix3EUMtiE3W5/dn764PVHT66u7r32qHVMoBRoYCCivCyVUvPF4unHP/7xj3/07mv3i7KI4BMSIyjA0Vru4IWEhKSM0SkljwER8twCgLF8/sorF/v9h+//5NHX3+1cX5YTa/IUmRFOlicuOGF5vfnmm3mev3jxQmv96quvnLbdi+fPnnz6ad/3s0mxW10prWLftvvddFYk37Vdfek7QH5wflJvV2+/8SokzEkF5xfLhXNeES1O7yOhUnq73XJMsg9LgWC1Wl1fX3/yySenp6fX11uBXEqBWAoQXdflRZFPqrFYo7SWaW+MNVqbLLdZFhIjKW2zxCBfCWtizEIBQLYCpRRpJZ5pYw5zPI4b0Xe2yuNERaQmpAfbti0NnRlC4p+VKI8zXM4jUS+QKsxnp9ABiDvwXkSfRr6QJnAarEjuvBfEQ3tEfnnURhqfU74+pq8AgJxBcmTIXZDDesSvjkMiPX3kIzmO4zl/p7Uo593Y0lHD+PkTlbvKal/qIai16tuOMlWW2auvvmZt3rVOKWWtTcHdPDUf2j1lkVVFNp9mwD6EIPBSIXL+nJf9Oe+Dtdbr9bosy9/8zd/8w//4R/+ff/Ev/t7f+3uLxeKA0ruFxzl842MEhU+ePvu9P/j97/zgr17QvrOQA+vIBhAYIoCIpzexjwEJ/ULp16vq7dlsoQnRU6HRRYrC6YtZZhZkjGWbpcqn1X5NyIDJMAalC12e53BaTJbVFCEdzbgj9BGIYj5pTUpRjEyaUGAkyKhYK2Yg1wN33vvEpsyLXFdVolwrUNqh8hGii2iIQ3TOuRA3sSuImLRKMQBprU2mtSHlah9DHJt0NAjVmWCULHgiHNAv77///gcffDCdTh8+evXk9GQ2mzvXK6O3+13XdcpolaK4L73zztuItN1uvPdaq6oql8ulJtytV4BAyKvrTmtNCAiwXC4YIfg+et+3QSP1u+v15aVGOJuYr37l0TRXeZYTIqSUIgdPwZkYkvfU9VBn6FNe97xrXQvQheiIPd4wRFFgqqL+f4cZcot8dWscIHDDcNF97q/9Fxxju/azEiJ3BiJqOjTHWOCFiIyklSK82ei10TbLYgjNriZIMfViTKOVSpw656BryGrvXN91VVWdnJ6K/tV0Mlmt11K0FidjMxjJH+9fcql+0GW31grloCiK9XotsWZVVcJ+bttWkucutD7EruuVNjGly+srAJjOZkRKCmPy9oXULlQW2UOVUgIE6vseAA5ydsyZURJbyPXAcKhorcuiOJS4olTUIM8yAFAH6jlMJhNmJqVslmljAFi4NzGmSVlZY4gohOBcj4iZtc1+B4P/10EWSamqqvIs8+3eez+ZTNp9HVPSdGDU48/KieWIZAROLMRCiVOZgUiRUjFxSnEsPQO+tKOCcKvUyHBLgDEe0nMEZDqA03ggbkFiEHwiESqFhx8x2ryAxAk4JYjMoe9d26OiaWaYIDKGrt63zW69fvr4k8n85PT8XjGfOeKmaZp6TwTe90bptmnzMs+KTGsld0FUDQjx/Owsy3Pvfbvfi5K1SIoJ5VSmxKSqUkqPf/qJqA7u632e59vtdrVaX11dVWV5eXk5m82stffv318sF1VVIVKXnLUWE+dZxpBI02a7fnD/3qNXH0k5k/n/T96fxdqSpeeB2D+stWLY0xnukPNYWQOriixRIhtwg7Dc/ag3y9CDYRttNPRgtxuw3e1XCZb94AcbDduwjIa74aENUN2m2hIkoaGWRYlNihSpZpNFFYcqFqsya8jMm3nvmfYUEWv9/++HFREn9r55Di+nagNelbh1zom9I1ZErOH//uH7rG1a5wjpNmKriIakiAoomZYFIAEkgPW+SV28urp5+sknFzc3L7/x+he//OU+S6RwRVkVRRGcYyLvXFUUTKwKHUhK/e7Jzo0mPRJlWfkcGMh4pc+lQpS2ZWIEjV2bmn3X7rc31/UnD1eXFx/+/h+kLu7bfdt2ScXAAMwzO6JqViBy5gtSNcn6FwAAllLXRQMAcA4cq9lQ0oFJEvZRWYopqqSyKGZVBUzbfZdTv9RUkgCCcy7F1LYt+yJn8yNhb0sN4dzMmJyLnpjIZf0Ly6qZQOO/Y2biYLzf1Zj5Ns43aYT4xwioHNml2bzNYkR6BO8Pk4EtSj0v17vdx88ufvKnfmq93du6LUIhua6AaVWvcpbM2fnD9ZMffuELX/rVf/YLtc/cJmCIaiAiCDnxTRXEEbNzIdewkqELoSxNebe9RoNmt0UwQsis1l2MRiTShsIt5vMQQlUUs7qazWb7/T4w+fmMib/73e+Yyh/8/rc2m+3Z+SkCLBbzEGi5nOW1K8a0XJwgUYrx8UuPmcp239Z9MJnWm7Vjt9vvqvmKJCFY27YnJyf7fVuWFRh88MEHP/j+D4uiqsrSuwAAvgiOHRKtlieABKEaDcKiKKq68t4HH9ixqrkQNCUg50JhgKrgfAhVOdRmMFJm37KckdKHU3D473CbF1UYtoBjj6TlVbCHML3JoNp2raNxIAH05OZ9FPrAuhyC2zkcBEPcww2aJ9NPqurg0+hbRhTZF5aD/1VV0VBYmEMut8NyEqwIIaw3m2n+iA21MSlLeQ4tf6AoChEpyzITYeSs5qMQUzVsiGOpycGDmnRjeqhpWxjiMMSc/zMzJHLD44Uha31iH0yoNvJDxSEFDQ5QEUwf+GG3DmBn20VAL8KnJw9effVdESrrOmlnMTExWS8mhoYOqfbuwaI4PT3RuEUgG4bCwWS+O1HhHlexTMce4a5tOPg2xfly8W/+G//mX/9rf/3f+9/+e/+zf+d//uill1JK5FzTNEmlquuujQgIhJvY/sbvfeM/+6V/+t1PP2pBIUkFRpYMMJolNQEURgW0ksvUPpL4Fx6e/Ssvnb964ucrLqtKCHabTpo2pRhKInJ+G2vGk6K4XO9FkLoGOpiZN6LAsCRGkF3XsAcARxEAjFyAvPdLYkZIdro82fv9vmkMDBhakSAGwPXco2Iyidp1aoK83jUxLF5/5z0pZ565ub5su43DCN1WoWVqK69FC3jd7TYzXj2Csovoy6qqZ1UZiibFnNNlZpvNJo9dMzs5OQF0m802g+lnzy6+9a1v/cZv/MZqtfra1/7cS2+81sWoBEq43u9SSlfrGzC7vLx85823zk5OnHcXz55tN5uqqs4fnjvnUhdjs6+LcHV13e73ChRjquez2WzuQ9VJF7ttQabb64tPP4TdzeuFe7CsCwZ2Z2ampiYqCqC5ogeZLaVdWbB3pGarypoK9vtmu9vvWv3u2pALAM/eK0CnYAIawal48zmzOlMFDiiGsqzVbVpzkk56NozRYz0uJdPZQcd1KLe/x8n8zb6ZyfA9WLBgUpqW7q4cc4QEpAiqkqRPaEQAxsNEHYSJAxwlGSHOZ7OkCoyFSKvpen0DZoUv9l0io5TUFwX7MFustrsGgYNpgVhhOFudofdc+tYAtvvi4iqlWPjw7W9+67XXX/POR+aqKC6fPbt4+nR5cnKZLs/Ozpxz0slsNpMkBGTJ2raLMXVdNEVEDL40xWbfIWLpQ2q75WyuqrFpz09Of+u3fuvLX/xS2zT1fLnbNRxKga5L9tHHT3/yz/8k+WLbdOgoV/OLiICtzk5TSkVd1XVdBkdE8/ncNK0Ws67riqIgcM6RCuTC4KIoLzeX+eGXRV0VtSUhImD45Nknzvlmt+9iTCmqmeVEA0R2LhQlBy9m3vmycuvry9PVarWchxDUdL1eE0CK0SEl0cura+yHGt1sd4rUJpGY6uAd2YOz1YfNtqBgw1Jsh2uvqiYZRI4RLclglxKwZWCBogoQ6oWaiRiyJ2RVJURfMKLFrjFV0WFjJhylt4LHsdJzHIfZlBTNaN8ATDMsGtLNBkuZAbJ2hwxhBEh5ShGTIwdATscIQ7NvkblgX3lSjWnftPurD598R4FSvaxXK+y29WzmfJifzF5+/YECRO4KrOqiyImFhXOm2u52kn2Tqg/OzjLEjW3b7Ha7zSYvWdJ2KSZoumfXH+USi2fPrvb7fYrdy6+8XNX1F37sS4vlAgFFUh+bYHIeRpOm61qE0/Oz84ePHhaLEg0IuKwC9HbqWIcAXBcCfWqOJWm7bt/sM7VD7BIAQlVXb775hbffIaZxuSDvxg2XuV8cMCPLacUq9Htzf7lh/WHiI/4bJANRM/FqFlPbNLzd0oOXTnf7+eLR97/znf0nH5pC2m9Kx96jpjirKw/sfUHei6kid6KdiAJsdjskr4RcBCVrRBGQAEv2lQ/b/Q0piiEKeudmReUcg1qMAg4NeDAnBp4wJil8qwCGiAgIRjRUmmTpUeG8kGUHDHEesSDmDJmQkBhJVZPquMQacuaQHGOktw8KElMvipfDzqoqEsWscB4AFHpr6eAZTpZeYp7ik8DOslFLCAjRVBKIaTKZWixdStk1nlLyzgnRyaNXXnvtdSVoGzg5eViUrfcenJRlURGHUDa73Xxxui6fXW2a73z/CYWaZBcQMfgMiHXYHQgMVSAZsHlk8pBAc+0KINiu+fznv/jh1UY3a7dYkTdzfk/Rggs+qNmDx6+DaUqdxi5GqarZdrubLR6cnp3+qz/zr2+322bfFGVX1VVdz0NZtGnr5ysAKMbgGNHLqzNGImXioKbOewOYLVdqtihLMNttLhGwKIudKpbV49UZAn7w0VNXd/WsAkABDEUZ6plzgZzLGj3OOWL2zvEQkHeOHTtkp+gScfDOsVdTMwuOHQdiBh5EigDQ9XrPRgSI7Abd1X5Vu32VGWOQ48xPNQqJSEqBC4WkmkAVTa5urhbz+fXVM0tNOT8JZRVNCdA5J9i/FUAkcl1KQJSLWMSs6bqk6r0PoXShbJqmjUJEIiP5jTqitt1DprXQBIBFUebsaEMk5llZOee0XxUQmRBAAaemCCKaQWy7XdNWRZFS0pRyPkN2ZDFiVRTT+xeRMgQ0K7w3EQDL0StVFUlTpB2KykZ68SETrG1bYhdTexulRMzp1tm3iI57F4OqmsUUBYyIjPBPSu/7R2rOOVPXNu2DB49m9XySoGxoCrkcHIgRyqJYLmZF8LFr3QtJzP8pNAP4whe/+D/6t/7Hf/2v//X/4//+//Dv/C/+3dXJSbdvEGBe1tc3Wx98KIsPfviDX/r1X/21b3z9+88+6RyaJwScuhfRLC8SBOAc+U7eOjv/yptvvH66XBYcvAMES+qNRUgE0JjIEQsBOUNHhilRUopGZs6FgpC7mLb7PSZfO+e9mTlDh0zIvRmgSohE6L1TCBDRCNl55sAcTEQNNGmM2jQpGhflYr46q5cnbnkCamwIew/pJmnrNDJz8JxiRIhojaUGYgA2EI+iKMDMs1lomiaP++x7zoGUtkvr9XqxWHzve9/77d/+7fV6/dZbb33hC1949PixqUlKiphiLELYbjZPPv64aZqf+ImfeOWll8Ds5ubm+uY6pVTXVbaNnPdIuNlsyIUowuzq+SKbFCZJ99vTWXn95KOrJ9+bs7368vnCo5NutZytN1sFAEPFgwYEzGxmRKaqjtFzCGyBta6s89QlaJvUxlYkeKgNVcCQzHkwQLXsaEGXWTiJ+nLJ5z1nk+zS57fDP9rInO6If6wzZG/HH7ED5thFSSa63+0U+2oKU2OiKd5n5xCx6dokUlWVpLbZ7SUlx25xehLRrq6uYtLK+/OHZx9//PGzZ88Wi4UulIiKUDx+9Pjy+uqHP/zh2++8k5PBMh/gbrfL6+DFxYWqdl2XSxFGEmFEbNs2lzUDQFZdTCl99NFHDx8/EqEoaTSiAXG73a3Xm9dffz0lyWGZUcsPsmiMczlZKIfCx8BOXt932wYAcklV7g8MmU3tvsnh9e1ulzkhIMvSmYKRqRIbmiVJBRWZajnFbjabOx8AyQCZfVXNcKAn7mJqu5j5J7qu22x3RGSAm+12s1tr0rqsCVikO3ASTUAnZmU7wDxGiXoK7rF8dPxkbPKeh7nyF02JCM2IUWPKg54MyJHjgaTYLDVdz0tkNiQRUU+a5wrJdJmWC8Td0CFMaeLhAmYaIzfYtGlMtFFVMEU0RALA2bIygJxwwQ58CNnAMCDgkK63612r83k5n9XIRT0nIos6O6tC6V1gcsiexkQCIiqqkPMWOHA5K23QAZCYmq7xzi1Pl967XCeR8wB98OooRwNooEEb0icgSTcClewTzYSk3jlo28MKntuEgGSDm8AggSmiL0pyvhQpyno6FY8CjJ/5dzhcHI4Omdxy/sBhppahWjbZVamwoqx8Ubqy0qZdkEcCBf3ow+9zxz54z4YEjDQLhXOeHEejqJhJcC3zJd12BLX38Jtm/ca8BjMxUg7LMpCCMoIb2HGyxTMwapBoH7Abgev0znBKSqQGaGaWMRvnS6sZ9WvvXele02dFE2aUsd0VWrzraR+0ied8CKb1ijbTxErXS23kmJKdnp2+/70Pds3+3fc+1zT7hy8/Pj0/vbi42Lc7wjHWQ875k5NTNViuTraXn9hmY6ioBJQHL2UMawhgt5TMODBJ5l9C4X744Q8+vt5/7is/idqf3QWPDpIYIzjnPRO28Ozq8uH5mZmVZbnZbSuAsiqLsldGz7fATNbJeK/ZgNaBP7drdmDgnMtTMovC5Vo8djyfL66vr82gqmYqcHFxef7wISDXVei6TgGBGNm5zB7BnpnZBcrBWWbKcMU5YkZmRkZiZAZmzNJpRMgEhM49xy/c+x1fVHhgOjxMDQFpqGEyMwBTSSl1eTjZwPF56FkHkVt2+z63aEjW+swrZnMrtl3ON865cIvFIm+Uzrk2xhEDHCV3jFkA46ExzyqT4OcAy7jrTf/NjQaa4/zH0fE6OqrwOY4BmNgeMUaAnqBlPMMoapzX1Zz7lyNC42IVY/xRAxUVSiDvvPNOWZUT4mJAFEJySMxYeL9czhZ1HTyrph9lNXJK6S/+xb/41/7aX/ubf/Nv/q//xv/q3/6f/Nuf/8Lnm6bp9s1sNtt37e9+99t//+f/0e985/c7NCz8LPhOZS9mBACKg5QJGpApmenN5uXV7Ktvv/X62dnc07IMJXDXpdS2spfmZr/d7YmUmASdICYwRdDOpFOJJoCIqgBJYwupEVdQKVnIjxypgvZqFmpaFM55LoqiFGljl0BDURCSqnV7UbXtJm427fV1p94vZnVRrryvq6ru2rae1YKibcQYo0U2AwRyCpRUWmg3RTUvgick66xJLQCOBU91XWfE3HWdmLadPHv27P333//Wt75VFMXnP//5R48erVYrJupSQsSmad5///2maZ4+ffro0aP33nvPe391eZnx98OHD8fMsTx/wLiYrcS2pfeL5QxyLlCMlro67XfPLi8//OB0Xr326NRDxxjrKjRxj4w05iIcwoZRB0MHaqO8NEQVnst2392s480mqgBbwBTYABGMTMhyxNaQzADVGIEMTfV2DxqmMUym7jQ4+0dtdpjK7O5m/bp/YMO46BwyI9/TmDmmlAvNuQxifbbYcwmvfRVgPmREi5OT1157LcvwFcE9eviw3e4B4OnTp6+8+srLL79cluV2u53P55nDygefRLJ9X9c1M3ddl9W4Rz7i6+vrzG8xXdHygjuSC8cYi6L48MMPlyerphUkyoii67qR4qkoCkkdgDVNs91uq6rKS3PWZsmVCdmZOi2YGTeSGONms8mZWmPYXbp4fX1tZvv9PrMI9mF3taqekesTbXO+/na7JSLn+OGDBzkE77xT0UzQnFOxMwsFAGw2m7yyf//73weAzfU1t/sqFFW5YPKtRrpNSsRMSpxHDYARQV9INFSG0sidRDSMWATbMxAxE2GSJGJISggIPKvmPX8HoqqoDJFDI1+EcUCp2hAwzISeLKZMMmYbE2FfIDG7Xc05hwOYmQgJzRipx1GhCN6H3CUi0qIA7jOeixD8UBWac1qLULjgETGZlVVZzuqiKperlbnCBZ+XqVGzcooxcCjTGh3nZjabz0fzI19xTJKcLebwWRMcCcwOSDxpyM/mXjxxaAcFOyCm469sjL4PjRKRTj6oh7VkGeh+5iHT43DrbZuQ5B4eMrEEiKoKiM4RhV5+QbsuAqZuTwhMdvHUQeoYJSCiaVmWzC6ThikiYEopQY7wxMNumKmZYk7ZIiZ0zjl2PLV1kIqCdcirGfGqqiKBGI6HDqMfgHYLP2yoG+6HnGGWiZQ7dBVzG0fFcE4bp/yIUo4+83zjO8pZX7zlZS3Peufce++9x++7t956q4vxvK6Xi4WCEdFiVlMvPkhEWFVVLMtHjx79yj//lTdfOs9a3/mE93QYJ2lLBmggTz69WHeWqzkA0BDrulZL25utIwQAAoZB3sfMQvCdmqpm2xoHaREzG/KF+teUU2dxoMT1gSSlJG3TSlFkYThBUjQ106zB6n1omwhgi8Xi8ePHP/j+hx8/+VDUyrL2Zel8KKqanGf2SJTJrGhSudQvKs4L9aza44SlIbtpasEPa1Q/FI+djnc3nTSa7stm+cbbtr1/YIzVI304V2REEfKcSLMNZLPNbpd3uuxcG9GCiGT/HQ4CkdmbNl5ragVNC0J4oiyZr8IDvcq0/6NTL88LotvNEaD3/+ZfDx/vLahTtRD6cQJDUUp2gObkhXwX08xqEWnb9kcKVPJ+sFgu33rr7ePBoEZszOgIF/N6NZ8RWY4xqcbPPt2fQTPCLqWf+ZmfKYriZ3/2Z//G3/hf/uX/9l/+mZ/5mWo+e7Zd//Ov//p//ou/8GR9iVXYd10yYXMMgICajVfUHqiAkhmrvly4L7/80lsnJyvvFoEDIYh2TbPbbtpn7eXF9fX2iguuZ5UBimpK0qTYqUWBTrFDwxhjTOQluSByuzPRwOTdAxXV2bw2AAQypC6lJnZJVMS6XQvQicD6prm+3HYtLxaL1cmDxfI8FLPCFSZWnZQwr+M2dDvs1vu2EwQrPAJGiEli2F9fCO19sSrKuQ+VObeXfa5pywZcHl5E9MEH3/2X3/iXRVE8fvz47bffRsTZbHZ2dnazXivh5cXFs2fPPvje91ar1WuvvLo6OXHMJlpUVSaKXa1WWVgjFyuLaCdgZBHZEyExmSIoopKJ3TxrP/nwzfPlw7OlZwUFM20lpRgDVTYsHTZUD+efbx1X2kuqDz48qmDPZfJGNRdNy5LEUAgToImBGeWkiZQUkgARsRJA4QAPzQIdSs+P9rw/zpg8+tYfK6Qy5fZFeNGVOK/vuX7RlUVq9jIIbkw/JiKOKdedxxTndV25kOmtmNmXpYi0233bNob64Ycfnp+fz+fzqqoyflDV5XK1a5pPP/00CxLv9/vFYpGNtlzWnK3GLAOaN7M89nJBc17Zd7udqp6dnV1eXoKBiJCDjCtyiO9zn/vc6ekpM8VORdJqtcq17zl4ksvS0HqbZjRhYdgDRGSz2ZRlmVlTx7+r6s1mjYDsuEsxSoopztw8wyrvPTLlTJK8zZRl2dN/pS7F2MboogOAJELOxZTartvtGwO6vl7nmMVisQL8uCjCbrvzBuyCQSIuEOPUarOJBATkyF8mfcq6f0hGZISS8wcRMj1QTMgMDpDRoWPmvuoMkMh5xEycgJY94pkE23BeL0bt2YzBCHvGWiWmwS7JpdvsmNkxE3o3mpXe+xAKNxwC5NvK5UHRPIOZRmQEKkeu6+B8vyXHSExFWYqZqs7ms/w0iDJE4hFcwLACGOSIDSAAEjETIHaScPDvqWqSNJZjwYgezNg55zLTd55f7TSiMuINRIxHKZ5TlohJbta4qudrpefMlOl0u+vQ4XUOFxw1s9tkp+kHo8Scbg5mPidK5eJDJOf96vxUNcVuD9Ztri9ZY+V9apvc0VxVAsi5EnCUaTrqBqkZZRGeHsUF59GMbDCqsk62Cg5anDLoSKiBGsqoKXyIVaZlBGgGmGOIvYZvXgfuX3inhixMIirTC/UD7zkp8elJ7rnEizQdqtGcc/P5/Pvf/97LLz8+Ozv98OOP6llFhDHGk5NlUZWYcyQJCamLsSiKqqrOHqxO58XF9cdjJc09XZresiFyWZ0/nD2an4Sqni+Xu6SYSxEiwGyWBcgBgZAyxeKQ6Q1t2zCjqsaYhrlpADg49AByxed4PVO1qNqrf7Rdgv6VocPMysOq2nXReY9oIZRd11VVtTw5Xa/Xy+WJD4UC+KJiF8h5ImLvDSCXxaFz3ocxH0wngP/oLU/DkqM7P8++Lr2QwTka5fn/p7IBNti6bdsS3TcwslLWuMvYREd4utPjUMSfB0m2uDKFzLjO5O8Wh6GY6cinQ1LHEYHnZSHPrOm3RuhydAY7zh+z0doB+Izplv1RNijTZ6f2CPAAIDuDMq6b/iVfMYvvuek1chT+aCEbb2b8efoXywHGO6cEIh6cighXJ6tHjx6KCPcbD4hED4CMoFLPZst5HTybCpiCHZtV9yw6fzxD8KC7ALm28qd++qdfee3Vn/u5v/3v/4f/wS/96q/8xX/tX/ve5dOv/97vfLq91kBd7JImNGC1Ah1EFYJEJoSCICam4okqgM+fnn7p4cOHBa0CLSqHElPSdr+/vly3N+njp1fX+42rixMKzmUFcYmqVhRNajddbIAQodDk1MRTUZc5wOe9Z9erzSCxc86rlQ6yhSAGXo27sNnuuq5NIpJis+uuL3ftrqvqByenDx4/frVcnc3mKyIMoTg9PYldcyERUqNuAQJd7AInRHME0u7aRiic+DCrvHPebyUhUeZ+RcSu67KExXq7+Y3f/JcPHj786le/Wtd1Zp9YrVbr9fri2bMk8p3vfOfy4mI2n7/x6qvn5+ciGoIPPmx3m8yt5Abq2OytEVW0gMSrsnQg0jVEEBD27XZz/azeXLzz0mkR2KQhBO9JlduuoyyupAcjFhEJycCQe0HxjKxuh7eZ7xP0feW49dB0INqJRDEmXhp6y9wxhgLUlyUjwsRncOStwYFuPE+qI8qLydA72N8PBvKxZ6wf5jYUJcNA2a52m+ZmAHCYIjKuhpgLQ4c2rWxRVTXNJCoImCwhUU5iiabZU+K9t5QAep+NiDjocWCfmqW4PH9wenqaV5+CyDnnTk9r79uuEZOxZn0MStSz+vHjx1VVPXnypOu6LEs/ildkp9FisSCiXPSMiLvdTkTm83mWgc9MwYiYoxYG5kNw3rdta2ZXV1e52n65XKrqYrGIscvjNsaIh7wlNvhls281QxFV9T5kXLRer7PvJ/9dRACx67p224kIEgGTC4GdE1MFG9FDJgA4Pz/PUSBynoxMxLI72tCSNEnWm30Tk0TdNTEUIYuS1MslGJT1Avd7Q4pRfFU7yas35JyrMMln6Af8ACbKUI6+xhC8D37YmNl5JnbeeecyOCDsBxaWyxkMpnNOLhhPv5ifYi8E0JM4EZNjR8jJhNDl/amfdTTUrToeE3cQevlRIiLknFuYO54f7MCUQ2cuDGPeiG+dfAZGDsUUEJ13Wb4QALrYgUHhfa4cGBLTbmeWY5dnLGbasaHCGgGYQ7ZtzMwhBxo8lICcC25Mhx29TyqEgZhumK8A0G//CgYTJSWbxFTQgG8r6w/oAe2IVPCwiaTJJ+88BAo5L79/bgY6kv8OVwEAM00ac14dmhlgXw9qRmBc+CDV7GS5OFktb06kbdpdRMKiKEe/T4Z8kG0UVXLehnwrIjbrt/D81rIuU79IDXwlZpZH3AilRjvGzEQh9V68Xjhi9Ptk62f6eIkIDNFsXOJG6+oAtY2FVcMYBBsoIAb2hzz9jwzc6Ts6NPumB1UVxui1CPShI8Axg/G5vuUFW4fkH/KBHj1+aCAASmQxNc5RVdei1rZtUTkRJSIfgtPCef/DH/ywfP0xIsKBsXv7eP1kpxjfXfYkIBaz+fzHfvKnsV41XfJltW/2onHqqgcVAquqqtlvY4xMmET3+9a5HPYEADHIETVOqZ1W6fSSo4gEGJMQY3bGZy/hwMGlRVHMZoubm5u2jYjcdRGRMtNJNZ9fXV8DoAEKog8F+eB8YOKyrgD6bLj+dTJDTi2kLCY0ea1DO7K/p1DhECHA8986emWIyOwyK3FuIhJ86NpGREJRpJi8meXcJ0LyLidLC1iGfDAsICNE77qOyCHebrK5A6POY36tGcXl/XF0joxdxUkuQJ4mOshK6sBPk/8S29YGVqR8dAy/5J19LCMZh8049caoyCh7PTIB6FgXx5x/Hvmdc+tdUcRmysxN07Rtm12QORiVe9I0jRvnzHRC3k7jCVwbEdj4ydHpeK834fYYM6eoDx88rOuZWa81a2YqagQmabE6XS0XjhHBiADNJMWpdMj9V7qnHawpd58DzaqyFLAuxtXD83/r3/2ffuVf+fP/t//o//EL/7v/TT1fmiPzLIF9WfgQ2CBtoxnqpgNEZRUWZQMTTF1w7vFq+fnz07dO5g+CL0zISFWarts3zdV6fXkVv/fsatM13Ka2qOoCSw+YRMzcbJEi7lrdgyKRESYPVPhiVjuPeVyOEDA7qACxRCBiAGpjykT0TdPt962axf1ut9m3uw6RQ1EuFvN6PndlmVS9UV3Xvqw6MyhmlDrXdiqoaRvTxjn0RMkiJ3O+DRgdJoJECK4vohIRefr06be+9a3vf//7N5v1+fnjd999d7VaZZsyJ/3napbvf/DBJ0+enJycfO7dd0+WqyqUSNjs9522TdNkjQsiGt0M3vusaeydKz2TmTZdICTpNk9/GLc3b5/NS8/OoRiYiamaGnOAHj/DOIanlqimfh2nIUVygEZS8ArUxEDUYmFNK7sm7pp96gwTGwU0BmJAZmQjh4QAZJOtlYYYNAxuleno1QOyiqlWq6pOD92OSTKb1sjqgVevTwfP0zMDld6MO0TtxwHogyrbo7zZ2/k8Ajkiim0LACGEJBL7vRdNVUSZHQ4ZNU3sBNgx5+/2VnJZKnIgUpOby5uczZzdQnldizE572az2csvv/zRRx/FGK+vrzMZfAgh+5AWi0UmGxmZE/t6g6LInpjlcpmXtq7rUpJFXRL3Gr37/T4rI2VasBS7vKrmGpWc/dWvp0lG06dtWhnktFJKjpOIrNfr7Xabk81Gc2rftc45SwhAYhpCIO+QGRJlmcj8HDJtbk5Ra5qGXVCznDelooacEohiFC2qeQP7cjYrq8rM9vv9+fnjGONicZJ228IHVTt7+ZWUMorrq+Qd8bjelmVZ1SVhbxM47x32wY0sDM+OHTtm10H2dThmxgP/n4GHMZcsxxUGhjFyoRjHjaqCAfe5TixyS8KZ0dLt6Ap+3BByFtp4yLuDITpd6gP524IoopGR2dCUdbxnxh6O+KLAXvp80o1D0pvptUYz0xDwNo8fsOc9NTPLCb3Znmai4/QpPbJZh90TMekt67lNroU9idD4rQPDd8rG95xNfPDzdIXRQz9Ivyz0pvFtDupob6mqZb4u09ylPoQxNsfgyBVhtlwsT0667brbrw2gKgoGFO2vrtJnx0VJpAaA+UpZRQoRAWxcEnPHRMVl5oRBOqlp2i52Obw5WlG5O/ukMtzLCGD6e5n0ltkR5rxrQM2y1FN+kdtPyoSSRE1tiF+ZGbj+9eDg5hoPTQfN0RCa6uQe4aLsHB+WaJNcODc4rW0ApfmHxWLRdd3Z2enLj892u835+dnb77x5eroSicjBTGPqUtSynmcwhIg+hNVq9fQH333n7bd///IjjclMicistzL7rhwa2ZNFXqkq6+UpcMHOh6JiX2y2mxhjyE6BfGdoBJbE2rZtmqYsz7yjPSbRFsmVVV/opSb54Y9PR1NSEWYm75GpKAoA6Lq432/VtCgKZoeIKsqOs5o7s0vJqqrKxYTEIdQzcm6z3XVJA3sOwfngfcHeGbgcyL31vyEBkE4MgOdf2XRDPEQpx+Bk2kY7fny7vX3PlFLKIY+8oHvvNuvOzIIPkrq8BaRBPD5fPccPpxY1DslOMUbnbv+ed7HBfXPLCJyByri/ZH/o+CsA6FB2QoOqr00CIONIyF/kQYlYBpk1HoQmR8W86YzITyN/YBp+oQmB0BgD1yFUknObRwSFiNaXMrJzLiub5Stmb6BzbrPZvGjq1/gcR0Q+BZQveBIiEolvv/M2EakaYraEgIkQZD6fPTg98Y4QslLTaK39oRpNfzoNDRySqQEBF76YFZuuOXnr1Ueff+vC2na9l67dr9suRhuXXQMy9B0rYuSUSFVj4cBFKcry5S+dvrWYr1ArVDYVhTa16936aru52e6/f7X54W63T4kMsZHzQB6x8EVRQANlWSMLxnankAomF7gIYdQTBgBTQ+6NA0Q0QE+GxCmJijT79vp6/ezZxX7XIqF21yoQgmNfIUGogqFSwH2z9Twri2qzb3dNDPMFgqXdPulOYufImQqjls6hinTruLv03hMa8kxVm6bpuu7m5uab3/zm17/+9aIofvxrP/Ho0SsPHz/Krus8PNbr9eXl5SeffHJ5cfnGa6+/8847OS+o2e+3262ILFZLBMzMetkMzbZs9vfMi4qJCJK3GAraXz/94QffdpY+/+brpTXBERFgIslUMORBzUDJbvlaeSK5Oi4xebEY0yJTSiqatntFQxVCYIayRCBDBOfhanMJWIDzSA5DQb4AMAAl5KKocRK6zXc9bsm3A+xua+meSfScBXNnzvQ0OnRoRx2f8K5DeUW7dVhODvU+i2GJgcNDmeUQEVOSYjE7PT1dnazqqvaznqawLMuSWU2ypd513eXl5ePHjzP22Oy27U2LRFmdPe+FGbjmGLeZZRfLCCzzYprrPcZHTUTz+fzZs2cXF8+qelG4XpUVEU9PT1erVU4mNBU3BCTHzNrelZtSXqxzqT0gSJKYoorud62ZXV9fE9Fms8mIqG3bLqXzhw+KsghlwcxZiYyItttt07X5BmezWVaiBIAMe9g7AIb8usjGmLgRsQ9MLhtqGdWYWX4IMcbUdVmqSFLK0HQcP/4WqIxuJiRiQEyZbIO593tlKUZmQNq2KdMT5x2XmUd24QRtf7KBVGmoCzgIxPW1JX1FCZkcjI2Dcc6DhH3OXhnABIIB3+o+5P+ybxMVHSD2eZwHNn+2nvrBb0CAdLtbmDLYIVb5zJ+zcXF7VgO6/fE2hYUMYMKLfzSJTO+cvzp5HDbxvKNBvPuE8mJAZWozwSFQGT/cWwy9O1+nZoqqqopYGuiDAdVwSJdRM1BRBPQu1OVsPtvNZrubggDUFIGGEI2J5EKVPsEdKdgkMZKdN8geJzOQERQRoaKCWEopdjGCjmr0Iye4iKhBRLbhdsYR1Yfipo9NVRMAiCICmHd8V5br9KGNqb95RWX3otUmdy3auYeT7YYgh5sAoiYRMexvZHT15g/kTNSzs7NXXn213V4+On306NFDXwRkbNpWQZmxafbz2TKEoApJxDsX293jR4++//vFv/zGN2pCIJo4s8eMJjjEaZLVM2KMiPTg0UvF6vzs/MG6y+op5pwrnEe0QZYdQA3BMh9aSklFyLkQfK57q6oyj6UYYyfJ420Y0WUJRQAVMVUj8t7NZlVZzkQSIjrHZiAisW1TUuecGTB7xz6b3OwCOq8Aig6bzoicD+y984V3LhkADvqMufUkN8fJOH+6bWoSA6Cq4WT3VxnZVjTvCL1J493RgB3NhqPhNPo9dQiDZACTUpIY84ZbVVUuvORB3Aym4pKqfbGZavblZcsqB2R0KL1DxCKELPyV9RyP0MhY96WH5amjGTC1r4hoNN5GayTHQvOpxlomeG75ymQ2GaiUZTlyMHzyySd/BKAyWjCq6kO4x9y5q6WUiiK89eZbZupdAYgiCQC950VZvPTwgXeEZt4xmiEAQU9w/Ue90B+7aUxJJDm0wm9j8yv/8jd+9u/87U9vrpZvvFTsOhA96aJ2MbZdikkJBAEMCykUQEiMxNqmBj1n/9bp2ddef2vpiGIDYsjUxbTerj+5uPj08vrjy5tP23Rp0jGjwRJg5bwr/AwLDGVquK647tJ112gEYqxDUftQEjueeKR6Ij6nqoDStVszaNu43uyv17uPP7385JMLVaiqclFSqAqkKlrVGHddo5AALZSBiVWx6dpW1XsPvkRfoasxJe/U4k4tORIPGuNuc/1knzrcrYuTN4HEzLIgdxZNOzs7K4ritddfc97ngF0WPLq+vv7kk0+ePHny+OGjH/uxHyuKIjMajxHJ4DxW4EPIbvIMV/KoBQM10thpbAy6/e7q6Q/er6x567WXZ15j24ESKKQuEnFwHtR6Gi44zjQdN87ME38L+YatQlHKxVwNxZKo7tu26ZqiCK7wc2PTvYh12qUUu24fjYwdUgAknUWwPvY4OjBoYN64a7DxNKv1GBccd3v8lawHBnQsCA1Tm/vIQDw64QHSmHxq9C31Wx0cpxJB73M9sIdEBIWYuSgK51hVq7rOWXzOuU3bmNlsWeRF83p9nV+ucy5rnsQYCZGdI6KLi4uHDx/mlTRHwIedAMxsNptlkJOBCiJuNptcfJ+hxXq9zv3Z7/cXFxerk5OcPDabzebzufRq9A0TmvV10hnn66C/xnhbz5NBkTr14s1st22yHysLa9jAeU/MSpD3g3HDyNMhxjir6jykc05arnesqoqdb6PqkEs0xsdz1MWxt0OIm4/GFCXrKPZ+/r5EOvd/Nimzzm79IdiSmTfzqQgRcEidRsQyJcAcgcz7ynRE1Udj6DaK4nQKOfo6DhhqBCafH5MpjhxOeaMffjGFW47vw8wMI8Mp/+vkyVif9WGZ28iyniQBWC4TvMO+n57+aDpM5Wim80ues3oOTn4fUEnTX8dvGcABB9rhhH1BoHLU+ecjKmP8wZDGn0cfp6qaqVgPHmgAKsOjMNVkCD6Eqq6bWe2LQETSdW2CygdTG04JjrkoCkWIqU97EpG8whGh9p0R0YTc+/gAVROhQdu2bdMk5n3b5FxNm+SAiRoGxjFhbGhEhIB+sormZcH66ZBfyWcXbBxEVAbXL9xbgH7Ujl1FejC6cEj9NzNiHvVhkkpSgSFRRVK/UOct4/z8vOu6V199lYhWq1X2aJycnX7y7Om22ZdVNZvNAKAsqxBCjBINtttt2u2kaRaL+Ze+9KXv//av20QHYxwhiOAOAVjuQAhhdf7w4Tuf2wqhL3Y3V6Uv2MCH4JwHS0o2CIuZqZRlWYQHm80mpgSI2eOe188xMQ/M/FSgz8b8KMaMKMCpgCRBdEUomCmJmKYYtyEUTdN4H4qiUBlBKQKxC2VQapOJmgGCkSEpEuHBbg4TqgyzF6rm+uO1qUkspqo6MnIwkcSYuWHMLASPg7wsEk3lMUbHgT5HUTM9lH/IQAUAFrM6c8xkYDBaHcyscPs0RgAsg8z8+JpgUhNFRKCa/WJjZsHYB+99jnKMMZnJE7hNrc+MO/lsI3dCDo3a4AjOdt2o6PL8XMuPSIfYS+7Abrf73ve+9xlA5TPNJcReASevASOavMsY+syWoizmi7Oz85RSVc5zdVzOQ378+CGCOcdgJpIcj0D+z7ZN904ESDHNVosW7f1PP/qFX//Vf/xr/+yy3ZUPTi7bvQVwgKEqg1aFmpoltESkCCwFABgqQwrSnai9Xc+/8tLLb5+fvvqQHHbBA1hqu269213crJ9e3zzdrD/d2WWbEjlQmTWy6GQV/MyRQyydm3kr2QclS+q9K8kV7Fw2B3J3zQD6ss88Dbb7RkT2u+5mvbu4Wl88vbi+uvKhqEq/WszLokQum8jQ+e12fQ4SJZ2cnizLpZGbe2aVvqp00QRDamuSp1E1tRvTFLybe94kSe0aACFsyFeICCqS0n63m81mX/jCFx88fOicy9TYXddtNhvn3LNnzz7++MkXPv/5V19+2ZKs99fe+5yfHbwHM0mpmtdJpGma+WxeFmWMMYRQlCUiNbsmSqvNxkHXXj8L0D48X828Qdo7T4hsZkYMyIYOUQmy3FUEAEPs1ejUokhKUUW982hAPbOwqdjo6UQmMgMjQyjKQExJpY1Rkj5czZtOtvt223aGxOTV9Ypiu+2+90kjxZiydchIiFhU5TjABp/0MN4OraV7RumhD/WA4O9582v0UtwzNw8ud9iN0XOjh5V5CMhEJH2aNUDPsEkAMUVDCCEUIZRF2TUNmKlaFCGVtm1FVRdLA0SmsqyIuKpq713TNLk+fjafG1FRlA8fIyLOFgsfgqi2MYpqKAqR1KVUqGRvmZjm8o+zB+dFUaYkTYyz5aIqq5iiERLxS6+8Jqql6DtlWc9n5+fn5+fn3nvnuCqycrHLUl85TSLfvvec73S+XKpq9u9mQ3G5AlWIsVPVswcPirIYTCIDx877rouAwEQ4qgUjSkyOhjC6JFHxzpmBqPm6MLNs7Vnm61HxRYGYybN6BKWWd5TkQzkvVo2IAmS1YxzU7kRF1QKPCht9x0ZdvNhrT1hGLzjkE4PZrPJwYA2PuUlI5nEIbWA/VPpX30GL008POU1oynTIKN+XMOTwyFQm8mhQpil96hQ/Rxmwzu2mk/uEmmlYrZf2QzXM6n5o6bb4HdTU9HimHJ6wbzSUKmT8NxD6IWTBk/4+bJhDfdTnHqBih6h+OvWOKtam3Xg+9WuMNt0DVERkemOQV4OMhcHMLBO09VPeFNTA1DTBEFGBI6BiggDkOITgvAckVUsxJdXCeVW1wdHjvS/7ZJIoCmAGapoEzAjJDMxMzAQUJZMUixpENVNtm6bZN5u2UTNmLspycLuqqKpBo73xxb1rCYgo+2yLCcHUOJtExVS3m/XtocFu6yHzNLCFRozM5B0Ts8DdPAaTdvy+cJLuSIiDN0FU0WV2WlWDJCKq/TZuqGY0YoYi3Kxv3njj9bPzUwA7Wc0ePn7wne98Z7acVVXx5OkTZHAOnSMXvPesInmaFWVxvZa2TV//zW+cF9zvSaMuYS4KAiz5NspBxEguGhRV+ei118NieXW1bVMCZh+CQc+EqblUL+dDYiaySfvdtm33RfAxtgAgZmASu6Zt29h1ItJnZg5zL0VJIj54T855l8SIfc6V0FwSZaRqohCKqmka50NRVqKacpjOzGEidYiIBGCa6wCFFCUBknMecGBiH14AIAFluP9nZUWONrqqwoBW8ozMbJMZVOStWJJKUnbAY8oDQk4azyjueQPABh+Wme73u8GH64qiGCJRjpl9CCn1/B9IhJMCjRzc2G63ZpajE2ODAcD0q8eQqpNzATKCzeXQMKRN4ZBONemhjZAj53Rl512+RMY2o88xI7FRNYWeq9QHAEmJiUUkp12KaEqy2zcfP3niYBKLh6G0LdfUIyJY9khYLiwD7peKlJdyYiTul8HPalOYCwCofH7+eFYtQDE1LZN5i6uqePXV81nFZKCpBQBEkKns3OG6/ILQ6B7LzyZae0ykIibqvRdRXlSX3f7Z5uYf/uI/+YX/8p9vLKmjbdcYgXYdsjPQRsXUjCnXaigSUZeSskiNFrB75bT86suzz6/i4/mN88GxYZLY7GOX9uvdxU3z/ifbb3/07MlWI1cWCq5nuMWixmUVSlYvbcStD/CgZuhmO8JFQXVdQR1i6ZaFz2AVidl574J3RRe7FFOKxc31erPuLi+2nz693Gw3zmRe6LKyeQhVyegVW4vE13EPRqraSWos5SzaAszUQl2X7qULdCpz6XCTuma3rskktmgQKIBZihC6TbfdCpAabJ49Ldm98t4Xz88eltVs32zLumSHbdukFD958sl3vv3dx49eevutzxnEtm0RCBxFTTHFnOpDwa27JrZdgZR2bbKmCIHJXe33YlpIwm4X2hvaXi7a9Wurmlik2Rihc2VO23DEiCiZIC6zvaCHW6J6U9XgA6uAWeq60d4yQyQids4RqNPYARgCOmBSYiYRcY5MNGFXOqyLYinFza7dNI2AAiSzgsIqJosxeQeWmYIImQARd9vt6OHIK8s4DnO2bj8OB3GGYaYc+ecmMpG+zz3NkeWD6RAT9JWLZGZTr6weco8cfGvqxx1WrrxCEUCSLni/Ws2bp08RFUGJjAiUrbMIZE23n4dFKIKKmiYHULrAzn96fXV+fo5JqqpG5tasCG65OF+uznLM2Tn2IWRQ13RiIezB3GyORCdVJWn0Q2MoPCIuibJ5XZsBwCkAACRRAPQAD5eLMRPklXffRQDi24f2uR97rw9wEQHi9Mkf26lTlhbVMJi3OCYk3X7rduFkdgBYA8Bokg/NVzyYuYbej6pQh7S1kNm9bruBOMKCwU7ty0Mq4KEnBmDOGIAAPAAQjT0czeihGzZhLh7qhnMzlX7pPx4aaHklzqAGsk7FcI4xrX9yvdwiHsQQps2st+dsjKjcdur2wR2t3jTdAWB0L5kB5sSqETP3vc+X0KP0rMkWO/0z2FhggLeUwZ+RN3IYyTlo0xjj/QGQ6bfwsEt6a5oYMY84cHpCPEQ+R9fSlMaRoUPVNg6oK/9PM2YZ+wDQk7Vb1nc/eDIAkj3zbUwxQRRTKq53N5X36/3GO0fOe0bpUoxRYjJJzsCR01B1sZNozjuLAkjbrjUzQGEEFiVERywpbdfr2HaMcFbP6llV1zP2Lql0KSmYmprhTnJ9UB86Y0Tq4bblLLPhLfQiJKaAiqe0SiqtxEaTgIlZilG7KAlC9bCJrUEMFTEigXkGRgPVYjYTtewezkBsfCDs7oy3ZEycAbaIZY3U7Pu3bMHkUdWnXoKqgip7n1Ks6+rLX/mx1cni448/8hU3sqvLYtPuXgrhnc99Lo+RwvlAjgwL78FT2+6saXW3IUtGuDx98PClNzeffvr6O6//1m/+lwUHTZ2pEjMgIxRM2O5jwZSSABKFcJGSluErX/4Je/TShkteuOt9szxZloVXMIQAAMgFqN7cXJXeVYXXuO/226tPniDaPsbZ6elmvws+FLPZ/uY6hMDOgWMFwqIc57IripIZELuuA2I1Ie+89yIpO7zUDBx5LiTy2eKEmGLXpSQciHuKClOJyM4xhEDJkoEyg3NApEiW5Qxyeo5znAcCCPTRmDzOkQ4K8A4IqQ/cIjz5+cgRQAg2yqObmQpknxMoETAxgKYoMQpzMCMAdq4A8iKC7FRBkyKz9vo2EpyzbNmnJDGGELoYM4fqxcUz77NWWJPznClvhYSrk3NVTZl+k6nwZZKsq4q9NCKiAsQu5uAGIMakKkKIJhKca5oGzEZHZGaQapomQxoAyP+KCCLUdQ7Um3M8zePINZ85lpItczPrui7X3F9fX4/5zNn+ydUsi8ViDDbmkEvOjgazLnbSRQPIyc9tm9bb7e9/5/3vvP+hG6fQ5P/zyzv4kx0e/eM1U6uqGQBksacU26qkx48e1FVx6IJDmCwPf/LrHrVx20OAjFPLqhIRcNQ4+OCTJ//gH/3DX/3N/0oLFoK8TecqSgU0ROv/paFvRiABoXR4QvxKEd55sHrtfHk2c4s6QHCQJRKirNe7Z8+uri7Xu6ZNCVLUm83NnvZlJ5KkAn3kab5wlZlAIoNANvOEjCVB6bisfFUHUoOMvy2z02tKqWu7pml2u2az3t9cb9Y3W0ni2TFJEVxR+LqqypLAcwStuXDu9PLiokAfCVKyqqxDCJJDcs4hsa+qGLFpuJideFXZXyXdezRCRRKEBLGJ+1TU86dXV47s0cPzh48fca4vQqjKQgV22+3HHz158uTJarX6sR/7MjMZunnwNnB4o2DWjijKQiQyUnO9LupZGcoogpTpRYFVnafNdn310YdvPVo5UkQwAmXKFY/HLxjN4IgyIb8yMOipnMYBhv3bRcxp8IPTDfNS5shAHZCYBUbJfkLEyqMIthpj7KK04EowYkSPDIhiQ0CFyKGMQOUo1pllCnPLU/p2iE4F7A+/eB8C/6NnY97fNKWqrvZtIymvRwKHQcj8436/jzGWRQkGKXaL0/P5fD6bzar5bDafuRCc92Vd1VW1rGd9BZ8pETvvsPf4IxYeJsm1B9k4dFAgOL3NNBWEPtQxFLnN/RsdPzSEO6aHjvzrt3d3aAUCHLy+I3hz1zN8QccKHl5r/BY+3w2bfgkRb9fmqYf+eDDcbS7roZvprkDf8bfkzkMHMt2H7dhSf7FrHZ/+jm/J3U/7BWeNAYB9Zuft7pMYHD7DPwpQ+YzOHA3+50+IdwMVnMJTMxj8fQaAqmAGqjlYc4iS8yEznXwdAMDQDE0N0DQX3TokAmRDjGpoQJZxLjEjGpAaga53e+d9oGLbNN1ub4Tg2DETExOkFJumiW2nSQigLIqz8/N5VZ1WNRMpWBcjIlVF2cXYppiSADoYUQqRJ8d9+YWxk3G8mVnP0CcCairKznlkl9V9EEHUoqDC9dac42QRNIbCFaHIYRUk3+qtbfriCSN5xzHLsvVmYAoGQz2YHSwwk1+Iliern/qpn3r48IFZms3LJ0+ePHv29NGXvvDhD7738ZOPHz16lDNFc4p1EQIwMoG2bbPb7Lc3+6Y5PT+j4Or5/Lu/981vfjuKQrWct9u1SAJEMdAkhMQG+/2+LusodnOxPnv9VVrO6rNH1cl53GJRhf1+XxRFTJF5qAgCBERRzcVuXUzrm5tnl88Ws1lmFZ/Vi67rNpvdfD4nsnx7hpBFbPM9EqHLbFGAznuVaAht7LJn3TmXsaABIJGagRrgyJcxPF5FzX4ZR4UFBQIwE4E/sXzNH9r+KElDt7A2pdR18da3deT3sGFgPNd0oOHOxSe5XFMnNFxAWhSFmg651k6fixOMOWMwWSJ4MEJyfYsNlWBjYhhMRGyzZC0cu2Buoys4pGRnz0BKUbU/Sc5/HjfWox122nJhfU4J22zWtXemllQUMEYVA3bhD779nc1u+6PTUUFDFT1ZLsnUMUhsl4v6jddfrmvmz3Jf/QiaAZB3QLSXmFIyxm/84Pv/r7/zn37zO9+enyyvdxsDIgMzQIMOCYDBcn6t9tQWBozmIQWDcxceB//GvH57uXpQzQovyOi8T601nVxvd5fXm8vrzWa7N8W6rh6VYaH4bNs+uX56/eyJXC/ncTN746VqVUm3J4CKGYpQWJx5XFVu4X0dnEXNu4+KKiZtGoNuu93e3GxvLq+fPb3cbpr9rkfGBlZVZV3XZV0VBSmBU/EYqtXJteByNi/qmXd+9PSnlJqmgZ6fjQirJu66CA4ccokYiZTICLksqQj1ru0cyvbmgkMdHHqTkqEqi2azUbGnTz763d/5HR/KN954s6oLRDCwTJSeL4SIy+XSe59iBLCry0sWE5HtfmugDtUcqclpGWJsri6evvnKo5NlqXFPbMakRAS3NEdjytMf2oaaYIDDnd7McLLw2SR8hwAUSAVYkEWZQ1mFfZd2TRcj7ONalQ0RRYEZEBXZkBCIKEtZ0POzdYpMjoBKSp+d137089EZp4eOrPY/XstlJL4IuYDy+Q9kHycTB+f76jkkDq6q65OTk0ePHs0WcxdCKItQFs45N0Q5puHpjB5kQlcyymDllokyczuyzALeXQLEt0l3NlFtex6Z3GX4PtfuhIv3POoXHJP3WLdH7Xkrdvz5nmFzZOwfuOFfzMh+7oTHchm3v7wYULln9B79OlUiuedb9w/4F0X4nw1U/pAz/PGeIR7e14hS7Lkp/4JA5ejng6EyMisP5st4hO46hMamkCTXt2QQI2ZREqF21kVVEhU1AVSDVqRLmkQ70+1uG1WQSR1FFYnJWjNTTB2YohqoOeayKJbzxWI2L4KXwcoXFXSc6S7VTEwAnSEoABkYoBEik3OeCWYl0lCIYpAD2pJiTCJ7UyUIREBUeF/54A2doTPsRKJ0+3a3azetJtGUBM2T92Gz3dpECOvQB/HZY8MQAPtS6tFZMK5wBy7Yw6rF1Wr11R//ynvvvdd17WZzfXJyOp/P/+AP/oCI/sJf+As5lyZHzs/OziwXHwKAWexis9tnfpHtbreoZsg8X8z/m3/xv/Vrv/wL+5vrrmkAjIhalaikiuvYOeJn62suivnp2SvvfD4F58pl0xmx977ITttcWTHeGBFnasScwGPIahSTVLMZIIbgVXW9Xs/n87w+MzMQKd/uyzhUp+QSCLC+IlxVp6TeMNRYjty709UseC9qZuacJ0dJIabnFYH+9NvxAHjhq3Vtu9vt6FC65PmmejD1smmU750IR0qJnInXb5VMNpmwz+9EA1Tv60nGn7VriahpmjH/CgbDI/NYjlWUiJiZNo+MlnxdGmRnxj5oX5yZP485zYwGNnx7TnhtbER9gQARpdg1G8nTh33woTRyT5588ju/+ztI9CMVfDTVxXwOoMy2WszPz07nswJBU4wu/Ogq5kcnkyIAYZTovDfk333/D/4vf+/nPr546lez69hQGSQlBGAFRTAgBTQAUkQFsuzQBAANEBdAj5Bf8+XbdfHGbHZeBucSIJCRRN1s24ur3ScX608v1xfXmxazCnSclbNQV9W8Xt/cNPvN++/v5yDV26+VrJ6o9OxUF66cF7QqfEGCikSsRiKiZqlttYtJ7Pr6+up6vb3cXF1dpWhE7NghKhKUZVmVJTtHjNkrQUyO+Wx5WlcV+bBYLpp92zRNL5FhRkRFUTCRNi1U4BSs9SBrAyOMTAkQr5/9MJQnZSjmJZ3Oy10Xu+31rCxIU+l52zbf+r1v/s5v/y6YvvP2my+//DilaFDUdZ1D6uNAz3XGgBD3e0bynqImRvSeCwfAYIrQbi8++uFqVpydLMw6coyEwMRIR66qF1y2njdoRle93mHCGgB7VhLKEmViAAre2DAxOIj72MZksW2NC8VgpMAekTyYIQxG9oHO69HsnbrDjw7dbYvA4Tpy8LE/OVCB4ak+/2Bp+E8BTGS/27WIZHB+dvb22++8/uabjx4/evDoYShL9q6sK/ZO1YAsh+CZeFIvQYRYIg8/3mpI5ZZLsz4zomJ3A5VDXRqzIQCd1+LpDU4f1EEk5xhcHrmh71YBv+Nj97SjhzzdpI8OxXRnzcN9UOfFIipHO989J0Tguw791xVRgbuxyouiFPizBSrHvX3ufLfGx6HH5AWByuFIPjg0mkTPT+e7DmEOs+TwgKqk1KbYdu2+bWMCkTb4QC4mBVFLal2SrktRdNu1oiqmzGyIopKrydGsduTIBXbOcV1W83pWhMCAOV8+e54FQLqosUuiScWAFPuVXgHABAUQ0YEx4jyUeKvFjqYWU+yAIomiJtOkIpJ2KcWmKdBV5AzxfFmFUJBfJY3btn16s/3k4mbbxjZuRG5Lm45XgHudGCYgmu/CsqpEjqvLwQuC6TJyfn7+yiuveO9jbOu6LoqCqC8PyPV72eZr2zaEMJvNzKxtWq6qFDtQCcH7wjddvFpfrXfrq/X13/17/2BecnDekNBs13T7ZE2nnVjct8xusTp5753Pvfne55ePHm5SVC42+241nzPzbDbLolKTMWBE3lIiAmRab/fsi6KaPX32KYfC18smtrP5fLPbNzEaknPOGSCBDzghtLt18Od7yZlCuYrv4BESjVSHbhBc7w8hmSQzc47JFV2SmERE/qytxucGwIsZGABt1+33+7qu7//k0dSzIScqxtg0+1ybPpvNculIzyDPzOwILP+FiOQ5rj8ZtIZgEqTVkZ3iOU1GVc1VwdkqG92CiNi2zfSTNCEZH68y7tc2EWMZfYL3RFTydTN/Rtvun37ySdZtq2fzeg77Nv78P/0nv/P73yQaxCVyhCYjJhhNnCMjaFKmk1IfAAJEAtDMK5+tgSOP1+TlefazqgKVwuODB6tZFWLXlCGY5XjhxLH9J/ZQ3tOYOWWuNDRDUMZNbL/+jd/6h7/wT7775EMo3KbZFT6k1JcYogFnJSNEbaM3LInY1CGJiUo3p3jC/IqrXmV7sy4eBlp6FoeK0jRN03SbfXe1bp5cbp5e7vZtagkUtHBBpEuWFoVfPn4Qd3V7dfnhk6eQ0juvrlazWeEsEDiiecHzwgV2aBZCSAIiErvYxJQUmi5eXV1d32x2N1tVZXbMnokAhRid80QMjsBhJoxCQFUNyLHrEIBOMLtMzGy/38WYvPez2SwlKYp54TzMyv21a26iSBtYAjtmbLs2NRex85dPr69v9k8v1s1mfbKYudI/+cEPN9vND97/wFL3xS/+2DvvvDWbzXLOVYxxt9tl5gcdiqtCCEUocLdfzOeY/bQqIfCsLnJq8eaTj+L2+uWXTsGiqARmIMzpB3qgfWZHb3mcQuMqMPFx3cZh7gnF3M4zJlQkIwYwtGQJUyQwx0agwh0B7Mya1Kkm41zpYcwhM5TArcf0dk1RnRbWw3QDY5467w+6dGRJ3+XmPzZH7pk0d+sKpZRc8F2M2TvSxZR/EBE0QAXLN6omKSHxowcPH56d/fRP/flXX391dXJS1rULuYoq5HQC8jzIfE9DK4CArH2NwbCsTR4O9RZYPnIQQp+6Wg4xgelxCMhGJcepWXm41Bwk6R9hjMmD0sOjRzGOO094ZAhOP3Z4Qrnb8D3EMIcdPB4Ad9jcdvjJqQYI3Dlsnjt0t8v/UIt9mgB+UBtz8Nsh/Dg8NOVoOgoV3rMdHH3sINf87lS949r3aaYdHF73YKTo9CsHCGH6FuzgkT4/8Wx4lM8bH7cnlINhfjghpqvBYQrZc6vc7VtTgYlk7fgxBCMREBWA7IUVlTZ2ncSkFkVa7Sg6MRCFNqWm7bqY1GwT92DmQhAxVWXnsiCSQ1xVBWfFG0DvXFkUhQ+gliCSJzBIImoSRZKmNnY+BOizdvvnJWpoSipdit4FE3WZO9sxGAgKGbBHz2KWOpWdakqaTBUgoSirMG23beUXtavr+WlUffwAvf/oG7//XXMGd3tv8dCNNe4pxNy2ralJzv0CQDQFZDSCzHN1+1KYKaVUFEVd148ePVLV3W7nnDcTRMxUtldXV6er17NNWVVVjlrkoyLabNcSO9VUFf5mt/F1CQlWp4v5av6FL7zz0ffeX68vNzcbTZGcX++7BNx0Iskenp//+f/Gv/ro1VcXD84pFKHrkrGp67oYAmZ0lCFENkO99zElAPChaNuWnDcV8kWrtGnkxHlJauCKcuZ8Wc/nokrM3gWkPvVrHEv5h5GBKpMjG4CkZMNQ1IEcLFM1Zq9/DjI4tpSTD4kzBToNOiE4SXDCXt0Sh/1i+u7gcMIdrRsv5ODIHyIi62sC4JZlTsVULUcP1DJv/njXgPlbAHaby80IpDYlC86Kh0P2V4dIWSM4BJ9/JiJDqOsqbyu5cn288Ri7DP1w4LEcn0zu2Phw8kPebDYAtyyX09RoHuQjJ7lekJO7xjc1RVlT0GJmIYSiCFnkkwjMIIeGaKAUy7UrOVoYQtjv9/t9c7O+IeJ90whiAvzlX/m1f/qL/4X3XhUPYOu0LP4YKgy/5jtRTflucfikjd6453S0x/8P7M9OVier+enJoiqZWQnIBimDcegcYvo/QnD/njZZfCG2nS+CMaWu7URcXX7969/4+z//j7735COeBSFwNBBbmlFf1gAOzVJ0mmriGjAAOBDRmLr21Murs/Ld0+qxdw8qLLRFIUDrUtc2cbNtrq63T6+3Fzf7XVTALF5mpEkJnTKSmTIy8myO7LYRPvr0xoTmhQSRosCCQulD4T2hOueTxK7rNttdJ6qATRuzHyKvLAjOFA2MEImJEA2M2ZFDBHUeCizYByJyyORzDS6VZdk0zWazzWSvl5eX3nlV7dpkok3CTl2FBSN4Fu+wCtq0+6vLZ/ub9f66ibt2f+Ounz7pdrun680HH3x/u2+++N5777337vL0lF1ICkUZRoMjxiiiZVmMlGWeXUoxlJ4I2n2L6OJ+t5hVH/3ww3TxyYNFUZAyO3akectSNCQVu0tlZ6TozSVfeTZirq6TW67RcWPuzedJ/tUYx0dEoAxSEJGR1Bl4MEpChEIQU+e8I4ewl6iiEKMqKbBDU1LrTeSjYnqiCekwHQD8qWV25JBgvtuTfTzkD5IO7vnkZ/449ETyujPuGbef1OzYUEsSnH/88OF7737u9Vdeeefdd+t5XVSVLwJ7x8H3AunulpDZbPB09DdhRNyXWZsd9/YIdE3aUaXE4bpxZ+ThaBm56+RH1u2h4Nv9EYAXOuGRJX3XCY8OidwBP56rUTm41mE37un8Xe3oW1OgMqYu5DbNL7/f5TQ94RF4OLiWHMC26Tnvep5Hvx73cEpccdRDO4Acd0Kpw84fAZW7MMzRMTqAcIeP9O4BQPfFfI5Zd28PfRby6c8sd6GsXs0ezCSlpmk2u93l9fXV9bVqQuctc2YBGVFM1sakpsRcFFXTNcRcFYVjN6vqqqoK7xHMgyHYYMbm7xshGnPGRCmJGBqygXXJfOE1kzeZYR+DMgVIqpZSBSF2Mduu2JeyIzMhOqdM5jtNjnnn3C62XdfFlNRUjF2S2OwqHz7/+fdOZws3m3Mxe3q9+ejpBToHR4h0aIdyqMPKZSZJ2i72y8NQkkBgCmBgbprFKn0G/3w+/9rXvvbSK68i5d0h1XWtFruuW61WXdcMHuGU66FHRzsRpK4lUwR1jrrYkjgAS5oo8C/+s18+X80hxqTGzu32bdtF9HUyOHvw6O33Pg9lWaxWLYBnMqK2SRKlxZYG8b68T40W/267zgty28XZfNl1TTlfPn6Vq6p2ofKGSS1UtQ8F+1K6Tg0Vs7hN/9xGz0K+RE7rzXrqMUaboDjUnjMq2zNj/BxzIT670VqAwUbPQGXcwceXMkbmb9/dYTWrHczr40lx168D9yHmoqdxjVVTGpZcAwDV7XY75nKbmWQM5pzmlLb8clXYIOfAZxMl2+7aS1GHTOjPzG7Iz0dEQ+zaTgdeRxqourIrQTVlL2fmHDt6CCNDce78CAVzDl7GJ/kuRrbiEdgg4oA0+wStaXTl+cU2lxmZKZGHATvBsB7mIhkchBZEZD6fP3j8SMWipCRydXPz27/3u/u2MTMAulVjuMevPO2N/lEUHg/OAACKjx++9PDB6XJRBQcAggAE/CMSdBxa7LpQhKzNTIj/7F/82t/6f//c9XaDZQCzXHkCdsA2hgZsKXXNST2bAxVtW6FhTJpakDjT5rX6wWsn9amj0kd2LNI0XVo3bdO0F1ebD588/eiTq6t11wkJQUYRmMNXqGAKZgIIzIpuL7ButdonSzonW4aSmRFZgdVAmmaz3d/c3Gx3e2DPPuSaKgOSXZJoKSoYgqGossFAOMXs0JB9SSaOMrcjERM3TZMFK/KCWNe1md3c3Mzq2lJKJt47X84lbi2JgGlsNKWSKUHU9np/cxkbCcyQ2k8+/L4INsaffPTh/OT0jddeC85BTklGAOgJJfJsYe5LEazXryAjInJISo6adiuq0G6f/OD9lwM+XCxdAJE2c/CDMRg9b1VP27hg9W/wjkF7NMfojpwrMzRXZFYZNEMgBjJKLgkxl2hmhMkMoY0QRSBrjHdCYWnWbzOjOyG3qVmpOl2xD8pX/n+k5SfZNE1M0RGDNGjGAELkiB89evTVL3/l8+9+7vHDB4vVsqrLalaTY3TMzgETMAGAJBnV9PKTz8+XANJhZOfAeUl3vmm9u25kClTuWdnuP3Ro0N/pyH9B0HJs6993rRcCKkdnuycb7QVzk+5p9wCV+6HUC+4X9zABTN9/dkCMvx5l1h35vO/uodz1LTqwZu58hkftxQfAwaE7Pnb06xHkuOdx3vOWj6Nvk2DyXdElHLxA+d/sx4wpNV0bJWvFg6qpITqH5BKgK6oQfFVg2YayKIqiKJyvy8o7h2oqyTMB9hTSCEaAYKAiJqLAapgMRE0NFCmTThuQmAL2xfSQM+VNVKSLUTgkM5CkuRSQUBUV0dCIySE7tEAQVSKlTKwmZjvDzS6+8fj0/OThw8fnQq5anlxst5/+yq++oPTGaBzHGNsYgfBw/QLNlvFzLyul9ODBg9dff/1LX/rSYnWy2a5V9fr6arFYPLv45Orq6uzs7MmTj5xzdV1/9NFHbduenJyUZZltysIHY9WmLYMz0KoqkBGZKy1n83rx+hsvPTj97d/89eAL6Zooyi5smvbk/MEXvvTFN999V72vV4vL3TabfQwIg806hju6rsurfdu2u802x3xEzXsXimp5xovTB4UPKTXIzN4jM4fQpZRlm9RMY+wdf4N5mbc/M3PcSx8+vyzkWTnyQQH0RnwIAcwywbQdhxB/pO1534QNpZWBWboupZRilJhkcIxmgJ0rf+aLBTNF7Z9zlMQGGS2M5SgAkOdN17VFUWREl3PhMoBh70IoFOz5DC4AyHoquWMZbIydnH4sA48sIpwT/r33RVHQIJYyfnH6rSNf0pST5miNyi9uxKh4mLmd26jikgv3U5qhw/ff/4Acv/XGG//5P/4n3/3e+11KzjlVcyOSvmcVhqEiaoz1/KFv9DPb2dn5S48eOSJGM0uMSJlF60dbTF9VVYpJHd3sNv/it7/+D37+HzUpuroQJkgRj2o3B0uVTWZVOK3D0jCgctNq15q0bPLyrHx5Wa8qdzLznpRciqK7bXOz3l5cXX366fVHH14+vdztIip7NURGRAUQMnCGAKZoRB58UOF9tMLztjVvWpWcRPf7dlv6aNFUJTbr9Wa326lBqLz3PhSuKIoYNW66vbZt0yIyWXY8DWg4p4MxlmbdFpr9nmnv3J4BzIBcAIAQgnMus0CUZbnb7TS2BgYYgNkwxESdAEnsrBXoui5qahhTwTCrZ6Eq22Zzs26erhsReXR+ymAA6r1Dz2TgAqMxTiQRs5b5AFRYUYjIyICx2e+899/63d8rDU/nZSBFACMTy8q5hCqHRILHLUvO58mAByWMNqG+Pa5ujF07Pck4M3NMFw1Q1VRzPArFEUvSCCCEzJic5JCuQooaW5WOw0LpgATj+ZPDZ1Rt3tlytDS3I1LjP9OW40sZWiRJKmpqCOgQl8vlm6+/8eYbb5wsV/PZbDafh8I777MFpKYmlitl3S2r7QFElEGbZTw0vfQLApWjJ3xPROXITr3LUn8u8PLHiaikw8E2/diRaf6CQOUo+fuekMK06Ytd6572nOF7ZwDE4KAE6K4T3h/Xmv7Kd8cDXzCictzDu8Nr/Fle8z/0Wkd74l3fOu4GvFAPczL6+KscrlHTds/ARjl+KbdA5e5llDLAMUCDoijmq+Xq9CTGaGDrTkQ1iUU1IEZ2pMDe+xA8CyYpnC/ZQ9K43aP3oCaSuAp9cajl/gkk0SRdTFzV0gtI3q4FimAAScSwRy05rmJqoNZ0bSozBAI0nVa4qeq+TcksmiZQAPBIyYSjolLn/PnjB1/9ya89fvnhoi73qd2LnC7nJ8vZs226N/7ct2wOZcJDBbDg/9CvAED2kXvv33jjjdzJbCy27T7GyOxooBJp23a1WoUQdrudiGR+p7Zty3KWLGZ/cWzb2Wymnr33VFRn5+e/+c9+eXt9Acj7Zj+rqgI4GS4Lfu+99956601f+NOXXxITIiCHQbgK3pT3sRtEPwwRm6bJu3PPiVqWedMRUQMklytnJLW9EEfe09u2zZaumXVdnHrlbKhYICKwXm0QBsHy8eFoTDwI5lpfUN7nd3kfsvrMnRkUP5L2mcWNiMjEqskG32gUiQNQEZGkfdYTmBFR5qAbYMZtCej49Vy4a6Z1XecqlxwhyO/IBU9MYIZD3fy0h13X5ahIRp4wmBbPr8P55Wba1T4Dvyjy2XLu3zRCldsINp5viCOhet+NMZEsm5S9evKQP5UjSACQGcYQMamTC12dnjx89LCJ6Zd+6Zd2ux0AiikS39bijB6Cnq7fjjuS/7PMtT51OyHArUbW4d+HrN48vt59+81XXn7JO3ZMAPojBsZjl51zbYpG+PXf+cY//qf/ZNs15tkQosTs+u/vHdEQrHfkmFd5vFqtiJaAJfjY7TtLKjGgfu7VN197cL6s/fnZouu2qiJJm7bd7/afPn325GL96Xpz01m0/PqBFRhA2RAMjbh3EhgQiJqIXO9aBtWOgoYSPIE4h6HzIkm63Wa7jV1XlFVO9HS+AAARuyie7fetmBIgGpkpQF8QwJS3EnYemBGSAGh+OUURXChMTTWpKFIfsmaGk+VJ27YI2HRNTEJR2xiti6TNNl4bgJoUJSNTPauqenV90zTYqLSMzjNv1jfVcplih2DJgJgL7xAxY3eYYGtVZWTEXmO2DMVssWyvLmrGh8vF6cLHdh/YB+/aGM0ATcEIplLWz7UcIMrT3uxWU2EYpNP01dsfQ1bYMAQ0ERVJQIiAoAREYIBZ89qhASoiIpCiZTVlBDMlRM+aoIuqqLJdX5GviqLwoQDMqR/9FKNBKhj7wNfQibuLRuDQjfFn3WziQogDT0unqW07M80+WkKczeqHDx+cnKxms3p1coKOiRkQVM1A0Ux6a8eI3G2g8jAYr3fbjnj06gBySAYAFT5j5+g/0afB5G/1ewH0icV3HhpPBn31Co7XOir5eEGgIs8ZiJ956MWBCjwHVGz461E8YQxY4SAFON5wPiNOrvX8wz14Fs99C6bfQsTJt0TvAypjN/L+OX4rQ6n+WkO3+g/T7R5ok8eBh8U8zwOVo/DK+K0pbDs6RHgnj8X0fT1fKnPbw8nXcHhQ02MHv91xrXzC3DFJSbOCTb/+3LlxyqHg4/S+noej4+oLeKezY1gqDQ0kpth2qDl7BxNBp4pRTMSQRC2qpi6aalFQzrJXdtpFQHQATMTYe4IyD7ypEmAC1CRdF2dlmVXH83zMu2/+t5f+sR7bZV5+S5KimPVuDjRBuS3aVrCEKAgGiLnEF4kByQzE1imuljxfnSaF9WZrYI6ZAfnYigEY1mM0A+hnFAIUzrex2243SaSazT7jnWKv7TM9U13Xb7755vX1JaJ5z58+fXJ6eoqIdV01bXN2dlqUgZmXy+V2txe15XK13zddTFVdA6GYOedT06QuEkDTNrOqkBS9c0ZAjh89evwXfuIrv/pLv+jLgIgsttnuvvy1n3z40kvAtFot1cSkRdCuazSJQwYzNZAkZjkigl0SQmUfuiRlWSFi27YGZklEBQHQcLfb5qpsdoAIhi5pF9AZskhKSZhhrE+A7A8lQsSYoiRNmEm80PuJmFhRgZmoilmKyQyKskoptW1b1xWNk6kfyTkp/0dqRD6/zmdoh4Bt02WoTN632ORYASCqQdM2PvhQFGoW21bBIIdQYseAbdviwO+SEQIAqCoxuxBCUYoO5EOIPviqqtMhV9i04aTddg8RDy16M8vaKTnTDxAzRIwpMWIoinGVlUlydSa1GVfslOK4viDeHsIBbuVzZm9IzmEbM9wyVoEhtmNmpvbwwcPz8wf7tv0P/s///rOLi6Ks2rZLoj54F9UMUJGARz7mISNtum4iJgNAAiZiSFEsrxd9/QOhGWSHeB5L2G9gmlLhQtw3Dvmnv/aF2iWnaJ1mth8ANBRAJRz1yO4bHHZ3nf3RGKKhcsYQHLv9blc4D0kIaWudevqV/+rX/u4//UcfXT9LDFni1RAimAf0xEjUSmxVmdkj+gRfODl9e7k4Y3Vto85tbP5p12mgt195/NrDs2UZzk7OkKmoi5i666uLi83N05vLqw5+sI1PsLipQwJfkK+km6fWJZWiQOw9RoiWMAKrOVMWYbiMO6ZaqxqrmZBttoo36ySybXaikkTOgicuZvXMMRno9dU1eNw0mybFup4RgiZNMUps0WIBUvmAhWulA2vYyEOLKAm4IkJJBEAInUaLkroO2v2iKk0TqOzX27je6s12d31h+6eYrhC6SOCDK8vw0mpuwp5npa+5gU13tQhy+uiBh06bfbveIjCGkFOK12m92+1OT0+L4FJKMaZMM7LfNwJY1DWIyK4pLM5Zv/7L/8XnXzl/bV6oCTuULqYIjIQIqlGlVTMuyjyHRcRUcQL32fm+5gEBIWcCm4iAgStrGyZ6ntsD1Z8i8uDoRHOEzjEYADjDmHkbGQBYhFLmgDdT1ZyFHGPa877dNzEmrLFzEkWlXce43aytU6NQ+LJCV7B3xD7uhZi9I+ccohrCQHtFFg/cGKMukplNKR1Hn0f2bE11DDO5+WR6TJ4M80EQKd7qjRw3JEBU1dliXtXVtt23+62ohiJ0ManG/fbm/PGjd994/eGD03JW0My1rLOiNoBukDjBvqgIEKDDg2s9Z0necehW+OHYfTL1tR/p+wnoHd+CgU1hilL6f6W3t+35a03jOkerzT05V3ZQAHCYZXSQCn+w5+52+/zeh1Db7SdzeWvuok5E/fJ6C9OfpxorSWG4q1sf3tDhI3hwdAg+6xCi4u0Jsy4fQEbdPDXPDp7GFJvaof+fhtzH4Vo4fOW2vmI813iSaTRA9SAXovCFqqqoqkJP+zJ8i3G8Vu/EHzo/sfSPIeLB+5JjcUR4zsbNY166lhBpCH72WQkiR+jzaAbgsH/ls9MwPLBH4J9tn/FEHz0Pt9F0SHpYmDf2EEEljVdmImQalkOLpo4o7RtpWpfMNeIizDlkkmJURAQhSJaIoCAgUALdtWCiab9PEj2TmknXOEJGZiUElL63hMxKwMHXhYe0j12bYmLv1TAmrZzTtjXEkfABDTICIsSqKDxgSqCAeaLgoMcnAmYWJea8alFtYtu0rRkYmoF0bcP+QdNtNgm9advGxiBtY7dLipZlrg3BOx9TTDFVVSVREDEQo+jpYvnTP/3Ti7OT/+Tv/O3L3UaJnLAvC0lJ847DtGubrmnqqrIuhsCLxfLVV196++03r2+u1ut4c/Okmr3eGAjuiahahHjT1It61+2SptfeeL3run0b69mik4/r+bKaLzebzWyxYl9Ss58vTxyzkUtRnXMQoSiq+fIkNrvf+8ZvV6Hartdi2pp+9ad+6nM//iX0hffzPZNXdTFSSrHtyNebpEkMEXPNICEzEDInSdfrPQJy5VGEyJkmUvVAgAqpmQf3rfc/Pjk7c+bKohRzvpg3XUQyzwwUDFGMNBkzMJMZgxEhbffJO2fki+ABcKSayFha1QBEVY0RzATJlUWoFs75JtOFAagkMCwLlgRdirElP0RyVKUHDtBXlh5MsIOZgnccOaixmyyTAEdJEIBZXzSlpJKqotyuN5mr7cknT6MagQlo1IjeRTDpWiJ0mevMjBFLH/b7PQ0cWTaSoAKwc3VdV/NFUhUFMUVUX5TsXJR+To/hDTMb+InAs8uxPlAjQHZ9Y+abmytyLgxi8+y9qJJzXUoPHj127IwQCEy1ibcl6LlqN78kVYipJaK6rruuk9E5Y4CIklLOcPPOMbtqNhORLiVk59gpYIoppeQ8E2EnyQg5eAGTFAGAAAoKoSz+r//3/9Nv/NY3kD2IMQdPCAouF+rnXQ2PqtgPF8EjO+L2A3f4fw2HKmRRRnrlpZfeeuMNJjQVME/Ix467P+029j9rg4QQOmuNqMH07e/8wd/6u//pRbPluuxSB73LtC+TMjM0y9u8mDIQIS6r6qQqTyg5FBGQKM7xbD5/9Pj8wcOT1awMhROTruvarumaTmMS0b0BLZdN3G+UIJTRUJMaSlCjUBoAG7CZIxCwzmKOZhQOl7P5o9m8cAyaes8jI2SCB2BCJWLsg6Fgg9BVDkOCgYKqSX6xjER5l80RgBwtSB3EzrygGLJpkma/67o2tk3qGu941+6fXV1WZWlde/XJp1dPfijNjceWNYp2xbxy4HwR6nkVKASu2Vw7c2en1W69cWTeYQieEHfbLaVUz2Ypdrt9bJoma5eO/gBEZCYkLotQl6U5h+3m+9/+VuXobFlbasmHSZSv98/kG/lDBsBnfcAgmyy9x7I3CPLPAIbPe83ztQ9NzGGRyGmjjhgA0IE4Z8FjJnpBw2RN1yIQqJhA28Sm68AFdJ7IeQ5E4JiZmDnTmSAhIXIVbiFHTrgac0anGGPqOBl6O+35HY/l2EN/Z1NVokGh0Uzz6By8OYjAiKvlYrGYV1UVilBUJbljtsRD++uFKgruP3TYDrza0wNyt+P5MHX/T+Fb9wGVP+5LsYFc5fhb083TbkX9bo+PJ5z8etSPu27m+WvdeWi6QWQb2u785Nied1f/odcygAOf2XEf7jyfpNtMgaNQxvRr+QOf2fn7X+UBhhkvMrQRCPUKSsMzf8Ed7/mPTQHUnd+aHjEYl8DnenfntcaVZLhBNRvwsKqoJpXYB78MULMIfIYGqAYKaoDOJxM0U4EExGikxgQEyNrnbBiAc86Td+gcExOVxB68mopJ0j7HQOHWiZ6/RkjkiBCD8857SREQTXtFx7G3mQVAzaKqmMaoSQAQjAiGiHnXtR2zd8EXfLXZXG+2CkNVQQZFKaFBXVbBhwQoXWdMb77+xksPHnoXTk/O/o3/wf/wP/zZ/+fHn35KCJS4bdu268g7dIREzjlkqkKxWs7ee++91157VTT+uXd/QqT76KMPVROaxa4ry7JrGzCVlMpQbDab2WzmfXF9fV1W1enZWShKVXPOl2WVUoLMcUCAxBKTGXj2hFQU5UuPX3p0evrrv/pr3vmui6sHZ6+/+SaHohX1zIoIgEPY36HzQKxEbiBKabsu5xkiMfZZSZrNUEDqhZTzVEI4PT1ZLpchBO/ZeSciOHDmqt7memW/mKqKaEqSyy3YeSSX/ejjaO26XNlCzjvAlFJCJO2TEHI4rU9kMjNCMAJCSLdcU3aPI/vPumUuvnG5zvwxGUy44HEo0sAhXyu3OBTzZGDQV3U5V9W1scvxh1zjLpKJg1BUp8Q7o5syD/tRo2bMeB9jvyOfECJ67zPJUM4Q69UejZIkAOCRcvOoygphFNwzMz9Jdxzzu0Sk7bq6rPJpcz3SmO0P0HPgTe2W/twGrvBN06oqO8c+dJ1A7zNGN9YmMrO8sAVzZC3d9TFEIObUJs/8hS984c0337SBJe1FrvInabe+NwPnHTvXqmBwxvx7f/Dt/+g/+dlNarkM+64Fxpz8CgiOGdTAQERy1Dal5Nkxu9msntf1nJNzBEZiGDWdnZ28/PDcl8oFuoJQrIuaYjQ1B67gQgsMYeE6wgiRXSMaOey9enWFD2zoxbxqieBAJQkzO49nc3++WDyoq9KgBKsCeIeqSMSV+hiTRlQVFU1JADSqbJtWVKiXejWRIdEXkYiJGckZOaJERKYW2z2GlkO8fPqsqgp2JG3sdtvLi2ftfhs8t7u9w/TkBzebm0tLLZggW0y47Sh29PKy8i6UZTmfzQrPINDu1ob7oky00Xa366p96hpLCV3IHO0Jkgs19eTcbZ5OeS557404OOeZyOF+vXvy0fceruaLeW3SHbzWwXpDRKS7axfubXQowzQOYDMAvNWC1EN6iefHvA3hV5loG+Uk45wA6kSMMCZoO+SoXcKcx4pqptp2DSPG7Bpxjl3vPkekbn9LXp7n+eglOqp5GP+O98qDHD3De8hPp01VQXvmxNvFddA1QyJmfvjw4fn5eV3XIYSyLOHeqowpUHlxZHLPCnNPlv89kONo3PzJv6V31yEc/f0FD+VbviWdu+PkdjeN2PEnD0vwX9wcv+vQPe/rntFldxvq913r7pcyTSA+6kYeh9Op+iLduGcS3Zuqd9f5YNzv+myQH1U7uuUX/9a4rIEpiKhZ7zlWaTXuLTYWkxkga84IMFAwFQXVFMXMGPuK4WTimRmz3HgOZty+MSRkIh9CCMEzndczA1NHXYydmhppBpSIGRmpARpwpqcHNEIg7GLLvXe5f1OqfbQrIUXVLkURaWOMktAxGRFSAJY27bZ79AwVCMGT68vvPvmoMbFJ5G00V/b7vameLxY//uWv/PhXvopmlxcXQFhWs7/6V//qf/xzP/dbX//tKGmxWCTVvDFlK5CZqvnyx3/8x7MRaSDM/Jf+0l/6+Z//+W/+3u+99ta7ZVnmIpC8a9R1vdvtQgiqkHfGR48eAQAiVlXlvW9iBMAxbSb3M+cUOOdOH5z/2q/9i8Vqud9uTx8/fPn115anJ51IWZTZTM5vFwyQsNewstsE6UxPnLewvNeIxBx8ICLMripTQAXA05NlvZgNHcj2SW+L5w2LJm20p2FCp3k0RPMEyTUqo7rAsOOTDWXr+Y+54IGIJKobuKD+60IpMAS684vIaOEWmQz4aqzbyRZ8zpLI+VHjE8sGPTEjs42eUOdsKEpBPHBH5JPoQA3MRPnXjG32+/0ITtbrtfe+LMtcvjtSxY4PGT5r5zpiGc2/ZgKAo3LZ2WyWx3DTNJnfM+OZ8d7zvWTCzz4PMMYxoQMNtvtmsVy98frrKtKlhvkWCLnRWLzHsnm+vbC/E5i5k7Zw/PY775Rl0TbNfD7PL4kPGZb+dJtNkvIkSVQxQlcWv/cH3/6P//7f+f7lJ+DYFJWAMphRMARyeS6LmQFSlhwxNHIUvAueA4MTCs4jzsvCn54tg1MgSRB33Sa1cnOz3m73+13bNLFtZbY427V2dubbXXrWdMkwkrZWEpgTZDMH5kFrwkKUFZZlWM3rl5dhXvpFCCVCSVAEcg7EOEnyPuy2+65rmma/2xWhKBQkprjebDMFXh8DFUHVPpWa0IiBmSibwmgmseuw3UMd20YcEQi1+93m8qq5ub6+ulhfX1nqqFlXlS9LFE7EnASvdqJalfVpVVdVSUXwzrmiZEuy226NNqG0OtCu61ATI3Rd45x3xDGlclZbF2FQ+clmRG/fAyQDM4nt1rbr66cf1YyvPjoHVXeQRnJrHzAzIL4gQ8tROwIqcCv4CHZvyvtzn+8nYWLOS0k+lFVdiciJGLQUxUxEFdEHIEXMrNfkQsbyCgBZh5kIwSGCSBzFOXJvx7l9ZAWOjqvn0BfcHet8UT+BTVVoJn6gvOsQIjOfnZ0tl8sxSSmmdERx8P/nEZWpbfqZWcXjt6ZfzMv6CJXvehpHWPqoS0f+qruu9ZzB/UKHjtq0V/eMr3sG3r3XuueEB4em3ZjqA3zW+YevAMAdncexyPIzeviiQIWoLx7NX/mR2VLH0PeP8q0RqKAlZ2AmYhItdhqjdI1FBXBIMKT+oRqKWBKIyUSRGboIklIkdKyIpiomoDpVvgIAZi5SFBVx7lnXBh+IOZqlXAM3xIPMLFNxZgCgiIQYU/JMpJ3kpKKDSnpTgMhFFI0xtSmmJApGYkRIQA5cirJrWjBuJO5S/O7HH333ow8jILkJYW42sES8c48ePPxzX/nqj33xi5JkuVq+/Pobv/v733zp9VdB9L//3/3v/b3Vf/ZLv/zL+/2+a1sjNMKyrl599dW333nbtvv1ev3lL3/5X/yLX3vzrde9D0+ePPnKV77y/ve+e311vVquTJQATc1EPbvCh67tZrPZZrO5ubl57bXXsu1b1/VmsyFmxT7MnhFF3mu6rst3+dWvfe2DDz4IRG++9975S4+KeibtXpKEgjJk711NliglIUxKppqpdIgou9jLssx2pJqiATMRAqgNKMUQwDkg0JRSkmQSzEBFDRUN1XR0ENigXpUt8kFgnQYgdLudZcrabEPDxFlzOyCH3TCbvESE2ed397r6I2tp6PNYbTKCNB1cHmM4JcbYdV2W0xnBQ46o9IlbZiJSlOU0cQOG50mH3pNp8va+2Y+imXDoW8mErllgEQaKjrIsx2KS8ZVN7+toYc/dy3Geo49liJK/XtWVqo4l9dnYy18UTVMEO6ayo4HG1HUdO8dMYAeOwZ6MaNgOaZoOfWhh3PmGzCzXuvWft0zM0WfMmKr3Pvjw+uuvmfX47PnFetyPj/BSjhyNv6pqjiJlcdP7XK14G7Uix0aQHH77e9/5W//g77z/yYdUFdHEF4WkmMPMagAGqoJqGbOriIICgKjGrgNVMnMoniAQUBWqws8rX7KWlRNNqUubTXNxdX15sd43XdfJ9V6wcpXH80XZWrNtU6eanGtBVZUBkAxQEaQyOSF4WPkHi8VLq8WqggKhAJg5DgzBUyidoMbIlWONaYPQNs12uyXvgLDt2t2ubZt2HGSUhXF7DO8MCMgpADtv0AIIaBKJ2DSdwG7fBEfXl5cffvj97dVFu990za5yXEIKqtBpTB2EYt/BprPFyflide54R6iSNCUxQyBhJ85b8LKcBWYIjGiSmZfNtI0dJb/dbjPIBoCiKDIuDyE4sygCkkzb7fXTzbMnZ/OiDt4kOh+mO9u4+5oZ5nztobAMh41qcC1MGH4R0DAHLsdHhAPR1tQWRKIjQ21yOZz+ZYyfAJiGgIS3U2BorIKspfqySGGv+8a6lFRBTdTYO5/BsCErIiAZMACaIRNmbrjnnAhHy4iJ2Ge6aRH5Lu+tHZ7l4OuHxo2ISIpJBINLImNoJXsZ2u0mL7JjYHfYMOSzTw4w1bs8sgKnPxMeVirfZ98euD8PbEc6WGGn55DndrVx5ZFDvb/DdKHJz3cDlaOj059fHKjYYbvr5HA3Qji6Fh1KAR4Kbhyc/q5rHUHfo0gOPUeWNfb8sIdTxHVw6BCBHweH4I52VLj/mTvL1FnYo4VpGjocPoIpsIQpWcMhc9rRJDpAj5D3n6lpMjYmHsfiPY/3QBnzUGN+ioqOcdrdUOpgWTs6yWd9K++fCIZEiJBSF1Mr0kWJMXUAiAqSNElK0qkpqrFI1o6cAZpz5jwSOSYkVDERUZPqpIxtBwDEzM4xc/Yux3aPjmISZEqiBkzstM8+AksJDbLL5HZVZKYIyEZgaIZq0Bc0iYgkBSiDGAgwYB53RsSEjojrOgDxp5dXZcW7ZnexXn98cbWNEV0o1PIeoKrs0Ey8c2+9+ea7b7/77jufI/LFbObLOiG89NrrQFiGsqzqv/yX/zub3e4b3/hGXdeuCKcPzt9+9x1VXd/cnNfzqipijG+++eYnn3z84MHp48ePPvjgg/Ozs5h0t14zcxIBVc+sInVZbtdrEZvNZnn85LrnIWiQuex7t1R2xtd1fXV1hUyLk9Nf+sVfAoS33n779PFL5XyO7Ji8iHrvY9fFGIvAXde5wjdtm0jZlWkIZcDAjG9mIQSRJKlzzhEhmJgJmIyrBzGmdiMiKqAATD6niKGCqmbNGSJKSQB6av7xdp43o/OlRx8/DmqD47ZChDnnGoZtxTmHyNu2y1gof2Cc5nAYiR0K8Q4mw10rBrxAUziY1wZAgxzKdruNMY6vrBz06XO3s+CJmXnv67oeieBCCJn/SlWJ2awvT83AIz8THnRO8jxV1Rg7EZ0GmkaDYXyAGZmk1OW8spEAOjN9Oeei6Ij9clUfDpkaU32HvMiPR2myio4AcnzLGT5NX/r4wPPthxCYKNOUxRhzeC+llJm4YzLM1cWEaBPBRzMDBJo4sO+DAQfr5u1y2ZdBDL/kuwrOLZfL8/NzAAghjP7mg7eut/EgHXJ7zCyT942XU9UpHLxrSBmCgSkA97TbFlWfXW/+7v/nH37rhx+0IKYKjltNApZBSm5JeoXHfC0FJSJTa9t2v9u1M6doBImNnHNAXHlY1kUIuN/vu043bXexbT663qw3bVHOtJyb2CwEEmpD2gcvSdZROgQjStmEBzEQYgtV+Wi5enWxehBKx4ksOVMCY6DAripKYGu5EwDP6J2T2HVdt91u0fG2aXdt27ZNNk4cOe89KjqHRASIBoTECua88z4ED/su3Vw8211toVr+7jd/9+bqYnt90e3XpcPTebVazWbehUa72DZtI0hNk4TrR6+/sjx9pfQF7z5KcbvbdkQ5EGUA5hwzaxWYkNFEUxsIQxGKsgizWS7sysq7AJDZu4uiCCF0Mba7HUl3sqqePHvSrp89fniC0gGIJDQO4wuaIgdTALo1mGgYsb0v+Wjw4u3gHHdizFHUWzPlYNkanRk6kSj6TD93vpc8S/2goZnnvGHnAR0RYmLSrrPMmC7CDgpQU0BFIXK5ZlSBDFTNMlXNxEfYd/JIYgWxnzt6KHD0nH07mR1wHB0Yf5xKvuZ772Inqk6L2+wvkX75a9rZYp5Xol62aVoVMHRjeukD6/YIqEwb3Wl/HzWBO681HQHHRttzQh80JPIeAIlDeb579q97/HlH+UL3fPIIIt51/qPcpM+EqfD805jqGA66ZJ/5ybtPcrAhHL7lQ5ubb6vGnz/j9IR3XWviZeoP3tXDo3EyfVCMvZ7AaN1O9vg78e0UcR0hhCO0cAgCpr1Vswn0lWRDROUYft0zpKaXUjuQt4c7hyjqwQkPHo7e3fk7gAoiKagCGIjEtt1sdlfX3XqtEhFxu1unzNEESkSFD3VVz0NZeFdmfVfniRkARVVEomhScSGscctExOR9KItC+xCIRO1ikn3bSEyddKooBvnWS3Z51Cbr3ersXdTUtKR1QRPgZ31hcRIzSJQFafO6hQamaCpG1pJ7tr652FwCaZOapkuCHMoagBxAitEMQvBEXFXVF77wha9+5SvLxcqTJ3YUghC7IiyLsm0bU9Okhfd/5a/8lf8vdX/WZNuWnYdho5lzrmbvnc1pb1PdLQBFAAQEKsIOW6ZhiZDhMJ+osEzTpBzh4AMc9oMd/hvWk6QX/gAp7Ac3pCkRFkURMoieAI0iCl0VCkBVXdzu3NNk5m7Wms0Yww9z7ZV75zmZOHUbVWnGiROZufZezVyzGc03vu/s7Oxff+Mbj998I5ZcIfs+BETs+15VHz9+bCAffvjhdrvx3m+328cP39pttmdnZ5dXF13fe3JQhAxiTJHH1clJ0zTV6j07O6v0UFqkYrzrI3ddN1tTTdPE0D58481i2t87P3n0sBTZDsmRZ5AUs3M07DKTiciwWfcn919cXZ2eV9ZQqQZVTQUAVOCZK1oArDKrIapCFfAQAOPK+wREyCDFjBAQgERLZTI9CK5dl9sx07wymN2Mss0W9qELgYiqhkjXDFH7IeocV93kunEdKHXbjUl04xc9ACm8PAUO7gduDdIfeyqgmkWqFb7b7Q43lOo5477CYgpYMHdd1/c97XHjcGAG1yvUCpa64OueBlpEprlQylxegntt+5nwo4LPa6C/+gx931WzpHpQ9WP15MRu7nnY56LrB2pWhJkrMG26yqv4jmfnJ+c8DMO8T1XboJ7Te5/yREttZoCoqtWkISRiyDnuF38DAKjhdqDPXVcOEVNMb7z5Rt/1r/kVVa2R2hhj7aZ5oa+VWLVHYox3gMcqCU3NHhGhIvzf//N/9PVv/sGIikiEKGZiMOWX6S8v7H/x4vm6hXvgW1JiCexC4C5ww4ACOZbL7fjRs6sPLrYfXg5Prjar0/Dw8QNiQYIO4F7nVRdqEC+vRkMMoVgxFQJdsHvUhy8/OHvn/OxRaEIR9CENKjk7o86Htum60AAZAg/jzhE0wRGTMYsqFEipxJhtcrtrGpwJzUyr+57FigJ6xwBSLne7PI4+KQjTb3z917/33vckpUfnq8f3Tt54fP+th/daT2UcysVQrJQYRsEXu+SWdNKfYNMtz88xP18/+9hgnTOU5Ps2BBea4ECKlEQIwugQckkQR2+rmrSqk6FOnrrshhBSStvdLo1RxvWz4eLy4w8eLNqTzge2EtNo4nt/6Kjc9oJs3+glZNcna4dLxo3T3jDC5kN16NbVpJSiWogFkUQ0eImh5CzDmEeKaYyiDWJAdo68ohUURYNa2E9IcI1auY3i9gZ5+cu9cfj7bY95tEbfDiWy6+TVpFxb87+zYzZ9xvSQHEmO5fmO7P6J/fgV7ca37oqY3PIgcKeC+1Ei59C5vdPLusuqfM0g3J3d+wm+dccXX7r51/K47mh3PuPxWHs9vPj381C3fpLd9RagonK7yudtru+dHfW6PfVy916HM+C6N1439nfj0F0Zxc+1WVFBKzlHBHVqjcH9tgPskdhOnaglKUWlbdplv+ic7zm0TJC33hH7hr1Xg5wllZyK5iKjKPcwBxl9rQ8lMuRV22eRmFNKeSySswrUfJRpSlMkyKyYKlgqOZUMAClfA+WtpnwrGsKgwABAYIYGjMREjpiIGHGNpiYiY7HkPPmmQzNCJjB2zgWq0es333zzx3/8x99555379++bGBqRD9gEDJ6bxhMBUYlJckGHy+Xy7/7dv/vg0aPf/8M/eOONx3/xF3/xzjvvtE27XW/OTper1app/GKzePZs9+TJk6ZpHjy854jBh5IyI43bnZ0JEcVhZKa2afFAsPzI01Y1vC57yDlfXl6aWds0FMLVbvvX/vv/vdX5GbYtpbzdbO6vTnfbYZfzm2+9MeJmu9uawdXVrl2ejePYxuidq6ZUPWGFk6kqInVdU9KYUmobj0gqCqiAFRZIgDTbkwgKxtW21wNh+JeWZcGXAMy3tdkgLkXmE861LgBQ3VDbf/gz2fc/WculxGE4OTl5+vRpmWQKp0Tu7KjMeQ+/bxNEfF9uPgOOqiE3BztoX9wyh/LtIGZ6uKocHsI9HKPWjsJx1Gb+i4gEH2aHrVqMdSQgIoAeVsMfRoIOCUjhOJqmB2UIdQDXHpi9tfqY1cuqTjIjlZiQSIqIyA3b4PN1VOriXFL64he+2B9wjd/dQgje+4uLi2984xvf+c53Hj58uFwu79+/f35+XuPx1U6qFGm3naSIEAAoIEAR+2e/8kv/8nf/FaxaAHVamUxNVRShEirXmpY7xvnm6mI4DbBYNcE3wQXvgmPUEndxV/Dicv10PXz49OKD55unu/RkkEse8b6eeiUoANw1fJ/7xLwFTMMwmClCIHrgF19e9e+cLr540t0LwBZHTXFnw2bAmLRp+rYl9A4bwxLQIoBjbIL3iOa8sRNAJ8D7jMoMnCmliJRh2K03m3a3c8vOk3Pk+sUij/GDJ8+/+b0/f+9q/POrgQJ/6YvvvP3o/N5J//h8ddqHOKyH9VCsaGikuOeX2+eb8qBfnJ4/PnnwwKOth/GjDz9S2JTc5eTg9KQ5XbZtQ5ZRtwhlNGaEwNz2/WKxwNDGnKv26jiObduKSAhhHMdxHHMpMY0PT08+/u4fpXFz+vBhw+AIFM3MROXwtdy22duU/51qNj6TFevQUTksKL9xD4dL5KFFIoIhdERkpo6L55RzDI4ax7nF55cjETADMAtVBJ0ZmAGRTVTFtC9QefmW7m52s2L+yK06POHrh/ynhzetmdyUc00cz6EpNRWRu3r+9mL6O9qdj3xriLrYrddyLwlHzN11o0blNe37OzrtxtleM6Nyx7fuyCEctsPdCO6Uc3nNduNahy/l5m3scU+81wh+nRPeqNo8Tr7d3vX0ajcYjh+5btivPHR3R71mXx1/q9JPTSOK8BqtdLdvdvzI1+2Tva9P3wyBPWtOANb58Oj8XvjSl9enZw6hmGX0Q0qb3XY3DCVnG6IL1DTQEPqWvMfQsvPe0MWiMeUxxZQ5D7lt21p0O1tvtZtVSyAObQ8dZdFcTNTETNVyiqYqYKKatbo9eUypiGw2w0E6y6oxBjULoEKArmLXGAhIqloYADUOHHO/6NyC0VARBLEAqKIDVX3w4MFf+St/5atf/erJyYmZpZQePniUx4zOW+PMMzgC5ha7QpxhNIbT09Xl5eW/97f+loL94R//0cOHD0spy+VyjPny8vL58+enpyf37t3LeXz69OM62mOMbdteXl4+evTo/fffnyXhRTQ0TYxRVUMIfMBtLSqiCjgFqsdxHIZht9vdu3ev2pNf+4mfWJ6ddmcr9GymKSU1a7wXLaqCiAgYUwwhXFxcTADsvUVb30W1oWs4nxidY0QzMLiOAiiCAtpkYBkQc3ABgAHYDAqZgt4wT2ur4a0a479DE8wOMH6wz9nORv/BdCM1nVOMr7k5fi7NrLrfH330UTX0dc8cMJfizKHPmd2rvsTqBtRc1hwQbNrG7SkNDoFVIlJynk2ROxyVWjEiIlW3gAiWy2XTNLXCvmma2VaZK+hszxs2OyqLRTf7G69fVV7TiXXFSynNk905FxpfXbJ63aZpKvorpWQiRJRLLkXQHY2Nz9FRQQOoHnfO98/vtU14zVBe5YP6jd/4jX/wD/5BHZTe+67r2rZ9+PDhz//8z//sz/4sHEt0v6JZFWYHA/jdb/zeL//6r9WccUoxcCAAMz0ELOi05Vnl3zMEPUjoI4DEEUoiwOB964NjRwhljHHcjGO52AwXu/RiG5/v4guFDfuLIm4cQ+dZigNlwq5x59TuAIbnOq63HnWF9HbX/+S9hz96frKiEsfLXVqPVp5uZNxsm5LDyarIUk3VBHQq9SYi5xiYqWkotMWgGJRchsv1hDggErWURTWFwbXbYbkbunFEbtEhGDBxYOo8dZ5/4ie+1i76L7315vmyaZ2uGvIgUKh0fhvDehieXQ6b0ZAXMcv66ur+wzMGWV9dPfn4KXNqWya0vlE7dcH1GDJIillEjFCY1XtkwljKbrfzPhhAKRJ8M5ZBcrmKcbvdNE1z7/wc83D58Ufnq67zDve0v8hOD4DtdhMvdM2/OSV7zYiIkO6I2NykioJZxevo73jQYMJ3QTXUi1xXASIAIgFMeMW6cF8PLGMyRgQlIwIiCAEcexEECjHjmIa424FvuF0YeABQNEAGrEzSSEyHhho5qhetnI1YMVSH6qrXM+DVGZUbS9uNEPLLtlTt4npoj5yBIkVUyLFz7ghUZ9Xrv5YpqWes16ug1kOw8I1M5qu/tU/A3/jWEej4pWc5FBCcQHTzO37J8Jufrq4C12fe3wZ+iowKHn5s/9Ebt3AYe7x56Ma3EGeBoDtOeDge0G7e4Sf2VW77+9EhrQI8hIA1dz3fxmue8KVDt35Myq2qr7eeHF+Gmb36a6/fS8cnNNgLTqsqMsJBdOC1H/n4lj9PX+XmHDy4Cw7eTJEdhcZ1PfQnriiqxJKe70YowgCNY0/okRyYpBizrR55713TtU3TZrUyRCIAMiMVMHAOnVcpRSr3FDEzITpAVRORosUU0IAEaoa2cSxGaIpGKoBaRC3nEnNOer2eExHzzMMPjh0BOmaH5IgdM9oE9NZJSVLNUNVYtUXfNo0D1636t9568yvvvPPo4aN+0a9OTpz3RcqYUtP0yKye1bMYoIDzDQMT0GZYb7fbaqr+zb/5N3fjsN6s+7brm9avFiIZAIZhd3q2evvtt4lwvb5qQhOH6Nm3vvHs2hDSOBBz04Ttbrvbbpx3bROIeNoKwMDUVEwF9jFp51zXLxVwsVyVXM4fPr7/xpvrOJyc3rtaX1Z631Jk0S9RxjiORNC0TS4lizpmcr4imGwPpqI975aqMqNWAJt3KY5Syo2QwV4wwEykWAIgMDZA8h4UZKpQNZwNXLsGKsNrjOo5n1DKBH+qc+rAUTETxarcAEer0F+KkfkE7ZVi6HV3IKJ2sYgxPnnyBA6WRJulIyaBGCMiYq6CKjOL8fyvLulgVkqpQY857TDFB1NyteD+Vdu1HbcKxOq6zsyWy0Wda6uVJ94X9IIBILM7DMLWAVCXrCpXPxOLHfoqh9GZGy6i7Stqqrs7F/TWH2acGzNXyjsRiTEykGOfDRQRic2QAKt9dpejctQHx4jyQywsHuKJEWaZNQJgNVa7f//hj37pyzJE6BogvP6HOFtjFUJdr1izJTHGYRj6vkejkmSTt5ur7UcfPPmDb/zht7/1p3/n7/yd07MuQ865MJEBBO9VZDI5DbqmHUvamXzzu3/+n/5X//lF3lLrNeYluTGX6oo4INB9oR0AmiWSCsbMhJkwiVkqqL5B/xMPz3/mS196cLJqCDkwSJEhD5s47NLVevd8iO9e7t7dxfcLPyfanXSJ+dnFc9bzt8+Wga3BQpjIgT8JLMsuF4PNl+6ffvX83n3Qsn2enGNqUy4fXr74w6dPO8QvdU3TNOxUcIBAgFBKNMfmuOlDt+qarhfD7a6MiIEcUjvGMacYgznHRh7Yr6NLL1J/sm37vg9tyZkB0bLH8e1T/8a903zv4YM3Hj968KAhKburPKzzsMbtZZPKptCwLTFJt+jvL0+8c3b10eY7282LZ08++iAVYm1fPHfnJ284d5qzE12XtHOQmCKbqF0V6XdDm6+I21MfgpJvyXfhJO92HnzJCbDcf3gKCFzEtldw+eyLX3m4YLBShgIEilrYJl4AINIK2N7LBBNadTANAIwAGK2KjhI5nv0bUdEDIJA7dNYRyEDNkARNIUXcx2fqACUkYDCEYgCIwAwMyA5KqcICpto7B2qKqjglWzz7GqUoOpGWNOyIg8tJtEguonJvQoLpLlqRFGMZB00FlFjbEwBzznVt44CxAoERkSDpiIiMzhF58g6cCmgWVSnO5kV0ho3V5oM/BNQeLjflRvk47vXOzaSA800pabeLKZXKkq+Sx5QudxthcK2PJalKKlGkY8cOJrcJ6g5WK2D36zsZXx/SSSXQDpb+yeYmpIOkB+rLBUfT/8dF4cd4vP02aABQpmD15HW8KjCEAIyU0zWDShXina91g3b5sHu1HCWvbtQy3NjY5t55ORkyd9QrbNb9t+wgZzXthPtDh4kiBYFyfcJj6n09rFGpm8cEGjaDW6wHRDyk4DvseTA9tGAQYCoMgKmG4vo2jpkbDr91yAeFiHyYKimHCaW5L/bVVvPgubFvHzyHaNlrOgJCLVLau09wDZS3adbvT3hD1fGwOKQmTWZM8kFdqersmgERUN2VZ5HHl3zp/SfJHcxKzce07PDqduOER28Zjnzru1J5OL0IMgDTuWYPzUwNC3jjxnWRxg+327BY7uJAjV8xj8+fq2aBAg4oeEImZEY07hVIssuKMZecRMzGLJsYL8bsfHcxXgEAO1ZEFRk2mzaEfqrO2xPQA4AUUgPCYorEomU9jNuUYsppzCLK4FuSJgQfPBgUKVXfU0WKadsuKtmGARiSEalZxZt680w0jAM4cD4Ett65t8/O3vniVxZnj5rF8gtf+iI66k5W3HjjidcfnUciYELEasopGHr2vqc0dE1fSslj7kLz8/+Tf/fXf+3XFsslon28vuwW3ZOnH/3Yj/3oMA5tF97+4lvvvw/9Yqk7fvbhxTvvfBmKktnFi6dnZ8tom75thqunp2fnTcO77ZqIMgqZQR7ydtsFD4gAVkoxJHTh5LzLRhC60vTBu1W/kmKLsEzj7vT0NGpBA8ybGCWLFLEhyy4WSGWxOmv7/uRkuV6vHz16sN2uiUAkqxbvGUAlmZYoImBS0cgIyExkpsrBe3ZORc3AINeojoGVkWxi70Bmz4gIaEUN0Dmfi7DzAGAwJV1FpPofnp0nnhQ/DKxIkqSqzK7myCprQuO8me12u9C0rfOAXHFSVWYEEA0REMMdGQAi228LtAeq1bkcjtib4HDWa40WVyKyImTgnHPoFAGdq2X0k/IiACKGEIhpG3PTNN4HM/NNqDTTznvnXL28EhNxUkNTQiQfPBETVOkisFoWKohoqsEzqIkKqAY3kR3nmKsvkWXCXJHjzvfMvFgtAcBUwdD7tnrdxQSQDCuDGJJBSmkYhnrnNb1T8zzb7XYuW6pswjVz4JxDu3Yda0GtmY27oboiiNfBGhHpuk5VqwtkEz7FnHPjEJkcIqoTy1Ao/MlHz+7/xE9fbbZpu4OkTbZeP4eMylHg08wMmhAWXe/oddNG9ZF+7ud+7k/+5E/++T//56A4e2D16D/8h/8wxvgf/G/+g5Pz09VyWUU56uC+tk1zBk+Xl5f/xX/1/3ly8VwZqjKKIhjzvLXX0vnryGPah8kJmKgxQ9V7gd8I4QsP2nur/mS1CISBUHMc0zjE8WqzeXK1uYjlcoxXKe+EokJELQoI9vF61zL7k+Z82XWMywJLYc64EkXyD1f9o5ZWRpTLkNPVLn7w7OL9i4ttHr33vOiDd6HxoQuu8WbG3iPluqtoZeEArqFVNESrTpch7DkazTIAIW62u/5q3TWB2SEyMS0XvecWuEun3XnvXdk9e/YkbjesKY7buFvHmJ9ejOv1gOju3z8/OT0jBMjDu3/27fWLZ8MmE/rT07PVsifqYpRhTOxESwYoiIpkhFpKtDhwm0KryDwUjSVDEcmFsBZjADEhoRe6eHHx5qMHgdATKJACEhhXradKygZHbwsAwCa97RomrfkMrJ87tvWOcgiHLjdgtXRsSo3Qdf7mkLC8bvt48NueBWM6M+kUW5kCFTCZ4Pvsak2p19RtpqyqJe8QwKRe3bXCBDHGUgwut5ssBoSjD40PxDVLRIigaETISIyMOpKhQyJyRAQHxCY3LBjZ89bPR6+f7OUUyr6JGLKICGB9aWXOvBcVdoxEajYrbk3xs6P0TZ1Xr7rYjUNHdwBwaJvdEmq2u1MZB8duXPaub91yGy9/4TVP8vIDvvqRP9Gh+r5ffciOPcBPVHpxo32Ck9y4jU9wobtOfkeq5c4THtMB3XBvPuM47I1Ou+3R7jj0OTcTkdohalCXv/l9qSiZEpInFvYA+N13v+e7BtCsWClqiEA0xpiStN4vfYvOVUlyKWWEUkpJKtGkFMmiogYq1UDUAkVUVXMR0Ni0wWrOQK2KLSBXcSk0LVfb7fP1ehNjVBMFBu6brg1hsWgqXVI13Cvx6xhjySWWtDeXQY0UpiwEGnlEzBjUuqZ/8PDe248ffenhw/NuseqW/dmjMUbn/en5+SAZq2I3EzBR8DO0GPZvtnZVaJpxHCtrEwB85ctf3m423/72t0Xk5ORku7siou12++jxg4uLZ7Ws+erq8ie/+te+8Xu/P+YEKC74PMYhDqVE533bnkjOOUYV2W23282mgmydY8e0F3vBWFQke+ImNOw8MudSmJkJi2gcY723i4tnK6eqYmJFTESRGJiK5Fxy3R1q1WiFmc1bwME4OZxtCGAlCwKZTbx2sN/sDKHtltMma1SK5pQI2TkHRIdrgex5WZgZnZMYbX9l1Wsmq5vjVbWo1v3UMasIEiLQDbX5zz6fAmazuQBT1m4mo6M94XLtwOqAjeMoKtnQed95V1F8s3CKc05UZ+EU2NsJh+iEfQ8YHCwRaYwVoDW/rFmYJbRTxfx8qHKstV3H6HCq80FiB4Q1kGQG4zikGMteCuYQSzLDDueXUgmuYozBTRxCcypmD7gw730FLlZvp+K+5hiEHdTJ2D6VB0Tc+khoTVg8ftR9wW8uLjfvfjBuh0Du861RMTNVa9v29OzMvfa1ZoKUX/iFX0DE//IX/+lqtRqGAQAqCcZqtfqlX/qlDz744P/0f/4/vvnmmznnCnacFo5qNwa3S+Mv/tP/8lt//qfonfPXznXWV8OC0KAPHZo6UwATVJXckH5xFX7k3vmX3+pXq2a1DB4RTZJZgbwb1xebq4/Wm3WBddKsgIABCBQKKRqu15cfSzxx59A6jxxMvCg5PF8ERW1Bw24nBkVtM6b3nl6++/zicrfjlpeNP131i2XfLZfdctEul1KyCI47mSZwZaQ5jqBdP8u+RFhVS8mlSIwpxtS2U3F2CB4BgLyVHcYgGePmYrfZmMowDOMwpJRzyojQMHkolqOB7NaXT598GLcbtOC5IeIU8zim4PwWxQdlMMLKI+6UwKygZY8SSIlUiKWIaWbSnOJ62CibMRJxIL28ePbO6dLjiHNWDqA+xRxCnzyEg6Gyf/A6vY5H0exxEB4h4G8fe1ThAfVjB6ukvcomqklSNCO9VjG7sbDeKF+puExmVpECGtACluAEyYuBQxmDimG51FE0J9VcdpQMCYiBGZB8cEjo0AgUTFDNe98Gz+hIb+fqLTiPCjsuX7lB8ApwnVHJIlAwlwKmFRceU6r/Sim+CXjNSXK9YB1e90Zy/zUrJeyGPN/roWXuuNbdJ3nN23jNQz+c7ZOVXhy2O17KZw5MunEt/tRGx40TOjw6dNQ57jOGud+oATvst5cVpq8PfbY3cWdTnRJiaEcJJQAIITjHLVsX5P5icX66+u3f/Z1vf/c7J2ery/XVmBN5B0hJipaC2jISoK3jiCpYtCbWClkGiznlnIsIkKsmkXOuhp/NbCy5DYR7hImYMrPnYGY5p8urzXq33cSoxE3nARHEGIjRWrMGwJsZWMOMzNoEXfSq8GJ9NW8BpRQpuYJtHOib54vlctWfnjx46/Hjt94+PTkN6KBo17Z9tzx19y7XV1lKCIGcMyZggmMdwykDuW9NCOsYa1mwiFxcXLz99tvPnz9/+vTjR48ePX+BH3/88W63e/HihYg8e/bswYMH2832+YunX/jiW8+fP/vKO1/abi/HcSyFDEpHTkTmGoP5Wm3bhhCs5OqoGCCAqBpO6P+mqO1227ZtmVwIfgew2+36vifClLKo5iLJYBiLEqPxbrhqxrxaniHibrerZnTFfYmIqtwxDg8t6XqHtOfGvbq8sjqODJmD9/tyCEDi6/LR6qjM1nDeOzzzVgKvWqyQqOY0asF6KRnJvPd0587+mTc8TsVUI36z2dhembEmH1JOru2rRkrlmwaAWgXknMM9MfQhEe7kqtl1tUn9ux7oM86fnOU66l/GceS9qlv9YbVa1e/2i3ZaZKbs01550ywNw6xtSPuGU+XStUS77QFdIpJzponr4nrHn3+tEvX1hLNjrwesx7AvSqyfp31+cpR0Newu45b8qn/j4cPHj/TF5fb588/ZUVEFwK7rVqsVO6dW/vLvAMzINjP7+3//7/+VH/vxX/zFX3z33XeJ6LCG/utf//p//B/9R3/v7/29H/va17zzYxyJqIaxDWA77n7lN3/jX/zGr68enD3frBmvUZJ3NG/oBYMZmXgWIu2dfe2s+Yk3z0+X5kgJiwGqJNFSJGfJqeQoVoDYhSUxoztBFqQK+Gj6VdDcIDsDJxLMGistg/RuLCgl6pgGUTNaD3mzWYPCcrE8XYW3TlaP7p+dnKy6ZR8WS9d3mIJLhjTMvumxowI4FSsYgjkmJiwIlQJsHNJ2O/T9QEQitt3E3S7HUUVpU8arpx6Qx5RyKbnoOMb1MOSYG+eXfUsulOFql7YxjuNuS1BUS0kQNSNS431wnAbwXkMDwcuDUybnmQkBUoppsx7wqeQCrqHuXoxJ4siIpeQSt+C8ZEBHm/VFibuS2HVQcs6iCkxQ2AB54pFCrOIYR7v7/o2qwVHK7tAiOGLNPgJE3GyIByEfNTtI+9pRfsVgD6+qfH4zaqQimnSfUWF8RZ19bW3olcVz8V7MLEo5WeCy80Rh0frdLq+HmBQFSdEbeyAPxFK0TvxaIkpkxKQMSHqdT3zJJLpT/O7mz/NyU0SMSUQALZcSc0olR8m55FJKt1zUZPQ8GusX6djKOu75V7jTL7ebXtZrw/pvv9bRb6/ptNy4jRsn/1wt9c+8HT3yJ7rdu1/KZ9sDN7Nen/7kxzcPN1eDg1f5aa/0iisf38Utt/GDI/di57DS/gKgHtL1Q84ZwRCImFHkwYMHf+Nv/I0n//D/+b13v4fkgCg0wQyAHQAWxCRiBmNJDtATOWQVySpCkErJuUhRwKnArxqaquq9j7EUEdNqoNU7QFQbx3Gz2ex2EZj7xVIAfNs450rMrOgRPVgwDaYG1YqiymssZGf9Na89czdFspkd0RvLxVtvvXX+6PHq3v2TBw+56S/Xu3FI4ltj1yy6E8/ZdBE8MCMTEAFdU8C/vIBUnE/VTmDm8/Pzq6urn/7pn/7DP/yDVHbOueVyuYfNuFJSCCH5dLW5akJ7crp6/uJZv+g3u6uiRaT4IkWlcs/U1AERVV57M2OY4KQ1bOe921ecWy1K9t5j8CrWdZ2UVEpxLuRhI6pFNItJkdAvKDTDuM55eh3DMFSy44OI/l2xmJkMag6lTwrrRP2ynR0VIo/AtfpIRHzwh2eAvYs+u6w6YfemKvwbGGYAqHUXlUtqGMZSgB2pKsPrYnY+k4ZEhFRTErrXurm6upp9Bu8r3NpCaK49kz22omZXbK95Xdvkokz77/XGWk943TmTwoEQ0Uy8eb3/7pN+dcDPGRLfhBSTmBKymeWUi0opRUXtAPF1w1eZhAf2E7bytdaRVl/BnEU5uHMzs1qsrwe6I7BHRe1doMmOrU9HRGi27Lv75ycf5iE5zgQDQXvv5OR08ZKjciPXd/D3I6j1XUvqtOBOmQ2i6uR557LovDLbq7iM6iuZHbuaPvu3/+1/+2d+5md+9Vd/9Xd+53fef//99Xo92Xlt+43f+8b/Df6v/5f/8D8spQQfBLQSMwPjN7/9Z7/4z/8ZNO7p1QUGH0tW1cqkJPOjGACQmjGic05TXjE3iL1Bh8RgjuDBsn9nFd7scOGBUFSiGpSYdrvdZrcbYyqqbNAAAztPfoXOkNlNaJ325ARKvte4DqBjaggKFAERM0ITwCw25hiTSiwN4HnTUOhWHd1btKeLRb/smr4Li57aTiGjE+/DYWbWVAGsjiQmqISJnslRXcnQTE1ss94wUa2LAoDdLu52KY5aigEWyWyACFRS2e7G3Zh2MYto4zk4DAFiGkssZRgkJ0IggrPzJUPo+0Xjg/dBNeVcAI0RUoE2BOd8MbEcpVxupND6StEvH4qabS4vyLTtWkemxlDUTDQOfeMDi6SoJoa1sAyLSuOpEkiL6mQRTZQa1zsHIs1sfmZmVQWH9u67HckIIL3CGiEiMDI74MVjmxn60VDyMF+CjWGWd0RQBKzg/oq/BAAEY0IDJjKdYhLznGZmQiI1JnbOeRMV8QLFmYIgYPAYO17FMArsku5KFJCsMWdowsmEsRIhz+wQQcVMpDj1iNchqOPd9FhC8RYj+zBAYggKBiK7ODau28VRVI2wiCQRJKpLLSDOZGuV8uslg+vQUDvc+a6lduFYv+IGMvhY9eJWFqkbobcbz0iEB5PmMMg91WXMDuT8sRudc8x3bIfPhUg3Tnh4H6+8pZd/PWyH4f8bPsBdbtsdWhnH+R895OwqZQ4NKhyJBh62Opd0v6UdFm/cmE5HdR23P/INq33ep+v0vaULpz+88tANFaDDu1K48SKObulwANx0xo5Ag9cADKwFlte72I0+sFf+bGaHT+boVkflxiR6TYf5jrFxRyPEOhkRAEDns6BZLhnBirEoktk4jq71q9Vqtxu46dA5K6qE5ANgKWpjkYKmUBxyS75xqKJFVNCKmSKriuZcFd/qalONXTNIUpE1FY5tOZUyjDHGFEvTdUBc0KJJ1WroXAhIDdGZo9Z753zF4ABYzmksWcYYHNgemMpowVNw2ATfMHtN66cfWU6B2J0/8MQhtKMAdz16Lgin987HnICwcu4SIhDp/nXXWXCUEEOsggo55yoW17btOI5f+MIXfv+Pvr7dbh8+fLher/u+zzlWukt2FDgM262EAKhtFxYnq91uJwBFIMXcNp33fhiGKghoZrVIYNm1gCAi7DwzsgvV5Usxha7r2q5awCIFEbuuG4bBRBBJSgEkAOv6Dl1woQkhh6ardLoppSpergfF04fjmoiYoKoLgVW9xSqNcq0NAgAiRXOq7PqI7Igce6m1E9MmfoRxgn1Y3TmHMIuPT3v3Pn81k30DEYUQqucmojmLqHnvK+i6bsT1Dl+iyXj1+LeDdMGNxZaozoP9RJsCpmgGNSRZ6zR0X9//4sWL2g+z0HsVVTw5OdlfgubHn833w/8riAsATMshNA4OJFmowt72l4gx1qunlJCnpJ9zrvq31Zz2IYw5GSg6RqKyrzbJJWsRMoW9H0KEzG7m7EKcPExVDSHUcaJ7YUfbsw/PmZNqnc7YM9lzSc/g88Nl1g6EdBxzH8KA+HB5On7r26nL1PcYGkR0dENH5YZ61E0Wobte8+FomErzDBCRkD788MOPP/64994FRjTcY9QOvzX/Oj/AvFWHEL74xS/+7b/9t3/u537uz/7sz77xjW984xvfeP/990spDbtvf/NPvvvn33nj7bdEimtCUWHv3n/y4X/za79yMWx50chQHFMti5ysTJoqetEA1VQMpuRjaSyuEO57d9qEBrlrukf3Vl+4tzwP6BkRLKcsRYbdcHlx9ezZxcXlbhgSFwlAhORREc17ar3vg/ee3aoF6hqy1lnryZOCkWq0LERAnkE5Z3JYOsfQk4gDopahJ+w8tm3TLHruO9f2opl8CU07ecmEzFwMmdk5jwCByTwSchM4BAcAwlTrC+t83m6GnBMRSrFhGFMEM/SYOQRin00dCKMyauPQvHOMAAmkeMugsXPa+WDIy+VyuTwP3HrXgJqkJDnnHHMpkrTv+tCCQ1IAB6ISyzonvRClkkvXdenyqZlgXmUlak79cuUxPHnyQS9j61oSMFUpQp4RoUZiamZDxdAxHrIZmVU/rS4w1QqtA7mO5evk7IHAguProM68LE7GvVy740fLFirk66XzxqRRsLno2vYmLFWot9lsghsRHvCLqyhUBgBQUPHCUpxIJfJLjsAH6BW7git1xWgXyxjLGNdgjGAIqJmK0MRkDCh2vfy9FAjAw2l1ZPccVEir6nXJOIIBZJWigjmPcSwqChZLrhvbfiFDVeVZqvUl9o/brdbpuOzz+Md/P+7jgwO3GfF3WGmHztuxNVtN4imjPX9gRjIce3G3SqfftKsPH/n1ROtf/1nuMkyPYknHjsrxKQ612HVyFGl6ktuK6Ylwv9MQ0dEZDvAJNx7k7pt/2f6efcTb9p4bT3zY8zcdlRu3cUv3zmb5hDI/hLcdXw/3pMPXnbC/0LGHfOOhjwN+h89yY089PIn+JR31yme5qWMKr9V0D/1SA6zJYJvulZnJxIqJaBnGHAdBTSmN40joTHQ0A8eGIGJWijPyjo1MUAHECqCBGBa1Up1BItkbLnOwvMabsto+n2IiJU00qdz2ixCaYqomAdg555nbwK3zLeK9xjW1LllEVMFMghsQHEIEFbOJHFbVigArmhGY5nT/4cPFann17CmRXz183D98NJRMnpTAmLIpB1+pUNCMppqEa9wXAFyrdtcVhKhpmmq31f+J6N69ew8fPFyvL7z34zjW9zWOY9d1pZRl7ze7LUL2zu3i6H1z7+FCRVKKw2a7Xq/Pz88BoPo/lfvUOZeGXb1u17ZJjJxn5xCxiJhZv+jrsGDmInmOwYOhGRJxKWnRt+hbdMEMxzHW9Xxe+mY7sm6qhwOKicyOKh7rG2THDTfVX8ol11dtZmAaY0w40XoYkqgAHiGx55PUamyVqf6kItBsz3813c8ebFyPzn7jUWyuzpfJrzmaK7fMgOl7r5ox1RudYoy4x5djpRlTxT38qUL+1ut1TQ0hYpWcX52cUGgWi8U4jjVLMScrcI95m213EUkpTcBIxkrsW6942OdFdH5H9XLzVmXHDa61pzUOgw/eO1djBSklKaI1o0I2516IphIa3EvezR2OiNXxmLwpNUSseobVdTx8oXaMZa03Ob/r+VbnFAUBoGQ0eHRyxrEwq2LKBck75M9Z8BEB1HS4vPzTP/3TL7755ic+z2azEZHlcvnTP/3TP/MzPwMA77///ve++93f/e3f/uM/+qM//uM//spX34lSC/M0pfgvfu1Xf/+bf6yOiAi8A8+qZUaF3WjzWtmHcM+nN7v27eXJvTa0zkKAVR/OFm3fsEgRLSmnYRjW693Fi8tnzy6G7SgiLZEBCoKguQB9S8vOLXvfhBDOF+yc82SqaEVLBlREISpcAAmcIZh559qsrVPNaEDMtnTUMgbP3AQKLTYtCVPIzk0s1N55ZgZg1SoJT0zoHTumvu/6vq8Iuuo3x1RUbLfbxTSxfY9jyhkQuFs23jEQmlhw1HsmwcIE5JKIpKIOHWobgHwXumXTr7jpvG8YnQqmMUrinDTFoqZIVlRzyiVk55oCInGMYxnGOGZdv3hxcrIAzI6QODF2CM52Ow3GJn1wJSfMO9Ni1ACYAiPRdrtFYmYGIiYknc0xrDWXAECEIlJ/hOo8VEzs/v2+7q59aGcfFtMDOecAr63/wxPigfNEQAeOFGhM81loD+FFRAUzxupNoTFo5XJlpMBOnCYRJVGv1hgZsCCmTONIT56Pok6KFVUrpOjIeQcNEYnOvXETWqwHh25Yt3q8mtiM4zIragLmgt/sdrmUMacxxSGOWSbCxFmM7LX69pO2u0zz12uzGf2X3q0eM9O/5uU+/R3+8Le9j6ezATEf0iPCUHj9csTDNsUR93HT1+zEu/3gT9Du9CQ//elvvdYPazMRGcciY9btbtiuxxI3mw0zFwBVSzmrFDUtuaBoQBZzyuaJzMDUyEDB1ExMi4HzDvesddUMqsJoqRSEa73tXIqZhRCarmubpmR13jNh0mwmpoKOGset474LjXfMrmYCAFBVvEMX/DpLEUuYChVTBSAVS7FY0Y60a7uz5Yp8a+SefvjBl++dexKRQbgTAiXAG1y8d76rag5WwYoaw7ZJIxi+/OUvb7aX4zjKXrS6fuDZs6f37j1Sk7brK9ihukDO+8Vy2Tj/8ccfP336tAqkwH5V34eoEQBC06CYwl6y/WY2gEMIWrKq7nY7GiM7J2IpZh7j6eK06ZcxSlGrpE3Veag6J9XlEClwrKCqplAjOGCplLZtqy6HqSnqjHoKPlQXsUgBUwDZE/8Rhe8DoIV7UNnhjlb/WHe0EHzfh5SLmSHgFLGsDvCrcBOfX6viMDHGcRzrMMA9/qpf9NUnqd7XrJoy0RPv0ymqNdeY60qYYrnOa+1jbfVFJ4kzwgr2GppN07RtazjlUg5BX6oKiEAoZlBKyWUcx3EYQVWLqGrbhTkJw8fCjrUmvuwb7BM4iOjZOefatp385wO9kDticLc1QxjSgE0XPFspZRdVUbKZc+VmRuWzbmYGCM1i8fXf/d2f/3f+nU92khhjXQLmAUpEX/ziF7/8pS/9jb/+1y8vL40RAcdxBMfg6Hd/93d/+1/9DjXOtFzuNsaEKoagOGEY875DCYCBHHENCXbL/u3z9iur5VdO7p0G7xnIG5J4mJglS5Htdndxsb663FxeXm03kTmsVl3DZmgCXpEAKQRYLvDsxHe95xWHtmXnUixxHIupI1ZwANZgIMZMzGDZ55wLW8xU14PirDBWxBMYkSIpekWWY/DirFRrZswE3jPXjMeSiFJKMcZShJ2qCYAyEzOVInVVQnA+tM6xAanlQIYNe/AGgMzPt5HACLT3tFosF6uTdnXWnt5r2iWwSdZhSNtL2K6TFvABay16CEEBYkrOQIuAZJQCJVLObOKzLZaBSCVequyoRcznjr3muDxtPWzbxpeCxsGIUpGSYo7KzlHlyD9CxVw7KlAZtwwmlAeQOgKdpsfLhvttjY9V5w7nG3uHc2TlKCZkWGn/630cplwMsFxXuM+BE1UV0wIZ6pA0gEIIzhuZqzwcWVW4VF9g0orKiD3Bou12MW8242ZXciEDNlGRVJCQ3Cv9KDimGrjxXPpSvkL2ud4CVExD114+fZKlxBg3w24YhpRzE0KtqLuRMfg82o2y+E/Q5o1tTjfdca15S7hhf7/+HR4Nm5fEJf+72+bMyY0Uyg1L4pO1Q86Zmrx4nW+9Jj3D67c7XiW9NnHlJ7jWjfTdD08rRcowDOtdurx6/vTJetg8/fipmLLzhiBakmhKKcWEah170WABMqKiKDmPBGaiWkALoOEEE5rDwMMwiEjbti+2G6tZJgRgYiLfNsA0lmICjQ/siLLEFMG0RbQghGxQ4aagJgZGREzolLw6ZywgQGKihmhAWaBoyQCP7528+daXHt5/qIajanzx4vmH7+Oyp0CGrSIIfn8VD3U76LpuWrKvpYe57bq33377W9/61tnZ2TAMq9UCAFR1jOM47rznudhgTteklB88ehRC+PDDD5umOTs7mwPqqto0TZrUu4GZCdlV5US5kbxV3GNyRNTEACEXaZpuuxm24wer83uiuDo9EU1wEAWvBquqminckAMWI5pqDBxM29lc1VAXz+CDqugEqAFiR+iqZ2VAAq+1otbVoBr0iHiYOK33WUUVu46RTDfbeoNEjEQ/EEelVhDVIqK6aIQQFovF+b3z0C1mNwCOS/BxHyWvv9ZEx+QPjLsqfV6Rb6pTKsPM2tDM23TFBFYGMEQkd+0LzS5HtRMheAUruaRxjDFKzhPiYw/ZqlGDPUXBtBrXgU37QoxKrFcXfMUJIlgdb75dYoVfQynSEIRMII+WBATQVBVKyWYF8bN3VA41caoMxfLk5Lf+5W999NFHb7z1+LZvoeEEjkYjEwRQZEEis9A0JeeUUkVqAkz590rD1/V9KnkYB+d91HK13vyL3/z155u1LIMQBt8KaNqnzwzAAGc91CpdTwgqhqqtd4/O+8cnq0cnqwVy2zC3nCWVFC0XjUlyGXdxu96t19vdNmWxftnff3DfYTI0BRaiIUawwgF8i03rzKkL4BhTVjABVRBDMRJrkYmISc08iqkqOjTJqGhJrKgW0T0fLKlJkaJWSilZSikuU8kioKVYkVxKIgJkDMG1jW8bj4hgokJm2nFTpDhn3SIQQYzJgFSRKZD3QAyT8U1ETMaEhszb5FSLJ2ub5uR0dXbvXrM4aU/OfNcDSooZrMSduQBg5C14H0JwwZGq5VxEQQ0JkRnbxnmGru1Ol+H0dGFWhiSYoGguu51E2V5eyMm90aL3IGJmOea02e2G3Xa1PGNwiOidM4RS4VkGe8XDKoNik7sGCICGhgpI+ySawYHGRK1ZmcpL7CjNVoNSM6OlHmAzLLBTVUAw02PdSQO6ZhzBYy0DDi9xoeqkh0hIAIhWETUMYGDMUNPtQbUgFSnFsTCiYxKRVFJUawI0jvqmbAcdo6VcUo65gF+sAMkqtGcqSsH5woSgtcsqLm5/V7PCjO3vUFWLSBFVxrpvDWMsKlnKGMeYUpbSYFO3ZJh8xGvexs+8HRqLn8yYmx2VGQN297X2ViO+5qVveD5Hv/4wGp+fpNlLbT50w8j+ZImCaq59vwm6TxC6+75O+LkmPW5kb35AjsrBKnGw3MEc+FEpKZVxyHHcDMPlepNy8aEZco4Ko1R2jSKlkAE5AhIsCMSFgAwMAREFSAwKWJIsBhWOHBy88fD+6mT57rvvf/DRk0xE7H2YgsHEbo61OQocvAdSs5ySqCRmaRp1OqQiRo65Ru9q0V6Wkq0oeUUrgFkNEB1Wtkwl1R/92k+88ehNqnnjLC3hbrd+8OhemkDrgDOC/aCbbnTWYSNmMKuR7NlaJSJEWC4WZ2fny+Xq44+fGMjZ2QmzK6Ug4Ga3DU0Y0uBLOF2cARATt857x7vNxf2HD4sqEqWcm7aVKkkuslqcyG6IMWdRZCaqhFFIxytwETkklTKAIiXmcnL+oGefBHLWVMoSUM0AiYjnec1MhFBqmWIVPAAzNSOwqoaE1DivqlVW3Myqmc7M3oLUHmH23qmiaNnvqgp8+yp68PMsuFFNc+/D9cfMqkGPiN5T04RhHMwU5vrM/f9/2cj/fhviQb73xtljimMccyneub7vV6tVE4J3jgDbpi06+aKHBeiIyM7ZnjRsTlxUKz+EpgkNM5eSRQrCVJfCxGAgKiUXxMLO5ZxjSkXFxM7v9Ujo3OQ6Thi8SdoJwUBFSs5SCsKUfMKD5E8FfeWcda8wU6Fl1Qq1Pe66fr5pmplw7MbGqnorCvXlFXVviwE0fkiyHaMCknOIZEgKCGDuMBKmpocoVzqqYT3amRBeDeQ1hFovTwakQABY5NmLSyz6T//rf/Z/+N//74ZhqPVOzIxTbTIjIGRkSsk7T8WevzuuL5df+jdS6Mt42RK7UOWBDsTpCIncNmUk6lYnYmqEScv/+5f+2de/+2e5IVExnADiaGyqiCwAKkLA9QEUzYGpSuMIU14yni/6B2cnfdP1zjeNKygIRiRKth2GcUjrTVyv0/pqVNXzs9XZ2SI08PjBWwIWU1rvdgZiQpJ0vCqc8gn3pAXQGhErOm43lxeXCNC3LXJk5xiRfYjFMXpExzy+eHblissZo4AZNRiCkmzjsBm2m8364iKOiYAdNWBMhI4FIIcGN2MBAEeI3hmjAaJ3lqnE4kzPVv3qZOFbylKGGJtipgxI2+0GBKVYjoKGTEaEoKJ56NkNBQSpYFO4S+SZiRyEgJqLcfGcAXdFrszZyWq16Dtm3u22mmUcStpGQkbCUkQ0AVtYMDbgAkuBHJOjbtmfZLFhd4VxC3o2ilczy3qybDcfv3958cJ71zx8CITFssaJm6/qGRMSEiqyscOiwM6QDbkORraCCggEQDVVPgFEES1OZXGGAIiGgExEVflFD5HeBxXeOJS6OjmgIzT83uXYf+4gd4FmxQa0a9yR2lQfoAYBA5hdK+OR2T4mpqJAgIFqXaaZKZGQKRCZdN6Hxp2etGPM203cbof1ZrczyaKmofqGamTGyI7YE5E3Ay2VOH3POzDNXiwIQJUwLqYUUxRVMTNTQjLTp0+fPn/xPJWSVTZpHDSLw3Uew6LzITTOL5suAEEW33jFG7UcR+24hmKKktWVUu0oNH5IeHAoL3ujHIQPUEY3VsCjoA4C1VIcU5UjvctJccdMisLkuprsF5qj8oKb9Q/XB91xnc/hfZjcTnVox4bQYYnCoXN7LDpYCalrnr0iXg6/dnDuo0LwQ42BmpGdgYiqaqI55dmXu/7kUbU3IOIcKqKDa+Eei/Lyc+EegVlblnzwtSNTIrCbLiOKiHywMaXb+/BQabFGAQ4OHv182IlpT4qKiKpgVnctQwS6nenIigEAT2zJVT95T19z0FG0B4tX6k9UOfQDjgtWDiuF1OTgJDde5dF9HIyN418Pw9U3X6VcP/LNc+45bvb0xAogIoKmaKmkOObxybMn73333SdPPry4ukpStjECN0Uhl1JUBFQRFGCd06bkTidJKUBAx8ispqUufVgUGzDvdXznzfO/9T/9qyfL/ld/W/7rj99bdEsfAnsnClqDP4TKGAm3IDkNrQmqMDGZqUKKZWvgOo5FiStTDuOUE1Yx3OZU1JQBgksppSJN06zX669+4Ytnq9NnH37YMaCWLKVsd9gvYMjovWLKYpSlUjNP+Bk1s+JcQDVCaNhpLTLcr6I1eR9TatoWEKt2XmVk8uZbv/jKl37k2ccv1hfbdE/asFh0p4TPPnjvL95556tpGLsHj0CAkJrQtG13td6gX5jvutMHRCRE6rox7xYnpynGQi013llourPdOATvYsz3zu9fXF4qqXccY+y7NqWxCW59dYmOfdNkKev1NhelFJeni2Xbo2++9xcfDCLL/mQXsyN2RgSiJe+2a8+udSQqUkQlS86KAM45dAQExMhkZkUklYyIxNR0LQAYGLG3Gh4CZWIfeD8ZcYjFAErOcICFrv/nPfeXc67WplwPZtO5fmOO6DvnsgiRskNVARAzKkWJPSIS8I3CucPpcLz2HBm3x6vGNDemAoFxBIC6fypiVX0Rg6Rqjj989jRKPjs/Ozk56ds2OB+8b9mL6mK5FJHtbue9byoJDUApZbfb4b4EpeYYY4whBDDz7NmYlMjYAbDjEAIAiKgRxpTGMZkpqzWhOb+/EJEUs3dht9u1pz0SbYYdMrF3ySyO41KEEDWltNmklBy7EELbNt77xWppZn3fzwiuPWWZqoKIiVgpk9WDyCGEqnbI3he1ouYB2YeZvY33stGqOmPepqnEjp0bx3F+O01oACDnbNiMcfu97z2RhOaBPYgVLQKon0NGZR9eBQA0CCEMiM653/yt3/rb//7/IjTh9PS0ElnMiEaAiZ8JwMjKxbMPhxfPz770k45J7kQUhL41sBgTMivjH/3Rt/6bX/5ld9KPmm3Wx75xewioODOYzSVXVSrRMTIjO2SHQKYmgIoIhOACcSFyUI1h56jt/eq0PzlZtL03APAorEoy7saxRN3kYbcDtLrYTVpU220ZB2ZWT+g9khGRoTMEEaCcSykxpzhEF1yMSQ1KzrLeKPBuM26365xSJbsQMW9IUA3sWt0FUhRi3u5GtSktG1PJRYN3zByCa9vQIIS2zcVS0lyMxhTHPGxTHJMjbIJjylPHx1Ltvd040uUVeO+7PqWc5LIMQ0rx4uLixYsXOee2bREJkJGYiY3QMQgBGBBg8KzOmWnRMox6gVhi2W6yqF6swWgHyC60213p2pBSChy+896T99/9i0XbPDw5ZSSozMuq84bKgGBGhobKpoZkqgamlVwTkQCMahHIXovKqp5ZDdvux4OZEV4XWeMt4wYOczJVXfKWQXlY2YIASDN0uNqOVbQSrb4xm7Z0PjI46MCeqWZFBS2RGRiZKRGo2ILbxoeuDV3rx1Q+Wke1IkYmzruenDf0BB4AVUbYV8hWsefr8wsimIIpmJlW4JqaGtA4jsX0YrvZ7XbbNGzjEFNKUpCounOLvl8tV40PVRnYXimp/v231z/JJ7vcp7/JzzXQ/nk33KOibc9cYnuikR8e9NF/p3t4bnYjK/dD2m7UBB3nVQxENasWU0NybeuZvAhxm2uGXyRJTlKqQ61mpaT6/hQg5jGPgp6YHRGiKJIxETsPCKZFSh4229VqCRzIVQegGDCyq7BmQjK1uUIa6+qOIIhilsQYAU2JiExRa1UDKBBT1eczYADvRSTFKKV47w0gl6Ixl7itFP7Oe9sTMTMSmKkIAiADEgHZDbJI3IOZXtGbx8XiMUbn/Mnq9OTkNKVRxZgdIjl2z3c7M2vbthTx3thxLSJAJCDwIbRdX9NKxJyLsHMyjgJoxL7tlMiFBolzTEUFedr0EbGIqMo4ZgAwMybKiMSMiqKWSvGEQNh0LTED8YPz8w8++IAdgRaQwkzqvaChFlNBMOYJGjRjimZWiZsuMYIWOdxhGWZzCxH5sKNu9NvcbKqhn1q1cWsZxoyAkklURCuBnFkNMh5ajPjqN/SJGtp1hacdF+kBACKllEII7Jz3LoQQnG988E3APTHAXATCzDWOVjMSlWvYzGYHBsw8B614dtyree9HHCEhETs2q6OVmF0ITdtYzXKklLIURSDAXIqoIGJOCdRSSiWX+iZwj4WmPT1XNVNvUEXXvx9ip+ciFmZu27bmYeY0ESLGOB4m3nGmmUbMJfoQZJ/rE5Faju9CUHIKw9OnLxDIxJTEQIEMzT7nGpUaGzYLofnzP//z/+8v//Lf/bv/6/o+Dr0UACACQ0YVtrj+6L3Nxx+/81MbdktgglsjXDBhupjQ83q3+We/9EsUPIfgit2m6nj3/eYylpJKHrMVBUxaRDJoQShIZqwCkjUJFO/YNa5dhsWqdU4AqfUk7EYhGyWWcYhCamo5OI+IdWrFGHe7XeXUbhwbGwAQEvM1hYiISNFxHIdhq1oAlcAqOzQBSJH9oKmBZ8IpOEq1GKvmnSsldL1uTqnnBpEch6ZpyXMLkJKu10NKcTfY+ipdXVymMbaNWy5DE6Bt0Xtu2mBMpWgp5fLyMquI6dXlJknOw24c43a7HYahaUIIrSqoosl+SqmRgqgSUdMGRBYpsZRhk7frIe7S+moUaMKinJyG/uTs44/SkD7+ya/92NUuaho/+ujFZiePv/D2+ZtvlLTBmZ1wXxFepw0TIKKiIovBRCNpVczIWPbTY7bMiIiIYconzhkVRAUAsCPY1s12uPeozrUxAAB8i4CJATDxnEfQg9XNDAjwMBx+tGrjYVZn4sqoWihqYmYqpmRmQDQFSjspQpdFIGXLWdSSCaqUJFEVXXcdXzci3WPV0Ajnxch0KnsFk5pTQSTnNtuNqA4xrrfbGKOBsSPHHEI4Ozs7PT2p8RIAsMrY+KnLFeYU89QDt8OnPhnK/9MXNty4w8P2w2Pr39Zwzzs3b0X1nmeC4B/0Db7UvT/sPXpX+/QVVj/Ahog21bhnAPPB90yhbQRxu02V9oeYyNiZalUnBKsCjCICpphMk4qI5qxmvQuEplgclQ8+fPaH3/rOj3z1K7toTbtUMyIupmh1N0QpxUQdkeVsaiaKpgCITIYopqKWk8hUPk3Ht103zGlBLqVU5XXn3HK5QCTyLnATujbmzEhhuULvKHjnffUuZ3NtpmZ6zU6rFhjsYwEixXt3cnLyxhtvbDaXRUoIviYnl8vlvhDOmqZh8tVIQGLR7Jzr+76ec64fmLX8uq6r8Bszq/RQxIwIJoWZc8pmkGJEsBhjEdkdJnm8L7kA0FtvvnVxdVVj3ovF4vLixdnpKsbITCLiCRgywiQoORexzCvG4bpx2AOqeq22fJ2xAwNk8rfxCs4vcS6ZmA+VUip0ajbla01IfUfXVU8vQ7I+00bMdsDdfDgkCHG33S67vvXBOe9D8N4750Pw5lxNXPNeLb6+9IqwGsexpheqVVzhYX/JfdQaIefq1l9PW70gE2XnYkoigo7NLFdaMMScspRSS+Fp33AP+qrgrrJXaKn9aWaVzqsWqNgEC6xVT6J7QurDh5qzKIfhsHk9R6IiwjNDACHIVBcaiLLZx0+fPvn4SR1mglYhMUyfQ43KYVstl6jmvB/HsW3Cf/af/mdf+9qP/fiP/3jluDh4zYZoQgQmvkRYX+QXT+XiSYHgVqvbTm4IjDTmvFgtXmyu/sVv/cb3PnyPG1+k+BDyOHy/d0sA26urjeOuTea8805QVQuKkE7Zz5JSiqNmMUYtJccxjg4aRKRioJrBBEBAxVRMcbteR8eEVB2VlFMcI0ArpRmjKVgIQQGzXBMaNiGoKhIULSUnUGEwMyFTVKM9pZ33wTlnVLMyhIgqlnNJKZciIUTnvHPOTKWUSDlnMQNEIiRDJKKSdbsZn368vrjYrC8vwXS5CMRK7FpkcnzWn6Si45jGmLbD8PHHTy8urxBZwDSmlHINEoBRHCUEYS7KIEkliSQtqZgZe9/7hlijpM3Vdr3d5SmBo92yOekW/ckytM29x299+0/++C9++VffePTQVL75re8+OD/hk/uXo7mioKKqapNPP1H8ITg0IiTMFRGLdXsAACCFAISmplNKo/p0pgTmpmW1/q86QRmN7gDQ3qD5oiOhj8OhfAjUsYoe2/+BEKZsRs2oGFjF0laP8zAodeDAmCECEQOxIbKymSnN3PPmnPMhqErTYCoyDjJGjQnGlJJmFU2ilrv9HSEQI9VgExoomqpIEclSqpeiYKVSNDAT8OX6akwxppRyFjD2zjWhD03btsvlMoRmDrSomai6T++oHOfi70AbH6XsXxvl/1Iw7Pvf3O406H/IfZU5AjrDjm8FBf2A2k1/6Ye7P+9uPwz9+YkbIoJVVjdNKY3DOJZcVIoBoJ8zcsyMyGU/nMigiIKoSWGDnn0xNaqSJliKStmJDDzKN37/mxdXuw8+epYTASg6dExtaAxZDFQEzBw70AiiRqqmM9RWwMQgZSW0uiHUhQMJmRiQimRRK7mIiIp45713u92w2W53OYJxLqQqStScnLbn93mxhNAAOjOYTS7YG1uvPwR5rytS+6eGjb33jx8/+vDD91S0mpjeu3vn533fxxhzLgjoHKeUU0pNt4i7OIfYu64zs/Pzc2bu+z6OiZi7Ra+qwYecc8opl+KcU4JSMjPHcfDe5WgAMAxD2u2C90RWBGKMStuz+x1577xrmmCmItJ13XZ9BQBqNiu1lZJrLuVQPb0+1x3rhnOsB71x4EOS2mH1yNHUmO3ml91COmI8u645ZOaS9wGXSUTltd/T998IUQ9YgI9MAsA4jH3b1ep/m2DepgAGVkutaj6qRi7muvndbhdjnJnWuq4bx3Fe/uz4X/1Lhb5X17FervoYiDgOQy6l7/uw6Or5pdaQOAcH3sXMf1DbXHY/V8gc7hFwENuqDnaNibdtW92q+YmqA6mqnukw/QJ75xMJO57KYMys5GJ7aciU06jwB3/8R5vttrA3MxUhBPKMAO5oGb1RI3w7UePxLzd3fVXx5CSXe/fvv/Hg4W/8yq8iACJsd9v33nvvp37qp2A/KPdv2gzV2DsVjrv84uMwXm3e+7Pl+eOdyKHgqB0bgUiEjGPJH148/82v//8K43rYcRuYb1g6L93vfhioKagoQut9zmW7kRe49p0V17ADY0AEVAUpUXSzGa+udsNOUjEsOCbZDsIuiTrFUgxSKSkVK+DAOQAEbTz5KsEDWkrxjNT54BlNS8nsXIwRmUWxvm8z8yEwU9O6tgkImuMIZgpOY9QUQwgpsarWMVALyAAAkcxQBHNSlZySeF/atgEARleKlKylSClqSEYoosMQX1xeXVzsnj672m12fReaxsZYQmPITdN2wXvfcAgN7YaY8+Vme3G5RiQBIwEVAwTvHJELYQSgYZeCc1AEDWMspWgInjgYkKiYAhADcUxxN2Qzb8gxpav1JY47IPf47S8/f/bxLsM4RGyWEpbvPllrHh8vUHIk4gqic857jyBmIg5Lw84Auq7LmkmEsNJ9MDoDrRUoOhWoAwEZqJVSrOouVfXKus4AwMTVS3NWdF6SzOxQb4SIpuKGlw4hHozSKjR5HVwyQIWa0FUyNDQjNKyA9IMQFOAcGpoZAwDYkSGqgEHlAJnuWdV7MfWBsZSSncVWxiRDLONYBp9SlqtdAvSEVF+BACsYACoggepUPS+KoGBZpEgRVfJhHHYvLi93aYg5iikQurZZnZ6cdIuu7bq+rwvlfiIj0x35D8B9p4FNuefDLtU9EyUB6YGrNjNxvbwj3vj56NejkPzRPd1cDo440K5bXV+PPjm9nepm2o1Drzj58aHjJ365bvv655qsf+UjwwEoopYDEaHZzSzfS6b+wTPO5VWIOIkWHsHArk+itz4XvaSMeXjDx7dxeB/Hxw4/ekSPdsMPPDj5sWioliNWIjgI772mu0gEInsJvwNWDNgPjX117k1mhVqGOhltx8B2OO6Z/ZivJB63e93Hlz46dLvbVs00qOvVUZ8d9fb8CNcp3cND1xOzgmet/nEKs4qUkqUIElYjmxANpp8ravS6WxDb0JpISikDopqatq7x3iM7IZeHRKl0HE4XpEAfPnkx7HLK4BpWEUZkRAVUtbq9gVnrAtYoD0xaUXViFgQ2YCMyAiOrYSK1rAWNhjHaZDAaI4UmOOet6G69+c6731s07Wp1ulydNN3C+hPoemgadJ7A6QGoaTaaqzFcO3/i4zl6J0f1D9U5qc0FV+dp3y/u3bv34sXTvb3oQvBE1Pd9RXyFAACQc25aI+Iqdj4rVlVBSe99KqJgTduuN2sryQXvuzabOPZMVACcczmXHAszm4qqIlEXmjFmNVHEFON0wpSapt1tN48e3AshLJcrBPHO4V4yyB9ois9+Qv3LrLM+r1Hzr2p1duxBH9cfIy0wo4YQae/zyL5ueaLDUhVVm/+yx1spgNXaZpglXPaAt0qACnYth1XN+8N7vGXm3Vy0jufX0SYFe2xFvcTkMhkQGIpWrt4KAHPeA7PCRPNDe24A3YvDiMg4jtXBmKvYzSyEUFk36yhXMDE1Q0dAOOHU5xlNTDWKy8wxxm0cEaDKu0xvxEDNoGiM45xSq6N6qs7fZ0vmJM+cb7eDlPvs28xFO33f457FNOc8jiMi1r0pq1T/p9KRVZ/KOYdMHhkQ63CqXNjMbGA55ath/JNv/0lRTZp906pIhe4L2rGjAkdL23Fh4nG7PUqkqmDAjktM73zlK/+rf/9/ef/s/Hd+47fWV5eLrr26uqr5yopNOhgLxRAJQdbP7cWTFdjFd7/16Cf/zZ2uDA+X76ONs86bAvrrv/MvP3zxdLDiuqbCT+9wVCZXZXpGNREhcE0YYt5EeqJJd0NLEckoMDtGVU1pW4YXLy6fPrm6Wg8I1BHqtmQ3XEV1rVezSjmruWCSVsiTd2TLNjjvkLAUl1PWSgbHhIjAU+0KiJJvmqapG7BzDWYLjWuaUHJMwwBmQF5ThJz3IsvTpCUi1FkQFEuWGJMZEGHXgeMAABzQFFWtZEmxODBDF8c07Mb1ercdxphyFs3FUgaXtEhAakKzYERkh0QuRWYGg1IEwcZcSIzIOedKgc16NKXdNiFi3/V90yOgWTg5Pe2XHaEYqagWLeRC6MDvwHlMCcaxhFwWnpany6Y/Dc5/5Z2vlpxKKWZiUoVC9PLD7+QoiDoMl2bWtA0CeO8bHxZeiaInlxWb4INDQEUlIIEiSGRUtU8ICSd2B6xU8Hs5PzxQ4jYTVTxAec1rtB2bs9VLtFnS6MAMNKL5kwig5q6Zt8DAGEAB1GphO0wMYIf2nL08YqfwTE27MFT8A+6pBdCQAMEcBueCJ21a60pZlDykOI4aM4mW6o2IliKoiAoV/zbFOWUP/ZKqU2CmYCry8fNnWQogxpSLim+axWq1XK0WTbdo+2lRrvEYM0Ricnewfx32J760u88TnI5zMjkXnAUZbw9R2zFe6LgE/cg8PLKWb/d86oJ98yqw91gOvYKX7uTwl+ODeMuRm9iJWx/5QEhLJxUtqhvKYb/Vrf3g18Pr1uRqjYZSLf63g3Z9G3BrOyTWnG2Ul2kozY49izsctaN1/sZJDqDwiHjwluUlluRrx+D4fm93W2iq+52cisPr6oRQmPRMj4z7fflYNYaP7taO1oppobgus7g+ya171PFt3DqSoRp2+1d/Y+qhvWp+vTSk5xp0MDM1tEn/EXEvhl1KySXlrKLEBAbIqMWQp95Wm8oHERGZkmZTU0J0jMooSoSOiJkM6GTRr075rPP9wrW9R+KzRbm62l5ur0Q056GIATI674mBHCAnLUbKFQ5gpYjU0SIKjhiwRoAAgRRBRUoRVWUjAASq/iEEdk0Ii6ZZdJ0SZSIJwa3O/OqUuhaaHn0AR6RsB1Hn/agwFWW0fR7bvdzbh109h7r1gMophPDo0aOr9UXFoRGRY9put33fM/s9Bgzq0cViUVlfdRIMCbCHVPmmGccxm0qVPWmatu+rCY/7WaAqcdgt+7YavkDkmYoakvddL+iYOITGUIqIc/zee+/dv3+/aZo4boNzYCoiYBI8mV2rAB86b3rAo1hJaifsFiGgA937eGY6E/rj9SpdoUq415ywPZPy/tfJ30PEakDP3VvXGNwHDipurU4gVUXcaz2ZoRnitW7vbRvHjXZbfKcCIHAfwZyZeVUVEPIQCbENoYqKeO99E5AI3XS7dczMsLH9a1I6UJEnohhjrcNJkhWBTIuUmCIiGgEzm1rrA+xXxcoN07ZtKWU3DGIKiBeXFypat2YVNZGCWnKZXxwzVyRhHee73e5w59UDObU68Go/19cBAMxYnecaW5/rW6qvhYiMcDh9YO/oIlhKUff+z3x+xw4xf/zs2fsffQiECKg2pc5AFe1zKKZXkfo8Tdu+/fbbZ2fnv/ALv/D3/vbf2W7WDoHdlPk6tkUMUQqYU91+/KSTeOLdk4/eXX/0nvvq4zvcJcccVTbD7td/+1+uSzQmnY3C18sAEhEZmVnJJYJ9sKMd2nPLlAUZfOvZEahYLuu0u9rsLq/SOJpz1I3oNIXxgpnNt2aKJmy5RzxzfO79eQitd4gFcSLnqr7wfsZirYQvpRTRhpz3DTnXdZ0qQhazgmjDsGWHgIaW85jSMIzbbUqJiGpmuqabpl3TUETHMdY1sev6OtvBkJnBSMRSLsVELG93cbeLJZeiiTx58UV1NyZAbhrZbrVt5fzUAYJqyRXyiKRiOechptYFMBAAdLjbjTGmruu6rmubk8XpG23Ted+dnp51XTPGq6K7nJu0vUCN3uNiSUwrAB+6vj87WZ2tumUHRmAgIkjs/H62qIDJ4y/+GIhUluoXL15cXV1ud9u0iWBDgOF0tXjz8RvPL7d917SeQ/CNZ8c+xYREzjmb3jEZTZ4BO9IpEUliqjaBZu1Y8sL2MeYpwHDLIa3G2LU3clSLikcl+FCJcLBWhFayr1d875j0p3oyk0GGBAqKgKgAFWwFiDVL4xsGw6IiYByQBLmFtmcpuOjcMMjVdrfZRRljFi1GhmSKYE4NKlQxi4hptT+Qacjp2YsXxXSIMUvpFv3i/NR3bVFBxNVqtVwsarDktSbbJ22z9Ql3bjavuQ99H+34jHP0aA5ofbrz3dVe85F/gE0PUNrz/6/KY7zuzd+YYYeH5p7/NDf82bYb3ojdfugH1uzIkr4jk3NnwxoQLFJERE2tEo4oqIHpNQBd52I3MGQERkAgQqcsBo4dEhGglvjGg4dfuHfWoKYyiKEj5xdh4Zuz89Mhpe12u9kNuyHFOCgAECrQUCoqzDlH06InaqpE0PoOJoTv5K5PVKqiWZKjaomx9/5kuer7vmma1XJxsugXy9XZvTdOHjyktofg/aKhBgGMCtregsTjNBoAzpe4GYR/KdhRzcRSCpiUksdxbNtQJc6GYTcMQzXDci5t2yJK7eHqFccYT++f2t68m9dYMxO10PVZZUzRBW9milO4SxG0FDMrpRBzCE11rb33RVVUSy4xSVJwTVeklJydC0jEtChpfPr0qWPqGn84nIuUGbqMRHzLoueoItCnXbVI5WWlOTb/ym/N0NPaZruWiLwPFXJWZ/2hozJ3fl1/SpHa1TFnEWFUxYlc8zWX6LsCATdvuFQk5JwQmLeD7XpjosF5X5myEYyQHZNzagT7aXI9Xw58sznnIHu1HDHNJYspItZn986pGSO64OoLmQd2RQZeXV0h0cnydLPdpnHkCuXKpaQEasB8uITivugIj/FdLz8yHmG3cI7a4LFK/ey0xBjNrG8bAJhELfeXSCmpaUxlDr3NfniVyPzTP//T5xcvOPSBQyzCzApIgPh56KggopQiyG8+fuPHvva1+jB935+sFsuuC02oD1NrwvZfMiIVAxO5+viDIJkts6Zn73/v5Cs/A+hvu1bKmQL/yq/8OngCIyFQvGHj/eV3S8yWSy5lB/Zna+ux9AIYs4Fyw+yRiknJ6nFIMFKjbYtIKIYRqBSgslEDQI+l1XzuYRdYWmUkQOsgGziok6q+5D0EM4vBPmOZcxZDF0LbtsweRHIaSxlLKdvNVnIhcNtt2lxtxt0VEIQQVDTnrAi55JRSzomYZ6HfuWauJvjatg2hIXKgqAJJyjimUjIitosmq5SCBM75hp0r4nY78S41YSCiGHPKSUQMAJGdYy626E/rlBNRMCb0jtvV8vzR4zcfvf3Og3tvhNCIaGhdl0+240XK63WKVpJvgsPFogsGgYP3y9a3Hp31LoiYKtABo4iqmqoU2Q5rKsWH4Ff376/uP3YupRSHne2eXb14+s0/+y6aLvuu9W7RtavVomuCgpHj2hXHbxxKKVZnCJMBKE4lIUZAeIQznLcrIioqrzzESAVurX4jvi57Od7MkBjnPeDman4r6tLI9kPceLIUjQDUKoTMFM3qVg7IzB2RmYe28X1f2o77obka4nqIu1SGMceipsEMqnR0LaY30xpTXW+2u+025rjebrpFf/LgnuvbApZSQoCTk5PFcjlX0n9+bS7yftk+OGw3bNlP4EjcfUJ3wHlPrydidfcJ7+i313zkH2CTA2XM+pc5Dnf4sde/+TsYDnAPCHnZRfxBdY0d5LUAZmnZ6dDhnOX/doXnDm/jaLDxJ9nrpwiOaslFpKiqVXQrgCoYoIioqJoa7GPhYGk7IAAToqFH7F1gJFYiQN+0Dxbtgy5I2jGjhYDsPDpqaGPmhigiY8rLZQDklPMQYxZVUVMtkJEs51gk11A3o+245QMh12r8VbkJjwg07YnL5fLBgwenp6fL5fLs7LQJ3K9OlmePfH9WmIXRGqdOTbKraYH99Dx8lbU3qoV6Y/ofjV5C7zwR5ZyHYVguuq7rhmEYx9F7f7I62e222+226wKxlzEyM7OrG3rbdsvlMuUjAobZWFRVNTWzxWIBACGEQzlwACh7R4WZXdOUNIBZ27ZjKYF9zpKLqup2t9vGlA3vPXhMxH3XMi622+1mfVVKYXf9aHRYY3l7k72nUTMqzM3sqNxBJlH7cLbah2GY0zV7cRiAl0Q55hDJ/qVrKXlCzrNT1ZqVQUC6o+T0oL00U25d2EsR29/t7KgAACFeXV6aaNM0XK2XatkzO+eKgB2Avg4dlbqnTLCoPZuWmalM8fk5m1R/aJomhMC+AYCatQsh5Jyvrq5yzv1ysd5uY65yoGJqZAC1sJmoZjycc/Ukh95vLTupNS03trb5LRBRvbV629WD0n1Zy4zjqi+9Gp+zlzL7omoaQoAjRKVV+Z3Lq6vf+8Y3xhSb0DER1qwmQsWLfMaOChqwc2UcleSNR48eP3gIqpqLZ9f40LTN9Zu4gagGRFVU2a0vG7A4DMvl2fb5k5M4QtsaIAKgKVTUCxCaAZiWMqj+6q//+iClEAhea/Hgjcl1HBa5/hEJwBQwq5rAZSqd870SqYkKmLIQiZaSTTEVFWDyDoHUhAnJGTI+2zETBcAe0KRQVo+pQTBhDIZmCHskOFWtQjOkmDNDUCBgBvLIDYe+7fsQmnG9FjXUQlZKituYEd1uEzfrTc7RBecDmkERkahJShUGduxCaPp+UcMaTQht0wBAE0Lbtk0bvHfEbGhgE9jUeT45WY7bOKi1TXhw9mC56Jm1dQ6N15dbH1gEpSLpDJidcx4oqBlTjVZ5AAi+Wa1WDx88fuutL50+eLNfnXsffPBt66/WzwuZRTJ6DjgQe9d1DJ1zrQuBOnYtk2cTKSmLQcAgCjkXtWlJan3brU6ddyklJJ4o41xYnAa3CI8ev7nbbsz0xdMn63Ecy3C1S8zwxqMHXpERFGv5OlitGCErJZkyEaEgMFeu3qqBSFyTLoYTQNBgwpMQwJGjUhsRISHoAfTrYKzhhJDB+VezaXgeAivt2LhBgMNkywRHqUgTMjQDFSRArYcmCD2AikUDUDM1ROLADOCqOtew3bYNOtf2y/ZUcRfzi/Xu4uJqs4uXF1ENK9wLnCPHuZRYShF57/2/2I6bDEbMq9NTdgGAgue2aRGg7/qubZmvCx/x9ePn30+bF7uX7dQb7diq+AwclZdP+PLa9f2e83U+9vqP/Lm2a1x3NVjnv9uErJuja9V0mG/46CSfBcOBHeSyDh28H6AP94onnZGB1/McflD3eEck++XPvupng0kTebKrKmZlrsARmGj+zSp78IQrI5UTor5tTk9OTvqVZ8cGhMSIhjjIcO9k2Xkes6L32HQFzAF55E1M0yuuCTomh6FjDgbUaNGScs45TtKEoGYgJlGEAJiIkLxzbdcs+n65XHahvb9cmE40LG3XnZ2e3bt3/+Ts9N79e+SwXaxCf6bcFINKW29SRKRFd20ETyjPmxkz3VO1Hv5x/plg8ppijOv1WiWfnJw0TVOkhEBd19ZDbeuD95EohEA0yYGzd92iH8ecS9lHNemgVMNULZd8urpXbUpR9Qf4JFEFxKKCRJ4pxh1XsSkiAxOTXLKgkmsBULOYqIpmgjEnAFj0PapUyOdUF1kDbWgA85Zl+39HwML5ZnGPqZ7bdecY7E8GlU7OJiUxM7VJ6PMgDzMH7G8MbJ1RZ4AAMDmBe9q0mvQg/D7CZ685U3SOn+4jVvU+EXA37NSMvatFb7VriIgcE1T2iWuP6MB+YDGbNDEQgBgMFEDMuOKszCr+zBCLqlNFRAUDQiBEpixlvd5IKU3XjTFud7tJ5KQUNKB9iYF3brFaVq0hq+TEvJeDBIsx2T7NgsfVPNOrrBkIkcrZAIju0P3YpzFDCFWWvWtCdVqqAzOv2xVQgkSME5OeqKSUDen5xcWfffd7wC6pMlilsIPpFaO7IQSmR/Jht748PELrwjxkDUBKapw/bbuf/+s/+6hfoppTYzItOUcCsL7vSykmthuGs7MzVTVAxbBCsRcf7C5e9P0JBo+Wxvf+WL/ze/Cj/6MBm7OmTVcfY4u7JN/91vu//Zu/+rWf+tGf/um/9s3v/fmLtMsdFyFQk11Eg+C9OwpxHSbBsRJSV59R1cQA2RWuMi5hBzCQUSCAMElmMgG7JAWcAzft2FZPYGYF7XRRNhHa3qV8NWyJCsfSrEv0cGXl7HTFLjvHbRucR0IjRmTJBMNmmwq7cBrw9OT0UTRA169TLsVqvLzIpmF0hLtdurraXa6H9Xa9WLYCXjH6Is4TIjikxrsdJe+p75smuL5t2uDQ1MCWC1yeN6FhbqogCZKZ5uTZzlatPEsPl2f3w73V8uxseXa6Wp2dLMDKbtisxxcvLtbk0fmOUABGVculMDvDpMiOObSN43B2du/NN94+O73f9ffIewzYLlvnnIE13bJV++67H19t3MnJO4jExEzM7NkxERIzGaqpC43bzw3nOKVECOwYqLC3IiOSEZqaEJuAFDNzoZjB8hzRzhZnJedSck5JSnn3423jMDQxhNA0LjTOe+cDM1EItRjTMXkiBsASlTk0bUhlAAQDh0hoBEAmWHIBAPB8WF8AMO1vYAh6PY3wCO0FUvLL1nsN2O1r5OuQPARpGGiev1SXgOtDbEAKqoAmojqV6qEqO2IEYIcBSUSKKMCUMfdclJBQvUEHdNaER73brfxmm94LV5fr7bP1JmfNhYdig2osenl5cbl5ImTbKM3Jfe5PwYdcimY5WbRnjX+wWj08O8s5MiOh876ZNHDh1h1izkrNueNKlcjMOU6hQdEyh1tqm/P+ddE8OqMcpFAADt/QIUtyybleMqXkjxcHvLFJHb2I45uPCQAcknOEeFxAfbuDdDgYVA1vqbibvaCaN2DFnHMIgQkrVP36W4d0c6YlZxViZsdY5FZw1Mt2/8GueUTxzAfMELLfcadCcJsHbB3DplpucBbgscbQZE7sW5EjVvrDdowqOXopmhQmfYQ9H/++HdPcW+VSf/kUN27DrKaD5oJpAMBKfacHlaM1jAX7ePkdJ8QDtqGD/RDwxh3e7sofA7XgpdF38MlDm3gP4agGwWGKrurhXrsrR7wIR9cqJlUMtTKMgFYWKCGz1ghSyTEmLdk0mYIoKChA8owFLFoRSGiplBK3C8VHfftXf+yNL771Zt8vCDmwl6Il5jjEWMroOlPZadGmRUR2rnHOzEqRGMdhHHZxjKCjilkmcqmkcUzIrRoAOhcIJ3wNDcOAoP0CEZQUyIAMVov23/zpnzpdnjCAkwhmY87rITWrk5NHj5rTs+befVksw0mPoYEQQMGpMiAyEDbkGyhiqlKKmtY6FQPQaaEQQjM0KUnK5KVPYeNjxqpqvQGA9/7qajOOY9d1TROY3YMHD7/zne8i0uXl1aLlk+WSVNvWidF2HHnYLggEJLg+S0E157gYJNGcc7dclVJy0rzLzvFuO5RcsuXe9+M4xl1yTWuil5cvEJWaBjnshq1zSk149vxDIMwWiQJC2a53w3rDYl9556tXcVwul1eXF1LysmvRpCIlVCED0MS0iUQCqkzAbEQwUS+ZVJiVGZqagABqt2hFNZcqwDPln5kqSde27xeO3TAMORYkqoUepmDsQtMG5ur3qkxlD4vlSXVSq2+GzAJiZlKsWFFFZud9AEWtJEOAAAS1RAtJAQlrfHwuzMMbWZrDBfbwQHWEqiEOpg6r/1YLgvZRQdPdbvjg+dPsYJtix2SE3XKxWCwQEdRMxFSkpLJXj6iJlJxLd3KvXiIJmBn6JjScc1IokmLdDkChlIIAXdcF1xC6IpZLWa1WBXAcBgE0dmPVwTTTlIyIkUQkqzY+AMJQkvMNMZlazKlYFABmx46ZGNjPK4fBFJx1TdU9UkA2gCRqBkac1XLKaBlMzKxIUdEYY+X8rGWrIOpccM6VMuyVIiePBkkdcCCH6HzTplxC21/F4Z/+i197HlVCR0ClJGCuapvkGPATpYPvaAjg2LXOP7h372s/8iOe2UDdHrkoIs7xdrvtuo6ZF4vFOI5N08RYcrGTlsbn77p0mXVw7IGI0u7F9/74i3/1Z0VdjpmIkHEYtv/Jf/yffPzBu7t/tP2Rv/ITxu7Zk/e7tx5i5yIbEnTALdC2pMMylXlTseNIQD1o+3hhXb8rUdSNHVHHA/vg4LuKQJoRJRUDKQ5QiAuKFMmojQM1Q7UiRdShkpGoICgoQU5pzI4kFdIVtcT++W7ouu7ZxUeW1h7jSYuIWCrtWy45F0QqormUXMR5N0UVKgbDsfNsoI4r91KVqkQmdJ7ZOZgk+cAMHbN3bKAOoQ0+dN2D8wcP7j08OzldLnop43bbDk+2RL7W0hFj37dIHDOYAYFn4q7rTlan3jeLxbJtOuc8IrN3oWlyyUjYNM0wjv/6X38DER89ehMA5uK2mRFPihYzdxeQxl75r1Ly7EnZ0QgpUAhN6IHM0gWjlCHl9W7jA7dd0zS+bUPwLMa1uJ5QvTdmZ4pIpQiIRiQwLUYOgQEITABAAZFerpayCSh7NCZuEPvcFao5rGw5/jvNFi0C0bXdY1g9AQRAIPYGgqCmiqywZ/UxtQmiMQ9TR2SIjFoBXmZNcIStd65fdZvt+MHT53/x5NnTy10eFcBZ0TSkZCCA4IKxT2JNoKbtyjik3fjmF7/wxqNHy8ViO+xE9Zo67eXp9Xrt0J6rRX6f5CwH7cis3KezJ7L5cqu5/OnbjVCrHJjmrx3hvtlu++IrYpafrt1MIr18xe/zhDcMgk+fXfh+EgWve0KYpjHCvkv/0qvczP/cMs8/jwTjy7cx3/zRMlRjvfv2l93KK1LCCCZFRaEoZLECKPvMmiIUMxBDrTAVVRm9pLfu3f83vvLln/zCg67xhkTkgDmlspNiZIJCxloVb4HBwMQMTVUll8pumqRkE52MoFxEwCznkckH59h5A/PeEyMjIFjjpToqbACijtiRW7RdF7yzlGKClC00YbFq2obbQM4DOyBH7KZcRSkiQoZTIoDNhHSfx4DXG7Pzi5hToLXzQwjnZ2dmNfqudQdn5qvLq3v3z0SkPraIuOAB4MWLF13XAWKWUoM4ZsZMZjYMg5l577cpLpfondeyWV+uYQX37t1DwM1uawTOuaZr47AbhkFNfWgQbTvuimrwoem6GPO43ZQMZrhdr7UUx1hKSTnnODKYd4SqFQPSdh0jVkJ7k6wlIxgREGLRqq5oYOicJ3JagVGGFft0mP9U1RiTWfTOj8NQe8Z7VyFj3oEa7GKeA/DVSJgZz2509VzIbmaIfg8Gu/muTAGu+as+yVw8nl838ajzzzHFXYxQQReTc4tqAGYkaoaioIZqCMhEiMRghg7ZOZ2j/GZmVlSzqMJU7zeh90WqewNmUkoqhRyPKcYYK7hdbV/Wr3sAD+0TYrXiFECruUEIRIYgZmBKwGIKh/O/pnpqJKv+ff+gdUpc94BOEH1TqwD7atGllBrn66usya46br33zjUG4gzZEIHGFNG59W73r37/937rX/0OkIPK2lrveMKLACB89jUqJaai8KM/+qOPHj2GXJiZnGPnyBGY4l768KOPPvrlX/7lP/mTP7l///7/4H/4b/3YT/6kZ/jow++E/IJAKJwJgNP84r1vfyletV0Xx9iyU4CUUoyj8wEtffOPvomAXWje/+APTt/5QvPgxHXtwoeAnFFm3PAc3vj+HmQPQLy7sZptLxrw0QX0DpGKRSXFQOzszTcfnC4XNbbVtJ4d18FsZjlGy5aLVZf7vY+eCjebFHP6yC6ftpROF+x96z0UUGImx8zsMQBMElFTNJBgX/iy5wGkacutsRDvPJEHc1Iw5+rjZJgycYIkPvBi0d57eHJ6uura1gcqqlmTkigaYgHUpuF2seqTDENK0TabS1VzuQBA23ar1WqxXPR933W9c66KlSLiZrP5+te/vlwum6YBMNorms876Lzo3OmovO77qthc7z0x9ydntR5frYiUrCVFWY87MF0E553v+7ZtWSwRifMOwLSUohERCJmoILp94g0NAUqYw6ZH8VRClesg8o3Q9SdrzHxdwnhg+Fae+Jn1qHbjHK4gvBZdguMoESKaoaoqQSkKhjXg4YOMLz46XYXF6vHjxw8+frF794Nn7z15MVztdBiTYkbitiPncxbvpXWMBCRaqUs3m40hmJlvwqd85JldBPZb0ac84Y2aBzpgIPlvs336B7nRG3wsbDdXs6gq4Gfg3R1e6y4B1Nc9IRyxfn3aG/xsxsaNE85IkrnUAQCqmXjbgJnzUbXd0U2f65C7cfOq5fBQNfimkFD5vjvNAERKNThk3+ohRVAjLQCVnKVEL+OPffHRv/VXf/Ke9yvyq7AMXXc1DhfrzXqMm3HcDOOQYuOb6/WKyHsvuYhIzHkc0jjGlEXUClpRyDlbUTQjU4fUON803kDZMTOhMAIwARkhAyuYCglAEQQIvskpD7kk0bZfLM9Ou+XSt633nulakQP3AhFzMsQBgruGNb5mXx3CQWuJcE2E9n2fcwaYjqooEq1WK1VlppQSIOWcOSVkz8wvLi5jjM6HnJKq1nqbSk1aBbyZ+ezsDBFzzl3X1Vez2WxKKU3TCJgKeN/kMaaUQNURmkHJyuRUwbkwDllVF4sVkbu8vPytf/mbP/oTP35ydrrq+ufDbrvdNo1nQk9MTEVUDUiAGckAkRAmCKCaTIk5I7NCCEQcQkByMU9QIoDax9f0gKoQQphJ7WdvEJBcY85PSiPVSpxVJg+7ug7pedEzK3uP5VUv5fsd9MfteH4xHO8ps1O63W5TSk3TzF4WHIi9qF3v0bgvnVdVraNvf9/1SWvREe1FS+b5O/dG9V7qhruf9ToLmNjBOJzjF/OCNif95hFbp+ENQ3fu8Jt54z132fSxYnMdRyX7qvVgNaNSCYt3u904jvW2u65r29ZM0EyLFTElWA/j95589I9/8Re3Y8Q+TLdHNyvNP3tHpUI7f/av/4/rq2Ui9o6YkYmREaHOrn/yT/7JP/7H/7g+4X/xT/7JT/zUT/9v/73/2fL5x2/dO4Vho07yGDsHRcYXf/GnJz9ymhGQ3Ji2b7zx+G/+zf/5P/p//L88NTAOzrlhtzvrlvn9Z2Es4d6prGwTaCzXRWY3uvv121Fw8ZYzEOijljy5DyUncyNCC8jBLxp31tnJSbdcNABgYH4is5qQma4O4WIJBLlsxs1gw/c++mjYbb7Q4xceLM/OzpYnviFRCcQpFiyGMUXRhIjMbj9w6yKL814i+zW8zgp2ruqMi0iMQ4yjmiCCiJQU1aKBM8iKRSzFDFlpfXX57OLZbhyzxOA4tM55apomFfMubmmXcxjHWsSfASD40HX9arVanZ5K29ZJ9e677377299u27bvexGp6XHVKci6X1ymefsJ3s6NNr/lUoogYl2kkAERyIFKnc6miom8WJa4GUpouOtDx2iGkItKRkQiJRIiIdoXChvhgTABISFT5fWv7sMckTA8Jtj5ZHXmB/Eb5Gu4EAJAMZsj6RXToQqktWcBwcDUFJEOUUcusCmaqjIgTRBrMxWV+2cnMafdmFsHX3rj/P75yaP7p3/0zT+7fPaeiAph63smX0oukZJJQ3Z6snzjjUchhPV6fXp+dpvS8Cdun0nU/PAMsxlRrc/Ptfa/7rKvvI1PZrXe0RXz6epsuqMM9LWvBccJ40/7Zonw0DsR+PRuG3y2iYp5sPGBdN0UKbxLQvR1h+jn7agc3rzqKw594u0P4P/P3p/F3JZk54HYGiJiD2f4xzvkUDnUxCqOYpNq0kZbkLrVBmH5RWoIMOSW3QYEQo2WDevBgNpWAwb8SKDdL/KLrLZgQA82ZMhQC2pJNpsS24ZYpFgTWXMmKyvnvHn/6Qx7iGEtP8Q++9/n3KEub1VxaDNQKOT9zzl7x46IHbGGb30fhCQhSkwaoqR0W1engCmqRIWUNHqT+hfPj//0j33qMy+c1qA2lkRMQMmnm5v1ddN0KfUxhpSqgrPVBEAxxhBaAAghdD60fehDDDEFVSGMIr0PKmCRamccsSUgSCklzeqP0aPAcHQoiAIKpCTNtl2vNqiYJG67HticLk+OTs65qKgojCFi7rsuSydnt593oA9CZJyK6uynBJ8841NHhXZKPkTknLtu2xxMRMSMALhz585yuYwxBlRi471na5M2RTUzxjRNU9UYdmOdbSTZqYB3XVdXbuxV1txo2zbGWNW1K4pmuwUAYmtNCn3XdZ4IDTsu55vNWpIiGhXpe3/nzsmLLxxd3azeffft6rKa1zMEEZG+D9YyOyakGIQRACgrgmXIlYioJGNpkI5QQUQ2nKK0bSsKyAy3NrGqwqjC8fDhZXZQy7LUHVkIMwOSIMcklDUbYPBnAOCgRiXTN2fbI8boXD3SbBxOit7KcT3fWzB9vwj3VbYmfux2u0ViY1wIqe16YpMzKkkUkiByVE0KSQGJyFgyBlQYU0px5BrNvFibzWawqYgAIIQwEP4y5+Vkneu9zy5NWZZEtNlscql9SolVpofC9L+nzs+YZRprZqaPDLtlj/uM8wfRGdkp2Wc82yjPkr26ruu22+12u805n51XqcwmxthL8il1MX77re/+i3/1L9978KBcLFoYgu6AKPs54D0dlUNe8O/3Wo5tfGxQNUSvvPzy66++VjonGDHX6zACgjGc0W9N0+QYQF6IKcVv/84X//df/Y0///k7/8HPv2pgW2iw4I0rNqqX77xx/OrnCCplBiFJ6S//B3+pb7t/+M/+kTO2Cz0QaoguSfrwqm093T2G49qWBnbhxhjjI1z+wwLE3bYyHEtTjO9+QGU6Q0SYg/cpJQjh9SM3mx19+N77XbIWykBsHC+X5ckcipLLyhrDKQ2ZSucKVW2bLvSiibquW/u2215uxD3YtN/67nc//7nP/ty//RPHFSwcsGwYgwMrwEWTrAui6ogzF3BRFEgKkJVuKdN/ee9BEoEUlm1RGGMMG0kkMRPqaaZEzDDkmIIxEEOKsW/bbeEqAWDggAJs0BiMRJxfD7SWiTQ4Sp5TXat2MWjXdb7vkbBwrqqq+WKeyjKKrNfrb3/72wCQWcjGwP/BhjIuobG+DHY1xKM9ObUYbmfqkY1nTBMPx8zu3RAhlaweZtlatEiqKUnoY+oaatRsyRXsnDGER7NKB0rHzGwsO5wqcWKVgXfFGENoJW/RgFEFdzKRkH2VIXvJ8mS8/qPjMI4BstnBwjRjbvOuogpABlFz8WfuDCChKhKIRErMkAaBA6Zd5haJFAhUmRTI5BgPxF4AiLhEr6jJYOr7tVN47f6sNi8eL+Cf/+5bF9veAmQBVYMQ29YYnN85m9WzlNJ6vRaE+WLhsIQx/jQpctCDTXD6zJMycZ2IGMIjtSh7r56qThwNukXpjNUTj7vX5CIisr+z6fS7WR5ndJSm0zWdu1299HjxA33Gw0zsZNE+vgAXdmXY44DgDkg9XfkA+25wBhRP7OnbJbRfLDV9kIz9mz7Lk0dj/157aLrpaOgjF5leY2/cbj+Ag/akLh328CkOwiOArMf/bHp+jQObz3Xdexjd79W0Oujg+rfIH0SkJ87y3tjsa6rg3pCmx8c4D9q4VY5b4vSC43eecoXpLVQFRFA0w34QMKr6kGJSyf+dF+QYslFNKqjJEX7qhXsvnxzNOS2r6uIyXTy8EKSm66/XGy9JREGBgFabLehIWasZshJC8CF2PkQFshaz/mwUxaHe1yAag8ygElPMwk6YvJcklKwzzjCriqIo4GbbFmW7bXpFUdA798+Wp2f1fIHWorXWWCQOIaQ+BOjQObacA9u5DJzoFnq62wWGlw53Ohi7oR4OLphYC3mfBoQxdG2tFYnDG60CAsvl8uWXX37v/XfUkIh0XVfP58xMzIvFArItHmJRFLsUH+RAOyJmJrFsF2Z180yvFGNcr9dzPg4hiSRryLAL4CWptW5+Mo++K1wdQlivG5XOOUdER0dH9Wz+4PIjSdJ3TQ6uIyJAYSwwsGE0RMawYUzBxxBVIB/jMQkSDJRlIl3XEQ6xUaRMKjsMSB6KPKp3797dbDZddys+OJzaOlAdZq8sW73ZRocJvEVVidk5hzuNGtjlNJwrS+t00pII823eY3wdEHFfG/Vgn6cDC2T3qx1XEyIMojXD1TabLbJhVxbVPAH6pFFRQkwpFWjIALEzziRFImLnkAhVGRWIZEeZRYQpDVCIPAKjCHj2UjJu2TB3oJv1Ji/RvCCzH5vzOWVZwo7/Tffzz7nIB3Ynte4cxXH1jqOEO+zi+PfxPBod+K5tM11Y27bW2drWOeLsvYck2+02G/k5zTLhX0YFbEPc9P3levWFr375y1//OhdlF6OYW3VRpcEGyJmnpzkqT9nYxhzWwR/zofnTP/lThbXW2CiqAEqYwYzeB2tYRIwxP//zP/+rv/qrIlIURbv1DmMi+69+9y3ob/79n//suQX2LTGGJsj1h9CtkUsFSiLO2qos/+Jf+kt4Uv2Xf+/vFlVZIqbOg2gi7TZbZ6lkomKeQNu2zQMU4w4tMwT5diR3E+FVVd0PgB+a1Af/nV8kVnm9skdn8y+8k7boFBkBLdvFrJrXiQgQ1VoDkDLfNCGJQNuG9U27bfXBxeaq0QaKD64387v3/8Jf+B997nOfvV9GK1uODYtjVU1RERJoAkXEoijqui4KZ60FTCI7jVjA7JSDJGfIMFdVZa0typLsPAQVaREYkVOSGH0WRCdCQBWREGNI4oDYlvOlsWVpNsX1yhD0+dWNMaWYMEXcqb2KpG2znc3alFLO7MYYmcgZ8+u//utlzrPfiidmGMywa/Aku6eqNJmFcevffSrjqzJuOsN0HJI63F5QhiI/ybrNu5lFVY2SAFQABDhJbJs+rQMROkM3fLOYzWazWYoJKTJz1jYiAk19vnIuK5agwxpBGMi+iXDn9GbUHaCq0AgYewqWYMScDGW7eCsTiQNnmWgSBSWS3ekJkJKmtDNdFSMCCpExRmDPjFLFmP+AioYMIWffSpFTn4zlGm1MgajxvgPs75+ak5PX3b2XvvyNNz+8XLFx86oSha7tXTl/4d59Y0yMsSzLgchlYkzvG6b7Nux+5GaEB0zjkbeXG785jeLgXtw42+KjA7x/jcdcb2d/HFict70yZrob7I/itEv7z3WwH+57CKq3LvoTTec9Cx4xez67gwHzuh3C/I/UIRw84+6UfaKHcOBlPbLTP+GRYe/Wj+hyTHu1N3tPutdBtuKRZfJEv2Xvrs+Qbnr0glNH5baXj8RQAGAq8ih7RWp7vSekcZYRcHqMPKNfdeBm7A3ZI3175DLDGtvrP2VuzB0EZc9F3Ju9bG6LCKiAJFTBwQ8jNoUgdTG2PgSBTBM67HmZChIBABf17DOvvfbKvXuUNg8vHm51ftE1H3zwYL3dkrG2rBQgl6b06fZJYoxhV6ERVbY+gWVFUpAQU0xCbI0xBoEdZWywD8H7mDRppnBNmvoUbCqKIkfrwLhO9KbtVCTzp5/fe/n49JysBWJiQ4aJKRKrSApBjSFhImBFRiIiRRkz/AcgQ56AxGBIYw7zayYk+ALCyKMdOXq/RKiigmqtPT8/f/+Dd1NK8/m8aRoiKsuyD2Ekjd1ut8aYqqpSSt532U4dKW5FJNcnZMzP4NKI9l0gMkRMqGSorualK4yh0hVY1hmbdHFxqQpnZ+cpynw+VwAfm6JwzDaK9H0fY0RmUepjCjEVzOocWkZgY5xKEkmgqY8tG5Pdj2y7D1ETEWcM7EbJe9/3fcZ6AUBKaoyp6zr/ioiyhoYCbvsw7uf56UbBx7irYMzny61BDBBjZGNFpOt7W9UIlOPNpJoVGm+B03uH1N678ugLtdsihmJRVU2qjLh7c1B1sAABoGlbAVIyRT1LKfkoPooBilETeKulSAAEW1aAGEQgpXzTHaVTZmfuvffj/FJZ5D2BmUdCYcSBg0tV82w2TZO/liVEUTSHhgfigZ2lmq8TYxz3meyU7qLnDuDWtZ6Ow23Ka/eX8e/55yEEVTVsMttYHpOPHz5cr9dN0zBzpgIbywHapqPCvvvgo8XZ2e/+3pu/9bu/EyxHEGcLFc3hXkkJsv20m6/nhNxMsbzj/xMRiNZl8ZM//hOzegYi2TVUImHKac9xnf3CL/zbv/RLv/TP/tk/a9u2qitt1j3ZZBf/6tsfrHz6H/87P/uJ2anvmpIx9Tf95oKPz5OoMY4Im01zdnr+2md/bPnpT/irm/5irSGg5cgYJMrVStreFFAcLzIzdF3XT3qQ0fke0rXP9vjjsaGqi6r8/MmympdHBd94zpH1ks3M8rzkRVk46xAtERKqJN/4EEJar/3VVlab+PCm3Xrapnj3zt3/3p/9M69+9tMxdISCxAYNq8UYvfdt3/sYRBV39ORDlo0IYIB+7dJTCa0pnJvNZnVdO+fKorLlUdeHGKNI5/vofRANlpiZoY+gxGydq8tqNjs6XSyWxBwlzNZHRVm17VXf33RtzwyaIPgYQwpxSLZKkrbt1ut1CB4AYoix77/yO79jra3rOqYnCow8X3vkOH/C+Y1Z3VGyVQaqCgRKO/BUAIUcGGJ2bKyEAKiKvN1sm/WVMevZrKpnpbWZegIVpC7L/NYxs0rquzB0BtG6IgeOCSFm9LMSqAKK8O0B9hSDY/oSjef/7hmz5jQJKIIK3NbZA9HU1mGTww+CtzHLYTRuv4XARMY4gLxUbaMeVUmMk2AtbrehaVvUWLvyx146Pq4+/70HF7/7re999NFDNIWIzO7dPVoepRg3m5BVeEeixkd3uudsT7bLDj/5EcJqnnbrg248uh/+oXTjGX/11BjUk391mOV4nm788WpPhZntP/T+pvQcA/J9vZHHtjHeuXP1f5gToQjeeyBSQGNdVc/G41JFCpSgEi2jYessgfW9GObT+y8s+OT0/ifOXnjwjW99670PP4pdB8YwWyTjJ95ULuDOAJKkylx40U3fXG42kdm6QjN1oSRI1MjOVwdV0JQiIhpiYPYpQYxFXd+9e/fVV1+9c+dOURQnx8fXF1f1bHZydl7WMyCKojn8j0zWGFXNUh2aHVCirMcyzbcehJ91h5wZN71nGUbnHIAMPgYogBDZTI60WX08XyxyTFqAomISdc6VbECO1dcAAQAASURBVBBxtVrN53MRub6+Xi6XVVVlIE0MUJZluytJz+UrRGTYIGJV1kQUQ+/bBhXLsiYCETXEhK4qq9NTBMCyqCJH771IPDlaEiKxUWI+OSFjQj7EJLWbG1Tte+97JVDUJCmIJImRXNIBc5jGszW3JKIi1tqiKLI9nRNBMUbnytEIRETvfR7JpmkTmfl8Ya3NwJAsG0KPq1HJ85JVQUTAWrtcLn2IKSVQpEzVpToVhPmhN92BrPq+VxHKFdQpIWIIsfNhUZQpxK7pXDFkNaO1UxcCEa0ZBLt5p/mYkX60k/HAXbojl/4CgO/7tuty9mm73bZtWxSF7Gqi8nBN8yS4w+DlJNXIGgw7XyVnY0aT8pHHPNxSdKchY61drVZt22Z0T+5D3/e5V9mVmqZTEBEAN+ttavDeCy/+7ltv/te/9qsXm5Wt5yJqyjJ1Yeg20QHq+DkdlakeWf7LMChMp8cnn3jp5TFHhkTAhERAULoy+T6j5fre/+W//JcfPHjwhS98wQdhUwGVN9ttsTj7N++t7O+8+xf/1Otn2i1MWnXrdnU1PyWvGFIyhgjBB//NN96oTpa2dF3hVg8ukg8WmQQghs6H7Udwr3JVVY0gvyesNh2LJolI5Jkg1FOLZFlXL1eWjFladsIU2SCUbOdFsaxwPltoZs1Dx8SSwmbddp2/XnXvP2xuNv7hdQdcLs/OPv3Zz1aOm5vLO+cnfr1GSIKaueeDxL7vQww6qfnLyw8QsiYs7v6eJaVOT08Xy2VZloPT7GPfhb6PfRdyTjC76cyUaYHr+uTk9Pz8/MWj0zvzxRFbjjGWVUXG3Fyby8vYbBvfBVSIXqKPCGitRTCSsG2by4vL9b312WlcbzbvvPP25eXlq6++mmNCz7fAntRwP4/3JD5WUkCMCKI556IEOydUUT0kgUG7KCWARCKW2RA7RUFIXdtdXnwomsrSzuezxXJWVUXbtjkmYa3Ne2subSQizeX3E2LK3fvGCrcZlQNb5FH057gO0xPsDd1/fQ9Gg4gmOr9TlJ0eVNJmXFBWwXEziClETykoGLauNH3fNz62m8LKWaH3P//JyrovfOUbV5vO2JKILi+vICVX2KZp2Bq25jYpjPiDVzo/Gh5+0keWfoRH0UE7qM6fbim8r8/4pN3mR92NZ/zVc9/rB+/GH692sNimTvjBR7z/0R75wbMVDh3+6tlc8N2xNUpt7vX2B58UV5Yvv/zyYrH49Kc/PaYRUkoaE/X9xWr19kfvP/zww1JT38eLm+3Rsoyd1gvTNuujk9PXP/PZi75796MHoklSRNrbHWRXWGXKyhG//PInuXBYFD3iuu+2bR9jij5CTAUrCBCSdbYoC1X1wRtj6rKal3ZW13fv3Llz/15mEwWAEKJhNqasyooMhyi2MMzA1jAzGU7pVg1pnEpEzHSZ0zEc99JxO802JT5CcfukVhSF6iAOiDRk82azWVE4Xi67rjs+Pp7P5z5KStK0nfdeAcuy3Gw219fXs9ks2+5N0wysBoia5eeJELEoiowBa7uunJm6cs6Zte/attMYJJX1rCzLYrvaSuqYOUYlgu12m50cYnJkRJKqGDai6kMEZDaG0C6qSoLvusb3Xei70HUx+BB7iXF+XDBgCAGBiOwe7FbVhzBIqlsLE2D29fUqr/O+77OjUlXVcrlE4ptNk1LK7o1zTlWzyV6W5UheD5P8YW5Epu/7fCPZWeXZQHq+Nf/sLd+o7/skMl8sMi9CfpGzY+a9F1XpumwIXV1d4U6FPSeU8vfzg4QQMm1x27ZlWSbQ8VTNa88Y0/f9erM5Pj5OKtkUyR0Qkfl8nk2UbPLl749eyrgVjGseJlKb4ysweubjMz7WdcmOCsPARJe97pw2ybi+6+vrrCyZ/aJxc1MFZ11P+NY77/zf/uH/46brzGJpXCFJYi4f3TXZj7k8rx1JgJlnWwe3TxWQmBCPFsvSuRQiWDf4Khkcg+i91xjzylPVsir/+n/81z/5qU/943/8j5vWK0jtTONDubj/337jg1dOjv7ci6Xpb9DY1K4JJbuwhrnTEIN/74P3RdVbiCfVrH7BP7xJl+sSWAgCSur8zYOL0ztns7KKKvEJ5/Q0kj0ctgpT5MKtrQeomJUvNAko5DKteMI0Sx5SqFRLAEQtRErUypqyoLKqg08hBNIsBERtr9smbdu09tokBLb1fPHyyy+98vJLxhiSdHPxcaE+kY8UiFIusIghZHgoc/b8mJAIKWcgEYERCcAQVqU9Pp4fnSzruiTkrg/B+6Sr3oe27freKygzG8uusMaSYRJ1i/np6emd0/M7y+M71WyhiL3vg4RZ34XQN81qpRe+j4SYQkpRrbPMaBm8jyH0q9XlxcUDZ+2m8R9cX734iVdW11dVVest6lr3h/MxUwE6snwefm2o2RvSrrvs61OjhwSqoINg0hAky/rzkLUABEAADRlEjiH4EHyfqAmoSRVtMe/7drXpfISmC87xC/ePU4oxhr5DyKUjxqJhZJPr25kJczRHs8yEqipMGcA1C4gNmKIpGEN2uT0aUm8wohAlQzMAhnQ13mZRdCK/gqBAOlBSZ80oEUCFXOCCOCxrxKgKkoiybpTaisSD+ND5TkJkssvFeWfqtt2m2LH3qTGff/3l2Xz5jTff/vhqfVSVs6qU6KvlHFUJ0VmrU2nCHziqe+DRIe7GKk+kDiCqP2DT+CnbN+7BR3/k9dNP6sYz/ur57nVwu+frxh+v9pQsx9M/eu7b3f7j2YYUd2239vbSXM88L7enHGbM1+4vxhTVoq5mC2bKYa+MNdKYatBVs/3Ezevr6xvTdUvCjx5+qM5STG1340O8aW8e3FwFwWhMrxJSjFELZdqdr0Rcz6qz87N79+4fLY9RiZwDw53qHSIyltkWxhrkeV363qeYjGFjTQih67vCFfP5/HhelUVhnRUR65wC+ODrpQ19X3BVFlXn26RggcnsOJSQDPEQDMqEKAioQIC8byFNrbpxdsZY9XS+0pOdFjaGmBExpUE5C5FKV1p2ahwbbtr+GKiqq7hpvfe+D4DsqmoxXzJnukXXdZ3vQ1VVKiAom82mqipEzGIP2az3IfjeqwohpBids6YsJMVsHLemU4UQgkhCNDEm5tS2LTOVJYYQFAiIkI1qFmMUBWTDBFAUZeGcVHX0ffC9912MIaYGCFgwJUVUGheSKtGAdAfVsiiyng8AKGC2pGOMmbW26zoAWC6XIuKKIlu0ORKfxzzXzU/XsYjkLFyMMaYU+3azaVWlrGfVbGHZZKIhYk5Pizs/R/rxELhLu3p3FZ3Pl733Iaass55EN9smpVSWZdcHaXsAMMa4ojDWZl/XMDXbdc5CZKcu5yVyHHknMYBIVJSlAjx8+FBUmVlBu65br9eyI2xAxAwd0hhzEX+OkyJCRqTjoFomMQkhxp1yZa7XGCOkSHQwLtYaGGSihu0k/zClJJJiTBnTNY5JCKFpGlW1bGZVVZYVEA7ipCklUTDOWvtP//m/eOf993Fei2rbtq6sfFKbKyXwMYEvs4fy3+2/KSVQtdOi2EkSXBGiCoCQJJMQFZQwggSIAeHFe3fv37lTleVIgI0DTBDBEGZwYRIk6vpwcn73f/I//Q9/4qd/+p/8k3/0u//try7Qd2wfrhuB6v/9pbdfP/v8J2ali832/e+e/diK3KIADp0kW324uXz35v0OghosqTAOjsqymVcXH3zk284gl5cddTfzxbkwbvo+mtHUAXsAHtmNCiKC6GDaYa5zUBng/xhEPcdCegBUKgtXrbvrI17/O7PTBW1TMD+9XL7x7XdOj+/+xOnJz3/q3uIEjBOuHTiJm9Rum6ur9cVVv+3opis+XLW+OLYUzuz8zp3z+3dPVDpLTrYdEiZ/Uc+wnnNhSZAiMwk2V5sYoDo5c1Q5LCERJDDOet/4tiWRAvVo5ozls1N2pU9sk5rrjdxct6gNEatq74NoX1ZQz4r53LAxsXV9T85RUVi2LpEJZAXJs2I1n5+pQILYUvTXFx9tths0tKwWXd8zo9rkOHTYMcSrh9/uNh8gmntnd3XzAZXLwAKmCEiIaAmzlOqYi0DEae0BqJCqSsrQ0tttQXdljAAAkDTllzNTtOgkaHIrzJKGKyEA862yZ8ZCp5QIC1TNxBISU6ZWVEhJIDkDykmiimK9MDrf9N3Hl0303YOHF3fPT2azumCylgjEw3ZWVa6qFUmAUxLVBEO2SwUVWEDbLKVMhJI0DYShhMjBewQE3mm1GmZDUVMIicgo3g7OsHYZUDElGNF/efnu4iIJU0AVUUUV0oSYNzoFhNAP0ppEpAoaomAi5sJyRCXntIh912lKzMYSu7Ko5/O23WDTBsFte32/pvozL7751jtd99A0sx4cHs0tQWHZOWOsYWbNxvpeJUMGng31FURPjIzQBHdJqBMXNz/lOM0IwOO7nFVKdrX3++7No7I3uyZPrg2YBpb2s1JgeL8KatLh4HeSlNmN3itfUcg8v7mLkzU/vfiBBt9el9LO/3k0d6EwlejN/hxn2T4F3SOrfaLNSpOs1MEj44TvOMsCjP/kA4zfXqrwiaXkg7TgrvPTFlPIr/BYr/zYzuN0OwCYEvIetL0ePi6ZuQslqjEMALkueTpBg7Tz2MP4xHvlmG5uWWlx/OdUSOegOuQgbTL9x9TGkl0F1BArxeGfiJggara4s7TSdEPct6QPgHtTj4ZBMpwKRFSBRrMTwFgkUmtpsVz0fZ85ElU1BQGh0+XJ2f2XQMWAdOvVe++89b0P3m82m7lRUei933Tk6jsvuhMvMaSURQDbtheVWV2fnJzcvXf37t27xpim7broLZtZPT+ezWbzuXMuxhhCTDE6JosgqpyJj+zSWmOstWxUgjWWiZMCilprSF3f98EHZ52HUMxKY5iZh9pcUJFUz6tsHQokIiSmpLHtmzagq2Y7YpRcs6JKiQCBhQbBbAREY4yo5lrhpmnsBDsgUXQ3R4C47bZsuJzV69Uq+uSYNRBDcX78wu98++Pjk+PQhgcPV/fu31dFS64sK2Mto1NlFUwKqiKJYowifVEUGmNhrEGyxqpq8qH1ARHrstw222bDKLWzXFdLRLy6uiLrNl0rmqpZ6b3XlBJEJQkSyJIPwUghyFVd79ZYBBE2xve+QxN8YOayLKyrbFEXIilFFW3a1cCGEFPfdt12w4ynx8eM0HZirZ3NZzc317PSESIb3my2KYmxVVnNRg7i2VxU9ep6papkHQCklLquy65Xzro455htrr/N0hy5LAfZKFCvsI3RuUKNjQAMgikACCR0RQmICpRkkOwc1/z0fCHaY78YYVGqSoQ5y5FN4igSfXDOIYBo3Gy3RVFdXt10IXQPH9SzuXMVUZGxOWy4tAUR1lWRsRiz2SxzVUsSn4IHKF2xXq1C1zNzWRQGKYFWrtAkalgUnHPzo6OiLFer1c22KcpyVrr1pum6zvus+J7Kkp2zWfkmKMQoZBwgJiTDLJhtKCTDjp3m4jI0AgLMee9XytUgoEmMMdY5IooxxhC2IRq20fd1WapI5QoEAE0a4XK1Ylcujk+DwPFyGUK4Xm+2ne+64JRmtsCkoe+Z2ValMSZKMmXxcQdf+uJXvvzNN6r5yTb0aAiZoiowqiCKUCYTwtstEZ83o6IAgIqoiLszZAgVKNy7e5eJspLjmHLK4U+ZbJeEmBkDqqr60z/3b/2pT7/wq3fd+9/60jfffjfeXCcort79eH1xTiVbMuvLB8ZvlYvIVhUI9fLyYUgJQMeKbDHklrMl3t1c3XSb7cxT2Hbrjy9n5k7BRiUNAeV92PEQlxUFUJGEj7NtFId8CuQSKiBQlSQG9LSwZxZQE0E6sfaFurp3tHz9/PjOcraca1kCGZOP0iTJh7heb2620oljV8/m89T5F1+98+IL97a+UzYhKUQ1Bq0KCmBWHRcFBVSwbAtyhLkMhggpxSQSfOhDpurzfVUUs4VxjlVj3/dNEz9+eLNaRYuZKKyc1TMfFMAjApKyISVFEoIBh5vzVoAIxMaYNBBNmLIoq6ruex99H1Ik5MJZVxBi2XaubbumuZGUymLuu40BRVMYqVBlQpKrTw6CKw2HpwLksNPjA/MImXZ3lIyZWjNjnVxOjO3HP0DzJRUAgQAVFRBHPpzhf4PebJ5tBQAk48qatSjee//Nt9957+7d87vnp4XlqrDzqlT1m9ZX9WzoHiIZa4xVQkTCRKCAJIIJdim7HA7IlSQ5kIFEgiA7lSUVGVJlu/U3fcp8TOb/jQ42IgIQEIEAoAAiIElKozGdNXZ0kPvchQbHPiMxszGskWkAkygisrHGRFSMQAa4mi2Y8KOPH7brG6yWq5uronDndG73oMAEPzAF7UF7dNH86AL4zx0O/+PbfuiPvGcf/+GN5wHa7b+raZ8fvOVY3L4vM/wtszMRUde1uUIvS0BEEsMFKSIIghKIK6wa5KK4urhalEdlURZlqYyKKAQxJp+iJHl4dZXJVcuynM/nRNQ0TVKYL4+OC1dW5dHR0WKxyEgna0x2AEiSsyZXV89mswzWz0ura3owg5BrjLFruwz2zsFsIhy3/SeJAumkgUBKKVN2TXMmOXJBu1DICBXDnRLF04YXdylhREkpiKaYmPno6OjevRe37fbh5dVqs23aPg8vM8eQFJMmQSzm8xoARLYZPCYiurOkASCHtnO1hiE+Pj5CxBgHUYscuQ8xSgqAmrIFP4lH5BQT0JBvHwZBRTWDZVJM4gqLiL3vQqRcbEDMaPDO4n7ftc1m3W43IkLGAKTed0wUEra9L4p49+69q6ur09PTEOJyeXR5dU07bZDsgWTkUt/3IUZGto4zZAgARsR+SkO+Ks8yEV1cXMQYF4sFmz40HSArYHpyZOrxS/4Ha2nH1tV1nfe+cNWY3swPyDQgw/veZ461kaVtvMh2s0HEjDA66H12GJxzSJRZgI21VVVttlsmGgnBYMflFWNkJlVAGkKfiJSNnsxphcwjXAWJeML4MVGXBt3tnCISRci6rBXOxkTvu77XJDnvZ63LER8iSkkAMEbZbLbb7dbGJCm5whVF4YoiqSDhcr68vFl7tV/86ldMUTZtb0sXYeD5GOwiASVFPaw+fh5HBRUBMsIjjaEuysJeiudn52MmWnbk34+d5lyRtl6vHalZffyJGn7yJ1//sz/12hsXqzfeerDQs/uF2hjQlvHmqnnwFr+62EIBEOeM77/zvdAlzvYmgBD4GNVAdXZM87JYb+G9m+1q9fDhQ6gLs6wtgNDtrW/9pd1+lKNl9LgVnMeRFIwAK6FiFIDoZ4ovV7PzuorYouqd2eyTRycv3zn7zL27944W1TwWJfaBVWPwqe/6EIJoEk1sipJdLEpE8+nP/fh2u2JmLquIrBIUBrYDEYgxphC8D95HZlPaOU2K6VMKKfgQfU6BWmvreTVfOMOowCnharW+Wa19D0end4uiLIoCMcXECnnhWWNYOEOjVFREomhUTZntKgkTGURGZGfLup41TRtERKGqy9msnM1L6yCluFlvVquWyRSlWW/WhUBlayzTD7tEZcjOjbDL6erKqljjTvGU8CdN6vOegjPO38mFKAj27O4LzXbzzvsP3n73/cVicXZ69MK9O8dHx4U12HvCIaWDKSaJQkhEgKzgYNfn/IVcIwQAhqwSMRgiGicARCDJU97LMUtLBwqGCrQv2jKmaHMqOd/00SIKQgSiXPSmUVDzEShKbKxzhSgwGFm1fQr98XKhoh9+fLHdruezWVk4lRT6ztY1gACQPEdG/Y9Se0pVxn9X2w/9kQ88hCelaH7Uba+8BB+7tf9J+z4tm84ZXDSa0apKmOQ2xaad96Dp7PzO8fGJ7322sgAgxCiExBRlKNJ48ZVXxgTRZrNZr9dHR0fL5XK+WABTZises+75dswsvs+ryDlXlmWOx4cQVISZc1UDEbVt27Zthuznv8POoMdHSEqn7XapEMYYUSn/NtsG+QrMjJJ2oJfbQsRsyeiTzxHcbf5MFAB0V15ycnxy+eXL+XL+uc99brPZZMjQfD6fzWZd71fbbUhpPp+fnZ1llFeuYZjNZtvVKvc539raoQLbe39yfjaOnohYa3MhisTEAPkWuqvLHePI+cuwK1qYNlJyzmVfItc86I61tmkaBK1m81ldd13TbNcpxt4na7ksS0B8+PAhES0Wi/zbq6ur2Wy+7QLvl0PkmSLDXZ945wHmZZCHN8a4Xt/QjuDYOXfnzp31er1er/OiyjxXXdfllfBDWPfP0Iiorus8Jtl9mh7KU2hopmnNsKhMHjBeJIYwrPBH1o8xpijLnFfcbDZ5lDabTUZ5pZ0M3ehjy04EAnZGC+30fIYvTy6ePx3/Oc36jkDHGGNMsSzKDFTB7F4KZCIlay0hZdAXM2evMqXUNI33fjmb28IhYoixrGvryiipaRq29o1vvPnN73ynadtiVnlJO2sXECAdJtIncIbnmyTM6HcghQQAlJEboghq6JbBIIuNPPYKeWKGfSd14pvab46kBY7L+/XnTj9dKs1gy9RsglbgL9742guvff4KUoLEhh988F4MihbzXpkQEqMoqkWxhS1MTZW5mbUSEt5Sm+Xn1n1OW9RBHENFOTu7Qy4dFIB2TigpmgSkREqQUFOacXrFlae1jUmdynlZvrqcvTSv71euZAXVpBRC6vvUNN16s22aRkSM4ZDSZtterzefev0zy9PTLunxolZrYugkqbGMoqqZfD543zVN0zZdDGIqA7QrpxlJpiEXRtP5+RlQdjogBFlv+ouL6/Vqw1ypqCQNPgKmGIUNEiKTtYYiCqIAikhMktnKFQlIsY8phRSDpCSqQGSsdU4AEI+Xx/WsmM0KY0EhFkXJvOn7IJKabS9ouPImRX4K4uT5Ft6YkZ8Mwrimxrf06fbW1FF5SsQ3X388lsCUi7OZkvvoow/f//jq4c32YtO9eD+enRydFGAI2bBlNkyGCRENoRKpoo4dtoAMuqtgiymwMa5wmrOEhEqiqvCInu70nzjCSXePP+w4CgAMMGRamA1biDFCjCqSY4FjDGY6PrjjsbHGJhMgDUwjgmiMMdYiW4wSRdZNF32sSnd2vMCtNySWBFVSjG4vIvPHuB2sh/9/8FV+6I+8n1GBvQz2H+BwPmMV+5+0p7TMLz+bzXCHgMh/VxAawnoKoEVZgLqoEZhtXUUBdIW1loeSMqWUKEURwQhDSB7AVeXRybG11jpnjAkp5uxEtqJyoTAN8PpB8DtHpnVXW6yqZeFGLY4cbckcrNmfGR8En7ywp0kSAJQYGU229cfdcocVvK2/z2XfOSbrnAveP/bisGOpytu1MYZx8Cuy47fdbufzeRZFybZsCEFBl8vlxdXV9fW1tTannk5OTvq+v7y8XNT1eAiOqaRsTd7c3IwlK13XjY6lsTZfmnekyWOkDyclNzolYxFRVecsom63m5RiWR7lEoYQPIDaLIqAiGRcURq2bb9tNltlI4CE9Oprr6836673IlIRs7EffvihreYZDzFa9tmSDilmFYSRohd2r3AGTY35iowByzbx5dX15bpfHh2XZTmbzaqq+sHX/LO33P88cSMdK0w0OvOiretZ5mgeOVfGK8xms67rMsJtmmkBgLQj48pVOkVR5Aev61pF8tTndyG7JXmufQjjgQ47IeBhNidh47QvkTlFrg6RiFxSElNMEUcVYxFImgmsDVJRFnndMvM0U1SUBRBmk4aIgiRJmOvHLi4ufv3Xf71t26zfkJnQFQczG0QGgPQjOS+zjyDOxb4whHj3P9sr1EsDmAaRVJMzHEKwgASYR011oHMeAw8AYJ3LGpZ5THMVkbUWUpJmg31P0GLoTOqPeB67mFh6VDVciq7e/s691UN7VHtNwnq9uo4xCiYlEQAhSABC2qegAMQwP1tUs4JiQGcTZ+FuSKiqahTHahxNA+sBiKKqJtkRVSPkHOiQA0cANoqkSIoiYJlt171Wns0ooXEUaWHwteP5aUlLC44kEcSoXeebbds0Td/3XdeGIKrOh65pt4vze3fvnW/bNhJZdtVinrwFQo59128LY0QwRd/3fdf2fe9T4hjEVSa/2JRUdzR/zjlVmZWzkIvu+9T5cHmx+vjBxWbtyxIuLq6rqj4+PlKIKYorLZElYiLDpjcmSyCO8qlJJakKImUZJmaHSMxuVi/ZegFdLJZFYYuCkVIuffB96Pt+s1mFyOxDflEBAXFwnhQ02/zjgTE5OQaM0ngIiYhIysxUjxpSY+RgGhU4MMEPOLV0KA5hREy3qX7NYCrdAcZwJ9uuEyqYvO8ownbdoKte/MTrV9dX773/wUffeuvipn3x/t17C7usy+ViXjjLqIbQOQtMqJo0ELFgiqLJB2vtgF9XkAQIMeREPALmup3c2wlL11gMN4AodxUFsmMJ2z01ERtRARUySISSH5lIokjoYKrftBsoBCBjUk7yIBCS4nBZQ5xhrEkUIM3rCpHWTUsxzksDbKOmdr06Pjm1TDutGyK8FbsdJm43U4/sKPvTergPTfGZk5qEHXvHdBk8oT3xo0d2tid/8ckfPpEa+5EOP+vV9fEfHQiYHHxtb6CmhT0H197XNpl+RBPF2/x6TX510OW9Kp1pD/fv9cSRmQYOHwk0DDlAnSzU3FIa1qSIHFxb9hVRpoVDuFej8hRA2u2brgeQAxzIIca94knPNR0YUYE0eTrd/0j3KuCno/HEa4+v7VDwujfLTxW3+X23THE8SBbibc52DNCOe6m1PD62pBRiSAJIaNgaa5EoAuzQOHkjJ1aFnUAUIs7KkphyGNUyYxqyzTFGQiJLA8OYKu24tqy1Y1xfVUHVMI0EStn+ztW91lqYDtQj6KyxXHtIHQxfQEDBCRnxOAKIqLvUynRqxrjYdFMaYlsASGRp8ListRIjJB1vd35+/rVvfI12WiKZarZpmrKqkeje3XtZCSSHq0WkruvT09PNzU2++MAktuuDc+5ms86DAADZ6B86Bpprlvq+z6btND2SBzlXY3ddhzsqOQBwjr3v+74lIkRBUhXJlXF9HzOtU4aIpxQjAAcQgD4IopKJRTnvfZ9UP7q4tMYsT85ziXnGO2QbN/t7zrnep/FYH43+vAYABl7dXKaS7f6qqvTySnaLJJMgj75ZHjEcpW92VYK79kRB1ce+QpRdtJQGMROA3JnM7gUwVLnkmRqXwSA1lhU8+z6/QUkE93c/nMDhhtsxSUr5Fmn3H9ldGXubHZXsJsGO4wsnamzEgxM4TvH0iaYMt2nCnppdnjwMDkGSdKGLMYKCxhR7H7xX1QRoSpMvnld7zu/lxdz3vvceQqgXcyAUVVsWiPjlL3/l27/3pjJa52KKzKwpEgAmUUTOiHbNMWdV1cF8BDB7Z9HuUTBP6h5nwu1joqJGABhoiFRUVSwipnR6fPLCvfs5xuC9z+NbVdXR0dH19fV2u82u3ujA5GElBN+3qiKKSAgqKUVjjIKIATSEvbd9e/3Gt5Y/90IgbEK63G6CRpCkKgIgClElgAIhMAHiNQQqEAonChGSIkaVoKKqC+Bd+YcMgP7d6kwhZs8YKJcly66wHgWIFAUQhVTBGlPG+JIzRrrIqKol6v2TuiyBuFNwKUHXyWbTb9bbpulyhIYN+CAAOquL2bzw7erquijmx7YoFGWxqIyVj958F32bqkLVhF3zPoSATdMBO1UElCTMrMREbBCLfH4RsUrwQZomNo33Poqk3nfRJlBythQN1uJ8ZgyTSgbgsXHquxSjz8g0kSQaRSXbsYWrZvVM/NYyVZlCTaQqaufYWBH1SJGIODvwEglNtrZz0OSWKUIlxjR6rfuvTa5gun17d6sUxh1z/OYt1mmf1oZoL5GyjwpLIkg7/eYY0sTCGzeWvPsw7MypcYmOHS6KIsMpT87ugHHf+97bb3zv3Q8fXLxwWt87PX3x/r3lsq6cqQoLrKKikqxltYiIEmMKQWIcFLKImBgBQTSFKKDIkv8OohomoEpUJYHBXQF2LLvcyHjg4eBes1JUJGZGQkhCSkKEHCHsvgIAOrAc5z8RUVSNMUoS2D1sjvwFiQWR915FVKl0rGraJoAhNLbxsWvW7eammM2oKFBUODsrnE/qwfKdjHJKj9ltHm0HjsoeC98uxz3WQz92bcBjjOy9O0y+tpcF2rcXD32rZ2wHmoxP/NrzfbRvLu/5FU9Dae+Z5tPL31aLAhyc5s/YDT3s1JM6+DTNRNzDSxw6MOO35XHwgElIePKrJ4/GI2f2bUhieuOhsgtGGY0nXW+v/iFp0lziNYQeJgMlg/n7uNX7xDYelPlJQ7wNf+J+HfAP3hARQEWF8DYJgDtO1fE7RLSjlkAAFFBCi7mcBAEMDemJvJvlRyZABbIcQ8zkRVy47L1IkrSTJB/iRGMgMaWUUu3sWCEzUgPLjh9piP7utOey1BUzR0njuB2wKUynIHs4u68hDlHvW774/BPdiVoMjjRhXmBTCv5xHY4uFk/uaK2VEEVjfgomWh4tcxAzPx0AxBi32+1sHqJiFHnhhRdOTk7yTfu+b5pmvV5bohjjyckJM2dlldlsluFDVVXl7mXR9zxKxhgm9DHlR87jMz4UAKgOhmE223BXGYKIoimJNxaNYUAR2ZGXMNAQymcRkUwfbYtqbpPEvt2KqiAxsXGlhmBMSqpt1y+Xyyy1kZ3J7E0ZY3wIRVHmGcqsxKOvwsxZSbDv+5ubm+12u1gsYowfffTRRw8+Bjsb8gwTyubsV4jI7Yu5v7Pv/2v/TXzcBrizD9CgGf+iql3XdV1X11XaLdcMksx2S/bHcCeTMpr1cJsqTHmmxi7togA2v/bZ1cyKCLBDi+SW82ayoybKof+8Gof3KA7KmNlHekpYhGi6o4rfccMoKBns2t57n0JEBQlhB0waLpKdk7x68wKOMSFoFEkqM6bZfG7LAgjX6/UXv/KlPgSwRkAzvVOuIctidwScK4UBFHZ7cqaveF7BR0BQVBQFZGuC70o287L8hZ/92c985lPvvvvum2++eXFxsVwuX3/99U9+8pPX19d5VjL/WvY7J2+4Jr9BlF6E0Cg7VSIAIRSgCJ4JT1x59cY373zuZ/z87vvb9oPVjWAYC64zt6CBDNMnRfQMCGAESAFFo6SoEkEENCXAJGPo7sCiJSIlVcKMChtbypsnICkAUoS4rNwZEaVtmzyLsQXMa+ZSwQQv2jbatOHmqlmvNu2mUdGyrARSn3pr2ZaV99t+c1W5anFy4pwRCX3TrR9+ePPw/bPj4d6ief+NXRf6JiaPQUxRcpISsCjLgfgkb/saIEQR0eCl2fq+i84WKpQE5/PF2dn5yckJEhgrRSlJmyQdhFQaxyHpEBTzKQaRCGABVJIiEhtXFLV3VSJkRjSMxJiXGfgQQt/3fd+llKzj2axK0ZnCWWsy+c9uK3xqPPKwaXZo8fuEzPfaAR3QU9o0b/NoTubga7t428hRRgBgjb1z5x6x/frXv/7dd97rmuOrVbfu4wt37xwt6lllZ2VZWCQA0w0p/rwBCaSQhUudy8zDu1shIUpMbNASK9yuPZGkgoii2VcxIvuhvkmPGUhBBIiRCDWBgmbxUGYY7a39YYrx9pxmJkTNVCDZJcMhj5w5cyxBYk2WE0T0USF537fRd0YWIpJPPHqmSXjONm7TBwbrH532fL7N87UDgqmn1GU9pY07ITw1rn/wXM839tPrP/UKzzqKo2n4+/jNH14bB3kAGjz5m095ltEmgOxSPKtM8fM0mjTYS4jl8B2AguwoUAkJyQBiD2Fn3QMS5rDg4How54IhtoaYiHlwDnUXQ51YbNNHph0kbOzYbi0NTkVe/CMMhoiipJ2HqfTkGpXplgKIJDuojOpBLOzpA/WkdTgyF2dskE5EJF984cXz8/O33367qqrFYnF6esrM2Uayrox9771frVajy5StptX1tXNuNpvlfTunF46Pj7PDM345G1pd1zGzKYsYo6Q4dnV68OWTLiszHjyX9z0iFEWuUOJpfYWhAVwUkwQRQGZT2MLuvLhUVBUzp64jY+ZHR977ruvats1QPe89G2bmwU8rHCIbZ/M0ZU62bAMYYzabTQ5wZ5zOZrPZbDYiYo0N8GztcP96nh8dfFQUxeXl5c3NzfL4GNjSrtQzE3lnH6Pv+8xFnDHktJ/Z24vH7f6bma2xyJnnTfJfMqYRAEQkOzbWWt3BHbOvrqq4f/1xYeuTpckefa7b9UZkje0QQwgxBINMo2WitzGjwRlmDiHEGPu+q5wLKSKTqDZ9Z0GKunJVOVvMFT8CyCRsu05OQ17Tzk/+97w1KoqqCEpKgswG7fF8/gs//VO/9Of//fls/l/9V//0H/yDf5DdkqIoXnvttV/6pV/6c3/uz5Vl6ZzbbrfjKO86JNqvGUJIiozMVhMIKUBSihGjosMEcHVx8+a3zE+cbiJc9j5RnAaTGHLmKPsZGEAAgBRYBjcGgQBAsg8y2Xan756klJFqmKVKcHCFFMFLsiJCCRKqwShpOa+OCiPSSQ51s5ATrFSN9Oq3jd9cdxcX6816E7umLsuiLEp0c7AYNQlurj8OVRH6RdesqSyU0sfvvnnz9pt3a8tcEIFCEpEUYwiha/vNRnrWBFbVOmdSMkTOWmsdAqi1ttt0iJii+l7ypo3IRcHWVednZy+99NLp6am1RCaFuNo0USAwkbWWPaiGmEIIPkYvknLpUeFKiBGND0REDGSIlMgiMwiqRB/9ttmE2IgkZpzPZ3VNEkvFAtmEEDAEMgMkA/cW59OaKowBg2e3vQ4232cvph9/pbpXEplfwhylM8yQBDIsAjGG1Mc0q6vPfe5zxpXvvff+xbp5eLN+eL06PZov6vL8eHm8mJXWHtWFMXKQyFZVa21GZOYbMjEqSIxEZNimySub95rhCogppV0VyiEobrzLeBRl70hBjbU51ZseERSKYccfgpiZkymHi3b5hF3ARg2TI7BEpYt+3TtCJTSU5zeKKEgSQOIfof+AO57WvJ/iI4iOP/R2cCT8SL0pBX1qFuWZ2siv8OiK2rvXgfqheZ6RPwBkPuO9nrJv8L7U5nN06Q+y4b4+Iz1ZrjQ9WU8zPRU+98NteUsZTfnJ9CmkAKCCpIOwbt6kDDKyKGZaRYUBTieaUlLRkHzaFaKM4zB4GinBLmtxYFRl2E92VMYM7ZASSYP1NjoqYwm+4lBxnvfMJz3j3paiAiKotzqPzzhQT1mHOa4/Hk8ppSwDggDM/BM/8RPf+973mqbJlncOOvoY6/lRPZ9ba4+Pj51zWUcvU6XdOz/Plnq2idfr9YMHD7quq+s6pjiifbL5mOtbGGG5XPq+y3odj84yAJRl6b0/eOIYo7VmzA9M54UtA2JM0vuQFMiQMgERMxdFmaLP7mKetbFkQmJs2xYRi6Jg4pze6bputpgjGkTs+369XgNATpJkdyuLpsDOPTg6Ojo7O/vqV7+K9KyyXQdbCj+bUvD0Vwgw/U1eM9fX113Xua4/Xp5kErNx3LIgY/ZYdF/OdWxZRma4PuJYl2WsYWvHAc+/TSmNGZXxJ6NvP9SWTDZYY0xGjs3n8+zpTZ9ruranIzPQSuWJ25UwERFqZjMeXkDSIVGTXzeY7O2atSmDhwA367UQ3p3dIyJRfeW11/TrbyrAweGRfZUk6cDsuX2Wx0zO920Dg2uWP6TQtccz97lXX/mlf/fPf+qTn2nb/jd/8zcNEyEwYUrpjTfe+Pt//+//2q/92n/yN/7GK6++mutvDq6HoWVISQKBMYSaEoIiJFRBxEjUbZtlObt485v3P/0zCqVHENIx6ZHFTxCRABkQgFglb5QsYIiQyIAwiIhaZJAhVJ7d3Nv5E1EilKFShRiH2DYqgKImEhBAIFSJc2dqwxLFugrUKIJq8kFXQSWkq8vt6qLZNHG9aTQFV9YWmK2Zm0q7sNm2pTXNapXCB0W9JMMXlx9ff/i9Kvalc4S6q1YQEZEo0Ye+DYmhrDHrhDAjGzKGbUYWCfatz0iiGBMRGTYiWjh3fHJ0dHx8dn7n5OTEFU6gu7oOxA4gOMfEgOgBRLKUo+yqAAhsVabUp4QxqTGOCweQQdbU+zalvu226/UG0JfOWmuoZEKWNO8j9Qli37MJnBUPVRQEYMcWibns+jYhto/Ggcxf/th3+4mr8pnPbEKUiQMwQrwAAGD0EXLtimT7nsjCwJtMCAggVeGQrQ/h0598/epmu1qvHt5sgU0fYjMv+5RWXVsw3V/O51U5q2fGUuEKIoo+MBGIZsAEaHb6ERBUkkpiciKaZdEUgTN6deeo9BOsCwDsCbhm3mbKHM4Zr65IrApIhgBSElXUIWmLCog6JhcBAIlwLJTJ6dgsz5ABvgYxqCKIYT7lAnDTBE0hpOgh4yTz7vcjdlRgF5PWHzZVww+rTc+AH6kdeWBLPd+9dH9FPd1/eI7rT9tBD590wYNz9CmOyhjSmwbj/8i2afD+6YP5lE+NeSZn7/fbNdhjwlDIlPy7TRJxx4q++7bi8A1QjClF0azzxMgZb0Mw1sJlhjAAkT4mASFiyvBUhZ2zIpqx+8MxfpsnwqyZmAOIE8sMEJkopnib98bBLM7/X5gil0McxLAOn3wyKZkjHkSy77W3uT51pA/W4bQNRgUiIbK1hdyu7SDx7p27d8/vXlxeZAzYe++9d3JyenR8rADb7fb8/DwH7LLVtF6vLy4uXvvEJ+7evZtpr3KSIRflqyoyqkr0Paj0vrfGLhYLUWm3TfI+xQB4KxI/CjbkkJa1tm3bg6i2agJgkeR9v8OM6TCxRIAoKcWYMmu+JkmQJAkSA7IoSlLiXBaQALkoql62hlhVu753qkhkrF0sl03bWkeGUHeigaOWJQAgQkqSp5KZu7bP0dsQIhg7rrX9jeJwq3m+l2USTwcFwJ34dIxxvV5fXV3VdV1XVV3XzhW5hCaze+UhVVXvw2hmHCCSea/AXWKSAU7Hxhjbey8AhOhDUN+HGK1zzBRTSiIpiYLGEFW1KEtmNtZOHXJkmi3mtu/X601ZVdbeZmKz8Xt7a5nWxDIhGmOzNhoAYKbVYTbEuOOXQgU2hmlgwVaAEAfGCzYWBpeyqqqa2RRlpQA+pFdee13HmdntN0Ni9ACsi9nsGMQmDaS9wPMeQHsauZkcAQhKrk0JVS1Edl3/mRP7771y9jOvfSYsX3/z3W89vHooqWMmQxwkhZDW6/TGd775v/1P/9Nf/uVf/sVf/EVVrcuy6zoFsMwSw+pqlQATwILI9m3wXgEjokSDsvDUY9FAbOPH8eobvzn79E+n2Aa04COBCEpCVUOIhArGEys5Gh4naRZwUcBcyIfrZovDXoaCNMXNI5hhC1aFGFUICJmIFGbSzUNSMDfWefVHfvX67CSyn9lT4CKBFWIbjRFete31zfr6Zv3xw6uYTFRYN+E6dHfvnd45v3NUlMXNDYSPie51XS99c/3Wmx93396s16VJixM2aX10dK8sGUTEB4gqUcrCpQqXs+XsaDFflMfHdVmjc8m5UBRFSsEHrxSDNF3Yeu0AcD4zMbrQS+2K45Oj2XJxdH7PJ+i7rdg+6CZPa5LeGSwLNdpCaCEIKhOXYKDTICVGz6aaxRjb7YasKWezpJFx0282SUNKUVKoHdelLZwiJGPNtoFtqwIa220IoZxXZEkkGixSjCkGYzgPMhIyMRGGkHJ2fgRcBd8DgGGa1ijkE233MrOPfjylDvapvUJKZiYSEWHKx4Sq5vhd3/eaomGOIiEGzGY2KSOFEDQFZxAAQCPbUhUkJVUgAAlBfChQbWF/7md/9rd++998+NH7aMmjrDVsLdeohqERf+zrom0XdVla6xDnVRVjf3HRLeoTAQIQRGXHxhkilOh9tzG2Ih5o8AkUJfvtCkiFc3lFJxVVTTA4eYoQutYQZwD0Lo4Ixhg0JrYCwMTGoMAuo5gbJwMQAY3hCJooS6KJgIod1PfSLdaWiIuqAJC2Lc5O1n2IjA7BEhIBEAlgSim7eYiY46WTTWUSFNivANlPDBwclgego1t+lRgnZDv51X3cNZ5aRPHE8ysj9XkntKf7pRHTn+3JvT1FV2G/H08JcU1ddN4pmY5wlOklp6b5Pop1z2aaij/ivj2fxb4kiaQhgi47Rsscv8z1tdbaPZKAp/Cx4tSShv3n2uPBnH40FQM9sCyzXXUQ0M2tC7vnQspBu1x7yszTk/gQF6pPXBzTGySZzPk+UutgRane3ouGTQRUk+q+8GgWYQUwSDDoJu8+0b1KePNkZvcYnpivQ9LpR3trA0l3tW37w4swMMcAAIhETUE1EhgiCilxLj8wFhHTrosK0AUhIhEN3gOiNY6ICIFAcOCgQUSQmEQECPvg1+u1dY4NF2wNqAQ/TigpWMIcOyciBUghAMC8Kuu6NjtCoXxqEJF1DhEliSJsmybGOFvMMzqIcokpDoVD+akzK9Eo0AGcy5oz5BWNswYxxgghSPRJGVVAImqCZHBMK7FJqgAZBnwLDUdQlPy+jEuXNpuu68JisdBImZlAAJwttz72wTtrQ/CFLaDAz336c1/80pckwfXNRlWTYlnPT49Pjo6O6rpqmm1Os9R1Za3x3re+N94dnZ4sjo+aprm6ukqSFsdHKkmSR9XQN87OZ4W9uLhY31y+8MILZWkDkapLKYkoDnFMSZJEkiNyxmybRlQzbZSxlo2JIViqQdVyYchl25iZjDHEJlOIxhQVxVpnWEWDAXHWhUgqnLFAmd8sn9cAQMwImJJ432+7zieYz23be0149dHH8/ncOVe6ioBTSs2mveyuQvCLxZyZnSu9jwlFBS4uLs9O7n3w0QNbzV1RIhkFDFFEozEaEzBLPZ+NC2CcxCEpMXnRJzBCAADY2zcmbwoqYmzb3hgDil3oBfGd9z8oy9nJ6bkhMoxgOWcfrCEACL4DhKquu76vZpWq5iyEddYNMsmubVtjTJ4OBVARYwxZJ4yz5XHbtcYYbRrf98XMVvMZIW222zZ2XDIAdL0XUQIAGiglhvMRySfpfCcqXBQqOlssM15rLEkaH1O71hhDhDEOBfGIWJZFDDEED4DGWGutNSbvonlrEVRBEsNErIDABjTNF0fX1287gMJVhatCkNmiXq19UVV9NMujexXbjKckkaCSZDc1hDzdYlUVRAEkJXhuwUcFwFxEQnA2n332hfO5tOn6gS/unpyef/JTn/3CRx9VhvsQiAwzE6qqXF9f/8qv/Mpf/It/8a/8lb+yXq9HwjWHqAKQ62ZUCdAyK2RZP6OiWfJQMWls1x9+d/byq+cFP/Bq0WKO+2KKIElREYSUVMTHMQQyviR7oyAiA82L7j/ZLg+VUhQhIiECArAou6ofiKGMcYaYBCIa4kLJAFKK0sewvtleXa1X226z7S/XN1zUvYd756f3X/n06ckpKSCXCTheXqtos7r56OptCGSIqCRnbFVYiVGSRYWUIEaVhGVRmyUulmend86q2tRza120hZIxgBgTeB9Xm822bX30qgmQEMgwgYWisNnVTpqJhw2SJVNo6kWEOAunq0qEFDWJJpWUBFVIksSURBGtK1QBCck4VUWJbISNKmgIofNYlFASG6YYWxUCIEmIjIyOFFCVyRKgICBqTliJKu50GXNyXHftSStvPL9zqCzjT8aQ2PSbj8ZWh+ggQJpcP6+NEeHgvR+iifs0dwCgWStoEnfMfEAAOKurT37yk73vrldXfeja0CXCY4JZWdxsOxFw1LdtczyfzauSekrJAGBcrTgXGVnWqEkiEBJltiJLme8hM5aMqGJE2RFjKGZBo8FLySzbSQ+KknedRwQmxYH9Zi9YjUTEubQFQUdTTSfG6KODWVinYCJQMoU1Zpcek/30+A+//fBCyD/M9gPG6uCpAT/dbz/0bjz2XuOMy4T15Ae8+Pe99dN79ewp0z9pv8827mm49zcEyvQeg3D13gS5ohyISq3LoJexafAAt6jEEEJGLmUQFMHgQOB+mmIaZ0KAvCnbHcnSQfI0L4kktwmTvDhwv+XNczz9ZcJBOr0YTMIf42PqyEGnWSQOUFR3IZjpG6EHEd6dK5izNDy9GwIbQzGKKiBqUk1y986do+Wyns/Y2a7vrbVIlDVPYoxN05RlWdd1Ll/JXL1d14316EdHR/mmTbNFpKouq6rK59rp+fnNzc3Di4vFYlHWM9EhlRdC6EIgIiTDxgDRwIpGQsYiIjJDFiAWGaINMFCwADKSRaShBDvlgdcsBJZAY0SRWyzcwTtbFFXbtr33zGa5PNpsNh9//PD09LSoS2vdarXabDbL5fLo6KjrukyQ0DQtW04pnZ87IHSuvLi4ePO73y2Lerk8am8nnUbg34hHeo72xE0GISNNkChFSSo361XXd6cn51HEWQfIIXqRODKD5cWRFGxR2qJ0zpmuizGyMWQsGcPWmRx4NcbsiMJENar2TWutnc3n3ntAbPu+KIok2sfeFUVZVX3fp5SquiYiYqMAMcY0cFEMMopZkl0BAWGz2Y7lW6oSpyUP2SdQFIUkqqBEmASSZrXNW8RFXmkKKqIJxDCADoTXKMpIzti6rCQJsyGm7bZVup4JzMkMdnxKCoRZVltlCBsPJ9sTt/fncVQUUIAA0TA6kBeOynvLqrl6/+J733jpzqs4O/vf/K2//Z/97f/dV7/8xcV8phINZ+nKWBSViP6jf/SPVqvVL//yL2fOiuPjY0oxpUTEQFZURQGJs1WsCEY6EEHgQOgcXz98Z/3V3yzXFxKIiuOcvyRFCpIwJgLPoqgzY3m3Cep+qQPuSC3g0ahe2tuLadcUMaTUKQqmqN6EsCRz7GZMVp2xZYlkfdKu61eb9uHl9UcX100X1tt+4zX5novZC69++t5rn0k+xq5VU5XL0xeK+WZz9XHsN6vr2KfSFoqOiKwtJIAYBVHx0LcSotazo+JoeXpy9/zeuS2QTRJoFDpQzKXz61Xz8OGl70PXBRXEjNUxxlqczeqisIiYGYcRwRjjrAtiYuqZJUN/Y4q5mF5j0OAFEFlS70MMhFzWc+cKVWVn+hBiUmPJJKMoq+3GRzL2uKxm7EwMAQ2z2CgewKiG0JPBwhgmvi2iODj2eF+R8ElrL/NXju9b0jQ9Vw4ueLtiJ7Ocj7fpR2knLPX7QpqNDUFD6O/eOdtsXpZ34qbdrFdrRU0p+Vk9O14mAQ9ghfqI0MYQpHDWsSsLSlF8itCLMewcjyWpCi0bmw+qqaOCRJIUiIgJiGiocd8BIHcL+1GbT1VxNya7BNSu/0yoCkyopJpyJVF2fiTJeOgevCnWWkBXkhFXs7V/YN6DPnNR4B9kS8+lmTj91cHwTi+iE3ED3cnP/RC7MW2qe6qpGZie3035EbMXPKXz454w1hL86LrxJ23arDF5p330oxwpL8sypUSIOekxTM2EsVREmqa5ubkBgLIsaQff+r7LyQxRXHv4NRxiMXnHzif78DXM8gyTyM7ObcjpuLyYmfnRBTQ+Y/Z8pi/d7r4IMNS6PL2aS3YyF5lPjPeNrKzA2Pc9E7rCKer9+/dfeumlh1eXQohEy+XypZdeEgREzHRe6/U616DnV3K1Wi2Xy7qut9tt3/fZh8lCe3Xp8qTk7i2Xy6IoHj582DQNmRIm0NmxuoAICSQ7HaPBk3NTObU+HX3ab7DPTDMOHbEdyV0PFk+MMWPVuq4LIWT23ocPH1prnbG5NDyPW14hGflW1/OU0scPLp1zxy+dHi1lPl92re/7nqt67M/obY7de4725Do6lRSZLZPxqVegTdN2IQWFbdOV80XufN6j/Kirg7DZbDI0iwYUQMy7fa67aZpmYIHbqabkQSsql79/c3OTIwKz2SxXHG232xBCXg9t247rCidVLmOaaPS3jeL07gcrVnZMp7SrEBs7OdZH5NdtzLc7Z1VAkZEG6T+yXLCprLu+uiyKkgsbYojb7ffe/6CaL07Pz994442QogoSUY6cio4LDOnJUc7nLKZXJURDSBXGY6cuNRXBB9/80vG9T9gf+4U24t/+z/4P/8f/4j//0r/5glU0lhQ0JW2apihKZv7t3/7tv/N3/s5f/at/9e7du3l9J1GDTMYoxOzqKaIoKKnBSIKCJqACRtfdtG9989MVPez7vu8Tml3OHA2zcoyoiiIpjkGYQyOAKFMP51TbNOOuE9T7ALTINB1IyCZCElBOYR7j3dKdzeamqLgsjDNobPDRb9tt71dNv1p3bYh9hMiVqRaf/rGfePnTP14s7/iuS2hrWx8jNNcPRLqyNEdH8972GiXLjcQoHCFFQIEU1fdJEtXLo6PFnbt3Xjw+O0VKSds+iI+x9zGmeLNqr64211erGAUAmS0REIK1zGzqunAFE6lIBM71bcbaQgKnKAAZSUXBxxi8hiAhaAw5Z6YhxBAdsisrQomxR9KkyF7BcYykKpvNdrNJrrTVrCSLaMFaAwYjaAi996QhOgGs2NrbreTA3Mz7XXqcIuFTGu2XxT/J1Bu/DMPWkw7+nvuT3ZVnue9B0xSJ6P7dOz40Hz+kLvi+6S/ixXa1xrZrlsu6LOMM2BRBoPGhSlCXhotc54W57iUN/gGgQO8DxZTZUab7LyBqVGRmw2yNIhLy+KI762Cyt05HQ1V3zDwZ6DOVm0AQRCbNSqYZ6YaQ08TjEB1CiXSAsOej7nlG7bnaAWDsj0iE/WDff8bVezCeT3FURrPp6Y7K83XjsVfIAIn8Sub//lFXqz+l8zIRi/gDyO38SRsbP8FLgZ2xO25QsDN3dMfJO3opWU7bWptFGKeOylNWFBFli/ZAOief1/leuR4g+x75UlObdTTH8z+zCZh7kg7Zum/5P8dNb3wcGWV2AGGyDp/Uc90VfT16zCEOmH4RYR6YoEIIdV0/+NY3j8/PXn755dlsBgDW2rquM/FuJviqqirXPOSnXq1WTdOMg+m9d86xsSFK2/myKpmZ2Fa1OT2DJLfaAEhUFGVVM+guVZLimFFBBiImNkCigBKj5MB87j0zMCsiTEZYd6Il+fQUkaIchPJE5ADEOC4nysT3qimlXJ9ztFgyc6b3HYPLO9F3M18smV0I6evf+CYhAxCRSYIWb6d7GpIWEeOex76dzuxeUQkCJmAyzCZJt940V9erIOJTWh7XPgRAjDFiSpnobrcYICZxgF3vBYDZIBskyokq37Zd35sYeeerZKoJY23mGl6tVtvt9uHDh6vVChHv3r27WCxgp5pCRHVd5yHK2adx4e2O5lvqDucKBWDCHffnBO/aydQzpwnfaXZUxiWdUeV51iREAURRVkBiJjJEWTpjvlwk0NVqtWqacrGcLRfzo+P3Pnz/1/7lv8wgalVFUMmI9p3W6lPIRcwBvuVJ7RFILmkQW7CTcFqWTkJtq7h++M5XfuP1lz4zn91ZRfyP//r/6u/93b/z9S//Zuw3USUpgWKGijZN86//9b9OKf21v/bXTk9PC0QBiAKOWFVCjBlCqAia1FklRS/QqUDsHPAZlT915+h72w/f6rZUzX2EFMQSc1RDGl2IBCEIPaHUlkVzBTOpTp+KAHRSP5enCDEnITgRlAUSBZvSHbavniyP6tIUJTgHlgBN1Nj6uNp2mya0QfqEQS0Vi7svv/76536qWJ5tgzLXYjT4ratdTCoirrCzuUOJkMx8WRdFAYrRR4NBVHJVFgAaa+vFvKhn7EprMQl2YRMiJElt16+23WbbhZDpPphp2M3ZkLMWCbzvRWNKkVhynVZRVNHb0ENMCSgiAqik0KfQSwwoiQR900sMTGhMAWxtYQqwbXvDqJJiSpk+UWKCEHXTyLYD47CoyBhGwzbFkELyKuoITSBiO5VWvJXFJSKJQfcFHCeLbTJ3k0NCRKbQr/yFMS8vu10y21iPxmvz/xsz0GHlM2AM5KgqEfJEShZx77f5j8aYKFI4bjvvDB0vj/q+19Vq07YqPvn03Zvt5WJ9NJ8fHS3a3i9mdeFsABarFENdloaICZkJCBSHgCQhjmLD2TbF8fZGjDUIBTNrSlEEmQaeWkKETG53G0fRTBnsDAHugo6AoKKKCIwUQwJCYgaQpKSKt7+blL1RVry6tZuTaiIyyDxaBwJ4GIN6ZDZpR32jB6iACV7/AI95UG6yvzae+NE0jzxwFYxT+YzklGP+TQ/vNbrTw1KcCHQ+pRrm4NO9Cx4+2N5PchsiZJPPnvYgT5YCfErFTl4iACBZAgz3NVWffOu9f+5Vczzi3067+KS+62M+HWPwe5bE1LvLQSjVwb86QDjulajsPci+W3igBHf7Ee2HtHQiPHq4vTzhXgf9GI314Y/7kw5PaE/1055Qh7NbRcP84sE6HL88/HnslWHO1J0wwU3lvaUoirzHZs2HtIvUqkiSwaftuq5pmvzlXBg9XmQM947d4AlGC3YZFSLK7B/jPIw7W97VaaeUh7t0yrg5KwDsEsI5wN933fBDGOlUbhXZiciYWy4y2TGG0cgloBn/o+OxtdtSdJzcjGQZfZuUokwaABDRTjpjyFdba+/eu9d13dXl5SuvvLJYLPrgY0qXl5fOub7vjbVVWZqB1H5YQtlDy1t1Vl00xpiiAIUoEKKyNQkxJbFV7YDarkdkJkZCYw0RxRgkJYliXEGKSRKgIhMQCZICIiPbAkQll8hBlgcyZExWLZuuXtyRpwFAhvTn4D3okBHNrktRVKPq92K+aLvWez+fz4uiKFyRsW1ZnL6qKmNMjFERuhiw96fnd1arzbtf+4b3EZEKVy3ms0Q0roFxbRy8aLArrRiX8RSPd/D93SmRpxXxlt5XDZCC9j76EG/W6/c//MhWlS3LarEoywoEknQ+eGPYlpWxtnDOGLdpG2OcYYOEbdciElqLgKoQxRMzWcPGIHOeH8xuoerl5eV2u53P5y++9NJisbi5uWnbNgtC5NxLRgNCZjS2NqWUM5zjujLGZH1JZoaTExWx1uYKfkWALHieZDyU80jm4FSevkx+nefLWTcSRhNR9D6vZ9FMujNQpApo7/uYWrKmqKvFcmmqarVtvvilL7779vcEFIgEgIbsZ96AMfdnnBTZvbyDnfaMwalDR0UEElriuaM7R3PUtvdhUZfx8v0H3/jiq3/6z0YqF+d3/pf/yd/4v/+Dv/evfu2fq2hK5JjzkHVdp6q/9Vu/1TTN3/ybf9OUBEgxJULZcSsMVSkK4H1C0UioqpBUJBYmvVzZn7lzdPm9yz5hIiPMGhFFiJIRFU6oRh/XeVSQSR1VVivZfQ0wTj4SRVHQjH8JCoAqjtpT5z61LD9592g2t1gwGA6gksK29+um37Q+CJKtmRHBzO+++GM/8VNHZ3ejkGEXVZWcsl9tu64PClpVTpOVYBy7o8WyLKwkwRADQo61iCRjHVlmawQhqhi2ShxBfIoh+LbvO+99EkTOxFERhUiZwTASQd832+ZmtjyJMVgrRGytFes6dKqQkheJCIIAEkL0vXifvEfF0K4xgWVniwrZ2MphUhN5vW773vvebzddDMB2DpSSlq23pkdTskUmy7ZIJiRJPgqBdili3xExZVGR4WjZef9hEjQF1b0o2tQE2rVhY0Kd/h2mUOMd1ePUjJgafDhE4DTGQVQ1fx9uBeByzZROreoDR8VaKyEYRCIxwKdHx977pmkMEqEBhd7Hq1XTduFytXlweXV6crxczuqqPu5D0/dnR0fOGkNYFc4JMgEjIAJPiIwPsueusgkgKKSU2Bq2BpXZGOThPBjDSzghoqG8N+UTFZlAJdcXMtOQVhTKWqviAUBgbwqGDZtZdzSLqoOjSMQyxrR2xsFTbNCxV7Dvlz5SKfYk6/bA1Du0xiZf40d/8n2TEgdNVXUHBz0wuPO87IyYw1894/Vve7hv6h/4M+MFEffoOHW/BHvfGN83x5/to9F0y2tvwMkMAOV9JtDpW3ngp+xby0/0OffbvrfwmB5OfYPH9kN3HnUONzxFz0f3t5f9pPq0S/u9fdwYTi3jx1x8n4jz4KMxUzRe8rHdeMpyeuSjvWfWR76Z1+pjPVUdonYZ0H6bLbHWZg2HcT2MERDaFX/qzi7HHGtXyeimXGiREyPZ64BJiGoPWAWAeKudhTuhybyTw+QVG5EneSPKWBfcHSdTc3M6iNlXicYM7gfotBu6QzwSDQ84/jHGoeSAAHBfJ3GCAshLdDCG8zXzF0YVS9mxBuf7FkXRd22KKcuJHi2Xn/vc567Xq29/+9vf/va3O9+//ulP/fiP/zgRXV1dFUVROEe7opfxItnxy3S9zrmYUgLIhfLEBEiiQ8RaVMkUw+wgKZIoKrAoJATHNklMAoIESNmOzHVCZb3IADDRAchHRECslCngDkvSxzOr7wdZ0iRD7G9MrYxUxYiYDesQQlEUKcS+7/u+n81mIlLX9YMHDxBxXs2pqnwIN5vthw8e9CF2vZ/PFglg03az5Zwm8z4mEw4yObh7N4al+0hCbHyVFGl0eMbTakg1MCeR1bY5OT3/8u98/atf+9rx+bmtGv/+B4atphzoTKrKxPWsrutZURaCWBTEqrO6Nq40hq1zoBpjdIzjtsLWWGNVtev7bbftm21VFKenp9lb4+Pj2WyWD6+qqtbrde7eLpYNU7HO/LW+76+urnKpDwC8+8EHIfiiKInIOWutjSE656qqMkgIMEjuGJOJsLO7slnd5AIzY8zJyUnWbFkul03TJIl5fwiSUoiG2TInkD6GTduWVUXMZV0jUdv1v/Xb/+Y3fuM32r4D60Y6QcwAsN0UyON20Tyhzwn9YmRxTpPMZ662JgXsA9YJZpiuv/PlT7z2yXuv/PRV7M+Pl/+L//lf/cnPf+r/9F/+X1dXG5RomLK7rKp933/1q1/9lV/5lf/1L/9HxhVSVKHbiEQGJAHFzBSLQZyiZL1FUgPAPsSFMT9/93Tr5YvvP1gLUXms4ECREzIAQw7APMbCyFv0RE1vHy8Up2Hdgf09xqhJDUDyzcL51+7f/bHTxf3j0s0JLRCZTdf0fbhebzdt2wex1fy4cj4h2erupz9zfve+s0VE1B3vymrdtKvLsu9jiERQFMYez0tbVdaKat93M1tIEhFhgqK0CsaWRAaAU9LYhxBT42PvQ+9DlzQAKjEQcYJs3QYelG4lSWzbbVl13vcheUyROb+zBIOwTCLIavSAGpL3oWu7jVGWmFoyzhhD7GxRsDPb1Q0xrVc3oYu9jzEgmXo+N0nRuTKkcttyWZExZBxZR0WJqoK+l+zbJqewO9v0NniJj+wa0/b0T8c2Wp845ENGsWrV37/h+OwNAYLvISVnLFO5nM1Xs0XwSQBjTMRlSrBt46btb5pm0/bz9awoiuVidjwvro+P5/XsaD47mtXOcEHkrDEIWWtIJnXMoweSYpSUJCUMwZbFAAkTUYCkcUzE577lcchBjrHDmmnwdv9hrFUQTQJCogHTgAFDQv0DQ3T9cWspiUi69VX+sPvzw2pDLHG3bH6Qizz63z/qdth5lYOPnvKr328bbWN5pNZCVKY8m0/BMzzq5PzhN73NQrAxNIlNPGUfznvsaN+X1mZ6WSKazWY5Wf2oX/eo2zbuXcO2lt2SjEXZv9c4ywS3+Y2n9xARrbXZ4yJ+YjdGbwr3oUSqSsjZ3H3623EYMpuMzN4DMpfGRInb7baoqsVi8eHHD6xzn/jEJ07OTn2Kb7755vn5+fn5+dHR0Xw+z4HLbDiNj8PMucyj7/sQw82mNdbmJFgOqItAFttMgpjT7TRIDSsQoCJphpgkgSRKRGNGFEFdWcItJkhuXTgR+2w09DpRT5/koIZjOnt0OfNWuiJ/P9ddfPDBB6vV6vLy8vjklKqarX3/vQ/ffvtd78NisTTOMVtjXVY/nAbpvu9ieLSHMEL9VRntmEwbV372VIPozc3Ng48vXn3tU7Ysy9ms6/3NtiHrVImQ2FrHZR7//IB9iE3b+XDRdd1yuczZJLzN48XRGM0AkMVi4ZxDgFlRjNjvqdOVvd/xj2NJUo4F1HWdTyXnXKa0zsVLokrMSSVTWG2326Zp2rbFBsu2waSS0na7FZHFYoGIOSHGzNH3WTY0I/TymFRVJapCkFRK68qimNez5XxelVXnO3Rme9GQNaYsQorbm+vf+ea3fu2/+W+avoNck7CDIOJ+KOjg4JjO4HNh+FSdYa8Qev/yJ18ypGTKNrHttcB+Vl1978v/+qde+JR2lApa1vUv/OIvvvSZH//P/87f/e7XvpITVX3fI2LbtsfHx1/4whf+i+bqL32yvFOhUZSYlJQQFUhQFaiw8w57H7fqg1NLRd1GCN3q1Bb/g5fu9tv1+qOLaySghaol1UAQRGm/DmEcgsF/mTgqY1AHAWDfURlDO8RYRnNkzMsFfGY+e/14drq0VGjUaDX13q+a9mp1c7PZdlFni5OiPg6RytnihZdfbrabkKColiEqAX784MHvvfEtB+mUk4RtaQMbLZ2bVzNW0tAHjwRJkyQVNlJWDGidI7SiFGPqoyQf1iF40QiYiMAVJqVCgiCQSJd3tLzKATRJ7Lqm79vSe7ZxF2ke3BURVYiqSQWTxBh81zSiGiEam1xtLFliw6aIMRHxxccfr25unGGJRhGralbVTtEoaELwIaxWDQDOkAnJOhRRlaBBVSDGkqHYzcVESumpewrvk64+6WvTU0EncKkDX/RH0WL0KQZETArOuaPFUd/FtvdJIakiEXNWmJImqF9vdbW5XK0WBV0sLud1defk+Oz4eF64yrm6KApnIUVX2ByPzGnWMU8Sup5z+pVZk/i+pxjZGiRCsml/mx43bpEnyl8qYSbbVASgQe0UmEAVwp94Ko9vOW56O9R/pGzNH6DpRJaYHkHYP2N7vkKvH7wddF73N/Pps/BeKm9foPPZsm24Lzy691GGVz5D44lK4O/LtPpRt3zqWWN4R6jwpJL6sU2t2O22ywF159xosY3n6fjIB1eYJhxGo3PYzycv2BSOlVPn45v4fR8qG7XeezMZeXgkqTgeJVPMMBEZNrCrCHz6ZI3bNU2KBHaJ+qHKP0O0M8SXme/fvw9M1rmyLLuuC5IWi0UOijdNk23TXK8Cu+U3pbey1rqiAHa8IyGAXZmQiOgEOTn2fzglFXPMJTfeZcl2ox11ssjHcUZQ0GfSYp56JjQKqN8OAhNRtpvf+PZ3Tk9PT05Ottttrmj66KOPmPmt77513fnTs3PvI5GpK8dk+j44x8tlZa1TlTw+UwLP77sepm30TETEd21O8uTyjOFdsNYQQYL1ehujfOELv/nlL3/lZr0t53MXZdN0r790Z9RXyFM/ZBGZ7r/44s3NTWbHvrm5yfVF2+02xkCEbAYoYF4qGdA1n82Plgvf99vtNicxxsxJjkHnnwxq1MaMk5uL3fN8ZZxYflmctYJgyDrncubk5OTk/v37xhgEJBEVbZoGdoinoijyYgi9m8/nY6LMGJPVYxbLZXE873zvu97WpRi62W7WbYOIi9PjqirWm60rinc/+OC3v/zVr/zO73rvsXBArLlWlgb+v+nBeQCgPXRUhozY/swNCCwFgIH8dD8ljoxc17Of+VN/avbxG67BbhuaXi2l42bVfPjW+9/5nfPP/9w2iYgY415//VN/62/9rX/+//yH/69/8c8367UrirZpyrJMInVd/87Xvl5+r/nFH3/9tftnFebMNMpOe2/ba2BAIsc2bGUbvBRF8lqouL77/N0XH4r53attlzwQJoSImgBoAi5WhSlqAeU2o6JJYCKkgoP6eP6VoIIxVDjryNy1s3vl7NW5furO2b1FXRWcRTVIY0yx6/q2afumFzHOlYvFkY80W54kgeXyuPEphB4hffjhh+++9VazugGDG+hRGqrFGWQ2zlkWEkgqRkGSxqRCRNYxkjEWiRNgUDUx9iH0SXrARIwW2RVG1UEPmFCixBgkhdB3pi6ZyTLE0MfYJ/FJEqsO0oWAAJREOfMWqKgGSV0KTY8aNaqyq4DZIDGg9r51znz44IOma4rFHAjZgHWFKxbItvO+6/sQcb25YcNsk2FBAmsgkQgESagUiIyqIMIufjGmO5647z+6vT72a+PpMpyI4zmnKqr4FNDJs7Sn/n4+q9veIzIkcc6VZWWs5ZgAIgAk0aSg0BOTY+wav91umNBBmFWuLoqLs9N75+fLqqqrclFVpXNnx3NkTikaI8QsIhYRQBGxLitFEIAQQkwJE7NhloRERcGQvQ4AQCQkUCAkRAKIt+8DggooDv9LkkAERDSJSjayiIg15YNo2B72p+ePikX1B9zGrZKJeLfhEuJj9Z7/OLZpuPq57ebpG/qjNr6n7+VB5w/e16dEK/Y6/Iz33UXNd3mA248Ohy49RXDmNpJyEEH8g22TIdwV7eSQP+5CPyOkZPwNjlE/vB15VVXR6+tr2HkpqpqNyGxHTqPXB51IqrlEOpu02YjJNtdUIGY6y1kRbmxPe8KdcTz1TMZu7B0xRJrS6KWLCAIqigCoKFKWfFLdN4P3QJH7bUAN5bMJlHRIeiNSTKnruszXVFf1+fl5fq4kcnp2tlwus63prD1eHi0WCwBtus4Hz2yYTU55JZGYUoiRmF1ZZexWHAqmUbK9k9HUSJrluhV2AweguZ4TFEhABBCQs2wAgvi2y/WIKoI8qHSxNYbZNxsBUiQdAGC37+L03cuJA8hoK6IQEwzOPAXvkaie1ccnJ97733vzu+v1drE4sq4oiuKtt99+9933XnrpxSCybTpTbMqidkURY3JlOZvNOYdQmWMcPORx6Hfv4LPmfPIiz75Ks1nnOpmc/ciOQVEUzpjYx5OTk5dfee3//Pf/L1/80pfcbN7FGJJ0fa9RSlfM57OqqjI99LZt/eomRUFzISKZ/GC1WgEAM89ms/lippCiQgqxC9EHf3N9s1qtTk5PXn7xRVK11lrrkmRuLYNGQAGZfUwpShS/3WyN4aIsY0iI0vXBWOdDijF0PiBgkiQpsTEWcNu1zFwUcbvZtH2PCCklVxR1VZVkGSkmsdYikioAZlMKiqoigCQSc20M89Hxcdt1773/3s07/dn5OQFcr24s2+Pl8ujoCBHJurl1QeCdD97717/xhW9841tgDBYFIkgIOEBAcTdBI+fVPuAVcNCuUAAAM8pRIQzQVd2dxrebvcIgd7H7vxiwqOefeOHepz/5+be/++VXaukE3t7af/WNd3/sk+4nP7381v/nHx+dV3z3dc9LDOAQ758U/+F/9D976ROf+K//6T9963tvsXMJMPS9JGFwX7xsH3757b/w87NPLHhmIKQQACP0oujKEqO1mkCiEqKrLrfye++3bfQehOeLu/zC6/TwQbvtOLYoKcakSuBo3EsmmxgCJIWsJaGYq+cx/50UoI+KlAgUlUgK1DnCeYlnJb+o29fvnb1wd3n/dHl2snAWuGcJ8vHVzbW/ubxeNddrm7iylYsUGk/1HApn5idNTNa5dnVz+dFH7c01by7tdtWF9sZfo8ZXX/4ESVkuTq2xEjshJUfoChSHMaYUkiRU7/1V6JOhNqRZSrH367a79mHLjEVRzqzhqL30jomrkrhSSDEFglBaVzgB2/f+WvS0LIx1hcSIrorlTOPiZvUA8r5k+pTWbfogrrvCniyP72E1nx2dOeeIhKEXbT768HsXN+/Pl9UqFmpqZFBAscZaa1m71Ps+WCk2qyhxM6u5LG1prKmkSWG79THehH4rsUJZuKI2zgISkAFAojAuVySc1q3uia9n7SxEZEJEvwPCAuQS8LG2hKIkRep8CDHmsi3dsX0lUAVNO/w8WSMIPsUEGqKoggApZhLxbKtzXi+KA6k+ENqiVNWQkiKF6BXIxxCTxCRkjS1dv74xpVlvtzv9JfIhbNuGiIgdIiIUbQ9tr5erj7/73mq5WB4fH5+dnSxn9f2+L931bFbXZVHE6Cw7a5xaY1yMgMjEjEyMAKKSFCERiiEPbNQCECMbVMMCHBAUuODpMBoyjJxSSiEBQS6qAwAkY7hMmlSjaPQYCAAz/5sqiCIgkwFFRYxCAqCgRKTEMhbtKI0MIgdHAiloTABgiQF0ipB5ihupT4agMe9RIEwNDtqv284WCQMC4lRI5xHA/p7K7fSkm8Z/hk11DFdOD8T9C+51/qDAHZ+N6X9/aMbKVETMwPHbHh6UVEz/2zyRVY/3BQfykZ8RL0+ZFJpYarp/wSkUbhKJyBd/YsxsKqg4sMKM/5wGySb1CgqQVa53RSk73pgkCgATXljc1/eZkh8ADC/42KsnPXJ8bKYoG6MTIcuDWeYD1oFHmAAYkHO396Uhn9SNqarjCJca1sMe28HejQluS48AgcbRRiUCQEESEEFCSRiDpgignBRmZQkAIcYcuPVdl2EnjISqKQWJykwCklKQlNY3q7quiWgAriDt8ZRknWlioKHwOgeG+75nw0TMgwyGIR5gSrZwvvfjFSD/HCDTzGeMhmZl533vpyjtbZ4HgZmQ2VJB1oz8SIhDPiEv1BCjLQtgYiJjre/70PYoknwAAExKltk6ZqsASUVABZKCQo52ImOWtMp5IGTryhyYh0kaZOcFYVIt61lKSUSPlkfM/NFHHznnZrZwxO1ma609OTsyzEmkb1pCNEhQzhQgAAQfmdW6oZae2NyqpiqoaDa4B9edyRAhagoBQGlXTo4KFXIQSSCGSUEk9DVaitJvth++/b3rm5uEenLn/PjO2eL8tAu+rpwH0HJeGBND3K5v+ra1DM5aAg59z7S3i5bGGWaIiYmorL0PMUYkMEUJAF1IijQ/Oj4+O//wwcOL9XesK1546RPVyQuznn73995ZLI+MnQdPoCkXRqUIvo917VQFFQkYFDSBeFHHZBmVUhRbOchlOURJdXzrERQntWMjyisvlZw8NMaUZdm2bXZu+75fr9fb9eq1+pPs+Mtf/fJbb7+F1rq6rmYLW7hZPavKarlczufz5XJRlmWMMcQgSVdX6xhuS7aqqsqcAZtNkwwQMyKEEEMMPYBHvNq29ba1q/XRcjFzhaSUYiRiJZNSIgVGvmnWVV2Lc+u+b6Ubq7auP7pwrnTOomRXlIUlJOlCQA+C0vU9U1GXzofgk2+9JvXr1AKAMaYkhiTbEBtpFouFD2FmzWbbqMp8vijni0yd9+LLr9x76eUvfeNrH77/cd/388UcVL/5nTfbtmXmWV1rTB998OH777+3aRpkzgrTqoDGqKoSAmNMEdJtBhsBzJ7BoKRCRAyAtF+jgvv1GwdiTHn152YMI8af//mfKyq3OFk4XCdVC+6t1c3Xf2vzcZz97E//xLe+8+ZryxfWgrP56c1mQ46SwJ/79/6HP/enf/HrX/va17/+taurqxhDCBFieH1pZv6irmTb3WxSaCP2gD1CEgVz5VRLTg7Fh4Bl+mAVfu2r33iw7pKZoSvQGY+aHGtpkyFgZCaENJZA6KQ4G/cfLXvf49Pl4AAKKCmIIEqBNGNcGnq5Lu8dlaeLarEoi9IQKAhGkS6Ebdd3Xd/3PgVjDDjLtijAWoO4/vhDJGq9v/r4I99s1ffSr1LYpOhFRJM++Pj6lRdfms3PnNFECCqCsG0b3dWupZSIxFrjfQdA0acQQu9XIWyAomF3mxzBbMEjIDKZnFgjw8RknbOOc42D5sCBpJhCSikGAVDISrySILYIlaGQUiq5QMrVjSnFFEL33nvv5NCfoFEw+YZoDFnDCK4sRQR7VO2il2DBWQUiZiwKVYWbLqikFKjvLZExSEgIqkQ4FVJ89naQbNn7iIgMEKilPQHER+Os0yDftB1+9ykdxEnGgcgVrqqqwrk+prquQw7PtANFRo74IKLcGr606cKmu3h4s377g4+cgdfuzBaL6u7ZnbPT47osnOXCmrKwbNgAs+HBN2Q2ho2xaAwxx17BGAQrkKN2gkII/PsJ1OYnGf5XVrWmGGNMMREgE2UOJ5WnzVSMcXRUvm+k8wdsYyj6R30j2N8PYRLsgedYuH+U2tS6e0ra4Y9IO+ih7oLlP6wFcAA/+H0BSP6YtmxvqwrcYqzGTeC2HSQKaLLsu7YjImfs5WrddV12VIaLfz/6hBELhES5ih8Jk6QDtavnmOUd7cdjOjBmVETksUs+p+Apc2gqaCb2UR2G6JHfKMJhCu9xbTxucopp8ojAzCkmZ52KZiivNYaINptNhodlFiwkwmHnH0BfOKS/DO3T6+s+BVYeOSIQOux+F3oAravSh9h3nTJ/fH31ja989Y1vfce329lyGSVtfVcv5j//3//Fz/7450PX+xBdMUsMgARsjLOEEFPyXe/7zs5me0ONoACZfir64GNIKZHSreQHMxuzWB6/9c77X/va105Ozx9er196+RW2zkfpfXKMSdQAKgzn3/g/3R2+iiB0ixQYCTnGxXMbkcFsNes48ryTilJVt5iP/51Bj1mrtGmaqqq+9847L73y6rZpkgik2G82N5stAIAo5IoZ57I3miF4hg0rVVW9XC4XR8uYUtt3UVOUxNZEEUCIMbVtu9luMmL/3r17VVWnlGJIWTkRcZhZwya7ncwmxeR7j4De+5RS1tWJKptVi4hVVRZlmYNZIoICvt1mSBwyCSEgqsG+7282N3HbEmJRFPP5fD6f12WZFRAIQUTrWZ1XTy5cyfYLA7/84suO7XvvvvvRex+0XXd9c3N9edk2jSpA8HmRcVXRjgsuz5ICkAJpDv0qTfaHqVlBhAhIgKAK8nw1KgDd+vonP/2ZP/NnfrH2D9WST4lKvXNUzir4OMz/yb/5+hsfX/67AevTF+68/tn1+qOEWEnd9tHUZVnWP/On/q2f+9O/ICIxxRACBk+rd772//0XN+99Z9v69WrjybZCraSo6WZ7ZREcJUdqjMUiNFBW914Qedgg9bGXrjPGaEJpG2Qmw0gcrNuJnh8q00/jjiKSdm5cAkBJgpQQBJUwWBBkVyIurL1/urx7PD+e17PauYK8973ETddeNav1erteNdumlWiSrk29PZofl0wlQ4Xx3bffvb66tJZBpd1smvam9U2K0vdRIkjoZ585Oz6+SxpCZwgpRWMctV3Tdd1msxHRoiiNsYh910r0oeuazq8AfVWbonC583qLfTJIykw5hIZgVAiBNEnyvu22RZHzSRFUUdR7LwrEA4ti0iQ0bG1FUVhrkDSl+P9j78+abUmy80BsDe4x7L3PcOecs4Ys1IgqVIGYQbJBEOxmW6tFk5F80LPMZNYPsjbpH6ifJOuWSD3KrMmWKJP0wBbJ5gw0GsJcADHUgJpRU6IyKzPvdM7ZQ0S4+1pLDx4RO2Lfe07dvJkFFCC4pd3c++wID3cPH9bwrfWZxvXF+b27D3zpEJiI87jSkBkwg0oJUYGbFpp2S86YFTE5IldixbyL2WoRUmxj5gFl8ESELE8l7PElrI4wnE9jXpcrcPM6LzaJfXyKJgGAc265XBZFsWnWTYxZARrj4WjAC03XZdY6Mq50Z+nL24d1XZ688WC1rE+Pj05Pj49Xi2snp4tFJXFTeF7Ude1LT+yI6rKmsnRF0caOnGOtzJI4D8iCbOgI0Z5qpRdFoQkBQMzIgIAMVURMFS6X3w4G8PuqP8iECvBgAvxlecLyZxVS8nTF5jEhhjCdAO+8/mnlzH/xtRTIXTbN/16W0z8XmhSYWytSSk3TNE2zWq1ygMSTBI2MfpJpqnoiUtEkkxAItfEtwxNvKdkriD1Ib/ZTzsEK+wSPj6+QiJzzOQuz5bRdTKoqouSehvjc5mFUB7/m3uXj4cb16857Vd1utymlTI+4Wq1WRyvznoZcajYEOOXKp8TWY+/yGQ00Gd75CvJ1WTjX7drC4Pjo5Gtf+eq///f/vm3bD33oQy+99MJysbx562aS9J3XXvv0b3/6t377t//WL/zC8ckpY6FEjFSwawFDCibCjhd+QbQPtB/tgABgIkIz1TSXMX3Za6+9dnZ21nRhs2veeOsukmPmmFK3a3IeKkSs63qqMF8x2przxQ1jux9wHDxgAOP47KvSPTjQzHJeLCJqmuaNt+7++m/85sc++aObtvVVJUjIDMRIlCSBQTKNbWM5oz3lDHgACXEIX6GcoyKH0yCyc2CWM4XGGIucwM35s5PT6y+9uCyr2hcxpZwNOokwc9e09+7db5tWRUIMORiMmNfuHBC/89brnJMo3O8HWVUy/7sHzgNuhMhEzEa42+226w2FyIBVVS0Wi+Pj40zMCgBEWHtfV0UOXDk7O3v48OGDBw/u37+/Xq+3bbh/797m/BwdI1IKHagCERBnRxYws7tK8LB5rNqB3Xk801X16bJ+4Uvv/cD/7D/7O3duP8cPW1dWJVYQdkUVXrlTfvXBhhYnX797nn71t8436Sf/lj77oQ+a0e5iHbF6a3O/KMso0p2v+1zWiIRUHt2qnv+h1197HS10JEFtJxJCm1Qedg5EQQJIEt0GOU+uasy3xp2KIppYaELGbmUgqSKkZa0TRWW6rUwVlamzBQAUzBCNAEBRg2cFrn1alpaWBVeMDoUsilqQdtN2DzcX984ftNu43bSbXQATwbZud1W7FZW22WBM27tvLcty1zbnm3Uy3YRuF6MJ7jYtJjp97vadZ15aLq+jdB32s3q9edi27cXFxfn5GhFPjimWtWlMKaDZdrvrws6XVupsp0MGVELTHFIigqoCoAZi1pk2RGfRXFm2BBia7fb84W79MIYICDx4FJAp5+TOvEt5KzRLBnJ29pCZy6JAKAAZyXHmrjKNokSE7NiZK13ThhB33CKTmkpVsWMgxqrmFLNlJakkTQGRwexJbFGPn4izfWomqOTIs3G7uayGqVQ92lHGr0/RJBFB7lMxtm3bhECZucb78ZTqMfQqo8kyqYhpXgyIhbpyJ9CdN3cvdtX9i9Xy4XJRHa9WdenrBdalP65XR3V9VC1W9QLEO6g8UEhbLpwjY1LQpMTmGLggcu6p8vtptuLkbBKqlkQ0j5hdES7MzESHuUe/T0WnWa3/PDgEfgDLbNAO4G4/eOVgYeoE+ATvxgSY2j6+3z66H5CiptlaA3qVmtI7UkYhe+7xyJLW0dFRliP3P11ugaIhUr9/g8PGiIjENMUWphTHt/zkLyXX3KtV81lNQ4x7Lgfox+llyIajnD0cFmQjdcTbK+Ph8qiiko3ib7755snJSZIUU2q6LqWkpmVdnVw7Xa1W3jkBU/YwcUbZBNI5ibcFmCADiQho/+4OlkkbuhjCka/uv/HWb/7hH37lK1+plouf+ut/9cX3vqcsXVWWElPN/MM3rn/wgx/84he+8G//+b/8a3/9r7/8wQ+rd96zc64sS0oQYyCkwhPEAzKioZEA7AoywiFlWX6bmSLmlVde+Ymf+IkY48Oz8/sPHvB6Uy9Wi8UiidVlKWCGQEwCFlWcShRBSSX4IUBheNzwn8zzB0x6/Zj0xDDo4bFL04HigVFEVb/yta99/Vvfrler4+vXN2++KWpITN4TUVmVYKZqappXSQ7sAdEICQ0VTE01RmubcVmgASKZqoUAZkH0YUzdrrl48NAlKV955Wi1im233e3W6/V2szGw+/cfhKYdX26SFEPMUbgCumnPqeeOS23bhdCpZRwiWhqWL5Mias9+oWDGSU0FCYuicMzOewQMofPep65loqwD55wHMYQUgoggF0xIgKkNGSwHjnqOAl/kvNsZKYrT9WVTX+18e3gkUf44yd3UC3gA8tQZ9VW/h5gZsfvZv/oLn/zUTyvAsj4lt0zh/Ng7pvCTP/Tc57/zrW+3LR0f/cnD5ru/+Jt/+NqDv/2//Hsf/MCHfGcX3YURP7i4iCmFlEKKlhNIEDTN2sQ/oEXTnKXAUSRKZqyXHdQRLEWJUUInQSHYdhdMgBWViAmcgYCagYFmHzZq2EcPp5QwTADQBzvnfszACIEQCQ0Spui8+uRc7BawKB0gCqCIBA3SdN16vX54dr7ZNO0mtp0aMDrPZQEM2815TA+InHaR2D18+LATTUgXTRep6hCUbNdsFkX5/AvvvfPMSxnBR1yxC2DCzhVFsVyuEDglIfIqrMgAEGPqujZKqpdlpqplZgBUDQ/X592uCyEQk/eemAGh8FiCRzPEeAHnXQJ2a0Zqt5vd2cNmdx5hVyqWFTmH3hcEWBS+N08imhk7CCntduu23VVV7RyqsBIxOkMH5EwkWSI1BSQuqLC6PlJNMWx3IIDovCGqmlZlGQlCUEltMDCDEknJoU0B6nlKzggTxhNlnIj576POPUovZvM/TFK62SWSx2ByQ5jkncwaxegWeKwANDphpvVkVtp8rHahRey1lOzYoUl2zjnpFBgCMw/kBSVk7JlpZxa3Yd2Eew83ROALKJlLXyxccfPk9NbpjWuro1vX4slqUdTpuPCShJOEGNk740IA1NRBdTAwo7sDCfvRBjOQJKp5/8pLEwkAiNFSSvuwYDMzMEJEQiImIzKiYaPZCzTT6BFEhMOE0dNTZDq0M9zddPBzLY++iKvFl6vkV5zPCt1/VlDQ/Y55tbp70MKxm9NmaU4TjUOdTyZUG9i0/tF6mn97wnKV5RinH59U+Dqoaq7tHFQyO4su+2kuUsCjfTuYwP1dw6n06F2qE7DQ3CA1zE8Q0aFJj5VZD6wVhx2Zbkr582PgjrOBeVI5+6rJBo8sB3xkBj7yoL2LGA/qN5uEVucZO3p98x6IQ6LeUZFQVRw2kIzvN7Nskc2Scd9IG1aRDTajQeK3/EYmgC4eSr6AJqlsYbJLXzWAw1SY3mi9eWjGBkhDhqiDpe2Ye9rcHMg0HILT96KqMSYGsMysjEQEImkSwNb3fpR0sz42qExD3nnATJEBw4TM8vpisVBTIzSFZOKcW65WvvAJ1Ey9Y3JOJ6CmPPhElFJC7D1Fo1KXh3Sy9/ZQyfmCBU2aLP6H3/70d1977ROf+JEPfeJjVvlyuYipW3dNWZTMbIC+8J/8kU/eOL32P/3yr9TH197z3pdTjEzk6tqLi9GpGRHE2A4zKjNgwjgf+vYMFJyZrGNQ2/TatWvf/va3nS+rxZJ8kf1Ip9dcTClKysHfXsUQDRGYnXdtigRYFkVIUcDQsSdQhJiSQ8rOupyWekwrBwhYFDkcERHzKxg9HjSZb/llxRjNdLPdfeaPvnC22ZD3yYx8UbETIiMyQHIERgRAZmoqpgCZPRMrX4D22zjn/cByogODkBgJELQsMqlOivHi/KzZ7brt5tvf/tadO3dE5OHDs3v37rVtI6Lr9TqFQEMSbSLquk6SEFHb7oqKJMU8HwAhkwDmfVE1x/dSRr6pJJAEROi8SeolpdzrfkdUAM57wv7X8bnOqWgSAwDnPSGqKjskIkAM1rO0Ac7OV8ucGKJqKVc7ihQ4WJ0QEaBfrWNxs214fgbIJF0JoqlCXdfNZvPhH/noz/3Nv61UXmw3R/Xxez/8Y2/8wb/3obvG8JEXn/k7P7v6pc999esPLlopEe3zX/ziF/8P/8ef+emf+U9+7he4Pt51sWnbTlIT2ovt+nyzfnh+tmuartnK+n64+93m4f22DZ2qmJh1YLJLO6NeASZy5siAzBMA8nA0oXkzS2PjERwdQMr35cCjMr1GMQc3ACEtXHFr6W8eldfL4lpdFYVHMgBLSURSu+vOHq4f3L9om9i1SujrRU1FoQAPLh7y+lyDFkXpXNWJBpEmWStmRRnVEpWb9TYmffb2jfe85/2r45N2swYjA0ZiIKdm3vuTk9PV8jhGSckIs12cYtc6511RVVVZVVVOXQeAGUfXxK7pWiaiEFUMCb0vS59uHFWE0qWLLiZD9sS79UVzvu6atbpNiKRWLBZlURSgyOwAIKUYQ+y61ht03e7h2b0udETMVIqBoVMkAURARTLg3pTDgKbVcgEo63Xqwo49+CLrfrYokDD70E1jG40IHYE3NlcWU+7h/MZGsX4v9g3n1PQwnsK0xtMoHxI63HW1dXQ8BafWplH8Heo/lMxsSBWSp9SwIUCK0Qzquq6qOho475l5DN/cP3Rmu4UhtzgZkmJONwyE4LKHD9RABWCz6ciELJDBN1+9X7tXb51ef+H5529dP3n/+6/zoiZRAzZQR+wA86akKqr9yh9Ohb1uNu5OZigxjRI2jSR/g1LT32uQU4IhAOY2MxGi9OMv44IbRbcpZmOCCpuN6Hx0H/+mDgy0o5yRpa05c9+TSfEHd02bJKC299hMDTdXienzbtJMA88D22txj0fHP1IORfNJlx87Go8t+yA9PCT8I5wrzE+m/cz1iitUuJkKetDAq7Sb+bOmUuasm9MJcPDoyR6iBxfYuLfAIMWOUWrTpMYwV5gf09p8V5Q4Cpp2kLD4ERVi/Dq97AkVGID5QplsbOMO2asT81Sde3sK4Fz17d8QIiIhiMAEDJPxTpnxUCe5v0TEQW+Uzb7rMS7lAFmksGeVQcyBHr1sbYPHY4QQ5w+jf2Ac3nF//h4jg70S1i+9wRI0HgKjup73+fzQqRcdhy70Er3ZKHBDL3bnl2uGgMDIRL2BZqb52WTHhAlJ5VhD/sk5N2XqAIBr16455zSDzwtHJugcF94VPcY7mnnE0SEwaomjgmcTc57NXTeXubg9sHP4O7/16S99+UsfeOWVl977nqOT49aEmYIik8+7XxRjA+/8Sy+/fPvZZ770R1+4c+d2WZZUZmpO9FWZnyMxgQ1JjTNx8viKBrjXOJeyFhdj3Gy2b7zxRlmWDx6etyG6smJXeO/v37/vq7KNXZdSFSvnXBtDG8Oua0OK106PEZFLn8AIIUhyMYaUYgiF4/Pz80xKZgNGjoiQ4LheIPUK+ZhEu38phOMiyoPpBuTIvbOHbQwJUZGM2JgNcxoK2FN9YE8Z2X8zE4l5/hqNey8CANI+QQszA1ESyVKBALz++ndef/21/vwYTS2ZFucRs25fCGPT9Wp2T5Y2xs+SSYIR8SYKpll5RQsCY5zExICIve4AADA0Y7/bAIzR3aKKzuUpmiWhcehwWLp9A/P+IzooFzbNT6MG0J+2OSusjHvFkwJCVLWnp1UtymrTXkBVesILocXzH6jf/M69b36muYggD99zrfj5j7/8oQ1852H72lt3BSWk9ad/8V9+5Q//4G/+z//+8vgEHb91/+69s4frZnv/7OHd+/c2m+32wVucOg4dipmvoTiKiIQdmgozeVd475yPKcUQ+mECwNSnnbWM2rJ+VNHAWY+it0luHhh4gmfZe4bdHAHIUEAJceGK09rdPqmfPapuLYvjwgNzRGyjmMSU5Px8ffFg3V602lnh67JeurKMaLvdzsyYwDuoPEWIoDF0se1SZ867UsW6bXz44Gxl+Oxzzz3z3LMGiITKBNTLeRnIyFwS+Rg0dJLTi5hhVeFyWSEngHa27yCISVJNIgZEYCGm0EXnQlWka/UtAmRE07hrziWmdtO0F9u227pFJ+CcN+fIuYIQRvlbVFNKarJr1uv1+W63dc57VzJQVM5WjXyk7NNzmgEpeXOlL8Oya7VtApEiYOG9cwAG5hGBQiJViaFFcGWFAMVlc88e5ygfp+X0GJuqKzTE0o0WwcsqH1WOEQKmky/jB7icuC2fDqrZnac5PrMoiqPV6nzX5MEc3Sn726boqXwQMnMOl3RltmsygQPFfT5p9TmluAECEGAQ/eb9B9946x6TfeT12z/+qY+/9MyzoU2rRe1KcopkpIAxhLwA8pF22ZGPE24QQjQbVA4DRHTssLfJZu0RFSArQaaqqEoKMzfsXp/sz2a18X09eZnJxIdG7ndcnlg0f9L6BmPnoPS+y/i3d7n7PzBl2q93pY9TUeOgwrxKR5fpEypdV5TMs5blrSz+vsPG/4CUlJLzfkqiMiKmkF2MsWmalFJmuIOJiv4klesQQZGzViX9M4uVyj0SkZQSM/ZpaYgQABWAelPXI7co9obmJ93QbGK4ISKZZJ/Ltv/j4+P1er1r29ofo2NDzIHmdMmM0gE7l+ftHkf3xE1CA2jDtml/5Vd+5YUXXvjQJz9xeuuGAiCiRw44ZPkHAFM1cAxFubh24/pvf/r3PvWpT965c8fExFRxL+TWy4WK5Nhrypb18XETnse8SYpICKFpmu985zuI+MEPfvDf/rtfpM2WXOHLqqoq8mW9qF3h267LAd/VoiYmUWlDt93tVDXEeHR0BERdCIB47969s7Mz6dp8+B4dHV2/fn25XA6YLuy2W+tzX/f0iFldcc7tYhjPwaIoYozXr1/Pib+2TeMXSy7K0xs33zg7I0RFlIxQGmbBII72pc8WBHubx9S8NE1srsw4svQA1MvreULGlHjQqHuZ5CBpoe0lWBRmBYCcTiA/ygCQDAyt94LmRiYjAAQzBZ2lyJz5+m2WjHFuZyEcb1MCmNm7rpxyk8uecJq+DeR6WZbrhw9dVf3h73369ft3P/SxH3nhhfd+7AM/9MJReedTP3d33b369S+SSIj3Q2Jni5NV6apb7bbZNml5dOOc/D/+J//YFaUvC0FoJUSJir1uiUcnXrUyReTOqBNGMqaSMTmkBBoU25AQEcsSzRgUARJOAnEyW51BrxzqPgcpEk4BrwdkmNORIkOVxIBlURwvqhtHRzePq9OKKuZWJQbYxaApdE1Yn23X9zcYaekX5epkeXKMpX+wOS9UCuecmoVYOUQN4CQVYgYl8XZ34bmK64sa8fT60QsvPX/txmmUQIx5HiUQsXR0tAQTVRQB5xxTBYaIDEAiCVEU2pjQzfxhkLM6OlcwOyavghGFuVjUR2W5OFqdgMNE2rSbGDuRqJZg0AGcc0XhATCG2HVdwkasXInGmDS22816t1vH1HpfIDoVYGIbUuzPZgkaYCIHRelNl0iYwjal0AVEUtUEkPIe4BiDSOwCQuu4gPrSiWfT/JvzGPcpR9jUqjpVVOB7CR8HaslUOZn+dAXDtKpqD/M2YnZAMbMsFSU2bT6ZcoDatCU4zwSQ34L3npwD8oTICEzACISGlhOZQLQmT1kFUDOhHPXinKPP/PEfb7v2vc8895H3vu+jr7yiHQCriSqCFdkCQuMZuW/8VJJGpMHGiWZRQ96KyMDld5ZvGVKJAIBkDhY1Rc1gjunI4JwXDwc0zvjHK97LWKZiX5I0D797pxLhwRzmJ6Nb/p4VDiciyeU0Gk9XZvmIf5BYAt9huYLt6+kKz0n9piUvangcaPDphrdtWxxgNvAXSJl0k0ACHFwKfS5UkEwnl3etcUU/ed/H7ejPdg7nh/fOlpTQsVF2tmRgOkBvdJglys8GLexreHuKyn5zmPw0eBpos9lEERcjI2SvSz749ldO9rysqIw7ZIwxS9tX2OYOuw+wIP/Nb331/Pz8Z37ur11/9nZyZCZsGJuu8JyhWyJCiAaw69ouxW3sRMQkn3yAvSDXW+8dsSLCJD3A5HGTKTTQCOaZ84lPfOKVH2o3m81ytbzY7DRJSNJ1HbBr4zK7K733mZfQzLz3ImKScqi3mTnn3njjjbfeeuvNN99cLBYf+sD7n3vuucVicXJykgnXB48KkqpIzJaFGCMiLhaLo6Ojsiw1xanBbrvdlmXZdd35+fkbb95Vov/Pv/gfHl6s1QCQBDGnsIK5k2McegFkx4Nzo4dW7pWTGeZ979sngE4iMhL7sipEJYj0Goka1SUOSuF0vWG2yttoU5Bx2hiAiYweDEwKhDl6Ba6cJ8z7+K7ptmwAU7SAIWZNte/du73/udH1gr3KN+FJnF+62+3AOQUgpjf+5Guvv/qNenX9f7z57HteeOGjLzzz8fd+iCK+/uq3v7u29cPm3sO3GjZl0y6YVpuquGB3tFoimqACY+ELR4UxIZOii1CrpBA7TWJAzhOTFmSOoGkUgDNWHMxIDMEIAM2C9S3HnEkQEIcI+njgcGfqB9FmOtzkNeftikiU1Wqi64vqmWtHz5xU1xwsKxdiRE0qkrqm3XWb8223k6pYHC1Py5OT5empsMFm7Yvi5OgYQuzsAtHa3UbMSKBAUovk+a17bxwRLhbu9s3rN66dFo53621dcO+UGwKfEHqXqQIZkOPS+5KJASSEbRsDcUkkWdPKRm/nC+9TEiViU4hJRJC5LKuFASIxOAKNTM4XHlUwFUxKBZZlWVVVVS1UoQmh8y2ZE/Ob9QMXXZLmwcO3drstAiGyGoQgsFgAIFh2HuAsPIoACdmcLwkRo6OUtiIiSVPsVFVVLKf1B0wpIHNpcTq58ZG5N7piASCp5HSHlrNRIXB2viOCKhACIBhk48S4tKbrea6o9l4QeyRDcd4+FczA1B4TZjrWk2V1M1TTJKmLyQDLqjo9PQkAbdt2XdBMFoY4WhGMcNJZzD1BNzhVgBwjIRAAoSEYmgFq5csxNW4G1MUYkcgzLqtn1k335a99nRM8f/uZa8crImYRRfMlG/URq/2APNqNYaB79w4CJDAw6jdIJCJgIyUAQOvRq2amppmQKH+Y1jiKOL1aMoElvI2j9HKc1TuXcB4Rrd4FRSWX75MWceB5+AujqMxf67vQqdG6b48AxsYF/ugMfLrhzckzRnv5X5iXUpal9x4BJKWccjX/PW/i2QmwWCwyhGkKcHqSynOO3WxTV1X8U8yxZo8cMf2EGMg0cuQnEiEYKCLTIYrRzDQnT82n2ZM9d4LAxIz6GYbKO4+EMcZds+OiSCpojhDJMSBM3U1uXuEIGUBEGZB7MMYYTxwdl7Yqpq996ctHi+X1GzcEjByWVVUAp6YxRDEQ1bwYsm+dvCvq6trpaVEWWVFhxt4Sb2CISQ0BnS98cZhVxUQHmKWGEDJ+BMCcc9vtln3xsz/7V+8/OPun/+yfO1+oQRuiQtztNuR6Cve6rhWMHNd1XUoSk9VyJSnK+Xnbtnfv3jWwBBZFRPT4+Hi5XNqQaNjAMvfEer1mIud5sVjkU58ZYwpq4pnR9kdzWZYhBOd50+x2XbdZb/7B/+n/rMy+ruM4lxCmcmU/u3D4B3ECa5+OOwCNRIY9iHr8KTt8+uOJiJlUDVTBIPM5wIh2GF0TmVNj1ImURyCrmAFFBEUDAjBCTQCiIAAqgBPaMewlashIGZyIzHO/4ozmduijPSJjH5RZ5EUekCfYLZySQD+aYKJ5IDJ+SpMCIjABEQAKCHhUBkUCXADSLrS717713Tf+5Pc+4zxT6ZgdJQA1SifHAoaO6JQNKBExEuDRuD/kMzwbZkGN4gVkIDUDgpglMWjFUEgQwHDIsYEGCEaChgZscZT7zCzafstgV/SjDqaq4zpHQ9cLs5BPMTFEX6AriH3oIpMVYf3+5elfee76y7dXt09Lx9a1Oy+0udhtm8YMQrTzbXLl6vTZF+vlkSxdg+iMn7v1osXUdbsmhoS0ldQUxxISolSOwXS7XS9dK4xFtbxV1zfq5e7ew7qqOZklgE5SG0MbtIhF4RAxhNg20YwXtRWV94W3uEvQgYQutsiwWNau9FF34BEFYhNAE5qC0qIoSXwB1VF9A8ulFIvj02tcuPLo5vb8QWjXcXmWusYvnHNYeEZhS+KIzx/eAz2/ddsgficpdSHF3QaS1YtjoPJi21WLVUo9dXEOWFBNhoCgCJasVAFAxNIRgWkKwTUJQqSwDatlVS6MipC0ATZgRIMYbPNAq2rpikLMmJiL0oaVgJrM1LIoT8js8xRXBPIFAMiU7QsJmBDAUjI1QMwIKyJQSWagIq4ou6ZF9tpnKrdkkNRULRP6qvQKmAEYUPbNdTEREbMnwpRSlGBISoxIoAggWQ8mgqKks/VFURRF5Z9/8aUuxG9961sxRu8LERmOOyTK0F5GysnNmTkHIrnC71PMUw/t7pc2YyBEQsqhoDmwGgzQbFGpR/AA97e7f/Urv/ojP/zR97/88vFqdXS8iiGCy0nv0RinqDNKmbhN1CxjO31VWYyx6zQmQkNiHEJmEdGVBSKu77ZdEnW+qNDMVIQKAIakaZq21HocXH92IgkAGIiojFt5vzAnu17OfTZ+TVPed6M8AfpvNvWp7imRAHpmycmVE0fcNNpkTzkFAICT1mdALRhYEpuF2R/ixeaNz3NRUhKYEyPyyP4nYPAY1XffZZuhOqdRNLNM63mCjP16hEXh8Xdx5rnbIxKnFboJT+I02+lBPrA2NNPK54nCJ21HmLoiUzpQi/df5vblWfxOHJmvEQFmYfEwkThHc8YYnmsDWnrkCszFMYKJGRACmEnPlg2IM6gDwGEg9b59B+LXNARo/l51UqEq2MSBSZO3fPAqp5UfyP044a40NZlcWRauHxHLrI77GwVmrd33xSBv0yICaqhKkNFGrvBF6gIDOu8dUopJkzjvDVFFt10mui5xyJmxl6tmrUXAkbHEUojjOxqZQHLxzquqJhkVhqEGKMry0aHOJUl4dKBywDDSfiYbzlKaOcfeO/auazuJkSwBKhqQmkfHwJYsJVFTBgIkcgU4SKGBvDalf162JuZ/DxwFY5wPmDnmrm0VsSxLIjLVGEJEpMJ5QgSUmEDEuzJAPL52LZocrY4kSVVVHp1GzfMqL8+9KdkMzJhIRbq2dd4vjhaIGCQgIWauDDCFhAoO99tmH7iVdwBRITh/cP+5k9MT8gvvA9lG2sqodBhSyi4AQgIzNCMD3bXf+cY3rj9zza/KTsNJdRRjL4lh/sc520vQBGRJRFISUYJhS0EDUgAFApUUJWp03ly1OFocnfhqERWVABwCIGXJXaCT2DZhfbF96817169fXx6tVqfXgO7m3MvL5fLO8y+VZUnV6u6bb96/d/adV1+7c+f28cmJqJmodx6RVKVaLJkZ0FIMQFDWhfMMYCIRxBxyweyJnHPrzRrIGmk/86U/iuSK6zeRiBGNiBCAyBMBoc6ydfemyGEy7ks+RvfTEva543AIWe/fUS/B9uItGAyUI5h0lnFvjKUzA477qA/iPd4AASTSiOlCAxqcWahqm/NM6k6ABP3pm7XSSLzXJCaKiiG4A9PPlDveLjkdAYLGUezJ2tjkQhrB4jled4QIuoklHNB6XWhuwEQwQCYjAiYkBGQqytHXhYhGlIjAOSJqYiAi7IluMJoZgubNChnnp7P17ElGoOM7yZts36IcETjf+u2RNsLERtIH/+z/3FusJw/FAUNomVNGxUxDglggOkjPnCx/6KVnXnnxmWdP/PWT0ig1TXH3zYsUUrvtBCBELYrqzrMvXLt2IyRLAstl5YnbzQZQqqroxDWNnTexc0dJIsVYmpDEGBMTFAVXJRWMIDE0W1ZhBE2txgYkgiYwl6KZxZTytDa1pBrVMMamC22Ife7d7A1IklJKuY9ZuAbrqalMURXqxXG1OK5WJ8SOuKx8GZtFqMoUd+TMII6iVdd1baue667brs+Bi9KAQcU5T+SQuSAmdpgGW7oZoA5+HTVAAx6EOCPny7oSTW3bhtQV3gcxTEpszEglmUEKUeKWsVYpENg7Z2YxdDYIDY+Ce0aCJzfJOq2qdnC6ExggaA63MDISkSyWGg5IzAke8+DDge3DsvRkijoLg7Y83TB3n9REoceTJJGL7dnq6Pja9esPHjyIMRFRFmRG88MQt5b9GJQX8KzMDPNGoIhGSIRUOOeYc0AeISzJGNQDMSKDvPHWW475g+9/JXQRq8dDpB41Z9jBT49YCvMfFosFtKE1SElQZOjN9zTePVF5cvTIu3XjWOJEKXpyl8g7f+7TlUflwmm5rPFTQWrMOzSt80kePdfNrhql7+vg/NmMOwAc9vqdNuTAvfPkPpnLrnziYb/qsnEBmFlPGJzD54e8Q9/zQQcY2hH19OjiOoDdPmFfnsJ5ZQhqSkA23G7WS0ympmo0ZB+imf33kUcP/x60YHQjf89XMEpDOFgWnHero1WboiM+Oj1q2zaGkHlpvPeeHTN3MY6PGP/txxeMiJAIcwL5S55vQ+AWIgJjRnOtqtoZaNMxlYomYNFAsD/aEaD0Pmx2y2rx6te+vv7u3ff+tVfKulTVZCqYE/4Ojgg7eFw29ufdysYjtyy8CDVNk/Wck5PT84utK4td0xA7AAXofRtT1xMYRJV7Dx/cP3sICPXxaVGWi8WiruvFYpHMbty4cb7ZvHnvLkviqvT1Qom57YqiqOtUeE8A3KOXNcYOHQ5BQAbWi+KSBBXapoumm2734OL881/8QhRRQyJDRGPLfjbrkV4TC9eB/SjuN9gn3wzn1+FUMPdlNa1wbyUxQA3T26aP88X+rowYVFBANVT0VZZusp1ub8TIgz+O/KNzffLLk3dqfJs2maIH42Lz4mhQEHAY7XGA0XnLubeZMGsp2btC5IvqoG15YStAtaiz9BxTYu+Y2bIJ6HDu2nRXetedvlewmIlGGIy5iICgzhQBCbFUWbj08p1b73vhxjM3VjcWfLzyKbWWGAiTWIyCXJ4cHy1Wp4vV0tCqyi+LBWiyuCs4Bm2bmBJaB34r6a1NCCFCsy0sFSk4iHXFdVHVZb2sSjbtmrXFwKAqXddtJW4hdQkhSUopiqScvy9JEwWdSEzShZSSuNI7z8gMhGZwgITPOBzNwrvaYnlcL47r+sR5Z8sjW61is4rLZQq7Lp4naULoYgqqqeu6rhOuiy40m7UVC0UqkghyAQBm6ovCUBHJQEUMUCHnl8ChBZN3yUyOSlNR1ShRTUIUwORLK513BYNBUOtCAgsx7gCTL2tk7l1nagCAeCkL2UGE/fTQevTgz8LZk4dGHJRc+RVsx7mIiIDlhqWUHj48W2+2XddlMPdoQTQ8XJk0L3uPyiw218iEKCcFw8L7wnlHzEiMsPTo0ByQQ5DYnV9caIzP33lmUZfuMereOypVXSfFmJLOfQvvSjnwBjzdXfxU+lJR7JM6PPlUuYy16vtd7ErCrOnqmHkG+mT/fbTSVFGxx0V0PLY8Id/I073KH/xyOLyarrj4ScqBzvmE4fgHzTiocOaWeapW9bm/hsgKMwshhBBijFVVjT894ZxHRDckgX0UIJdSmmop01+vCByaDtTbW7A0uOAm/jEEUBWz3iP3dFyoozevH7cnNnaIiCv9crmK2wvnXAgh446apsm09LlJbduORwNMOGFUNYlkcoLckCueNWIUCdlfOy6PV2d3HzTr7W2jFDUBCAMARpVsaGYFjWlVVpt7D3/zl37l+uLoheeed4VPKSUVwDEOHBByOMR+NKaaKqiMjvQ8nWKMzFwt6qIoklz8P//JP/nDz342SiJ2ln3kNgvvzpG42oPIdXNxgc6t12vvPRF9+9vfFpHdbkeEZ2cPVreuLS8ebFJ389o1IMQWpQugtlrWSUU0tW3HjAUzIzAzKiCTZX4Si10XgunR9Wu/8Xu/97U//pbyIod0IvWJjya9nEAAUpouvSnhzlPLHtNl7vwUUzDzjmrSUbfOqndfg0EX2vEnJKLCQZ4GIn5RgYqqmqglUTVEoKud/t//Ms4ZM3M4AM2yowewD+Q3wGJRZ+kJiAxzODcBI+S0qfMIm0FT7hPI5ny0iMiIew/u3I0+bce7rqhcNiEMAUyznpLTNHq0inlRcMlw7OjmcvnxV5594cZqVcKiosphp8CmzI6cL6rlYnmyWJ0UVQ2Iomm5WnpwYJpMIoYUmk7iTui8i3cv2j950LZtJ7stS6pJjyp3i08qXCotjldHhXM5HZNoimGd0kbiVjV2jTRN23YNgHjPZeVESJSjIHBOt8VFWRV1SQ7JIfnugCjXMveQaqYgYl85v/CuZueQAJ13CGwamdpwPrwfJEYzUQvOoUIkWoGRKaSoCGKpAwNflCF2RJWZqYnpAIodJvXU06mqjFCWpaqyqQSRoAZKjlQQAUvPZIqghDGG0HXoQ0WuNCBDBkAwOlodXfaWDw6S6WZB88h1m6QOe+rjZ5yuV2w32azVe1RSato2bbaIOMY4DtXNBPyplXFEsIwYiamiwuYQgYkYkZHyf945R1gU5NAcoANER4mw2e3W6/Vzzz3zFP39HsWACB0z+EIdv9ui6GyEn9Rac/Be/nQVhunXPzVd5UoE2uzsnLaQmBh7pMrV7pQrOjJ/1uUtnL+UP00t7vtaDof3HVf4dBFNj4j7k4YcjvxTtooG6o+M7+q6zsyyUJiv0UfzGU7KmAQl75zZX0yTvPPjlSOtnj0S3/XoTj4dgennJxQEVZVpjPNG2ysq+3wt9NhsMU9QxpfSuy6fWOccNDRom0YBiqLIKQpoTIyWUtM0XYj5UHDO4TSJv6qkBOCMFJmvCJsZRz6ngm0l3nrh2c/9/h987nOfe+755wpaGWoCiA4FDA2cAiuEbfPW+t6v/OIvKdmP//RPLJbL7H8WVc7hHxkdYEATEudRYTPLESL7UB9J0USrokRESfL6g+9+7Y+/dffu3dt37gTEN+49gD7gYja3xFRTBICc0r9YlBlBElIyU6+F984VHhDu7S5+6zN/8MH1xQ+9/5WirNgVVVGV1cJnZNAATJZkKYpjJiMwRAemllJKSboQE+Krr73xm5/+D4LknNOMuSaSDB7tpwceWBZmM3b69yeZCo+bG1csh71HBWBMeAMAkMU/AMgw5qmIOEjtqIgEzJWJZHSEGhgIAGjOo/xntGEfeDJcj8TOSA8e8MkIBuTrpWVECuWQAENEIwQksT1khoiJOackIoPsBGTijGBTMzTL/9rkVB1b8OgGd7j10iPOgsFxeXCuTtHBhxwFkxoJQQHAQMFIhdAWhDcXdFoXz67KZ64ffeC5GzeO/LKkqiDHFCzHQFBRLlZULZbXiT2SLxcFIPgCsekKj55J20isgLbZNWfr3f2H692m60Lo2p11cUPYSGWVFqlc8OnxyU1AYHaYuah6ZTaKBUkUQtxutkliVTmkuiicSIqpJat8Ufmyqpe1K9l5Fy0uV0ddm87djogyMj9P7DwGRAzAhg65IPaZq16MgbxzJZiJZNZYBRDvkaguay4Kl01gRVmdbXbOAwAQQ8/UAzkMxYYpPyqumYqphwDl2UZEdV1XjtcPY0oSo9XqMjyTidAZFJhSZypdF7e7C+LC0Kkhu7LwZVF49oVzjph1alpBsGlEARFNOMJGt/h0keefspPKDHqL0hhtPwGaj6tk/HuO0BjNbNPr958zJl4Fh4S8khJAT1Svk3gAg17GtAFgCo9TV8YMXUM3DIEJgZGYCA1MlNgVznnHZcmjouKoiISNSHbmMPTBvj3a4UDKtP1w7R9H/bCoam6GGSDuVx8hFYWDshDvI9FAWUPTl9IfvLPv4+dZcOp00efQzcf+dFBGcacX2ady2pMdCjlt4/g1yaWm8Zl56WB3mY7nXLG6LPDge7RqkNVU92R5Y4Mvvw0uvQynH3FsT37QvA579Mq+htm372FcMrP8D+LewY99WgXIguh0k56fvrPOELlhiT0iiM7nyXD+2jhL80KGyVcAwMNaHl8yS6CIEiEzP2rgsKHQIxPAhh8zfiqb7wxtnmPvUsXyYKo8jYJ3eMvhghqapwqIPdkUAOTjepZpACdxPqPphHjAzPeWzb1wnzfY/JmJyRFYj87P5ste/xkSmfTEKfN9e9r+KabXDhbfJAQfD9xcV4wN9NHnzOS9E+c0J7CaQE7GS8eSDfk2aC/TVzaSxBvYjJhoWMtuyENgpgA9jSYompn3PiSBSa5eVeu6LrtT8ofRtTUSp8B8u86Ve+ckJXRuyKpM2CdGQZksn7yT93cRIrqP/9inPvsf/uC7b7351nffeNa9UFfHOxBRQ4ASOG13cdu+9dp3P/9Hn9923Uc/+fHjl55lZktCjgGREGPGyzF1XVfDjNQlFyICRE3BDVzAIAbScxJ2XffwYfO5z3/+zbtv3T8/71SRCYEo5+ZX3Ws+exnAbJi3fV8MBUxTVAR2zhXFOoQ//OKX7t4/+8grH/jAe99XltViQVxUQaKmmJIaO89E5HJW1RzUQ0idqqh1Mb1x//4v/fqv//E3XgVXELseiY2IAIw4MLsd7vmzeSiz2TvdsnTqepor53th5pHNKqYJPhmopyjFfgZMhOx9MKYZMBXjGGZKSjMwJEQwJiBGZnaKzBJjXpmgZqLjBna4C82VsQMTF1xS8uhNlYFBEOp/Gh5kUwXBsS/HJ7Fj3suCSDmgGTKPQx8r3Y/OdHdgzrh/hMyuvYd15kPCcuLngU2p/0n3kzifLdOezA7meSJnGJ3a2QUw/KSq9she/Lhi4BAVRAlMHbuFx+tL/+LJ4s7p8tlVcef68a2VX9XsPapJ26bdtt1su5hkeXS8hCoJGbiiqovSibXJutozkoJGYiqKQjdpt+sAcbVctkE8K0LZAka1jaBv7HqqrLx269kXXVVIiJICMFHhVTGBBomiFELY7rbb7bqqPOCJ966qCkJnhOxLVzhfFmVdlIuyDW21WMao98uHzIwRsvRNaPl89WVhSJChq45VNIqoqZiZqSGpqkg0EACrF6VzZeELds75yrmC2aekHpEZnXcAmr3lWZaejDVm1NcYQYRgCAQgAOC9Z+9jiN3OUrKQgIORacFUlVwXdL5JySXZ7XbbVswBuqS8WBzxEa7Xm2qxYGaHaIzDgQo4lwJHI9yBAjxOp1H6BwBmzrbkqV1QVafAtXyCTr7aePpm499YxtMrn0kmNsr3WVLrrYnTgOOBh2l/dAytHUOBD7KdDq+VCS07UgCMED1z4Yqy9GVJY4wKgYAKLZciEmPk2k8XxYGENG70NBBRExEhKWL2yw08x0Pjs05CxM4ZkSER0Xh42gGVyiXrEA62tqeyNU3f+EG/DkTaK0S9uWh+ebm8hXPx6EpV4old/zgBkMyaNXWhzFWJ2YPnZpwDGNg4XI8eP5eS0+MjesvlbZ90QgfVIAuyeQOfcB5PWgWT26Yh+Ii9+JtP7cs0Xxj6MtVSelvDcEm/SKeNx8u73MvoavYYj4FNDH7sp9bK/tyebkT97mQThrN56598YjzajNmjJ00/kJfn3QLYj4YNJgUEQsoCJ/cpNMaZkxWVkZZx3IfhkRmVLxupxy31mNuUUuH6NCF5L4Zh5ZoZu0vJEg6UtmlPZvA2PNgBLh20bBzMg+S9l6KQlDew+QZis7mRk5vlzf+gwkMldjpFh/T6+S5VQ1TMvVBBA+996kKK0Q3n1NHRUZdiPqRCCFlJHinnASJMGFSyvyW/l916k0IUdg5JAThHPDIj4cjdNw5Uv/bNiPDazZt/6z//T3/t3/7S//Rrv/qhD/zQhz/5cVmWUPnN+sIla++f/fHnvnj24IFf1j/8qU+88KFXGtJbRWEGqNiLf6IG5EsHaphsFDSnGm8+v0Bk1zQX63U/MkR1XTPyrTu3f/pnf+aPv/3N79x9KySBooJ8Nlmfnn9s/fT0sgm1d05ZmY1xYpqs99+9fvfu3Xv3v/WtP/n4Rz/2vpffc+f2bVeQd86XBSkbWqcamrb0rvQFipJZDNGMtrv2n/6zf/H7X/wSVyX5yiYaPhKNOWkO2L0OdpQDS9C0+XKw984xjf2ml7eTqXozMQUqKGrPMEFEYjoYDgCIRjw+GphMa0DVwRZAJKqIgODIANgpe0sJUgKRbDUcpaiZpfHg8yW2xYN9E6HPNjOsLhyjdqeKis4VBOfqnsAiR2nIBGuo2eebhaq8mQ0/+XJGzzfWaJhDcoYMZf0ZlUFW8M5LXpbD3mSIM//mEyLFKfcRCRAc4rKk04V/9nT54s2jO8vq9KhalQ5Rk+pOVKLudl0bpKhqoEq1jMmAPXGhKCHGpLEsHJIpqCFJwmYXQxtKV925eWyIuy6Q2wK7EKIKiTKi825xdP1W7V2z3Wm7AwhIEcTFDoNp2253zfl6fbZen+92HhGrsl4uj8vCsyskYwjJFdViuVpyLACtbTrvvfc+Ru7fNyEzlmVZ1zU7YgfAaqjJkpIam4KE0KWUJGXFT33haufLomIu1NxyeSzIF+tNjLHsxzyL8gZgA5avd6T0ikl+35eU5fKIwLZbbbYbDQJLKD2wd45xUZEpOE6moeuaEAHQE2HhHVE1YAQVHicxfM8ynoVT7Nb4eXrluLc++tNBhQe1jV81k4oM356whaMSNbpTxq8wuGIynJpRaQB9EaF3rnC+cK5gx4SMyECMgKqLxUL2+hjaWOF8AInyC30MpwQRme4R6tNf1YYskzM58OnLZTLrn/fyF6kvT1gyy9uo1cuQ8vVAV//BL7aHx6A+4uIYl8NfpFfMzA7ZD6Uoigz3yrEEZpbxSBmSdFklRVGMHJFt28YYRxG/cHt4/ehCyXuLnyPv5xrI5VaGiVnkQIm9WpkeCxEx9Y7rJ4+3m7bwex5J4yqYoX+z8QtwlGpSSlwVdV27qtT1RVmWmakmpZTjUmCwZNmA2xzjHvtrDDw7E1VRZjZVUUgxKRhXFQxUWtOzCREkRlf4H/r4R2MXPvtbv/uZz3/uM5//3Mmzt269+Pyb3339/O596FJdlB/84Ac/8JEPnT5/pyNouub8rftHi2WxXFjSEGNSSaaakp++YgBTHRPTKVjNDpkcc1WWGcmWUgpdt2u7z3/jy7eff/G//m/+m//6H/6D3/29PzhvWhhyLeLEtDAb7UxUsNdh9u/cEEBACRQhIRDRq3ff/PYvf/faycnLL738vlfec7JaXT+9tqqr0rvau2VdusWi8L7dnJ8sl2DLzbYpqsVX/vibzvlOLYh5P/Nsj16BA0XCwA4MSGM5cLYcTJIn3Elm2nhKeWJlQFofaNWPNuowbn06gtFNSDRJmQySMmAvOxt8togaMUjC1Id9zPvxLhWDbCQdw63gEopeR2Wf7DXDSpQwu1AQEIwxA6UQEMBor8MAXtrqlNM+5vRP2W5gQFlRecfROXtZ0AxUedKdg45dfiJmyk5EBDRSTZKkIn9Su5ur6s7xqq69Y0gSY0ymJkFFyflFVS7Xm7jbNQAVqDW74FSCtsyx8cpKKtRF7VqTAJ68c16cX53e0KbdGbEYqYEmlLa0dOwpJiiK0tXsykql2e0idEVCjKpt2MS0UeuQQFVDSDGiJKfqnCuSdmKKzM57YkfigAzJ5Zz3ueOiRkRFQXVdL5dL55mYgMxQgM0hIXrrsLUECETonCfGouS6rutqYYZdAABSsfv3HsaYNcCsn+T0C9rbXg0BGCDHqOQVeOkBxr5wRc3dLnRobXAE0WnAYAxVWatiu3AxFYDJLCYRTV2MYeV6JkvHrHQF8vbScqBX6KRcoahcXee0hqydjEVG+f3t4JtHLYXmJXtpaNjhGGiEfjni0hWlL6qi9IVzzhz1wfRk5AgVwHsfQljR0ViLzU2SNMltc2AXJCaVPb58tj+qqoIi2tyT+dTl6QKHfvDLn1Wc/Z9hyRtRJnvOEm3TNJvNJoTwvW8GgMFaPKnwcjrY72fJ+vnoGXhUjc8fzA6BD3/ey+iCLopit9s1TZPt+plxL6ugV+yQo59zjCrO4vXBZXnIDiwgYw1u4mCZPutgxw6TNH2HL+jJiFmIyHnXY6vezo49U1SuxroAmNmowI8/iUj2e42OehBGx4i4WCxU1XuPiE3TZLrDPPLZwZJSyv4WM1sul8zs2YWmJaLtdrvb7cY3RUTEHNsWB7s7TIaREFgsxchl8ZG/8smXX3zpG5/74pc//4X7r7959403q6I4WR1de+/NH/nUp1YnR955iUk2u+7s/MGb93a7HVfFcy++cHz9WrmqF/Uypx0zmdj8J3g8NGuaraaYPXUZ52ZmWd3aNc0/+Af/4L/83/1v3/ve9/7+Zz8HzT69J9OMiHdvIwC4KouFKhhm0vRds0VmVxSvPbj31vrsM1/9gme+dnR059bNZ2/devb2rRefeea5O7ft6OhoWbdte3G+K6vFq3/yjabttCyiqoTkirkuPWpgc+fwoY967jh9cvPlZWWWQAIAVIfs2El5mnkIp6nMQWbtmK6NfdsN0IiJiCmJQCJGoUsop96tkqc0EsmA2n1UGHBpcLsoAjIhc8brGIAJ7nOAYTYi5c1Fk+xp3Wa2pezohKxvwtSkkVWbgUdm1og+AdflP41FBzyrZo69yYw4GEdD69kips3IbiHkLG8jGaI5hrrk68vy1lF5+9ap846cRUu7RkKIqDnFbnFv02Wg6Wbbhqil+BpYKQHZLnaMjIG7DtRouTq+6VcJ3Tqpk5IEwW0NCQnAlDR5SJVDIAfIgGaQkJmcM0ZBSyYiHYCUhSNcqDKTB3OmpEKOPVgLZowApikGSdHAUkrsHDMTZbiRAgAze+/K0rEzZstuHyIonENXptYhE3OBTpHEOS4KXtRlvViogEJqd10UXq83WBSAE4JSAABB4GGCK/Zaih2osNmz2L8NNDVBIkcFY9Fsz1LXlrxYVJVzHpl94ReLCpDZReLQdEoEpjF0DXnyjkw9eo+O0SbsQuMbH2fg+HUggTUzVZOe1dGGzeIxJgybF5hXPtavGV2d9Z8BaT36VnSC8p6DMWC+Jia/HBYgQkDLNEraO+uh/9vgIGUm58g5YkeeyZFRn7kYCmZIyRDrug4xDKcF5ptH1QKzsUovQQEhIXKflnkOHRn6Snuz0jsrV2z0f67LwQz7i9S1y8qdO7e994tFXZaVcy6E+ODBg0wC/YQ1HMhz72558hfQT/EhqPog0dl8yfx5VlRwghdX054zSURks9nkILeyLHvyxx6YcZWwpQP7QXbCZK0Vc1jCI+M0DuNUj3VzZh6YjPJIzdQ3+O3LTwdCBfZyEh6Ayq4uo93XRszb0MJZ5cPFOmQjmAGAVY32yFu1LN5oVF2sFhfrdVGWzLzbbquq6kMrAbKIn+U5BEghbmS93W4vzs/f/M7rKcZ7d+92IRS+KKvy2rVrN2/eXB0dXX/mGWI2p+yYMvVHH/+AbFAVxUVsEc0tqp/663/1k5/4xL0HD06vXyMALD0e1a1E5/3d7775+le/vn7j3uvf/g6XRavJmL74lS/ffubOhz784eff8xJ4PgD5z+DZAFSUnZopOGJCcuxijJKk64IB3L179x/+X/7hcy+9dL5eG+A+HAXnxBZTgXMmBcyLWOYAVAAjNsAYowKUZRlFAO3Bdv1gffbFr3yZVE5Wqx/+yIc/9qGPfOTlF5Z1HRHX64t/88u/JIRtiH61sjk00eYn3xPOwyQyBRdNBwe/V4TVCFiZHiJFWeb5ICJJBN1cOT/AeA/zMQcvjfUKGWRyCQAixGzRxgRIKNEGOmywETYzaRDAQWYguHKPnb7HjMix7OkjMgC9JHefw9JDr4bA1AaMAMbch470SKLhMUY6mRwGs0Fd8AQVlgU4NGM0BcpptnIugkMJEffdM9VBBkUAsInOrIqmCEAEQIRTHXEqIaMJKpqREppDBVUFNMNkaHV9HEOrmLhQ1nDtuHrpzvKF6+WLt5a0yJBctuhRKwZyRSYK5yVc22y7Lp5vmvM2dNCS3/iyKtgzs0cQ0gBgYhDZwaKI6Bmcbu+nsAm7rUkiJEHaiSVflSc3CiooqWdTSzGuu93d7fkbsjsPuzOC6Ak9+ZiErXS21MDSonnrztdg0XmLu7OOA9nSIT88O98+PN9eXIQQzFAFJWmMSVLs4roNF5Ved84AxBEDsiQBAXLVanX9aHF69uDN3eatymldsmfftXHbRMDKpbJrwvq8Obm93Ow6C7HsqrpelN6ji6BRDc0ws6mDEWRHGnIOtCUDM0RVRAIjQGvX98DUQidNlxqNks4wLItlaFJ1QkBFtSDDnYEy+2XiFEG0c7ylGKFLZLWD2vs6AG9jIFcA06jfEhLmUDg0ABNRM1TNmcHJEA1Nsz8USMHESMGSppBUxAzZECxnHTQwQp37CpRBzDQEs5ynjLLv0dSMQQAEJZhFACFSBUUQonJRX6y3ZFqWhZmiAQIycz6bspuiqqqqqrz3rsd/o/eIBIQGIEjoiAgzJhZJnSPw7ByTd+g9+gJ8Yc7DytcODYkYgVTUzFF5vt3cfOZmm6RgR0hBlIGZ3Uz1QssxZOg8IZkZAdbOoaNNWscUvEckD0QqKiqmlmISQyDL0SkiQr5Qs5QiTwnpDnXBKVkhqupoqTXpJrvBPG5kQm8F8+BC7UG29OhdM1bHAxVstm3MvPQ6M3/NmyHzvXgKNZ7ZqubBITw7ew4ML/vaCHOA70By4qZuvalcSPMQoJk6TQfGWqyqKvs0ZkpCpm97XEcOujx77pyF8+CIzf8uFovFon7+uZtFWRZFAYCSrCoKE12fX8SiFE2Gmbs1WxEmfZkQasrEDI+IBxrOtMsyhHfj7OwFAEhdO3Q3w1RHM4JNUxPmRE8ZRVOWZZgR6TBiT63jnJs9d07cNhvCAQyZh8iTNzNJIqpExFOChcldGZM5WuJmwzs/+P089mRa5CA8bIxJM8ib49BCzQELDgkQVboxRlRUGZnLggnMUrtLqlo4v1wue/p50SRiZuzd6Kmmgdyw/xep67oUIyMhu6IovHO7phGRo2W92+1CK4vFIrsIiqIwsygJENuuFZGqqpAoqeydzIM9HQHM+viS/Cdne3aIJCmJZKcDIcJs35gHWInvXyKAMgMQugJciiKUUllV2Y0WNc5UMhOYp8cdf9EU9pHKhJxBAAQSk0oi5sq7brftJFFdI/bZO0W0qH2KZuxcVXchSJe898uyhigSU3DsvN9ttgVQjQ6WCp7VpK5LT+gRuqZtLy7efOONL3z+j+6+8da1k+tVWRVFUbha1eK6ffXet772R19JMd6+dfuFl1/84Ec+sjw9jmjFslYEIWub5tQXoQmeGAj96clOgW9fv3PrOoIJw6ZtVotKH7Rf/eyXvvaZP7o4v3jhA+997kc/ero6rU+PN6H9yle+8pkvfulb3/j2z/+Nn3/+fS+7VR3aFvvs571TZ5iH2jStskNidM5S4sqwVFVdVosuhKKsvvPa63fPztWM2AOijalkxuE100l4OtM+7itzwSIiEwMgF5wFVgMjxlF9Srtda8qRvPPOM1eVGLzVxX/3u7/3b377d+/cuHnr5s2qqu7fv3/33v10siSDThMw6KDL5tnEkzwsIgrD/B8NHFkhTPNt3wxABUTBTIZ9dUAeTi4jQgMmNoT+2O2FcZDQjbgLMBVRAEAmByRJiTCDGUVE4n4JOOdHRWXQrK1fVcV+T8mQEGCi0iMAL2qNybrWQgsxmigaZLeNgMsjb2AA0tNU9O/IjUODhDhxeIyHVP87oiImMxTVrAYxEfeZNrJ7BczcVL/pz5vpYD2iGX1Pm8M0j8Fodcip6Up24+I+cIHljdImd+0tKG/ffNLfZWaWZ02O1xE0NYButwVTh7JwdquuXrx57eVnbl8/PfKO2JMBpCipExNlZFBLMRmKqksphti23TapMDtR7YKwuBSBUBmBUBShM2qhaNAl886kBKscBrSo0sXoGAywcEVoG3BIGEQ2Ka1D2EoKYAlhfPsIRiIWQwpN3G0bQixcpSjJpKOkFkJsAd35w/XZw4fb3a5t2xSViBEJQURS2zbN9uKadCSRTRAVyZnzzAS2ZCTtYlWuLO6860BT16YgutklJi6QLprOgMmXIWrhChO0oKIJJMdXMWZu+SGECyCHvgEZgGXSHQZVSUkspbDTGNtd07WtKIjQehMfbuLxce3VERsTlmVpBoQudJrz60nsEkAKDRmqmiKq92rWB+Y+Tnk3gOzJGWZU/g8zJGt6JREVRZE96UQU4+MBSKMDoie2zNSP0E9stUwUZgdOFR2n8sCZtS+jMWJKfzYmJkYiAMIh38bkM1POXkHcp0nMHPXEjjhfCUgITARMoDnJRB+7P+VXehK7sgICE3mniNKnj0MiQrMUoyVTMxRRexpf9ribf08D7V+Wpyi49yXOckK8vUqezP8jKky8WCxu3LhxfHy0WC4yRsgUEmuKfWg1Ecs75ht510vGmFVVBQAhhCswPE9X8jx/rMfy4LL87zvxuc2s9Yc2gicqNIS6qqomIfajd2v0GecWeu9H4OsVFWa/ioh0XYeIXdellEYyEADY7XbOOVf4BXlAyN4bAIgxjojXlOa+uMkYTdE4kCZZg97WMGIO9KYMoZl4x590AGf2DTUgw17uGV0C+3j6sTBRhg3nK6bNUe0l3aqurl+7tjtby1FEq0KMzLzZbOqiLMtyc37x+7/7e9/8xjduXLv2V37sRz/4kY+XVVmVFRIyOwDbbrfr9aZrm9/9rd/5V//qX3/+S1/8+b/1C9fv3N60zfVbN7N9ztQQgYksJ28ky4gYMkyaCPHN77z2hT/47Nf/6EvP3brzc3/7F1a3bxRHywJ9sVqA54/+8EfTuvnMb/3Ov/v3/+4/+c//s5vPPrM6PYbRRTAdRgP2HnI8JFFV10VZNk2z2+3aEBaL5fWbN86/vQYAZi+j9X6uZF41+IMoP+J3bOSKtH2uPwNjQFMLIcQwTbeFQHz/Yv363Xsq4ouCmQVxCFzI4JDHPDo3cG8nnyTveXQ5I4IBZc8ADiEaOMfjwdDv/YSYVJQTXuM8kcz4aFRAE1NFM9p3GdT2IzU4V4Yq91H32ZI7sQsAAwCax94lEfugI0OiwZGBcJAk5Oq193iZ7cp7Zs6sA9/T03mzp9jicSjHlX/ZXQdH6fRKtbd9ymI2KOacVmZshABoOZ+ZxhCXdeHNbpXl+24efez5Z9/77LPXj72vgJ2LQUIT1ufblCzDZJEUEIJRSq1KBxAJDRFTiiGaKe42XV2Vx4tFuSyNEJICGiokVF6tnEK32zYXF5ISi0AyCAExORZCQ4imXQy7dreJXaspwT7ztQGAqcWY2rbbrHciQhi4wKKkBNpGobZB4odn67OzhyG0IXT7qYMWYrtenz98eO/WnWdTe6SlI0TzhOSIfUkkrhBbV9XC0iJnBFfRrk1dm3wBEYJb1ZsYrjOxdwAASUQ6I9ICybFjci4zk6SsLBsCouSU0mjgOJsku9h2KYZu+0BD6IIaWFktFeqk7VmrvHDYhLJ0vuDCV4SeKZp0rXUppc126zgEF70LrqhKMaprcwURPeEUtXlcyvSnbGzOZ+fbkucOYlR6iVBVM73lgDC7ulX59HI9Zm8ficJEiPuolVGZIUBPzASFc47JM3pmR+zZec4mI+trACTwkmJ23Dx5v2YtVGNm730GLeTxyVLAfhBSgqdSM/Iaz4bqv6gBKn/mpQ+amuRuelvlQPC99LJBS7l9+/bx8YodZNoHEcUugcmQvO4HUR21gWGpdw6825CzMbjlajCbTTn4rowAuaJM3/I7gZWbWUopIRWuyBuUDakOxxa2bTtufXmXuKy2nHgwxui9jzHmCZkVlbIs89r3ZZFExqCLaYCKmWXVZezXzNH3CHhmVPmeuLdg0GcQtknuh3diPXn0uMn1HwYBDjH0Y+jIwa85/cDR8fHF/YebzcYtqmBaeO+JC++/+uWv/OZv/IZ37id+6ic/8qEPF3XVEfuyIO/NLAMoV0f16s4NM3vlIx/+7muv//N//s/+r//ov/25v/FzP/ZjP7Z9eC4qZVEqIjBTnz1lkpbaoPKF7brf/eVfffVbr37iEx//0A9/bHl67KtqdbSyqIJoAMdHx9H4P/5P//aLL7305a9+9cM//LE0oXTUyfaOmXN5oIDMUytzWdYiP/ZjP3b7+Rf+0X/3j7/zxhvo3NPJn5eV6SljAJoR8qqgmmO4cThtd+s1ec/Oxa5TZro8Gd1lZXpkAyFNnPa9eW7IqYAypMl5hFboQP14TIhXnudzJCQjmar0Xo7ZEGYMSH8Z81SDehTUOjwDMGdARgRmdWwxaIwaIiSxMUfqo7my3m2A81xRmZvQnm6XOwgexQnZU0as5q8HuuahKnnZC4PvoVvvi1o2CwgoAjAamjoTtFR5uL0satMXjxcffeb2Kzevn5a+8K6oi5R2KYbNZvvwwcMQ1PvSla4sPHnfxZ1K8g6XdRklJZOYYgghJQ2NoRgBqmlZFd4xATJFVfVIVDk9WkHXrml71rVpt5Nure3aZCOmpiF027bZdO02htY0e9BwiK/APtpNLCXpunj33m51XB5z7R2pmqaIJCIxpVBVRVFwCEkt5TijGKOk9fn5g3Z9PyxrZmYxqoB8gVgwezJIBtkiH5NKiF0KZxfb9S4VNR/duEXowLtiuVQ1MgAxsSRmSYgLR5XHnHNzDCftNXfJn01FVLtmu11vu26nzUNVZS4Xy+OiXvqqDCnsuvV5C6ZBVRELdsSMzGbQxhiatk1Nx+Q8NcxFVa9W5IpMxY74dhWVp7MyXlHhWOdMaRk/XymZjf6EqaKCfQ5i7PN3Dv8SZvAXOmbH6JgdkWP03GspnpiACI2ICLM3xVQSPKXBAQDAENg7Z6ZmUZKoYO/F6RehiJgIiD7FvpSP8B5iEeO7vbP9/31BGA+/lFJRFN/7lkfrmJsDL1s7y+Xy5s2bN27cWK1WzK4o0DmPiCoGQ1B1jDGEMI+J/YEo2c7ddV2vk7/bzj2dgNPg8jEct6bHJhl7wiKPwBnedskom0xznlI1pL7VSTqBHt8iadzxrlCDxxRVmPN6aR9QnrNUIWIOXwkhiECeJ6OXZr8lHiDgp6jLubyRlY1+N36yHmeRDoeM8LkBow72tgavr3B+HGRRJ6dKO6iQhrzDOfhn+lMe5KZpxEUTqet6s9lURyso3G638879y3/xL771rW/9+I/9+MsvvXR0dOTIiSmXNRTeHKtaVEFRZmbHTLzb7G69+Ox/8V/+b37j13/jX//Lf3n3zbd+5qd++vrpNYRkjm1iEZsugbO799749ncefOeNj77yQ5/68R/z146scEycRPp5EmKwWFVV27Tvff/7v/jVr3zr69948ZX36mPPXDMd1NH80vfOB6KT49WLzq9WKzOQmODtawhXvpU9qNUALCUgImLynomhh1epqnBRqKqkhMz4VGaLmaKCeOCHwQmGQlH6SzOHwQxnOFNUpvXz4PfLjqmxiQhgMYMoNEdwjwvTEHSan9pmDoxZ/RNvJCIQMpAxEzD7ojBNsW0itxaiRcCJO6vPspSH991mcJ9PhQPlYR4qNFMeZnfNLpg5Qya8SIg4EhWNT5s+evqs8Yg1m8fqzjWVA61lemXOfdAna6McrJA8SMlwuqyuF3CzKn/o9un7bx7fWRVLR8QkKjHKdtvuts121262wbApqvL45Lg0brtgCo6x9A7ANAmaqiSJIsJtl0SbNsQ6VotFVTiuCAzEYmJCPCoKPH5YgI+7nQVKG2nPNtu7TGbaxdDstg+7biupI9DSlVG0NQkhMRXLo+OiWORYRudYRWKQEKKvSiLK2baIrSgdgC4WNWIXQkIA4pxVHBDMYmh3GyoqBkZFVy0w52hOSS2pJiIzlRC6s4uLh+fb9TaVS1re5IttU62O68UqxGhJAMSimoKIgaD0JFnjixYA5JHQV01UYwjb9Xq32aXYksaiKJbLo2p56quVq+oSNJ37tl0vCUOnRMk5JAYR6brQdW0IXUiQkjK4uloBOd91vFgWdBjGnY8EG0Ibs3tjpMeamrgGbCTCcBYSUT5K80E1SgnjdLX+P5suhPxZRDJBYV48o3FhygvZH1FEU1vAyJdCA5I3ayxMOftwT7bab2NEhMSInpkJHLFnKhwX3nl2hJRDXwgUsY+4z0KAmUnq9+BxWV1hI8jXICIA5hOLHDv0qiqiYso0Mr0gAURVUKW8yRKzc3bIdX7VYa9jPjGbL/MnzA84nQCgMNvnZ3iby5qhptky0F85dWDDbIYdNGhe4XQrm+9Rl0eAzNvRP66//qC+2YMva8Os4CBxZn34qgoPvz3RyGdZM8+x6zeun56eLpdL730WePo+meYQzxBC27YppYL2NBoHe/tjhd3hTJn9bToEYzcz4BsnL3068ANH8zC8kwpHX4p9b9jVJW/8yrJv4aRH3/NKvHxGTc18B/3UA2TdHnEzi3fNW+R4EfbxqWZgpIBM2XZQsMvpdLNRPLM2j/sDTqy8nPkf82oyUO0P+nEjxSGL17T7WS0py9IAuq7zRcVDGXfsvo86hdq7qdZNE8bD3Kq952eA05gZzCmgRWVEiVlP4TDAbof5gIiPCBgwVmhms8lymIYkp0MEymRTZr3BfmKfQkKbvMqsJ496GjOVZXG22+xiLJCrqo4hrNfr6mhZsPuN/++vfemLX/qpn/qp97///XVdI6KgVWXVqkKmeTHwwxNBVETJOyVUwk/96I++56WX//l//9//d//tP/pbP/83P/6JjweGgomZm65DIjBDJCayGM7u3v+DT//O+198+a/85E8uT0+7igUtxOi4EDVEZEA0EBFyDh18+EMf+vVf+7W/8+ydHMK0PwQBEIAxZzENOe5LVeu6vnfvXlEUhhio/ZO33jo/PxdJSo4GkdmGwRxn+XwJPWZBqaohIPFkzk8O7swwk0HTOPgW+vATzLnRMMe/zaeZpUMrfF9h7lv+y/jHrJ8TIrs90psQhyTRgD1dac5lBY4I8tzLuMH95MP5BJvtJ1nC7fV5FE1AiBnDN3HoGfbEs33mBqKpcXEaODcNiTMDRJc9UEY5KxITATuGKHLeqAqagQqiERHmhW/Zqj1WggcrZb/1XGFEpZ5ELKd8mGX1fnSxTR42Ezh0dn73ckCWCN084BIH88y0zvkhcvis8TXkw4Pd5fCDaS1TOcfAIStCVlgMAEAK0qPCn1TumaPqyNPLN05/6IWbz99YnNRuUTtkaNvQdeli3WyasO304SZumzU6vh5xWYeayTvn0asHM1BVIUnsgblFEiNRUnHaiGhzsqwWJRNbUYIh1Q4XrlgVi+Pi+ubc3zimAptmd5fITGNom6a5iN3ONAGC9y51ZIamsFisrl+7XZWrqqydZwBTbZK2MUhKqSyYHAFBVRWLRdlpt1wtiIioCyGZSVG4oqhWRytEC11HbYPgtVPXdqluHTNqZItiLWACFLMUQptSShI5pS7E3a4tisqQ62WVumAxqkY1MQPV7OTpqE+hO7BNK6iqRDFJoevaXdM1jSYhQl8tFquj5eqGL46QC3IlES6WopJiXKMpQHQeRcJms33w4OzifBuCBIVmF1BJjqCol9mxScyqNpW/ptMMhgRxGdM1TqdccgD+qFfnP+YrnStgwihytaIyqXOPRM/eUhxtogYAkBNKMjNMDtQx/JQGbsceBobokAghey9yHAoNB6mjXlFhIsc8EBYgGhTeY6+bZ/ajHkceU1SVqWBxtfIwnN8gWV1gclwYGKaMByF0TMxEqIACZHuwLBDhLB4dZmjSg/hjMxjhZFcs7ZmJ5FBonSsWcHjlY73q05JZb8bBmdVwUP3lJq55w+dC5oHp51I9ZRLlNZeQDlkdn8zK29MVD7CBqzgN5zLxtMxGft70jFph5sVicXpyWtd1NqYQIVLKv+YSui7nJs4C6PSAPxipaeVzyX766NkAYM8gaQYAIjhhH7L5uxuBZ49OtvGWq/0Ys+eiPaGusjdqPvLi7OAYnZr8LtVTQGXvojlQVKbXZTan/u82i0+DQ0UY+/3KDABz9BsA5GB3s+wX7wWbcSkpGE7sLEwDP52ZyYRdKkcHIvbUK1NiXLOpLJuDUrISMmopuTieQdqm8PIpSGyU+Hv9fHDmAGR06nRC9LS2AD2CYZwDNEQs9LrEHNBhE0/LgdBy8DnfRkSOOaWUgVVqpin1lQMpKA2KGRM756b+nLIonXOh7YxMJJnZbrerj1dvvfHmV7/8lfe89PJzzz2XMZZGyMwC5olJszceKSeJHJovhGoWuo6Jbt269ff//t//5X/3i//m3/6bmNJHP/nDCwRXFsTUKyqAANB13atf/0Zsuhdefnl5fMSlB1BCdOyyWQoMSKHXvhyp6PHJiYR49623bj/7jJmllLz3GcMmObZBkpltt9vs5i2KYr1eE1EbQkflH372s2dnZ977ZCOlBYCZ2oSZHg7W9uEyHPRIYNs7Dg5MTpz9EGqqCQellpCBYSRAHXeh/SqbyN9zyRkYZ7K5TYwsxPspSgNlSG4TunzogPV6RJ5vYjYTkvOEGCspimJUp8cLVFWgT9eTG2QCNlFUsupHj4uH0WnAh+GYawQNDV3eXo1BTMDIvEdHIOYSQooSokYFVTNBVRwwZ2PtB0clTt7YFebIvBTHbcTNt7l3ueQtbL8ZTewij8y2S0/fWdLo+f51ecEswioZAKlGIjharJ5ZVdcqfw3DnZPly3dO7txanh6Xi8p7T1ElpnR20Z5twv1193AdH2zC2TooWEu74yN74WjhkXxReF8ROjNCYESXHEZw25CCiqrrogZJhK1HtyjdyQKRLALvUnHzmu9uLnbro9Oj49Uide0DQJMYu3bXtVtJAUERSFOIUcCwLKvj45PTk2uL+uTo6Ng5Vk1te9F0F0l3KapX8szsSbUWVacU2OVFJ7Ix03pRrZbHpydHRk6RoiKG2GmC7SY2RV36goCKpNaqtWpd0katIxZmQFBKFprOkzMF5wtml7rQGSpGA1GBFFU1EOGQxYoRUVKUlFJMEuNuu213OwSoy6qoSqq4XBz7xQlTCVQwOwCtqoLsRM5bldg0wZrYttuLi7PNZtc2SRS5qJgZkfqUWEiDjwEfpWw5UFfGP44/qSrSzDs/vVKHDDZPPNP6+i+r8Ko5ipgTd05lDsrRKUCE0KsoY3g9EgESIuXEGIg8XOCQaCKPIhBpUuqF7xRTSjIVEy+TuQ86MhOYDcZg05x4AIwckUdW53SgS3tEBMQRyArfZ7KUA+VhVFHgiYX7vyxPXnqzlHNHR0eZVbYsy6Jwo1MqW+VDCBcXF2dnZ6rqfSFyKevFu/CK5tGlZAeSw1+W712yOdk7570vy1InvFI8KDB9GWT9UbJ/kmI2Q6QgYt5MiCnEmJPF5YD76SvL+0Z+0EEw4aiWTFuY9aKpvHFQRlNU1qj3GLOnCuW6uuTRywalvHn2U5TI+UsBmWYGZkVRmAgqAGAIAbwzsy9+4QsxhE/9yCePV0fOOR18hJjTbiJkJgGawHJsuCA7I8qyeO655/8Xf+/vbne7X/31X/PL4mM/8ondbndy8zogppgsSZTUtd1r3/4T592LH3x/KshMyYAE2AABBMENLIFBJaE5otOTkxTigwcPnnvxhZxEYXR/tW3bNbu6KBaLxXa7BYDlcnl2djaYFexLX/ziZ/7wM03TUFGOZ0nevt910RQmXpnM99kPFILxXuU4EAOmrjx9B0lKxmc55vFZNiTjyboiTGgLD6Sa6TE9eiClT/410RAc74PpsadTBCKcmIH6X6df5q6LnJFYMNsbAAGVQBWRdHntyEIIbRsbhGanIQH16QvfybA8trgnDJd8upI5iUZMSxf3idIPBcrJKz/Y+A7e0BM+2jErgDEpAipV3l07Wd48Wl0r+Ka1z904uXPrZLl0rgau0Ei6ttlumgcX2/sXzYN1e++iudilTaeKdAQllyeOyXPhXWkIpQdVclx6l4JSqpfxfNs1XWT2aGJNjBqDgINVza4AdX6hpEQipV5fruqVd7ILjYGlGJvdtmsaMK2KAkgk9fFsCMzknSsWi/rk5MQ5F2NASAqRJLETAFBTh+w9V2WhRQIzEa+qoSoQ0ftitTo+Oj1dLm+4csnVUpFLAzJl6TBGLsg0KrRqnUEn2qp27Bw7AFBKGnetP1qAGhEZEyMUjixpbNscASQyCAYDICjGNqUY2y50IXYtaCqKYrkoq9UqVBUXCytqNY+GqkamBXFRV2Cnob3YbJvN9mKzPdts1jFGUybyzjlmIWLnsyMBKesqRI/ikHVIV0/oDv4+yt9TdsZHFRVEdM51Xffkk011X+XbWkRZGphiwPrkwlkhmRyffQF0SESQsWGM5HDQUohUNatuBKZmhJSRGzGGpmmO5Dgn3slulv1KmcetTkYmp/zvuyOS8r0xxhCii4LoDHFsKGYHvQnN0hPDn1oI9YGcMRpjHqXq+8vyzssofh0fH2ezLjPnYVYVVWvbdrvZrtfbBw8fNE3DzPZI8tzp+0rvODhkNPlnAYLhL5WTt13Gc3m010xFotleIempFZVpxE7err33iL0fxjl3wLoj0OdrHtWSgwZn6T8LG6Nt4gqdY1RUpl/xcSHL77yM4ux0oMzs6ghLUwWzqqokJkiyWNQxrLah3W63D+/ff/bOndVqJSLOubxsFIdUTpidZBnQ1teWecfBesqcruvEOSrc/+q/+F//V//7/+rXf/M3nnvxheu3b63X68VymVLM6gcCakhuWeGijA4lxdJ5VjAEGVqPGcDi3EW7k5QevPaGiWYVFwBwyC2eNbSmbbcXF6fHx/mQzZAH59xrr732i7/8y5/76jc3XSDHKsplJSLS06f0GT6/Hy9lfB39BwRCp4/8/ftUZC7cZp05GyyRJ0m/5o7TnMdivD7rwJkRO07mr86jZFX34TGPij3j5/m2jCZoiEpiBghoxGpgBKAkYACOoCwcCUNqAUSgh03Cu7v7uh6LMlQ7dgChd/zAlE4eh8AzgHGejr61Eds2obbIJi5p2wgG07Qg2WCwr/UAKD8YAABAZrjAJ4VQG6Jhb84t2B2VxbWqOqr8kvSFa9eef+baM7evlaWRU3CQkrRd2G2b3S5ut2G9i+tWznZxvQvo3C1gXyzKgr0jRFJTBPK+BOfAiSkeuaNNMhBFX1FBLE5sJ6oqimTEyA4JWcwiWFEXR4uqCwFSMsv2IY1RCMAKMDMVAUMzEEkhhpQSADF757yIZJyCQ+cLRoySonoAyDR/vbkdAcrS11XtfVlVy6qslyfXuViyq5KRc86RpnbtUJwzg2AWDJOaJBExIfJEYJBQJXXt8niVMy0qIbqiKEoGbIxMRSSqRLOkYsCAxgSmKUqMIXQhdobqK+e9LwpXFUVyJXCBwKqGCgDJLDGpJ4zISA7QEbuqrJnJVB2XviiCWOEYjI+PFlXlcqQ5IxOQDRnhhilKBipqqlNKib0FAvrEiD1OaX7kAWQaAWbMHCmqeImBzSb/AmAPBx0gKON/Vxcicuy8yxEmQzBK/gDIkGNUsM+znv+YEQM97yPhPhsnEpBIyseHgjIYExI7Q0xi7a5JIQIYEXt2oyvqMY1UA7WMbrSJR0UVjRARFSFKspio56UhAEAiyzQgoIRP4QJ9d8qjAtNjcRp/Wd550QHAs1gsJjAeANCYkiRpm3a3211crDfrDQA455qmYXcpuvjpyqMH4uQIfzwy5y/LYTGAYSRzrDMz59zDE33fDuT4pIKT8uRPG/zGmN0jw0RC733OvViWpXOubdv9PaJmgDkOBmmGz1QzURMVSaq6x9YaeHepqjIqM7mMfpjvxzwZNas9TK7PnXJlFjgAUCu975jbXeuQVkdHGDwxr46OGCnEyJ5DjGOCZhvUlSyK7QUyAENg3ddM3N8YVP6jv/nz//T//f/63Gc/+1N/9WfBMzFLSp64IPbO5eCQddfcuH4ntB0ZZEVFeWhk9kKoEmLbdr/1G7+xqKqbN27mALac22BUcU1SQMxuli6Gi82mDaHw/kMf/ej984vPf/1PzIIvym3bGiVgNzxBpwRcY49g4jJ6tExpxCdjun8p42cV0UlCsEOlaI9TBVEZ5d5+Cu2hZVeVy9jM4zT7xTCcPHAVjHUS8zQb4QisHc0Eqtq2rYLxsh41YGJm3gvdGlIOeoWBs2syGtNm9Xja3GKFDOcHwwHO0dOdQNN0DEbeOc/IBJ5T10Hbgci7Ds9yXdrzrB2YuCgpDLDZPa9L7nOMowFr0sF8rQzvdqCVGNTuKWMaiuBEgpk5dlKUPqCwD38Zp5vpAYj88UtdEVpWh5iarhC7fbR8/9Hq5aP6eqmnFT3/TH18TN5jWZaEEKJ2bXux3Z5tNuuzdHEh5w2ttbgwjQwr72um64vKl4ho7KBg8uY2odt2sQFVx6XbXj8B4eq8sai04IVTCNo1EV69wKpE0E3BWhZYVq6qa+UIBTrx3c7aLWs8WZbXGRJqC7QjBjAvSRBRUmjbza65ODsrVssj550rXYmlWEIKRVESS2qDqhTGAiUAJkrg03J57HyFVC4Xp/Xy1K9OiFelP/L+CBABIq7aJOcxPvQmzsN6011s47ZF5CMz8i62bbPdfFfCA4weWm8lUVGZK7I6UR2fNNtdSomQS0cODFLYXNzdbdauKMU0qkQDX5RlXdeF46Iw0EUKIMBoTCUAIRigmoQoqTUR8lQua4SqqhjFgThCRDWnTdAQlVxL3nOx9A7ZGCNZagdIJIlBMsxKigJJiJbpWlNCxBBiCCEnV0miGYiJ5ECTGqohsTekGFPbdZISMYH3syw6AgpgimqW1ELOQqAmpgkhASaDCJgAompMKcQYDUUNgU2x8BX2ybv6M2RZ1R4JxbzjwhfOOxoApOQY0ZD6yzGzF3OOG4kOmZjIoS+c894554rCMaMmonwcejNTsCYkLqoQQrsL0qXVagVolqKZZNAYEEaJYJk02iQmEPVEYpAksduDWckIDEwNBMioQB+jJI3ABRikJOJInQdilX1O9dF+k5FCGYs1RA3h9Ehwbn+ZzTPnT8P+DqD2U+JCgzk1kw6UdkwHVliYQN4RcYz8MzOHM5/MLG/b5UIMXe41OoAtzO24U9BdnwCtbVtmdm7Wr1mXnR/t0AcV8iEUciqpXyoVzZpkmrHymfhiUa9GgzohTsIFLUksyzITZtd1nbNQ5DzIu21IKXadEPm6Xty+c9sGZP/Ds7OmaXJgW0auZ5APM8+ONpx1uZjGP4DRbAxn8TuQ2a+RgGfA0ByJtB/DqQFCQfHxr89MbQzyycTq+59wymOuNkGWHhyj88pn83DW5dmL8DTX9uUxLtBRf5j0f1b5dHVkG/7kwYOz0ZSTGgABAwIXzEXhyqqoF8GMoZeH6nqRmekBoG3b7XabYTCjviEDV7qZOcBcew9NcU4HIssxpH5UD3a7Xdd1rvBVtWy6NhPaMHNd1zkBAwAwmimKisYe9rvvSelVoknyRJiJ2sxUkpk1UbOvT1WJ+7jB3l0MAIRGaJkdjyivJS58mfYsLnC5iovz9zXbo6z/tZ82qrHrIEUTTTG2u+b66TVVNZWkRoO4SW6fH1lEvHNk3GzamspIXb1cbnfbk8WiWi7U0cm1a4lsdbQyQjVTEQfgvJcUFSDjK5mZEEXVOee97/LemPtE5Ioqz4Of/tmf+c7XvvE7v/rbH3jPK8+/7z1aA/giqXHSRVlfv3bj1Tdef+ubr904vWFijWkB5IGgE1hwZ4Les1q3baHtvvoHnzt74+7f+7t/99rJSR4QZkdE+djtdk0MkdmAwRgJfO2Lm889v93tXv3O67/2u7+/SQbVohUgX/WmLxiwX47G3AU2GLn7WAziAybT/YuIYR8OMddC56jAmbldwkRMpX1IiQGA832UCVFOE7KvUPfSbVYfhqr3cUI9jqqnECBEnLIO5lg0AzAxNRNTonzSZ+L5fVxWZl3sHQHWJxdAIAaQTZMVFUMg59Bzr+QQ5nB/yDx9mE3hvZmA2e83I8SxTYiATsDA9QZwUFMCzHl5qsURDZm+lAJw7ZaQQgdtZ2cPwDET9wbcvDP3dHaHatHk2yQUrbf1IpEDAAczvWpPh4cGKvsYmwPLMx0GOE7K+ATokR84vLDpoY0Hu/RVLrb99js/v67giMlRP0oAy8KdVOVpWaw8HZV0svTLRVlVRVG47KOIMW53zXrTbJv2wXnz4DxcJMiH7PHq9Pbp6tq16wZQH61Ao0lMGoJqVFQqkMmhi+22LuqbpzW5EKKipBDjOsYQVLbmKGDaHFd0cuRXir7CEskMRFSSOlcy+NIVni3G85DaFEMIIcQmJuuC27VnfuOIwKBzrlDtRKKCEqmpIQMhilpKKbShC52KsKOyLNiXxKX3DhBFDEkRick5dsQOCKIE5q67OE/RpcgpkmhGnxqgAeq2XcfUds2WtwUVJUFOqgNK5lzpygrB0JKlLsQmdW2z3TVNiOuGHLuy4LIoqkVZ146J2TNy0ggAkhV1Y0BBSkhikIAdArIJkTEWpYPKQ8nETqO1MdXJwLDoxAtqkhBDS2TEYJijI1DE8hGUM/xk8WA0qOuew2tiJBz/1MO3eod3b5PA2QQbbx3JHBVALNtY8NH18LgV0pv2h4NpsKwhMhEB9ogvHC99ZF6jIebrAOlQdB4MMeOOPF6NmrTdNVVRZn1gDwJQALfHyPTOGUTN+SJiH9SLiKCGBoTk2aFTr0rIyE7ZCQ4mhcuW4w9YOfD7/yCY20ePH87TDzz2SnsCAsGnKyNNe84tkSQ455aLOgup04Y1zS6l6D2H0LbtLsd3DnMbmdl7R4RVVU610xs3b56fn9+7d2+z2WQAQ66zTzXx57bgPEnGXBF6GiD79MD9PkGSJgUfhSHl7evAZzIK+qNLZLqFThtvk6wJU4XqMLJ26JqIiCoOOUhyCqx90HyKOJo7bYrDhwzknbbhsUtifC/Whx33Ee1jg6dXjkVND0jQn6L0se3Yp5yHITkBO3fQ1NzIvPRyW8kAc+5mU1+W9WLxe7//++vN5kMf/jAxN217Upa57xl9PDGGwyh39bvzRLGeKtkG8BM/+ZO/85u/9eq3vn39zq3q9DiDJ7IBfXF6bG++/nu/87vvef/7BK0oiiApGrBjEl0sl7uLza7tnMHXvva1z3zmM3/zF37h5rPPTGeDqo6pzLz3ZVEVhSfnRS0kSSJFWX3lq1/7yle/ZljY/O1NHBE4fUNj70aXTv8sgpllaXIbXjIxHvO+pgfZBPhjADGlPD8es0VP9uIDkKRMh8Ns/M8API+OrmGZjA0mBEQFy/b5UU/rXyVO7hqbYPsuC4DlfKcowAiEVVmpqsSUJHnvnPOIZJRTFkxsGHYwUnupnYgYuTdbqVns0xkpAkLB3iOiFV699w7CdittB8xoqCLInEmqu6cSExwk2d84sUGhzQF0B86yK+Ac04j5g+1DLtUsDrKhP2HrryhZ1CrQjuvi9unyxsni2sqd1njj+mKxqOu6zlq+qjVNd35+8fDh2fm62SV/3sWLFjv0CWlZ1Ndv3lpdO0VvVFUQLaokoKCajKO4ZIzMJmFRlFXhner5xXbdnl9sLu41GxMAW8Z2J83ZrdPig+977uTaDccL5woySHETgnlXuaL05D2p2a7pIIQUUxfiLoZUFNx2zu3IF4AUvS+IMElr2DnSwSxFZtZ1YbttutAB6nJVlWXJvmRXEZIkaZptoa5wESmQQ2YDAgUzdSaVSTSpVVrTBBYBMpeLbLdrVWm7na6ZitKZUpmcJeLK1YUvPDNa6oJ2TYjb9W5zse6aVmKqF8ujalFXy7peVkVNBmDZEREAkmkH5ntbNiuxIaHxitgX3pGWnq3yUDr0zjzjevuW896QFQkjdgGla1pZE8dyUQyKCknO3DVwsfdcyoONU+dlNH/O/3oVSElVtTfZPHrXE83YvBSyQ7wHlTqXzV00LVdWNoqD/MiFhIS9R4UOZPEYwsXFRVVVdV2iGRL0S/0RuYGG0EYRjRKA9gc8ZCsdkSf2JIDkiRskgcke+udBWZluX4Tfj9i/t11szIhK30NROSAQnBnU3z437kEZJcuiKKqqunbtWlVVx8fHy+XyYFJtt+ssfwBAHw9NRJPQ5GwenvZOVVdHPu+/Z2dnDx482Gw22R7/g6ArvpMyhX3rPMq2eCrx9iBenObBV0/bzLddaIgMyS6vbNfLoREjK8ijIcXTKWpDkNigxO4vy7dn912M0fuUxXTIW9kEIXYgh0zX77iZwxNQauJAlpJs34ADYWaib5OJXZVB9cnKuDTMgJDMLPOHuAOKTNuTQsYY3TC8SFQURVIty/L+/fuf/vSnf/Znf/r69etZgBm1lLz0rtCleBK3fVCeee7Zl977ni996Usf/9QnQ9tSXRgSEgPSj/7Vn37j4uG9N9/62pe+/PL73iuGrixiisAO27hrzsxs8/D89dde+8qXv/zT/9Ff+6FPfKwLYRoeqqo5O4Kq1nVdL0pmNgVNoiZNG/7ws5/7D7/3B8ju0dQ4jy2HesL3cznYlCYSwUxtSGB9YCc6CPYOYR+PzfOUCfv5hoje0+Tv06V9sL5mc3vivzvk/BjgR4hgZpKSDady08Yc3euJMJlppMEMKXiF0X9ScCIhgJrniZ+XHBExY/JSOqNULorUBtlurY29btkbP57gQY8UN4VjTZFaAGATW8LB7njVsw5yeT1Z6pWDn97xuZVRReJBTyp386i8sSqPajha+WsnK+d7VJ8ZpKhdGy/Ot+dnm/U2rgM1CdCXJ0c3fLk4OTk6Pj71lTdI2xBQVQ3ESLFQ1RDTtoti6fbxMWjCbrewDnxUThvtztuu6aRdNxqamuOzz1xfHJ+4okKiFKVLURLEIItjX/pKQoopxqiSSIXAsmWcAPJ6EABBEkAJMal2QImcqBJAv/fFEHa7XRc779n5lXMuq/4i2sUdJKoFCudLTwhBRBBTSE0MLeMxAzNGpkiQ1BQwKyqWYmJGVenCLnQ7JWBLiApeYyyc8+wwCYhhF+P5dnex3qXQXVseVWW1qJfL5XFRVohkAiljiJ2YRZU+aR4iOiUGInBYeCDyWHqqGRNCiBZTkBZEFIqyYOeSWqGoBF1sIKFzgmw6KCpJTRQkcx0BUB/bvS9T/eTg6/DZrpjZo6Ki87vMDN/O4hvFOJ6XvZ6CAJerTDS4npEQDz0qvaIyGjvHn2KMm83m+Pi4KByaMQxn/7zhfTRM7qBIDJGY0AzZQUZSERMRsDIkdJ7IxZQC9AlnwOBpqB//1MsPoPHehrRF+L2IyVVn2WnnlbzTZuSp5b1frVar1er69VNmV5aF9wXRFHIFdV2mlHcS7APpMfv0MDctI2qoz73WOyybNma6laqqyrK8d+/ew4cPs6n1+5oR7vtdporK4XuR9Ph7rizTxXsgi1ytx767ZaotIGBMMcY49U4ctC2X6RQdjZXDjJ3JA/kyEYkxiYp33E8DhtGtB1NEyNz6CRMdGB/JOj0tGU81TsgZL+T8Lt6ngkc35xyUFODtl73aY4CEOmZNnJfMoZS3phhjWRSDNEx1XV+s16r6hS98gYju3LlT13VRFDHGGOOYo9KuzI41t2jAaFIyhGpR//TP/Mz/4//2f/+TV1/94WdumRgxKKECHt2+8amf/PF//S/+hy/90Rde/ea3PvLDH3vu5Rd3KUAM3MTddvvW3btf+8bX79+//6m/8qMf+MiHN7ErqnI6oCLStm3XdUVRrFYrJIyiTdNerLfbptns2le/89off+MbQPSk2xce9GUyGd5tQ9kUdmsAmWaaDhTu3KhLmnRY4VQ3RgTZy98Hd9EcMj2rf2qitBkaifZxEkCARKhqWWLJor4RWQ7BzdGwzICI5eRAxFlgz3RKqajhftXMVoehEjpHyB7JiFdsRnVKVambRtoISWJSiwnruX7+ZMVZktn8Hee6geoE+jUZRgSYBhkf/ARg071oHzEPs0l0QKZ2haT35OrNbE6ZgIoHuVb7m6viuLSTyh0vnGPLN8aYVKxp2s1mt9vGZhe3u+68pdYAiU+OT2/dema5rOrSDMVAN00oHJoCoS+rImigDprtLiS5XntNLcqWLCxApYRNyReFawR23cVJXT7/7M33vO+FZ567de10UZUcYwy7mKKkpCGGqqgAYkxdhhGpoKkD80TOc10WdVkumb0KBI2qnVhLJgWyc+gc984qsRhCjLEoHLNjZkNCJFUJUQg6ja3GbehQ1SOpQUjSaoyUlmCld8u6iqLB2igWich5UuFkSgRMaBIkgIEgisagRljVRBRjE0PbhdC0u6iS05Uul4vlclEWJZIDzWHijpAS7rTnX4kAwMwK3mGRpRvnPJkRCyFoCipJQ1AJnoFqVxQliwKYJAldMAVV24GhK4goiSqQsRtD5AU0B0mNR+mYn3emusyDrMz2aASdIAr6G3rol45/VFVRIR23HgDdAyRULWNaRixBvmtUVEZ3yrj9ZY8KIyIM21PPppKt7UjEeAniQk3JcDQcju0nIud927bn5+dVXZalU1XuEdg5WSEg5pQAggo0WJJUhPoQMclDY336ZgcO0rCEswnZkEHtgMBiHDXIHrQhqPTRRX2YhmX2XnD2ebp1vp0U0vtKHkkONvn6+FsOa5hrCFd8PZS+7fGfR92SpnxzOZmBPf7K/ussEOXSgbIDtNj0bJvQBTBzVVWr1SoTOC6XJQ0ARedmdn1iM3XZCdnPUOhxh955HGS9PurUgBHNoCg8AFLmVRDpuu7i4iKEcPV71Gk0jsHI0JdXyXQpTN/DLEIDYUqCdGAmn6bzV9uPPA4gI50Q813WwrHyA9n3AN8zrYRoaHxu0azxM7knB9o9tg2zWXqVmWA6T/I5n3mfkJAmVsq9YD1qI9jb9fppOT734I9jS2ieBwynZT7yeZfMH3a73ZIoqxPZvZADnwCAh+wmAH1km6kCIhFlDw9M1LmxI6NzGBGJaXyVAADsxp4eCoiAs914Mucj7jOyDGPVD+xMWBw0u9wcHKKfwSzbpLJLKtczIDs0hJCPgxELl1+6gXnvDYCIHj586L3PlETMvN1uy7I0s9HnlkdvVLRg2HWTCCEPCzSzwYxDZcz0sR/+2K1bt775ta9/8GMfKdyKHKppQjS093/4g/9x/Nuvf+Pb3/z61x+enz33Jy+ddbsQ4+Y7b24uLpLq8y+/+PN/4+dfet97qPQKxt47wBiCiJhB14XsXsgv1AhjiGfn629++9V7Dx6WVb08Ona+2O4aZDfO0gPb3yjZj/NqXAtT0xhO4s3QYMa+QkaTPHAIs81hP13H/0/O674GBBqY0GDifB7HcLxrfIO513GemxSHHhkAIspQAx1mrRyZlw/LFMKhuB8BAtAx4tIAiRhJQQSQcrZqM0uqmZIZCQgtCSAa7ilWsi429LoPo5+0ysZuGs+OUUQUMENQx75aSEiGXBYVFIu42WnTpl1rohACeEfOaY5egdk73UPa8vgMz3KQJi4Vm4Wq4jz566W2uzmMbxZXOoeTwqTyA/ngQEOdiw6zjXjGaTVrxuz4YeYC7Kig2yeLG0u3dLIqufZkEkDLGGOKGkK6uNicPbxomhA66zoRpNXxirCunF+V1aIsCDvSZCi71rD0IOAZCP9/7P1Zky1Llh6GrcHdI2LvnZlnunPX1I2u7q5uNCjSCEEiJoKkgdIPoBn5Ayj9JelVkskkM5EPeiBm0EA1gCYIqAdr9IiabtUdzj1DDnvH4O5rLT14ROyInSfznnvq3q4qqN1uncrMmDw83Jev8fuIzRrvyHLq2+dP+4p167X24Bg0uEfnOyHfdPnChXcfP/ilb7zzzfcfPX602e0CgkUZoqYhDjkP/XCoAyMoQCRWQDXDGE2yY+YQNlW1cS6AUUrZzBS7nDtiDXVAYudYREeyICJiqqrKFb+sK/y+piLMgpZU+hRVBAnNUMAy2CjoR0DkUcFFZg6ITDWwxJxq35hGNEI1jWIckyqkngjb9tAe9t3hKqc+eNo1TbPx9Sb4QAYymjlMnp0zD9bmAl0HClD2/hJKdUToHFuOCOYQBVDFRFJOMfa986GqamZXAUCNktLQR03aZXN1oTU0RQQd1eJSX0hgNuHWz1sOLrR8OwnsI6iOSfO6iMYcf4ajbVMW12SOHOdzOWc2VLII08hWNPsmi9N6Nldg4bkkIkRjonnh0EQFVQ7hcSWbrQMD5XOXbW+pzhIRO9f3h5cvX56d70I4K+sPsVT30yjOzUQURZF55MpMGZUKDhgREjOKIgE7Mu9SPxiQlbQ6ESBFNaAlQv3pMh+Heerb8tCpqvp6Adx1sfuJSXP3VbqSUWuayDs7v/z5RGW859CJZXJKKDm1WQDilKaIEzFOUcVvnznqt7g8tNy0XyEqjxrk4sSiOZkZEVVVtdvtHj16dH5+7r2rKlfK2pjdLTCcJQoNLuubp3SG2cCaJy15QDNU1TnvsfBm6Bou9qTNrz9OaQPA6V1sLICZnrUagWMPgYzMZg/lYu9dDiAsowGjnXLUfdc9XM3rk9Tl1dzQOw/h5DQt33HZq+WGONtpr3TlvmZb9n2d7g5ICIbH+PCUH7WM2i0xdmFtpcxXHZW2Ncfl0k45WV8lbFIO9f3gQ5jnZynWn3RcnP24xaetE0ziCsVY8vL+c24VIhY+SpsJ72d19mS1rg2VMedt7rA6nQimbpnWK4E13XPcj6ikTZoxs3dOUl6CCkwTePQUzJGoskxE1Hvvvb+5ufnOd77zo3/0D4v9VoyTAu87n182ovKXuStlnB27uWPz5lDMJ0Xe7na/9qu/+vzZs37f1rstIknOxJizOuLv/OZf/tp7H7z1ztv/7nvf/d73vtdZbjabBw8e/OI3vvkr3/m13YOLetMURwASFVLg4n0ouZ1mVl7q8vqKnCem6/3h3/zO7/7O7/7e5c2+G4ac1fuwrOU4NVREoLj/4ShFiWh8k+N5OLOPIIClxdJTXGFmLNbRag4Ux8ocSFyURRvCXOdjiyjH0lyfN3FYWs5r8F+YV8oUKtSJV2e5/cxYU4iziJum2vKVCXHGlCrKB021PeXRBjhSuc5vujQwwMCk64GZHDM7BEAai8YNAJfAM2v7btmNcSjG9U4CBt4DkIpxwzX76CtlL8Ng3f5I87wW+Se77fJDOJzqRmz+pzz4viwYOFFG1jkH60OvPnCft/JLaWzgQC+a5kHtts52AWpnRMmMYgLIJBn6Pl1d3tzctF0bU1I1QgLnnScfEC32GYbgxVXKDPubRMlqTwQQDweQVDs6a7Bvh8vL/dnWb8KuqmvnELMiV3W1iUmbr7//8Gzz3tsXbz/anZ9X7LDtuy6mdohD6tQygMvaEQg5Uc3EiqSSVUcqHwIwVQE0YlQTAkVS4jHjqVilZW1sN5sgYbPZjN4a0Zhi30vOABhzijl3RBGS6gj6BIROlWPq2vb65nAZ00E1GxqRRzLval/TR598fE4Whw5JRYkyIzmFXtibWd93h8OhPRzYctM0Z9vKeWUWg1R8T4BBDRRAAREcoXdOAdQgIxAim6JmxJyJSSSaCnp0qGpiedDY92nwbV/Vvq7rKjgmkqyWYjf0UTgDA4DzAQCTZDUsG5rGyLS2SaY2S5Z58xt/HcmcT/LBdPKf3edP1fkOd8/k2Uo5qUu5vVne00SUebJLb6d+4auXUsrZzLqu2+/3220dwjFoqzZWzo/mzcRKFmOMXS9MIQRwRt4TTzX8AEBITMaMZpitiPNXQAp82e1LFxRfervVw5+JZLgpBeuo8S+PFq2rkKI8evTo4uJiu90yU6gQEZZVyPMlVXWM4N9jtq0nhBJ701EPnpXXcv8vPfXrZ3+qvGZbGrG37KWvpJWP4pyDW0RVr2w2hZImW+K1rKl5RhUpWMIORTDaFCWYzJsjltqcu/+5bTnn57p8O8Fru+OqWTLfPmF2LS3ttOUJszFz+w4FKkNnm1O0uIRowVqzDLOXRwxd3Gyam8Phgw8++LVf+7Uf/vCH3/72txHx/Pz8+vq6XDUWAjkPCw/L8uk6YTefOoUB+jRs2H/7l7/9D/7dd7ub/dmTRySiZg6hCqE/tMBu8+TBr539ld/8j/+jw+GwPduhwf75y48/+qjebtS06zpXhcBcous3h7brumKoPHnypCBNX1xcKJgipZy//au/lg0PQ/rd3/u9632LxEAMbyQBVnsOLrhjXqEJf5nNpvDd7aDcrFHA58X8y4KZrcd7njXfxwCY3bHAHRiPBJWj22XU3tVUVNEMTNG8d8ty9GWPJSuoqiBYtoXFBffWy9JirA2O2VMIULAYC70BBkbHzOQ8U27sGnLbwjCA97Yk18IVIvPJkDrLJ5gEx9gIMt2V87gGalwtVFuXRN0lU072tnt2KeY3mWxpiJ5y47n20LBtA1cOHKiZDVFEcehz2w5t20s2Iq7rWrnaQ1BUlFQzXjRVFSymrr25TDk5fZCTeh9qz5LbauOHlN562Dja7g9509Sbs22z3XiikHKVdJskizy8uGgCXzimnKznyHh9M1ze5JuDgCk79AGQBlAlNmIhNmZwAbJayc7K6gMUsecZgdmx88Ra154I1QSBisdot9sp6Ha38Z6zaT/0+8Mw9JYENluIiVNGJAYUVTEFNQVFTH3f9d1wM8R9Sh1gJgJ2hMSiHNh7dmDKDCn2gGiIhlBxNaiVHNkcI2kOlT/f+d02BI/EahBzFmBDLlYKqBG6wAYASgSqXIwsU6cG0u4xe8m9knFAtAjSO1Mk6BVSSl3bI0Jd1455WweLqqqomHPu+z4AArksNteopCF6NxYjzZH60k4skEX8wwqCzO1DZkZ3YGHDwlCxew0VAJitlBDCsdrki4hTVS0pqkxLQQEAwMQG46bFE6VaaYjonGvbtkAtrW9YXltnpcFEcs6xH9r2UMA9q6qCxVpWVXCUNJfSIFVAPkKO6FdprZyoyz+D7bSH7O4+98+v8cSUNyeHzIfK9K6q6tGjR0+ePCml83VdI1pRe+Z9dOFdfkOTNGcxHdNaRumR821V70tpyz3li66yn6lWpMSsFn+lLzIruMVQkZg+95LSlqLyNeGxlm9ExISSUqqqESZumcJkWXBRl/WaNu1yzpcfjje8+6p7DJX5DsWmWiIynwzF3P/Tj4WwzCpDpTL/QwhN05S7bbdbM5OpjqXsKVl0t9uZ2a/8yq/89//9/+uDDz4QkYuLi91uN2NqmRksKnZOKvFmQwVu6cSuqjTJg4sLybnvOs1ZVQv0pTN0zoHjTnKGfObD7mwnfby6vPru9777r/7VvxKRd959N6V0aNuvfePrjx89cs6dP3zAzG3bFhCOYRgOhwMihrpKRkDUP3t58fDRf/t/+D/+43/yT/8v/9f/Wx/zK0qdvnhbvjUCgBx1xxMd4CdvtuBnJCJZxPZnzWHu1103ERGYnDX3PGsZSjUAvONkAzDHMFWqmClkISnuU8V1wdXSxnAEc+hzPFqWG1O+W86fQqhPTo25ZtcAFEEIkFgR0JFX9SaJuUwzGJ3Z4xN1bT4tZ6k7JiDgHAAZfy9qx+J1YPH8WzGaxV0QjpnVuPBFn/LdLH95xRyaunFCRLD4meYNE48GEhqQWeV5B/Zwt32w3TTeBceeEAHULCfLCsMQ27aVrN55qIiRnaD4Znf+pOHttt41ARDEVbxptgBw9dzMxDuqA5sPVc2XV/3D87BpHrZD5Z2rQ137UIXggFKMqR9ySheb2hGyggy5tT6qXl0f9jf90Gcm9AxVRc6ZSUYDJEVUIK1qSllEZEjXTUYFBGRkQ8QsknJks5zJeSQlwFJpwFXj1KyqKyTMw9B1w2Hfdl0GoLoKlp0mMnLEgKApxSEOOQlJnWOU3IJF02yQmJiRiV2WbAZN7U3z+cVZymk0ms1MYo4xD1GysJn3LjR+E1ztkJwSZwMo9Y1Ao/pqJdqKhswGkjMW8lwwAcM4HFCc5KSkJMSYUZNnclz5hCo09MKUGChUlfdcNz5rrhT6LDkKApEDQzIdoyJZMqGjiYpuPdeObTZIAMDW1feT6VJ+KUzCJW5bpiFOy4TUZD5rFSk+bWMgpCgBaIoTduVYwlX+vTeYaaqFcxkL4+MimxKJYJ2MMT+XnfNWmXUq49ItXK5oAKqmI2AiAzBiNtWiSQ4RRZW4fFETLWlg6tiUU0zKkBRUJyPuz8WFvfyaP5va56qHP8V+LNoyS+FkORS1r67rR48eXVychxAKsnA5OFZyrTdLKNxnq5S5RTLCCSbPcUukFBMYlGq6FOMwDMVcWSarfFntqzB+fiptNlS+Iovu9rqdxZTAaxkqS4laUlJf51suX4cJM6JpIZVFWZgEAGNN0he1Npdz/phs8nnha1y32yfM03vWRFX1BM1Mp1TG04hKuScds3BMVQDALIRQrmqaRlX3NzdYhkhVcq7qOkomogcPHrx8efnZ02df/8bXu64vRJliCjJuZCUyQ1Nx0bJXCHP+yzG1CgFUJISwOz9DpMP+oCKgCkxGaGpxiJaRvQem68N+66offu97P/r+D1+0N65pLMbPnj//2te+9ut/+S9v6vr3f+/3fuu3/vl/8B//h9/59V/v+15VX7x4sdls3n77bWY2A3K+HwZy/unTZ3/4//mtf/Evf7u7uYGqPvrgAVba5vqn283WW+38yiWVfdaZcRFPNnjFd30t2Kvl+VObclBffRTXQZ5lK7MTJpsYRpE1K9LHdoL7F5fhhKV1AWA0oXwZkDGxKzYTTpGLlcYw6TEM7iTH1TF759FRWgBILJhGil9y9YUWUw3QRhYEQ5OiazBZ8U/XlfeeQjhcXVmMQAxHObDC4kE4yhGnNLNIjjro4kxdHLJZB0MDyjq/LhYzYZ5guPz7+DeY1sPCZlkZIIwnpy86sUBNOeVzFVUE4THpBAlZxBs82Z1t2sO3f+Hd3/jaB++d7862XHkQzfEw9EPc9zqklFNGwIor9BSY1VNjeL59iOyqoN53zD0zek8+7Jyn997yIskhbhpXhxosb8+e5JRVc58YRx4gdAyEVDWV7bwZpL5LYEkBBoUB1ExT2pB6D8gaPAfWKnhHPuesJuTQV9wN0uw2IpJV913PoXIhGJYk6x5QiTGl5HyBpnbB12fnvu0Ogf2Qte+k7eKLF/vr66vr66sHD84e7YxycopOayTuukPXX1e19x44DQMMObVxOHgWZnIO1XJqe8dh2A8bp3VFXtsmuBA8Iopa1+fekMSMEJF8cNtdc3a2qZsqcgImZiIKzAERADKaogFbQlADBYNMmHLO+SD5WlRZVVpEAkVM4KVkSSLsb9r9Adn5mEwUfOUdUqjwYlMrX71FeGj15qCxi+C2rt5UVRBKfUxNvRVVFTUrsc+jXkXMWVXNspkCjjgYZgCmomqghgqoSAJmJeESYRBRQCn7gamIpqQ5q2QFZAADQtRit6giEfvucINTEWGpkizIJyEEyenifOuJHYFzXPRHJvaeHbnYt7Tw6o0U9YAExIioZBkEcmJBJiNDICIWEzMrFQOGKGOtf7GeMGYL9Wa/Hw7Xw+7JVodsSZg0e3HsAkI2hayqmrpO+96pskp36GPX7s7O6m2DVAE5Q40iWdAARRWQyblCc2BYKg6PvBkGJ1L6JCno1SYHGq4qB5ZUBoC8iFHoutpk2WZo1FtmG/ipNmB0PS61jFfteePtb2fQvuoQrDX1lPNRx8JVJ1f3PymwGV9fzQp94XFIva/uumoJT4zrxIdhGGY3+cl7Vc4z4ztPHu+ayrM1FTJFRuNCpHbcaFcVBu6EQXJxy+VoqCpNIEs5CYgQcuqHzz755OnTp23bMWDlvIhw8PM7nlSWnwwvLqomZqfaXNo6n3bipCyHyh9LXcTooQfMkkugiY9Um1p0hlUR2/LbnXy9e9I2FukTpXZu/tWhg2m24EQXPfrp4dUziohE0/Lvy8nGy4+yHrXlNjpr4cVdYkOPYMwIgEQYgjs/39V1EEkloWismgBbkmZqlsmdoypSMlg8O3RoC+qIUpsLAAoKADitu4KWW8rK67pWVTbt+r5jrOs6q7SaXRXqbd12HRIhMxBlEVWd6qYYES3nedDGKMVEcbgs5CiBC5zq90rd31zarguSb3RclEsd59VUeIBYhRE7uNxNVUuFTFVVbdvOcRLnZmBZE8nHlBBC8q7aNtJCm2NFoCkPXXt+fiExtW17dn4WJb+8vmoPB+1yXVXeeyUAxzlK8MEFb4aVq59+9PTJo7eaehvqSgANi58OLKXy5WfD7DgdRErGpSNWMylMmgCA6FxF7A4x+c0GgCybIz+gdTmzJyaXhlhTtb8+xBT/7Md/2nbdO9/+pf/wG1+HwtJlYDmjGai998HXPvjaN/+7//d/F1W+/vWvuz547+vtpt5sYow5awa46eTly2cf/vhHP/rks6eX1wPSbtN0hwP6MC97tYJ8SlQ4jMvsLQXWJW3dTFQNQBd5ULD4ZIyYgbOOmQ5lfUwmELKjmaTlNDpMDqH4+g3wCOlpCGbZjsvhaI7AWigVuVGWmJmppHkRFXfo8VFgIGqSi2Zc3JZMDEhJBI5XwcxwaAjAI4RS+by21LvLImYayRbLNCiHumEqyLMp6IfITMiHoRsZD8iNiwhgADVVnLjtDUGyiORFRCIuAlY2J3EZAJsHgFJTZDCW/SCAMfZnNWTRiqtNLfs27Q+QxBQIoeDYiRmzJ/JmYoqqBkaF8HH6TCf7wfjQ8dDRPWvwCvvTTv7/5D7HC0/++Ipn3XFnmF568TuhAakCAqLsiHe+OnP+rbPNB+89/OY7j7713qN3zjeNE5Is0Yakhzb1gySRkh7DDpkIPYAjBvTbil3wwXnPzrNz7AMH79kxh9pMHVLlPTOAZslJs6ilkGbcd6cKklUVlNAM0nA0kUu2A5h5JkfBIRKhc67o5KVwiNl5D1VNOUvf9wXarwhT7z0REmRiVXPOYWPo2BE5U0NUIBhi6tq0vxlubtpnz5637X4Y+t3ONc2jUBmTIqiK5ZxTUuKEhKaQchzi0PUdAAQMJVlKVE1iFilKdlPXRfoDgIgMMRIru+JqxaqiqsKqoqrmzcazI+cq5zyhB6QCfIKGcQCYMklKFURJAlFVk4WvFy1Nf786HFIfYjzc3MDjJ+d1w843zjMhhdq5PjMqQ0awlA7JEktABjCTbKN/QqUoAvP8MxE4epdXjJBaalRgpHRczbtiKE5zcPxPR3fAkQsSpiDMpB/PjSYgHWbmQnoyri3jSeHQLAmVcNVevS7GInuYXHiw3JxsCn2VX/t+YCLvQxr6q8urh+c7R0RACDahgZiJ5JQs5aEfhn4Y+r5rW1ENIcxOisUqnATHVBXzCkfQz2o7+TRf6bPK6BWQq/Lpv9LHvUHLOdf1pqqquqlLRmIJphvYGhj2zZvNNrPaoT88f/78xfMXfdeXbQVLHuP/f7TXnG/3nLacQm82e1cmzDp+O+tbn5teZcv2Bp243dQcsUlht7vTvXF/l2CabPcniBZLdS4OWWRjraACZrmNY+F+BBjTaJf24byuP/9zIBQYpaIfj94LMzM47PcxJSCsqqqq6344mJmoFBsJEE01p5SH+I2vff3jjz/+td/49bpuxLTo0kUhW24csMZrNgMFVdFsGRGXmHiE2Hfd/rBn71wV3JQyh0j90EMWBoxd397sf+tf/osM9nf+i//84tHDPiYAEzU0I0BQ6A5tXVWP3377N37zrxgAsXe+ClUVqubQ9tvt9k/+7N/+o//pf85q+/3+hz/68PqwN0Kugqr6pk66/NBoJQ+5yCNdVC8seHVO1NCyD06fBolZURGhQG6MH+COa38qbakSAxaG5lkZvqd/Ry9/mXLzqd778u1iSrCYkAiAzh0HsSwQREBShKppSva3qKjpDI+mAM7x8VmEqwT4VU0/2GtQExgCVBU4JRZwEqrG1dvu+QsYkjGVBHrIKgLgENlhcRWZuVNU0DvSKv4cdvTXabZCP0DAYIBskVVq1Lc2/oOL3ZNm887F7lvvP3znwfk7j882Hh2oCl6n4dANV/v9ELOIEVEIwQDQOyZyzEiMgZihCug8MYP34LwFr+yYqgoJx6pSy1IYcVVLCsSkEc4xagAAVWPmeSLOxD0FkTBwmIsgir6eR+crh8CIOaVERDHGvu+LkeC92zbBeUSs6zoDQIkvqZpkSyntb7rLl4ebm+Gwb1+8eJHSECrabpuz8zpUwXsyk2GQw03b9l3OAdC8DX3Xd103DMMscEuXYsrFUzVnjJRfY05DPMSUsiREIPZITKTEgiiOkBEqNu8xeMfsS/E1GHauGGMjGHm5YTFIDjf7OXO9eKpSSl3XXV9dpegOhw5RDAZ2mfghu40ZB+/rhnJOQ84ZZehT3+6tR/LMzCpupLRFRGYknvEiSnbY7UKU8Y/w+fvcfNU0JjhyQS4uL40WGc+0ok+hESphSnWlCVBYVQMvSMfuUwOQief+JF1RHOiE/VV+JSoocPry5cu3Hj88226894gj/8A4+DHmIQ2l9cPQD1lFVUNVhbpa4p+riAEKohgY/cwp3/e3E0K6r/RZcyijrKyv+nFv1rbbbdM0VVXVdUVUwCrxtfXDz2+jiEsppXx5efn06dOXL18Wb7pN1ag/i+PyZbfj3vB57R6Ddp1Zt475vF6zRRkVmi1T14u8mvPx7rnJUnh+KV9vDLMUwfVmJPBTqUyRpXel3MAay7iqqoIwBgsTZQ634iKyHdtDWchlZGYQiBLDgaOl9Lq9PcIKq3hyIQQFY2ZRIWYxNQEgqqrKTf4vNPjOr/7a//D3/t7QdjfX19uzs3KrkeZvsd3AGioKkMvGujTJSov9AKJ/9Md/fP7wwaMnj9l7K5nARHHonQIjvXz+8l/883/+3e9/77/6b/7rBw8fAIBmUVUQVVXJGQHbrr2+vn7+/PmDBw/Pzs8ePHhQhhcRt9tt13W//uu/fv7WL/zf/x//z9/5nd9ptpsYI4dQVVWMUQmcq5eE6wBzVtSE9/X57Si1DMGx48X+vj7z3xN5cyJSSuJf0alOlHYiOtLeL5idDSyESk2LN20pHE5sudP47WKN6r2wjavmHLCSYxTDLLV3vgqHq2u5vop9BMnAjl1AZBuDNwJgK1iP00W2fO4CYOjL3MG+YFt5CBCUEMGcmrP8eBN+5d23v/3eWx88PHv7wflbD6oHu822caQZVPsIRtjHeLk/aNSCTU7MBRvbBR9CcOwxNI5dCN75gnBkzjN777xXQnaOiXKKKcacBs1JRUSiaSrCAVELPrMWfnRbGXshhOJeLW/hkLLksn3HGFMq6UhaLgeAEr4golItVzwcMWZANgMiD0AiqgJx0GGINzeH66uby8t93ydV9J6dDw8fnX39Gx9sd54dI2jO1HX95dV123V1HQABJUnOKSUDVIOc1QBNLWUV0SGlISVDHFJy7Igoi6QU990h5ZRFiKiqghogOXJeDNkje0QHJGikY6KCEQI655DYOcfOlRQUKYtDhIlSyv3Q40CSJav0wxBz6oauvckiyg6url8SJx/AB6gqX9XV7qxRoGhinLPGrj90nQgYO2fqCByxQyJ2ntgbjDmCwEeOkaORYmN5y1QWf98cf8WFMxfk0QhSVZ1tlFlbLaisI2EjAAAUyVI0ttG9ZwvkjbsbEeIRHMbAlqJknGbFLDw7O8tpiDF67/u+67put2nmM2FSJWWqyilmGxJq1r7vkSjUVb3drEYAYMlN8XPUdEFIB1+x8TAnAPwsOHpe2Zqmubi4KHgJRMQOS32jmf3kXcbJrSsiWXKMcb/fX19fF6eMTsC7iCj/vqgO97QT1eGeiXfPbLkHCvm122LN3spaLKGGV5ISLttsqMzxyS/ejdM+OXZFijKRfvFVuRTp93eJFuAEk39wlNLB8ew6hEl+lkPF6VCGpYjxOZNwySD5+vrRLL2LFYLTXpBiQqLSh1BXiGgpZ5Wcc9e277377sX5+e/+f3/nbz342977etPMStxsqOAt/Pf5o4/4YAtfe8XVJ5988od//Ed/46//9d3FOTpnZqDmiIQYTc3s6dOn3/3ud//a//Z/8+TJk5zz/nBg8lpCbzkXhPGXL19alij50eMnZ2dn5xfnn376aUpydb031VCFy6ubs7Pzv/bX/tof//Eft31f17UA5JyZGXDNY1j6RwQFg1j1qDTfvWzmjzVuuKVEuiSGniJK/3sibU4kQIyx/GUOrcyHkshsqDAzlQhGUVdsRH0sxLuzhLltqKyiFwvcLFqTFN81uAaYrNDLIANmESYM59uNd0MV5IYlRohZ1KgwUo6ZXOpA7w7YLNO9AGCKFZbldFeu170BNbvzt3umzdJ/pFb0uTFeaoIOEcRLfvfRo1/++tvf/uCtd8+377/96KyiyrMnkNjHmPqoWaRLsR9Wlt62AAEAAElEQVSSpUxEznv2znmP3rkqVE3jQh22j5ldCI4dq2WRjJ7QOyACICPQUohFBISGUNQ6nErjiBAAs4zcHQaAi6NlQukEHk9oki0O2nXDMPQiglTATxhAylQrPANzUm9JKQ7eh1AxezNISXPKbZvatr++vtnv22EYAJgdbXdVVe/ee/+tt956UFWRHEuCrm2vrq66tgcgEVMwEyVgYiRgM1NiZmeoJpZUYzIRMRhiLlnFlmKKMXUplbwf51DNDMQwCwyh1aGLIfimkbpKdV37EEpcwwDVe3YFL1xBFQkUwQgJ2JhAkJh9CIYJE3PlsXMueOQUHDGjWeqHdr+/9gHPz8+891VNzbbKmtVSH5P3sRt6S6LiiSpAVqGowBx8tWEXAJwhlvItWGQvTNutIsy07GMa1cIagWLDlJW8NGaKW+K4YSPMpRHO+RJkH8Mok8USvEMiXItcnNLDNJUCyzH5deZVLMHW2TgwM1WZAxo4FY/OrwZz9GDiyyp8Am3b2qOHIgKgglaMJmZWZsVc5l7xzSBijBH7vuu6bc5NkUdUiCZGFEJEhKlwsfw4d+YLeBdPNikbzQkiUrkzunWPLjIrwbdPWwY3TqT5PTc8OfSa5o1jV9DtR76IewEfX/2sOcW9KI6LI2VqzdN4eVGZk4tfRylUVvGy2KCEU2ZEVDyWC345bTKktTA83tzc9H0/+/PmN52Xz4zWP3+auwpFAEYqkvnMJdmLiuKiLU+b/zJHJBYm62t91kJ8sujH6dG7rlq/ymLi6UiY80rbYznZltxBZStcHHoj9etWWKbIvZwzA8++DxWd3bTzeM7ra+72qBoeew626DBOGrmZwVpS4URTC9NHx4kbftK8R1Ezr1xYThsEm4TG3JNleKSIVoS5TGUaNNVilY3CeZ1Aa2bFCJEpYbjI9pRSCKGEC+aeH+fVaumtcuuOwdVp1McOiOuHAbnEggA9M47V0mONjerVy8uXL16cXZz/Z//pf/pP/8f/8ccf/uhbv/SLBZ3JzJz3pgqLMvqSPzR+G+LZfVbet3hCEVAtf/Tjj3LO73/wAYdgBGbGgJaViTRLzvLd7313s9l885vfjDGCZDCTlEytoPflnG9ubq6urs7Ozh4+fozOEZICA/mPPn366NEjX4UmVJb0j/70T//0T//05cuX9XZT0qXVLISABHFOx51RYhAVDQHQr/G7VjrxgujbbLauETGrjksa0ejIuIEAGlPJ2COistcsvtcioQlpltg4Ub8dP+piISyRfE/YzG1iGcJbzseUF2AVtmSbRcORjAUmLzjOx3BFMzPfExHzMEz9Ot1/dSGwCsqRIRRAn9lWh0lJGIvwEGWRGoprItrC7BdCOAZnZoXq2LtV9rAhJDQEslI470BABjOqq21V2abqD4f+6hraTnNC59k5MtAsblmzWrr5yg8GajNHkhaD4dXn3WeorHq8loz3xK+XfKLLC9AMbfBANeYHDX/t7YcfvPPwyZOz3dbvHjYbIgcAmgRBVIZhaLu2Hfo+xQ35EPzubPfo0aPNxXnd1L6p6+3Ghxqrx8yemdmjqogkoJJNCp4IQAmAKRAZkhEBAgKpI6TRl+1MwTQXEiomAmKajpVPWP4vpTTE1HVt27YxRhFFhFLKaWTMjmiUNUvfv5ltm13d+LquHYfCp5OSDkPqur7vhhgjIoRQyATDo8cX7773xAdGRBVs2/7l5fV+v2fGqmmcI0Ug2BCSqJSoDhEiO7CsZElTUsuqJAYCYgqAMduQVdQxFx4qT4gGLOK7Vlvr+yFXLtW1VpWv6sEHj4hUylbrihyHELz3vE7zTSJJRdA4eEbwWjWEWQUAzrY7hFLJK94TIMaYcs45K2cLwZ+dbdRSzkOKHCMkA0LzARA1pjxEKUGhDQf2zpDEjmbAPLDFHBEZE8COStJ0yBREx/DobL1MW8JC5UUEwHk/c8xF/BY7c65R8d7TRKsEU5bz/MVXcdupYNpK2QzNWaxT9qEWIUiz2nr0iEz3z0N2jMw8Vv5cX7XtQwAIweWsjqGY7iaaMRb9YDZUVLWk4Q19b2dn5SWd82ogNnFujagnOOvYs6B8TdXphGF9oX+8odI8PxnXudoAMGsetz2vuBaAywvvOXRPK2rltMWsXnP94wnF2elbz0Nxet5CSpwOlZ1ePn+qpbytqmp2D4/q3nFr/tJaGbGcc9d1xYeKa6fvrK3Oheq2rK1fvNRKvweABSDsKgd9yh5ZzqLlF7ejpXIUtivo2ltfZfVGq26s1JQ7dzMda8rHq5bq8qiSrWrMli/yyqvK8xZnLm4Oq9183Y73wGISzN2YMMrLwmca5dWs485a0XJ9nazTU4N52f/J6WAzzsfiS02/HpWeMcI8vmRR9XD2xcBy2kwvVVwzJfgPkxlQPH145M47okHO2ytO9TmzRwmmdJfy7jM+RzktpTRDpMy0lTTxBb/yC5WNoPitYeKCLOHr8sRimCERAGIYlWsz897HIXb7w9WLl2Dmvf8v/s5/pghXLy9TStWmcd75pkl6VBXmTzPGGdjNCW84adjM7IivPrv86IcfPnnyxNUVV94QC5QLinrnRO3mZv/hhx9u6qZAJBNi3/eoxEgpxqub667r+r73IVRNk822dfPxx5+8/Y5H577/4Y+ePnvxG3/5N7JAn/L3f/C93/qt30LElBJ7R0BIICJqoKWWlJgmb9dk8Bndk128nP9qAnJc3bQAAtE1H64cU6aJyPljlqPhq2vADEeY2fmZy4WwhsB6taNhtlVeeWZBET4aKrSAKSOCxZxctuI2xUV6+Xg3HX2T85nL9Dmd98SiTsgRGQ8mpyMRGWLF/iQfbzk4S+N8zttUVV7vlcvlgOCOI0gIJb9UQUDd+XkIQUOVDwe7OVg/JBUGYia3Fssno7sa6Z9WneyJrlBGh4i847MKG4dn3PzCg+23f+H9D9569PjR+dlZqM5qS6wGllExJ+3aOLRdF2M0s2bT7DbbR48enz98uHt4UW03oalCXbvQUHgI5JiQqCRYmUiSnMykChWaIgCZpeTdQDm57KKICyQF4wEAYxSzPGmlztc473xFIIpIYdu9vLy8vLy8ubkpETdmJpKcBRGrZjvvr8VnMyu+Z7sL77munPcOAXNWyZaTSh7nmXO+aeq6ri4enL3z7qPz84ZQHTZdF9tDSjGHQne/3fjAhuBcA4alar9t20JUn0uUREG0RBJA1JCYiHyojNiDc66q67pp6s12s9ttR2CfLJoHx+wce8foCRwREzMhUzQ1wyTZENhWbq0QvIIZAjOXtMUYY6iri4sHNTOaqYmZ5BxFEzMhUpaMMXt0Ibiz3VYkxTikIQwghOyr0ZwOSbshpRhjyE3Fjl2OMq+otR2oMcZSkOi9X9okaqaGr7xqvScdHfkFEGZcj5NxMn1owkIzP101f259/VzPN22qen11/fTp03fffTdUu+UhnLYoIkIk73zMyUoEBqHebra73WazsVGrAJoMla+0w19pe31b6LVtrtP7v/Lne06D1w5EzfvfpOS9Wgme/nB0Ep8coAnXCL/U0pQ/h7Y0PE5eeU6A+Sl17eeyzRYCrZOIZim3jCS/2f3nn8utijwspYlok9ZuYDpy/njvZDg6nme76LaonE2Fu5JmbSrGcy68Tm/nRLhxmr3q0KwgllfTW7UBJ4bKsZNIaFiIqtaZY2WURi8VGDCzqe1vbtIw3FxfP3v27MHDh9vtNqu0Q+9DuHj4YHu2Y+LQeJlcXUzEd1QZFXgeEWmaBsD+6A/+4Ecffvgb/9H/qtltrTjax8xkvLq83DYbALg4v7i+uvrBD37wjV/6RTNtmiYdYhqGw83N9dXVoWu3u93mbOeroAaHvr+62b/z3vuA/OnTZ5988knbD3/1r/7Vpml+8IMP+77POXsmEZkZ4q1ER7EkaCw8XuXoauhxqaviHSlBVkoQF+98vAQAJOMdcO3L8rDXd0it2trBsRREt1l3XqetdP11TH52a46z8J5inpMtZvEz3b0xxRjnwZ+rs0rb7XalsHlO+YE5SH5rYU4/gYlB4TcxIEQgNAMjAKMOMzaVd9zsdmnbdi9f2PW1JBFHr0tGdmoV/TmqJsuU3DkHcbPZPNg1f+msfuts86AOb22rX333nSfb7VlTN5tKmVP2zkyUkmiXcxRR0G3TeOcfbx6dnZ89ePSw3m1DXYe64hDYO2SqAxVKQwAtZq2AGaGZM8ICMgZgDM5DAd4FyoDSFyeQ6ogHV75oCNUmhIkPcGT7LmHcGGPXdaX4JOfs2AEf9wDkWFTb4soqOm5VVUTU1A0zMhMCiogq5DyX4mcA8N5vNs3FxfmjxxcXF+ehwpx6gpBizEmralNvODT19qyuazYixp0ZppTatmXm/X7ftq2WLKOFLj77t5xz7B2yr+t6t9ttNtvz87MCuQsAItoPB0RDBCRjB845V2gjmQQbmlx0p9JcrfiZikugOKs2m40j3FWVaam5TzEO/dDlnHCs+IyVsfOWUswpgkogdFXjXUAfRc1Ao0NMVrIGRURG6vqjvTHbHmrGzDrlWS2bmY2c97facVMp7zEtk5TS5NYZiVMKz+NoqyDyQjzMbsvSn6+0ON17H/v2xYsXFxcXZ2fbFYwHHPnImMh5H3MCgMPhcHVzHVWqut5sNsXQotlQ+fnA+np1wzXZ1onZuWwntQGvef+TqujXtFVyfi1Ku9kjWKSiyEpEL113xVV3IsbnHo5L8ueQFXFOuL9dfc4Lvr85XPkX7f62dKzSVDIHC/vETkq0v2BbXjujy8whi1nClqSNUvvhvT8xVJai8rZ1CrcmP8AchP5ihkqZWjHG8iBeHyqvoKre+xP7bdkr1by47ggRRohg6Jzr+z7UlR7fHdQUS/+t+LtVYrq+vJSUh37w3vddZ2bb3bauKivhqZSHfjCy4mgrIvqu91LVYRjKDzdXV3/6J3/65Mlbv/mbv2nBR8mo6JAAkICazYaJq6o6Pz/7/ve+9yd/8icPnjy+6Q4AkA+x77qr6+urm5soaXd+hohZJVT1y5c3//pf/+t/9s/+2d/9u3/33/ybf9P3/Q9/+MM//uM//rt/9788Pz8vWXNIxM7lJVYv8wzag8yzsnvKv3ey2PEVm+/8qy2uWn6UUhZbxIKqFt9xaW6R+vP6bqyTHq7CJpMqdVKqDl9kH5mvOtltS63v7OjM9zGnr7a55XQlvpMZ0/tVRKUomeOj2Zd1Mb/a0ee1RiZcvCZCPCImEwACFnpKRehSRCQXApjVwYfKt97H62voO0er9ICTOPLq58VHB7iXLX4GqD794xvtFDhmrEKpS0GwwPxw17z/8MGvvn3+rbcfPdo23vTJ2aYhZFMGyzFL5qymKfcxD9nUwHl/cXHu2L/z4O3d2W57dgbOUXAcqlIuT8ROIwAYqJbKahAiYodI3OWCUA4ICiYlOElohphjNjVRFRmzhJHYueB9qDb1hA0ms7kypNj3vShU9ZY5xBSBGMnD6EqxYRiKamsTk3TTNKUWn5CBTMGSjPq0mGYRMVUBM3TehSpstk1V+5IYDwb7Q3993R7a3rlQ19Vm1+x2dd14ZFZtVBEHzqohZx6iYS8GACimYqYABbHXcEYvMgquaartrtmdbZom+Irrxpec1yGygZipgTkHofIh+BA8O5ckIPLsVTr50Byj5Dw6e0zY2HtXh1ATquScMWVgx+y5bduckgikFNWAnPbtTbffD12nit65pmkEAFUcC5M4j0YOgFLOYkJUSOzMYKqeNzUAMw3Bp8nsk9E+MTOTAj08XVX+Xq5SU1go+6Il9GJZZK7WwCn1q2B+0Yg4CUtDZXYTmhnQKxYLAuCUpoGnR+j+iKeNF4MhhqoSSf0QY8pJFBccRrhoQMgTIcAQ08vLyyHLW4/f/oUP0LFDJCsYd1DyMuaQuH5ZmLbLzs+B3yndBABgGQ1+4/b6W9HtQMRr3v81r3qDHfHE/33PDXFKC7zt8Z1/PdXtfh6aLfK7YP2NcJ06+7NpqIxzGGGJR/rGe+VP3mYX8qxzwCI/dj5BVRnfZLYsP9Dy242faSwVVCjiWBXuMPXnS05m8tzzk8l8zJ6d6g9fp5WbjLheS/f8utvzCrpra7vVw5LiSDh6/Y2ZRXIZXAQwtQKnXyRzzjkWcncANOi61mWfcs4qzXbTbLeENAwD7m82uHXeV1UVfLBRu8WJgnsed3DMwfkYh+dPP/u3f/AH2932l3/1V3wVrvuWgjcwASqEXHXYpBTPzs6evPVWs9l8//vfb3bb3cV5TBETPLi4OL+4eHF1+eGHP7549Lje7tq2f3F1w1x9/PTphx9++N0f/KCP6TAMlNKffPe7f/Z//j91h97X1TAMdVX1ccA1+i1YSQ60E9pjW+uTxxFe4xUBooGVPGQESEvXEiHhcbVtNlsVyVlyzoTofZgOoasCTg8dfZFzN055HRdPXui9pXgfprssBdEMOFnaK4D1ps6vQnITWaeZgQItCuTMRp8yvsI0tbFnpVurUAzOZYpoZdzW7zi9qeiRE2k2pMczNeeYMASAEUSICMci3ekli4K0KInEylezDmOmJoql8BuBmhoR2IzMJCaqq7N33h42Tbu/cXlZmYerENCaR2Id+FzB3q13YpuQ8hBmE6Pc4rUx5laNkRUxU5k32Zm8vd396oPmm29vf/Ubu7cf15sQGKxqrA7gcqIbYMdDbgHZRJEcYPB+++icLGdCfPfdx1VVOR8ACywxQhbLYjBAZVP2YemyJktZxdSUkQi5FNKDkQrllPtDvz+4ZJK1T6nt+zZmruoHT55UFw+a7RY9sKr0fTzsVbJIbLubPh3UqasbBKwAttPCSznllLPkq5eXVVU1TeMVmLmqvPOVDzU5ypacc8CsACI5JU05RUtRo3e7q5fPYtc+vKgqv3OUAzeSsOvyzf5w3R6GHHe1Z48AmpMkdt4jhgxiikPWPkkvlhVUDUTk/GzrXYE6UQQhFLAEpojI6iwpZAjoAwVnhAJln6lcrSpiIiIIhBTMnCgbs3lTyAgIBiUqLTkjkXOuGwZiJOIUY44JVdjEsmWTwaNIlixZJCWJUVPmmCTnLBqTtqXez5h8XSERkyfvg2+ubg6H7qaPJOaIgiHJiGwmqpLziHNVVp8CGnLsk5T6PsNC9agISiBmmk0NxFAUsmgu5SwGBpRSmnKogZzr+u6mbUe7zjtCZE+h9o6RwWqmwMwGMw0VFMfwnFSKIKil/p1Kcq0BITIxAXgEh+AQGJHJkXPgnCErsGc2VVnwl01rEtRRrwaqRpQTcrW7ubp69vJw8RB2HlHVVEAEVc0kSTRU9GRMmS05a3O63meH8PJpz1TVddh3AyADEjGP5VSkQIZkKec5ex1OROfdgEUnOSEKhkwGkFWMRqlpCMsKgBL/Wd5hpQYtHou4rjkuf5riyat08mU1tq5q8cjf6YV9XVMH1pR5C1frsmoT1jbDyfaw1NuWgYIS8Dx2ibBAkW42mxhHLuOVIbro/OQVy+zoNvTOT9IQqcQsASD4UG/rh08eHvpD27ZmVlUVM/d9X1WVxJUKO2uxMAYnX91ceWUzXWMZAcDs/CMiNdU8uSQRV9/8NCC4BN0c8ebLOC+7cWv2Hm+oViBXJli5RZjrhMnyZMOFY+47qC34GdddXE1lwLvM9WJVzL96ZpsEHuLxwYjQhCqnWGZLVflt3TShqn0gItARhRYNUE10FEoF63z1uMWvjAtKVlvKOWjqRmXEenTEoW7qUIFacL6Mk2aJQ/RV5ZgBEQ2ySAj1wmtLgAAmBiYqS3MpzwgoZjElLulYZt45EbVST0/knSvgSOUDzbUrBXqRGSvXiIhDAMlZhMHAVJKU9CGclggSVSEgYtt1xzoBZpoCPmPZfdZFD805V9XbYi8ZqYn4umqHvuRi1QDBe48kfY9jYBvZ8U3fDkPnve9TR+i9rw9dKwqb7RmRYx8QMQ5pV1Mh5swi5Nj7ioMXkSENNbNp1pw8URoGjOnT7//gj/7wjy4vr/7W/+5///Ctt/bDkMUqRcfOzDIgAfSHzhFn1F/9zm+QC7/927/9w+9/+Nbbb3/rF7/F3jGHiulB38mPPvqX/8vv/CfNWc7y448++sGHH764urnct5eHlr1XJgPo9zc2A2UEd5AEvtCJYXnNbECAwG70+62qEmg1zxd+KwreCqiMmhICgACICRiYIE/BpUIJjpOHKwMgOvaOfKUqWYWImBiIBlCculVqmeZkwqR2tEYm80NVQdTZWCFn47qmkrUBaugYEcai6aUwRyg4XKObwo2mb9ZsaqRjaAInyoHxjc2sH+aRKFxq5SWRKEMey6roJH6OvMifIlpnuC3VecdF3JQrTY9JLjbXjBERYuOrHrucMjOTczkLiKlkQRj6AelIHLfcpplHpLEROcDD6PgFrAyKnaGA6pwxm4hW3j966FZgBSeG91oewqsmyngIVoeWYGFH8YXwGoQwp22cFkW+IwCAY7fd1o8fPHjvrbeePKqfPLyog2cEUlXJmkzMMHPKEcmJgsTIiJuqrgsLOJNzQGzIUrQgnQLdBqCp1cltrWgKJiOFH4SqESwk4WigYIo5Whosx9hp1w+Htt33g7LbVhUSAZGq5sTBB3akub+57q+vb9q+F0Eif35Rz69ZYt9933ddp1F84JQH6+TMndUh1E3wgZGsCKCUU5GDI+0UETn23l0NByNyFZNnJcgm+64demnb4dNnL/quBwB0GX3OxkkpCjk2cNEM+z62bew7SRHAvHcUPAIMiE1ho59Bq0pUIKWskiTHnGOKZJpKZY6pJY2zpuG9RzDJSTIjYx7GsFjRNYu5QETMTgkcMQJITCkliYOlTEjqOTtQtZSSjOQ1ZiKgBkYiCQgVQFTZhc22iU5zopTzvh1uDm3bxSGakkM/cswaQPENLpGIb7eZuvH4r04ulsnxN7d5sRiutFtEtBEjwdFc/jFl2NwTDxhjNCunyrieTnwtY5QFEABiTISAiCUV4VhSX1yJMNaosnOacsyyP7Rt11XBB8/MbIAydXvMPPQOCcdkX4NuyDc37eXlJYULJjbkhevHvtLahmP0eTFw9hXnnL1+sOVnsdmRhd3W2Yl/3v0AgGJymHnvHz582Pf906dPu66b9eafUt9+yu32a39lAzEB4L7C5T/GiuFWFKXI6ZWYW3b19YqvTtpap8A5LqGq88peirifZEDWIvp1pdNJdK5c/spw5elY3fKVzGe+8meAUaCXC8YiRufGomQrifxqhjnnYRiqqjKzGGNO8aZtd7vdw4cPq7omopJUDAiSBZHQkyNH7Ii56LoB4enTp4y4bZpPPvn0cLP/0z/5kz/8g3/78MGDv/23/vbZwweGkHKGBSGGgKla8db7KoSm/qVv//I777/36aefxhiruq63mxDqLg7vf/BBEvgf/v4//O3f/lcp5+9+93sffvQjF7wPPquKKRKN+yOs1EWcyzQL/aWtdc75O949nsdhPO4Ri/sTFrwvPDFz1jdQREMyJJk/oQFgAT+7NYfm+M+S6IzVL0wpVcsqMyqPB1pUo6438HlYYOVGgqOPcQwFLp0OK13cSsjGikcIcATTAyAwO2Yi4OoOt9rCCtDVYrkdLZxbygkQfRWKvkGc5+GVlEckPkQ1Wzoo1TkrqK+mjl0B+CkcFU1VrT5KiWURmZk7qRy68z1OM57vzILA1Rje6XR5/aZok9uIAJmIiSuqGlfXMUlKwkiG4MBoKkIwgayFfxA9mmrWPJiIgQMGqpA8EIOqqggs/D0pKhR1E8BKgcqIBkepEwQyIkVgBgLLKdrQy9B3bdzvDzf7tpfsmubMzgITI6hKU+9AtG/765c3+6suRUFztfccVgw2AFA+VoyRiC4uLvq+R8Smac7Ozuq6DiEgokg202EYymkhhDHblYi93+4221293fnz8wdVaMB4GIauj0NML68PpuC9j4JdlKTJJ+ujMXPTbAEsJ5bMIqhCCMH7kkrrdrtt6V5JhSxwPSEE5wpVqBwOVyJ9XdcGmZnMbN9dE2EhNETyVOpJMiKigBWGKNMSALWchQjZOQVw3jOQqqQh5j7mnBkpOnKhIMqrZEVkAJSsmg1MvW/YETFkdGoKSsyaogxDen553Q2x7ZMosw+zoxSnYqK5wuT056mwfuKnLz4Qs/tqVFaT3CYMomLaFRRLdo6Y/YR19mZr4XNWiigQFPN1JJ8sXcJiZo0wYUQsYMR8eX31ydNPK/+Id5sQQklsAxidwc45HwIRMWLw3odAjrs07Lv2MT107NWIvvyX+BlquE6GFvk5e9vS+eIp/+n2pHSACavKHj58WBbazc3NLMr07tKgv2hfShORskvPpTuLQ2P+0tEDOuWdo9EsIU9E1usXX93VZh2oPOJLn6NL8f5KY+OVbdY+l7k6ONHmLjs/V++c2NsnD3pNFas4AefdAacaGAAoFaQlpicifZ/OHlw8efJku9sSEU/Vj0hUu6p407q2peCdBkiJmZHxrbfe+he/9VsfffTR888+++EPfvjW48d/42/+zV//znfU1HwYcipx+IJqUFTPHBNXPsYME8pZwaJt21ZUf/HBX9qe7eTGDm37zrvv/vW/8Td+9/d+//f/7R+0bee9LwaJc66U5k8pKmMO6ueOxknDhQ2z1EVPDNBTNXVtTtz1uCLnJwelLsOeq6sQcWlyTJ+JiIB5qfkS4kzlrKqW8smzjnegVyvSJ721U+7O1SXHqwhN1V6FgI92X40l4TLYcppFXIaU6BhcGuNLQyyTFiZsvbEbCKGUTr3KxbFclUX4F9dqCGElAQwMraidAOBO4iGr0Vm+J96KnMyHTmLny0E0XOFJ6xvs9KYFcRkLdh0b4WGITy+vNhWFzGjQVMGZBWYH5gEIAQnUk3fs0CwnTRlyTjENRsjcMTjHRJhzIgDHRzoLQinxckMQAAUDIiqVz1qCzoQESAAIlqIOg8UhxmGIfdZUhcBEYOoJHYDlHIeuuznsX16mNGya0DScNLFnDj4vpq+opJjYUah8SokBAYyZvQ9VFZzzRJRzLjH0Ml2apqnrugQ6cs4p5ccPnjjHdc2bTUUMWRKq+eDJ+a9942uFoqqqK2ZGQmZyzjG6yleI6L2UeEhOIlIQxrSpq6oeSSoLzULf98zcNHWzqYZ+6IfezJDUIBuwAampwQDI7IL36D0AZitmv4FGFRkj/8ViGFO/2FFwJMLsQA1SlpQ1SZFPBqpqE2uqIZAqqoIax4ysgIQi0A+9ZABzwyBdl24OQ8w5CQBzATekSarNW9fKZFkbKmqmMPMhqYKZ4l1XrRwSZjMi7bwIq6oqEVNmNwqCr8BQ8cEXzICSo7IUiMWtXl4MTLJIs91cvbz80UcfvfN4s93Uy1SxUa1kdlUoQouZkXkwuewOL2+ufkHerSsWQRyjSz89f/1X2k5F28+VoWJHlmLv/U8vaHE0fQEoBCDi8/NzADgcDs+fP3/x4gWMaVo/fxUyP0dNdUTAX4YLSjM9GiqzFjJGEiaQmNsKx8o7CSv14DUV0FlCTobKlzxHZ5E+vsvrrYHlEM3mWfnjiaq37PzSUDlR9ZY/30PDYAuSLhFxSMt9ahiGYtV77x998Pbjt9/y3tvIrsZQ4KQk7+ptwdDPItJn6zsBCyGEqpIc3333vT/7s++++94Hf/Nv/u0njx6fX1xITt3+0F1fGeJutyswPwXxRVVTij9+/hkAnJ+dNU0jKs9fvCDH7F0/9B998nFzfbPb7c4ePBhSfu+D99H7Q+z/6N/+Ude1gOC8rzcbIEwqy0DEajTW4/HqPMbTKNTJTRaHTqKFJY0BCQu01B365/i5FVRFR+0PwabKBYOiCQIhzkDZAJoFzEruMyDGxXOLVlZ4oMFQU74rpraur0GYNt9Ty+SWz//kFSZHDxpoyVwq/V2tyiW3+4nOvvA5OGbn/fxrsSXgVYZKr+KJouSUEhiwm/jcAJz3ulgXS+txRhSwCSVv9rbLIrf25FkO+Gh/FR1sftgSuxrxWItThuF41fKFp9Gabwiro6cm0/ro8YYLIxYUdCQIMETEJHZ56D96/hIgU0/PL68q5wLTNlS1Z1dc7gjm4Wxbn1XOUg8imrUbZN8ObZT60SNAQDMEI1BHGILzzIhAejQKDQt/JiETITUswXv23hgVFBAsZ+ljf+gO+0NMiQkr740wdd3VyxeWNVThZn/dHfbSD5vKVdsKEYy0hCNTDjNgvKom70LlzRoARFXmkdZACyYyURZipiGPNmhd13VdF1LIcagR61B57ww0xk4GQG91FUIIj6udQam2GvNxAQyRmJ0Hj8ApR+fBLKXc9fE6p8jAxNVms9lsNgV9hZkdO2IKwTtH4qkCP09ixALpnRCRGdmh96VMWwFAsuSUISEomCqZ5SwpRRFlJnOycYxZJFtMaRgkZwEFIZBkqCCiOUMWU1EzMaBS8NklUBCzbJCG2OcsTHXONsQ8GCgFImKuKFTEhbUTxjL4RQXk0kpZTs9JsZ/MFYElg8rSxViiQ2YmojnnnPIMWznVz7Pz3jmHU+Yo2mni0kpkERYVYTIBjgdXu+CCcUJVgXieTjRhy5TGSDZGoTSKFBwkYNof9oe2ffTwIqU0Ow6Lh5udK9RrrOCQ+jS0acgeL/f7mJPLGdARIY21i6U8dOzSyhe0fMcTt8jql4W3kggLq9fMAbe84d0ek+WQismcWAITN+J4SI97wAgJMDVdMVHcp9nYJO1xHYq/fdqy769JBThriuWvxAsMmYXD7NYUWiUVLHWsk6DK8sw8+QDgVKivPt79at79qulcWVkslrquAcB7n1IahqHrOluXQM7W/u3e3to1lh7OE0fbMrh/T89XH4VeZS/pBBo7zpJ7pwaVKpJp/N/MJXEX384rbnhP6fbyJFrXw0w3KeggiGhqS6d+KYEtCcezbFze4ihCEdfpLLCEcjp5+flWPPFKFaEKxa4ogQsAUa3rqkjbnLPMIHiThJmF26gaTHbUrNnMlsOs/+FU+05Ehf603HA2YyYXHiOic24G+5ojJ7O1s1SISw+ZGWEmaZmc0Eyza2x88SmZbvTiT33LOReH4DzaMjkli6P6cDiUZfLue+89vHhC3g3DwOxCCEysqjFFNeu6Hid4fc+kCAVfHhGdCx+8//X/5r/+VlE9Yxwu9/vgfRdzlwdyrqRiFidXscq6YWiHPnZ91/fe+yHGy5cvHz15/OSdt9tDm1U+e/7suz/4PjnXbHbkwqMnj5HIBV9bjUyIKDmXiIpNk2EFwaBHNOeya8yzCGlVs5dVi/6Jk4E43WCcyUQzuMtiijIV2VzqtZdlDsVXWKxAhMIICYWLeqRGVDOV0mUwMjIyKDi683cv2dRSIFIrp6UE0VTEGKdwihoRHgMnCPP+RQCqgotmE44FQIE9GyearSWbLmpKEBYZaAaOeLzeVu4DBFiyZC7xOhBAJI2bIKFo0pSPW+KksdikrR7NcsLCGC6qjpnWqGI6LcmTjzIveS2so3VtZkPfF0rveX3NC7lc5WyVvYf4yiRBWElDW/w7/uUo9VaJhgawzAdczlGDI9vdrbZKrTNQMAIgMARg1dzG/Nn+AKzaWuVwU1WNd5XjwOQReJz0w/tvPX7/yVmNxiJq2Is+u+k/eXHdf9qmlE0zkznAyuFuU1UhEAKlhABWoIscc/AFVtY5erxtNk21qWvn0CRLTkPXHvY3bdsOKsDknEdQR4ym18+f525oNnV2luPAalw1IXConPNsaMm07cFspFlF8huoCmmUc85NzGWIpfJbmSlnyTndHHgW8TMvR9ld2HNdN8w8DAO2ThFJXFXTZtNw2BaC1zGOoTkVsAtmTaaazJLqAJiRUpZDlgGpQrSS6IVTGjHxmBsgoiIm2ZSUiAAsxpRSijEa5pw0Z8wRiImJETGmNPQDC4OWYlOLKcUhqqpz7LyKGCKrWtfHGEUMiRwgI5KSZdWcRLLmrKqj1QpAxlWMQ9aeWAwEDLxTAAYO4IyRmRyQI/LEDAjFZ7U2MFaOt+X8LNqSTWBfOR89AWU05psUWSIiufBm5jT7A0qsHBEds3eu8CIDAJ+oFyvnh83b4LTWV4ZKQQiD9X5pZimnhcq8srsckqCRgZQpBxZzYu9E4n6/N7PiSMMp/UNEkLDgnjEgAbZd99HVTTO0v3z5wZCii5EdATtAKwqoTa+xXPMGawtk+dZ3+4hGm2H0Ya0yLooKf/ztxE2yDufOYSIzW1HCr9nYRmNgHNb7HH7LNp9530nrF5vVqelVbvdibCvdiJBXPiO687K1f65MgJnb+66LYowxxhJEhbXWvjY5T8zM5Xut3/PVJwCYMRc9cCSG2m63Nzc3Ja1ltfpshTpwT5R+Zaesh/c12+lHX+WC4/K2syqMt4ISq0aLuWF2oty/drfuPHLbM3jnDRYihZnnS5fDNGr+RKn4mOaZZkcT7qg/Ld6lKCvMfOLhhluviasROMYopnzmEfzDJOvE4Z1TAmiKDRBjtDwZEpPcK4aKqhItQh+4wnlfJvwwO0SYyuU5y/hGOPHcz0baLHCWz7IFMOtJ0Km0+Vmz1CUa975iJ4wxbbMy+cfy6MnNV7A950VqZikLTwx6+/3+2bNnJamh+A1NJYSwPdux9wJT1g1C3/eliBkRwTEwDmVjzrkJDdeOiEOoXl5dxpQM8ebyGsCSCIgMw4CTvC05ZsMwZJUup88+eVFX9fn5ebVpgLDZbkJdKWGM+Yc//tE//Mf/mF1Vb3b1Zvv973/vZr+vq8nogpJIj3ONylJ8zSrvrKbP84bMcDIKDEBo1Mhh3JePCieYwczWvhBthiOdxHQOriQn0VSjOp4LiAUAkxShVOcf8TysWDoIesxAA+CxOMYUTEUVR2fP5H+eVhC9OlAkADYtIljImWlXX8p8W631peNutdEj80SnWPwISxfMSmVf7T4xJsQR0qD4s2kE+sBsNgEOKSDCQqlAIikGoHeGuMTlsgWKscIS9Qvmcnwl0umtU0oOwE8+tVkxm69yp4bJXVL1fnfaHT/f45TEuz1Ns+w4dsmKHcqEjEgpdy/bbkjxkmLt/baut01VMTkogEjEaB4TurCpq/NAAcGQ2ozP9v2Hz24uU9cNQ+o7NPFkTXC72nvHbLrlelQQcUxfqpq62jS1d3HfNVWom8AAoKk9HG6uXqpoFfz5k3P2TMjjpDezlIb2YJIkgEquHTPWwVHt2dceCHMxxWd3vpqoEGOhiK59KL4NEREpAg6LPlHXDREV+wQWWwgxEpuhilJMOWWxkl5sYqA06t2ihTQxjQmp6C0OqGrD0O33h+vr6+ubq2EYRGKRrcMwFEaqgthrZiEEkVDC0yllkTF0IJLbtuv7PokUI2pC4i0WuWg2k1JFlHOWJGOA2jkXfGCPzAGAUraYRIyIPbFHdgImVvKA0YyOULtghSJT1JwDYmRmZE8Y0JHPVOxbRDZAMcXSDTXJUpa3TjSaizgJTKlf85cpa3RlopzsxPMWpWPsfqS+mcMpxbhk5pI7WDa6z1Fw72jFnXTib7jdlrrjDHOJBbkcEYnQrEA+7A/7GCNP5NPzi6hawaIiJEZMkp9dvrT91Seffb3r+6bakR0RRd/gRd6srdWvN3VXrxMzZu3hnvG8fQfEYyrgSbzi56uVlJKUUhCvqm8Ezfi6zXtXhq6oVoUv7Ct83mu0E7y1nPWek9+g3a/E/4y3kzDCG9zhZMESjAHb2+JrqeuXUFsWKcWQrwxzfVntxIlbbJKRgHIRYaYFQ8vc+bJ9FDlfdsnl7jC6pKcLX2cAbWJ6QT1ybs6sYgDgnMtJnAtVVYUQFECzzmbAYANMqryrQr1tyvYNADlmAzRDX4VQNZ+9vGyaJo/GHi/TmctblC1+SD0g1E2z2+2qpv5L3/7l/X4vIucPH3TDEGr85i9+6+/gf/73/sE/fHZ1LWrDMNwP7rqa/ydrYaHOiuQ8WyMIUFUKY/RpyZlYtJ97VtTSrljrugaEaMR0tBDKn3E0Nsbe2ugZLZhhq/zE+YMigsQIxdZlhwgqBoU20+wkoe04Pb4AKe1q7tyeR+NOpCsHKJHx0tpZ3m59OeOUjl7y32AymxEzj07bk6tsBWBw6iW8R7Upy6qqqrqu52iq8342UeZluByWFYozrjMEltwub9bwVsrB8UXu/jbLQwYmaACMyqRMQACG7KOlOMToyJvemNQ5Vp5rRwzgQR3BzuEhUa9UGyMAkTOmAet9ws/abohJYmLItWcyRVOnQtkCbUqqtAGYIgtKsjxokhwPXR1cHRyAaRqGrs1p2G63m2pTN5UPDoD6rm8PNykJKDhX+cp3CIR23tQNBmdOs1WC6FnApOjLC2aDYqWUYG6RVoUUEqcEGFVNfUfEJdY8h1bGr8uEaDnlOMgw5BiHLL0hMlPuHAiOpIkpFZe/9z546AbMWbq+u7nZX11d3ez3MWYABNOrq6sYU9u2JTY9DEPJaHLOAZBzgZBUC5yvDkN/eXm1v2mHKIXVkUYQes05Fyt9hsGbN79iqHjv66aQrVQJSIyQncMKuCb22dTQgJEMiRyTm1RusCEzOcDKeSM2RHVcqaKqVfVWAGzEblNVUCkRSZWcZULkOAIUrw2VUQGfLZa1oXIyY2fDxlRTSioS6qqqqpLudYx6MaPBbKgIvAlvWnF1LN1vdy2iY8wHgO0YfUZEQgIzYEKim+ubAimjU1Xo+KamxbMSihXsHHoXJXVpOLSHh2ePVMtI/7mqXiciRfRNZNTt8tb5476mNja7Hsuu+VPXtn+S1vf9MAwppZyzmf8cp9SX1OblXzRC51xKb04j+JO0E8zoL72t8RjehJf6p9iWfJonqsNrtpMFS3qszT05czYSZoz14+Vf8dSgqRWtsZhJOoG8LzuMC9lbdHpELLGOk4gKTFmXS93r9t4xtzmHrWz9DGhTWN57f3FxUQ4555q64eCdc8MwABF7B5Oh4siNPsSc+xSTZvY+pRRT3oZNlBxzqqTebLfnF+cvr6+rukZzDmbDRMpGX8jjEbEb2qZpvvGNb2w2m2EYPv74429961tEpAB9Sj/+8UdPnz37J//0n1xdXkU1RK6aOh66ZTTgpK1KL9bT6YTf5jjZEEAVShL5IlZcXrmg2M/f8TUFuNkxRrf6Lrbm3lgyLSIqyCufhQCMDIgwgbUBWNH+kcgWhsqJl5OYi51UQmp3df5UkV6HkWdNppw63/0E7oKI78qX4gU37ux6Q0QgFJtz+08vvutur9/m4GcIoWxAs1PgRMNxJxkXt1O85p9v9erVmQ+yOI/ohGVmvMbWl53ceWVyA0z8lQCEqoYI6D2AmUhn2GfY58jd4BADASM6JAd64eFst30/6cW2AQQg5xqqqsbVjQ0ZAwdfVa6qGJ2nEIjRkK1NuayHsYYgDRQH1x4cwsOGU+YhOjBLQw+azzab84uHDx7svLdQBTPoO5Och67vuyTZFPlGhZkf7jYywPBAtpumicLBCUK22V8vAGNOtg+VmQyifd9fX+/37WHoIxHVdePYgcGhT0zkHLMbXQtTsYq7eLxFdnGw66v2xYsXV/tLkT7UuNtssK01Y5KUs+acRQXMQghVVRtvs8jhcHN9c9n1B5VkhuxIAC4vr7tuaNvOOVfQxvq+zzkhEnPYbs82my0CpiwxxsPh8Pz55fX1vmtzSdkq+b5qmlJk5qrygOqYg/fsXBUCMREpsiPvsxFZIK4JHbF3oWFf+6pxznsVQ0JgACxQXKP9bjDEvZEREXnyHojJFCWmISVutlBMFFSZCrvKYsw6RVGmgpWR0dJMR3qTgke8gC6GI7yvzekL02yeuSDVTCZARpoIv8u/BUyHJtfaOir7BdroeChxEcQ5VHLiVjrRKhBQ5rOmcAAiAlE7DDlntALYPL2xgikgIgErTqlmTAY89PnyxeUHb39gI8Zg4Twfc2Lt/hygn7i9pmPyc2+y/HmOqNg96U13d+Me5ePnoqUUJ3xIGad1+YQ/8TjfbqoKBUleJKXUdV3RCEMIPy1D5UR1WPOPfwntZLJ9uTd//XYC/brwhN7XJXvNbLe72+mCLaKruFsWvmQEQKKiI2qJmxORGTl25rL8pD7TZTt5h2XcYzaWipd2tjTmt1j+XDaR4jGE6ePOgrcof7DI7FJVhDW80Koz0+WimoWITBWJCdA59/bbb4cQrq6u2rYrzGPOuayCzD74ybeNja9TzjBEMUs5ZVEXxvQ2AYtDtj7GmGNMjx4+6WN6eX3lva88qUjKWUoRfkqHvi9a4+7ioqqqFzc3bUp1XT98663rrnXOO+equvnu977/9//hP8iq1WZDWftDG8JZTseCNyuJWYt3NDuyVJyUxeEi7bR8k/KzAqgaYKH2G/+b77giflpXfupyj11Pc8QpsZhQ9QjdW/bIkQyw1N+bjR8KV3MHcbXnViGUvI88eZaBRnVfFk83WyVGFw7Kedu9x1BZi5HlG4/JmWPwRwjmiFAxk5aLfaFzLztPCGqopmgmORfoMCIutM7ANObOnfRqGo8vZLHMDr7inxo1C+aUUgGopFemfiEfgyolm/B4R3es/Yd1/aAtoj44lZQCFHG4MnCWkJ48YybgWpEygNUcXYNmFOucyzIuH8YQPbIrRT+O2Iii2mACZZIBXcfhopNfds3gPEr0qhazM9mybVzGCj35QBjIHBppBhNU2A8EwVvtISCwObMaoSYMAFBJb9L3SaMy4MW2efjo7O0nu92uqmpvntrcpTZmjClLjHTTyieXly8tbjd18/L64xcvPnjn8TtPHtd1zc5vdrvt5nxoD0N7bdIHT65yQNznNHQtKV7fHD57efX86ubldZsTPDx//OTiLceeyV1116FipBRTW4rXm2a73WzSUFdVFQf55NOXn3728sMffRyTOuc9V19/8D6Rd5tNnxRclVICS5vKq3klu7q+uXz5THJUTSrJe/TAbOjDuYjsb3qRzA7MpB+6qgrbXVNvN85XBEGFcsw3+/jseXf5MvaDZGEipwZDSlkGX7nNdmOeBk0VuT7bNgRG12weVlXtfABDEaubM/a+qhoXPPuAjotgyIjBu3mtzSlZZW3zpiarVCWa9L0W1A4VVAg0TODCYmBkpkOKo0Qgpyq5rBYDAxLVLCYiiiQ21qaogRoUXsisEnNxuksJNywT/Q3AiIMLV8+f7dvO1xWwQ+ddqEIIdV1XVWUAKWcqEoBIEZ2jRXbWWo1YiE4ALNVEzjlHqKYEoCBsiKqk5h0xkmOOOc27AvGRoEDNDiKqJgCKBIBJJQ6p72PKksyur/Zfu3iS4tBUbhgUo1NRFM4xq6sGSsD48LzZXW5Tp5991nncoMomuKSWczb0xqCGimi0TsglomUV4EL0jHxYxxMXUY7ye2HIGiFXZsmDS7uA3YqEcaVIIQOAGiC5k7KMW4l7JdGTAVYVh7iWZkirzktWAGDn2DlYVzeuPF55eWixLyOIHjfxWwlIo2b2CpEdFgN1koW4yqpYveQ9MR8B/fTZp5uzze5i1w2DmA8hEJOIOFjmLbyumqqrRJ2VEeCJ9jddzllS6g9te7NP/cCAeYjLzGsko8m7bGbMfnFo1OdkpP9baXrLjWM9GVZf5Z46nzVe6HoMXblKv5C6PuQ1W+WqRDjhovTixLOwfJHloWXB0omTntbk08v+C45zGa2solnyQBF3VdU4FxSgFAiImIj6iTlbdcR0OXbjbtRdWwJXwKjkMDOiiZrjMJ8nOWuW4HxUQ3KglkSHIVnKHPrN2c6AtrvzxH2J55eCq5l5k4hMdCrjZCY2ASl5/+iyCgAWIIpihwOOJb8KuQw5IYpK5V2z2wLAMAxOqTD1IiIC5aw5x3GsEJ3zEyJWMkPvK2YGwKJm5axlrppZzmqWYsybs50iGQE6BJTCDqFqAIZk5J2T4LyPw1D7oCKacu28AzQFzYKIlQ/Nk+b84YP3RK6vb16+uBYFQNpuN8CURLqh77rOeXeFXdnSfPBMFLNI2zvniLjXBAyklmPPoD3I2w8vfu93/s2hHzLzdrerq7of+q7r2rbNKTnnD127Oz978PDhgwcX0KWcXmy3O++dD2G73b54/vL7Hz0b1HVtKyKixlXdHjoAUD5u2TBxGo7/mh4rkMv/0FRzmZaLGbVSfj06UwMQU4HCjjLOIKB0tHwQDXGxPeixF8VnuJqiCqYiAEzk2JXd3UxFcqk0WONEqK1xw1IarECpOkfMZaaX/aqoqSWyBQDEflG2fbRGsLym2WhfFXSnYw8X72FouiiOAtFF1nqxi0pYT3JGOIqUwnJbOl10RVhY1EeTO+fiaGQAx0QTflfZpMzEQAzBvCPviiMLAfzxM4AVfuqp/uQQ47H36/hHP3TFdeuITJKpEkCOvSPASdrYlLoyv/Iq9esLtBWaNMDCPXziMLjnuuUfV/vISdLhwgK1lVGLgISAhaDGAKxskAgIJkhtylfd0O58iglj10e96bqU5bzQypAhooBFzVk0xZiyiaFTbIBrDpvgasJKxZsRlNwhsQyg4B3VTdjums1Z2DSekJNZFlVDIAaWbLKP6bIfrjWD9wAUhvzi+oBEdV2T89sh02fXMvSaD2yprpxvArnAVUUUDvt233WX++6qy4dMP/rRp4ebH/3at3/ja+9+4LQHUGIrLDGzSSqSr6+unHN9n68ur54/e/b06TNVrqvtxXmj5pvm/MFb7wtRVmvbA4AEVu84Zum6ntAJxJyyY3TIjhw7HmkZy05ghqje+aZpmmbjq5qdB3WmFONwaPuui0OKKQsyIgMBMrARKMKQRLMY5EGSY95sXah2od6F0DT1xjlvhkgOnffes3dYqqxw/PhLmWXrNoe87Qg+PHpcCj+j6TE2egyGjGxaM+im2QTiIVPwZMr9Mlj6XKdpbisdAAxQVGJKUqokJ8gBZC5JcDgKvBKz/LyowHr6n5w4hmTLPXHE96BbEZU5hjsGjgCWL2UjhgeYWlYb+kFyRh6z16AgM+volgEiZgreMxESDlFiH1VUTcGQDGhyz3yhcMrrx0bu8UnL3VT3P/vNOT7Ksq+45/cYGWWOdF3X933TNCI8Bq4Rv8j3fK2GUyJyoYY4HA4xxlHb5p/j9Lmfr1a8+ke75Y3abaze17nKZmijtTJAE1IQABRN9CiyrSD1+7LAT2byLJznPqw2iPm5J/X9k/ic2+vERed0lJOb39/KQL3yfCsLn5CYQURVJYuIIKDzXkwl5yyCTM67YRgAIFTVe++9l7KaGXvXp0g5H/ru6dOn5DgJmJlzrnCvMbOxgQKxYUUISAYImIcBwUT1bLf7+//oH4WLB4+fvFUGcLPZXF9ff/jhhzc3N0McQl1ttts5Mfjs7Ozs7OxHP/rRL/zCLzC5P/uzP7u6ui4b6bI0ZQ3MuM6psVsHPm8gESDHNM8W8g5mJNx1UfjJZctnFWKE+VdfLTxcZjbzjI3JmZ//cXlSvcqmKTgaDMWPMH/u0u25J8uA2utL/GXYZLx2yj1eBvpg2rFLGe8yTd0AUhZy7L0vLrlRKSrwFssqD1lvuM7NOo8hAqDitHIXwedxPRmgmoEueW9O2oxuNwONvvK0k+X5pobKl91O3DOvKQXm6GpJpV0dQ7puu4+ePd+QbEAgS4y6VxMXgqEARMnJNJp1om3SNsIgGTluCC4iPQSsjJDZDBWLCwQsAxo0lb842zx6cvb4rfOzi8YzWk99SkNvwwBRqFfci1xLuk5DC7AxUuAh676PdNNyN2TDOrTWd6ziMDcVberghsChQp+I3dCnLuaoaC6A97i5+PEPv3f1u3+Yof7ld8839YbdWMU+pxTFGGPXGmDXxsvL/TBEx06JQwiPHj95+/2v7S4ePXryXieawS5yUouaBpDYv3w+pCQqMeeUs/MeHbvgvXeKDDmLECKoqnNUVX7TbJu64SoAeFEW0Zy1cOE55wCkbrzzHpCzakyaxFJWy2ZGKUas2XGzac7Pdg+rqt40W+8rRMxiNqIu4YQDPrbljjib2icJG7ebTYUly9qSqdrE5sDMUZtXLeAUr77K9H7BknM+HA45J+89T5hszjnv/GxMAgJNmBqvImV6rTYiw5ct896bzP0vnqAZ1xwmCIdyMGe53h+GIbkGRUVtrOYxzQUu0CE5dnVdMxM7bLv2pj3kQrgzeoDe5GVwTX11j6Jwj3BYu5NfN0H5Z6QR0tIJ8yXbBOt2kv+9bioi19fX2+22AB9NWB1f/mDmrKqac27b9vLy8nA4lKyYL/1Bf9G+6rZael8GAsMs0ploScKgqo65iIuU0isNFVyXjpTEElnCEN0KMM6X0IRz+Lk9nItYPnf3WbYSHb1HNDGzY86iOeVSKoIGh5igYCUTOe8RsHBAswvOecDRUKk2jZieXZw3TfNn3/13RMfKllnJKz/f3OwZ0QMF4sr5Xvvctr/x67/+737wg//pf/5fhphevnxZ6lL6vi8dQ8Ku7fphQMSyTl+8eFHcGU8/+siQnfcyDORcqKqfvKT5nhZCKKKyeDCPQd7XFlG20NoBYA4awDQ3Zu3AVObYzj17Spk282SQlJAZCsfliVX8Zfh7dFEqY1NuISwtoltqc4mxjJcDVAYKJiIFO6fUh4hIKcS9i6h94UsDK0BEOMa+dUEkv3QNGAAtDp20JewEISHf+Qnn5fkzZKisSllOQut3f2Ra1LPCWhaQ99dt+4OPP7MUzzyTQUpy06Y2JhLNWdqc+5wPWVrVATCqS8ameBDrcm5Zr/fDjnDLuPEcHNdkpLppqkePzp88Pnv7ycXDJ2dVsDxEidb1ab8fDp20nV61ss/WkkWPBHXY7OrKO0wuBAx1H9PN/oBwaEAC2K5xhA0Rq2LuU+7VAE1zVDM1JAbSqmnOHj24fHH4wz/708fhW9U7F85jqAISIxoRi2gcMmMhIUk5KwI752PEnJVdePTO+xcP33r45N2rrlciAwMd+u6m39/Ezz7l4A+H66HvuWRtOmbvXWD2lUsJ0QAzAHvvm6ZyLqihM69GKekwRETe7XYAWtXBLDYN+uDYcTaMSdsu3+yHOIABDdAFX1XVtq622815XW+rUCOSmRKbwJi5WIAFj99/rZguDZV7pL9O6IMre6No7Tqyo9jihOJPKdXhJ1eVQ/frbSKy3++RqGpq4iPYV9H8inAZa+tGQ+UL+ORO5jxNN7rn9csKn185DXF+r7UBZlF0f+j6lDZVpaow2mUZVEqqLhM7x6GqkBkJuqE/tG3KWUR+ojKG17YqlicWz9L869KG+fmyUgAgy4oH7Svt/72TzUTk5ubm/Px8t9sVmCAzQ/oyNth16/s+xtj3/fX19c3NTdkyC7LTEt3yL9rPfvvSl94s0pEIi/40GSrsg3NuRp48uUontF+akIVfEVGBVxsqiFhEdDFU7n+RE0PlNd+6aP/L5Ptjr6YiFnYsaeRazjkDGRsgkJkBooKhIyn8Kn30HA3IOVdK6tHUV9U3vvENX4XvfveHKSVTzTGZKBEys6SMTAAKREzISKAmOQPj0PUPzi+effbZ88tLE5l3JwBIKVV1nVVsMrSKO5iIhmEA5xg5p4Te8wQs9lNpusrpXFSDnJyHiEuI9sXcKJ9+NlTADBfa/11fubxycesAotkIJRqHofiPl/04+qPeyP0z79owTdGlLbpUV8ZYSqkNJ8RpkTIAhyAqkkVUSry85K+Lmb/bFSh5rDo3BFRDPWJGQwjzefPSEJH74UxjjKXb3vt7dqXZxp4MlcWwnTCznJYfwVpduGNzXfGRnRJgrp+1qrFbJ+fNGbQApqsk79t0b7QGPi+nCVgv8On1Iea0C94hZ9EhSU6qOWaxQXTI2qsOChlZwSkiGnVESfUaYoOwI71AfNw0Dxq3qagKvNvW5+fbi4vt9ryp6gohZdGofOjk6ibeDNZFbIU6gwERKu/MV/UGWT1T1TRVVYlYTInZAYFzHHwdgncuiGGMuR1iTKli5bqqXYhZKwcXu+obH7z9cHvIXXz27DPP+fGT3WbrmNlMzLQQmDgSU0Bk76q65qbWGDtC70OdBMhX6KuGK2A2MLMIhH3XZVNAiDkbgg+evQtVFarKB3KeDRSjmRkxhRC8r4hYM/R9zoJpABV0ztc1AehmUyPlqsregwsemUWp7eT588P1dYzREGyz2VWh9r4ict4H53zRp4c0FCb4skrmXFAzmOGqb/sM1rbE4gcwUZwxiFetiPvp5OWFMOaN2bjedHm0ZIuZjfUpY39gTJeHtm1zzqGqEJGJSjiFFgRqZd3hXHC5nsPzBEYsXDeKMK8QhJlpDklVCEvtJnGpRBljvgaI8xaNhDSRtYkKM5sIwMhZOVVOlzN53/cpi5YqMsdqic0YoWJufOgxAiAROu8wakpyeX09btVgxDzXdRChEd6jcK5iyuvUVbx7q6MZrPC2P4LW5RCrgojls1Y3PHnUii3kbqF3msNwyuGy7MirXuN2u09OH3+kV5MQTs9Z5bfc86zVzZeDMy+Ew+FwfX1NE/mP9w6O2V+nfV0VgKy+5KtfK+cson0/xCHt9/sXL14cDgebCCjmnoypNdP6H389ybOEcas2M9WM87I5SchcOQlhySC5wsNBWLOH3Zkv9Jpm+T3l6ScMNjxrrnZaRXN61fF9T5fJeoLi6qrFs4gJRoQ+Wz4NDZDoiLIFePSM3n795ZpaLL17xoWQiGnq2AhcUQqjdSKRWHqRiIgRdKoqEZFQVTYy8Ez08LO6h1C2j9HDte72qcJ0srQRy9NnHav8fen3RFppRLPCU3o7p4EtHyoqKlrsHzPLOaPjWUwd+2ZmZuRGLdM5D0HzEIdhMLOUM7MTETATAMiIjoFQRLJotauRXAjBjxUSpGCI+K1vfWt/3X726VNkl3JGtOIIEBZi6nVgYiOn5EwViG76tt5t33vv3XrTZDV0bh6TGCMjEpNJmpW94lAIIZQPJ1mruh7aNpv5EE7dScu2EsurP9+XkbpYlXEYgCf/nGOkCQEM1j5NRFsogUjHr0djhrLNm/4y4jQ/s2DyA94Ri1u602e7GpGYvUFBqxNVUNMlRS+6k5ce/26gc4dgXHiLd1kNxzjxRA2sTK3yCiW3fBQLCOx8OdkADFFxYiBFUsmI6IL3VIlIFmEiKE4BkUUp4jFQUB45GjRmJsJmRKRgphpjhIl4rag6xWVgYOqOCGOFAHfeZWZ8s9KWZT/lvaa9fhz88ppubY6e2Cl3C9wp2DorXvOhJQP0qWg4USMWtq+t8BlonV24CEvdKoOFV9pLCEPKjvk62pCjp4QAZf6ogUhWA1XLBmYkRmZsiKgECcRh9gTIvcUhJwr+sXdNszmroanpwYNmt/NVwy6QIeYEfcaXN+2nl4ePXx4Og6hREk7KYkbBV1g7xtqHbU1VcCE4kaqqQuV9jdZ4quvaOY/IKjb06fq6b7t22+AWKZxVNRI5qmvaBHrUuNRGVuu69nAg52tAQjQRGYZhGAZBKfV6zA7ADCjGVAU0ha7vU8p930OomdhQTRkAuyGmlJNkJKpCHSoXalc3dagCcSmHKCvWCt0SAqqQmu33N5IJzDtXF46hEAIgOw67rbGzUDEHh+z6AbyvvGv3+z4kv93uNtu6bqrCdkUTcJVILjVxhQnVdMSGVwSHY0rlPNfndosF5WioqKLBeMKsl5fzsuhSYK0xQ215/rwJ6YQ3Mm+H845lZjHmQlpXCjfZjXlfuKCHx4KDhljWvJqdpH/Z5F1DhKxQ9uxSOgeTZsbMRyGCsFqD04IvXSIggRFuUlRcqHAanPLHedCSws2+3R+6auO9dwiGlk0zImzqJifor/c5pZwFkYqv6cXVy4LDk0UUMYuam8bkZPGu22qdrhftXY6rk6E+PXMlEOz2Vcs/LA4t96G1+XGPp2b12BOjZRUAfE2GHKJ16tdSip4K4lcHGO3kne91UC1/PjH2ylQvVkrBfoCxhOb4hCmq/+rbf66jUET6fhDRtm2fPXt2fX1dcpQBRhq+oofN+QzzTgYAsoBkmc2PcrQcOq6C5TZyq7btzs692k65fdZPGjdAwKUjb8adMLBTp96y6bjSX+G3vrXxHduazZqIYZSHMLLX2dQnGDfxecDtDkfy6vYroutbW/DiyKwSjF8BkZAExFQdIjIViGqzkbmPiZHZcKRsLyJr6ZKQhe8yeD9KOZEC9jo+lAhlscxPrd1x2szGxtz/8sT5JrffaLkBwS1DRUc4/jGdTESYaQ4NjcrZtFUxOlMr0x596A9d13UAoFnIhwJEKaqKAIwuhBBCVTdVVRO7klGcc9YZSAvha++9//zpZylGFWVEjwQGlnPOYDRWX6qJqaGZ5gyqlQtgsDSlSv8phFItMxaCFqNrYkACADNIKZH3MJFjLIZ3PV7L+XC62F7LuVIMCGYmZmSeWVQNYQG8vxKVVsTCdISQoLBdF8V9kfuHRMUVmMzQlJhm0XEiN06m+FJ/wOJUNSRAU1u614mO8utEei+Th6zEOBa/H587rUrRAi7C833Y+BhIXOTIgRl7j4i5sPsxZRVARFMQMDMiYnZkLFk0xiPCgdGKir3YEjoGmpDIsTPVCJZzxkWMcYa4KO6D1ca82LibptEJ9bF4MebTyntNOMvHa83sZyX1yxbfxWwxI2wVeTnxIN59OxQzVRDkCGhZcwnsqgEAsyvgUaA2AtSNhhKCw2wZJKMT1KFmePfh7mtvP35vu3tQSQiw27ntzodABtoPqT/0l1f9h8+uP728/vjlTZ+MMRBSEkUgRxQYLQ2b3fm2olCyyLhSOUeAEU8sBMeEQCp5GLQ99NeH7vIg9ZB3GartFhA0p4oy1QbEMDgAiDEOAxJ7IijsVMMwKAEiiMAwaIxJcslk0hiz5WSSVSIIIaGCxKE9XF9fX77Ytzci6qtQV9zUvq441MF5ByhgQgwhOLO6mJmqYKYiur/pVYkQqsp7R2qaczZLQvrw4tx7a2ryNZHnpkFmduw3Tf3ich8qMsuISmxIqjbkVIh171QCbgdMlr/OP983HRanFWeALoItx7tBEeDHQzDFhU9lyCKr1cz6vi8OtuIocFPqF34ZqdtY1P85BjqyJ08cvapj2AWx5LPhVF23kokn+W/Tr2ImZll0f2gvHm5zl1g19X1OSQ2paUA0D7Fvuzj0KWdDzGQvri73h8Ojx5qSJs1C4Y6+/0X7Etqphr2eiK95kxNDZXmo7HMFfJyZD4dDVZWyscAggDbN65MoyivM7OnQaYpFUSVTSmnIL168ePbsWakM/vNrd8cr7rvoy07Gm1fu2N6IBehLb7NveHaO0h1UJ2/Q1qre605X7z06rus6xphzdoAF72vO75qF/+wUX4rE2amx6MeJa/xNviwilpl8lyFXWlkvsiabf2WblBBEAkNIObVtCwBo4JHENOecckbHvq6IqKqqUNX3jGLf9++98+6nn35aPNylGyIiKorGiIzESPWmGuLw8OIBBffy+fO7jPg3yk3+ylv54qMDlYqVPx973ZuU6TSFKcZcA/jiS36eijLZq2U3nseuZEwtHVJf6P7zU8q/dIsJcXazjnOScKJvGSMtMyiR96HMqJLC55kMQQ0MINTVwlBZhW2HlE0VFLEApBatRpDHkv3JglpUiRsAscyvPCE3jpnwszdkGUsvbRZEt0fgZ8VQuacxHctt1s7v+xp5D0iClEviBBkgGBkD2QAIhihKQoTEoAU0GxI7J3FgjWdM715s/9KTh7/+tfe/8fDhzjFxVItICSAOUUUzWP/yxc3Tz64/u+k/ub55et2lhBVp5RxQBsaKncWOKgeaULnxdRPYu2oTfN/3krIf9cvihinBa1Twn+4jxH6X9o/e8nUdUMQjNE3lK7QQVPOx/NsspdT3fd/3Xc5IpILDYG0vKWUAUoE0RMlRUy85AqKZxtS3++sXTz/59OOPrvY3AFI19WYTmibUgauKGUHUUMU5rirPTKpI6J0LZqCKwddZwBQlq2lKaeiHNsuAqA5kt3PMdbWtmBWZzs99IWp9eS3D0CKaD1zV7BxNN8xAdzLNLRVrXZMSzta83kvVt7y8oHHq2vKZbZiCJr58EMwiYD3vlkp/27YiUlXVSLzpxvblGCoAPFkpROSc55GCAApzS3lvQtTiMpmK1JcrRRehpxNzxblgErthAMIYo6WofScxC1F3E/c3Xdu2XdfFGFNOhkFUX758+dlnn7399jtqqODI4V+UF3x17WTnWMWeX3tbfU20krZtnz9/XjzZSFh7KtKXb83ko//stt9xgSZcplmBmmjb/sVnL54/e7Hf78vW9Zqd/8nbXd7xL3SV/MQlOyef8mcEQ2AWdEs385d186OLFAAmYM7XuipnRKyqKk7xFppamW8yca3SAv5oKdyW+8m6G0D0JpoP4ghD/LmnwaT4eu/vkY0iQiXFjBhYYcrgd8TDMBRVj4iqum62G/LOzGKMlT92fgyzF2UUgJi/9a1vAcAPfvCDohqOqQRgXDua4APK+DRVjcH94HvfU11Uy63e5A0tuq+0lR1ujCEhpDdia7V1m//4Rd0Zs0lcvjJNlaNzn9BAdEnSsfbpvJ4MLHJjXp4ngHs6IRQDYM4ZmV4pWskx2rhYVgBFBUR06tRSQBkCBIdmJgqqmnIGBUUAE1PiUpxzKx8VQeVYhG/FWJtQfFJKBWqo1Kgse5LSkV72pPNvaqgsRQCAzX95U0l+DKdMS+74qGk3tjkEVozWMgAnfpPpkA/egARQgUwUTIEQCBGIPWHh11Ap9UGFxsIAct6jxjNPv3ix/c57b/2Vb37tl3/h3UebRlJMOrT9zdCnNPRpQMAYM3369PrjT18+HeLT6/2zq04SnjXnF5uGHBARIwHhxfmZZ6gD7zahctA0vg7+2uCQewXNZpYF1EpqjfM+1HTYD32re4y6kQvCGtk58M5VzC74YegBU4lqFuzgnCWmFLsO0YlAP0jKIAKAaiY5x6J4gwhSFslDdzjcXF1dPX/54lkfex+ca0JVb+o6VIG8QzQByGBAiN45RAZgwsDsxFBBd+dn/ZDSkM0IiJAZiEEQDD/60acPH23ZP2h2AUkVgNGcU2apAscsYBEsSh5ibAmVKTjnskwJ0CXdBOdEE1wyLRY6xakUXhHJJn5GHMMIp9jB5ZZqpmCldGyZQCbFaJmC4lZEDxwjMPAqdfBEzA0pqikWZ8a8GxAx0b05Ma8V9cZFI0Tmyb8NJe0eEUdvYXHczGkwy6YjWcLYdPrPzIaYoY9X++th6GLuSLKkJKJqdn19uNn3h64bUk6iKkpoYnh96J6/eBljZPbsCZkFYdK7fia9cD/nze6OorymrbJKzLjlx8IpWT/GeHl5WVUVEXnvw9kGALgUZgLYosxjGI5I+aa2qgBZ0AirmqiklLq27w7tJx9/0vfDK8ykr1gdmt14Y4dfz9t1ctVP7mE+2dHpbsSbP89mNkdURm5XKhqqvn73iqguPyKWlHscdYPCpDRqlscf58uOP8x7ek4pSt6dnxVDZdYmcZ0Cp1My1TKictQ+TxIyv4wAgU55aPfYcjglNE6i+M7nmppNWPPFvVX8EEjUp8jOe+8r73wI4xsyE63qikerDEd98MHZ2f7m5tHDh598/HGMMcVYLBlPjICMhFgqBmy72WawHOPv//7v65wYd5rbtEY5+okbfp6q+LmHcLSexl6N+Z6zAolHDXC60yodZ1ZXS1hMRUAVcCw6x2O15/Gadd7a6mdbzDcoO6+NWWnLq1R11Y2javO6Yzs/haZUq/lKtZKWjyW2mFIipWmpoC1G5nA4IJdJxDAdKotU7MhVJirH1EoEcl5Ny+aOCClnYzBVlVxRgCIUVZe5ToaAkudBZOaS/ZhTVAXn2NRySjklZl7yp6kZlUDutGzm7+fojYC/ij9CYUqtXcxmXRi4p4IeVrbayng9jsxUWDj9CuyWattcrY8GAGMN0LhQ4Tg9c9ZSkl1qk5HIIamoSMyBwYAEvTBmJPACmNCqzWaINw+9/NKO/5Nf+uB//Ze+9o23H108uKCmSQb9yxfB8OVNf3h5FUUH4+f79OnVcNnjd6/SIfF19IduoO7yHaJ3Hl+Q9gEcEV23cr5tml1oNrytAqgMg4DyPgdCcRA9xOCAN4RqeZ/62GGKSfHTj5+/7Oyb73/w3oNd1tylwe2gqdPmzDneFIc4AIlAe+gvLw9ZMASiksHJ4gi9KFA7pKvLbth2CerWpUgMIMPh6sVnn3zkCALR2fbs4uGTerNxjlRjFzuPGDhsPQBiFtj3kjMD1+YaIh9qBwq81WEYDvt937ciSQyysmYht33xYhjiVY71W28/9BXlPKR9r/3BYgzEgcBiO+yJxTgheIfs+iQFw0StEHRANhUzMyFiQ8sTo7yBZdOUk4osYets4osvs0NFJnZ5zWAJVEwVVMFETGw0d7JBmhV3MEmlpsXM0IgByMyyiIGN1C5lDydMMRITEj777Nlh6H1V9ylzqOvNrgp15WvPgQkrYoSR115RCoA/MxusCGLmlWKlohSBwAiNALyjxnvHjpmYMA/JMTnnRraWUvBWFgFicbnNG7lNKBxdSiKSpUBJi5hEzVFSzpJE+9z/+PrFt+K7DcrQ7uMgfbQh64ury6v9vpXckrsaFAUaD67avoz9Dz5++h/0/cWOAWUQ6aKZA1J1Koh3Itu64GdXqK3xWlY+zrVOMQflX6GUr1W95S8rpsWTC5fMXyXMNrXgFz08MQmWPxPgwjm8ZFUvitP8q64ZBE/aEV8f7gSbLjXEc69WRYCw2hL5Vs7V3O5BXy0jbwYixuxjzB9//GlKUtgUvXOhguBLZ42JRDWlNAxS2KxVtCQl05SeaNB7PqadZJG2PTx79vzly5c3+4PhOP7ZdCysQgBAQHaeUh5prW/lsk+9xdElXEajmlmJbRrIqeXl0OA4JuUqT3ciVp34PlfOyyXTy3r/KpkPxdg7cTHi0uN7mi+3LPO4sxKp7Hjlnie+xpKh9cobnoSDcs4jcQoiE4MZqIkImAoKOgTUnKOJw2wqmZAcsjq3uuEiu0Mgj32cyvLH+hDDilgNE2g5A8k5JI9EgAmzGWhWLOXNAIBmgkbogGJKOWdyjEzB+9QP3jlCTGlAUOecqRIqghbYDkPrhp4dO/JZBBFd8FmyZVCR5QpFXLFhIqL3PoQw/zrHYaJkROTgcarMxomUs0/RCDl4VVUsaF2uFAICgiIojmE3InJVMIA+xbqu5ylRnjsjw0rKhEhAhJTNfL0B51NMXdftdmfgPAQP3nHd+CoAIRIDEgUPANmypuTMee+RSXKOQ/Z1w55iGh6/9ejy8tLMsJR2IAVXmajmHHNC/v+x92fNtiPZmSC2BncHsIcz3CGmzGSSLFY11d1qlZVMsjbpTQ/qn9f6EfoDeuh3melBMpZ1t8ykKlNVV5FM5hAZcePeM+wBgLuvtfTgADawz5AnbgwZJNMj7No5Z2M7HA735Wv8PhLmzevr/8ff/D//46//wXzAB+r18KLn6txAej7+ulwbi6+lOP9tsZN1EZiclG6cUZ/jpJqP3yRiEMkqGQFSsb0ceUfsGvKKJghpSDIY7AAyKDy8ZWOJqIqUTH8kTiaGgA4BeFKLB5f7XDjMjSIDSzO2SoPpBMfBXai2IGsBADAEMQCkSTiAWQFXQ+QuDzT2WEB05lMjs8NxJEQ2USsjXswvEhIBkgETkxGIoRVQB/Lkiv2GgKCmKjrIWMgwxAb3bV/yspxz5BhoLKNSg64nREYiIqvqhFFEvHfRNLftyTkxe822rMQzISWEgjxmSEYGVhR+kSwTFyeh86ymUZMmmdf3wsdFVKakt+nXxRH+dDL0C9u5VT+T2YtTBOEZWplZVwZgdLIeAYv718gQtNB4epdykhQvUv9f/PyT//2/+OK//Vc//8tPLy+r0FxsxQXM2u+dMLYq911/7HOr/P6Q3h/jbZ9vcu5EDwA9ERG2KvsU1w4V0HIScSomBsc+9X1MCQ+HfDjm2zYHB+vK0KtHQgBkJAIgAOactRNI+6N7940Dq16tq1ApAXImskLAIFlT0r6LKaWygEVHHkMAAC2L1yznlHJOKSYw0Zj3+93t3W2XYlJZrTZNs63qVVWvDERjHrYnIBezu3jgAUS0j11dc7VuCBhQfVU552IXYnc87i3GmLPmLqpk4rzbd6E+VjXn3LVdLzlfXjaTMiP5eNhr8lJ5cdXGNw0yGViSpGZlqxTbQ0cwjQlGcHg+XKD12AMlw8axlyNIp7jKPLAwZHyZmj2f2jFfh8WTZ2Zd18UUDRCJgIgHHBY3PuYLqoz/YBspUIgJVGHpyZvPQNmIJ5vnDHlidGdNSp6ZGWKBRe9SzDn72kFVSe61z0nEh+C8w6yCqIBgQGaAoMgpS5YskgBZXeFcfcYd9kdoLw81fJyYeupe3723P2KbslZ2ux0AbJrVANc5wFYrIuacY4zH47GADcYY+75X1aZp1ut1ASMq9HwlH7rruvfv39/c3LQjP8O3bWfa+bhyf0LzXFbR3L36R2kPJ+ol3zImQBO2DBJNQIlQHRKiDjC5pfMSOT81XPgTx9fBBrDv0AxAEUARBRMiIRAjunVlYABMYAV8cZBbCKkAu4iAigsejHQs4Xjh4w+Tb1Oy+3ysi20+B/uyMcX/D747Wzac1QFOpik+yJ2b4uGP9zhbz3VT100DiM4MnQOmYgwBog2nHQKAmha9lkYYSRzkr5lZqELbtVfXV23X2gmgBXPMoKpZcs59lxpP1031b/+n/xFKnvALp/iJNmUPlvZMPtOC8HFGPPrMxXaG51fOblFAATUkUgRjBARkRkI0IAM2sJzQBusdzXjMeAAC0/MxnkIxMzgYHbUOGII5HyNzBj2gRC0GUB4CMwPhRbKlzV1mz7yR80EMfZoB8EBlSogkZqJSTGgDwBnIy1kPjFSoCEZg0xPgKWYlIhjgBhCnoBZMeUhTn5MXw1BOu88RutELWaIvp+jS4NpQUzNCrlwpxzUqyLSnzr//GpWPo258pj3jC/yIhoZeCBSNzAAoOF85NcWuZ0v/+u3m3/z5J//mX/78z3/+9s2r9aqufVW32VIbE2oHcp/jTYy3h+Outw9H/XCI90mPqp1BJjBHhnhM/aHjelMbqIOMGmPujx2LmIgcOru/T/eHY2q7i5Vzl9UquMJmOlT2E2f2B+g6xNj38d37mvBq7X3l6uIXKq4yg1yqQ/q+RJlVsQQ0pyzeUjEmIn3f9u2hb5yoA9DDYd92Bx8COazrVbPeVM0q1FVOcUT9UzAjplJPbmY55z5rVOd97ZiNAzNUVVV5nyrfeTbJXdclMCRw6IgopbTb7Y5HEM2qyRAur2ofHBGnlPsud20be41BQ5LaE6E3A5WkCAisQy2JCajqUASmM+Cv51/0YIGoTtbOUHwyED4uPxrSvOwZDkWRU33YVOCx2+26tisOkpJ2GUKYsInp+9HaizsObaBlejLlYF6d9swUTZMJRbswA7Bj2/Z9X11tViEwdQI9uASEx76jWJiVF52kFGNKKUYzVvo+d+j31c7YJJ+aDTzLiP2oN/a9C70/blPV4/HY9z0D1nW92Ww2m42N4YhinPz2t7/NOfd9H2MEgInh1DnX1HVZ/4X4om3b/X6vqh9NCzhX+4rqMCX8gP4k1t5z1MM/YltM1Cyd4/nmiNUECnMXgCtgo0iIZGqzoJ+e0JAQCN1J4ZnlYKMBV5WZMqqYIqohyoCwjQx5gLpDPdtsWXIpVUciIAR+DOXsD7V5Dd7cpXO2zZ1zU6BycFpNlS3Pdj6/cko8mz6alM6zFVsuK4GUsw6n1TLpOTHGEnUpe6rYVPNvldyzydaaf2RmIYSmaaqqKth6MKqDdViZDWcqM6+a1d/8zd/86h/+YQ679NGt+ONPI4zfJ1QGjmFXMtBi3qjK5C50pIwAXOIKzEwGCMAKKQ/VvJPEGDVjdLYIPs/fO80Sf0DEFjHVU/XdyxtRgU8cXvHpXojzQPrHHRrzwSOWXPvh7woms2L6eaHM2cqZjPaytqcyYDQAUR1zHc/8ILoo+lp0qDNlqWiPpyvdaQ5xjvqIoDLC1w3xpVP7/g2V+XDniWsf3b73U5/L/AMYiljsjwfM8Zr9n726/D/99ed//edvfv52dbWleu249gqQutx1bde1XdenrL3RPsHNMd33su/TMQkxOyN07MmZaoqxb8k2FYCta+fZckz3u4MaHqLsjvru9nh/v39Tg8faLkIIwQfOedhLSNQj9YBYV5a0z7Lru/e7Ox9W6/VqqoAwM2YqMWsiqkLV9iI5q+rEjVqOT1OJ/SHFY+orFRaVu/vbu/t7JERiChU7z+RGrGADUwQlUCKaqjXaNkZh31wScxZRTRNzqPM+hFBVVVVVlrNfrYggVK5uKgXr2040Oseh9r6CzcZVdZWTdq3s93l/n2I8Glh/m31V+SoAIiAZ6GB9G8iIF1za9B4Rn/HFnAyVqW7+oaGiZjOS+mKoPKlLzYVZmXMROR6PXd/5akVEzrliqIQQBp7H74PDrjg4CK04tJ/xVtGSkuKpy3RBOzBAEXZtG2OvqiYZALxzlZGAhrZiLnH8xWSn4k4PDozF/SSUxbN2FuV40lCBZULOR0mbhbpwhoT6j6rpWLUMADnnd+/eee/ruq7reqoBKNAdu91u7lqe7839yHM6MfThU+i6L2vzXT9pk4Oi+dMwVOhp6uEfs32EUw8BaiU1YwOXFbukAoCUiQipcuHk/syz3YFoXNncUCl9GSiAY9RSfguSUQGAi2VjmCKQ4YDUhIg0pIlaKepEISJkUjMd0GXseTk/b5PJ8dBZcJZpPhkq82+93FCxEeZIxxLnaW3Tg2LlGGNxY9mDMKAuMWDK8TGlh5VBTkxcZ48Jj0WDy6+Xl5dE9OrVq+lkMzNmpygAYIjBu6pp/t2///dt34FzwD91UKUJSpsMCqMZmNiQgujBaEhzVDNQLSaNAgOIgYqoKBTHHKEQEyIDn8ImZnOsbZsZKhNnGpR0MvLPp/A82phIrRRFDy/OQM0ACbMInIxbXOAlvqzzafUCACLGrkMkYjJEINSxTgwAlrkYtsRJp+GWolZyw0biaxQlRFNTMsYhWlXCLzYP0czLxbHM2/QgtqAsWe6x+d7DIb0UmclsxucC4CZb8/kUiPnOL1vkmSvnv54d4fOf54RciC8y6880gIVRhIZPLKLJ+QEDtDaZKkBmErbcQLoM+Fefvf7f/tVf/u9+sfrs7cX1db3a1q52ShqjdLHtu0O33/XHVhKIUNvDodfjUUTQU1gr1oCKTpkENYvkGHOMvGlWHlaeyeB4zPuu/7Dv3x/ih31MfbryFSI67713jknVSq6QwYDuVk740NQA1nctqPcOC82IiIAhInrnqqoqQRUcn1RVEU5MQGZGqH13vL81F3zSfHt3e+xa533VNPVqzSEAkQ1LCp0jD8gIViorVPu+77o+m6cgpio5c3UieJpUPWZm75znOvi6Duw4xi4qFMQwouADh8rXddCgzikiadbjoU9ZohxdDFVauVAhO0AUoLJERGEO0mUzjgUzmOeFz+VyMTwKMmOWPDdUzGa+sXlpPZwOOV0Un5sVlPPFWQjFtYyIJWJbrLUSV8ExufmZxXyWFTZb2UOQGk9Ig0Ma6yjO8GxVD41PyQk65nepqoHJQHF5OozLKhpBFSHnfDgcmchz5V1DTqmLSbP3nplEsmphegIDQMS+7wsFsn6sC/kBvezyxJ3PzDLL/9wV8thXygPOdYiF3TKTUWfOFBVFhEkp18UB9mSzRYeLC2lx9jwtG8/acmUUf8FDKT0/Kh72vxziyy6btB8EtFPu1mzH2eD2HlOrcczvn3ootBjDrrRBI1XVnBK5hUr0cAGcpMr83NBTcs40wj9oEpxRhBVVtfhunknheNjh9Ozz1NCz1TvJpUdu/eBWswdZ/hHKUY3FX3T6CE5PjYgwowd5UPSyfLNPPOV09hIRKVjfOwQA6dOhvdvjWJIBppWzqcaKmNgxEjIxIgNVcFrbwwjN1AQSkJgmMmXIlg2U0dis8j4iFyLazeU1oCvzOPpryYPHgg1CxEyplKx4N7c9zBYrYT75Z/bGnG6FRvK/EqmA0ZUzidC5LT3faDhGQsqan7/ByX54dDzTrVNKIYS+7yfbo9jw87emI6DFdruNMYYQkIegCs3V2OL5RphGPplbOKI/AUBd1yJS13V50pLdAIhDOMU5FwIx3e93MSUf/Isl0eIqWhRHnY5OA3gmlWAuDxXUnsDsOpdRajZmZxGAnUCqzApAvw4Z0qZKRcAbpD5CqUsdqlPBDE1UAXGmftpSjOps2QxbDxARS7rW9GJLutXpShGYLZv5dSCKZqSAow2ECoAj5m8xA0CBCOlEQ2kjGgQiAi6w4R99WcPbV0MwFQFCIEImoKEXmvFdmp0oXNAACXE4TKwQDppaKWOzLIYEAwy0FqeC5oyiJjbLkctAJaJFAKgzIwNnmjnConbUhrkq6cUgx05woIcri3/aSm5a7g+ffHH6vtjROD+xzo/V8xucfsRnwCUWduCyynChfKA94XmZRBgREZMCiCWG3KCtnbxd+19ebP+rn7/9b37x+hef+u22WjeeHaYU25T3x7i/PXTHLh0O6diqWMrUJ2x7aKOJURUqn8WABJ0gmQdBM+mkT7xuAkMV0JE79ilF6/t8OPZRjYMfi5dcWYiIWKKapkpFlc4CCpt1sw68CXRR+3WgdQiglnMW1aKmV1XlnFOL04SUJ500eANjVJW2PcR8sD7nY3vMpiG4Zrtp1ltkQqayPrzjYC6YMoikpMAiUsDsFTnGlHP2AMF74iEzdcJHLmXcamSEWtQUJHIelIxcUvLcALAqIJIP2KwwpZwlHdujJIx923XHqm7YV8gekJEYiLOizbxZw6IYwz80UqJO+vcUMSio4bl4VFSmipRSpzK3UmCUVjM7ZNnAEAlnlkzOsaASl+xSRJwMlZfirp6dDvOFTYRgRDQyqHB5oTxzujxU1ObDXthsZjoW+UyuvqJxJlElKkmp+/0+5UzMCKSmMcY+9jlnlRI6P51MiNjH2McIUPLNPzZ5YK6mLmyO5cwsYyOLU/VMfM+lzcI+OfNlnmmIc0GnAMPxf+ZhfeY0fyZWcC7ZljbX7M+Lo/lRivFJI5l/tJTMT/uP5mfq06bK6Yy0obtpd8DsFCiq23zvLO41epTLq5rMmPPUr/OXPH86m39cHGxDn3BSBczsuWz4+bIZ/xvu8jSk6dmzlAkZOdGXtCez8U8LABFfwps8OLnnJadlzkcMqMVZNpkKg+H9tBZITya0LJ4RAMaQBhL1musqhCqoGYG5ghwKoJLb9v0cAocUGZ0DZnTWtzgD+hORlKKIMnB308acFKHaVESAmuNxf//+vYp0iD4EXzf/1f/6f3P1+i1hQIKimFDhpDTLIoToQ+j6PudcBT/fifNTYDrZRw0R5ztxrgQXe8vMirWgNqs9QJyslPLv3FCZoouF+Wea1cl4gNmamX44kxWDqQAnD0hxEM9NHRhNmrquAYBGKwVxQJKcDBVfnXirpsSw+Zino2H+xySScgbRpmo4eHB86Fr0zN5rYQF9rD3tPnokZD28mifX3YM+9MVlVEWYAygCEjHQgG0DRdc3ULURysAAyt9SN89AO1W6oNmQsjF+Qgt5O78xmBkWXC3EPC+wWDYtsZFRxM2fS1OeHr0sw3ITBUDioXAFxmVc8mUKUcy4Qs728lKyDf5TAAAtueuDZwsHMTrkyuBAhVf6EpsHX5cnKpmBDXOookBgNkRCEAtfm4IqziZD1UTUMSMgMoLqLKXNdMZfQA/Cdzg9xSywUzxBZUmZmZuy00qPi1PwH3mm9dQmiTNse0u1wxXRqxreBPcv317913/2+V9++uaLN6vtm6quA1XeBGLb7fbHu/v7/e6QY+r7Y0opKmRyPbrWuNNcLFMkNMRCvOeQAntHsOVQK1XBgncI6JCYmMkFokCZyJxjHuHAz/QtNvUqtYoCbD2/XlWfbJo3q3Dh6OpyG/vcdV3XxiK8abQ+Ac6dNDBQSknf7WG7EdT73b5NKZl67+vVqlmtyTsEZ8gKWrJinSSniQyyiE1n8LlSbSKDiXLc7w+7++PxGGM0zS7UChZTKoGAqm5Uh/C9JB87IEAX0DmilZo1akkx9/dJRGJvXXcI1cpVDXFF5JBDAoRZ1ePZmy1PWly/A8pQzqfAiE6ZXXaKqEwhGtOPzdLB8uwAAAbz6hT6aK392zdauhhUTinUQ1GamYjoaF7N3Y2zb4mZSc5t2x4PB/Me0Xdtarv2/u7+fnffdh0R8VK+xBjb49HgNT2dVfV9tbMT8YfrHABwKQ+fufKfjHict/NH/qhO6Ok5/FP7iDaZcOcR1O+jGUL2pKtQX11ttptms16tVqGqjNBMct5NhkpR1wiJmRjZdYYCNgafD8fD3d2dqtb1Cswfu6OAXl9uVpWz2H3z29/8v/7vv/6f/ubf7mIkDpvLK+fcf/Ov/021vaRSxTLoaMVdhvB9POYL5UZZoo/KxslKKRmMh8OBxzYFOmBpHz5sxaqfyk7K8fRwVGpKSCXkEmN8huilVIVNPYQQircuhKAjSXHJzO37vrjS2r53AdWMaOD1LHjiPlTIdIbE9cK29O8s5vCZ6Vh862V3xZkgIgNUQBrqVQBgiqiYGoACoqiSmonBmf9r1nRuZM9uQAY6L6aHAYXpD/P/zITeeZv/8ewCPWf7mQLKNgYc6AExoj3xc+lw9MyBmiCbmSEZIIIb9f4HKQb6MEd9CEMZIoKaoYqC6RhFLGla86efHmCgMMK5Hbg4SJ6AwUQAHNl8DGDIWTNFVTBzU3jlYRXgfHYm58E/xjZJQSJCgOtV06C9qfjzlf/Zxv2rn13/9S8/fXu9Wm+cf3MBxClj7nJ77Lq7/e7DzaE9mNm+P+6ztIi9cy25g8IBwMAiaCIxRFQlo6C0JliH+lW9uq7rKkTvuXBseMCKqHaYTZHMO35YJ1daQ7R2jMRE+KoJn6ybzy9Wb1bVNjgece6YaYpRlqq7tn3cUBHVtt0fdvdKFPtohD640KzWm3WzWrEPYAXX1NBKupVoTqYpSwIazIMzv6ABqEjf94UNMKUIAN57JhdCyDmVxFznnPehrkJZZil5VUUgdgxmzLi9qNhtQnAi7bGN+9zGGJNknzK75ELFnCN6mM6xx1oxTspZMlksuKg+GUyVM0PFCrvOR7W+79u2LXvS++DH9mPS2NnSl2+zWs/JR1hMytPjPziMcxY0E9XyKn1xv6Wccy4MGDkXX+BiovquOx6PpsrEH8W49S3aD1qq/mBd4SQPnxnGw2n8p9Hm7moYMTG/bZufKd/f0P75tvleVlV+WZr0yxt7Z2DJxJiQWRjNMzlWc2MRKwJYSXbTQpZsSJsRY1fEO1dfbu3qEgFCVfWIlHrTTARJIkW3eXPx9mevV1fN/usup/7+9sOvf/X3f/6Xf3XdrBkZwBnSGEUmBfteDJUXYqBNLi2dFWiVVnTEQvJoYyopjDkLk6HykmGUxIepN++9qi5ESlKDRbbqU837GaGqWdd1xVYhouKfK7fo+37ICUfsY4/OixUdnxSt6/suRqI/cK9n2sPdreMB+4yH4+NkQsk2mXh9sEQKhijCQEdYoi1WQnJZQPQpKwUADE/wvwgnTVoQTGAWDQCYwrvPLslJ6BUQ5Lm2fPbIC1NtcfLM47CFcGiIRJyfek9b4CZD6c6AcquKNORWjqUy+sgb10XpL07ZvDaEaEQEzBSRmIfI3mM24OAQBRA+ET5OMb3Foz3WFrir4zisGCrTxjMzsIWAOLOYF8GWn4bNYoA45tuOMdfBjJ6A7Yp8RTQCcGAO4LN1vWX4fOV/vqn+4u3Fv/zl288/vWg2rt421jRZQFPqu3jYtXcf7m+++XBoj0DYKxxVIrhE1BEdiQ6AhugQjpbMEE29UK3oHPu63tb1ZdMENmZnQIiKzCWFgAmJgZmIaax8gGEfIKHZytPaExsx4WVwV7W7asJl7SpHKUYRQyumoyIoFcbFokcuTHdVg7KDY2zv9zfgPLKrm42rat9sqmbFzjlCMzU0LJyHKiBZc4ScFAQHoPNp8QuAESiYmIrknGKnIswOvIYQvGNiSLlPkhhYsyFzHXxVrcBA+mwikbExnyURwKqpvKPArj8aGeQ+qeScpJfOeTAw9TZwJjOVFElEGvAPp1e+NEhEREXRQMwMUEfsvrHBxJoy7KrJm/LQP/FgwY1RSkg5x5yYGMCcc56dZ+edO6e5eLJLe0by4biWF1LoQU+PqMvTQyIOXpnZSWxTqtCsxk5VCwR8G2PKUpxHhACAIVRIVCpaYYbsY2BRtI8JDank7uMzT/pd28eFeW32w7hSlh881j/M5eEzl/3Tbd/dAMPlHP4ED45/XG1K4NEHhOvfSwuA2qfubn8ASm1LzlWrxgVvBuD95B9HAkQcqSowQxbVnFLOGQkLlAgRFcYKYtTUH+9u777+8pu//9Xdb393+7vftvu9qhC6lPpvvv79Yb+/fiPgRiYNIlBBIgSdQwvj9M+3bC+XGzY/HpY92AjlgohN05RfJ2dQac93XipSyvyUcEoxVMxsUZprUGqonjdU7AG2RPl1hBSj4QjMmRCrqnITZoAqqFEpc1Xr+tillM005cInAt9WgtvsOJwSkMxADR4ymY4K2XiWPHKvs+/MPfLwDBGFqiGbKk6hEFHIAiLIj7shbXk6nI1hcSMa3ftjBGEq6z/77iT0YKlI4zAts4ce1FUERFg4+cq3DMBOAZxpWT69xhZOZDMbH9AG3RiHP5uiAulQPjG9AgTQWd1IKTVBNVQruWQmhiX7BKGkwKMhEZ7ljpUAejGVcQ7PPXuzBnBWlTTXlhYcjCqIhY9dwdSVLTH5BhaGIMxGsiSjUZnnnHHJzFERMJuniJzNrmSBkRXrzMw6kynznT9/5jMFQm2wtAHMQEwzoAECqK2QxCCVy00r5zZMr1z42fX2Uj+8cv4vL1/9y59dff7m+tX1dnP5ii6aREjqu9udHtv2fv/7b7751W+/fP/hfnezu371em9WrRrMeRW8c65TvofKiKzrL5pVjLkXEHTsHG/q5vXGbyjDcQ11POQIdtvmm2N/UOhdFdGRmTHCwE8AGUEETGmIjvCucZk0vLm4+sW2+WLrX2/Z107I5Zh39/u2bQu0FDKAh83KB4bUQwuxix0yZJU+98jEjiPE3Kd9OoRms95eEjYhuHq1Cr4Cs5XtzHIqOYeSUuogRukT5BiqzAjssArYRYMUMbUQj5iCN+4O+/b+LnWdZgs+NNtLMIx9B3pkULQuZ1EA4+3WXbNvzFhT26e+3UubctPQZu1qR7VzqxXyK+2b1Ydq9fX7/aGVqJZTm6FFq5gvUAHNsAR3yRHVgCukkFPhm1PJKkkBjAHVIKXcm2W1kgomOqV4MQJGi2Ygaqanwt+yLLs8Uj0gqJmo2Pivc6FrO0RUwNv73f3hCEhKvFpvLrYXF5vtZrX2yA7JsSs5nghWN5WNNTOFrLRYAogIp1Gd0JbK1pCYvGPnKHjvkBjIIfkCi2OqAEPerC2EVAFUKKJWZYgsZRMFBcNigaYsSSSpZFEByGjBV/sY682rD8eujxoMc+wwo3c+iwIysY/SdrFHxpQiuyojHX3ddkaZUCHUTp0hoyMm51Rp4ZKa72UDBHyYpQoAOnuQsyKKxXnw4OyZVIdzByeSlLdMdEY+w+O3bEhPOn1UwkcAA7MgzK6kmVA1eOSgHR5kfJVF54j5lCd97luSE/U3nTnG5qbT8iSaR84dOaDZsyynZnGv+RlwNuLZ8zMR+dPbKYn141WLJ16cDstGNpTRn3SXqZPZzXXEdBqUM0kw8KmWVXM6YiRmRPTMDzFX8tPnt5u/L7Mldd3Tp/5jeSuDajjXB9QMT4OfV4jCmerwQFeaZnKuj86j62ZLnHQtcKzASKXOZtH3E8doOWN1ANVQm+kLVMgm1EQEVXM8OuckweHuNse6qiqIvXiPzqUKx41piEjMzpXKchVFVZAsokJEmbXvUl3XdVWBgRxj6iJGSgf5zW++/v2vf/v1b37LwFjVse8J4e72/X/4//7Plxebt5//UpHFFKoKRJAzZjZTA2L2u92B2TX16nA4SLD1eg2eYp8l56pqzCzmBKMj1QfPjksxCRHlebR5uCCEqiJmlQUjIcxUIFc4HEWcc4UyaCp8l1xU80K9y6YIRkUDrJt1wRdBHCZ6EubBD7X7JRer4K+MKCxawiPluyUgv1ptUtYYM3tAdt55JJJCeW6AAISzSBGigR3bPmVdNQ0Dprb3oVJkTRmykAKgWZZS04kq0vXiTZHeff3BreouJR7zCnDEucLRdy5LCtEzPW0OnAWqhABIyGa2rOaayXNLPbuBZAkBFuDIk1Rd2qYGYGNoVwHQtKR1ldWv5MAUolpMhc2sAGEbO81DhfckyU/PMv6IMNSVzcgl5yzSg6tlrFJbbHOaBQfKPJERIIGdGMwNwLl6epoB3WYsOpyXoi1hroCIhyGpnokQ1IUomnvpZerCwDEPHLUGZpD7DgyGs4xoZHUUUHR2OlUJFQfwUwKE2B5wtJsQESyVh8sAVPmFN3Cq1CIs+20OrDcNdyqOGSqP9TR4dKfpENWBFRIB8aPhiT/OuTi6H17i3njqo/mvVKxHA0U0QwAeEmoRBEknpIQUG0dfXF1+WoVPV9XG2k8u6p99evnJJ1evXl1srjbNulZ2Ktrvd/sPN4eb3YcPN19+uPnV1x9u7g67+7bHZnW9BXMI6okq513w0IsBGnGhAg9AteNXm+rt9fZqW4UAaHjfW9tJMtt1MakWopRgxAAOy2oZfN/jOYIGSM6Ry5TIoXoC74DR0FQ1t22nqgUwtOwc7xhUc5bttiEmOEqfegArBqSowVByisjsnK9CWFVV4ygwEChoBlMcoiYIRmAOzCmM2kY55FUMiAjQck79cW9d1+UUESwE31RNXTWqCmCaEicyBVFVNBHt+x4pIei6qgE5ptTHBGhM4lGhkgC6bqrKYcHUu9v1uy51yQSLHygaAaoMjgozA2+QzVhliN+qiOogHLOImKiRFRDwkwAYXDMAaAUXBAcQmOE4z2fidbn2dFjCknPOYoDgvA+BvfNuSOPDMrwhlRyp+MYew2sqXc53xrg/EBHc2NsQqBgVn4c6+vzXKZEAAQyyidkI0DyPKQ3BVLAyOVlEDQUgCd7s9m/qoCnvO71t87Ft+z7GmHLSEcDRDM0QxLCPUbM6ALESwXwKzOIHbOWJnpjej/HfPxM2eWGoYXqVf/D6n2B04Q8K5z+179JGw9jGRfKj3YtsptDYcu0xkan0Xe7a4/GwnwgxzCDUc+IIY3ahCoSoasQsIillkQJlTIioVaV1rXUV+9geD/3hcPPhpu9SF+0YxVTWwQERmkpK7776/e2HD59+8edd3ykweYKRlHbpBhhCSU8FPSal4pmlO8mHP7jCC9TYdFmMcXAzIbpZptYzgmIpzHGqMXi0Bma60ZRmVpByQqj6FM2saZpSfIIT6teD4hA8JQcCEKoZ4OBBFpOiqs8nlZk/3N9b8ZLjOeHj2c+TFMVlXcKcbtvmPwPY+eTg9BVkj+ywgFDZgxy/JybViOaH5eJbdDLBy1qf+V24GHb2IAByftPlfR/GW2z56yMjBDA8edUX/vQF/EnxhAx/UcmnWyMCjf8/s7qmqMzDMSDMLI5THc70xVEIDIMdO9LBuJqecW7Rzb0ui9e/WBtzz90zoIpFzTxfHKPVmfNsNoDnd/tIQ+XjEvHPWLFeGlF54p0VRGcy0IHZlo240GwDQg+DscyqTY2frFdfrJrXDi5J3mw3b6/Xr95er1+t61fN6mJFgSSldOjifne4ufnw9e1vvvnw29vdb24PN8e+axOt9WdWAJ7ZoW+aelX3vG9NhRB6wQC8reh6xZ9fh59dhcvGo0kb4eubfdv2RCiqSMAIDVuF5gAYlRAIiRkIQVARFEEBIQEBuspzXVd140MIxIwGlsUTYzXEvpxzVVWVGYsxbTbovCJ53WfIqECiptnETMkhMaEPPmxC2AZfEThNZmZGAiyGBUbMwBmwggcLqj0oqEy5p0QEqhJje4x9TNnMvA/BV02zqkKdc1a1ZIFc5Vw0Ie+4rmpEYlTvgsNg4NQoJjm2vYlqNF3xqqJVIPZ4VTV+5cKK3X13t8O2F8mY7QiIyAZa/FRompAZCCRnUKdgWfqcxQwQMatEyYp+UZ8ymftngpEGcImBW/fpkpUp1p9T7vvewApCSyFOKc6wKf47hmhAVGm5+B9fzOORRkSI4AiZnqzJme+UM6fs7KMF95mOQGcyq2NRVTVNOZkZKvUxvb/b/+z1FZn1KR6Ox/v7u/3+2PW5xJ3OZuN4PKacAsCzAvyHbVNl3fdVGvRMPcwLs6sn1eTs7fyjaPanwpIfstkMooqIngnsfN/3Qn36tRKz5FSc+gW/sVT9WZaLUM0QiM2xK0QfpnJ5uZKcYowxxa7r+r5DxKqqQrNqGduU2/2hbVvJcntz28aIvmZEs0TEIND38cvf/e43v/71n/3Ff5GM0NXwdA32JLIerRyblIpnBOZcy39+V5ZwynTNhJQ44RpPHT5zr5kwx8kR9tBQYeYpr6xcFmPsui7nrIbOu6qqVDXnPJXvI2KcxTnLOAvXiqiC6GQXFZT8knVGNMFkgSG4EN598002ZVPgBa3nvH386rRHSxjAENC7wpygCKZ2OnCX8eDBXp1+GV+tlekd4YnRgMg95ZBi72CyGb59zvC3ajqQudCEiPjoZbgsiVRN848mRhXAJ4EJ7dyMX7SnzsGX++yeVSp+WDeWzbDCdLm/PtJQOdulLxw9LVmxnmrPTcfMviu0UYIwmGSIQIhWApwAYIBIQDWlT1brX15tPm3cF7X/7Kq5vKBXrzdvPrmqt4FqFjZJ/eH+eH+729/cvP/9zbv3919+2P121/5u3991uY8Wkn4OCIhE5IjqEJrKO0SDhICKVeXtakWfX1Sfbdw2KFo8RLk/xP/07rZPsllVF3WoHTFIhUqknsCjMYEjYywl7MUnbWTWHqOKrKpwta3XmxUHB65SAxXNktmFgg1SsImJKKV0OBwAU4MMVqlK20kW6NWyZMmmAb0xk69cCM55y84i9lFVtb4QoII1Z0ZgauDNPEASRVBTHRLUDJQIzTTGLgOJIjPXdeNcKFK0HAOI7PyqIWoQBiZZSSoRncuJiZz3ldPc9inFPkVBqJCYMHtPzlvDoOQyuF5yHyWrSOoRAdiAmdgpE0FnBsZqBdIKQCRnySUvJknO2YDHWMLS2Xa2sAq/yGCCOhdzgifayVCRnFIyA+99VVWF5bHkZ9MMoANLMqcmHcnp4Omdcm6oOKZSWTULhT+2UxYdztFg5hZaefrRMDkhoZUPUs5gaEpdsm/u9rd9DGD7tr27u93tdodj1ws8YqiYHo9tqdT8I7rgp3f3/PS+vD0j2V4eUSmdDILuxwOB+37anyIqP1ybBNGwYvEHtGOX94KnM/UABtGPBBjYUd2UgjY083ZSOAmRmIkwp5xS/P3vPqRcTJS+7/uc0mCo1HWPKqJ9TimZKPZdB0AQakK0XpGdicaU0v39b3/zm3dffXn9yReEzymIS1H2SFCi7DV7wKg4tclQGTIzn6XNpRmW15QV7Jx7PqPv7F6TXfFMMKec3ZNjqzABpJQkZ56RoJtZznnqcOGtnwlAETHVEIKaAgJ7ZwiiQkbkWERKgbUCsHff3NyIKYKV0qDz2MhYlTH3mp9HHubpR4vXN7nIH5scx8SuJB+cI23PfjlTrM8iKlPExmBJaLRMGnbOnRjYHh3NE+387jh4w8/V/Vk8oUQKiJmYgBZJYnNILVyGgziE+cBKyuDAvC1PCodnrI4zNPxl8PFJC2duFprZnKwRZ0nJpqfpfRgY+e6N3aIEf77O3dnGXvz6zLtdXDbgWRMPhHOzyxbZupMoefiEC8hzsPlqW5YKLfJLMgKWfFsDMym7wMxUTRBBNQBeOPqk9p+u/M834a8+ufyzT66h0vXFanu1djWJadd3KrC729+8v/nqd7+7vT1+/eH45X335TF/3eldm0Bw2+esw+BNJXj2jA4zkKGZgF2v128v+e2GtgHIUi/+/b773c3ht/teVCOzr2sP6EwdGEtq2NXBV84xEYGZZlMBE1CRnDDbtvLXl83l2jNDBDtmywoq1nVxvQlN0xQ3SfEnMXOovLYRGerKX16smVPbCaKZgEhm5+umbpraO0YTkSy9FkZHDSYFlRxYQQwYgJGcmS90gCXQgohgIJIAIBuib0S04Fw5dmbQtq2qIhK5KpDz0BAhkiECMziPjrIoY0lZJwZyOfOhywhRxPACKgCHBKjOmw/KmNESqqJ1klUTIDKyc0FJ1byJJgIHYKAqOYuoAWazlHISATtRsM/XvQ0bcQigFioVnLXpMBwU+pmpU7xffd+rajEVi61SV1V5HZOzZFrjZbXPrZfpFg812PGEO4UbEREQaHbUFWkzh+GfHHLTQWgDSOCpTY8ypaLZEGARAEMkVQN07/ft1/vj1uN9fzwc9pLFzAhPWP4wBN5RssTYl5TrnJJkcVUpwXmOROIZ98YUhZjo7eab/sFUDa2c0Kf5WnY4lYsYLEoUZoIIz07f+ZisJA2O2k/BPZtpG6evLRAUxj8PTzQ/YZcjfMYp+8JW1raN6R9zY/K7dw7nr2hptuFCRL+YQnE2abOUmLNzb3FYPsCcXIzq/Jx/6r6LRoSztfZRR+64bIacnD+UCDQtm/mznLPlzNviGF0oN+fPdV53ft5UFbEsUR06G9RPG9QmVVRgQCAmB965st0REUymnNGihIkoMhLZsd8nsS5rn7XPmrICQCed66NnU1MEYkAz8syigogxZ1Z1QMQORNT05sP7L3/3283lq1Wo87jxSyvq+1AuQqdISNnRU35auaY8ZinzcM7FGM2MiEXE4CTBZu2UCmtLF/Kk+tPIqVKcUMxsungLc7fUJISnjwaGtPG9Iw70qcNkEpWRTwMqzKqHw6GUryBRiWsVWhWbwTnqSApX7lumogReiKigNCJisUlcXXV979gpGDlnYMhMTDe3Nz54Iypke6fdTABIhiO3n1tovjq7SuYGAsH8QDuTqgt1DkmQtWRAEQyHYUG84WUNfhkAQGECgeW5Mr/VU3tPhggSAj1rCOMynDPbYOVHNQNCJLK8MB4WsocZEAupZNnn88vm68YG4QNgBiNDzpCiTUBEBqB2TthyZvHOo02LNqdmmn2MAKrDEi0QXtMhCCMVzfCt+auzRRafFSxoQixFlbgUPXj6EWZFQYvTuXxpfogWMVwyypmmh7Tloy15gl9+tp153RBxeqn5SdfNNO6HGXhnlsmS2Xe54mcTakRICKBkyiaBaV2xZwKzXRctpgbwDVefOPusor94c/GXn1+/vl6nikNTVZVDtJxz2+XYy4ebu6+/uf3N+7vdIX69j18f9JtO7zO1yjUzsMsDp7mpCAM60FBemGkV+JPL1ZstN0HYYS/6oet/d9/9bhd3RoDok2xSqtlVhIzkECsf6uCDZybAUgGSM6oQmAN4e7W92K5eX2826woJjtn6fWITUkFLa4CSblTUzaI3M3FJ+nREq7pGc6qdSvIOiXzYNhcX6+3FKtQeCLJkM2QkRDY1ITVgRRgBIYbFpYI2YN4SEUnWvu+IkpKrXD1GGAAATDWlbGbOB2IPQGiGYEhGpAARIUvOjlwSjWqqikzAnDPuO8lZas9iENQpSowxxwgaHSfwZpolxdSJGaELkkSr7CQSM4ftQDNuIpqzQjbLCkaoEy97KQ0c2etP68fMwAho4gKzUSXViSdxPMbMDIEKCHIqyMshFCCXuq5DVTl2DzVmNWUinCWLT4KmLPT53sCR0ot5KK4q15eA8mwH4TD2mdmDow9vGi0sDuIFLNrk/bLhwEMA1ATE9e3x8Pu7+/Dp1e1+R45ebV6Fru+y9rv9ISXEEqQkVCjApCnGGKOkpJLdUFyI81PKcJGwunhiWIiRyTM61OS8zGNyFumef2uyfIpBMi/+ngmi8w7nKstQyzPOs8MT7eB5cvWSuW/xduZe8zPF/zu3mcAHeDYc9HLZ/pRJcHav5Xee1PXPdsQZSACOqEq2hIU9Q1OYr/+zMSwOjqeTo8+GQRMCwaAJvdDKesQHV4bE9CQS7nxXnltcT6/sM/trYeo98yrnmgMRjJq9mSFhSVkvcDOIWi4mKH5pIAA1oFEjosLdhgQFTUQNiwKLxFUFoWrqOqXUtV2Mseu7vu9zyikllVhxUpEkZqYMFphyzhVDL5rFwIwNmZ2p3N58+NXf/uc3bz+rqgbopOUbmCTx3peaDV+FuTkxNwnmb1ayFA7lAgKBU0EsA9HATD++gmFmpljNNG86qwaZbjf6aBbiBWeugSk9rLyvyZQqxkaxQ0rpy/QzzGR0QRPe7/dt2wJAVdci2XlfuIzngyk9pJSKxtm2bXFRlSTkbNrnZGrsmJzrUq+qzvuqrtuudcEDQLWqybnd8YDOCVipOD9pmSOn8KBHLjN/JoldEuyfki+IDE+L/aHYkVx5J6ZmqGCG4yayspAXi3m5vxY7YB6wOFE3GoIWJzo/LZ4ebfP7lmL0LEaEZ3ZUKfEZ74uOy1DUCm/j8tpZ54gFZVMHM4wAEMXAUIkcMJmpZJ0DYuG41ItjLok8JTjOozDjKIrRMgFZTd7bUeGZTynC6HdDALOZyoRoNKyQKftu+s4814mde3yEpYxnOOhHMT8CcUE+UV4OuSVjc2dy/1vYKk+0j+vhY75liOgsC5pUZBeertfV6019sao80zd3R0mxVn1d159vmz97vfmLn7/62WdXde3jakNMiKKx11aPh/brD/e/+927b+52v7rZ7Y/yYWdft/pNm/ZmjK7xYe0DTovAgEC9o9o7irmq6PPL1WfbZlMpAUag25j+4eb4u/u0U85OLaej5mNMG4frQMyVZ2hCw0gMQKAmZprNBEyDdxeb1YroeltdrgA59eDaZPf7VvrkTS7quF41AFAcLYUMXkRSTCZoBgQEgFVwTaC2Td7buqrXV81q06w3oao8AasBEBkyokMEQ1VAA1IQNUEQs4w2ekxGy0VNNEdEQlbRjDjk7GYRBB5cXEjeNyXzFA0QBbBHUMSMoJYiAgOCkVgpCGFWg17T7X2sOyRHZpJyyjkGR5dXHtQO9+EApn3uUzZFMZDcB3GuqpwLjDURVYGjpJzFgIAcFabYaaXMlXWwF7A3PbbczMwsxiiqJfWukDxWVeV4EU757o2IBvTzASfs8TblDOAIfD4/eudPPftBRVXGGntAMFQ0BmNFO4r+7e9/f3G1MkevXr169eaTm/v9h91hn7Lt9qrKTEYEIERMRDbU6P8jq8R4afvu0vDHbT8RppfJO/D8ZTYa8PSA0exP7bs3hIXK9VxYEgnQFJAnx0dh1iuOTAUSMAPRDFhgiAMT0+ZSZCj+zjmX+pa2bXPsnB0lx66PbeyTCoBmkGgxa86ISVUlIVpw7rjf/f2v/u6Xf/FX12/ekgs6xr3PhN4k0L7Vqp6siDP7cOrwoZUCAOUgm1spOFJtPoCef1EzszI/k8kxGeeoOJGAtW17OBwAoOB5JrF5/tjDRysTvtvtiuVzdXXVrFfleAIANIo5qdl6sykDWF9swZCI2Lmu7w/tMaaIvgLPMEPmQ6Rp2dgy3+nMyY1P13MO/AGPzsZIAmAAUpRbHqLVUwSguHkmQwgBjOlURH7SSkYIxFFnnk8UPtTaX9jmz1UWJELJhWM3F7Boc+fXwlBbWEYL7wyVirHB3QioCkB4Srez4i9+vMYHYDLzvv3JVCB/aOQwXTihHo8nFVXptBcRCVVxRM6wp2u9eMajUnbai4aYsyEakdLAfDp94ua5dFOq93dpH3dYPlML+1RxJwJQBBBYOf60rj7fVp9tw6cXzatVqDwfPn2VuswqV1X1el1/8Wb9yavtxUXjamfVSsXyftfdH9v98ZsPd7/+8uvffXN726df3x0Oie5buOnxKAyOVxVvg1vzZD8WNGferJrtpjke5Wpd/+xy9WrtzHIb86FLv991v9+lDz32UKpPJGU9Rjw6W1PwAJ4qciPYpomaoQ5F61VwLjR1FV5fVpsVtJK/Osr7ffzNV7vcy4Wj6rWNcW0iouKYSSn1XYSMCAwETITE61VtINnUeb++CPXKVTUzowIokKJH8ojsqKDdFmGlYplUzCJaZhhBWIwQ0UD6PiKyq9CLEvviy5GcnSPvAwCIgCKZjaCDhaCFMmI2FEAGYtDijFEgc+RykpzSzfEYHDNzFgGQuuH1pqobcgzp9fXth+M34X63i33SmEUksZOqdpazkXjPyC5IiJqimIjKeeB0VrMBBh9lURTdq+s6FWHvi+uuqqq6rp13jDRGSx7GC791WxgqT2+gsrmK120q1jyzTMoRL2N8SVRFJasM59lJpKIigwvf3N/9x7//+39x9Xp7sanr2nc9EZtZTklE2TlgFyExD8/7B0vO/vG2yZM6tKeThn8iTV94HvzAbUpoeb6udAzoDYHEPxXxf79tuXot65OQhkQEYKeY87wTAxgg/YCAEEtGABFzlKQA4ICY68Y1UFd9qPsqx0RppTn1qd/k2Lbt/rhDQYtAojFSzEmyuEJRyLy/v//Nb/7hky9+vq3WugxlTK0Isilv6oUzMEctf8ZQOftoyqSyETt7upjcx9T0TgGTMpjSVSkx7boupdS2banzEZGCVpxzJvaTcxmX+fp93xfAg67ryiDv7+9jjKGuXBXKXUIIzHx1dQUAu93u4vKSvOu6npkNoU8ppQSIznvyIXVxmoL5sjGAZ0gTn9bZEJ8wVAxOiAkIYGNWeelqekYcR4Ljt3AGaHn2Aw2lNKfxT/f6iHPYHhhgZ9G2+UfEpxDQC9t8evVjfXwfx0YlpmQ0rflFBHvZ4SJyOMv90hmXCT7P9vNxRxESEMJjEmARUTmPrnybF3D61jKb9oVi5SUG0hzuoBAycBavel35z9ebX16tPt/4Tzf+unaeIdVV30fKtqn82+uL11cr71BAvK8EIUvq225/uzve7W/e33797ubr3bEjdxutTbBTbI3M4ar220ArBwEVAG3YfuqJNk11uW5Y++tNc1Fj5ezY2zHb17vuy7t2n7kHMFFyA1BvTNJFaTF7xuBZgImAxvwXsyHtyjFXPgRntQdPtI/W9nJ76L++O0I2WlfFyWVmaoJjsnXxyrA6wIKRT0TWrKrQuJRTFqk8eS4UFGjAgE7JITkkBBtMegAFE7CslqywOgKUjICBQdMs54yo5Cs1YTJmLB56MivkGGKaVNBAjdAAzcAUzQgFITOqDe6G4k8xJIQMSaxro2dGIE3iPTVNtVk1l9fBB3Kw3TR7ROd8u9u1uj+oKhsGoqSJwDtwxK4OLotmlZxTTFL76rRyTtUppmYf5RdDBSuuKVENzExUbJUQAhPTKU99mZI6ZX8unYT4UI6OrIloBaIQaeBYe3Ifliea55acAinlf9WSvKclDRiKZ1RFVUtpHBBYyVAqINXs6uY//8Nv9L6t/qzCanPsYxtjF1MB6UQauCwQyZAEUYBAkZYP99QkPnQUDVxvP0lL5zxt6WP6MBif7vwwsO+/HnGu658N/sdsNivGeOYImNbqo7rpT7B93IH4x2oPFsCkzp25yI0AzMABISgYqBoQUCmHIzAqZxMQErIDwgwGkntSQyQmANRCClWxcxXXHlsG1drMIPdduzo0h0OovTt2/W17JyoiWaDqUiLDru/+4e//7ue/+PPVm0+AvZqVDFIrIzVEwIIFMthRL14qk5H8cB3ORSUs1Y9imeCYUls+/ej4JAKgmeYsKQNCEhERZi7J2/u7fepj3/Vte8wiRV8XkSzSbMKiWnHKxQIoqPFQMmcRs2jq+5hSiDGsazAgYjW72+3+3X/8D6GpnfO3XXd5fZViurq6btYbMlhfXvgQVCH3PY4VIAaGSAuI2/mknU0vDVXtNltYCABW/vzEa8L5+lMwMKLidj0Hppu/6KHDpQoIJUd6eXqcV3A9Poqn2lkccvjTGPGYj7AEFqZL5hHLs4ma5HxZajb+//DSl6+wb7sWEUCyoCER5SyI6NxkjuKQD3q6+vSGbM4VA2ilxgYRCE1gOb82XTZPTkN65Bi16X1O/wOA94OnohhCcJo4N+fbQZM5k+MiWIynMRmUyvXpoRbjUJ69sDHfcfjojBVr9q2sj3eIBqgFnAIMiL0nQOgzGQSile+vVtXG2ZramviyLuBatq5cxn19XZmaY7nYaqgV2WJS2ceD9cfDXna79zdff/3Vh69u9++O3YcYv7y77/P6rot3ubNA2zq8afCTdb1i1Xzf9atjz5okiZil10xXb6/u1845NmvvjvEuwte7+Lvb9raVTBAKSUrvEC+M9ZjlfYto5hq68gFMCuufESkiOoQMQOYI64o2byoD19Hmtu+/ur379e8Pt4cDmV1uQy/C3htqkp6cV0xR+kN7vD8c2aCp6zo0SOaYmDmJeGJVSInaKN2+Z+dCHXxVkQcmJAKSAs0rosAqDqk363NahWCpQwAicw4hikgGIMKA5jYrh85Ejsx1qGpyFbAHdIAqdgBgMgdIjhzz2ozUCCxZBjEBiazZae6T9plEQNVnt86mKkJgzjM3wddV3VSV5yxy/Xblamy+vnv/zpjl7k5zaweJr982kFrSyD5U7Nlpf+gpCwPHdILAGgjZEZCJAfqUFkgmy3i2qIxMkTIQPooYWMrQtn2fZLVeq5on3/hmXa3XYYWacUi5RyqxBgJGIESQPDnG5hu1FGoRGjMToid2xITI5eTPSgRERlioA0tpmgiAJzftxJJ43XdRVc0AFdTAFMxAzJJqNhXTDCqA2SAZJkBBNiaRnM1EtU8AmlWjmiFhjj7hq/94k39197/88pMPIrI7tu/v7vdiVG/M+QTgfOUN7qOlzZvotsFtDL0yGiEBAfFJ7Jmd55yc5LNNNYw4areDl86ek/vzxk8XNkxRx+nnuYSBJ742z8mGsexvKKIwgJkf0WYf2YIbd9E9G+ApGrvwBxsuCu3nluzc5CiBtfkz26yug2de3sV5sPQ9yzOZP8vD/DnX1aL/J3MdCmVkSdcGWED7u9llzs0yvuwsbWMJyTA/iJYa52IBPP3I8w4RwERh5E/8A076JboCPQEx90wP5VXi2BafPa1zP5NX88xbpllqynIOsaKqMDyCqWkCyWBiKqaaIYNlywmzBDVCVABVMcTY5ZyzghEzEpkKMhUSPQ81wAAmlnMBXYSS6JCYkbipVhfbK4dwd/fhy9/96v7Qx9xttk2fu33KZM4hsar2/Yevvvrtf/pfrn/+i8s3b7sUkV1VN55d6iKjY/VRWmTyVUAmEdHRDT8ZEqWRG8rTq6ra7XY4uJIcEU0JzOVfNYwxFZuBaEAOGJA5gMHA1CRPc0tlmSXJp8sIDWHaic45m5HWG0CBkWTibt/mvteUmNl5R8zee19Xh7aVPkKWitivNslEVAv6JDlu1mskMqKsVtVVyunu7i6l1B7brk8pDYNnZmIOlWfnjDDGvK4azCa9Hnv9v/7f/ocOtdluV6v18e7uz/7iL/7sF78kotv7u9ucoa61j2G1kjGhalCeZ0uPnnH5IxXRZuMXR08dAj/pCyQYJg1KNPVE2qPz8AItN8tUVnmyMUcP1zICiHNZITowjGPJMXtqjy63iuopjGRDyMeBgSZzFKbLzNTybOsRPVXh7sbiFoOB4pAIHTMi9dFAwbRU0TtCAgUCAnYx9tPghydGNDNCrJyfFpstk2ynUs+SbYUjQDYgKnsdUs2cwVAPUvja5izzZSsNAUxVF06PjA5ITVWzCGTjqhodjadZASjcmbgQuNPHgy92iOcUntDpEvJhZtEBIKgOQEAfE8r8aMfSx0EyDysWwdBUshqgqkN2CJuaL1a+YQseNPV9f7SNB0OR9PqTq6oOquqcq+saiLJCFwWlvzu2x/0+7Y+7XX+z676+OX5oZZewTfShywdRc7Spq0/W9Wfr6nXtHEqK0PYtHdAzMsOW0QdnBBWGlPUg7pDhtu1vjvGYVKCk+Uo5Yc2o/JJQe4MEGAFS8QwNrxXRBuxH59g5RlQz6JO1fT52MaakakyGKsyFoBwBTFVyTmOOq+ScnOMaaue4AJUAQFJV0N39UZSINNQkyqrmlYkYkSQLAJkiGpFRCfYO8ooG6lUsaUiEI9KVD8EBETMRowEMMqZUlxkWTkAsDhMFMDRjU2FVUVFRLcqzKULBlSFBD2AKWREzcJ/g0El1VK2BGchxVfvtts45m6EZHA+9qez3d9v1uqm8makkj1B7jmIgGJ+oN3smbPo8QrmIikph0h2qU0JwBelOzXAMiQ5etGEOCQd4jEm5mbkzZz/OvoVg5QWXurVnAIXmkSIb60VO4RQwO1FegkzYAOWdAKqamAGQoWlBzjMAICCvwD3Yv/vbv2UiA4xZRNE5qnwgdlrpJmwvN9cCmA1ZgQvP7FDL+JwX69EJ/t5jCz+dtkhLWH70jPg7i0s/ddnLpehPv5095g/3XP9E5gsAnl0bDxpNEMVLB7ApKIEhASEWhtjiGdTRilNTJBrUtpImrAa0kGATs7chqJpjB+wUUAyJnHOeiFUMQImQnSumRgGV7Lr2q69+/4ub22a7dVUNnomo5O/iEO0faExwkebzYDYAAaBo8M65BUQTjv4qswm5saRIwTKlp/w8BahfOMPTxTjLXhMRFe1jD2reOfYembINyWYIVocqEwNA1/eAGEKgUkjgmdkVAkFDaLt2v9/vdruS7pXykF3piEUt5ei9ByQmRkCwgoJaCNqo69o+xZubO2S++Xf//v/z//sPVVWpSCrcLCHEvudQn1gdv4UkPguED6/mrLLlvE3oqXgOqvSHuLCWTpMfbBs/7PlEY3+GN2iPX3beZrKs2LFTvuvyKwbPCr1p9WpK5euO2c7SNc2KP0WHNXb6Xx9/s+fn9ckFxozOzYDuQEW05EMGjzimx5z3tohqPPz1jLJn7saaUitxfF5ANQQg/Fhm+o9qc6fmC2OphTsccVz9KqaZAWrnVt5fr8Pri1VFujJh0ONh9/t+//Zie/HFJ02zqmpvZoPMyrnwKInZzb67v9/lNh73fcxead1pv+/izTHtgDJa7cPruvnZevPFut44zNLuKP/meLdLh1cXzavQbJpQV4TEzvSbu90+4Yc2f73rP+z7NmMyApCSOqXIhqoECBDBepWjYCvSK9ksj7NYAgPcbQgONYnGvt0ddvvjPqfeMdSEniwMlgxOdvYUE3dE5WFLNR4AFDzElKQ9HvveiNPG2DkHqALOwKungipINq4ENEAlAzIjLKiASApE6ByrgXehqivnnCEPpLYlMK+5nF8IhEpoiAZmJppMc8ESt0L/nnPWLKqqpoqqoIoCHowUMlnaHZLkg4oCuVdYeY51RXUdLq82zvmmXlVVuLm579rY9t16VRFRFgUDR7SuvQBBgtRG+16135xTSqn455qmaZpmtVo551QUVAosycN6epyqTYhenrdZEC/+YIH+tACG3VSK5ScvxKwupxy7pUZFS97X8JE+7LDA5mQRCCGpqAKyq4JbNavL7WXTbJhxvXKX1drMCvzX98O2+Kc2thfyV9qSn5G/1wX/I7efCBLAP66GZ7nm36kfZkdZVFKSyVBRNFEzNVIo6KsDdhjIPPli+bJUhXxwjs0MEJhdCBURZxEw885V3k86PRHFnL/8/Ze/+YdfrS+3r95+AmBgMlTGgAGaqZbDERGfQQWAceWUi3N/ToplZqWqs6qqQjkfYzwTs5NEfVi+8kybM8/amI6bc5aUs4hjDt4bIjIB0EDfrDYVN/cxEkIIAZmdc+iGOHDRGlNKEyCYiADw9FGBYwaAlFKStFo305Ccc1VTEwgSEnkcxXt55BPxF0BMP1552DRR9EDE0dPR0Z9IO8ut/YhvgSqIlHwJHTGmSzsT5vOGYyxpAIsTKZH/Esc7u9e0Dj+uTsRGotgRoft8SEVTZeY+Pkk698J2Jr7OZuOU9Gj2oxoqsgRieuG3Cm8eICAaArJRcLSuqotQvVrjq01TgUJ/qJg8AYC4wBeXl3VTV3VVIipZpIvHru2Ox2MfY5fh/vY+9TllNFf7TVVZV1NaKacMCnrh8W0Ib9hdIDrVPsk+pnddRxHCyl95JAY0RWU2aA/th56+Ocbbfd9lzEZqJXfS0NQQFVEJADSBdmYRqAPrVG2BDY1IA+egDx4pq2oX0+HYtrFHxpUPK6J1CK5EMcYQdvlKaRerZrVaNU3DzEgkOZcavraLBGyaDbN36hjQsiQ95gRoq9W2xEt5xJdCAwQFBBzgy0vVI7AjDxi8q5tgiooGJmoIlImdqiKKqSIyWDEtzUrwZEiPUSxl3EOmmZqW3F8UM8HKEAHIwJnA/aFTPWSFtg1vLgEBVivfNJVjX9dNqFxVu/3++M17U9Xj8UhMAOS5apizQbL8vbvpS9yqFDuWGvqmabz3msVUbYbSP1/bNNYMPfzomTYZKs9Lw6cMFTUbmB2nwhVdEj7CqaZlPktFtA3UY1mxCjn1mswRb9brt9ev3756fXXxqqmDOFlRgBKx+VMZ9PfdFuk98KRudv7RP4ZKj6faYqn/I36OH7Xhw6Xy7ZuNNUWMID1kES01iwW7veDyy6S1j6VtpKds8OVtRUq1LgMM6rhzjghVBBUccfA+j0LDBe8Ujl37m7//u89+9sX28pIRFAmNJogjAChY8PC85oBgesrFgrmhggAT6a1ZyZF7VLrqTGw+dc2j35qywqby94Jl77wvJlbKiRG8c5Nkl5yd99VgNmUbp9IMUkoKw7Mcj8e7u7u+74tk7noBgIKMj4giUsAn2bPOcvJVTQsf8oirXpCUSp8F96lYdC95wO+taSltegS36ewc+TbRwh+pna29l0fbFr8zw2OgEc/I+ZKErKqgCmYcBrTuvu/P+pmvw5frG8vR8QCSVJC1Z9mk7Jwb/eMFAfw7trNs2LOE58mMMbMHaMfzB3vmLSwiYMs+5mbcmO5SYsZzC4/waSVsObsy/MXAjEwd0zq4bRMuqnBZ62XF3kCUarbLVXO9rj9582p7ud1ebZhZRQwgtceuT3eHw/FwbNtWAFJO0SwC94jmqd5Um8BvArg7QdULb688b1Ap54h2n+VG7F1Gh/YGObPPgJQEkbpedsf0fp92CaKYIgEyWSkUUDAzFBuLwASsV9lH7bLLdRVTsqpAUiMCEFJJVASgLJgEjym1akLO1bWpNN7VPoxZqYyIE3tJCGG73VaOq6oqPFMiUoAjSzKr43q7qbz3TeUcZUM2LWU/aECAXEAJGckUHaExgiZmBFQzAdTgnSGaOubaOc5ZFchM1MwHx0xqojknLSYPUaEwSkklmoqpmGWGLCAppWxJDcRQFUvxiBqYIhihGaIXSbf3h5zS8cCbcOk4MkXmQIxVxZeXa+dovakMKPax7451FVyokaRxQc1ls7sjZy1ccjYtq3L4UGG5MnvIojCFHIo2Py3RnKXv+9JBCKFpmqqqBkEw+h5gdAOcZIcN4meqzoTT5jSiIRN3wiAeb4fjYEZY8cd4YADA1GQcsFkpih3sEhsTvUq3onl++tosbWwKtozfHfkNkZQJDDzD2ldvX7/9/O0nn756swqVc67D6IxTyi7LdJfiStQFLdrZzl78ik/H759iXzlrcxrHsyA2zpMPll1M0cjydpa8e082migpH16ELxrtg2/Nf8TlMJYS9kEdcMm6xiUj9DPn6AtHdfZ4z53Etqy7eNmBiPMTYdn/vGz3zMlwxhq8UM2fuAweHEzz9bBMPljM2jMRzGmPP/zomYk682surnx60s7ewqL38yLjFw2jHMGP3rS8Q5yALsbEUVVzrmLEAvaiJWxNZKSApJan9z+mjQ5biohKYB8VwayoPoUcnMwCu8G9YkpI7BjFLOuHd998+OqrTz79ZOUdqBSGlwI0wyN/4vD2ZxVNc6GqE+dXcfrSKb/f5MReb2axS0WfGwsYFhm202VgpTJ8eAOlw0F8z6+bjWGyUgpVZRbxwZtZFjmxywNKFksyOYbquta+A4AQgpl1Xcu+VrMQQtu297tdyVUrwwtj2UBKqa7ruq5LuL4/9lUdVMQxs3eciR2zc4YDkP3E3wJmgDghwKoKjAnKtqyjo+VyfUqVHk+VaX2duhhX1qAEItH5qTC2s1L1+UcvDbY8OGBgPEYfv34a4lzCnAUintb1F58si9mW1ynO2UvmrDhLOT//jR4tlBg91DDw5JqpPoViiqNQHbi/5peVfQoDpanMwiaTZj72f5qZKeg9OEbPUImemmMri2BoCzl/Zqg8EJXTi3bzOT1/Ic9IvXnitS2isQ8tHRv5XPBlcEuTX6E0NTVUMC3BMURw5IKDQLJm2jAyIFR+W7vry+2r7fryattsVnWzTpJFLOV07NPu0N7d7duuOxwOnWRDL8YZ6JhTZ8AVbTz6UH3WrFCkxnwVsEYz0b3qh6TvE91Gbhx2GfukCQZK+mO0JJT6DpEDY6nCMmBTAGUgKR4WRTJUUBPNKWlWAHKIuUjz4MlyUjUY0H5lH9O+03d33U0bW8NEzrIAcTFqJkEskkQyItZ1Deak74qJoqpD2UqhyyVi9HXTNE2Djg3EAIyIyAF6YA9AQIyAjASY0QiNNKtqAlIiCJ45uAoIwIEFBdf1JWcICzQ7EqjmLCqqpuyYkVQl5tyqZFMzMTM1smy5RFQUwIDHVWyg2ayciIqqJqIpR5bY+d19p1nRwnrtnXdEwOyI0QenFva73YdveiIMDoUQK0YGRWw6bHuJMepMsynmB3EoaWjnKuAMxbgEH0pJq6qmFFNKznsAaJqmrmvvvYgQERM5dAX2ykbf5Nlinu4y2ACn4h8r5xbRQk+dH4Wgis5NRXLzZC0dITsHVP5Rk9bhmMxjoheUCNbsYcfOZ0id06FbvsTMCsbkHBIzrzfry8vL7XYNIqrJyFQEch7EWTmpSvbtQmI/cBvNPpp/8PQvzynZOqulPNf1cSGjForvRGUwlQe9oE2v4BFJ+aIOztvSGFuMcG6APQQJgEF5RVg+Juj5wF40xGe+9IdchpNa9kJfPi04SZeGyiLTGh5sh9PPCyV+1vkZu+hiDs/B5pan3vzQekEV+8PBv7CdeRD1aR3ovOunbM6lyoYLyfPIOynmxPkfVYcHKsAdVPgwtTixwADUEE2yiulQTI8GkG3muwUY80tNvXPe+4FLwbTo90VXRrDAbGaJs4gAgkLhu8b7m/df/ubXn33+eWjqkq2uJqAmpiVlwCZfJ54mc1o2NIL1F5OGiNixjvFeW/pJzayo6UXiTU8xWF3TCwIt9u3gezqn/T61KWY+9T+IXgQ1FTMEK9lWOkaogvf9oSuHSFVViiCmRJRSEtGYWiBcrValu6qqyoGuqs5XMJJJqGpKyXs/jURU2YVhukoiEJ48U4OnAAAmB3aZQ0QaMYIXa4pftMjPDJUz9IspnAUzUBMzO99CeD69j9/rCWfB6YvLDp8zbIbLnjZUliN8sOUf13ttcgqM/ZckJxj/buO/5x0uD6mpt9O7m0yI2a9PPt0ZvP75CEFxMOHmonL6Y+l/LqOmvLLy6XKqz/xEj3gJx8PiSStg4YFavrUfNvXr9D6IzOyps+cFHRXamQyWwQyzB4nIBlEouyowe7rart++eXW1rddNw+xSlphz1/dd193e3X/z4ebm5qbruv2xvYsi5oArDitBFgb20ASrCbbsVIqMib1hzPD1vvvdvv+yjTkzE0uXpG2ZAgKaUWBeNfV1PLRGh4yUiYyiogIBECiYimGpblNVkSwCmERzHgTlOA9TOBRT1n2Cm2P++r5/f0jvY+pUWfUyIICf110UHo+craqyKStCyYOa2HymOCCzr3xo6sCes2rWIkxYsQA0zUF0jVARjEBj6p1H512oKiMSQFOnwgKubVOBqwRmAxCVEY9OCQBBEQXxCNiaZbMCd4xiqiBlfy5kGRhIR0amgCqgmVG858pBYPzwfte3FVhwrin8JYjGjMSOaBO8S90xS2S2qnZUeaeMLBepVmhjjPBAuXm4RIefzz4CAxuohWNKxf3mva+qqhw5I/p7AYU5Yd5/i4U9zQCWuvkhXfqsk3LGz0MipxEuL5tqVHLOMadyWJ4lZtlUVa/nNSpnLZBXUE/snEMiQzUqX7EnayV/3Hamwv4RR/LPrU0mCjyrN/ypfbRA+I49vLzlLIyI5LjQuDKTaQmQiIhl0ZxBScHUjAZEpvPRTsa/mlaVh6LW2DkUCAMCknPOqwcANSvwI2jQ7w+379598+7rizevXAiKYjnbUOk5hFMmE/fRNilY5coSjihMi2dFX6XUsAQZhsD1GBiXpwlnnmln26G0Yi+piXPOMaOZZGmPx67t0KwKIcdUoIq9c+i4jX3bdWZWVeFwjGBwOBzati0mSjmJVBUwT0+aUooxFrBj73x5gVDyvp5xW5zPGwE9vpd/IlvblnbAH28gP15bHPQf9chnBa756fXwg0qbaa0Ooa2P6v4HN1RMh7AXEc3JFv6wmXu69ES+QEiOwDkITIGQVSqCTeUrF6426+2maZoaAI79MZN0Xbff7w+Hw93Yuq67P3TvY9PGmE2qBprNql4FTIaSUPK23gJSb9RH7TvZ9XK7T3e73Ee6aKrXTbgA3YK+rtgTJnVVFZTwNt4cDV1EYrIEapqJFBygWt8jYEE2YDBGJCRGplGYFgw4VHHETE4EYkpJ3a7rb9p008uHLh1TXCHEmmQIQQxtiq4MMtcsxlh4o3A0tRGRmVCRgZjIOSQgVlJlVRYjATIc0iJEMxT+xdiB9IwwfL2kJpW66TzYOQjM7JA9AOaUDIaYGWpCBMJk2AF0ZhkUTdGUsppiKc2EoUBsfMeknRmAAqqiKmOqA6wqCoSaeb9LKnci0HdptW6aJjjnV00wAJW83jTtQYN3TV25VV0rs8cr812y/X7//MZbeNoeXFheUIwx9j2zm6joq6oqJ1/xwBWm1u9iqAzej9FQYT696BPkZbE6nt40k6Gips8I9lPQxMqp/8SADVCMFNAUSqgGrFTZGn1cMvz33z4OSPBP7bu3yRs90Tv+sUf0E21nS/TjvvWDLmzvPZmZWs5S4COzqZopKApJylkyApfIACAwMy0hjqbgRlkP3q/MLOfs0J1ZKgXZF5gymMGQ6W4IhsaMx/u7D19/9dkvflavGkXMWQhYLFfcjPr3OR4rPBgGlNQLEe+r4/HY970fa/enK6esJxtdNlNO/MfV2823w3w8hSQAmQCx7fvU9RJTjhHUJOWpjl9VkdA7143Wzna7TTLQ1ReKZ0QsD9L1eYpQ0Ug07r0nHrDxbYyxv3zwJSyuIufZOA/KBj5qer5r+2dYBrlglfkoAftAbjzZww8qbQZz/cSa+jFL6AcuprcBEXAIjBZ6ICyfLJyyEyr2En0QZx8ZgQW0FfOGcc24Yni1Xb2+2lxtL5ra18GV8ERMMUvMJoe2u7vf7/f7/aE79nLsteu17eGY/e0xdX0XOlhH28R0ceE3Kxc8Iyb2DOyUnABiIh9wU3uu2JN9tnLXIV15erUKgTgaRvIu4G/foRNQATGL2RIAgAoCmG6ayhAUUBE8Y4Nw6fjN9uLNxbqp27oKlfeIKhmKFWZqSeX+GN/v2nf3h3f7/iZJlAyMSVFH2PLT7CqYmCmAWk4S+5RSxoLvbopDhTdLyqpiJmRADISYkIqvCgDACIAMVEVS7DXHHJPmeLFpiAEAVDWrxmw55RwhKQE0WMBzCcXUVAwIEckQMBMYQkYQsAyQCoSYmQ2IkzhUBpSHADAEQevNrER2UIXIgvPBIRM61xzb9ubu2CftunR5tbm62mwvNt47047YvHfJY/BYBRcCB/DGsM3u1iOhKRggm5lBqf4834XLGMW5LV1slZyzD77kXheglelEBLQ5BPEYaT+t5xnf3yzzygo4BKAN6cGnYvwxE3U+klNq1tMmwoRKrGCIJ4oJBkz5FAYxKLl4BcRcn2IRBgBJqpqByCEVppbyIDYG4AZooLPhflR7aDCNIb7n2lmw+LsN4U/tpc1medKntISfXpvCxPPl9SOzi57NzAtX6fe/sG3OnwbTNBhCXVeQsvYp9bGPMaUkZhlUTdFYTFUVBNRUTYnRTHEpRecWgplNxIXs3PkORkQmRg1MqSwhKHmuZqK7+91Xv//95+++Wa03vq5VxErlW7lmFIOIQ3GWAej8BmUYhGqGAJVzxV4qCYfzKS3Bk3kAZP4UH9HOtsMUUYGRB0lE2sPhd7/+9eF+d7HZ1lVFhm/efMKEpTDSmIi51NWnJIGHLCnv/Xq9FhURzTmLWrNaDQAt5cgtgSywci8cztZF+tHzT0U0pHzArBBiaGcer6fmZ6BeHC/8voXBP0fZvkhwfTIQ8XBeJhXRhrzvsRN+oO2PmspT0ubbTvqkxp8n4CECYtm99FGagptTRD2LO7B4AD5br+MnpWzrtD0QS7KpmYGeUr9sIHAc7RCCUpdjpqgaiBix6zrLurm83h07NPUo2wBb0mtMXwT4q1fuZ29f/eKzt01V1cEzKoGipnZ/NBEDvetuktihi7tje7dr39/079+nJNzl+ogk3iGYYNr3fVJMUidZryrf1D32mkENIHVZNF1f8faKVGFjrnF26f2nr66vLi9DBb6iTuOmhZvbz758f6hYtxi2fT7mgkNvCA7NiIGIHGrNWIvVim8cv0G8rl3t0ROSC9RssljXR3F2ZPnQdV+1/W9j/H3W3giB12gCSUA4NC6ssiKSyzFCNja0Pre3+5sPOyQARiMV02xaIBDNFKWjTpk6lso5zkqtsnCDjioKzgUmFekjSgKJZhzqarPynkxSyjF3vSr0UY6HhOZ9tUIn7LIjNBXI2QP4KiCxakaOIjl3KeeUOkmxsKQROQYYMOxjTloqM5iRyCFVzrq+SzGjmiNG8mqAtA51vctth9RnuL9td732ihQqDL1PEXJky6+uV9sNMVOoAiGIZlbt/N4u8/FO391LxsrIGahBD5ZxNPEMDJkc01SPXoLs5V8AYObi0ypH2HpVv3nzZrNZg0k515xjRFAQG2pRkYG4mHCFplHztFeQqISnmIgAPSEhEDESEmBJBi92Std1OGM0K+kBA8HTbNuVYqSS3kbMAiAAZqA2ksWbqYKoJLOkJmLJLBkkRAEs/5KpDXbLWBJbJgdNHKugAZBKThnFAnhQzDn2KWd0YsCEVdnLRmhkhvMqFbNFBoKdFwAs5eOUfTgTRGhnlZQwl5/PVObNMe/P7LuUEi4hEKaP5syzY4HPMIBYKO0QYKrFR8BCmStPp4vME56XOoDivNxITEf0esQ8Q34sjHSz/hY9Lv3VT6f/vuzYw+X0ztvZ4TBMFCERl9D+aRSzWsQCPzf9+pD9cPL+Lrx6S7v1mXSUMyaCZZL3Ul8aXWOTs2y6bgGnYQsXcvEFDlCwroIn2nxIeAYZ/PRHvPQRPOkxGakzh1E9XWCDT+tzZZuDipkiIvqgKkQKmrv+nnLGJCgZTQFMJBWSx04iIKBHQAMxQkBTy0lMgRzAgCYiqs45VGWA9XYbgvcuAHDskqh5BpFBriq4CqViJYBIeJ+U2G2263zcg0fRvHv3zd1vv3yzueCLS1/XbhtcFQhQUpacRcQIrIxCFQCaZt21XRJzjh2zFakoYqacU6gr3wfnvQvexjp7RHS+6vu+yAHnq1IDk0W7vpMcAQAQyDHCUPpc0rIXfv1xqierDKYQSkpDzToAgAWEmoDY/aff/vr//W//5nKzffPXf+1U3r/75ni4++yLz1+/fSuKH25uq2Z9eXHx/v372tdVaA5tq0ljn1NOyVRNmZ1vPGjx9hUCBIHCa8GcRYIoECETeHdIfS9ZTIMPojovmJ400yFjG9kQEBGYz7lW3YnvD85EA83UOS3+san7E5KYDgIH2REs3QTnzvuZ3DgzGi32DxY0DS9lkdq8lGyyTGw+2x3jazVY1KXgTIoui1iXcuM8UWF5r4UgQlBRFSzPNRXzIKgNYDwlRDaPojC7aa7UzGbPokxQUPUIaWkXnEqAANDNlXvI+URXOtj8AAKGZiaD6S4iZlC4FspDaN8BERAV4TWvghOdy2EGPp1S3nsbSfOy6YCwxVgiDufS99Tjkzzy3yKi8kJnw0JXeFBIO/PoAJQXj6PhAkPZhImQc+tQJ8qQUxMcW946fBXoTag+bfgXr7Z/+cUnn7+53mxWwQXnGDTnvpPUg2ZQFbAu5SjadunQp10vu6j3mUQpipFzHoBImIAJ2cxi7u+PyrjZVo6QnXPeravKOweIxkyAK4GKqPF0ua6bpvIBXEUgKmaX69WhzdZmMgL0DZEiACiCEmTAglELHqgSWyleNP6ycVeX1ar29XqFxIp07CImEU1Z8rHr2pRiMlFAYk/ImMw0a1KrVS2lHPsoKUlK7bHrjl3XJ1GjcuoSFqSprJpFVMgh9wRNppQIALKaGIgmhORASaNKjrFN6WiaSylkFdhyB0OJJEjOqU85CgIR59V6FVMvElerVV05VfWMZmKWYjxqYXYXJWDvGItmDtgPNoBK1mRqCEVVLzvHBAiARqwxVUhZtOsTQBJIAqC423WEWNeBHTUVeyJ2jlwTmoJ0EsyoazOCNg5WFdYBHaNB0T5GX8Ms62zuAHvotimwaUW9KOw09AjCRnE0DaoFjsscTw6LUeeGMYQy/lqCEXgWTXjggrQRTRLgXGmbby6xwQDT2fOUDK/T7WEoRtQxVewpD4cNPJ6GBoWZxURNtdARM5CW6lLEQYoNUA8IZxJ7IQSe89GcuDDnL+gH8NQXIfjUS/+27enkuW83JBjfNbxY2P7zbC9cUc8Qt72wTSvkj/s6vounf+gBbPz3JEOKR6MQeoCCqpIaAjINadrEfAIhnVmwo35qp6RuIhgJFpzj4uYvJMCI0zQWNmAFBAJwjM4554Oo9X0CNR88ZGuPx3dffXV1/cqFar1akQHhJLrOmyH0fW9gzjvvvarmlOb7uiAjz6fx4WTasn3cDD/zxWIcdYfjb/7hH969e5f6/u///lfr1Upz/ubuGySsm/ri6urN2zcpq4qu1+vjsU8xH4/Htm2ZCKtKc0LTUifpvC/Gs45gOYMBxkiIXM5TxCySbShu/N6X7zmr41jY/UO1h52/BHv3mSH99EI0+GAOH4ebmZ2SuDwrYSkNH01SKBfMjSIDwGdou7yftvnZ2HBeaLy8U0yxbDQXvC4DO3mZTLhA25ubMMvZeKmhcjbQByQwp8bEJ4Xjwc5/ZHUYoIFTGhU4Mk2IGDwTW0Bglxu0V95/VocvNuGLq+Znn1x/8fmr66uLxgciBJG+t6wpxx5UCsRYG6VXOBzT/pjvjvmbNn0Tk4DPGVYIkNGZ84QMiqrWS0ydgO4tV85VTfAAlferJjjHznvHFHJyAJ5gVfkmOF8x1c4yJku1P5ZxqGQUIuTyVAjaOBOkDCTAOUlOMSB48k3wzWpVN3XTNMSswAbc96nv+xxT2/W5TyrChgDkARiBGYghMBMaaM4RU0pd293t7m/vd4dDl7ISkyfEUSiL5NRrTpCIwUJwhEReUYGiZGVgQ+33QGQg2rdgMTD64L1nRxhjC2oqxUeVY4w5CzOBaex7F0IY8bxLKlRR64/How2UHsDknXM2hKKtj1lEY9Q+SVZRMGBELvTrKAqAzjnvHFfeNXXjiUUtRo29xd5ATVMElcvtqmkqy27T1I5dqIIPyEwIJAIIyTBWyGvh7br+cH9UUbBsBXtsuQaHI3SMqCwXpvV933VdOR6apgkh0Iis9WPqLmYW47DzZ766B44APTE5Tg81SomFf1rnn9GTQmq4QEFHaEtVxYJLWwpqCugbEROXEhskmgOUn8kNeSby8CO2klAOE27jT+DQwhGBethQH1XY8M+hna+ojyI1e2GzWQXOYx6KH6kVP+hsWN81X38u9AZgeNPiFNeZgLQHDHRnKSI4si7AjPcgVIGZVbSwqYCV1KaBg7ZUJ7JjBKzrZgPV4XhMXeuJnHdi6dgdv/rqy2az3lxfXrx95Qgd0TPmaOGhL8UbJbw8t/nLR1Nc9NEywnN5+FHtGY64Io2T5N3hwI6j5N9+9WVwnhABzdfN5vKi2Ww228v9se9i9FXlsqYsBSwn5ZxzUpWy1InZhcJahpN9WCJCxDi9BWBOOUkW11Q5Z3oOdvt7aCUa8wP2/6Dz0fjVZ2D6nikP0/yTOInm7Xybz+IVc/lj+D0JvXknT787HjH0isU73yA0U/XPmokYUXHsnrkGsjw5+Pnjf2RE5YEf4mk/1jyQPlsdNvO0lsej8V2gAZmhoSEBGFEAgpQSY17X4dPL+oLs01D/fNX8bLv65NXm7duL7atNqJ1TBcU+96k7pu6YUzRVVVEDy2SKItwZ3Sd73+v7BJlAASVlS8ogihyIuMCYgCFaLpUlfZasTa0VYsVYE1aOEIyKz0l6tDWiR2QgBwh1s6mqxL2CSNIckwgagCHK7thloGQuKXDOW0vbFTehvt7Q9mLTNKu6qYmdKIiYYzbVlJLljKYV0cpRLwK5c5VVHlcr39S+8r4E2USk7+Nuf9ztj20bEdiRkREiOXaEJNmSqYikLIgYvCenGc1Akygoglq7/yZ475zzpB4pVN4HpyAq2QRMi+O51OUDMThHzlPBCbNS44KkJpJS1/d917ZtO0Q4AYzRAenANoh9tiwWs8ZsAgBEYIjGCGhipuSIkD07Yh988CYac4zJUtQUFdQY2XEFwCkZQ+5RoOaaXV3XgGoKzhNx4FAf7/crc5s6rHgvErM5ATRQXTr856eU2Tk0eIyx67q6rsuZUQwV+HF1x5JyUDKtCwzlU1eqTahfi4dSM8CFyJ4+ev5BJi6W4sDLklWEcDgdgUpa1ul0LNnY82yn7+4M/iEajUDDD2fgjzXWaaIGpGl+Minon3n7MVfUNO0jb9WPc9tH2tJC+K69LQwVU9Ti4jBVE8mF41yhUIKdZZvj2a9FS547brz3SJRTVjVGj2gnbior2S+EBEzchAZrL4qHvgu+RlVSzEmP7fHm5sOxPZT4NT+tiZbbDXSKKfV9X/JbpiBPMVRijDADnll4ggFgRvKoqs/e7bkpffTn4qLb7/cfbm72h70L3jlnhEmzqr5+80pMb+/vVrc36IMY9CkZ03qz7rr8zYf379+/D1UVmroiHGCavU8pleeaapQLNkDhLyjPaIg5Z1ENRCLykVhLL27PZJN+P/0/tuVNBMyecbQtsnuej+b/FNryIRUXhsoUXvh+pvnFhqWOLDQPz6CFqr9sLoQiZFJKZ64BX52SCc/OX3wuojK/+3K5ES5y9ZbOhsUAJ2tPz0ZPRPNvjZVeOFgphimVFEkANCRFUgBmypY0t9fr8Oaq+qs3zQXCZ6H52Xrz2aZ5c725vLpwa68Ese1zTIf9/nDY910nI5um44DAqhazxWyHrPdZd0bJKGYVUFBxoLVaY84TEmhDXHl3VKmIY5RMBpAq70NTORUPZAQiGQFFNKYEjokxicYkt4fu5tDto97sjl/vjj1YUsmaVFWrOpkTFVTdMlxu3cW6en1ZvXlVX15t69W2rmsAzEn7LqFBjkm6vna0crxxrIYYe5P+om7eXNZvr1avry/qEglSzQV/uU9tTF0SQkX2jnjIwylsI5AgSxIDIOeVKgBgM8tZATs0yypslaOVc+yryldBwTRrSpayjYSCompE4ByF4ELwVHtRyzl678w0Z1OVlPqYelVBLD42LtOVs8QYs1iftI+SRICKjYdDmiaQiRAQgDMkUcyibddLTm3Xtj3lZCIAas5T06yr0KhqFtq3MQmRw6quXCi58UiAq1Cvk+Tcbeqwrbnve1FBIARDxOI2nCL901YxM1Ep2Q6ImPpU/HPMXKyUciiWbM5p+9nAfAfDP8utgXRS3KdvERFCCQE9rnid9va4k3Es1oSBDWag4hp2pdkchXj+ldJ7cWdO5TfzMruTvl5mY7JgbGI6MxHpuy7FlHP2odJSOFkmcbxaB1LLc3atuXxbxHnhTPY8/vPDX5+R1U/d68w6nU8R4rL2b8FW+WKd+MyHM8+7frqWenGOjj8PNb7PHKpzYb6cirmnreT74dimcM1Acro4whc9PnnbpfdsXjVxVimxGD3Cwptr524CmDFpLvpfuO7o4bceudeL25PcmrCc3pEibFjbOk3n+cn96Kv8g22RpPAsLd1T93rmsvkvI6SHzaMNw4MYqCmIWqFFElVTEREwtIWGYSNAYknx0kJ4NWtFdYZ5JRKUQoAxOwnJUImwlC5VdVXXFylZe3+nCmoCjlzlosT7+9vd3W3OcbWq0eRU82AGhsWqKGlddVWXT1JKse9lDO8X06W4lpgZl4l8KSVbkp9MEfUSQ5uqxaZ3PZl2U5b/wk+cc6F+d86VM2XYd4ia0+FwePfu3bFtxQy84yogQiDyITjvdof9u/fvuapXm0tDIKa27wndmzdviGh/PKZUSjpRRFLOnsMw/+PwcCAhQB5Lqurg7+7uygC98yAwX9l4ttHxSQnwwDQdfjiXp8se55P2jAA8u99yE9HIO2J2Trk1QDkUZpIFd9BSiuCU3/tAsA10itPx+uyQJrbK+UTRVNwySNdF7PHJo610qArD6kDAcU6WU7MgJ4RTZQsAwMxbel6WdpYVMh/wzDIhRHDu7FtDwScOqejD4ag63Wt+aC4HdP6YEwieqeKZn2V2MA+zOhstzn5eGCoL6sbRET78Oqc30oWhMkcKmhtM9PCFz5cRDoxcWL6lKoBgpYIrKzhBMyBCQ9BNRZ9frX9xvfn51m0R3obq7aa6XFXrVahqBibRLCJt1+32+9v7XYyZmHOWnFPTOHIgqn1O+y4e+9SL9Yo9YJtVPaIJg9RKEagCJJFI0IBvhbwBpNw4yGZVlS8MC6hVp9BFqYlbtTobKbCY5sINbjGLKCSBpKZQDJgcRSOFPgqKbj1dbeqfv9n+4m315jJcbqrVel1v1rWvchawTEil8BlEarILj60nNluvw7qufvnp5l/94u2ff3b1+dvXHk1Nu9SlFNtj3/WxT7nrk/PkwNUnQHdkIgcIBqIKYr1YZa6iisCQjSwzCA2BdSH2zlfIPqfUJciCmhTM1MAMmZkqCgGDr0LtlGl0ZIxxfTMzMVN2PC0PAzOV4utKyaK6qCBGzJ4cKZiAqYgpkjkiBiRRICJR60shTkp9LEcmESMz+sDOk4hEzV3fOYZs6ptq4+sQPAIYQlU1myRtl7dNtW38Yd8SYgSISBmoTydDZdon0ymVUio+wq7vCuyj975pmvLDwH6zzK2cGypniaVMNG3hc0PF8azqfLlxJkE/inuaUCwnAmbnBp8oopqJnBeWT4dEqeWbkPjnrJGIKHlh4ZwoVsAAHRGVeErbdX3sY0q1D6oKRPYgzQwRVZfE4WY2000XfMNLIXWeTzz/dREEh6fbk95fUprbKpPKwsxIuKC7eoZH/Ol2pvguqhuf6WFp3kwmBCI+w2/zDE3kQuiPWsK05MwGktOzr53rIs/YgYtK2FkPD7SPRXfz/m2xNqYB4Iy5b/7RI2M4U0Y+zk36mDUyjffUNxmOaatmQxU6P+aJxHNp8PgcPrOccJlz/8wM0NM+/8Ucwnw9mJohzPWM0UGLSEiD2lHsxqI/PVYrdWIdYTYaBMUQA0REROeciCgoABIxGKiIiRRke1Ulh8Sgqorimeqm2WzzexdifwAnnoiD0z7vD7sP77/Z399tLy/QFkV3ZqYGqgMLJDOXbNjCdjWUZIyGSjFaJlSSqZvJAzVoYxM/40haNc2SzWLUiJhz5rGwfj45BcV+sDwXW89UNcb4/v17AKiamr1TBDNzjpNKQ3TsOt7d1/dbDvXbTz/56uuvDvtuVa3rpn7z5g28f3/o2oJGk3POMZInGnghJYQwK482ZC6Pwsw3H25KggYRaV6UqQynApz96ZG2XACn3wiXQCbL1Uo843U1gzOx/1T3cy/5QNYzMefMdujMNQhnZ4qaPbChdESKm9+MnbOJKPlsw55ZXDj46WFpdBUzyWCIKy4OjrPNuwzslKyHogTQ6P+x0VE4dABLZfoMDPcsDXXp/jv9eTmMM3fPme23sBnMYDw4Fti8o/VERDA4fKcOFnbFKRNy+Xc7WzYIcxb4uWQ/W4/PpX6dycrFS/r2ASibDikDKH5cNWZmKMQiIpgRPSpCipWlX7xa/ZefvvmLTy8/r7VGe9VsrjfrdV1zHcCzmOYkh7bfHboPt4f3N3d9yuyrQl+fSBrsxSCDxNwnSVbuq6hARzMD42ICGwiAJ1aAPiVQRhNpu4vA5lwdZdVHq1zq4p1ZjNQwVgnqbD4busKAZ5vKNQ7vjt2mYnAXPViUnDUlhTtd7aVtQH9+uf7rz67/V19c/tkVXV24ZrWu6ipUlfcBILXHvu97EPXOret6E7tcKaz9tqZ6vXp9vf7iTf3Lz7efXq3Qchbt+3Z/PNzv9of2eGj7tot9EmBXcO6nk8cxe3aV004NiI29cTAO5HDtiC0TKLFnx+gYyCmxgutV20yph6rAPSADqfOOmcyQ0ANiNpmWsg5LZYAWds6ZYjmWAAhsNFoQlJh9KMwjCiioOjoi0NCADdEAVSGjIuQsKUl23hEwIjFiU4UQGEAM8rFt33/T+sCKuVoxkhFjXa/YUQihrn1duVXltxW3jTsKHQRj0qwCSE/VaOOYDBpjLGX0iFi4U0o29qD6v1yF/ShX65nKMv91bhjA6OZUVQMzhalGZfpi+W3KBZtsi+GnZ3hiB71HQRVNc05930vORbL/1MPo/yzb4iQe63DwJVWn3+ONv806f1l//2TbCy2Tj2tzZRQBn6lsYcekXrJCQUY8Ac7BQ8kzKaA0gaCMevmjnY/XFw8yFKosQC1qj3NhvdrW9erQH8UEETwSEaQUb96///D+m08++9Qx9TEVLieEoUR4IkIpdkXf9yXvi2agwyGckkxOovvBdpjrqaM1Olg1OF6gqrA0Ws48Gme2EJxCNNofW0Tsui5Jbuo1MCFTliwIzvuikrZ9/7d/93c39/v/cr1ebTZv3n725a+/zIfDZrO5vr62O0wqhsDMdV07ds65MoApAUxEsmg12l455bZrc4wUfIqRwT1Ty/GDtrNw6w87iB86Be0HbcstdF5ZPr/waTfTT+RcnpdsMTHycpDTb8t3tdyWi0+fM1TOuH4WlS7wkbWek61iag6pqSvHDCApHhlIjMisJvpic/mvf/7Jv/nlZ794va24RxPvHFdBAqfACJD62LXdu/e3u/3h3e397f2h7SK6jtgBuURBMaH3oXJV8MGn4F0QA3CC1FNxPpMSKTl05BABJInuFUCQzDd1Q5tLqagDdgJtd3wnmGLeOg4hEbcppaZxaqnr+9rS6xXGHgilRpeQM5AYicJFYgv1NcMvr7e/uPRfBLj0zpEXqpIZSgaAmGLbHmOhpHV+0zTIdBHpcOkEg6vCdsNvr91lJSQHVTC1lGJOKcZUYO+zqhQw9mL1EzMaKiBR5UOuELMgMaI39uBCVbmGK68RNGVjdAE5GLmYMWdpEyYLSmh2AEBmjwRE5WSinDSmYwRE4lIsdbYAUkoIheAYmT0ClyIHQ4PknfeAmFSyDZAzQ9QTUYEMyACyZcmZMGfJSVLdeEZkdo7cZlWHigFFNe4Pdze3rWPO0gOmGFvRV9fXzOSJMgAEdhfr+s3VRU5GreRe9lEkyzMorjBWdMUYC+yvcy6E0DSN855G9P2lY9WekQ9z6saXt7PSzDN1YWqLXwt4z0MbppCryHC+nsgjT4bK0w7aQsqiimoxpr7rY0p/MlR+su2hs//k1/wh22TeD8PARUbTR9z9rMMzpfCfTJOn4Ti/e1vOodnTADgFQtrMYGLSeGyE01oqP/hRNX/+7SASO/beVVVV13Uvh1FgGgA457fbuqlXxztOJqylNhwly/397Tdff9X+xV9sYsyJFUcLBIyIfQjMXCI1zFwMlempH05mUWCe2g6nSuUSZR1tEhizRUqIqe26UgODE832rIdyNKhqgSce4wm6v70Nld9eXqzWa19VoakUwRJTcOgImao6INLu0P73/5f//r/9P/wf/8//3X+33VwgYtt1qlo3zcXFxa49ppxoQCvBOZpZmf8SGVNVRw4RU87ThICIq+r8DALSD9rMFuC/T5eUfPd2Jjd+Kmr7y9p88AagtIhmLJxQS2iE+Uf602DGXLyF70OqfWREZfDXjCvB7AT7/gyc6EQHQ2BV5S+bZrte1Y5QU+UDGBoEVrry4S/fXP/XP3v9L95sripGF/uUksaEaqCApppjHw/H9ubm5tD2xzZ20XadZkrswDt00ZzPq+Drxq83TdNpfZSVqANvmMFMmBjAO/LM3rvAbCJZU6uIYCvv1pvt5fVFQFWHHcCH7vCfP+xykgvvo2KX5dWq2kRmS7FvTfCi4bZ3fe4ZTJ0XUDU0gwuy7br6bO0/3/jaeuxSXm2TUlTjLhn0Qqnv+q7rUoxm6hxXwa3WVczYW0DXGIL3cLXiigUk3+1vEShJ3/V9/v+z92e9sm1Zehg2ujnnWtHsvU9zm8ysYrKKlCDJJEEYNC3Cgg1bMKy/aRiGoRcb8LMBkbZfZEsiqAdTpMhqWJWVebtzzm4i1lpzjsYPMyJ2RNxzTt3Ke29mllgzL05G7IhYa65uzNF84/u0xYHkl5GxZ9WxcwMcaGORmYQZkIMImRCZkCSlIWMK9AbhhMRIHJSqxqyqQMGJkGI+wC+RKEJVFYHnue6n6ikRs7t1/HGv0vb/5nkRTsMw5FySlBPlV1CAEUkmJm0VrMvVBEAEhmMwRkAEdp2AsEANbIFrpkSYBEVwGFjSgb54Xpal2gxqqChgEZxyKqucQh21GgKsSnpxt27uaTJ8qkocc90vnTy+r8oRvex5rK72BJWqqmqPxLrIY4dan/KUF49DPEs3whUm9eIPcfhOnB6g502cv4y4gMicHkU8Qy/0KpaHOxz5egKeIW0AdlRHOahAXgLKnzeCV2Hb8/zArQOZMLx5W7Sqm8PHwPTw12x1+J/U+Hb57uxW+XH3+6HK4a9dz/ldLKqc8YgfAH6HFe3XnOr5mfnBj/fiosTBOl/gOA6K8GGqoOqqoHrgAnrGgFyXdk+ji9zGERP1oWmYqbVaa1PtVQR4ZkmGEGJKY87FESzCDpNEJtK27B4f6rSr895gBOJeH4QAQBRmJHJ1N08sptZqY6bE0il8r4J2PG/Tel9F5XS6emvugd9fVVU7XZmHa1NThd5VBSFnKP+UBHrPQphqm+Y5wns3YBC+fbgHphevXwEhMgcC8JJS6viHcVghkwMFwj/7f/+//uv/9r/53/3n//v/7B/9k9W4MrNp2pNIFnZriMiSVJ2ZO/bM3dVMRFISZg7T3mPQBSKRWFiMWsqpzR+OVL/Vb/D+cWS5Pv3qO43rPoQzlnB83s4Pkvo6ByDh+3Lo71ckvPzoI+Ni8nDI+h/PyQXA6bSE/6UbPJ/8c2UPvqU5doHvQjxfpxEvH+2/8rjEd/XdfYQv67Dfj9wA78XHnvZ1fv3j8iM4OTqXIHoxCzgK38BlotTPNhIOdtE9eSFMQ3ICQAeE46WszPEn4NbAMcw/fXH3el0+W/Hvv5KbrOsi5rTsFq7z3bD6/OXN569evHi1vbvd5iJZ4unpsWrbT7s2TV4XZlat9w9v2Xe5Ke19esS3c/56WYD17/70LskWUJFSKXB3UxYlhPX41N7unhj0JlzR3I2YszCKNJS5wsO0PKr+ZDv87dXwd27wBU0K9Fjl67f65T3/QsfdtPc23d7rH3yGf/h5/sxhK8xelFmLywZXTjE1NWJKgUKE2epnGX4y2jpNkHjG+GJ6eDE4z7SpL6xatXmep2naYbQsgZlubm8kyX5uSzPiCJRAVqOvvok6WZ6fMrtRW2wOxDLmYYnHKdpcB6CsdDduib21qZTSGwIVqRiT5EFkxbFm3yTOQroo5TXNc1iohk4aXIQlUCEqQF2tEkV4HHCcterT4+MyqzotaON6xZwJU22t1kVba62ZqjsHM4AgSue2U1NAd7Bxc6tBFs7CgNFhy4AQ4SjmiI3FECiVpfHjbo80rNY3hW07pghdb9N2W9wdSGr13V5UGwDOe3wbbZ520+7NtMuvP3m1GjwBJRRNy/o2fT5uNlMrbxF9gmWCAfe1Lq2aE6A4kLqruVuAAQM93j+1WRPnnPKL2xeb1RaChnENgNYLQBYWB/kkBiwAFMEYCL2wz0h40KNyJziTbhQuZQCI1lRIjgXOLjtjAKGqGLBKCcJOtRE8e6rDjRACoWo9yDIe8LPgzTzAPSxc3ZqpmVVTs9gt1Y6QBQtzMwTgQ/KbI7CjdQEQgN3RA8GdormbmqlVRfpif/9qvt/CjdW6LWsEQAzECHdONAy5i9RHnCuiXBi8qxAuPuDfXKEF4KxwfG5S4Bp3e1lfPtfGJCLAOGkLEj07GQFBZwWrs+UBO9T6+Ktzv+SUmj2inC8P4HJROf/V5TJ3FSKeT/hi6bhoovhwO8RF5e2ov9ZzvSd9RgS8omE5L48fgY3v2WDE5eJ1hjW2ANXniyIIeNTTRPBz0BFnPp20uNaWO+9mvECan+Prr26AC0zBlSblRxpnLnhh8LyoeJWAONf2CQIIdPDAIHxW4cTLu5wQr2P/5wn6xcrMdNJZM7eLp+MjjSgfdn2uYOjnJ8q6S3O4iEFhEQ5hCNbFrFbjSmFZdntEJERdWtW22qztDFzqEIDgCAEwTRPgoXbRy87DMDDz3GZ3P8BjA5llLGnaD9092KZVDkoDayQKIoNwe/XpJ293b754tzSNNJScnM2Wp/t3v/rTL/7s9WqAcvdTVY4AZEppSEShRgSZUpK0zMu824GqGzrQmLOwuJuTzHNndeeeznGP1qxnoOKIEOuN9QDQe/jQQlvT8K6FvdS6aCOmnPOixsjNovNdLFqPTYew6F6EHH1pOum0r/v9ft97RRa3x+kJi2w/e/349GThhLgatoSEmJVEgzPl9c3w4vUnf/zLP//mm/v/0//1v/xn/9U//c//N//bf/Kf/qclZ69zQcQuJQy45OQRnZMtADgLEBkCmhdJQLxEJJG37+4FU50qSn6qjc6Eyc8fvYBLYrXLoNOOjWkHue7zh8PO6yR01WwAZ97qhdmjkxw6xPnzEBcW+7n+gwCIH7rpe88D9gZWwp6VO/wuzjiIEQHp5PoHAkuKCCA68HEfTwfGRWwRHgGBiClnRGymp7Phfbsk/SwBdb2fsyilx0OXDYeH5g9iODzIZ8bWn23qlUrJ9ZnnY+qhixRddPfByZ+/Sh+4X12vy3TS+b769/v/EZ+uF4IcEpinU3zZAHbaYDP90Ed8cX7PJwhxNOcREB4I0P0oRPxYReVDSbL+/uz1+Z4+GNgh9EQ9DCyvVvkPPrn9g9eb339VtuzrgtNSbanJYFvG29Xm5nbY3o7jzcBFOJx1odmRWHXxpRKhu2tVygkLBNtk9jDPj/OcxjS7zlZv0pASOzpCJOHNmJtL1dkiMBf3LMglJ3OYqs6u+6YL+N2Af+vl5g9vy+sRhGOq9s1j+8X98tV9+9rbtNRwqwrw9QNg0GcvaFsyUfWqATNxk7wPneYJAoZh2Jbyeltuh0gJlHBf7VFrymk1z8uU2lwBqLU6TdM07WpdiLAMOeeMiA5ErBZg7vtpuX/YP01TNPt8YCkoWTCPLbyFHZ4+BySWlJEIKUgEmYgE2ZAtQCMCwTFMCEsSZjLmAKhLDWQABmQWzAMLqAGgI8+I3onwsba23+/3+/08qTnzegXmEAHupqa19uwRBPoCAISJyRO5AAA5cwgHWXWLriDpZm5qftBARxZEwH6D1rlVNQxhFMZMMIVpypSFGJ2IAlCrE9JYcqvqTeewMBOgIhnMx7G82K6IPWcqw6poSqUxJ4jIOdm7CRyjWvOwCPBABbDOSETNoTk4csrDuF4N601ZbXIuDs9t8YDHJRoJARzskGBAcIKuM48EDkBdIqcnehDJIJohAgf4Wc+Wn9KzAJ2rGQI90OMogn4c7ocilAc6gDsoYNeWBz/wd4V7V/tUN3d1j/AGAKfiCh4TDQFwiEpODasQgYfyDClioFqAo1V3dQwipJyGy8c8Ll//uLnw38Vc++/8+OFP2oe32B+MH6+Yc7nn32wBD5+dCzz/44+hS/qDjuck6DFWOf1LSIjExCCszOFORMKsh+6S6xpsZyqXdChTnAiyemnlqkngZFU6Num5+oTH+jAACw+rFT0ka8vSGgckUwB4eLj/0z/+o08//wzGF8gDiyAR9w7M7gZGuJm2prVBADMTYnS1YEA3w4OmHLr7siw9HxQRKefe13HiPOzgMVNl6OocVLCQMCdKLIiIBJ0cTU0pCA7VQgokjEAGJ3C3am2q836ZqjV3hzB1B0KPAEJJcgKPdZ+IJfV6Tyrl7vXL5c//xIWHzfD26eH/+H/5P/9X/+yf/hf/h//iH/6Df7AaxlKGCLeIOi/A3LkE+rVAQALsx27hIKRmJ8Wtk87vaZxnsq+kG68z5R+5tS+cwO96/18652d//x4PUJyO8ezAAi8TRtd0nMfJXM7n+mt/hXk+m4Y4++qPZJ5+QHsTf+kG8fnFleX90I8+7gR88FfXibGDjDZ+HPp1JZdzERVdKrN8ZCPPXwtIwSvBF2P6vRfj3/5s+wef3P3ei3FFMAjtpokCEvGY82oYV9vN+vYmrQYQsjbjIl6xuU/zskwzuiHism9LYs3Yii6h+/pUWy3rFScH0tubYRy4gu8mE9KhyBao+uAwvwMIIHDKnhLxgst+enrSBuD/4cvb/+Szm9+7WUnUfatP+90vHx7/7N10v4eW2UkAcAn86v7J6wLgFi/u1jm8GeJMsqQy0/x2nnya7tZlKzd3r18m9glxrv5UUYNf5CKQxGm/e/LAWutu97ifnhBjHAemRCjuTsQE0Zo9Pj29efew3y0WkDg5EBBx5iSC5qKViQkRIohoGIYukJUpCydmEbEkXsRQOIlkkSQiwgjurUX4UhsxsiiJ5GJ5aAbeQDHcFwcAM1NttdZuyms1NUQwdONwSalDzcxsmqZWmy3oTUPNaltEAGA5LALupBHUE3RZRAaGrjsM0ObHiAhrjhDq3HQEZsqpKiVQtXE1piSEwExLc12qAA1DjvB5rlYtQpHco83zbr0qiV7lIps8lFURRXXbejJdiUjD8k7mt0p7r0vzasAOaG4BM1htrbYFMCSxCBMxIhwUY06WLXoa9ZCA8aPngucvjo6Aw4H6ghAs3FvtaVQ3e14trqDhERBnnSQXKRNy6GUT9LDmbhEWAA6oduo86TlaN1Mz6+L0AeABHhhAxxb6wDCyCAy0gF49O5C4QQA7gWMo9GZ8cBIQUEwpQ/x2BLPw34/uhR98fET77AffIB/bCexHAExf3QDxYfmwH37Xfw3ikV9n4EEOJbGHpQYAEi5mAgf2v/OOuKNGKoQ0oujg2E408t7LHRHdzhERXzYHRn9+KUouNzc3w7th0tbUGpIwlTIsar/64ou3b97i+Mm4llIKMVMHfXXEhxl4LMtSa+1d9T3kMDNibgEUlNKB2rh3j/T6z3mn336/f3x8rLVGRBLBOCiTIJMgAFPi5BAe0V3/fm+fwrMD7zJYl6CZpun+/n6e575HdY9jpMTMp/7+nhEKAknJERwh5/zTn/4M/8U/z8NYhnGadrwev3y6/y//7/+3//5f/8t//I/+0e//7Pdutjfek2uqblaXRZiFuevvMqC7ebikobbWeyx/vPEReM/vyKAf2uj9zfhRx0d69r5rReXj8IPvOA8JXHN6NabPb4efbNMnK3ox5AExs2REkVRyTkmklHGzSptRSgKEZlHBJ2tTXXbTtH94AvPEUpvuzQ0Zc+KMCX0t/mqUF+t0s06hc13S7P60m592tUHOKd+MyazsZp/d902XtiDRvMzTsqzWw6e367/3k/XPb/JaoCoq0ZPFl/P8trXK2RSCECnXcAB6szT786+r+d/6/OVNchBRkGBa3bwAg739cp3gxUhEU3V6qvh28qfFi6RVQVCERSfcW8Q8z0+7h2VZevW898arWwC1qk9P0+PDoy1tHDKiUGApSRIxYaATUSLp7PQUgEQpD0AMBCxCRERCnEh8HIhE1mNZjSUJdWTQskyq2muFkikXSLkRWUAVqOBRWw3V2pbWZo8OhE3aAJACgiCIgQhYpJRShnGzuTF3PCBFEY8d59RQGhX1VVDvRzFHQAO0E3oqbcajUw7qbpYAwAEilJDclYVyYiZITG2pukyCEIwpYThHIAtGtHlSJosYpyUHptIgGxPGmFkYEXJOFFBWLKzzQ+gEtoQpYAlQd22LtoXaE7OsU9kOuB1glZzZIuaz8mgvJCMHU4CgIyJ7dBw0ByAge9ABZoGBAURx4BE2RhkkXxGvnz9FHgEdGR1uZmcaKYhY3MEg3EE7nXWgemCEG0agBVqEOjQDNWgOZqhBHr3U3nNaZ0iVeNb0jENLPvSvuocFOKA5ImLKA0qaqzJJ+i1xyHy7ov0347uMq5P2/ZftS/DYReKQzvQ0v+de3rvfC7TbD76DD+03Lo6T8IdB1f8uDERkImGGlDXV7lIzM4M305OG7BE66q01D9D9xJJyzhExDMMzQ+ul+9q5haHrBRNd6GFHdEaVlNNmvdlutlYbqAGhUSzWAmz3tP93f/Jnw93v57IRJOx4QqIAcLMIxIhOf38iQent9blk4AQo/XBUdb/fz/PMzOM4ekSPNFJKwzAsy9JpfHMpbtVM1RXa3MAkCaVk4dqaukaEuYWHiAgIEREQAvhS3X2epqenp8fHx9bRZe5NlUTKMEQEEeWc+3NxwNIhSE7WtF+GTz/7dLVe06pYQGSRlCHgYZ7/v//9v/hXf/LHP/9bP/8Hf+/v/Z0/+MPbYUtEjMRMx+I9cRAiNqvqkRFN9ccOVD7iH/6OjB/c6P3N+HHHBXPxxbUTOLYffZvY7YJRHv/SmtgBINv7GeLYAXxWNQIhFsLNmLeZ1wzrRANjQS45pYQp5zKOnIVz4iFjQgttaktdzN2sq9xRbd6mVhI2j0ndIUTSy83KpimivLrbfrJKmwG1zer+2ODd43K/n5FMshfBVzfbiu1N1Dd1fvRW1ds859BPxvHvvnrxezdwKy5Cc6THSb/at2/mOgEGYaiDd6cOkdkj5t0+vn40kj94WXIKYOSgFafNzQbS65eZXm0HZntq8OXsf/F2Xmq8WuPrsbWZGwPx0syX2qMFj4hlae4BAEuziGjN5mkBjyEn4kSd440whEgIGCGwFCo5F0mzKOeCLCyJhFkCidQjSFLC21sC5DHnkoQRtC7aqrWqahEkQsMgZWQkdXBG0zrN0zJPi6uZV4Bnsw6jBMiwKnkYhnEtSVIZh9VmGFdlGEgSiMaB7ceJCBBMdVmWVvXp7dtwhwBiYuKUUhkKE0dEEQr3XgVAxAhvrTXVeVocBVzX62E1imub90vb77GpAKjbwFRWCQ8QWSemJChoZgtLBoTWGiIIoTDLOhdGChhFJUrBebfzOUdr7o4ONBo3G5YtMtNqHMsgJTcRIGQPBz9kBJEAHQGBgjAo54KB6IiBFMzg1MWXCSGMAAmYOh0bBFMwBHqAnUX+V8/SodXDwT1cjyBURMRw6q0qvYUeusqPmoWbh3sPVLA5NkcDUhAgUGgR6IAdb3ZRtO8cDNHrjP0JdjBwD8CobhXcGYZSIPGuLhutBXJCwjhrGOj5QT6I1p+aCj7SSd3NxNn7yy9+N2f0Omi56gG5OJ0IJ0Wp891ebv69LR+HFL4fQO3n5eWjcoKdPvhI38hH0j3Xx4kXr6+1U863cH4pzykYro7sw4v0VWPD5Tjf18UWrs4aHM/J6ZY4Z1KKs0/hAwqPVyftUovmbIYEEODh580278WYXZ3O74xNuZzVxQzpbDlDxIPmKZzSDB2NhHGucXkCVR4CgDPWo4466ox8VyJmxz0e9nKuAvRtctLvArE7bR0PN9RBjgICkRCDIoIARMRUu7hWuJ/wWSeIFB5koEBVA9Em65iu48kLAkKi8DCz0MAAOWhAHQu1gYd7od8kRMg8rlZ3Ny/m3TzVh8ZEAGoOATAtf/bv/vyTn329Xd8xEgCGezNzxCAEoGVaTixb7t4LI+M4ppzwyABmZk9PT/f39yeKsJTzqbghIre3t6vVapqm1pYAQwJAcHREU4iu5qhqiy1whpDtZhOdMNCs1qXudrunp6f9PEWEhnVJ+AQdInFgY+nYBGZGBGZWd2ICIg2/ubt7+eqlZX6aZlKo6qaKksz9m6fd9Ef/9s9/9auxjP/r/8V/+tPPf/IHP/85EWtr6DCW0gF7ZRiiKou0ZW6tEXUyHDy5eZc3zvOtfN0++L6b7fqjk6IX0VWu4hLCc2k3rt6du6bvn9+3xmXHPPYD/CvGSue2+qosf7EVAoIzI3PV5nE1q7PJx4dWIkICOsEpP3SUh2fzcpxWlqusEJxZgA546+YzKAifyeiu93EO9js76Ljc10Vny+VhnnZ9nPP10ub+LJF7dmjXZv/95ut4gfq/8rzdb0UqVwLDF3HLB3gzTgf2vOezKWo0dYeIsAiL7vVDQi6SJUmSPGYeC5dEzBFQl6Uuy7zbeWsRwJKG1YbSdP/mKVUn5n2oupdUbsa8/vTFzTjcvdis71Yypv1c98ZvH/b3k7dI7pHakkVGKbcEM7QvTe9bbRhEuhF+kekToU1ywgiWp6n+xf38i3f7d5MpJAgvTAHgSA4UTOoRmN4sGt+8W+GLF5u0XlHyBnXacrz69NOtOHh9U9uvHuoffzX/6u2SJd3kFBFEjCweZt76tWQWANSmboBIc10iwgwQccg5AkyNASWxmqUgZKLEFKgNC6eSc8k+jKtggdSbtC26kB2xFM48hEcvmyO4q5tWQhAEEEqZS+GS0VwBNNzrbnl6ez89KkSIwDAkQFc1IkqJANNqc8Mpp2GUMkouMm7S9iYNKxTmkazLYJr1xFxrre13vp9u8spdETGlVHLOueScUsrElFLysN5AToSqrc0LQEz7KROHNtMZvM77eFrul/0TqjIgo1MmFhEhJkyZh7GsV6s8pJev19vt1i3mqboqMQ4lDYIyMhOuy1BoXaTuJ1InD+KUcxomrSfAVC/qH+7iAIhnfUZzP/IAGgCpxymRiHDQsenIAKsVkYCo5y0Ru4YLOiLndAgNetfJ8zNFHWbivfM7zjqGA80UAyg8wsPMTQ+C8+7myQI1zCOaqZrFkTqDgYDC7KA/eMYGBD3v3XFhh/QcxuEtmbk6KDJwZo021V3wrRRG806XduwUjL5i+QGM/rz9Dw28tNMf8tL7ti/fvd/Xv9rXuWN9tq71b35wXt9OE57Z2YO7eTKszyuHWVwufs/buGwD/VDIcR0vXX3tQ6v2lVk+P+TA+GDX4sVhXiCp4uK73woDz0/OtTLm6eT4sZn+tCKcPN0+2X6Krtan8yl5+EU3/QXXJVqYm/dpn5bh0xU5n+75/L4jjP76Pjz7FV8BCeL5hkDm8x9etM8eo5TurV65eqeQDOnCW+zrwkmrBP1iz6fXJ1/h/aQO58dyGajEcTuI0L1ZdyeElJKbsTbsJgsC4lm7CY+S7XCKoMIRD6wTp8sK2OPVMHMGRGQ4RLAG2FuMD9eGiJDJwLPIdnPzMD48PTzOTTFRydlNrcX+cf/Fr3716vXnrVbGnm1RZwYhQqy1vnnz5unp6SQn0nmQT9AsVV2W5fHxcVmWfrrmeZ6XZRiGUsrJE2LmzWbjMe7nd3AkJnMEC1M17cQkupzukXA31c7rDBHqOs/z09PTfrfrNFzL3FR1HIYE0AMkRBRJKaVaq4ggEiI1bTllh1C3Yb26++TV7GrMj7ObaTAD9gKlT9Xm+oDw8P/4f/7Tn3z62T/8+//gH/z9v//6xcs6L4Q07faIuLndIKqZ7ff7ZVkO2udEV9SOF5wZ3w5ULr76wTvqcO9fZiVOH33o7cUnl9bmcoZXvuj7JxVdMfCYJrhuzv5w9H7hf1/FFRdm42jhu3n5sNLilXt8Of+zB/agpnrkbT+PHy4pfT+UMkPEc6bpzurxbAGeCY4DHVG+JUZ52vzzaggRZ6whl/u6gGNdHfLx9SEuuowX4Gj6rrhb3suF089GZyY4H3FMb30M+vXDjsDY6S5Jebvb7/Z3S+O5oQJFZlrzqoychIbMJQERRHhtbZ7a074+7FSV1DMnHziN+6f2y+XxaVxvGwAwYthQ+PXq5rPbzcsXG9kOTbC+2y0P9m//4uu3E+SbLXY4S7M670tAQWMytcXdk+Ddani9SrcpgGlSf1qmP/7q6Y+/fPerd3NVYEFGEFOHY12JCDkZ6N499u1P3kwt5GeSt+xDiler9PmLLZnd7x6nGl883v/qXd01YoYITQycJOTAZghHMA5AqHpEcwA1IyImZklCZGrVl1DzalHIQxxBiNwBAQhJiBLzOK6IxL2Lk2B/XLrXzITe2yX8wFhL4JnJCHMeyiDMEVHdm6otS5se6ryz/dOeGIdBIoSZetqso4pngyTMnCWNWNZR1sbjFMkbavWqbZqmZV6IqZQSEXWxuhiBqql7iHjODjC7+ziOq9U6hLuDSwGI3uoCYUVSc8zTDkPBqtVd3U9al7BG4IiyGjIyspAIpcTjqmw267u7u3E1YI4k+WmeH+6nMM+JyGO94mFMkmAcWFIMAy4aRBklD8NmHNdwtL9m1rRpe+7EsPn5daetPL7D3aJx0rXsejYEEEiAPjMdHvDulBwX/cBd3cNzJvJcwQAjuMcKceDIf9Y66LivDj8IDIpg9wBjIPXmQRJu4Rym0NtOgIKCABwcuybkM19kAM192+F20PXtrfZKYBBkoRGKgKCzt+R1gjaDVvgoD8e/b+OkJuQfpWr9aMzxA4+raXxsVj/Evs4Xrb4Yf8RL+Ms3eHmevs+mfsBB585MLxm7q6qFk6Tu718t7XCUAjzRuF/GZh8TdPqNjX71EAEDkOjQpi0ipktzOHYjnHx6dwdETOjuHQ98lbLVUAhAJBGhD1+7iPAI9HBw9yh5WK02eSjTtIumMmQhDtW21HdfffPm62/uXrxY3RCN7HQAxkJErfVP//RPe/Kr6yGO4ziOY0pZw5epzvM8z3OvtJyOt7YGR5/ppDQPACz01TdfEyEJI3MzrdqaWWutX2u4lAbqOaJjpugwENFb6wKUSMQk56nl1WqFB+IBqhrkrqaA4Asi02aztTqJGkkii86KCV3sqtNlRbyb91/9q//fv/nTP/7yzTf/2T/5Jy+2t6ub9cDU4V6ENI7jZrPJOcM0/zi3zF/78ZGaz4e+Bh9t2/41p3EVBnzvtp8f3M5fbPDX2vivd6JOz0t/dn6TgQqE+Iz61f3jr1ZPP7m5e1jb+saYbEgBhZwoCBzCrdlcl6f97pt3+3cP4S2AEVNi8QIyji78xeMDL3VY3+QxG9h6lVcllYLjyC62M6NhePji/qt3y9c7L0rjmm5XGYFQVQRWq/yK1hPi4zxtE7/ejjejINZvdjY3f7Of/+0X93/+ZrdrAcCMkszE1RDBoRG4IxACoQXszf/sqS7xmCVefDq+GsuLQimTOoatHx/gqZW9LRaRmbZj2m5LGnJDFNSDQG9np9VQ9dZUzfJQcsql8JBLEmlLi6qLz2aGKRsc6u/R+0sQhSWJi2QzX5bqASxAhOFIxAgYbqbqbmiMKQkjAVLiBOhZmNG8taXWWutsy96XXUArRDPCIZfGwJ3oKsLdbFaPjAlzTiPk0bhMRqre1FBrrUtfHty957dEZEirt2++0NrMjJmQKMIJcS7LbphVEglnliRkddo9PiBYFtZlLjGvBy6CtlRtjSIYOWdKXCwzpd5gScRAhGZtt3usbVqsbdbbOnub3VVtcbBFMDMOiQsXJuKUclNQJzME4gAPD2YpJYukpq22A8wXA9Ndp6xBgIADe+ChTNrwOSFxSsD0igOaH95EqKmq9oJNeCy76eSOET3DJxwR4rD2e7ib9854U3N3D+vruoU3t+oKB5JHhIXAQcMjQsM9/NDKD2j1EOicFwT6mGo4oB+a8A9BmiqbR4W0aGthQcCMa+EVWK4LTTsab/+mjf00vi17+t6Bv0EmgKt94UdETr93FHC+r4joYM6e5Psoruw7bRAAzpICv7Vx1ZHSj6611lpTN8eKhF0u/Soa6c3cpyM6D2Mkp9Prc/f3Nzxqq3Fg7wXyiJP4+rFC2Km9To54RIQHJ1SzYRg6hur8Zm7aCKnLmZwDXK/HIWPjjh4RGFCGMm42c52amwMhoUVblvrlF1+++vTLF69eyjAM4wAABqFqAPTm7duHh4cXL164+3a7vbu7W6/XpRRierh/3M/TNE29h/7kZSJip9astR6uoOrDw8OXX3757uHtF9/8eRnKerMZ16tcCjI1MzU1d8ZD0eZYv3q+0O6eUhrH8ZCYq3W/37fWRESQu358P4e9q2e32/UG/eYGCuY+a5PVUIaBdWHmJBLmrgYegMDMCAfC28kaFtl7+6//xX/3R//uT376yWf/q3/8v/z53/r5ixd3+8dHcGitff3114+Pjz/ePfPXfXxHrdWrCPyHb8y8qKL8AFs/D6V+kPXl+7OwdFN5evsdQ6n+wJ58kh83ULms8gUO2QPfPU5fP+7e7eaH/fhiKaOxgi+mGI7VMFSbtt20vHu8//qrxzfv1qsVs3Ah4bS4USIZxl3Vef9QFNc2Ds03svExY2LM5OxNG/DwsNQK+G5azPQ1bcehDMLAAZnGQq9zQUpvIAby26EkgcXbw+MyLfF2pl897B+aOSeEYCT0digzQiCEaXNAEmQSiHhqhvcPn5SafvZ7dzdDgqpWazDkUQput/y6yjLt7lb4cjtsVyMLexg8lwtRLeal1UWX2lqzF1KcgYhTSjkJhi+M4a6mHBxH6vBel2dEQRDCgFBr01wtuICIyAHPR1SnxbS5NVNCdKZ0hMxSxfBQb6ZtmeZ53re6kDcSLqth9KiI7m7RG8UBHMICwpCcAhNydkxu6A5LW2qt7emNa+trABMLhEI4E7jTUrFW1AZEZkYI42rFddFl1pQlSZRMWcQdEc2CW4tatzfDOAiB7ed9V79JSRJRSlkFiVmEmEmEkElbe1jeRURer7KoG4VjBLWlhpmgYxCPCZmFZCgIYMt+eXia5mlRi2GzPZEBHDJYh+ZzulltLrg1TylkCM/PgUpKKaXUVeLNTUbxcLOeaRMBQbXQFupbplOOVlJK8uy1IIgHnPJzcKzhqKlBCwjz8Ah1s14bpaBAXnoLfli4gdsRaRMAGRIc8SdufgZNoWX28J6h9E42ZmZNVSP2NMyqzQ0ZIywT3223L8ayTqzg35IBwQCC6z/+ezGOKJoPLninr/2olY1v766/iI8uD1do6ufOwrio/hyAFSeUxeWOTuO031NIfIFh+ACaDN+3we9wiL/BgXBAgPfT4n7QSazVTGfrdil1yfDzKGsxo+Ng4fMqyvkxfs8a1F9tXO6nzdUjxMECGNB7AKaqqv3qnEehPcfpEUJgrr2aDce8aURAoKoKJ2ZgJgA/6i4gnHdRHWgI/dDPat6WxiRDGSWXNpsHIJMD1Nbs4d3T/dtpt+t6iyeYJZi+e/dORFarVVNdrVa5FBJuqm1qT/vdfprmaer1lucZAgTE0uo8z09Pj+/uH77++qtf/vKX9/fv1G17l0hhquRkU5sNXM2amboNOZt502ZNA4KJcpKUMhGnYWAmh6jaELGFTXVp2sbWclJkkjjwp/XzaWYBHkAeph4U2Jrl3pwfEW5CZMiKFOAIhEidzgEhOKW220XK73a7x93uF3/xy199+eVPPvv8937y03/8D//nKeeS87BacUpR6zM38Rn9w7G0dHz7G3zU8LT7S0nBv5rS4tmcf83Jf7hv+4PfxAvdd0S8RoJ9aAPfnjwcTj6ddawdwMrf71pcmZTv+KuPnMNrDN6vG6v8VWd1LPJiT5wIdxlW128B/IDO6i10vtjgJVbvMkF7rp4Wl9hrXoqhRU5ftadf3H/52Qb2X1vxQZrDDeachT18afM8PT093T8+vH2Y98vS9PZmI6jqe+QkpIjkWPa1vfnV43qYPr/b7sEfQG/Xm8mwtYoQv3rz9eR1Ip0zTU7z29kC4251O6YdSLivqW3X8gfDrS9LVjVdPVr6egffPO1/+fDuTW0VIywwSJsbsEmxiN6zjEjMFOrmgWG31H62Gf7w1d3rYbgbxpHG1pwVEPgm8x+8TJ+msuyWuyH9bD2OgcmxSGm6AwNtsdvrbrb7p/rmYa8GJaX17Hfbcne3TRnMlCDyZlBkWNrNlkspAmIzugMYWqsAU862v/8il5xWoyRho8Qiklpryzw9fPO01Amw3tzkzea2rEqSBM7qUK0tT8t+t9vtduaWcy5p5ILhNrQEQCceKRQZNoPhvN+3ZTIakkO2BuELYg0kaC3qPO2+YcJxHCFimp7cm9sokjx85wslSFkYkQI4jGMSo0Q421KkZNPYOwKWiKatSHp1d2ftQZ8WD6fgXNZGOnJa5mVuLYIzSSrjMA6IYG4kpdchvNruccfEHt60mjUNgglq6MruN9tNKauIoEyFhoHiAXSem06LWqg21UaEkgQJCYmQFMs5OPbsJo+oz+9rLBcN00cMvYfHZdJ0UlPViEgibI5wImlBxHxgYY9gJjXb7/bLsjiYsqY8sBRtAJAR0KwxBTM+xlyGgoStNnProk7cOUHNMYABGKAzU5ymITd8jk89S8OgHY4EAxE68VcqJRVhrvvZgnJOhCgiLJJytkBO+aMkrhcNFXixWHyk/n7++ytQ0LmW1sVXz7scDhhcRCIBgNDrBM8zxhfPVg7yc61BIo+zcT5D1Xq+tYtxVsoIuJDNPa9yXHmpFxb1Ei7GlOADAy+EDC/seW3Pme2rMCDlEhHudpROu4Szx3EOV4DysypHIDkgEPd1t3XAJDESH1aKHv1EANHJTYGI0xLZRb1PG/SI896eK7g2InbxzYgAc+i6pcfi7+mbl+nPuLyNLtevs++da9/1Diw89NtEeIUuhmrBTW2p0Rad59pq17FwYSSuAOYGADnlVPJu2REnyYklS8q5jGUYgMj9+bb59kjdg/HDKeLL9pXz1xdBcnyYD9rjKKIdh/AwAAMoYJ1yned5XiCig6Bmrc17T1F/OvoZxN52QsQ5JY+WBYfMCK5tQZReRUGiIa8QACNcW2JITOH9URIV64SUAowp1XCG0GkhjNWwERm6sORf/OJPp2Upq0IlAdVM+zdf/Mn+m5/uX35SZRxevwCKF5Iev3pjai9efQIkn//0s1KGqro87pe6LHXJm2GUMY3JzCgAIswMAYTlfn//5uHh/uH+y6+++rNf/Pn9w70D5CGXnNJWtttNGVdV275VC6geaq7uChUpIAEIJ8RwX3QxsLGMFgaBhECMFrG0xiVh4q/evVncbm/u6n6C/TTmstnoehiHMr55+0bFiVCABRgAvXIBmN7dg0eRoEIYVKt1ZeRDZGQFTAABAABJREFUK0YQOsu4BQAHUPfq9q+/+OUff/2V/A//8l//4ld/+2//wcvXr1a3N7TZ1od7YARi4I47BICj2uO5FT1/DRdW9NwqX+upOvT+JggIv8AxXkoQXljLi26r873HRwsWZzrlXZ/03B8/X7/OH2a6tBuHiXV5ZDkT2Lii3LzAOiGeCWVedLZ0mmz3MIMISueVhyujcjwzCH70v3sv/imGOeppnj3ml6FU/6CXJi6mFNCLloiMePGrLvto7n1powtYmZ83tDHJt9fsK+8doHMgHYqKERGqQJ17jnouFk6tiXqJrLsISc8xBYemRUIBBDo6AV3YTZsdbhH+KD3xR8Z3ZZQPwOONiIGhgUIAqOBzmx/3Tw+PKKQBYeo5ZyYK9elp9/jwsHt4eLi/n6bp7u5WEmeXjLlrwOQiKSVAe2qtmoPd+7LU3Qhgc10HzA1j34ZZQSGWsEbJAr583IkYyjoxCkRGKIIllxCqam2anib9i52/naY3+2XnpoiAQJ38A5BIMIjQIQh6LI1ESAL8U2n/8c9e/ce//9ltDmpNSiIWBCbgn36+mpdl2eb6JKPg3WZYjzmLMKHbMNVp2uluVx+n+jTNGoDClKQMKWVOmYaBzWEhQBJJg6q5P/XWpPAw9VpVVSMM0JhZhFKSodOoIbba4VzL/eM7RF9tuKwyCWrUMDC11nxSf3f/8O7dO1Udh7HkjJyYCTxAFePQdoWIXccQEAgw3B7v78NMb2/LULpFqK21ukyPD2UcJHj/8HT/7iHnQdc6DAMxa7MswjkPWaJVmyfvizqijCDoCQyOSLWw6ghhzMgBGG7uyEwylAD2ICDzAJGBpTAXIqReL8AIilafCE9slrk1bK3t9vM0z61BBMCWiBIxEMSQxVdD4vzusYaptdo6rX5KpZQ8lpRSd3GPz577syN1kLY9vT03+4nB3aJrEdCZHUWIcOxUOAh6zuWKONUnNW+tNtWul9xUCZFFxs24LJM+La1BF59XUyJPAphY5j12oetu0Y6wDdTnJYeZLgjm5dm2MTGf6a/nw2sCoIMyJ+DcGlQDyHi5KsThm/gDYIn+Zvzg48zZv65XnHKu7xsfsvMfSYx9PGd2uUE8/fHcJboKlkx/eD2WX2N4GLqFeqjrvCzTvFir89xM7aBTjae4FwA0Z6m5RmXxruJMxB05hADukM6D2B8C8v7rjWWarTUAkJTcvet5d9Nx7vfgWa3MzAAw5USMcSAO68DgCAfwIAQ6dDWGH4RoEQGB6RD8+BERe+ARiTDfbjZSqOksLKrLtLRNFuEhgy/T7usvvrj7/GcvP/mUEad5/2j28O4dCa9Xq3EcUdjANWy320VE13VBgN5u01rb7Xb7/X6pNSDe3L/9i1/+xTdv3zw+PVVtyExMnFMas6wyJDIKJ3QKdXAIBXcI9QAMQqRARzL31gyALWI8kIwBhLuqaQ1TBCACDV1saU5CRIFSCdHntlio6sKIAAwgSCyehiIIJoQs5IBsTO4OHo4Hpy46VcmxMsHsES2iaYNW/z///J//mz/9d/tp//M//AMUQSYnxINW2W9HBegvzaB/J5rvD3RKXCy832Ea8Z1JNf7Scbxzv1Ukfu+Xr83t+z/6YUccO9GPl+D9J/q7n8NTku54MgG+g7AvfiQHefXN8yn2OR/yWL9uoPIdRy+U9yCUHSKgsAikBFSX+vC0e5NAddrX6Wn3yMyCpE2Xednvp/3ucffwOM+zWgDizc2ARCCICOvVehwLPMxWyhxxr0G7mSE2q5JSYvZgrBrkwpQBWgA01/t5yk+VxT9fgTCNSTZJVoJuMs/L027e75/ePeFOPYCK0CozM1MARedYjGPq6pCoFpaUU6b4j27z779cvR7xxcDbQkPKgbnwMBIPzLUtdS/tpmT0bU5DJvIIs9pwt9PHh3k3Lc01Cw/jUNbjqpTPXm9vNsN6PYyrZNZSUm2gg5vGw8MejzdHb+MDAGbOQJJWqQyllJwzEXWqk4eHh3mekXAY0nY7rtfrcSwsDAEKTdW+/OLtw+NTrXUYBpGCKEwpSUIIbUuXBnUM7IEZASMJRYYK5lCdlHLXyUIU18q6i04aU2FZfJ60mVMCRGBOyGiuS52XBta8NQ4AN8BIKBSOphDBiOFuuiiGGTGgGbTWc94a4fMyL8vSqjlAzuGGZpBTIsZjxiQ6HU0HB3fQcKfSN2utoqpH8Hq1SSkhUs4DIg8jPu3fmKOZ1UMiy0SESHLOAHr2RPuxvwgC0FxPMBnsZDknlj9QhvDj989zC0NJhKTqROGuZs/d+Q+PD6cNEgFlLEMZhmEYynqzFpS64OPjtN/X1poZAUZKuNRq2vpuO18sEPVcsgX3xxEgLJ4z7wgYisfkSvS7/TQNr/V4yN3xEEIRESYJ/Zto5K/TuJLo/f7Aqo8JPn7vllPEiwTt70SY0tOZqrE0bFaneZmXpXepmNbWiQDtBKqGjgItWQYR6WkIQhRiI1Vyd0fG3wnJvJRSHPtt8MjWeqitfUvD8YDoAyCkVdkclLKICOnouRn4ARVDROGqPdsKAABMRHhkAOvQ1gPANYTl5mZ7y+tm85df3Ty8+XKal3VJRILR9tP0Z3/xZ7c//dn6s0/zZkgB1EV6PXprUNdC6f0n/Vq8+/LreZ7vHx8e97v9PO2Webffz61CRLiqKjPnUjQ8CDnJMI7jekiDGEFTNetaumYQHubh2hwRkRiQAFA9pqUB0DBSO+vO9yNLckqJGc2XZQEAKDkTtyefa0vWWrO5trnnOg2ZRPIg4yo7qKSUMQH2JQ8QzCwOifmguHwg8EgTDB5C6YsvflXWq//xj/6tQkgWQ3DoKLPfDpbyqkj764nA/iDikn0anZT2+28t4kDMCt8ZA/YbHnFk6jsmHb5vp1/HHZw2CIcUA5jZR07p1Q3wHZeD/qs4Btg/YqCCceC14kOuNZLANqeMuBZHj1rrbiYMjNDd0zsmhohWtTWtVaf9fve0W5ZqnlIZRCjljEAIPI55lTNhqGTw0LCGuFd/nPV28TEzgojSiGnLeYsTWFOCJOyqj/fvfppTxrRmuimSKRQ8r0Sw7Je6tkiBL6ikTCUnpiBw9uDwm1L4mJ+WJDnnUsowDgPz52vY5Hi5zi/GUpIgccgAaQVSGmhr0lakS0ZtCZzCdZm16tOTPz7tdvu9R1uvyuZms7m9uXlxsx7L682aMSRRSuyemOuytJjN3ZiPrN6d0O2IvvXA9foWiJnZ3Wpd9vvdPE9EsF6vbu42pfAwllzEI6w1U5+meb9vTedSUik5JWFBYhDBlAgBlTCAei4QO062wztQN6mtN8Pdi/VmU0QcoCJA5Va5DXIzzxWxvdykHCtEGkdMKQCVyIlACJkCjVFKuIVRhAljZiyCEeDmqot5I4Nm0jRMvbXagwfV1pXuW1OWog0h2B1bMkTsHRgRPgzYISInZeKOHXenurQ9zcJ7BC4FmDkCUkoCNIwlMGYhOCpDuINZmIWZPjv0SEh4ils8zpEkdCqrI4QuFU7Ir/AToCUADGGprdYKCNou9Lk60qM/0UiIAIyUgQvKyPD69Suh1S9++dUvl6/qou6GBO4EHtrU3ZMkEUHGTqMOhEbP9KmIF2yUZ0YWhUXkfZXurhfZm/PVDIN+5BzH34wfdlxhl79/oPIR7PL3hzW7x+9MePI8zKwTnsTStDYz9aMR7pRQ583ZEZFzTiWvb9Y5R183mJKzugpQeGA9IxJkETn3xn6DXuVFl/yRb+NDgcoJJBkkOWdmhgMDKUHXTgEEO1RYCMkDXPVsm3gkjwww92NVGTBWm2FVMhV+/erVJ69fz08Pu4d3TVdIwWFufv/47quvf/Xim0/H9ZhXq3ma/vwXv9wp7GsVZjuwgBzIiKf9/stf/XJe5t08Pc1TCw8hKmm1Wa/W6xHHZZrM3cINgpklpVTKsBqdtJlWNdODXe8Eb+HmgYwEQsSAga7WahWiiCCCMHdrPVjVpkRIIInIbbGlhUfBFaA18yCGrjmwTI4UhI7CkcNX4yoFqEhhTIwh7h6gDhB+hKbgOTF4f7iQuQs8j2m9Ali0dal7R8AIDbdLMvHf5EC8Ngi/1kYu8L6/Rpxx5l73Ysj3PiEnGt8Df8b33d4PPk5Jog7H8u9tUE8n/kAZcgjW7MAj+qGr/AGq5Y8PPKNQDgT5CF0mnpV1zqOiU7H26svH9hcIDwjAiO5TW1UiTMwj+pbxppQ16U3hUpjIwbHNk1kFQPdoTeuiy9L2+3maZ1PzmG5uHV4WdfRFQXg7jNv1UFIiD4O+M2rm+2mZl5ZTYY3B+Qb8k5SmIT9oGHkSFtYUdYNxm+Bu4E0KwQimABwSoUB6mYIoMQ1JimAWzD1+8lbCmLALg3Qmq5zzMAwp8SA2ZFolESECDBJII+YROY2u3lgL6yI6zzpP1lxVq9Vpnubl0XxKCbcbef169eKT7cuXN6txSCB0cFUDkVICMycKJOsVAHe3g0wYdL1b4jSsMiJ7RK3Lfreblzllvr17sVqv8ijMiITuMS/LsixqHVxdc2FADA/rzFBAVSGwEaBBEBxiIWZ0DyEXoiHxsIXbO/jkddpuM4t0j3ie5/3O5gXnhK22wjFIcgdJzlQDgMlTlpJASDDAVbU5dp6tUaS71wjzskyoIkDUwYB9+QwzV7V+0J3EJaWScxFJANjOkprujYXd/VmI4BhkMjNYtIa73YwotVoXssw5I9NqVdR0GEprDQIO+jZq06zOJ/++M+CfgLEYQISMByo9OKE/EcCbP6McerP6YYrxbv/YmplqRBAT8aHdE7vSmrubm3uPiDwac8vp6bOfrn7y+U9utps/+/NfPu52talDYKCF11lND5oVOTgJB6I5IAaxHZG8fV8MB5IAJDw2QwNGOLQFj4PCj26FZc4komrheuhJAFbV1JmVo9M9dRzIh5elyzr3RZPKRwzRBzf3rY8+zKV4sZJce9IA71MhPFLrHf54agZ4zzQ+fMh+KXp1jt6+mi1e/uz5k29NGC6CjecJm8f5JC9Q0lc5v2/FFcwccC07eGHmj3s73KXnCdp4nhIi4ll7iR/RQv1UXmz88qJc7fd811eiZnB52p6v0DXLzYdXxI8Rkp6/O0zK3U/Ah6NT3/Wv2CPMniVEupxfT6mUUjaI8zRDYM4ZzK1pw6XfWWbOTNQL9IQYoO4ABxTSR9yoj9xsl3f8BcqFKPAItTo4Ft0qAlZVOCatVbW1FhHnj8PpDuz2U1U9QohyziJSlwbQRDACkBCASJi6toNbuFsXs3d3dzVITMRERHa6QIir1Xi7WQ2Z82rYzeNmsynjuH96rBYYMCCSULP65ptfvfnyk5cvXow5f/EXv/xv/tv/7ptpBjgAz9RsWZamDQKYqE0TEAZjGoechUumIclQSMSXurQ6zXNzI2Fi5pwkJ2JRNzXo2ik94oIIRhdGdmREAWQAQkgEBB7etM1pPSIyQ9TwasbgREToWQi9y14F19rJRqLWMIdwNIvolJPgQOaNGFNig+CcBLyJojE0817Aj25BAo5gu+4gEjMLM/JsykSUxNxqa5xTHEAgBHDWmnLZRBF9O92In7U8IaK3I44Aj90GhzaCYwoN4PgcfwBZdPnRs0mNqzv0Wxb7TGrp6nmNixdnMIWjx4zHB/L8V+fEeh/xe68928s5vefY3AHxvPXiugXIvTdyXJm16/ERWFocCV67NT1vdPzIgRzPxOEp/nDZ53paF0C1iwwXHK8LHJcCRHye2xnw9eRUAF6exMuNf2j+x57CHl6ifMQLOC4xfrxXnuH17n7Ox3qKVgMRIYACzSOCAFw9VIllTPzpmG4LvBjltpTbkW5HWiUcwclbeDS3Vq2qLXObpmU/da5zmeaYZjdnVQgMJGdJN+v1dpVvQN1wFbgV3gqPRYYiw1DAnSGk0N+6GVaJTCQEiTyRC9hdzjercrMuhb0IMVM1Xyxu7zY/4UyEA0smXAkPJQmDmS51KgMxEYswswhLkpxSSllEIoIBiAmRgAlIIGWSzMwwWQQ1Z/HU1JxqtaU1q83m5Wmen8ym1Xp9s8mblawLDykSutaFUMKxVlU1D29V3R3Acs7u0MXs3T3gUPhOuQCig7u1ZdmZt2HInU99GEvZDktddrtp/7Q8Pu6maYojfZckcTuoAjCAe6vVVBdEMjWESIy5JGaKMAgQ5JDYrmUoKMlyAeFABGYIi8pKqLkEoEFVIkBAJCMEJBzEcuacAEKZOIyWGZh5GEqShHRoKGEK5gNKCoMT4jwt3YSmJIjAjDmLWaRcch464WOty7IsJ/HD1WrodqEjuOZ57tgAM2PANrVl1mk/l1LKkFercb1e5wKSiBhzTqUUVUdEd2hVzQjLcNBnxAA7f26IUSglAAxTu/LG9KBl3GMYd5/naZqWpdquuQe5ywFrAX6iDzZwCEKAACRCj44lAOF4/fkqSQnAr765/8Uvv3RkREImYCA74X1taU3kZJSjFDyRrNBZlIWAYxl64QUP3X2AhIyMgOrOQoioFmDmDtEMkUV4Mg8kNU3Qe5/DPTqo/SOMtBdxyTU496MW/PlLV515Z2b06kfnm/7WEvj8UcQhZkPEK32ro5U/amn9OoFKH6eAOT4w4atoxD8cw5yibjxbFc6OBXpAfvXRdRhwPrfnmOd6XBBcImBgwFFd8fJy9XN1SN2dtXRTBCDGkb75akeXcer5igjn4pJ0vArv++bzInUFtv5Y5u4jofTlSTsFJxHeaoXWXNVVMYCIhcAjeq6yf7k7+j1WAYBxHK01lxzm4GGtmXWBdlD11VCCEEXoSHIRAJQSFYkPPw/X5/BDEfjl95AIo4M0oOcW8FBcpe12u398rLX2X3Qy6Jzz6YT35b+H3CJSayWicRwRsXMRAigiI3QtSO4KdKrqGowHtRnol6lZpNwjFTv8pTHi7e3ti5ubYbWiMTGEiAzjSvLQ1IgZMiGBhT0+vf3mV7/4yetPhpT+6N/8m3/5r/7V23mJHvcQIiAzl2EYx4GFy80KkIDJGYORSi6rEbNgQJtmYDIIC0ciSsJJgLDXWMIBgsgh3ACAEboW2YBIEAQGEQQQDFUIwaPNbd4zCyEkQkdAAkakcCbKnBGAAhAAmzERATVVrVUSqzvGQbAcgkSo5OGpKRc2IDZhD1JD884admg6RwSiU085IgaiYWBKHuFu2jHbps9rQP/X33Nb9QYxP8YqZymHQ6d3/6eno06/omuz9P7b9co7Z+bjs3xIjLz3V+dSgBDhV2bzosByxgB2nCEezONZxuSK/vsDrnPfytlHlwvHOYTp+M0AiAi63OClmC8QkYic2tDfe8hXEzn/0uknR6WmyzzGhyoZR8N+cIRczz8631GnlHue+wc2ftrgYZtn6yZ8yy6dZgvxwcjqI7piEREOQEBE8HEdlVO59tuTOL/1LvJkiAdOdHcIN4VQRY9S0jrnz29lZe0lwyebYbvmknyVYnSgJk8I0UIjXL01W6o1i0BCEoe0n+3xcSlllQfRcHfdrIfPXtzMuGPkNcOWcZv50xebzz65HUYxVVgguAxr/j2HPI6UGMk4DMF98ZJozDQIlMzE1AI1QAOMPQFlwARUmLtOYnPQYcUrOjDld2lCIhZOQkxIljsNsHcyY2ZEIGjonS7EQCMUIgCC3KA2X2Zt1mpbWmvMJJTAyRadHmrl3llNrfp+t5gBUkCoQ4uwkgY4hplEkFPGzCklljQts7U2z1OtyzAMd3d3veyDjMM4PO32X37x9puvH3a7JSJSQknCDNNU+1XsACS3LkxGhIhoER6JpAGi9MC4q6YjJneuS+x3lYgRgYhbUzVS7Q+jAQYzMwsREzIRSMEhS0rUV0ltBkGEnBOXxAjsnY8uEVLyw7PDnKUui9pCBCIMCMTsTuGBTCkhcydsdiIPcHRH8Ka11jrPMx15Ko6mCplKq3PTZZpm5l1Kstmuaq1lKEEJwN0VEYTZDd3CyB0czY9d89GJwI4PAFCg27PUwOmjADJAg0Ow1LQty1yXOs9taW6SIw4/MbMDbbCDA9Zn+BiEurlpcyLKgMG5ms9P8xdfv/vi63eQSiChMCKMnM+e0nZmZCOxnjZ4njVHgFUZut/bzcqZ3YEAT2lIIoclzDkAhTkXYvkg99TfjPNxClHg18Qs/JX31QOVjy2H3xuJ8d4N4lGc64fd+G9xdKNhh6FhDVU7yQ8iMBESsjvZkdmvFw1UW2u11q5Bvt6MBIgeEG5Nza01RUIAXiCYudPrAB/jIuqCJt8blH95B3zkqozDEKp92n5ZlTqlgft56DeYiEhKq9XYKdOT5HO8KBzIDwIAHALQ47nphc/7KxCw1QaIt+txNY63220ayq5NHp5LXm02UoZ52mOAMguCodU23X/zxf2XX4TBH/3rf/Pu4QGGVdc0AyI1c4eBKQ/DMI4aCkwsjMIkTDmlnJHJzfxAac8E0T/tOsvVNJpGOKpTJ0gIY0ICEogBnY8hAoATeksAEAl0nnY5l5QSYiBEuAUCBIUDl4SBnQzVWnPVIWdiDmDBjOAExJBzGrMMZTUi5nBzgEDknDKSBXjQMZ+I3j1OPPLwHcSyADqpYI80AE5syIdLKXxMMUT3H04fdR8azyoYp4Wg19lOP+z77VEE09lHf4WW7B9xHCKroyH6UTvAruOlv1bjioD025Lw32X8Jk39x+Z36pvpQfDFR36Rd4z3BSroHoGMlHLarNZ3N6s17V4k+mxIL0der3MpUdiLKjG2OcwjYukZmghiTkgsMpbh9uXLT1+9/uTurnDy3bzXBi9fvaga43C/KnmbUyEYBe5uVy9fbjHFvFSLSHnYWgGUnBNEoDdwhQBTAbNEXhKKYCAUJAVyDCAnjxwkjta0zmpImHMuZd7vmAnEgBEJgyAonIKQo9YI0ECHQAJiQAhCB0CCbApWW6vV1VptWiOcCGW9umnVnp5kmeDrLx/3T7bf2jA0ZnJaAFgbzlNzBxFiAUnOcoD5ElE4iBAmZkoR0Vuxu9XIOa9Wq/V6PQxDRCx1+fLLr7744ptf/sXX9++mVh0AJUHKzIxuhMhECIgpYVs6xiwIcXNDgb0v4QAAoOitR/zmTZMUjw+Qc5UkTEyEABjgTc3D3MAdEHtdNIiR0LMAmAMBAZiFtaiLM7uwrVIC0PCwcERIQoDgCAGoS2WJYRA4JFpCpE8HzSElQowwJw5iCAg+tGNgv4d7jaULULbW3AFQWvN5bu6KFCLcu+dzSWlYBdC8TKouIkFMlLCXF6ye0sgUFM99KYgI1KPQaB4ezwSHuFPsHkBT3e/38zz3xFUQLhYWHQUWiBjMjhToHrFYOz1vRBSAToLMkOBp0adqiDapz45gBCzhSIS6BB14R3sS5bRKheFztQWuTMzbmQCZ+VC3Pfz04JwMw2ooAxGzJKZEJMOwGi1e3fyWejP/uo1uPOPYhvij7usjgcq57B5edTd+7/32DZ76yPl3Q3D9+4/eFd2bT8yUsZEZmqP35upwgs5octXgcX7yhZh7F6+5ui9L8wAUTlLCtbv4zwnsQ+7zBwhU4lKrTj68wVrrarVKKb158+bQ930c/Ubqsusn4paUUi6F6CBteUxoPv8KiY4ZfA+H3jVIRMx03s/r4Ri+Wa9evrgbhoEIhEBbw4jNevPq5cuHd/dv5wUQe+O7oy3Lft493H/15f273ZuvvyllqExxvOfhCE7rTF+VAoUxZUnSwb3HpFWwsOTEVRyB5CB9Y+GtacwNwTECI4QxSyYEJkgAozU88GBSBCHpNoO5IzSP5EeEWz9dPW4HggU6fSgggCK62VIbM9NqNcoA6gCUcsnDpqT1sLljShZLq9WDontCKUdQ505zh1pneK4iPrOXB4CG9ZuJkM+XKACQnE5R99UN0FEhPcyGY0m2GxPFQ+x6+hUdFdiY5Oqj3/44GqJ+98OPGapcWVF/X6nqd2p0YdY+zm+DX3veV+KSP2oa7mOByglI8G2MwVkr0pH5uItjUwQ4eDg4hvey9prpxZg+GfMdTz/ZlJ/c3G4GloIyRGbP1SGIVVA9Ano2npmBUCRLHn7/b/38D//O3/67f/iTMsB+927+8peC7S6vwnwjeLteb8dB0CRstS43dytFRwEnTHnIZoyUU0KPcATl8FgW0VrRDRG6Kl8QRWeSDo3ePO0YhkuDfVt0qiknm/cdCMosXSYcCQkRkFKIBTR3i15qDkIlV4hY3b5SjVZba7V305gaEUvKNzkTSQTfv7t/93Y/lN3tbduut5LY856ZAbLWCEdJnIFIiIGI2CwIySkYWTgB0LIs0zRRQoAmAikPw5iJEQla02mZ/+QXf/71N49v759UiaUQEfYEjWHiAVG66RFhFjkk1ymIDcAOfR1EoT1zEoDx9dc7YhGZe8dOyhkQk4gIAXkAdCuK4ISG6EyBGBkdAsIZApETYWIKpkQ0mEeEqtuhFi8UB94reto/IuNqM6iqiOScEA/K8GrAlBCxmUaMAGCmzTQsEHy7Wa3Wa3cz1VyKpNxqjSCCXJdlrOveFeWuLAzI6rDsdknyPM2mMAxZUkYURAakxeeTFD0gI5xRGwEHoAd6dBmvw0eBsa+tqdXaaq3q6ozarGlrFpBXDuBwlHo+LhXR602njTdVU3dHEe+UoJSa46w+qyNCQGAgEJRgeo7RLvpB5sBTlHWN9zUkQA5CQjM38/4/D1+WZbWi1YqEMzMyQxJYoTvBy7++2aRfd/x6ZvgcmwQ/chbquSB28nrhzIv51qze98n32u/hMP863Bkn+YKrP16gL9xcm7amraq2p+mBPNicLBJxSskRevHk/OEFhN7K2F1zxAOyxsPdova6cxIMJBAKCJbgg+pRFytBj0vK857JhvfM+MPjPF7C40bwhJQ5bDIAgPgQZK5Wq96MftorEXWHph9g98yEKIuEe2IGEVVzVconGLmLpG5lqJN9Hg1Pb2o4JUzcPCHe3t68fPlSGGtdSEhbi4D1am3m6/XX7755R5JU97kHRap1mb/81S8eK94/PXCWAAKiXudgJhFGIQdvYA2DMRIBMrKQMBJGMwtvzIQIzGSBzMTcYyo1MNTK4QhBAEXSmIQRGFHA2ZyPlyAgANGEycEDiAQB3bwui5p1ajN3C6SO9TncWsLNrM3zahxfbLcjj6aOwCnlUlbMZTWsGTM41aU5dOwGI5MkcQZ3x0By9TAAjM4ejREEiNF7DAGJgLGL2R8CRkCAVIq5NVVQjEu3mgjce3gJLJJEiIgJEGmvBqdQ5NgwfYhjmADB3AI7YOz8OfoNmYBruO8p4Hc/W4ffMz6kIPldmXQvcVB9A9/1l+cbOf7oGb32a2zlu41OTHfY77FW1vf4fZa20+sfN1BRMziJLRwDkkO0kBgOjtShKfmAsXNnPtyLAUiciKQjMBHiJvmidQbtKtkv1+PfuRt+Nthn6+llTjfrfLvBkikVTpkAQiMWj2mn+8Xmah7ATG4+DCsi/uSz1z//n/3B+PLlu1Rut3fj699b8Ua//MXNyFvxd+wIkBKsV5thKES0mFtEIlbXmIExIYAHMaJqWHNVr8vUzdqsHawvrnFIhJlXdTNEKcvSpmkPoRiKEc0ZSZiZSdWs1XoCcxRhD1Tn3lTFiJk8YxDa/eMvAA7iZYgHcRxOJIMstltlhnHLa3jzzeN+XrAuw+3L7csXsLojAvCoS221MVIeSsqZCWs1QkppHAZGpF4rQIrNdthPb4aCeVNSHh1kmue3j4/v3j7ePzx98fXXaiFCw5BykZxzTqmULEkckFLKKaeUmOmgb9jhXHWPaIfrGhpkkMFU5zZTjqVNteJ6vXZmQ0gpgbiBU4hrcw9mLMIlc04MEWoKiZt7hA+rNSKrwbhekSRiqdaEBgbwVjGcENzN1NwqrxKxpJREUkqJhfsajgGxEAITcxB2fBkgohABcXBApzPW2pqZvkBBEASudTlQ9NTqESIiieZ52T897u/f3T88ppRX65JyWq/GXIqpzfM8uuznpZnlPOZhIJYA1HAzB5DdXCklRFF3c1TVqqbmj4s29VprbdW0KygSYAmBaX5OXp68HDMLiKAOFUCAAAt0KixPT7tXP/kk5SSZ9k+61NqaZcEkAzK7e5yJVXXMysnZIX5WS7nK+AJSAGhAh15bhJrXas20RoAHOwSZm7srReMxZU7LMuVUumZL1YYAzOTuaRjsTGnxygqeL2ARgN/NQgb41fuz1+dJw4vDuigaXCJaPhItXPzqqJbT/2jWADo0Gzv++dlUnkNf8EAYd5DZAsCjQOFHsF8nxHMfSUrfwmHi5xNmBMSgE5fK2UfE/WRdOKj9k7MZXi2x9JEF5rqzJQ6P1xVC/dCFe6bD+PwRHpJYgRAXEHkmwjP5sJ7WPcpuXlwIbctp5lfbP+kFde/kXPcj3E73SnexTqlibfbs/OMpBc0EmIgJvTWd5r1Ou7ZM87zf7/d1WWJRbx7u0iVOhYnZvSuX17kuc5sNDAiCAhg0dDfvt7AmZAXTZTft6zw3ZuHwqSquS04oHIRWl2ZmzMw0pkwHKBji8VRgdBqOiIsUyeWzTBdYcDgvbYV2ll2NcDAj8IPphFgNBQFaa0GUW8u1TtO0m2cWAUJEIAgGcPN5t88pv3r5spRMGFiXgjzkTIyEgRhM4AQkIJyIxJohEGRIOadCqVHClBBRjT22w3Bzd/fq5naVM2h1KcZprqbqOeXNavv5Zz/Z7aevv/yiMM/NUi6ZaVran339hUrOdyLqGdZVLY+FCN0bCULGljRoLqk4mNki7mbWaGEmjbbYhCgeDaCuR8mDEAZAC1jATXAuzCXnQRKCEXihhOGmioDIDEQW2AwVJTArhmEsDZanabVeoawUGhEaIBiGQfihnNlpklTdnepse30cf3Yn65SHAQ2GYb0Zt9Do5ebF//A//vHmk5+knKjj2dTUAplYkhBTElOtbWm6dNG9lAXQXS0FDUNZrUYmNrPWmpoxEafE4wDI5jbPyzLPbZlBFXIeV+M4MrEY8KzmDpRkzCLo4F74Zr/fa11imcEdSxlLTikBIhbeT1MZSjKZpgnwACEz1UKDm6mZq57DzAKhdYNGR7NxZs3P5WpPmB0EAIQ468o4UgMcNnjZR3ewikgMdLn0XDUv4GVny7H1Ea/8b7gYdB6AWZwL1X8sNIvQ1g7gul62OrbzCaB3Ox+OTM7P4ssXmpbHiVi3pWcHFnDZd3RWRLpqFo3L+tJVPumiSeXCOzhbKY51yz5au6L8eP6IpCM/j3wZ57vC9xfzESAMgbBXKQDRj9coHOS8ceojUdEJY93TdXDYxPPV7thAwNBm3ixBFEmvt8Mfvrz5w5vh80yfrvIgthqHcRyYiQUIwN2b2tLsoGznAYAigugl83q9/elPP//sp58O21vKhXNOpQzj6h1AXeYEzoKIREKYBEQC0QLDPSxc47j6xzLXzhfZ/13q0nkyDvDxY3touKOFajRgBDMiSAksQNXcHYkQkAmZkzBnOd3TRAQsmEbhQkhgHm2KOoUuIuihBmZm4cHgIqUMWbKweTMLBHMsw5pp2G5evnr1+vbubuEJMMB9med5N2lrQpxSSszsjvBMMhPPfFaRkwzjmFKuzeZ5mqvtdsvDw9Pj49N6NQJASmnoYhzlgA3LQ3FCYumhSs//9YoKI01v36kuy7LUutQ6qwUBcWIxKea91yFn2qyH1Wo1DAMRmfnuaSbgCEjCQ5Yhp5wIEd3YBQICiZAwD8NKCkkiTswc7okQAFpdXBt4q8tsqqa62W455V67L6U846EDXLn3OQJRGUsZhj57JGo7jVD35l6XNmtzokyYiKRkMdPammqrtQEEIu73+/K4qvs98oxMnCRlGVZltVohYq3D08MuwLJLGfKwWuUyEqfmulTdTzE3M4tAVws1m5ZlPy1NtQareecshTMjGB/2WgMgDr55YPROYo9AQu7q9rtp+uabx/uHh+eaeyAcWp3PH/3Lbtr37uyj2ZQAgmN6HgEIQwgYNGxxK04WJzKZvxk/6Dg92t/K2/0lsd1vRdPtu4/rSs7xMH+EXV2cp76HZwzeVX3prJbiZoCdZNBV27TfPT4+vHv3bpr2CcQtELGUcurW6MuKemtmfqZa0Hfn4bU1JEJiRFJrEd6vUiftIEIzjfDO9sHMyzKPdeb1Fok6JKn/GxHggb9uwQqP9RM88VEcPDPvMsp92sMw9KOYpslUFcPVzMzV3O3k3VAAY28C7+7Ac0sd9Pphn6+f/jsQEnT3gRCEiFiGUnLO2NsqiLxbOujRPeacx3EchlF17nxZBnCUHYaSZJUYYCDzUhJieGDOwkzE2BfQAPMD65KwoGqdl2mpM3tGhFLyMGRJXRE7kIIiIDQRp8TM1JkBErMZojtKUffavIUHpRBqCMbkQYDMhYEF8ECG9Wzhj+CsOBSwCPq/hA/73Seffra4fv760xHLKq0MkbELfy2dpEHNWhgx9+Vbcn58t8MujuXmCUUoJQYIIxq5jMOwWq36DdOZshGRJHnOyBLuwgRgajWAUpaSZTUOyGLIUN3MhDkXyQTgqgRLxQADCiCURJIoFwHCYMolRYSDIx+ym8QM4ACIQOAGhF3n88cbHxEfP19hr1bbjySMfpMWtBOB9iL4JRPGX2EjF/bzx6zYX6c4v/f47pZfvmP/ZZxrx6D02AyDDgYQAhAoPCBmDXJcS/7J5ubnLzZ/9/X2p9v0UvxulUpOOScRcdcA64RMdWnT1ImQmnkDAGYUSZvN6u729tWr29vtRsZs7qEVNIpQFrLmSZhLQQAphUsCYXNTd9Xmpm2Z45ir6+nqw5KPOG42zJxEeh7Uo+NcAtwRwBwNhcvAnCJM2+TTzlqjoSSRnHvlgZF78ZMRcbc0TkMuqzSsENjqUneP0/27Nj8uu3tTODVMR0SXIBQR5zFay4m224FuZL3e3t2+urt9Pa4GTxbo2nTZT7vhadrtTVWQSsloBuEdGG1my7J0QhUAFMmSMgDP8/z4+DRXq81F5PbuBsgRaRiG7WaTS8k5rder7XZbxnFujZ6P69RUTYSEm8087e7v75+eniIM0Jg7ngQdgtiIqIconV4MAJZlcVdwQJCcU0mcGYnA1NxNa2BnWKG8HtfDakQWkQ4dhlOg0papzvtwU1UjWq1WksuJEvoUqASAhyByN/qUenW/FweZOcJUdVIDyJgBmUvikVmEybzD96x1VmP3EDa3Mg7ztCei4xp5MPqllFrnQAGgYRxXm1Xv9axN9/ul2mK+W5YlkPbTPC1VPRzQA+a6mD0jg58DFYRe8XjvE9t9AgCgAKJOgWo9X/X0tPvmm7f/7s++ePf2XTh02fj3moBzCKn9WuYlEQkSEzAShQlAZuIAq1UTMYv774Ri3f/0xqmhpV/E89tDf3uSCN9/XMGar+TDfuy996ACAOTDLDKm6njw8Mwswltr8zzvdzudNbxnZ3K/Iv2FmgEeCIz7MZ4YFNx8v5vdwA0Ruev3RXTcETJTRPTeuW7Ju566uWU6LE+pq8Uf+9HxO8s8/5VOCxL21o4eg/VAa7/fW6veeRTN4BKFT0hdHQaJ4tp89Ql7dCLDTlAZ7u6McDxFIjmvN+txHMOadP5Wc1MlAAggxHEcbzbbebfbvZ06O28KE2CEEIB1GdJQJMZFe6tPALoIRdihUSTIQjsKL6JERK211qpq8/QIgCe1ShEmAmISgEBIBxkCFiTpDlIzBVSMaZ6n1hwRyQHYmXo2R0JykX6BTvxOB8fj7Mycgth+0799+/bu7sVnP/spBo3DakijBaScUs49cxoRtdVqiswo3IuNKTNSACYAB5SUOCVGDFffjtvVOA7DcAqhOy6RWCBnOvD4V6FAbx4yDON2sxkLkSSDhOLzvBBiSlyEyEmZ9/upXzMiSimVUsZxJKaGQcL7/d57jVGkHzgholK8j/D9Nzy+TeH425rJh4aZdSFOIv71ckx42SpzXlH5wc98nFEvXu3r1xtXk3f9YLPTc6Dy7ar61RRPVhgRDyD6oGdxhoBDPpeFIG7K8Ht32//ws1f/wac3n2544LoZUvjBNNfWuo9l5rXqMtdlXlozM0OkUtJ2e/PZZ5+vVuvNdsyCQqAQBM3nBXW62ayWnQcoFwFAysIll3Ekwta01uraOKJb2JO+eDfELDzcbuXomgeAmkaEmaMHAVogSE5lJTlDeJ2elv2jLnOLKimVUnpSn5iOlVheN0cpnMeUSgTqskw5SFT3GDo18FrrqRmxg4A9wglqtdaCkFer1e3tzYuXN9vNKEmM2CE40LkOuUTTSXs2CxHR7JlYpvd6djD0UHj3NNWq+/08L1rVqyqhlJJJHAFTZhZYjWm1Wg9DyVmEcVMGYik5yylQ6WS1SBrVreWcUxIR8WAA6oFKADArIo5DGXIah7xZjxGBYSmP4MZEpWQC70QCu93TfrdXxzIMSYYkKfMhqhBGQrIjZS4zNYCI6GaRCXsekZEEiQBDT01gCOiAPR1IFC7A0QUXMbKwY3Q9sd6eyijIQQB1mQ8slOFZWNLQtNV5EuGhlCcRBOjlm+4rqNlcZ0BHDkTnHJyDCw2rjAvOtQbgvLSHx6cArGrVLA68A3BivGE+kq4cJv8t8vLzx+3oExyyne6OB2HKd28ehYcvfvnVNFWicv6jKxNw9QB/yAR8ZPSoj5EYgRwEoBByWNSmmYUzcPwumv+//uPAWsP8nvX1t7bu/wDjujp0tqbA9xck+9h+IeIZYCnpw4GKGUDPLGhrbZ4PnOYeMU1zrccUNZGIlJw7+osSHVxbkfPF1N3neQHAXvmO3n6JQRREcHKdd7tdp1Zn5tVqVVsV9ZTzOI7jOOacWeRU7P6RHL/ei9gjotVq1U/UYgp9zh6BdvX9Q6CC5N+6rIf8YBxDlWO8QnygnCKUlNJqXJVS2q729bTDnHqQR4CrYbjZbHZP67fvvjIACtBDAp0QcUy8vtm4Z2mNWdzV3RChNW2tNdNhZItDy2trzTzmeXb3lCSBHOKxI94Iu4ANURqQAA+UbszMAhBOzQAflv3UbHFPw0hJvLtBTIgkIaUMqkqIxNyR4Qfk6EW+G095YUIixq/fvnnxyeub1bYTuyPzuF6vN5soAxD3DpDQLq+DgBDhOQkjYDiCEEHOkjIjgpuPJQ85j6UwMyCYCSOaGxLl9ZgkE5JaRlfwFhHr9fpms61112VZxAExwg2cKIAJZCzd4+uUmylJKWkYMgmju6Q0TZO7p3QAfEQEYRenQGRCiN9mm/nVo/K7t1L5QTqJkdC/IxL6clwvEO8zsD/YuBIH+N6nE7/tqHxgyKnyTkQejo5wcIku5SD8UKOPCEB0pK4SRF2lOw6M49j5wwHXY/r85c3vvb797OX4apuG7MKhs2FQbUvUUG2qNs91WWprXfC3AcA4Dncvbl+9evXJpy/Xq9Uw5t3DO84ZIoQ6+YZtxoEhzJouwcy5lFTyuBpzzofUVGtdzLWzOfW8XRcpJ6ayWUvOXVX3VG+JCI/wpWVKnMc0rojFTQkNwVyoOUniYSj54NOziAgzMut+liFLye7oDixI7AFqXtXaWTKMAKDn6hwgDSsPUPWUqGuJlCKSIBeam4VaW+oyL3VeTA3c3aPNwYhN20lWbFmWbiZUw5XmukzTVJs5kge6g4c6xDplcAdtVgl8JYQHtCxAAGO4QYCbM3X3iJkZpRv8fgIBeocoiUhKIgJtUY/IjIkxMQoBszCuWsxhhgQ5JQpYzJ+W+eHhYf+4D0xhtF1bXwkYuvugQaEKgBgRrR6E590UEVPKARDNFJZJTUSAyHt+EhmBEAmJeo9KZULpHayCSm6qNqkttc7hgEU5AVA2X9zs0JXEqIi1LtO7+/nhMRCG1QgBBjG3io1R2NyXZZnqZOYs4hgohAwBBuQO8bjfP+72T/uJmA0oANXjIIoCeMTNXmSYerPsOQ6m5x0hoK8Z56aAWbA3trrXGu/ePd3f78CJU+qXC4m8A1rweYOXJuG8o+CyCH72tofTPfr1CMAokgUF3YVCIsgaoiOAthZDV3RFoI6+BiKCuKpEw+W+LmYUF0mk72RSr7W0PizGcr25y3aLD27/Ixu/OCwMjK7bEBF4WeXoW7+CCL9nX5dvz9PSdHYPxBlhKJyzm1x+dJVrv8J/f8d5XKM0rq/X8e6NoEsZ9Yvuo/OJHF++92wcpt23ebST538/QeDg6P5e5WjPP3K4urfx9KPTKXpPlrcnRahTDJuqAnitdb+fnp6e9vtdB2XN8zy1pS1tXmZVlZRyzlNbkiRhySTd0U8pIaKZTdPUVzR1b81bs1JK1+plZkvMTp0nar/fPz09zfPcQ6D9fl+GQZ6m7WbrtXltvlrlko8LDsCHiyoXiH94zjxGBB7pZU/Hfjwh7G5A0hmrkAjdRWS1WjFzdds9PbXWCBARWVhE+kNvR/UYpGsPsKcje1EBIlRtWeYeexOimwuzWnQWFneXlIRRWJZ5QY8wR0RBolw2681qXDlxrZNw1s6O2M1R4pTTSAkbubtqbxx7HqoKx2BKVUP15Als1mPvPe8MXe6BGGYOjkISgApd/wEdiQibRaNYQKoUpxS5RJKDsggCAKSuBo0A0HXiS6giBp7San21YT6VcRBRSlpa/fNf/sV/8h/8R8hYTYdShtWwudlCTo5sZsSYPFFiOQBSEjFoI1uWQBhKSlkkMRGCQxYSAkEQRmYyxvDWmiEAg62y5JyXijoW0NHcVmPZjmUmNcS5gWtzbRCGISVljHAwRCBG5pRLHsZUhpRLYknWWm2t50lLKT1W6Un3Rt6WauEQHkBw+bidP7oXj+vVs/uhgWf3ecAhb3665y+WlAtD8ZGF6WLzH9FRuerZ+8g34dwedtWFYxtM50c9ewwP0yOE8PdPrO+rH8LlQV5Z7I/4/ddx0GVD58W+ztYU8+cG9UP+9AQGP/FZf6sR5fIiXKxfV+j08/N22manp4jjdwNADtmsEy8Nwklm4WI9oO6fHN55r1cFOrggUufFC2D0DLFKdLfNn3+yffGipAJl4FwkQpNjmJN1Bd82z/PT0273NO/npVc+cs63t7efffbJJ5+8vr292Ww3nPKMgKGJQDDAzcMtjJkiZCxjTlKGoZRSUhZJvV8zIe4QiYWIDvaRDhkvZGLizJKIIcA8wKPnvrBn7omSSGJR97osbV50WVpdUgIOAPNQQ2JC9NoaagCEqpQhgVezUIu62Lxv+6dl/1TnxY88Zv1Sufs0Tft5CdylXABjHIf1eu2uam1enlhW036Zpvnx/uHx4WGZ5jAnRAZsNQjg6MkvcUQyRERr7e3jzgPc3cINLI64a1Nr09L1+MLgER60tg5jI5Y0Fu49Kl0UBvHYKCp1bk9Pj/v9vmf78ChFHBF0v69ItVUIc23Wqi4zD0NOjCAE0tfgebd/fPf09ps39/ePuiwsJQyHMgzDgIipZOQOc+bARIjuXpd53u/qvHNTEckiDKzgulQ4Jl9VFYmSSDQjPPTQQxdr6VyTyL5AhEVUj1pbNfOFhx09EorqHBGHUiITIrbW6m5n0x4Ix+0m3D18qotBACEAVlMgZuJcsuRMktSiTUtr+rTf3d8/7Pb72pSBHHoPLwIQEqM/e1cnP6kHJHSmsuQnzSIEOOsk7t9gpvBARPcgTPOkrTogIxAhHZiFu5v3bMAv/blLc3bh0V4GKq21nkLud0vPOnJ4Qkxo0BZ0JGLT4u5yiFPwQLlMFJdNehiXccX7OgeO04DvMq6Xoo9s4fL9ZUh06dLDh7544RNeLwlHWwkAcQatu7bL13LpF1t/fnk121P76XE5xGOB5ayT9PknfS2x817qyygrpWfdm/PK3tVxXZ3eS5f4gGnx9x7R1UU/jitRsMum2Oe6fxzd6NOXz1el01MTPZ90dsn47KPL3G2cqigRgV3d6jSN9yV53d2aqqq7TlOPUvataec3r7XW1pprc6vaqlsz5crDOI4DbvKqo2I6B253iA9Ar+oLqTbrVyGCzJp78mhqbZ7naZpO5OlxrLEMCkMqlYUApZuR5OSBEpHowxDt91yRwzmE51APordkdPRygMWhanTGTdcxCHdhCLAsyzzNDDjm3GFFKSW1ioA9N3E1mMXtgH0Cj2VZpukQqCCBuRFRNM85MVFrbZ0kMRKi1gp+QGcQU2K+3W53t7eb9fbNu9kdjAAIgQAzYSZIkIVBYJ4dzAIj/CCuh0RqdoBRsESvqsORkI2xa+ScEpXuYSqETkOmAIhwBERQD0ZqSJUo8oppgHAUcgTzhj1VQwRIhoFyQO5Rj8mYCQD8IsI/PMX9iWUCpKXVX3715R/+5OdqFoScch4yl+IIahSg5IjMnCUlYiEhAjMASwSroeSciIKYCJCdmILQhSEldkMlDIAAA22CXgRdIwts14OI9IZVZqsWS5u1LW6NEQihpITgu1mJoxRBpN7SU0rOWYiIjPpt0xGDHaIC0Ilbm7pZg0AEgnPQIJ53Z19XPC5ef6y15bTMXfV2fMt+Pb8+5neOX/xgjPH9x7cWqWMy5dBd/Gz0TlFKf//MNH2d4HteBb59Yi6N+dVuP3Bol7m6C0aa44cH/OqRCAo6n/jhfic8qpI8G40PhU/HfR0Dnstp+MWK8Iw0cY+jgxQAknPugM5TRfu9x3VKRxEREJ469xH6b0KCBKkwEda7wp9vhhcbWQ9YUiRhIQyHFnMXZ+gEJstS56nudtNuPxmIiKzX6+12vdms1ptxGEtKxAwoAogplMB0mWttbm6KFlEkJeKMJIFeW61N1VRbuKkpOfpRfgsARERVSTjXYoHQzHsfpB1zKr1qqWCGrbm5T9N+2j8sD/dt3t+92DixJzdummrnOPJOpp8JapvTTg3meVl2u/npYbl/V+ep1SWOlDgd/jvPc6112k9fffMml1ESvni5HYYyrkpAZcHdfrV7soeHx7dv3uweHrUpI5ach1xEOMLV2qlMBEfgoDZb5mYOqqrRHNDx+TLrTOFBxK3ovF+I7nNOKWUWAWEW6RkROWhZYscQE+BSp2VZ+iUTxm7aiGh6mhUD3MxdEawlbVWYkMgpUk7u9vT48M2Xbx7e3s/7ubUgyAQcFm1u024SESnSA5UgbiaE4O7LMukye6sRllKKnEifk8105PUnoiSi03JoNmUOQiAkZkoixEVW4OZhDsoEpvbu3Tf7XdPmCFbGMpTCcgQAAJi2CB/GwU7y8HYo4CCilLLZbgiRUk65SC4W2JrudvPbd4+7aW5qgXSgczgEKng8/RcP7GFhvFze+x3SoRd26QgenLMDMT+oBhGEd0lIOuwFf5i+hThqL/TT4oBaG8r/n71/W3IkubIE0bUvqmYA3CMik3Wb6e6RI+f1yHmdh/P//zEiIzLdVSQzM8LdAZip7st5UAMcQGZEJ5NkFauFypSgu5vBTM2gl31Ze61aVAtcAQ5LjyDKOo/Srr/Iff/eflu77nPDCvwTdvo/vYnw2AE2X+WvCT2/WnVb5WT++aiwb/ntuK6iZt2sree3t7fz+Tx8kxF0z8xRDD3+66313mutg8Bjv99f4cQAxs+ba5NBxJnEzLt9TlMZ8zkz397elvP69vY2bjeWtfHUMQC+rXUiK6PQj4IYIP51Uqt3q83grc3NJKf7aIIIn4/nUUa/rOvtq5lq/e677wD84d9+b61dTbpvf/lxUdSJSGttbHkXg+Y2bTh8Bhm9ba252UD5EigTwvy0P/zj9//wT9//Q1/PSk5prFqK8lxoFkysAmsg8ky/xrhHCIryVhLkKjrJImI2BE/C3c08IockMRHNkzg2uiBhcVbL7MSuk4CSHGlSxN3SA5EpkARd1LtGYcrYU7QUlAKLYYdc8f1jqWfmeZ4t09x/+vzTT7uP3z19WntjZVaZdlMSzCwR2eBIZrAQc9p5aesihFLLVMs818ERyaBoIURFpaoKczOjTGQQUBiI7o3gXRDP+/m777+bajXziBZpCE8ziihVi3BVQrIITVPd73eZWWuZplqKqDIx5RIX2PlWvjIGv4i8vC19ZNMIF+6DrRUpw+7ecHF/1QqWvz2s10Mb5nRmZmAQRP7yeZdc+jW58dfr0uOe8tdsDwPgGzfTCx3kV12Ua7vO+SRmUYA4gzMJyYR5np8Ph4/z9A9szyX/y8fDUwlFFxSO5M7eM4fhOBYHs/AcadJaJyRr1cNhP01VREaSoPWA8fnUKYK9SawR3j1a6JocYE8rzO28MUUSyDPCPcM///SZmSJiwxFFjLw8My/nRVWF2UaZYGzVfoi0tbFUqjOVKbHVs/fTm/W1vb4x86DUHAMGW20P6owkBhWHruvaTmdfTr68eW8thTZCfbkmr8am2Jp3W0Sw203rup5Ob6AGWK1v61l++unLy0+frXdEgthABqZMnYogpmkaRm1c3mY3O+yfl9bNTm0xQ4Cv8Ft48Ag1uaHWVNUIimAxBDvYjm8rEa6C60QE0FRk0BuUoqUIs9Km8OXjWQYB4rUidmRdsqCt1lo7vbXTcV3OZp2ZtbISAkGttePbMRE6CQTEIJIsB8aWUUnvfDHci2jcByGukT8m0mlilVKLqiYhAFaRosxCyYmkZAotKimyfnl7Ob325vvDXIWpqmf2MCFRVd1Nc5Fg3UZDxLA2RmSRmYVVRFnUEyzqgd6X0/L6+ra8Hk9rd9aykd0Qj6wjANxQ6+Zlgd4wXveNiEop7m7tTnMtE5mRESPF0buLSASQeh8KCXyDN/7XtWtweuz0ALdlzXlXRApSg9g9rVmCZjP3ssWE/tb3g/9VG90rLbLKw6Hrr6216898H1z8le2Cz9oM37/qV54X1Y7xFP71Istff8HbMtC7ze5mTR6BrtPp9Pr6ejodW1/M2nWPeLgmEdVaD4fDx48fn56fhDedQXcf2ZXj8dha8xBgqJFEwoGZCCyI8HWN5by+vr4ej8dRPlFrHQX6fCnH90sbiZpBifUrH/m62tw5Khly76iMMP84k++ZPwd7+4cPHzJyPZ2G6d9aC7Np/mqdzxbAi4jI1trpdBpo0p85KqyqoI10qy2rd8tMYSaWQGakCO+m6VB2FZrWUahO07yrOSt2ikkErDGE3zOHavSW5yF+p8QcCcscd9Qi5EZI5kGgQ8gRe2WABotrAkEgKcnSrAdIVQpXsCtchFGi1uLu4T3CR33LeIdbHK2UsX30pcVFi+Yaqx72QKllKvWnly/PzD/8+EOhkkXrbn56eqr7XRJ67yCyDIRdp8Pa27ouogNwpaVoIiIsM5m3lNGtuh8AUBZBeuvp4TYp7/fzYarEHNaLlm5JCLNGoKJShEQVGSw+PNgxqucNoa644NhHzup2Uoy/D6tq2Eh8SecyUFnzUq/rf+V4xy11x99mExlCQxnh+DmG8tJu8wT/Do7K7Z6Cv6aw8zUwOpp+3YDRQZ4oLFo1I24l52/zT1c3a7ywJBpprAxEOCGfav3nD7t/ft7/f//x+xnrYYffTVPNgPXsHiDvAR7cjMP4AoFqrU9PNE/+sq5l0kEyeF5O9DnOSxXhyDQriCBbKVq4e1JLaSgOOgiUMALq67ouy3kAbRAJODO5x9LasiwePkodRfR//OvviyoB3SwiQMi4BNHNiZS1Qkok0nt6J+sI+1KGSAcTUwaIMNVap6kUFjWP9GRwcQvvDX3Nvoab11mSuF55kDMAEAvrbr+38IxRiVF2u3mqJYKExZqFBYF308xE6aFbvWl6t8jc9BWSBr4rEu7OUqWUaZ4hsrS19b4F2pPckZ4hKYZ5rtO0GxhrVgVzt60YZft6CJlBiVKZKIoWAmopwpKB1izdmZkw6Aq6WSckM0U4s2QpvS2tNTefd3tGCQsQVdF0S8pSVYqyCAkTJwkRUVIyEYbcgbAyE2Oa6jTPEXLd3tZ1bcu6ISuKPX3YixJPLFWSQJmsNOh0OAXJkUBiWZfPr69vyxJM02GWIlKEBvVCbyIy0cTMyVRqvTBppohoKcybAVK5ljKBeWndg3qP43l5fT3+9Pl1WbvHpn2S92b7I8bogr541HFNEG9sp49QUmwBl8gIcDjoEnG+y7X+Vm+BNmJ2SsBHx2g44UIJN+P0yqoZSrF95xEIt6E3ltc40N/dlb96e4SpXdoDmut66PpruSkfvxpMf1K7CZNHZhb9lljwn9kusyR/m091vcztBb92El1OiAgPN/e1t1GX4mFbOuUaWKCNZJaFa63zfvf0/Pzx48dpmoTlGo0aHssWyjECPMKIIErCGCZyRqznWJZ1WU7n86l3G8hJFhbVoqLCKiSMUe4RIu6ODdh/fSd58wwPD583LZKALZMTVzXJkY11t3mez+fzWPQuNJIAcNgfeuu922632887YY5uvfccSgLv98ZlCbkUBsUGeBq1lr13jB0LQRgpnc2qHrCRzLRuHh6ZA8G7qagP9RgP6xbp86Q0TTRPOQlqpcIMIhteRsSQLBlDPxmx+Xt0ARcMvICKMCOMKAPgTDIED1574gSNr3js1ACNXTuLCGkmZ5IKh1tCRFlK3SCSRJnkyNO6mNm8m/eImlNV9Rsev0s3WES4aBKen5+b+8L9ZXmTPk/z9PR0ICUQMWWELit5gAlCJERu3Xrbl10dFAsYiPjIDCURziJUdETEneBEjoQwZQ5BX6+11iK9rxnR3VUYQgnycGCDVIgwRRJRKTrNxYxEWAtroUH+iUw3ZyJhzohwC+ZR0+/ubtuUUdWyeU1JCU2KCxcrPeyPf7YI40P7bUvHz2bXV0/bhvu3z/tmG076WFJvWTLuyk2Ba0XGw6r+F2yXGXK/p0TSX9lRuV2Zvxb9IkBdlJgHYB9CeQXHA9xzCLeH+wYFCQQiKOiZksghGeDmn3b8//mX6f/9Pf7bd/lPu9O+ai3KsEpapSzndYkFmR59aF4XmZ4PMpXJ3HrzCP8HcdDARPflfGxtDeIEcaIcV4ocUfQABWmAZZqmae4SLdzc3H2UJLrZvNs97fe+LiIC5tXj5bS8nI6reQAsxZsP5UUa+OZLpC2InARYKY+MQARHFKaqwoLFf2ISoSqsylpVJ++7TA3hYIC62fn85hYAhUc4ZWg1m2eSSXVSUVnX1qyvPXqQYQ3kvJ/KVNxjeWscJCLr2V//+OZrr6lFVBiQIASRZ1g/USYsIzIsI0BcJo/gw153CosZ+/PJ2x9/FONdLRHeerNCDZ1Fdk9P8vGj7A9l3pGoJwiVzZJOa/vc+4I090Uoiqr0mhkcjIro6KeEJVFExNuyHE/rYpGkKmLJx6VD6n6/o5wPu/p0gFnzWCkByrGSt55MwkIkUKU6XFOhC5G0RzeEE2NQHhctAKUzs0ZEa02rqMnb5zdVeZoPu50yJ3PnDCQEGT2jIyCqO+FCSF+zL9nP2Y6GRC3TR92LaTpglJ2c0gOhlKA1mnUzt5Eyq1N9fn5Oj+PpVfazt1OQOElA3s7r7//4w//93//tj19eF1cqs5MwbXHQzAxvmbC4LACgQEZ4JnkgE3QT7xHliDgezwBU7rAdERFgARJoGSwa4SJgCWYTTSAJWnUP9+tMj4w7IP5N3GIwu7wvDm2ddrOzfD4dj+sKEZaiXJBUbZ0YvB7rPidxt3Own9PeWsu+1MyytqfuylKmKYSa2a5OjhsZrAeakG9Eg7+1J3x9rbzTprqr4r791OOCePfzt+99c/mvV1Iyv4sVPtjE33ri+6z37fXvaJQue4UjkUlyw+eIzAwQRi7lbg/LOym0h9r3222QbhW4vu7DjD9foZJ33njkbcLh51e4vpyHHt4OjtsXdc08D6P59l4s7/CzzOy9X78+4jupTQqndw/+bghZvtviTDyi/w6XIsuSw5QmYcotzD6XWg4kOC+0ambWOtU6zfNunj89HT4c9vtpvsY70338V0QO+/3vf3y1bsQgRllZMtIse++qgxZfKZnC3ZYWLbPuDzui3czh53BPmSO6kRKCR8f6SpvmPV8ZDsb3xj+LtF5MG0o/DZsfHiwsZZ5rVZbMAPna2ihjbb2/p56I2mLMOk8HN4jwPM1D8mVZlrUtFFbAuzoNzE8CgFNg4qelN2ScluOXly9Iez5M4kWZtIYyky37su+nt35+++4f/rfl9fjy5csPX14s04jcPN1JeG3tw6dPn3/84f/6/f+9FC91fhP6UcT3+8PHp+mwp8Ke7BVdpDF3DaIiqhlkPVhQa5Eia2+9n4liqhWUCBcnGMMiLCzSRahOMk1aSqn7dV37oDwmWZfmFvNuZnBrp1KKas305skkQHjisD/U3dybvb29Ls1OS3M3B3lQLb5TfT48ieqYgyJyrejQeQokhWfkKda+/Li8umU/7Hi3m8xsZausaXUuutsfPPx0XhF9NzFlR3QKTiMGevPT6a1UneYikwS5wVhpfpqKa3j2TAG31kopdX+gUmxkoIhflvXltLy15mB3696JorWjgApXQ3KIUgpxYZ6KmLW3t9Px5Vgo3aMgK6FmzkK99+V4Xl4WlrKrBy067+o0FSCJkxJvn98ygUhEpkde6A0xwHnX3RJ3Kr9xG0C/aOCOOZD5vuzznQwtUnhLpebGNfc+L27Wm9zKs7ciwIuo4i9sO3ZbUHFbAfEYQLov2JC7TeD23Daei4lJQKPW83LO7YqdSMD9kha+00y8e+THFNXNsbivD7xdiikuz5pjRAOAgMAE0ky4J8AsW2mPewJJsgHS8LON/g6rmzwKa4ZKcWa/6+BND6/Lcg6P6VIVT4BWlWtWCbe7VAI1kcmQvA/XMSHcABlO5VTL98/7T0/77/fTp9303fM01TLphMiMgHl3D/eI0MIQCAsJSZW6KwO6mZ5zKUOAtTs8KYDITSBC65o5CCQYQHgPEAGeOWt1gyQyUhgqI2ZkGV5lTqD3WJa+nPuy+Glt3QPcVtekgSsYQlRXulssmQAkgzMr86xSmItAFK0ZUTIgiKo8zxkZlKGOMqruuln3dW0RIAizEHH3LubdsptHZu9mw8lIKnUmYJom1SmD1rVnJBEoMiNpDIrBocQcEeYdnsKTmZ/XZWlrEKSUUkud53lSKd5bEIqHz/OOIYQY+S7zBGud9tPusHv68PT0XOoM0fBkUGZoJRI7H72tPZFMxALPVlTrLNNcplmvIFR3zDllBmWa+xg+KqIiKvz9P/xOSyWkR9/EvJEJzxxDlsawjexEmGYVoYxsq1m3Bc7EwlK4KBchyaTgEpmtx+nceu/LYt0ygdbCVhAlcxL5VatkNKVVpRBRa7Yua/vy6m8n646zr7IULcRs4Z7BKtqchN09hfoNOcw01bUFEXrrX374TCAHB0szvCz9p5e307l5MJGC+EqrcztH8avbgx38cOz9JyaAb2IrW2TnEt7502I7BAgzIi3sYtduFf2MVKYqUAbCPH28mbPZqffsrVn3oRdz6cS2y+SDx/D39vf2F2t5174FgfiVkcC88mIRgTHK8A7PT6riXayJEKUHIZioiFCtRLTf75+fn3e73aePH5+fnvb7/cDBjmpPXIq2x95KvDldbV3Je7oziCIc6QGz7mbu5gEeeYTIDB9yI6UIjyzM9ZEuFAFEW47rPdR6A8kbMe/t5HAORyYTwBi5A1xSHyPjMzDSeATMbHCj3W4HgEUyWbRodUJmOl2kLS+GTwKw1qx1i1Gjb6WWSfd+/rKez9PEDMiGcknP6GZLW87Lslr3RAyGUQIILPLj55/+n//+3099iYypziycqsbsxLkRedBwKokIRMRgoqQkysEqOYJfSizMDEQfoVEiEINrVWR2IqlVRlEsk6gOzNKAVTNzLZWZw2MorkTQ1WMHUKd5nubIxTPX1pZ1zUxiETEAX3784cfyExEdDof9fg9mCHNRriUvrywJJGxhr6dXZt7tJ45kopG3fD4cWo8gWta2nE5tXUS4lFprubLeu3tioEsYlDHeIhMnuzsx4sprwTxSQJf/htolDRXszJHoiAz3xHqOtna3DkSpZTdNQry0tpxOxNg8Z04SBOK8npdlOZ7OXIpKkbJlBkkkEZHOlKVWYg/k8NCQm0j8oL74xUn77y9i+9U73sWPbvbrn+WCfvON3nf6rwtZfuuCXz9055n8LC3zt7Bhf+NtqLRhaObGz36xkBLoMgYQgeXWhyHkThQpAHPiWfA07ff1UEoR3ZVpLlpYND0imnm31tu6Wu/7D9OFfotVCzNt62zyxNUdvffWHUQgDgxWgVSaMj0iPeGZ3bJHqGrRMom4eWtELUE1MS9LjvytSM2g1lfriZRZD+HK7ElipThRAnFBMlwembobgEjwsL9InDmYNcmNKTmTPJInhEiyOgsTnY5HUJjFcl5as41kH5WZMyicMyiDgyiDCcJUhen56UlF5t102M/Cuq59PZ8zwQB8ww9k+mqWCPce7qNT7jGExzzce4PwoZTnD8/Nj0gLZ8BrLcocblpynnWCaCmHDx+fnj9++O67p+cPUiqBzTZSkN7laU/tg1o7hDdhiHB6203z4XCY51m1DDUVdzeLD/nUWz+dTqfTqbU1IrToXHVXdZpTSxCRO7vVgX+IkIgc2WQAmU5EIlxEB+ChJS1Le3sbqmfqxq0NQt60qOFY1/Xt+HY+n5d1bW0V0d3U27JFEIYdcAUtEPJpV6qKiJpF73Y6npe387r2N5w6tNRJVGwonU2VZfGI3h0s1tzdiKmUUmoVfRugifV0HIMkSFbD0n11bz3DVURjizT4bwOr0H1FwS36gm6kGzmHzlqMspm/QLFgknBxyxZuFkgQggCOIGQtNBUuhTzcvZl5s348t9fzyvNpOZ+tHPIXGZT+3v7e/motLm0YVX9mu7X1R2nB09OTqq7ztJ6P64kR3lqzvlnwg/Pq6enpw4cPz8/PT09PA7U/cPyjBD8zNzZ8XlXEOty9t7akhzIyRYShpLL5ETnwMkkmZma9r+sKosGO+LCejHKjvNTKX+8lInkTqbni9CICAyBA4ASRKA+rndIjw1/f3jJ8vIRhml8vQlxHeec8z+OaY5lihjN72C+m4Mw2x8vchWU3FQ46lXI+BbEKgZlTOCi729rb2+n05fh6WtsGZmWCMDyT6d/+8Pt//cO/gbmUstsdwMmim229LYc8ZCiEoQSiFB78SVmIsptnEiULGEBkWDpFeIoIlcpShngnqRIrEbtvpfAj8nV9vXEpkb++9kuAd5BhFuaWFzH47SWYMWiapvPp/PLyMk3TP//zPz8/P18++2jcDpzhPM/zPPfzshWp16rT7rza6/E4aLKJaOgRX0tVB11QLXUMRbqUMbxzM4zgKNFV6ud+DoCJhFhVlHme51qnUhmeQ+W5UmXGbrerUyFKs76uZ+YKBglIkIQWbt2WdVmsl91BtdSqqqpTYWWPyCD3lKKDaPcbydu/2Xbrw/+n6/9v6Pw9Z+d/ZNP1y8uo3GMeIeGLo0LwQqCtfvx2tSSA3JFMYM5EYTuty3F+VTqoPe+iWWP06MaUkrl2W85rawtpiEqtlVFIwGAQRIRAzR1EWVgLMSuYAR5VB5PUzPQLj5lnWncSUeG5SO99WVgLzFgVopmRtQhHgrnMuosalIl+4HpgkTp9gfom/pUePspURpsoE+BMyRw63FW4MCmzayCRRuk0lbqbyjzpblKdyLknuVCEFyYGKHNUcEQtO9WiWkUqC4lQKVlrRur+46eplmmqUy0Ia8t5Xc3dC7NIFq1M1Nwjk1VLLSTMzL6aWWBdUyidB2EZERUt0/5jq82NKc452PudSq1TrfX5udZ53h3KPO/2h/nwJFoiYDZkMcKN1hnImTLcVyGoSrdlnutUJwCJFBEmIqekLJgmVklE72kOhopOUoqq+QmsRGI9MimD3cPMw4LSR6FlpGdGKcVbYWLPfHm1H398+enzT2bGxKpaakHCIs4mBDKzZVmGOmdkquSyhC09fRM9dh+0KiMsk08ftZRSVEfW0nocI09t7ZaOqRiXOoQwSBCgXHpb1saorbmbs5BqMPcRtSViX08jxxtQJ3ZQ0tgphZKZcEX+/DZH5WufuguEgJkpYwtz5p/vqAAs2nvvzdKckGPOMkKBypiKVJawbtab27nZa7PXtev5PLS04z/VYv339p+9bZmUi6Py51fLXvfskQCptfJUpmlaa3nNsHWhC2vIiEFcoTuDbGNYiq+vr621QTQ8dBtHXIeI+cI70joYIaRxIwILgqqqKLCaGYkOftvj8S0ya611muWeuuB8Pue7BwIRyWkSZmG+9dxywKzHaRmCAIFIBou70IW21mPLRWxEKXHrqHjEeCeDdjkvVUPMFMzd2pUf/3aZEhGmDS6+2+12Ey9v58ycamUaAZYhvgQLX3p7W88vp2PzGBKzABeVHu4eX15eIvPp+UOp9fC0X/sSoCQO4iGqKyQMEiIFJUgAyQBgFFNqNzc3KKWjE2oVmYqIgCkJmbSV7DDDkRnBGd5HdXhr7frs49erZPMgMQMwvALaOHk3T2BoKw03Y3ucWspUSbj1vrZVVIpXdpGi11D24BvY7XYi4m6gseEzMUvA4nzZXPD8/GG/n3e73Yj6AoiIWisxxrAc4w03RdgA4I4LgcGDo0KZBKhIYfU0RIS5N89RGuRbbkc4EQ5OpmCK5GQJRyQjKMyjuydT2e2cVYc8ZBEuAgJCokdSItIiRllsbDVXiP8kBY53qAe8h/X/U7R72O1d17+WunnP4v5HN43jEUR+SRzfAc2EQRTESRuN2uUALZcoKiV0qq+CP3IWP0SPUqRwMoHCC0Ey+7r0tUV3OfeiiRRKzTAZYkzCxNTcNuQ0ZWQjH3oBzMQjvYtMphwT1zZQVLBIIQGV4fcTZSLcvYhwZGSnkiwy7abuNQilzGWaX1I8MNjHRjnwuCyY2siCIjWiqswqdYhzENbzgZLT2XuGBTKYYjflNKvsPhLBLU7ntbXemq1rywAT7/f7aS7zXHa7iRillHneHfaxNt9//KSjvF9IkGFPy/nobgycl3OEeyaYtJS6m6d5rtMkotF8OZ2+fPnS3t4ImEoZtFQEHA6H/fwUQVVmhiynNyTVSXZz+e6fPpZap92ulEmmqopgD08tyWD3YEB2JZwRHTkLEwtrYlw+cWE4Y1IqUsyOMM+12braujYAzDJKD927h0WQW5xO6/nUzLK3yHBKG5FD8x4ezFxKFWEQv678ww9ffvjhx9YakEQY5AcsRacDE2du+QotlYVJNJlaWF6Jccw8fMy/QGTnSlmIMwDinnjtsTgFmGUm3XGpo2hy8exurYc5Z093ymRKgiUwAFHEFBySyM1/FiHRBL+7GJljf7qSCI0JMnYsDK3xUSpw1YW418W7r1j4almZmakoHpaa0bPbvPT92nMHmaWhLTUYWxMkZuFmzEIETihzJSjoaadFMrK5N3Nbzd+ava392P0wdBJyVElkbqJ5Y6r+T5edX2jfUie8wx1/6xJ3MNmHD92+3vu3e28H3tG8f/1mD/fajN3/yaPTbXXQ/ckPoOFv7A+33/I3TqS7M/lmcAym62/3dLQrod/PgEXweDdnH978L4IYr7bRe0XF/WPejueHeN/DDpsXSYFLWcoDHmw7evd6LxGE0W45Y/JeopSZB6TcdQBXlK4oqctFxrMMH2DQHg5iq+GlXO8yIvHXM62nCxHz4ASbpiK1mG806MwCdDNb1/V8Ok8pIJ6mqdSJpdYyEZGZ9bWFm/VuvUdkIrUUIQ7RBCj9WkQf4RE+AGCUiHRmJk4Gb/Ag9/AI81JKOA0Vl/Hq3jl/qCzLchUdH1+GiBDXc1uvr2IcYpFRbahCpZR2XkRkN8+TRDuNPIwQDVIvdqCHe+bL6fh6Pp17W1vXUus0FdUyT3A7fvniEdO8Q6VS6yiEC+TSujbT6lVkYMQLSVUdcCllZIZkcpgQwCCQZUSEhbAnEXHRBACOhCMRyQQEzI3MBuirtTYqSZh5qEtl5kZfhixaxq/zPEcmtjLLHEm5kYcZum1L66Xo84cPpZZpnoNgyO7GJktbx+4wRBTGSHN397ig/HI72vrl4hviCzfhrc0rZgwJhAvBGi7pLwZAFFc/6ppyEZG1dSQEVETnWhPlsJsO825fMjxs4/9JFioqQjm4c+Zal4ipkBZhGWDhBENYi5TFnBVSRgoviTksBiyyn1t069YjgoQhnAPjlEEk14lG99P+zsgeK8n9PvvzNWRM7byqkyUG9d1od9Koo6T9csGfQ6Te8w93e+79Yv/w21egYA/PdfeMNwt2AuEOHoEOeUiA3LHo3OnI3O1e9zvAQz/ui3no/si7kuPdyn6VWPylzhPobm2/vSBd4iD5TbrI28L9h3spbio0gPvt3OiKfo+7lArZ5RfOfFvO/2M9rq+fX14+fdjXl9NrlRzV4wXB6TCjcIS/nofOYCtlHYTCoqKiwgzJ8eUSYpCBKPMQYUUREAYwLbJnEmEQ22ONiaUQRLgEJZOoFqahqNQIyYlSaArpFgGqhUrl756eI2gwKPbePJxFytDiKJyUnCkZihRQIQiDAacC5jRtS7O1t3V1W+aJ9ocy759A1Lvv5/V8Xk+ns4JAXOv08dP3tcr+UOfdICgRlSlCugVKHe+QMhiR3tu+rOsSZg5f1yUT025/+PC8//C8OxzqNAMkEcfXN5kKVz0dT+E+TxtjYObQikniLIVoXwgyzTRPdd5BS85TlAlaMql7biIcFGTewjoBQpQkIqLEYEROFult4FfTrGemivZmdubzafny+fXl9Xg8HjPicPDFMJ3X+GmJ8N7DPdelLUtzw2CsRw4vxd1cpUzTJKKqhaT8dIqXt/XLyVuzsUsS0TzN01xmTuYUFi5FtmGjosoMKj3C0jzMjLL3iBi0C8CCBBPXQbNr1iInKaXqdDYmmbuUBCyj9b608CCiYpui0ZgKmXldE7KwXqYJCSmxXJYCGnvAZQLdMe7hKpw0do6buWc31pKH30Go7k3z66pKCTMrWq5nXTo51pSH1eeXL8jYqt8ighKRZJ7hUGVihnllnkgKYyqE6N5X8+6Zq9lxaUeLTtuzX0hI/eqo4De3b/gpd2jgb3k09wV9dy7B7Yfu3ba7y/1K4scH3fdxwbxWBXwj03VvdN/+/auOyv3Cf69o9i2X5mvSmKMA9as9vGlxLXW9dOX90E1p5kM3bkfyte8P3svF6r252a9jOLj6hCNYTJse/TDN72opb6XExglXWKZ/va5UROiy3avoVOtImzCze7s15XEpROm9t0sDMOLxl7A6Xz/CsknX73a73W43FeGiZDFQXoNpLyLWdT2fz3udpLV1Xeu6SlllmiXCzM7LGq0t67ouS2QOT6AQCyiFp8KJLcU8/u/61igCIGJQQpiVOcyRyUBcsgG3PLMDhiRKETGC9CONsMUjeEOr5oUvfuTb42qOMLu7iszzpLBh7ueYNERgCg+zvng/nfvL6a2HB4GYtZQyT1qLt2xuUrRM1SW5lCQudV5t7RbL2rQWELFm+CgfUi0pCWV4wig8oUKiJUGJIAKpJmsHzdO0EXWBwiMTxBqB9FEik+PxrwbW+BXA+JZLKTrr8Gduh9/tfOFLK9MkzMFdStGpqiiJBKGHr+fzGCeDnHqapqE5kxmSm3pYAkv3bpujIiLuMXiBrxPzQkYcpWheKSgum87oUik0aIvHt3xdsTNWBoRl0hJTZuakpWpRiYRXRtDgVDIuJMTdjCLmIuhWJwlwQoKEiSK7OTJTlKZC0yREVEph1gFoXM6rrT1H4q/qGEMZMaRaR5l0DL64e1P6a/bxt9v18QHKwS5DF3L229Xlnhzkbh1mHpvs8ELv4AMPTtHtdvCwut4tw/e2/sNZV164scDShbTu65TERPc3eAjwfL3w9d1ioXtH5WKuDBwpP4Q4/2dfxBUVeftgV38PwDf4jvmebOe2w/rwqesRSkjev+GbIDFIkkBIjkjyc4svJ3J6+3zWoy2Tyod53k9aIuArh0kmJUQLmC7/2wBnY4HbVSUEMwtyqmWupTBEVQT1uRIFMxjEBBmV2JmUcG+17gbFoTu5ww0RCE7yRiNjwyKg5ASoMConZ0siCDJzr6JaB3CTRIwNlByQTKUsTEIQJiYsaUGUnRZmV5lricjdTg6H/TQ9Jbi1riyI9N4xT6pl2u3micsk08zTzCOJXHRGVvOIyypDCM5M7+uir2++HC2is3Kt8/OnTx++/27//Fx3O9KSmTsRrdUiPNMj1vMy4nP73Y5VCBTRW+/mDUhVzHM57MpuqixSWCkR5jnAyYkMOp3WtjZrjUFAUiYlGJTAm63dY3AXE9GIKhFwXlo/Y9SorGvrvWWifDnP06uoZK6RET7gWBsRoXt6hpZdBNw9AiJRzFVIhCH8+5elWXaeQxWXmRdlCi3n7rWQTqVO00hbj0onIphwkHqaQ7thyYwgM4+I07Ic9voUUUslEk8uVSoJl/Lj51cN1k6eYZHNsRpFsvBg3ridwO8egnMSEskA4r0+5NGcoptqkxxklhco89fWGvw8VvH1Rhcln4HH/DUf+UYLwFvPALMigQhhLoRJpXLCW8Qa3tysZy7NTtaNRctcax3yoB4Rf69S+Ztvdxb818OQD4dufeyHQ99oD5ott+7rg0l3+6nfNpRvOJN/xvh98+vt0W/PGlUlXLpHGLNsGIVjQRsplGG5jvzJSIOMvw9XZES4h1FLwKjx2E11P9fDYbff7+d5nopAOGE85B2He3HJh/TWdUAyey+9995Z1Mx6a8cvL+uyrOuamSLirY/i6K4s+/Iu1PSzJx1RbwKUuIg6iBMBWPSvvIwLpojoGqTf/JCk3W7XrQ385zjzykFCRGE+SkceHOnMTI8gRMba+/F0euu59A7K/dOTStGpsoq5n9va3cCktRCTllpqdfIiFHAHrd0911oz3RBZmCCkQCEOZHc+jYWJEASRoqrQIqUSc5nnDdeSjG4ewSwZidi80OF6yUWM8rqXXZ9xTI2RNsGNJzP+8u7REYmKiAzWlnJJ0YAokMw8Bsm6rnxRTiQid5fMzVEh8ryIt23TKa8/3jEf0PCK3+00ugjyEFEpG3328Bi375GIWZhciUWkloJELaWIFCbzGLxaFCBOQiCc4EJQpn0RJDtREhuJsJgFARH5dKjzVOd5JmL3XJclWqdISUIp1xnLl9xIjFL6v28jt43pF7NGf6V2vUdkDt9skOLSV1y4x49fFoctHnHTfludy0PAVx8qbL52gwdvMilHQBUUIPLM19bPcZQTf3njWmhfy6HovvBOUBBKIFAv8NjE4N08tkwcCDzViUeunKkqVeGhtKHCUomZirAypiJFVSiZIMjiuZt3u91eRIjSzNa1RQQxTYrcyMV98KtTchRKo/C+wV+IVAUomQIEB/FOiJIoOC+BwdwSY7tdyZQOj+5Li4iOdE6VwbQe4W5ma+tLt5YZzLUqTzOXiadZplmAbu6DciMp5/3zxSKOtOY9RaPb+eXtp/N6ZtXd9PT88fnj777fP3/gUoPZzey89PDV+tJWcw9k94EWUAoWknW13tZlWbyvqu5ZvNekSkSgFSQxdFdy6OrS8eVza72vA/WW4Y4ICgTwee3dw3of+k0j683My9pWo6v4TAJMVCevLVVkFqFkUGSOtNVVjldeVwMYyZFEwRwQgQ5y+N1zJdWI3tvamvUe4cmakJkDwoMshUTGBPYMA+DFUyzEw1ZgBVn05j3cOSVDs7MmiBDBiSkT6GgBN/TMHt7dultzI2LF0HS5jH+iW+bWu7AFURLonXToLhLw4KhcN5VvOSp3cWvc0pc9tNsN6y9So7IubUikZSYhhVFUpyKzsNtrRjPr5t48Tq2fm0XZz7vnw/Nhv9+PYPNfohd/b3/ddjuiHgJj3zh0RR1cI8d/6n0jI/3Rf/hFR+W3ybJs9v0vXdDvK8t/paMyPKlRh2B9UN/7KIy+8nqt6zqE519fX8eVj8djXMo5RuSolNJ7X9c1L8br89Phw9P+w2H38cOH/X5flVfrI7UTWyY4IjF+7N1181Da+JdY3L31fsVS4KKsN25aQptiCLSPzlwXIgIK81DdGmJPGQkPRH47h5iZ07Shzq4G+sioZO/DK7u+3t77cNIi2b2VUlIY9ynQiEhGxCCn9bX3tYUhpqmWaRIWMEVm6xccnYhSJZZSq1ZhEhhZGBJr660bMikC6UJQ0cqkhKDQlLMnEznzwKtRrSgFUkg5eSy2zEmSBE8mCTJgy58MPN4VtWtm3XpGbvDji6MyPNJMdOtXH0ZVx0Z58RN0fGQUNU3TdPUThuT0KIXf+FE2oKCH+wgUJw36A74EvEY265127H1b2cJq7+N8tAvWa5t646u88r6IMIGUqSoTCTJr0apF0IOIeGCdgSAAmw4cpTD2UgAOYgcZVJColFVJWA9cS2EW9zgej8fjKTILiU66sr0DCy9jLEbhav8r6hj+p2s06sguc/nf7b4jkkTX8Qah20Nf2QLyXqL34dBv6MZDglfj9po/82mvXYxrxh3ARY5mIEjAnCKW1Lpn96WhUBZeKuPDXJ8mrYTCBKaTUjMfyc0YSovbkzOXmVmGEiAhGFmZtJCQxtoLc1VRlcJQISYqDKX83570eb98eLZaSimKzOGoMGH6UL3nuva29g0OnaiarWVvo2Zvo6JnbpeMCmElQjLAGVVoFlbCqP/TSE9qq5/e1uW0WF8BZ+Ki3ezsTudlfXs9vr2dTucVAUax6q0tSSLqTE4CYU0xEmJiegd5h1lvy3lZzm9vLz/+9EM31GnHhKnWkaMP9BZp3SZkRJj3bv18Pp3fjm/Ex9fj53kuh1K0ZNDx9W05vllfEuvxRK9Vf/xjS7AnIuEJD3imjRRrtNbW3owSwoJEpqdHBF5W8xzaH3FNc9dJwTntau+9nZZz60iq00TQIhOXGslMSQRGeK5uK4iYkoh7DN1fJtIEUaqkRhak8nwgKe6+JBFJmXZDPlKKMrcU6kzIDCRfxg2IItQizOAOC/SkntyCutt82LU6gQvFQCMgk3o36z2SJUEezdwiuqc5mEH8M2XU+wzm+zyhcT0A4Hz4xHvDln19b1+btL9+JWIi2fIvdEnu3kJb/+TWzSEMIWQgwQSlLJKTxtJ6hFmEZbbI1bxZcKFSytP+abfb12nSUogF+PM68ff2G9uAyyYABt5VCYGRYk/agMq3A+9hsH3j0Jayv4j3AXc3eOzK5ZCIXAfBsPvfPzVqsS6Jg1837L81oC4m34YWu7vgHU4jRsj2CsD82kXdLdystbaura3dhqvQeu8Z6RZt7QDa2j2j9x4bjeGQiNVdjGQ1RaJ3a2ZEyUy1lt1u9/z89PH5adAZFyF/e1V1ulSxZwRAQ2IizKNbdIvu3s27uZi5uxnCc/yXGW6cI6UQnJHWkJnhGckiV7gEAZR8zaiEu1PfZPnMH5ewMZTA4+0Oc2HT2N14eUmY0jsuJePDr0MkJVS19YhwqVMKR9hmPhOS4Imx7TkCuQHFmKVMlYUx/LTM1fpq3UahJwszq7AU4eRAhKfD3SwzJ2FGCoGJhSEswuDhvLA7cRAHEVjG2AiCgC9OAAKZm2bONpr4klG55is21/rCTHDNe1xTbcCGfxt/uR7dfhBmEY4gYS1FSxmKiLmVa3oCZaoAzuuiJh7h3Q676TJIiYALC3/yyPONKzMifRATDyK0QnqbUXn3VIXDbIy00SMAlDnIvoiIGSqZAIOqsAg4iEFC7AAnA8kJ8uTIQXa0Ex4DykhaJJBaC5e5TBXFE7De27JWQjkcuodZuKVnRFJkUBBiIJAHGTU5/lxH5eKi3f7yn7Uxb5bO1QH4693rIZIEZCKHuDluoqG3O0U+4na3tiXhH76EzD9Vu/MW2QhAnW5sM37HtBFuCmnGL/k+DK62UQJ26c443IIaQJ4EfPGsLcduCgJk6NAhooy8yuV60CmAAPrl4XMTCkwcaqFLV1REi6pI0VI5fzqfv3/K3at9OOye93Pa2s5vSK8qx9M+bYuEtdbcQ1SLLiRi/P7FaNFrlAjETqkiU9FaRAlCwZRKxISP8+zES8/Xc395O57PS2H+7iN9/1Gfp1h7++Ht7fefX47LGs6a5anK6S0/fV9r4bbr69xLEVVe9KwqImLHk7Akce/Wuh3Pyw8//Phvf/jp9eXE6fqRyXx9eytSdDJIYSmFKZbz8tPn1z/88eWP//b65eV0PLsx01F1YkUVFkJaS2+s4ImWFsfzmmtLp9V8bb3ZyCmPMcNSCvGA4UEYLLxpk3PUAnenQlImFpZS9k+HOk/EdD6de8/PL+ff//j6+rasls3RMyvlJFq19rVJBkuNmBFJlo5ckVp2XMpqniRaptSSWknKjy8v865M875+2I35MMJKPXK1tUotUiiI2n0wuLuIgqT33jra6q0xaFdmjVrPwHlNwImZQAPsliK+dngHkDTkkrnIJCKMFEC2HYZvJxoG9/9l+g3s4vXQbeJlgARG5gPXopRA4aKlDIPG3RN3GhBXtMZllpa84GIHIm9skHUqSHO3AY3sxmUqTEKcoFAquH6KIZB8B9e+R7LzUlW8rO10Pssk5gbjqdRdoYPmU4lKL9Fb62/OZUl+7fS6xKkJqz7t9t/t5k+7Z9GJptqVXMDMGVGULDpIrovbpkh4fVEPFehf20weah4eaQNuI7T3oOFbm/vmED9Egm6+u0tS8OYiN7/crsX3AOW7/t5y7DxGkO5DQffduOntvZNwWwGSl7rYERk1CyCTktIZoUwTZS6tnU8pTsKklaRAJlCBFCIF34qL/jxzfrP9hOO+G8PRYeLhW1yPGd7FuQbz3vVBShLiMtg2qPD7S6NLkGszHGPLzHZ6v/pjDzNu8V3vR0fEYOil8Yjg+LgzIjTj8mgXb8Y9HQmiUt8HGAGMkfA0swmc4X05n4+vr6+fj8fX15efWj+ygFMZhIjzcu7XemcgGcxDx1YXzwxYt5fzwsyiZSL7+OHTbrd7Ojx99/HD07yb68TE4QHmpbfX0/F4Oq3L4j1EFB65NNU87Fh7FEuJ7KfFeziRuYN6nYlFTseTwDnt+NMfSrT540eEEqUCADEgROu6rssyTROmSbSUiSdWpfC+9t4AsLCwLMuZWdwzDJSSPvCemPcyVd0ddn2oVDF5RIPDcyey0Tdmuhk8plInLRLo/VRmcvakJKbW/ejtlOHCZXcoT9NcVY0dh1yyksosyei9z7s9qp5s/XJeztkxF2H4suwrlQmY2JASxVrG4ukkxNm7lqKs4UFcIPXcrC1owa/gnkGgUmqdZhUlISIhsK9UizJRN4swIJwgBfsi6xIRWeddmSawEDPgAbKIbuuHj8/MPNDhxGzZw4bkfBQhYyzeEcaIsJZCWoSI3WxW3c2zIG1ZzK138/Czr1CCiiHcI9LHrCLG6fgqIAiTMAVbptuKPDNsp/t0j3VJye52bmcuLMoipZb5kpqLEcXq4b05GjJ5qMgPXSAVEUecVgoPdk/LMEmrwjNVamu4p7lljQSTKFGuLaxJRkkwZM6+3+9Y5XhazmZBGSQqUSSoTBbRktp+1zzWyOZolh7RPy/rskY3ERUuCU5CkCfj6AtwKebG3bJ8txA/7A4XDZMk0E15yKNdf1nW/MJ+dj3yAE/FHe9I+AVFSfRQz3jnOsTXHaNvRIIeat/vm28LJuFnvGhfrQWlG3v+igq6dOMmc37ffea7shoiRgLu4d96LuHbKyhfIlk5RHKuXwq9v9IEvNs7LIRuS2DuSkl9rCqXpo8UBLfFNzfj4/YSeY20/VLvL5rK29vtNzuuIK5ZvwQlv2d2wvPnXxSSkOlLuzliwDr4oApi/jj1tFL8i+XzahyW3YRCOfnLF/eIcLOBJ3ZmFlER9ht/b/BF8UaaKC2di05FpqICCKcKpqJFZCb1pFPLL+f1bWm9mTA+fT7+7sPbniIzj2Zfzqfj2mFUeWpTtjm/vPxYCqap1KmWIqIkQlpEmCcp8zyVaUcs56X99OX1hx9//Nff//7l5eX5w3NIm46tHjp04RaRFJ7IOH7+sfdzb+18PrV1wYbKC/cIQBJM8G5XGGsKJ7yBLbJZdCcSJtIgJiBBYLmE/ZEXPkoRIvBuNwGDNm339OHp8Pw873daCoC3t7eX18Xyx5djOy9uQBIFYJlTmbJUYhl4X6iFeXp4Bnn2ZA3eHQ4kJUAsylJShUSTOYlFZftStFSeALQmzczS9/u9uZ9P5/fRYDEwS621gcoYBn1vachRvSoiiLwU2Y+Y2S8N3DFEh54i6CKIdjM57k6k2z88gEy+evW7sf2rzvrKJ7cQFN11Ywh1/XK7pHfeUz3jbTAPXalkRmEUJmUQRYZFrAbyzB6yui89uuc01cM87fdzLbVoLbVqKSxyiVSMyf7nc8b+ddtvS0b/Vds3surX726cUFgGCmPjQXeLMLSVbS3eSJXSKRHEzoTkQaLNNxvRtx//wW273eiu8+EmMLUxOtCN8zBCctcnutsq7uthNr9uYyC4YX946GEERh4m8rYbGJH+97PGaYGBB0PwTV3lzaNk+ruXxcIjchwZgrS2Wu+n49tyOrbzsp5O67q21tzR126emcHCyoTL7h40RnwSMiPauo61t07TPM+7Xf3w/DRN09Ph8PHpw65WBg0o0bq2QXp7deZzQJXduSglKDLcrfUMKsTJjAwRRiZ6AjlKZoSoqlSVrJVlK5wQkmGY0kA5I0EJGl9VBuJigkTRwipMkiDyCE8Q03ab3FBwEYkkkk2QMbNvXCAj3sWkGyg3kcQ8/h6ZPm7ELLUIQ2qVUkmEkzIFLJVrFwuKUXsa4a3bua1Lb0WUmGspLMKiEGFK8kxG8lBDvgw3QhAMyIAlGbMnUnSoOXOSRxInB/HwuB1OkRc4roiALnK3I1tNREQj6nRtoy4wLwAq5qCbIpAtQrRNlEuCJpOYCQwmc1/WFReFlohIu6nMyFuFv4x8t9lHdJuUdaogrbKzbh5xXnqQb1lToiT0CAIFKMEEQhLltihH+DDPg0bxJSUHMDIaFMkIRlJ49m7kjHTrvpxOI0IuFBIh6RLBSEo/TLwjJyIuXJMtMjKLhHIsfWViYSpMwyNiSeb0lKISqrgoCmTwZV/+7RmDdzP1Fl3wq0UYH9fer6x/v7n9+cmQB9A4y1cdld/c3t/V/Xv7zV/LL34pAOhCWAcg7w9+413rbajtasSMxvdf2Df8wtt2Fxe8J2UfF3nIq45m4b/YTcpcw6+7IBERU8/g8J75P17zzcDku9c+F2L4JCwcCtJMxAXBnDGAQsRGICG/vpOLo8JDrjUYalatFk9EUHoRaClVZD1HD7wt9vm4nptHJGV8eG3fv65PYaISTOvmEyV5O3F7Kcd/+Fjd2C1675lrpqvyQJx+fH4+nhpwamavb8cvb2/npR3P5qj/4/PyGnXll7euhy9nUXG36JbhvpyW5W1dFyDn3bycewYyGEBGBkWMkC6TqkqR4ACRpZx7W1YP4qLzReSKAaQbhnoyAwhilKJFRYSfd7OyzPvd0/Pz08cPh+cnnerAgH388FH+7YeffjwO7bAAGJQR6c4EYU4RqSIqOVRUzMxDXdxTSt3tn0iKRYyqkBD+L//1v66tHY/H0+nkV7V73dC9pRR3f319vR1OANxz9GcoYUVEKYVouGD3cRH3a0S20lct6YGvfAyxXK7ytU99o/jkb6Q9lLhdXwiLeBgRlFGFJuWiQQTP7D0iyZKa+9qtm0NknufD4bCfJ7m2C3/rf6L2UJXxH9iTa8tLHcjW6G5Zvta/RoSqjqFJiHTvy7ktZ5xPbCZxoqI87TAFZVDNoCE0zQ+KI1/bgPO+hDHvEzvXTyUhwm8TINdPDR/pmlF52FN+Xg9zkye5m0R3202+l8w/9DDuF4Traciwm40j8V5jOUo13luwD/s6Irr5+Xw6Hl8+f359/XI8vb0d396Ob+u6RuRgnVBVUYUwqeDiqMDt1qg1s1G+NU3106dPz0+HWut+t9/tZgGF+bqu5+V0PB6XZbkVI8ohXNutFW7dQjqtLXWlDK6iMjNzEQ3H0ITvva/LShfag9jvplqY+cpUdglcPqLGb1K4lBlAgDgzRtiVBRJMpIfnQykyhlx3s4E5i0Bm86QEEzGBZeMcGA4Di1BmBHnCMiKSRHfzntNl5jLVopRAGJHwXCcmWqwRsSN69/NyXkc9JGiEQOKSFh8JPhZhFWQw5bhjAEHoGT26I51hGBCB7UmvOc+BXIMTMPYO4/vdgJmAdzmUdxHhAZC6vMDBVkyXWpFrNcs4Pkb+iMeLVBUB0MyW1kbhbEYMTS7OjYMRSMrNbyGQgwPEsaVaEwQqrFwYyOqO1lfqlpwknGCkIsXMKC8zLjPMcTEZwz2JRukDiCxyqDVG+Lqu7t3N0vokUjA5AxFpXftRmJRIeeDtWYZ+DfCxSCEI+KnWrqWb98gB0GdHJ0qgEVm37MaBdM+kqRQmIaLzeTXrOfhXI/4cR+XPbI9r71+6J9+oA//V7V5X+W89EvitdiWd+9M+dbuLPGwq9xi0e3/nG7v7PSTmVjeAhmbsEEYhuk2xyTdsR9JbwrHxkwMB/NToTEBQkUbpFP60n4owhc2cnFenejBDAwAjCt4dFWQOkQxhJsaklUici5B6WmtBGZlrJhnVxentnD+++am5u1PEc+fPXX6nqJJgduvhTpmTcN0BRcbnPQ22gQ/G6iRCb8clM1uz1+PpeF7X3odIY0/+w7m/+PrafvzDy2k31SrMcCEgs8CIbNDIRCShMYUbM5UgV2GhpBQVqCoLE3MgDHw2OvVkJeGqdQfwSMg5TlvEllOYtfA86X6eSpFKUmt9/vD86fvv9097KVWKRoQhDRRm63npS0PkFcsLD6xBFJwJgmqhWt169pYe6vPEqlKDCblZY5mZ5sZmZiLy9PQ0ylXHJpGZmT6uf6XcuY4NjwTIrJ+XJTzmed7t97VWUIZ1M1/XNSKuol1bJ78+R3iEv34JEvqNifWwEv0N+i23jgpdCDczU5hHsZgSquQsmIQoaYlcPQ3Sk7rn2i2Ip2me9jvVkhfbcpgAf4MJim+3hw7/LfgqWyT22u7y3NuyvPEOWYACSIb5uq5vL/b6Jc/nKbzai2rF/gn7RkgWcaJkjlTJ9+TbNzB3DwGph5/ff827eZQZVwxejorbC9MG7l/vw5vPOzjizb0eepiXVMn138tLcr+RUd/OjeHX3F4z76c9Wb/m/T2RracqIszM1/X0+vL6+cfj+XQ8nY7H0+m0tN4ywFyUN0dFpipFr45KtG4+WIr7SJLwxk45yuNj0LOeBqDCfFmWZTmfz+dBFzaYlOnyQszttKRoKQlnzqL7qSjTVJWFKLpnDtGNuLBRrb0tfZ2taBFWqfM07Gww0bYLYPyXQCD9gmlJ4mZr6yvxULdyEIPAShRcqibQ3VklmdyGOEsg08OZSMAy0i+cRBxMBBAzAkk5aBUzkljLNBchlCiTCkM8zFlFtVZkNu/JFEA3W1vLCGXhRLTeW3cqrswNzhGUTGAkMQ0pwQSCkQnPyCDD0BkGJY8CxVtHJQc3ro2EeZo7RWx5iG26yZCkHON2RKxKKRHusUmsjLkwKubHZjH2l8vwfndUIoKESTgi2tLWZY3w3PLhKFluCzPoUlEWwzAhDjCBtnfOiCSCrN3NI5JYeEu45EiYkVtn4pHNAOgd/ppw75eEOie2IvoEyOOQ3dMjPdILcpdciEEWsMOehaiqVuGRdBuJXM7YSwpBOEVLgNZu5pHEzFRqXTxO3XtfxaNQBqFwIrLWwgJ3P50W6/ae/kwi+Q9ahx+Wm4dl+M/eHR72l9+wXRLx1w3k/2RNVd+X/cd0y9c/xXc4mDtAyx2F8oN+3H0B73uV/eO3kneHmOnCerb96f2Ct9C6902FcpOuH7+6j8z05mCcqTSnTKIAJ1PmccFIKs/wS9xxbPVbbxgoYTJQxUwiRbe4sAiJjJTwim4JSGAeoWdLfO5x9nw5+ZcFq1EEE7CatJXSYpJAdPKG6JPQ06fnD98/f/d8+DBl9OZmni03mEO4O7ucTmckuefS3QOe3Lqvqy3uKbvFOd7W47nNlXdFhKKKVOWdxocP++fnJ5ZsrYdTbOAHFmakZ2KEuUWkTtUpyCOFgnqSsk6QCi6iNUFunWWidGKIci00FdrNZb+batFJpGjdTbUWUSYViFK38LV//vHH189fzqeT907b4gUZMZ8eQmCRAEUPqFASWChFZFfLzMxXZd/xLzGXi2+QmYPA8YbwcRroi8gAISKuNCmrOUZtaESZynzY193MzBlu7kTjVahcFBLHDGEp18F2rdnA8NUG1/qVmPVmKF+3qKs3/+jYXy549+vG9ZcXo23sQNstrgcelq7x54FB2GrCiAaMnm/ABg9zPG44Sa8ieOPMW3bRazolL3WkhfigvFOaKDi9WzPPntySTqu/LmYBkbLb7YdwMotkRmvtQE/bc/GFN4yZmOJq195TFz9KXH7VXr7bOe7M5UcT9iuW9C8cej9yffM/3zXuC2AQt2bEXZL6rvNXP/DnF33kTrwZHsT3Pbysn3QPwcWl0GgLdZgRAxnhqy/nfj6dX77k8c3cOE+6mz2TmLhOodXBTkzJcY9yvnu9N19RRGT88jscYeDbM2+QWjfkvwnc5H/oIqyxjZPbt5vbCjCGogqFeWaIKG0VQTnKW8w7jVKaHMXPaeYY0h+EGAJ5BGxzIzLdzYgjIpl5besISo/oeCkl13V0hgBOCDOZpHlvvbfVljXWvp7Oy+l0Pp3Pp9XDWLQWVtV53s37WWoh2ep2Eogi1mQBKAPBRiGSTMn5zkOwrmtfV2/dWm+tmfXzcr7wGo9lkLxH7x1JRSZam7qjliemUmuptVYmFg54xjlzw6SFE5FltMEOSwRmEmFVHzVGwo4UIhbWoqwSmU7phIhgG/n+NUffc0CAt+oI33DamWEjlzKQD0lk4QQoS1USFiIksUdGWIJZRSKjNQ+UMs37fTsfWSLZHIP3EkSkIt7Nw5Q5iE/rslj3TFUlILr1tbV1VaVgUiIqzELMLEXH8hJ5gQUSRcLCuicxSSlTkVzfUVgjUR8RQBQq1zxeYlCfbT4GXWZhXpTmxzAuRbNvY3WQwNlF24QvELKLc/KoCkoX0cbe21XDhwBDKKsIj7G+DRYkJWSoEEaMOpNNZouIEOw0ENp8oQSAj/yYMQarspIDkZxDLXt4P32AHWQQx7gzOYOQUahLARViKBOKhFIAGYJ9mYRZRZSZE+GeY0yRTpRCxCxJCECEjSiSAgPYzw1B5pxZdaiRFk20iKH2qKqm4esv81vSHRIUD1sdfcUyvbdf7y3MO6MVGXFFQj/Uw9yVTdxv8Q9Z36916aEfD3vMbXrzwfi+bffVjA8XfOjg+xpLN/lBwm0l/H0PH/fK+wf5da7ZnVDVTWd+/ix3n3q3hejh1ne70iW1OJr+/P28/3S7kT6cdWPD3cYCN1vs/RDdHtqWUWDbsG6ABPc0LDeAZ4KzDIB1AqlMqdfAoIENIIzgCTNpj6QAgRbQFaA8RFvGz5whBmUWZSXlZHZWiJAU4k/MPrLfPYdQSQRFsCF/aH3p8dr85BRUoMQZJwhbSm9PhdnbTPn90+53nw7/8o/f/eM/fnzazxPa8fXt5WVZ1xUgZoEDDgKlEYEimVUZxAkp0EBhfZoPkZRhEebGaxqnewGAp0lL0WmaWDIz2+pEw4gJZLq3yKxKzDLIEEMSzZjjkqFWVZ3qNO0PEVjbGp0pXDnnSXaTTIV3VXa7MqlMpfDQVLPWVkQaWzsty9vb8Q//9m9fPr/a2ggkDE9QJIOKlOIqQRDtHrZ4KjaVr6ROhKSJi04c4XGR+yXmWE4eOUALuLG5RUSEdrvdYHU0s1ba4EhI5LE1EtF5ejrsM6K7UV+JGPHupajqAGNcDfc7WNel+JmImCkir4XxD15IUQUwuB03h+PizzwAWu6un++Q5cvx7Se+yKU9wO6B9y6B7haODH/nDXyogLtZEK8r1/V+Zu9SCSMxlZf6gVJ0FszMOwlBDAHh7uGQ5nlc7bQapGid6jTN06RCRVVZBiPnIEgdXcpIVhq69xtKB3fL6uNK9LXQ0tcdlZ9Fv36lo4LblW0Em939YsPc3fraAvdW+0PU7Weez8X0ue/Gffvatrd95OKFPhItvLsBW+g0w7w1a2usZzu9+dtrepu11SLwJu4Z4WbBnoTUgY755e3j5+jc997evo13sND2sbz51O067xcv5Qr9uv7Kd4+f7y8tglVGbiFLDstvOxoD3YPIDHceydXW3V2IVNL66ubMvL1FQm+9tSbKGSkqby8v0zQBWNeVmGk3r6c3wpDShoKrKsBhbm1t5zNao8zo1pe1t+ZmEKl1OuwPdaqHw2H/dGBVR3i4mXuGp3NwFM6QdN7IDTOQfjqekJimybuFWXRbz8sojDz3ZVlXM/Or7PKW6qSzaXKfmLmWeberUy2DCZyysqydw3zob0QEqyZTMHFRKgKhZHARBLFtHJ8pBBUUCaZR0DiIgLsbRevezINJATILAu12h/1hzyyU7Bf4dAwJs8zItPSINATAk6qwMHN09zAWYS7C4EhJlEmFnEQ8MzNs04yhzKREWxdnkyIGHM+n1Q3CzBzdbG19bbZ2qhPSwT7QR8pCWtLDIoKVQJwg5iQYBnRNSi0M9UvG6W5sZ6iWbdGmJIrIvGZUMkxERxJM73CtNAjBxrAc6bORVLkGia/Uw3wRRYkIWxsRWe+2rNH6dTFKAIJkJNjchwNzoYLATiqBEwjKSx3OsKeYg2UgpTxUmIF0z3CkE4XUWjg4E4FCxGAdNUMzEbEQyyipZxIiATPxxJAL5b4wqVzNMSpMBJKBl0tYJ8sOQFnmqkWEWJu5J0RB5q17drMwEHECkd18tewsRohLkA3DoSZmjkzyLUpz136lgsejrX9rmn/d1o8ew7z4hXs9OBJ3S9bXevHYj9sL3i6bfO/5fKPz8bA73Cy9LA8Ptt0lMx/yLo/phZsL3q3zv9I1uW+P8peX8CsR3Xl091v2g/TCVyOSl2TGuOBXyetHYOGraL27rMkjJ8NvOBQPN7rzdvhaL5kPfvY1GJ2UBB9fdQLgEe8ZTS58fAAoOV04ISCK1IAIcSR7CrkhGAlwErqHeXgiIj3jZGv3WI0ih8AthfnZDWmcS5G655xn+cffPf23//27f/rdh+cPVSRr7sw6HcVG9jlpYK4ACEYtBYLYEyQQllmlgCeeItONPCTdrCcIyST+OPVwiRVlZPMm6ZUJl9IOEWGBCRgrE5hCOKvKPNV5qh5JlFkU7kVyV/Wwl/3MVagWLkww90xEECW3JQDPOJ1Px+P5y08/nV6X3juDGBQXhn4CqJYUhUg6IjI8HBlIj8RUkkuKIFhZ853X0k+9R2JsDNftYVg55/P5auhcuerN7HQ61Xky92VdhiTlNE2sUgqzyqHstihVxKizH56biKB/VaXkL96usfaxWn3DhP136Mb1NV7zSMysCqEo7DIqs90izDzWxNJjtUgIuIgWLVVUx06jqha5rmuqfkP15X+ldreM3vtYV/Pl56i/u/3g3om1r7+3+3vdNSLQuJd5tNXWxZeTLyf2vk5RvHNERmoyQjgEIZmav3ClX7rX/QZ2Sz72+HRfUSnBMJtuahFvvTi/fz9XeAwim9vIA1rrdKljHv8qb941EZVSMnMY6EQEOw8n/Ap9JqIhYKLgyBCR9e1EFm6+tnW32zWP83IiJCc4oaAUrazhHubRW1oXRGUZ2FkptU7zYb//3e++2+12+/2+ThOULXxtbVmW1ru7ASFMUy3hFm4Z3tYlM1pEZvbe3fz0+np+O3nvRKRFjLKZbcTH7u6Ii2bCeW113s2Hp6enD/NuLlVFiYUoQQHvZmsL88y0iMokqqWWaZ7LVLVWVmVVBkoEqzBz9jY4u3yLIOQoi48M97VZcw/mEFELb61rrWUqgzBv1N4nQiLcrLdmbokcwr7Uu4iWWkBDZVyJ1UEJaKnEqpWar5GUEU6egYJI58HIidQqZbF2tHZqawLEZO7Ru7XurXszPvWYkig9VSedJp11Ss/FnOvcPNwiBQIurKoMZgb3C2UwXehD3qfeNXBDAxDnVxESpnody9fR+/M2PJmrF/QOfr5Y1ddwUq49gTCLpcFs9IeZiTAXIc6M7r3xiM1lckQEGJtgOBFEuQjHJQKdthJIiYlRJItyOkCIpIw+E0/El6oSLuMhCPvnCcjhPzBBQEIsxEx0kBLeM01k8A1dgXDprTONfDmDJTQbUUQwKxchLSSqJQQcSb72jHP3NIMRW/dmOK92jDDWzhzg5DI24re3Y+/9m8H3v2b7TVK2f367DdDjYUX+hjf2jQteHuGhDPV/0u7vdec7/Q0AoX/evqWy9e9W3fRwo9vtPO9YRkFEfEMFS3mNE2deUBrb1eQ9HZSAxXu+FaIjwE8OSrAHKIicEws1ogwwQJ7wJA+yBNLV1tyguwIZBTZUhKpy4XJ4nn43l39+nv+Pf/n03/7l4+++32nx1vrpS1+XWNdYl+x9YCcGRT1qcYwkKTFIWXTSIkWZNZzNYu3RPbtJ75EkxAW3+oPb0+RwVNzdwwjJWob+10gmhKRG7KfSa0fUqZairAwhMMMZdf8ED+HcT7SbuEowDG4R2Zfu7pEpy5mYLKK7j7r43rqZjdwfX3gXhmfrc0lWEFakZ4SHYWAG+LB/UtZEmjUZOlIiqgpk9+itr+t6Op1GjmLoW4vIfj9fDcERxHL3ZVnOyzm0sGzV9qWUeZ53u52qImNdV9xsKte6UhHx/whHBT8P+f87ttGNgaa7OirMzMJVqRA4gtIRPcy6e7fsyafWu4en6LCDSi1amHOw5GX3kcG/U0f+X7d9owT/1lG5GkY//9Qv1j79qfcaOc708N76uvbl3M9nPx9z0LW6a3jNZDAglCKpGdKiJ/3y2POvuxyjGPf6jHGziubX8zB+ySxdz88Lek1u/LSr9zIclbQmLGPuj9Z7HzVpYW2gPXe7Xa11OCruzkTejpkxavZGxmE4Kt6NhrStRC7NPE+nU+99AnfCeTkOM1ACE6uUKjpkIpwzitBcy2E3GZ6gZTLjUufdtN/tD0+Hp6enkeKh4LW13vt5ObVluaIpRih9VKq03u10Xpd1mibrtp7O7Xy21jNTlHkqfYjcD8ezu3uKCJhKnXZPT4ePHw7Pz/NuV2oppYhwRvTTejoe397elmXpvQ/VZK2lThMLXxFH10jE+HcEaK98U8MD7L1HWETrfXUPIpvqzAxmeNh5OdVpP74gz40iOkfdC8TdLXyEVdVUXQMR4T0sUpqbgcBaSq1FfMS53PsoEKWAiZmt1CBcdTqeTsfT6bwspDIpXxAUwJCksWBKVojkVPlDnZ93c1Y9EhpxX7utaxYNFmJVVges97gYFj+34da1bVYiJTaQw+aoFOXrejbe4eVFuVljIwBjWG5gV6IBVMaNo3L1UpiIIyWJHBbgZBFhYRUVpom9iKRQT43wi99Om0TqqD0ZBgLTO7OesAoJsyrrCDYTpVMmkvNQcjdTEZGgAlKQEgljmkaeOyhzwB9kdDKZjNNcVA7zToS6tyF6Q5mJ4CQmZiQyffOoE9TWlJKQjZwiLbBmdJCTdENHmsMczfLs0diMNCmLSnhmpqqKhv0HiTxepWzD/QHf9Vdtt6si7h0VFvkN3biaN9s0/3WfegiZkdwty/9RVso32jcdla/7Kvfu2ANm7rccur/4rZzLmJ08fsE4RANKlHzDaew3EzkB0Zs6hMy8YOUJYK1IXHW6xnEAyGhiQOYAf5JcivEA5J6IAGViEU9EuKjsp+kw8cfC3396+pfn3X/9tP/+qVQOoXDrp+Px8xd+fVuP57626C1z0AImAyB2AgZZJEsykYhOddZasrmLMyV1SjjAnqRSBvkK5S1xzbVYcKhYkpZSp1JqYSJlcUrh3E3UJ0VGnepung77ed7NEVARqlNGFMZcWdjd1kiL7EhvbaN755WJ4BGJBEO0lCIj6UwZF65sBJETedFgTmQPMkdmeuYQmuxtpUq1aJ1rWPNuGLLNKtEtL3jEUYk0mCWJcDydrsVXIhzI4+nUWgMNZjMdtfIqoqUQkbkPDcgrOycuIQdkjpvSZTTQLYZny8n/cmb2t7Xb1NBfaPpfsbYDu7XNUfo6tzoAYbaLuHhcqpyHdqRylkxFcGZGWrhlWmbLaBbdMwgDR1c2gEdgk7eGqu73+6lWwjcTsH/+M29508c//jUW1HcC+IcSy4fv77pGJd4hX7fo28vHLjAKRNx5yMS3z3UzCpMewGp3G9hmMnqEu5m15r1Zb5lGrj2cYnAIXSS2kgCKn/f//XqXpQR4QCHe+jC3jspAm1wdn7u9jTZHJdzjUhB1HXXW283FbQgmDuPJlvOsVZnX3pZ11G701tbuRplmvZb6u+++991sva/rahHMgJ0JWWpVhmNg9zfol3YMno/j69s8z8vpZGa+f4r0dVlAwQlJSJlSFRgWJ4mwkAS4R2YpOvW3ZXHiqUwEFBVmsnDfhNXXt+V4Op58OQswZAE4U4n6KKAnzlIGTcio+ydmj+jW0aEUEYMjAZFpI3wAAbB/Ojw9Pz09H+quclHWoaIDEJ3bejyd306n83np7iS8QWRLCaS5dzMxEzNm9kssCcwg8oju3nszN3e3bhlGYmu4exDTej4TaD/vpqkKI3qPCEN6Rk+3SBCJKhPW82rIhKeTeCeTQhJmvZsyr80sqUyTFq7KjZBIy9i+tdx8bXJTSWENz76svjZGjczBxivCIZISAi7EBVRAO5bDNH3a71JJzH46L9n7el7IS0qBJrEg07tDCjw5t3l2G/EMvxDqUGZ4wC6zLYUdSQRy8nAf4oxmFu7dVxHORO+NWYoIjVVUpLeVmRBOmUIJkBAIIZCZiLawIAWojMiaaBFSb1W5qIZwRgzmufSMxLl7UA6HIRnguKJHpJAqqWplYQQiMigBCrDqfipP81RZ2FMyBaRgFrB75iBD8KplLspDTBM87T4dzydzA1dDNOcgAg0RrCFfwJRDBsDOzVpzEHWNmlyCAPZMB8xhJF60tTRgTfRMS0RyYPxHkrksy7q2ed5l8ls/JYZW2C+gv/7M9nOG4qvs4HuS7YK5/cve+qtd+oYb8Jvsg+u+8+ujYLgYJNsVHgHJf3NeCgD9lqjEDRHLQ5gwb3Zcwl3pp/8MxfX+4x12/0445Q4MbRkYsidCTHwl6cpb3tgkgtn7SNzKLK+Xt1uQXL7fLpEjrUmXG+f1e5IYPFTXM2NwmIBSI3dbIbSjMFhVROY67efyfzxPv5v5n3b8qUSNliudX/L1jD9+iR9/+nw+nft6FlCZxJPPPd+Wvi5WF5q0zPNcp1nAYQSdNXcltOdLBxmXEBUCc1BY5ZiQM6iwKFG4I4IIUnTeS6RASpWcK7OGKOa5qmhGkMVO1pi56I7m57J7huyDqhTZSyWVTJCHNfcwzki39LPBjsFt7bY0ydgVnSdVDVUR8v2sGdXdgJWMmKvXudWppfrpyzztSymFCY4IKJVSlLU2X2FBUmutUG0cLOTmFj5NRVXci7u3tjLKXHV8zUF8UbIeFR1t2u+n/Z5FqugQxxHVWisTra0hs7DwfJFLT2zRIyJhYYA0kRfssrAgicEDA6wMUBIiQlnKFcOaOC8LmAb98QhL4mLJ1RuvGEyEd9JV4gAS6YQM3yjLmCgZvd+oBBLdlqYhfBgfV3z/ZS6JtaBJVESYsjdgUuEksd74ZyHzayR7rrqu/XRaLDISQlSVK3uJ9p0wW0/31cITjadT9C+2vrl/WZpKmfe7Dx+ePj09zaVQMEsNyOv5pFJ677a2QjxrVdEUTiF4IHP797q9bv25m5WJr/z2sFjmjcdAm3dJV8P6etYNHxQA3Ohb5cU3e7g8XWLP75/yjR4rRzz1xnMdRHbboYtO5PYrJHNIVNDFN9huTFdlqe1K7zxXqpchOkxJoszNmaEkIh68iHlxhAiIhBejCFADmdtqbfF0Kqosk8BPp+Sa0zlOb8naOLtaRM18r2jKjRkrMgKRk9YRLc1Ic0/3TTaNSG9QW5TJmSOf6e5hna7qopfCJwAi0rpFpJuZD6ALm5ube9h5OV6DDr7Vd2yv4/X1x3+o0z8e9i/n87++nNae0aPFumazNb33fjz///7P/3N5+cKcX95eursW/lAm712fnp4+fDq+vRUR670dj8Tc3Xvv+/3+eH7Vyuf15O5aeVkaJTNYaGQgCnFhnUYmdio7EWkWeHmlZYU2S3hkEX2anyaeoudpWU5tPbblh5fPX15frXftNLEA6L1zAlEoglMJ+PD99/NurrX23o/Ho6WF8YYoNvKx3Lq3Zh4xzdPz84en56d/+sdPnz7u/+Efnp6epqqoKqrSWjsej3/4/PnHL19+fDstrWfG8/7w6bvfHfYfng8ftTCJOKh5+LICGDlPYokxANNXb91Xc3M3ixbhb2+nFmkgKjSVshdNTokzLTaXnSWN3amFndziMmDflvNq3cxIeM72AX6Y5ljb+e0IyIf9k6xrnL5Mz087eQ6J3SSvS8M0LYCkUFEpurTUaO3L69vn49t//wNXDsSJPYQZKLNMOQnTXHe7eaeSHz7sfvfd09NeZw3LmPeEpZ2X19VsUCNJwpaTEvYiX46NwQxO90yUpMjwyIysF68lhoQICjZcVbTlrKIUSqG5zVZPD0QwDMHCXGYlABlFACSjzcWZwO2FmauM8odUhVJ+EDHrS6xauqpUAUffKeZSap2JIEICpcC4S3pk5rmGZ1jCkI4I4qAN/aURROBMGdapIoMyJZOQUCdZcy5MkRnBzC3czvZhNytXVZbCIhze01OYVuu2LEkC4ddmkW6RPQME4gp5ds/ezM262brYspiHg0R3O3WeJpoKAdkjVs+ze086F6x9Pdp6dFuFICrEgATodO5r68zazJsbVw532FiuvxU3v98Q3ldsUb39++2hR1bum58jAgRW+TnXL30dIJD0Vc3EkZkZ2dTHtMldNchdr6S8KzvnQzWLvBejPsBub03nwaZ9fXb6usRKPmhB3hzyO1nHRzaB259vf72zuC8kFJtq/G1E7leX5/8iAm08+K8dGf+e7RqEzvcSovfY3V3hPh6irN/yBX+N+k9elquHjxAQRNedfhDmAyDmkcdN+Nr728lRaFnW/sfXL6f+dl5Xa+nGSGHJzGa29uyeRoSQUXnpBlWupXBKcwpKkISMIU3pCXKyYIIOBvJEehBjmqakAuoq4SkppTLmip1GkdwGeRKRFxFVazkIPwTERIWJkjh5y4FScph3o1GDAAJxyY6Ap6MRmAJEJZMAlYGCpqIkgc6UxGCGjIrYY2slHJkpPOLwCmC/m5OJkNbbFeM7YnsDvMvMzNv2cP16A4zM8IgMEq7zNAw4Zh4ptZFhH+YOAQMJ1rxdUg2XWZLvv/7Mor9JUvzSsCGgTjUuhhq+DuW88lT8/AS+4YYaV/4NKYgREroO01GmRdcjX5kCQ644N1oDEKVyFkFloug02EoTltQ8mnkP7+5gHrGBMeroIgueAa5b+exGypdJmZ5Dxe0v3O5mbuImkvCt+opv1Nl/41NXed3rFW5zGe+1KZm3qzSNMEkEDejXfYHgjZuV1zvm/YHrpneTpfC0wd9Ig5txhPwtOnuErdYX62vvza2nuyQ2ElGM9Id5X43VmCIh0Es1H7Dp/sXwV87HxmPYIs36LUGc3wAFR1x5iy5HZBiujMlbaqdlpqoOgOFgvBgZlfHBCFvW01VkfnwkLuRLazvGfs/L0+fj8f/54fPrydOz+9qoRReJ/LDbL6ezIJF+Oh09Q11K93Df7/frsowCtu3NXro9MDkDSvrp06d1XRMY2h3Cg8iVIcKliColSDorc5KoYGR3zcwzE+dlcY9kvC3nl/Pxy+ntp9eXt9PJrO+gpoWZ0x2eFAFgnqdaytPhMO9mVW0iY9iMVFGEjyiZD9J6ZhUptdZ5muZpv9/Pu7nWSbUAWNe2LOvxeHx9ff3xxy9fXl5Oyzkiaq273X6e97VOqirCY6hcaeKuQC8t25ecwm2NpS3jS4uI5rGYdxASniQV3bJxlMxTdwOvFAvlAuq4TIhMgJEcxETcPU9Ly57ZrK2dbDl1p27o/Ryu8OYte68kJ/Mk6j5AATHpXOe5t1ibCSg3Xz2Dxn47OORYhVV4qpir7ufpaT/VKa0ROPXtTZg8o7eVkyaQcDJhlK3khuyCjTeR7gFEZut0qYxN3tQSB9ipSkoGp5NnZqQ5MkadyqQ0LLERvL6u8JxZM2RgO3lDf4jQgGbVfqqIonFQIoLAlLATnoQtjQBJ0SRlJgIcIPKkAHuSJDSzExzkJGPFUabBQUxDxQYIihwlpEP+DRS5iX4H2BBrYoVIskMEzIBlJIWB1yAONOvderPeI1IoiUAU6T3TA27u4WbWuq1mGclCOw9NCjQPViFnMiaHetLaViPmaZq1cMjZczXvzZu5B5knc1j4TYgo7lXaH1vcaUzdB82/srDja3vht83Eb+8p32gbaCL/hI/8im78BS/4rXv9ho/8ghX1V2x/o47Kbe3vrdxKPkjz/Ae1a98iwhKvLWEJM1vsyM6R5tlcVg/3tYpMpTKR9TC3tZm7shSqJbmEFhOFajIbcrUuTkUcxODCIskZ6EQQDilEsqEpVLgUTYI5IdNTHFyESsmiqeyjkIA3/kRh0gDSQe6UkAiAM/J0WjeZr3RY50xVqawsoqTcwtDdwyIGSXqdihLXyt2zaqnFNUISIARxEvfee1szGkAsOk1SRKElIuapXs2Uqw002m63u7ouyBwsPQASCIuRwRsnDFAIABH5eHi6Fp/QJYkpIlqKw685s3cV5j+jresKehcC+9racVdhdX/O6OeFGvjfFZvbrZtbblACEkJhmpUnEUSPhCU8s3mu3Vv3tVk3YypXoDUAj5ArF1O+P2O+Ux4TRchfU4/qG8Gqh0N3GZVf/an0h1zODQ4qvlrLQZfrxIWQ93Ig8woyuTi3V9PfIpHv+WFcAGCUJBSIgZ660N9t85klWrj5uvbz2dbV3TyCR9BEaiItktZGrWd1WM+uhG5tudxr6/6lrBqn04mSInJUwftFqzEiWu/X57pWjFwm6XvF/MOsPB7P4/xx8rWNKporocOVtGrL2EjUj89z2A+vb3/440+nxRHs6I07GRfi/9d/+a/MjNjuNTjPe3QChiAsXchkr2HIUXlfa3V3Vf3uu+/WdRXV3X7Pm/YfZSSzSNFSJyIkCauIuK6dlwaCwz08zV9eXwC08LW1Y1tez6fT6bi0NSMkjWvWWnkE9plrqU9PT4fDbvfd81A1WZZl0IRcaIXHk18YbIlEpJQyTdM8DxdFsTHyR0ScTqeXl5e3t7cffvhyPp9777XWp6enT58+PT09jeqdomMkvrtng5ZKVKf9TjVFyDKb26mNiLYhYlnXpfvikUVtMs6qKRMpRcxlZ0BPd0b3aL6xt9MFiTGCCBZ+WpaWC1tks0/1wMlTnYP4dDqvbelptvaJyzFXjwjPdEewygSh07Kc+oIhoDmSsYM7mhhCJMQURbKITkXnWqapTJWcEOGjkmLUTQRZKbUoI9OsG4VjSzNnRqRHxFBaFG6ElG2+MYQSCAIlJmZBUBiDPYLiGpbKnTAjmZN4VMvSZcJiBxcaxXvbixFlVVJCNKPMKoNCOSlTKfeQmfIUOeRDmECxyaGMeBJRYQJtbGRjoRg+CYKBwdc1PM8MyxjRA3MPMDdPuIAoM9Ja76e1nWkSETWwpugmQFQRvWfva+u2rsvSmkVI1TpNAMxjgQ9E2pjslt4oIShMkplhMPI0UgZLB1uKEfWBnhNVYSSFwXJNDLDqpj9zlR/4Ve32TOY7CM/PNGR/7TW/0h4tzPt1/mttky0CxkL0Z/YBeOfV+HvD36yjMr6hERZivlPTuzvz37FXt8FVVhkAobU3XvCvqx01+xRRAxN92M373ZRrX96WXS1TLZXJzV2GlBSzFpkO09NhiIexSFK2C6E7ZdZuLCKqrMzCNKgXCSwQtrEuK0Z59DAF0jN7EgKC1EiuG1MHRxBTd2/ma4uIptydGyBGHJELOJLgiUBaSubMxFqLUGEFh2dbPVp4RGqhXTCRSJViUauUIsVgTnRhXUvitXc3Z1FOEk1ogWgMDDYu1I3+TsvG9ynaG4AfNtxBbsF8utD+4FK0yhdRkVIKgBEPHiTC14zKLyZR/tQ2II55USb52eC4nDbALsz4ebT+8lDxzjf779TMtgAWMRGgBBVMSrNSLBmRAXRki1jdV/PezbpLnR4eZzOuiHrvFGit9dYvrtf/n70/a3Ic2c5E0TW5O0BGZFbtUVKr2+wM1vf//6b7dLqlXZUZQRJwX8N9WABIRlaWqvfW1pHZbVhZVkSQBDE43NfwDRHu4f6rZJm/dftwSZ9/fgZxPZLCn1+K3/bSM0/k17s3tp1+ePa/H973MUHaQ3NAP64UHl4+97e6harbMFMIF+aSWt0UpAOWxW430MFIzMyIpXBPvoevI64riq822qytAZcCdze1CNiO1Twg1mUdXW+327KuQzXVDlXVPMz0MRt57Kis6y3BY+5hbjkSAIKZ11UT139AGo70hgSPTyEiEvqGQjMWNAcA9oAkwyEyYjADBDDQ73//e9jKEFKsAGGbSjFkoh9++AER3V1EMgY6ZgYzm+f5drtlQJ/CD/M8H2/QMQCAauGpEpF5J2ZB41pLq7IWkc1J4+39faiuo686Vh3XZbn2pasiArWpFJ6mVoQrSZNSa319eTm/nOXUamuIUJjDfOWllTq3iYm/XsfBbjpS3K1vNkZfx/W6jK5mdluW97e39/f3ZVnXdWQv5fX19fPnz6+vr+fzOXl6hSIr38c0mELkxNzBS6kiZGGruUYYoAJG4DL60sdVXQdZhBBU5AtaiEfQABwQC8XqMHwDQmIQk1AgAGFQgl27GlkwwOW2hPlpaj765f0rMACBhpW5FrQsG5mFuQ/Tn9/ffvrypZshExDszxEEETAhUTCpdjOBbAOG2hBDsKE2dF2WPUMmIGLm1iqZmRuZIaSTZgBGI3AMR2f3uUnmWGlpn13pfJ7Z0gwS0DdbyRwnjDgREgQxAlEEbILCAAQ+oXMEAVAiPBHEUdyISFnysRmmRFSIw8ExzAGQEJACAZBrLVxyCnXALz/fDECT5uHQwxwpgAJDKyFutQmMMA8d3ruq6dDeOEal7sBICOARt94v67osSMRSmBlrK4ARaNVgjHFdbuahZhZm5hXpVBkRF1tRNtgFIkSEC4MIMzMVt2z/OEDo0OHqWAaCIxmyhZuFeiRymwCF0EtJBOZe2PqtsfgTHOvj4vttW/pv257BY49Irfh+lZx2s4H4hqb4V27usevU/++MRR7jJXwO/f++ql/P1/4RFoc7+xk24MSv7OPh53hWLt53EhEBz3yY5wTntzByAwCFHsmtgOgRiw5zG+6dvQZ9qkXadHp5aaUhr6ZWRSqjEBlzoMmg1grhRG2upxculUtBwmGqYx2qHo4Aw5EDMZzMCkVBKMTJojhgRRFhqmNo731d3YK7QwhyQAkQYkBwdyRCZPO4rv39OqBK4xnEiVWQPMClbigWRAf2wAIcBMAUyIBi3AZAhLpZGf4p0DxQohRuU62LtYGG7OFhRhxUWgQNNCJxRI1YxrBIOqM/3heATY84QSAbjugR+LfFidubibYVUViQMFUOaVesz/pSKcXd3QwFsw5ESMyUnCXE9MfMzvYmip/rkLtvqkFba3mrTe6/Qm0tYBNYw2fRjEd3iGNc5z4w8AhPj4J6jilmOowR85yPy3K8Ex/+mBcCHzbCRF1F7FTg3bkk7hcuIiK6mqq5GyELUxVsgoJBoequ6t1sNb8Mu3Rdeg+HlGCS3YZhG057BQEw0GGMcbvdbrdbYniIiu/HeTwoEfdnmR7j/o8Jw3OO8UQ++ZAtPHQ5vq9Y9YglCH96yb9veIJPBp1Pk9ST3WHEg7cJMKY2dxAkD+ew+UNVhd2vM6Fj+7eD6djmrAgWDkRVQwQhgtCNIm/q2sHNhUAkmIgoVKHfYKygA8OZmQiBqZuHuUeP9Q0W87b2UoZUIH6dJs4smjBTAwAwNTPvAdfb7cvXr18v19utr2P0YcPMg8ZYju7Ko2BURFxu749XIwsmkVZ3yPuHUrAcwsPcIUJYIAjSVJwQ0gIjgqMQO0nh2tp0qu023AnIiZH5dJ7Otf3pT3+aWUJ7hM04k/A0t9ItGwuZPtVacTP125qrZjZNk5mdz+d5nvMJyrfBXlZAQqqChYnFDDxAQ4GptFZrnaaJCFX961jXZb0ty3DrOm7LMkyJkJlfXs8v0+l0OhWRScpUay3lfD63OlETkYIALlZZGLAwt1KLlGu/2BjHJc1jc3dVH8PXVQFWxL4uy9v717e3t8vlmiWYnPpqra21zM1SEywH+pYWpkxV75GVBcIGUKCYaVdLMBskB9TMPNRtMXUC5mAskxR28rGqw2LjFj6QgISJmYiAptLAMUCBySH66D4UNRjIQpkIMDrahWOjQwificw241CPQObhdlkvl9EDgxkDw91tOKREbhgEIIJ7d2MmQXQbffQAA+1rir9lHCClcE32HjPhFNWui4dDuBAJAm0JAZHjRPeIwwk8wLZJIpx4I6aYU9pCp8QCwITORIik7vmsARICAQSmNlYCq2jrqhEyoqhIB1u8r9EpqEEphETFg4EdENIxfgwHXfcGUbx3AxZAWs1vqt0tEmBKUPKBDwzNyQOG4lBUx+G8uHVbu3OThHjFdfhlxE/aqZQaSIQNrLaCwL6YO6yObmFARBLoFkzBLIJTMTOEDWUGCMiFJHM/QgZCQPDh2rstwxd3h3CR1Q0IIGB4ItEIAIU5iBNHfCg7b7WtiG9zjKc47ZFK/WsOXM9bPC03Tzv/ldD/A6XkSRnl8SgA4xAAwuP5/Xa/v/JdfjAk8UBUbhsx+y+tUMd7n4/lFw7+m7Xtw2+/fF4ffiemI0wCvC/ZW+H+jn4Gwo1Ug4j2IBf54WZ9uBrP1mq/fHgAIB/z0ceQC37559++fYjnfkUEDZ+/94hs8q3wi+/7cK0xHv3v6IEG+vFzz0nL4xH+Si/yMbH2o1Aa4epmKB4jpE3n02luRVphPFWBF4iOGGBBiIpADDIJ4IxlKmWWqXEpgWCju3kHM0BGQqoDKBzRTdBnQmIyAkNziDzgMUY3vd76+/u6LqZOjgxNGhcolBG2mXGRBL6uQ29rF3bxJBSQA6aOfgR6wuuBWIQFREAYuqOjeNQOCGjuy6I2FHUEs5FQa6WWXgsMwHUYqUpDlzKTFAcHtAgNuK5r9lzowkeQnfNUujEesI2jI3xUGR+Fg5hZQyMiJYlba0ltzwTDkyDBjIj64OSADERi6CnGYKq9r6VsorpHozYzpadEZXeszQQpK24fhvQx2B5/PYZcssg+hMjbS0iEKZ5k25Dck5PHtCRTjgdmRCDSY66y7ZOORIWOPRxXIKvbeU0JoDC1gpWNQr13H2bmq+nV/KZ2Ux3miNykKPFuT7E9htukvHvCmNmyLsuyZMRQiR7n1m9zgyfCx/MM8PTofZie7empfHzxOVGB5yn7qZXx7cEckJvHnRPQ8dLHT4XCL27h8eDaBEfLwj0CLDYNENjFYe/f5XocL0NBxOg9IJz5ttzW5dbXBVzBerhOwlFEmEkYPOx69eWm62JD3QEjhqYAbJia6jDqxtfO3IkDaVQR2oCLW3BOZGbrGO8O75fLX3768tPX96+X29vltqxDA5K+cVyrhHJtJwgwYiDtBguwsTMNPDwo89E0i81rSMjEgRDAmxLf3gjddxhMLqVKqdN8Pr10J4OgQDXWiuWf//m/vLy+0lAgcFOnKK3Op8ak5/M5jfYQsbWmqilhnKWHlM9O0fN85Espj4LaXIsUoSIgDMJIMIYqAArVqU19GrqWSrfbWmrpY2j4MFVViGhSptM8T+2Pv//daZ5fXs5ViiBVllpKrVVYzAHMU6kAzMCdHCqRRRSRviuGHwPVzJZluXIZwy+Xm5mta79eL5fLdV2XiADw8/m8AfBwG9tEBLuGh++qa5mxjDECsEot4oDh5jY8DCDlGgiRhQAAwvq49sVjYLRKLSJeCqnFTcfNVZFFABELSqHSuJmApQe5qVksXW3pGDC3aZrLoFggFqFuPtalRdEVA9QiEqsIhBredQCTmSHhxk70ICQRitjy2wkNQYkCQ027drAIG8sYK7HUUng4Edda0xezoBTmGjB6B1MhmAoLY+ryM6APxdh6KUAYCB5u7haxoliCkNEAItkoDIAITFiIHchdVX14MtUCAVaSAuQoTpSpEiAFUZC8RawYC3InQcSK3FAGcgWiGDlNBcAw8wgp4uE67OuwAgKMi8PNYjh6YhYCJmchRkDbYWmGqIxGsniEqgUWFKIaEBbRJbrhZTUmUiMhMiegQoS3cYUgLEVBIwKZEcADuuMEpdZyu1wQU5Eew4OCIMxTp3gjxIUrjLCb+rV7jxEca/RSqghrHDMpEFEBOp9OAXi5XHLM2wctk337QMD+xfds7/yO0Tt8k1c8pQG/kqg88cUBvxMTxv6NR+cWtuokfviuj6nOL616+M0BM3OYxSbJgx+i/ccD+d61+XgYT5//fkT/nAfiQ9sAAQ8bykiRw4cdHlkKIj6nH9/NK3/tJYzHQ/z7Qr+y2n38+pioZOz5d/3237I9oozgVxOVD4P+MXnqw0yklHKe5/Pc5opzwYqIRqWex+j9tvZ1VQ0HRJJSG9XTPJ+5NClFw1cLxx7AhghIg9I0GTAo3DigMFhAECHSzhTVoWNZ1nVdlkxUSAQjTntNibamNREFEARtssa0aQUSQkR2LjZJH0IoTEJQEEVwDEAst35dDYmqqg4zNVAzAkaMTc2TnYZjOIWTO9dSkS2wu/eIiM0jJdzX2014d6J8GBuxtzWIKM0cbV9lLVwtDrB1AuWzpvhtwvC/etOPKshft5/fsj3GxPCQwxChfXes/dXfdXyVww4xeowvM04twoWDAdDUx5qsxqGe9ys1IhiFWWIH1wEAINIxExFlv8LdTTe/CzUV90D6cMrHkWwT7r59SAO+93P+/nCOv4LUevqUf7/Zck+Dv33e/Z7ifvgU4FPm83B4TqbHSnLk4emPoY6xD7CMGnFjR0DVYMoWGdlgRAwdZj4ivvz0U19uy/WSUgcFvDeZaikizCXcta/Xy9tYF9Nuax/hLDi0h4IrqMV11evQQazEgbgwFpFWa6m11VJbBWbwQDUz7bdluV1u71/fv77//H679mG+MTiO883O5X4pwMwRMAjct4cXmXgj/d/rEfjI2AEIlONJp2c9TWafz6/n86uXdrqpoVGQkxr1T+30//nv//2Hz5/7+4WiEAYMZJFSagk+nU6llAQ75QgXEXfP5mophR6SoswEaq15TJ6KRCLIjEWAmVmCWN3ZHYnmuY1RVQkD+uurBVz7uo6eKW6t9eV0fnk5vbyez/P8+vraaq0s5XDRCFjel4hIg9r3t/e+rBCB8Kzytx9Y7/12u5mZLpo0m957732MkVoFxFgK276F30sSqho2zO6ZT+Y8qsosaIEKyIgj2DF16hADwOd5htGvEeCmpt1tdV1cqiv3VS266zCPBA/us3R4cHAisLrq2vV2W/ttAY82zYYUSJ2xEy4II9zW1SFObXtCgGmYdVVNR2DGQyAQI2HNZhBmhm61sjAQWrjZGIpBgKPrGINTgWC4IeYdqZULAhjNp1AEHUFhFawGkLtkatamfLrNPV1xAski10O2AMRBZOYGERmOAkBgGJIhGvLAWCEs0BzAkaVyoIRwMAehIVFCQOUnHWvAotANCKAETgQtsATCUEBP4qC5O4KYJ0+sA6K6mxvgIBkIDjCyDe1RgpjYtjSTXdWR3W0dK5BIadFmkxLuhhGIAWyXiw51iIkmElJDhlyDAhwMEQOIOMV2BIWBMJBIEFIyEz3cXT0op8ZVNag04a2rArqa34YPHDwRAkKQh69dzbaSARHOpxMQE1G6AGW5JLlS/5Hk7P+9/TtvCPCthOa/3/b3TVTimaj6hKP4u37xb94+HOFft20GE8JFUBiEvCAgqqIRioG7m6mpR0BhFmxTnc5FJuGCyBqGwBAcIBDuiAOZdiWnCF9dJ8MQAsJaailZwicRmeZJDRFsGCpgKSVb1Vt2m4slEwA5Qnoz7jZS4EABjugUARAEBqFkltYo4URYAemy6k251hIOq2JC2AXS+xZK1nYiOMAgCKJIlTYD8vuyug6DIAqyCDdbr27Qe89Mo7WGu3DCuq5HH+BYd8cY6qaBibpOpmxE5GenaQL9a5QV5vkE4GOMZVnM7CDu/z22bxOVrfwZaH/zwPul7/KjURA7SH2MkY0RIpIitUgRY/fQVftqg0agqvdwjXDCYCEqhRsIisheTYEt+mJG3zBrCb3OKEqHursTJuvjFxOV5x719zsqHzKB7/uj/8qn7PuOhLiLPn+bjZjeu3mPJX+AJxeUvKrb3iAafVT62pI3t+vSD3HtTBq3YJpo1kXSC4iSmAvh0Xtfev/y9X25Xpf3dxtLZZ+rjCY21VqrjzyAfrtdwyxCtfeIYMGlr6Fg3czitoxb185sSIExT1VKYYJauYKUiEIIiILQqwzzuZRaGIn2SlxYBO+TNn9jRjbP0x6Nb9nLvZwWWyz7oQyU5lRHovJ04wCI4/X18+vr5+jr62IhykFGw8j+6Q9//NOf/1yBCmCMzoywEnISQ+L19bWUkh3RzeXWPfe/rmuiQ0VkmqZaa1ZJmDkAHIEAiJmEuRUsjCxEJfoo26NEVEVqAXArtIlv7lvigpiIiTddsHTVIEIkM1vX1dXe32/ucbvd3t7erter7sPyA03tSFQAoPfeqSc9N6e+I1FJN5VHiYJ8iYiYSfstWynZR71cLpfLhZlbmyqVQqUQA4urIDpA+ovEy/nsK4s76IAAYAomEAqmy7KYgYYPCCTKfn5e5BjOhGyofVyul/fL+3pbrA8KoEMLO4CIRYoGuamDLmFBiFgAuQ9fulqQIwFTKCAABUSAD4sIEC61MJaXU5mFp1KEkDZLAgMPDCwsU2vN4jZSI7szCSCAqXuW76Ayz1UmoQLODAg4VIaHuapjZgiIgEyA7Eqp7RDZU89qMTCmxjyhoQxSlxKE5pSJ1lswB0sIA6MjbuLiiEEL4uq+IOR8ccglWcTqGECOEAjEwrVqEXNXVl9XM7dwlGKIw6L7LmljERyFMYBICooAMKKhG8XJRzfkDkCAyAKMyCwkzN1sA3gVKfl4MhXEGMPAnYgEqDBTQAESR3IAqk64mfCEDqCIjdfX1bBwIRGuXBHEHdfVfQRU3/0pI2XcthUBiQ1Lum8xc6pKJI3KAeD/fZmk/739TVvsYlf/7sXfX0hUDk8ceEgn4lfpK987qA8JFv5nSU/u22/OUrLUA09ei+m8gfFSeOKoEBAOZsipsKjgo682unoCb1LOh4rIJLVmWyM80rpgyyIAkm5jWc+AUAgMM+C8zKXVUoAZNMIsmImYiYCB2jRNwiK8dSApu3EZasQOgUxNXEqkOECQO0TYRiXwYb1oOIcTg0yB1FWHowCYxWBQg9TSx9iEI4mCNs4iQCCLlFqBRMzQlAFQWApFoGG4bSvrsizLsiTGOqewAAxM2RO3CI0Y7kPNkBLImp5dxCyl1Nbmeb69vX+8UXkF95v2rSZ1AAwdhJAr7i9/cLu7sN/0v162ISJiYwdHIgXy5jDhAMdfkkX+9e+Kx/d/bHU7hEdkYAwO4R5qrmrEwgCMUDEqWsMg8BFqNka07p5mEb65CmVCsgG0PRccQNohcdv/YdMS3SwZzMCcgOIu0viEYXtuTxzJw9ZCf7TDfMB9blSh40Q3c9Pj18cb/NBIxl/uqGy75NSJdodwN38EiblZkswzWdnpMQgAy3q7v83N9vSJwoevBJ6nYO5j6Dq0d+1m3cPCTd3DE7lbmEvhggjWK5GJiNAxxm636+W2rIvertfr+1fry83HwrhORU+t1opQCFBNl+UGEITQxwAAD16W4WY+3DXMAhEkax0Qc5W51dfTdDpNIiLCpRZAHOHXrkypBIssMk2zk5pBMCWmn/eE5I7UQgDZW2x0BzFvIExHZpEiIsKp3rCNckRk2HeV7bjjFjHHdDq1eZoJ2zxVUAgSkCD94x/+yMyh3lobEMg4woJQpAhEmyZiTj8l2nuAWc5Y1zVZcEeisuG+8MBablSWbEAzMyKHeFL2tRtubCmMgFvva1fzQCAmiQhwtGFjHQQTIiRfxcPHuvbe12XVoWs3U7u8X758/dLXzsy1FAzEHFqbbQ9CQLjb0BHg6tSYiERSQEGOHp2ZuZObpWxi6q1tZQjE0a+RaF6PoeNyvS7rmtC4KrWJNBGG8NHDdvIQRKutmQkSA97UwnShuApxEA6PYIVQAA5MEXpGLsy6OiITkpuv19vl/WJDCVBI2Ekc3IEDQU2X3m8LjO5M5cRASBzEpXcdwwAl78ZGMs2yF1Obap3bdDq1Ki96rUytSKksjExISMFkzkwspYg4qvY+HMC9CAa4YnQKL0y1FqwSBIEcGIjUnQb4cB4RmshnZkRBpO5gDhpojg5bbzCQEWNlYGJHGgSGBMihYeRqcQMmIAHhSLl2SAsXIAhmAIesDgIG5X/khN15s3QEKKXV08wiWeewFW3tGsGlBYDGsIg1wCO6JzoCIbkzLDkbA9J0Oq8LebebGnEUEWQGJBJqpfboRFi4NKlNCjGC1gAb64oOBEgERMiQwYNDUBAAERAGsqMrgAOmuDSkpD0ysHCBUhuJA61hYbFpS3ugE4Ogmw1V96ExWpuyz5lxrZnlHAL//7H9pwuC/6rtY2S1xZfbusnfRFZ/4yb+EOwQ8eHJGM/ZyBOeGAGpQISnxIE/OcTjN30T3FkE6XC3vfIUtwQU+ngHEUgQAB+ZJx/e4t/XeB2muZMtTn/e831/iE8wvgeseRZcj9W3sppTd7LYPZb6UhheC/z3T/D7l/nPP7ycWJY1vrp3NrBbHzf0Egp9+KK8RFE+yfSJ2ymkrYU6QwB0N6UNkCQOgHizhR3FKSM2D1yGKiGTEFeLEeCQzrc9ghClcUiprQiVAsLADGa9tdljRdTCwWhTKw6x9pvMZ43ovRdmW9dAjBAARmjEhKTMxkwLM59oOrf1y7UvnbEr2M8K6DKvWCsQQW1QJvN19I7LKED6D/NktTDTTGdqra+6dmWmUtu/rNdc6Ug2HtLSBw5FxK4r98EXVrdAiK3R7B6wLtfsL6XeLBE5sgUODamTqUppRLSuq0f4RponCheWVMqNpCIgdB2AME9tXZfeOyBILXmj69SKSOWCsA3XDJ6dEIkdsSJFhCF9E3ID4/dBaFQAwsHdPXZAublFBCMCotDme5E8ZSbwCBFO4n6GHccjkLhkd9+0aIgiid1m7s62FGYstKgtXdehfVUMlHqqYZPwqcRceg2FpY+xDh2D5Nqmr0u/9N7VsNRWGqIwMzJzoKAYGEUaBoFbd/SCBEbMItSmOo+l0zBeOnx9b6fTO5rv5MIsngMhEhOELbe96LHxDjcuhz8QzPAokmzOia6+JUYJfMxc1t3DQHKcROzkH9gnKwqL4zV3D08cLQCs2sMjMkUJIMBNvBR8wDBXNTd1cIBAMzc193A1iEi/9c39x1RV3fTEy+9e5woGMdzj7Tr+53v/+WaLwTreHcINPcL6KISvjT9N9U+/+wGcVrVOOM8Tc/pgj+V26dfb7W3p62LrEmFOMQyuQUNZhM/zZyYJDw1P/rqHu5l7B4gABGESKDtEI91STqdamZgGubMzWQEzQ7GA81RXm+fTS+tRjATkPIW5egRNn4Hu2xOlhI+Mlp4TZoI2ITGnjkcqW8dh0vnUdzqWBoCYYv08n15bA8Dzef6CiyPTYv/46cf/65//GQFQ2AKgtXVxnl5YZKxrqRSl9ABn6QhIpMQ8z+u6uI5SpNayrmumMGYKEKraI3Z+DZEBBU3SGMVXM7sQgJiNPvp1AaO5nt97qA1dQdfoS6xr6PCNPRYFsY01utiNh3Vcltv1/bLro9n/8/PPow8fmvpBrOYBY4zb2oejBfimnRUEOMmUEl488XyaW5tUx7KsdIMRw1YNcxuGThTk3fttXOE6Vq3lJsLBZuZphnNbFjc7nWZp0zAfejHHoXY6zR4jwi6Xy7quDl5WKcJ/qq+yxjxA3ewaX8yWSUWqqRFA5VKkokl0CArHkEIePhHh6LHeqtvqWkqZ5+rgLIIRf3j94Y3o8uXLra8s/OV6+Vw+IQKRMcZY++iDkBiJiAq1aW61MKEXwWmSUqg1L6LnOjNiYRaigjiW67IsjAzmBSZB5nBVNQIA+NoXAkNQjLUwT1DNwowbFArMlLyTD7dVYx20dtdAYmIhZF6QtxRfYFfqNjP38CZzrkEegcTmHhTT1PoYQ9UQ1A3CsnaIHggOgauqpx2LkUf0CJ5KT+5faaP3YUZEgS4lCgsGuMOQaRmoqgWJWcjR+w09CGkxRZN2LmMMvS1noFZrleruDfQsk6ma2iDmUgFAzboZ1GbmgCC1takJkRCVGXV0Ew/AIHSgATgQAKIwtSon87UPM2jzSdp53Ojt7XLrPSAaml2XcPr966dzO0OwhYfo+9C3PuLmtcp8OglN67qu6zrUw8OGImoEqioA1ToBUM4E7g898O+zFz7yK/A5Tn14JR4EKAmeGPnxaNvyYTl/BAE9q37583cBQADoA6j7lw+YGPeiRHg8qrwQPqmZfaCeICccBjYpyX0S1ifWxNPk+wE48Hjwav34mUsh5hzZEPEhr3jcY3ZIiH4h7HmCSAQAZq7LQPzcn3g6wieM1W+mysj3BN22Cvw9/7gf/uOxfbvhd/4OAFLvBt4feKX/Sbbn8f+IsY51hMVR13eBeKn04yyfK/63P5w+n6bX0zwLxxi3pbsopWy6mSlkz8QRkSSYAxEIfVcu2EstxzcHBeR/ADtZ7/4iBhLAkWAGJKYCttAwy/dIJMwiZIBie8kOEH/h9gUABQIEeZiaA1FtMk3ydh02wPuiy63WRowIGI4WGIbukIkt5xRPEQph8Xa5nIgnmYZbCqfUUhCREFutasTMj4z5iACE3kcWpIfqra/DFHbS+Hl+OVwXVdXUa4B59DF8dBuaN8vdD9ILwt6dyV+fcSZmO2Xim+3DeLg/BX9tS4Wy8rXv3bfybHLR7lEbbhJe6Ij0695XsFcv8qY+tClTlcPd1ROontVgYoTKVNEFQ8IIzMMCwh01oEf6CiKxsBSRCmnwiIjAB7Ifnqnw+5/dzNZ1eX/7+vWnn8x0VoOXF0iENkKEx9552DhW+z2JXetiyyMe8F1bR2VP/0KzsL01drZcLz+cgfqDbMbxbwyDZ3zX9hJE72uEQfZNzFwdUhU0vEPPFMTUs/FomjyfSOyN7zaCh1ZvWP9cB47TiQFtDNO/vPf/8WX514tdLW7vP3mAObkHIXyaG8yVz9ON8eX0iuEMjNaFhQSMMJSwSV8wjMMoL0PKVHq4Ki59MOWTYmPs4jkRET4XgrgXlY6zdydzNwIzdAczQCSMRJHgOlwNggRlqid6qafkYgdA1HO6t+NOTzruUWmy/+2JmBoATgyIgtsH0IP2MYp073Ji+jCOUVhO0wxLtKlO8zwAipQi6sxkXEUK3UMMRCgi7i4iYdqatCpEZJYTtee1Qggiwk0KYpdEv6dVdJfrgXA1G4oBiOg6ImJdltv1Nvpw997H5XJ9+/p+Xa7XdVn7uvbVzDwiDWWW9Qb4w7KOn79eN7XrCDMbY3jEl7fr0BHmgkSAAnhDcjM1e1+76nA3Jqrz1KRMbZrnuZXaPk9tasy8rmimvZMIqRIgTHWqU5NakMnc1tEt3N1ZMQgsNv1oNQMATwgAAhVBoSBwBIPopsPNIACwr4PM1dSHgnq4K3jEMMBpKm7BSEJIwCKlSEUgU9MIgGzbWiZbuDUtg5AigpiY2NV0DDMjZkBc14WIGNGR3IzCCJyRMXzieqr48jK1QkwmDLVgLSREtVbKSTJrUIgaoKHd7H3EtVs3V4ihsfoNwRCMwE4UyBjuXuIGthLGHsf0dTHz3sdQ1whH5khIA2rhY6Ib5haBxCSFERUoVcUqMxElZqnWikQOW1yVy9nWgKYUkZBIHRyIcHMED/Ccx2BfzQEjwNQhkImEg0vBYW5pontfQRDxer24e5snAlTV5XZjolqrMLOjEWlWEHiz+MzBLyVEC24BQyo5p4E0vlJd1t5Vk101dNhWHjKEbASjuWEIMUsRcjdTD/JANRgKKADIUgp3xjEgMMJ12FhHrbVwDQEbPtzXZQ0PezAbSWgDIvb1O2ol/8HbN9nI3749BdK/IZiIDwF8Ln73JeyvOoBHTv++IX4LOvnPuAnx39Gd7eOXfbcfFP9mbPYfv2W1by+BQ3gKawJCNPAfKvz5U/vTS/s88T/+4XXiIiRgPoZGBtONm8xgHY8oGxEJgzHhv78OKNpgR/sgckhWya9tid6PDcmy1QsjnOi3PmzMUjgAVFXXRckrq0PXWAdyLcQYAY6hYZ768UhIpdRagLjDcFd7e/8KLABgGhGRujv5hNVSiTeXgwO3amZJo0skw7Kub9fLMjrs8b2uT22uFAxV1Zv7XCR2HPxWHtiuXkzlPtgQ8IHGHdpHhndb6Z0obzf9tez8X9lod6OHb3CGqYP07fZXe6wgEASYho1ws3BDcEESxqlQRaxsTAiBlvAGQPXoNpKPIcK1NmktuayBCE6ICTx9JskhBKI9WJJfLpcvX75EBBA5CxIxJeEBDqVhgkioyXE1HuVuC9/vV7hFWIABJJLMwSMsmaUQu7pRQFiYH62nhx26O6ofY2zPhvIv3pclwHKfOoYPjQgwj7BVF3M3NVVXC1UfQ/vadfhqI3al/OPrxhjg4w8vQ+APNpXQZR3jL2/Lv/x0+X++9PfuoMMdzNEd5lrPJFFCgiqXUyuVSYSJgRjy8RJqVVA1RKQUTn0d1R5hpmFgZrciJbFAh1ICIiKEEMoO28sQXE3HUFdQdUIwdSVN4L3RcKIReFVfDZwaNTqVl5p24JjmoLL7In5MVIbZ3mz5mOGrdULaWPMRFLFPgVgepj0kHKMvplX4pTUs8OPvPv/4xx/hS3ld109IjoxELy/naZqOL0jyT2x+I9RqTQOlb9EjxJSVwixhHDz7gGSz7+2ggFQ4mKaptTbPcxI/8ruWZbler29vb1/f3i6363W53fq66jhG4AjvOoaNVmo6ruTEpVlTcfh6uw5z9CgiBQk2QiAicUAwc2vtNM3n+TS31kqdpqkIt0+zFMkzSm/HWmt+6evr6+l02ogiO/EpVbPURzZvASAiPiy4sadPSQzITBsRh3UJGeF58IFg5jq6hiEXMAfiIEkNdCQ0s7H2wE3tUFXzGd9QTAgsbGZzrYWl996X1ftIzTAbwxFTzZeJiggjCRIBvDT8PMvnczvNhdAQrRBKdlukhcMwy1706vE++jC7reNfFlgcriMsQD1clcA5BoQxAHNAY3Udjkaq+dWBbBiBHcXJh7k5IAI7kSHVe1jpDpYOLcxM7JrzpBx6MABQSkn2jkfk/LMNb0QRQaacOjfxgwclRvimdH0IQgRgcxjDeu/JasuxysyBkFym3nsr1cwWtcQ0IhGL3Nvve3uZmYtEKwBeE61rZl5LEBIIC5UqjhTrCogePszUbYSZGZUyLDSC1UWcCadW1X31Ee5mqKq30YEQC9dodSzcO0CY+VGObK2lLl9enN67qj7K4fydFt+/bvu7hsQfuhzgv2mtf+xmICLAX3Ot6CHeiF3v9D/Vlf+VTb6tIv/9tkf2cMBztvqfL607royZBSDwBACMPoP+UOmfXus//zj/6aW8FBIMMF1v/XpbGKAKamCj2k7V/Q0iqmtB6sCaNghEQATfiUcJgB6oMDu6G/zfulG+NarBHczM1FTVIPQ3M87NbPhQ1MGKAZPMA6EgUoAEJJYDHcLCIixQkJBIRGoJQUPIWc7e3t7GGOfTS5ECwKVUdx+qjzXvTUc4/xh+Op0UAhH7GKUUIBymYwxzd/16JGx78BOqqh4FMe3N8mY9dFSee7nhD0S98F3E/bjLe8RF/+7j8DFR+dA5RbyXTfJt25QRYX+lbz05RHi4mqtlGV8ICuCpkEAURCY0jazxq4cG6VBL+wvhWmtpzfZgx3dR5o9eirCB6i1s+Lhc3jLNXJebhkkAsUgRTsBNgjcDHMC0P+4jDuBXxKUrxlYLDzc3A/BEXoOrq6m5Wjp/pHt6OHgWtrNroGY6hrmNoW6WLZoPeYWqutt6u4Rbujm4matCSu2Ej35zj6FDLSJQDXoft3Xpw5yyC2Se6lJE2VIJ7xPAus5WT+EjQgHNPHlYY6KWcO2sbFNgodLKPLdZCFrlUiXCiKBURiRhKIwGpS3rutYAX5bldgPVbqbpQ1+KZw3F/E4pIgBJx2hmFk51cnR0CAcfGZKSF0cwB3R08PAedFNblY2QWhEQFkGmdMu23TLoG+gXrOuATVfwCfqF4BRECIxpmkBChEnnC2zlCcob4RHOnDF3+8Mffv+HP/0BRH5Y15VLoMAqP3x+7evtmAHMzLS7h2OYDoyWanc2RgAIc9afISLt4eNBp3gL7iHM4Ei9wiNnobI1freqR6bfl8sl1be7juE6QBUsKLIHh4hUSJoAsUb0PnrvaSaTE7CZrZkP5ANTCpibmYg0oU+fXoX5fD59ev30Mp+qlJpSZsLGgUzruuZxllJKKRkHn87naZ4QgIWRaNOMCkePt8v7sZTmyR6XeozROydS9LYsGSy6+xY2ETIwFxEMD+ure7i6994pgBjujw+XpY/leqtTQyZizv7twbUIABaJ8FSJ8KFjWW0otmBAiEitdwKozK1WRmIkhnid5TzDXL2yCeX4SVk8iOBhoUO7WpBd1v7zbVl7/3pbflYaIBasQcRcmAlMnCRMr1dgdDIgcyQTHoRZ9EqNfkdxggHugSyCXEPShXUfbYUThasRZqNJI8S8C4cVT0JwS6nmlitahuNbaiFiEb5rSx5zUf7Az4qjtjlckyDVQF5W3M2+juGKiKfTKfZJL/bPjjFMtVTZ2Eu7nsReb4VagrC6aoClWhohBUEEmHmdJmT++vZ1VQ2MbgpuwT6RDHMPGGbkLsytQR9jrBAODtHNV1OJWqQURLktCDdwjZR4TmQR0TTPp3kmRAo65OwPQNHRD//PsD2GxLn4/fvu/Hn/v23nsQneb4f3V6UWj/HGkfnsrML/dH2CD9u3ZOL7RUR6Ah0dL8VDsp4vwCMq5EOQGJBo+wTZPbwNUbZ+BUQQ0qMr22NM7g+YECTAh2zySe/5Q3/iyZjlmSQNv2k7AllmTv4kI7ZYfxD4p5f6336c//nz9MMsHPauflt1vS63Wz/P08vpXCtOjYSI2wShZECAjEWFndBSOQPwmLCOb3T3CGDA/C8wpWKRoFt48KYpA9tQ2wAr+RO6hXMEAKKbqw4x8YTfuG9THjptkkdpLhaIaO7qgYA+hsda0WGmUooBMHghEgIEYCImAQBzCGRERmISqYFMQxCa0O3WY+3DEiyEpUytzgdtTlUt9W8Bc+nNCQuRTqdptS1caOFgBIqIuKwrE+XNPbS/cjEoLJfLe4KC0tntXnWAaJJaqfd5Z4d/3L0d86hoU75nQAzftGTvhWJ8eiIYWDdfTrxvj0MK03Nl22A/BtocKTfz6ezx60NjB3chV/zwfAU8jpDYcQAZz4M7RSACIBGjmrkOMwt3BmCSylAw5sLkhu6xmYWTgnfH1aAPjVTyqbXUUkrhwJSiJqJEwniEqpqJMEVSYtAgMDzE2EPtbaitvd+G9lm1Tqd5nnkTRWJhRkIIVB0bsH8/I8vl2f3WR7iFG7i7K9ggDAAgANPV1QJgHXZb+1Ab6kNN3ZJh4ru+maoOHTrUzProsWPMj9LvGMN02LhCBHhghOkIc04VB3MKW5YxxgBmpKIGq46196Hucp++iImZ8/GjsIDUuULzRGplPqMBgEgA2eFARI7AUto0TYgUEOaKmikhARCLTMwi7Byl1rLIGMPM13WNSKNGWrqqk3CkzsBmvIZMiJBW0YSE5O5ZqdhY1+ZI1hWYwp0cWTwMQz0USJGAZW5T4erEwEgQiBE6EB4H+l0noZwrbmoLlLczBzkjwHgTJiHGgFZKa1WQICDMhZ6aiMkTyUHuYOeXUz23tk7n0/yjU6BAk6nK9f0r7sppSGnk6toxbJj269sbIvgYgKBh4SMi0J1LTaPGPOwjKiq1rrpm31JEkBF864EsyxKuvff39/e3t7fL5bIs6zGxiKBw+nsAIqJwrfV8fpmneSqTqa3rqmMYbOaYpuruFIDZojTTXFBEpnlqU3v5dJpae/306fPrp6mUwjy1RkjhsYYN0yM0yWGc7Zd2njOnAsAgQKKuCgaIcLvdDiw77Qrsia8ToffbNTykr2tfu5sTWoDryGSWmKXWwqjaJQq4P4qJb5oMkfhDXfqqG5AKuyoQIpBgTQyPuQun7Cy9v79ZHwIIwwicJAoLATDRXKUVEaLCwojThMKIaKlVgOijD0NkJkPrCutqN1UNu6zr29pvy3obdtPQAAdIAYfCxKHFmcLWdaiIkyBIgHiQG7hBAGw2m4FIDFyQGaWSVGKkogeSgXb7I1UN8yKb71xe1ayLpaMO851ViLuUZd67WgrsHZXHpgruZmKwyw6ZWerUldrYoZSSPmO5wKVvmLoD731dgFJKqKWQJgJYpOer5+Ed3RhmmBsqqTICACGp6oqIhBhEHHM9I5V4v3ZdLXykrY3jFVYdChCxEjKVqRXmVmglHAGqPsaCpcgEbh4BzDLVGS/v3nX0FRHBnIlrKUQkyLXWoyOU1+coX/5KrvJs/gj0GAQ+l7ufdvIbi/Dfr9bj84vx3Tf+WsD59NJjuvC8Q3oA0QaC+jMQ7jlC+N72C8XQXzzY5x2G+x0K+3wjfu27nr/4w9F+71MfX/mlFOPbTZ6O6fEaIhDRQ6vonhTcb16GUx9v3/23Q5Mn0xGiuxNBRm2w6+pkMTvz7w9n88iYJyeghyvy+OOzQczTcvghi/1t6eO2LiIiIkGI99cqLxT/8Nr+64+nf3itP061gq9q15WWm44ORKWWNrfpPFEpzqG11LW7QzhihhNGeTGdgWMvotxP1h0xcsgmnj8y2FQdbpAulrDBVPY6xNZ4T04yAOXZ+0NQ6+6YXl/ohJkSOhG5ORG4uVqk+SykSYsFgISru4lQqnkGEjI5+QALZCBBJgqRQCYWwSkKXq5LXwR5jDHGm/D6cnYALKW01pZRBMR3ieFaKwCMMYgZqRiCiEytOcJYTERKKYC4Xpayqd8wEb2+vmY5udZqfcGAdV1hTy3uo0aVMHFhlLuiXRfBEEuRBBknDm0TIfFtaXlc6R/HAxMHBSIez8MHPMwxsOOwP996hzkFEKIfiUoghGpmSkc+c4zY+7/wbJ90LISPSFNCDFD3Pqz3YUMRQogr00RcMBoFhHuYWWpBYndcFG7DzZ1Fyu5Px8QJMc8afCLdwyOhIrUIAGhsDg7F3ZxbaYh+vbzpunz9+eeX2+38+vr68lJqBQBibq3RZsCaT7yHpwSa626a0wPMRmh3U7CBYZUhj2a9vfd1ANHbdXm73LpFH7YOVbVQZ2aIGGP0PETdKtl9Bx5kooKICXox1coDYZcAiWCkWioBuDkDLrdl7b1MU2AsasNsqKqHddh1rpACTI8JERO6TlQcOxPVEqXUVkMJGSsGB5ADCgnVWqaptNkAHXF4hG92NcDMuZxHNVLinqI4AOHuo4/e1QHVQH0wGRJt+amjBAXFYAwANzCMcBiOI2A4qINigEZHo+Hu5CRh7hTmILUUpsCK06tJVUCjoHCEAL1XsvLpix38Jnv5APe68ta1IED1WkphATcCbLUUlvDQoXInkUXm7fskjtLmUlhDUXCuxWZ0JwiA6ARZUEwra8DMBN0xfLm8rde3zJcyJMuHRDgAXPUOxSml3FOdbabdSTa7CtmyLMKYiK9lWXrviCAi8zwDIrU61etcuI+eDNTT6fRyPrc2gYGpjt76ecog7BiHKXidcTEJt2lq83Q6nUotp9d5nqZPn15fzi9NSnJU3G1d1uWmeRj57/v7e++91no6naQUFCZiVe2qEdHHgAhidPd9ZcYMBHNyk8IO0Pvq4RKiqn10QBymfV2zfcaELEzoGITOwszCYYDpk7Pd502myc2XvuYiZOEkjAalCDE7QNch3MYYZnp7u6BHY0FzIhCEqVCYF8ZZpDGXzZQTUdBJDNiwKJCueruuhFgrOns3X9W6+qp67dp7DHUPMvNh4YhEICQogoDhBGF6mpOcQVyIhUhKALpHQMcwMIdNqA1ZSIRrESEpkq1d2MtEGT2k18jjbO+7XdW2BsdTWWQrO3pwEYlEcpajbZJviwdmXe48B0+pDRGZudZ6OC8l9m+Y2m3s4xaFa7el987MCGChm85IhLtnS42ZmRgoBqIaI1MeRh+ahaBpOjkgspQ2Yx9jXTSFvRBut2GmQGAYXOR0PtWpIYbpeFu0+7iuN6qtnnRsUHCZ26nA9equfSBiqFFAIy61+t4yOvAUH1bY4+dvGPPw3Zc+7OJvTlS+CYnxl9/4nBP8SsD5ITZ/Lq8/f+oIORAe49lHmkDELwLGv3Pwzy/Fw0t4/DF7Nbsf7sfc5lfq+o9CnfikSvUb/TR/+0t/Xx+VpyGFz8eRbff8OX6tv/Z8y//9D/J7W4KeczIqRD/A+ueT/PF8/i8/zn96nU4U4PG2LLdFf+qkQY2nVmWapiYyCzQ2jI1nkQpphpu3FCAgAfl3zyaZ9BiQOlHmyc9DZDYzBAXUCIuNiQJIhP4UzuKRne/K1r9pQ8wyTx+xLG4YQcRVuJZAGggUQRAI0N2Hew0CACKuTWqVYdiKpIZrNqbd4Ku9Xa/LPM/TfAoPiw1YnzDfXHqR6LYMImqtsQjV4ghrXzM2kgylmHOOm+c5p2khPrWSpdY87AeOClHEkahk92aPsbbpO5eKrFptDdBwonuictQbYD+jI6zJiG3LABF/TfXrb94eZ73N/zWntD2fgk00DPp1GVsZN5ixMDWmWUolkNDIAnpGvR7q0T26u5QipdRaS6nETyeyraYRAGGmviOw82oDggd6WIQRkplel1Xf3r700ebT+XyepimvfGuNmCNi6J3d7js2IJWzvi6ruYGO0BVjNMa51dNUauHL15+ut9s69Kcv71/eb91jNRhpzG1RWHLNSzRL3mUPp42NEABQpLBwduTCVMARPHaAJXGyYiDMbsOGqkGAu8FYzCxCwY0w56stZntIUAm4llbrqdWZwkvAwOl89lcdbIgoAOxIEChIMlUlWiMaxKVbEWxMhURqpWmiVogIIqboEXG7LQCgquval2Vdlu4BziUQdY+/t36gWWEuSExI7jQCicKpG3WFoZEEoUo0EBDChzkplIJCUxHkVmnyUjsLBQYGghMAyB2u/Vikx4hPrUBs3bC8LEwsRZhQ4lRLIUIbWkXO0yzCYD7MysTHE7UBVbdVGJkIMNaxuOtUC7moxvAI00qpDIBH4RnDMRwirpd33GsBBwuFmYm4d2eWiEhAfD71iNjX9UDF5OOc4zyf7lLkkaBiZjmGa2sn05dpWk6nfAqY+XQ6vby8tNYk6+5j6FYtTsCXmtnl62Ub7eFSS2mttNpaY+Hp0+vU2svLy/l0mmqbSi0sy7KY6fv/eLvcbl+/fn17e/vy5cv1et0PowaAA7ibuh0ILhEpJNM07xWqcPd1XbNMI4Uvt6vqyAqR7nDZMcba11IFQzAiGAmYQ9jdCJDZzR4jJFUFdevd3FSTWppcJgTCILTwAByqa7YdRg93ISGMZE+JRGUGwCLchKukNBxAwMBiKBFFnX3V5bIuqwpSm4Obqke3UIfhoApuYAPAMbp7IBBiEBKhlER4OFBAcxYiQS5SGksJC7ekyn11IDBDsAgmcMRgQmGu9AAeySXDkyT6FAb6M449J0d7mCG33INZmA4w2GE/ukWHe9UJnlHNvfckeR2xY45tRAyENk1utu0biVIKOLJpZ+abXXLymnKgEmCggRMCALETeYR6mFpEBHYgllqoFCkVx8jKpjmkIk5YeATxrRQhinBjQCFRDgv4er3S1E7TXFkwkHED/iZaafSuqkyUC72r+UaJFH+glf727UPTIL7/0t++/bvv8Ne/6/i6RLE+cKX8N6Kz8Htp1W/ePtRn7/W4/1e3v3Oi8sDUCQBkfkrp8CFh/P545Qdu03/kuDnETKdp+jS1/3OKf/rx/Ptz/d1cXgrr6Ldl/XoZl+69vQAwFJ6mOk3cCs7isxCC9SAhxM01HHzH3f96YEsPBJWt+gJBnLL1RECA5IeNAQIhAfFj6wkRKbsHv3mIw54Gutu6DkaKQkCtNKFWusEIo2ygBfRharI1wzDm1ubmt1WnqTaoKEJEBhEWGtr7eH9/t4jf/f6zg+OuUuDuSYRNN4BgIqLGDEy3demjb4kKSkJZeu9HylFKcdUxtLBkspHz+34qzhF5tTKdSEPJrOC22rKxsLfFOfcJEQSHail9GGy+m0XkR+KBpc3y901UjkeAAoiCHrfNMzjco/fEGmFhYc5QoEylzIwUS4AFOCaHRb2bd4vV8PVUpUgppdQCxI/nbGaSeoijJ6rKrGxpIXg4EG35KAO2UoG8q729vb99ff8LUcoeJJOSmS18GbYzqTZDzw0jY/aX281txBhhvZC/NPn0Mn16eTnP9evP//N6u/WuP329/OXtfTUcux7ATE2lJMhh9K57f3KLMPbl31PN17dCqY8BEASAAcJSmCsLBhigmpepFaZg7hZFfHtaIxkXW2i7YQUBAIDBXl/Pry8/vLycVOowvVlvVedpRJBMU2r4ZW1GCAfBLbQFf13XOQqUibA4N5fmUlEQzUkGUrjrGIuq+kbrNzWnRr5PC7Br5jDzIDJjPICBWxs83AOCCjmEdyVCRgBCG7BWLFIqY8yFTWRFRKbKHLABeOkZQ++7CSZjSAwBwEKILMKlSGYJTPxy+jE97L0PRpxqKyzhrqaD7Vh9n00z0dXeL8t1dRtuBsKtIDbCQMJ1wIMiAu1SHOEOoLCXkHNE7SkHARaRchRub7dbzudjKEmFRx2wPQ3DnRIAe6EqexrzPE/TNMk8IY/SMszKIsv55WVq9TzLxlEOXzNRSbyQ+s8//RwOFm57wxuZSRiYcZpabbVWKUVECMnMlmW5vL9/+fLlcrv99NNPX79+vV6viDjPcymFWXKadve8gBvjpbV5nqYiaVSVGbvvRiulSqw+9kTlyNPyeg5TUpVaAjENGiUCMYjJ1kdHARjJGlyHqXXaDDwBsicFFp4cOdVxG0OQLm/vYVGFOZ8asCrUSgWJ7HGEuWOYuSGOIuRwMysDfehytd6jCM4MQHuFw8MddIT28AFuVpwAZWsKl8KFIa3twTiAmZkLc2GpRByEQQ4QouSxacUipOYdiEAVqnz3dEqbeN4gC/AYVT8G2QFgEb5bbT4+m6iKTEcbPG18fE9pEhCaGchjorIua32puTClZMIR2YfBxJOp5q3kACSCrUtja190HwBJRMkVE4nBDcISkIHISBKqw0xVb2tfR6/zdFTpMnIIAHRQNXdVRUBvrc6nVhinVhbu4m7ub5d3Y+ymZ64FKNTrbpOiqmHWzb5+/dp7FxELtP1C5TR9X+l+Wx36uLzHx54Wy39X0vWH76K/ihzy27/rPsAQkO/V+98e9/LfrATwmC9th/KfYPtuovKLTnnHD3ns+PzSL5wQImwy+rBVPe6v7CB/+jd44t82sH7lzb9t+3Dg8JyWQ+o5BgSGV8LPU/3z5/P/8Qn+4fU0FagQpmPp4+tN31a/DJo+vQJCSdnCCiJeBAsDB+pOWHAIgwjEAEqRzuOyfBwUz9C2iEDPq0BAxCwEAWhIAmGIAYib7uJDrnfkgd8Mu2+2Q4J373+5h6muHZAK1sZFUNAjFNLEChlcDc2zaAQIUYVrYaZeS5mooAgQKfhwZ6Y2tWVdbu+Xn376iWRrYhBRQFj40HFb1ts6SLZZlYhgX0SJGeDefjmfz+fzOSJaa+vt1pjvHbuHgB4AOZweQB0AsDdPiDzcNSOew6nazLarnIia/eod92XzOdkXFT9oPwkY+6Vn4FdmNfww5n7hvmzvSSjH9r84OipHOXjrm4Xvo4SYSBhCACpBY5wFaKiHAoaTq8XwGI7qYB4iO8+Y2QF3e0cHCHeFIgip8+a2+SAmTyDH5k5lpyCIrv22LNxO67Ksa0+aT944Zg6HS1ffaIHe++h93ZhLHoPZzVzX0NEk7FTZz42h4NTXq40eAZRDNBuVQIxoakxCu0nHJs4LCIS30RMhR0/XCxF5LjNsvqdAgCLCRQiAjJyYpKCwEqE6uBciRwDgSkyQ7HEsIrzLlHH4+TydXz6fz2eVMtQ6rp9WHqgF2BgcKIADkSMIQtHWgB5kCsDIgAVFkTWIA9M30gHUo6st61B3IAoky1wzwB70hYhCAyWAKZaxGbcCgNoAj8w/CzOaEZK5D0MkBnOIQdUEKcIYgiiGjxJMUgK3FjdJ2cd0ZOk803RBOMfahFtrpdayP0T5NKmuRIQegzhtNwOShQJfr7djsk9f6v1xwMb17fruoeEoUefSRKS1wmVe7EtaWiAGkcsmJODgXiaC9CDav+iIAlVXiATY2NDx/v6llMIi4cpUwQEh6C5TvAnK9r6YOSKVUltrGTowUyvlPDVtxcyEeZrn0+k0z3MmKnPBA+zZx7quy0FseK3iGcUGbEtAWpYj/nRd0TVMXceIcBym+uXrz19++nK7LZfr7XK5vr1d3P10mmudpNR0PE9xx8x8pJZa6+nlfD6d5sI2Rl9TamsdNohIWM6n0zKWQHB3EoHsFSM6YTAd4TUE0KFsC7Hh6O7rVKi59RFmAGHm6ZwKxyKOGOYeka0k9XZbrwCx6fQiMJIIFWE3JyEAUNOIwABFWkoLVrEQBjAfTt25RkEsbh7hYIEBbmBJNdEIh8qCSCgiSefOOjQyBBVD2oxACxA5otHmhitMjqiYK7MCEmEIpRwFHXMvuOcTl63XDw32x7xF3QOeRdIDzIzNNounxMMQMdHYjDtdmBCRMWUpMAHcrmrUCYAQmCkVJxCAGQkpAoWKAZo5IzEAE2V3OzyG6hjaex9dTaOUdZp6rQ0EMLGxFkhAsgEuzGwMXZZFh548pBUEoAwoAsLDPNTNdFAiQZmmWktlG0rM4KEBy9KBrwQMLSZkdBBmQaKAGJboznFdYlUSBik73SzVVI9gfFvg9uUuHhbJD9FowHdCmoSiHp/KIO5h/XyAKn3YYSKsAeAjrio+vPeB15Cf2z71Czi146XvB2AfXngaYBp3/+JnONLjeT2DkZ7ytI+tJ4T7p+JDrJKrJwKie7jb8Rn81cznuGb4cYffuZz/1ksftsN9Xu5dyMRWPhxWX1dIGRpEZEZGZIKs4S++36kAka3wbxbhlcDTmBUQuYBIbCinIHTeL33id4/jDg8ApI2r/TQFBD03BD6gFX/L9nTHEIyzhAfZBE6vVQAAaHVaVM0BEEuhH0r9x1n+28v8pxP/188iHAb0tujX27hqDGjWTl65UK2V5xl5iqjuFaMyUWGnAk4rEzOQRaAFRQhEdahXu2HElmKEq6qrYQAhrjYICYWIGEHQNXRQKefzjwYLglOpQkSg4eSq793GshDLHrxuxQx2BgTcPQqfeotZclYjzAAdsxJUgJiLiImABpoaFQGG6/tC3EheKjUL13BzQpRzw6nQonbr69sNru8LrCvoVOq51bNXGR4KRhVffjz5ajbsbbkM01LK+7KKcDdde08LUVXrEe+Xy7r003SOiNGH9vVUa2Fqp/n19TVdQH30Kmy9M1OG2QgernvUwaijr93dM0rG5P4jMfK6XpiwtikLToiY3uphKVOJToTuuFdbc4jW0hAQHBkFwNxDqLQyIWLoOOYHIkIid+cNk/ZhJGIEIGAEDIdWqpFlMyeYIoJyQTQDAAukLJgd04c5AwpSZZlqvd5WcgSCr+/v7kjsau5KtdRKcKL4TPFiFxrLEtfudjG7OF7Uf176+02R2qfXsxRurbZWM6APBLPB7NJwde++mKq5gRqRz6dW3COwhKiqO8AkwKJISjRK0Yjl9u7mETpWQ4gBuFwCAQPxp9t66G7YwwwAgGjGm+EGVkABFDKhLgzMg0gpmBHQgZwan4x4aFAFZ3IWFsbSSIe5Z0pFLEhUhZlwqkWEN7wQ+CScEh211NM8l1rcPcwjYA4iFgfsZuxeEUEEWJAIHwDVRaTUgohMzBivn6Yy/w6KNK41zIve4gyTTgpW2HbVi616EKGlfOVyPr+s2m8r4CwTT8iCEdG7q73f+r/+fPnpuvzr5fbTX976OrrB4GIRY2gpBYV1Xc2MCSgy3OMVSgpghRmCCWGlmDwcjAW5igIAsxNFRCFarY/3LxRADmJapXJBAggUJwxEIY4IRmQBJiCMUqgWKUyn6bWwTNNUW8MEPpmZ6nBdFjTzoWpqy7qMdctGHPEvY9jeGBljjHFXgVP7iujowRFTwUJf/ss//CNmi+/0+y2ftRGmYBphpZVWOWwVpuvtCmbZYCTC3se6XP84t7HclvXG5FRguf1ldGYWIm4DhItw43CLCEfP3i3xWWa0t5c5+jzW620qZZrT1F4oHKkyMTHN0/z66fV8OtXWCPHcpqx9eGhE8zgnpDFcP72yW5LRQjVl2ljVetdpwNJ1uf38hVGTZOgwbstt6T+9XX768uXLl3cLaG2eXj+//vj7UstQq1TGGGMoU+Faaq2fP39+fX0twr97nfrt9vb29h4m1F5Okwj/8MPnHz59Avy09PX9en2/XVGIp+YYxj7ATlHMYll6m2dpBYLD4LYsN1stpxWExYaFU8aYaOEeYQxM0pIA4x5uWbqw7u/z1N77z2tc+IQU4mbIJLVIcRSqtWn4xUOJ1Lybawwwm6apzCdLBV6Ia4wb6c1WAW4ixDCWdSyqI0Yw8CQMxEMYqXihgbASNpRiIcO1/jDdxdBBw8Mggj2SRF9bARxjqA4mCGzMwRWFCwG527qumrYnsNcZzY4uRzbVb7fb7XbrvXMpiMSlIiJE5mthardx1QepQwRAoklYwke49yUb+ultkLz8cA2wcX0PdwkvUlTH2rtqR0QBJGeI4mBjUUDEEdG91goMw33ttwDsY3279GFLqVqnIIqxXPtQcyApBadAAjDT9V//5/8Q5tvbz4x/9FGISHTMAJoGKgCFwMMvlysihgUCf/78eZpPxu+392tlkvD3f/lXv9zi0yebJgBMc4HKZfgSaoRIWTwB0Ofq3eNvLHKsDln+ur9NHsXrHcKTk4a4Z3gAu5+y7TVD9GFHvBjP1BaSx4AejpQhno0ykO4E9+T/4Z7EEgLSUZ/cmyF7zI57TYsIh43HU37KJbA8XoMHtSknvifMW+S2Z8/gm7Z1ChxuZxYAADtL+fiiAzQOYX7/Fe+GDQGALJAn7oBp2rgnigYfmlf3HYLegT/pcHTPVh4sKTefjD0/ig8WgHHPWOx+vFsnY/sU7vLEiBjPtKEPW1YIIgIh3OEXk6wPuWfiB3IVCCAMGH0c/YP4VUrQ33dLNkdgIARhBB9Z+HX0cAOEwuV3jf/Luf3zXP/b+fRDYwBdXZfubze9dR9QQKqU1jg798QcSM6FSpNaoRKJ2To6M7FIVR4sgayIcTCPjmLl0+EBIkY+A5nw7ZaQEbh3Y7YhQ4SUrRbcsuDNuM53fZ5s5/xbVyT/5+7DBlJ3CiKep9NAobXDnusFYAADYAJNwTPRciaoIiyI6BQI4QSAEbWWwnLT7sNNTUphZnRmF3N/e3u7rcswBcTz64+AG1AnCe4HdtzVeu8HX+LxORdhAMjqlJnhzlQJj7nII64jEepmlvZqCfrgzRX7f30E7Vt8o8IRmYs8H+f3Lvr3Ki2PL8XO1fyguY4BTBThOgbm/AVZ8wZhqIyVgDEgFGJ4xIBspMRirhFILMIly6c74yJSzSwi4zdEB4xtqgT32PDvDlvTxSFMfQwLcgoe5urR2hwP/BM3O6ZzkXKY++bej9NxHeFBG8WamQWIkRmZSmnmQFZKxXmCAhVpNuCubmC0YY7EzGiX00VECyfmIiSb9ZkTIoUjwOv5JUdLSgjQRvTPjlkhYg9chlazARHMgBwIjduHAZADTDCmudX51GZhH+4qtpaiUlAQIBVfY0tU8rNcCtXSuyKQAa8W67AqiGZoqmP98nb5crm+vy/vt/Xteu1dt6VPiGNbTInCzIYOtGwIyNU1JRoiTAioiHmoGjJYsG1rawkuEaFArg42CK64DGmDa6O+UpnKPLXTiUsTBJFSW5GCL6f5fJ4IPXuKt9UAyRCXYX30pJ73tfdh16u7ZSK6qaZutxjxp95914yGZyjFcCdwdODwMW6fzicqQsSq3VECIzAcCZCSJ0RSmDkwkIjYAqzsgBMOrgBIzrWcipRSUtHL3dUUxhAQZrWxkrSspqEhEqED11ZKbWbzPL+8vERYgrNEYCqV94Zw4r5Op1OCV+c6beom4BEaYKpp+7FOQm6uqZhtHo4AsK5jZSWF0b9cvnz5ebmtbkAEgX3pSUnqQyO9rWoVKRn+EIOHBRgxEGFr7XQ6ffr88vJyFqI2VQivo1fdYHUlh3hr2XfKzpeGg1sIIdHGmM/nOpzSJTYyt47tueDYxVsAI1IwLTJewK3fAvcAIAx9xAAPR6DCGPkoCxZR6oQQDOrYc1KCGOAWQe5dlTXl6QkKowogYhEE9ADfaGVwJ4IQSqtcpNQJSwFhZIJkOz25dwcCICFk/xtBHzSCzcwH9LH2UVkIpCEixE4DjMhGPREh8gH7zAVlo7396hLrj+gmxFxytrWJGADdQ9Vyp2aWtpa36yU2zxYCYFXMmxGBbi5SmNjJIwUHmdSUN3vTNJiOvuoFr5fL7fxyalWWrqOvfRgQ16aArFlYCPvLT29mJrXleD48dmxXEE61tOv18vb18v52u1376+srEuMIWB0Xi+vo43o1tDaY2Z10WX3tMNTX4e6H3cL3UAbxhAjJ5eJ+87zwh7UyCB03yhw8rJjHeowBtU7H+7MTfkRc/SF7fGJ+I5A88OjM/GHZxTj0oT7G+pLtRwQA9HBQyLkKMB4zrsdYHwBjIz8dLz4cSThukMNsZ+85wbcb7kceQH6/kHt/advY7+pWBIjxcCsewvGjU7Ndy3gC/TxGNQp3LFQih+A4macrGvDwUsRzL+XhZ37wlcl073hRDiy+P59VHiduH9gmLsCUlMLvXLDHb3cAitjVaDMddT1O5IiN/sO3jPoTzgGIDIx73Tti3IjptfLvZ/6nc/mvL6d/Ok0/ShOKfxm3Rcd1HX2gAiNTEaltLqWxNGGs1Qpb4WiFS8FCyEy4uJRSm0yAihWKAIOioXNeFNpBW0869Mw5fs3TqfyXN9wliIiciDIEdDMdoIzu7Hs/+rdemgA1JVOcqE3T/Pq6OH5dHD6koAhDfRhaUGb0wtSm0kpB7I/vHWOMPnrssoyQTmvIzMRsEDAQgUVk6IB90jlSjowdH7nvuc/t9AFCR1YbEo0dERuIiWgqQjgf+8Qdfe7ukwgRHqZdv/36PF553s1A3f0RQJkr3xHI/hVkwQ/bQaTbCyT3y0tEq+pqAYCeyBwEZmiErfAkweie8RKlt6Ovw9ZuZiCl1FJFEh6/zQPHGeW12t0/gABsF/vyiFwzNRzMe+9AiMJASACc8I99AwQ8CNmBFuM+I8bTrCe1JomNIZpQmaRNrU7nNlVEKcsYQUZ99etqzDKPYFYrrRBv+L2DwJA+a7e1J+MioxdCEARmZqRC6HuiMk3TA+MIpEyAODzaOibVgWi4L08PK1ZGKnmLBaOdynw6zbOwd7OxGLTZJxs2QEsJuAuS5sdLKa22Md4Si2gea9dCoWBga+/9L1/ff/76/na5vr1fb8vqFmlywUwQJUmzecoPrdIBkGmeE5IwMiKBR5A5GDWXiZmptTK18DD3rhrm2G8eV5LLdH6ZXl4KESuzaiE6v5ZPn84//vi5tYkoHMxcTU3Df752tchALckSfV3X3nWYBUVsQKiEYe33H1k2Fo3vvhzHJVVXAidPdRqb5llEPuBtjmFPCKWU1sQUmClVy5M6nNR55lP0K3MrRaZpRoTe15R9S9wq+PBgD2NoTJXAmQGREBqx10an07Suk9ogyoc6eKJSyjzP6Qt5Op2maUoKwcQFwBGznpqE5qGq4Q1Papon672P0VXVe+8BY/R1vd3e379+ubxfhwJyINrwvo7326bfmhnR4dohwoQbrS6hsJ8+fUoLSCasGBiefo6xa6/nOxnREZa+cuehpqrEhYikFAQPd0Mwd0yN8IMRFI6YrkqpRx47Ceou4HkEiBkjBoKGR+8ESWBMxzAMQmAaSEDIRAaxmg337pb6+GIa65pPVtklfRGx1grmahZmRAjCIIwuKFCYZOI2tzqdAskQQBiLaABqDLgTgfcHPJUY9sHpm+dIWBxkOaLNS+egLR1TPZEcdZCcMHO5cfeu33VVT1HKY9543AMmiNFMVbNisj3RAD2Udk/J/JYteVD3EcnIiV0oIh9A2kG8Y2xyZOkFtCzneSoBZA69q4Z2dUAGZg9Ekuv12peltebup9PpqDGZbW7RuRaPMXY7AQz3qUz9cos+yMKX/v52Wd+vrbVaam0nXTXWQRoxzHWHMWWwvd+VD7Xqx4X4KKhDrnnj4fLGlktvzsiZnh0fe1hT+vXeyjiqltubCx59GGbhPTlBgLWvtL9ESIcofXbD7kcIz5ZQ+iCukL1RxGSUBj3mOo+iuBne37scTxyIxzz7AQvzMfp+2KE9pzofA2z8TfSVfDC2TwQUvN+vD1/9OOLjmczzgVj+hJB62MOHLID8nsceFdHc7onKtxvtx5pDbEtnIvOZ757zQ47lEUCR3TCK7TbfR9T39vB33bba89ZTIgDEjeqKgH6q06v4n8/yz5+mP0/yh8afhVjX98vyF79dVYcF81TqSWQqMhUSQi7zTOTEWhgEDB1ohxcyM6emEmALdgpHQHAPzdF7H7VHroKQKlKaTlGE38sKD9w9ERAFwobiUws3ij3Cdf/l+/vtltg/DKqtvpxfpvMLDBNe4ptwYZipkwcCAEEQUSsllT4ex3KpVYh1uY6lL2OF1BtF8Ihuqm4kUiAS53xEybnKHqRDW9eUaMyw8hg5CHD9+oUeSLG0M+OZ2Ey5MO0axLhzoImEEZmf+ND/qxvuE+JWG34wHDgu1CaF/DcnKrlI7Enp00tE7KP3PlgaBCAGRgh6Y5uFphISESM0TAO7Y9dYhq1dzalVqbUyJRiGjut/rOjujrBVK2CfKy1CY/OrT+Y66xArrRQmBgRGMjDF7DJTuEX4VhQInE/nuN+++6ISAApByGlTLehzxdPrfH6ZT+c2n5KqwVAW5dswJplHkKm1qWbHUlJBe1/mA+L0SsiUissYjuDCVJiFKbq6GWzBbtuTnAxGCiCBWvd0exMPUA+LoOcU8dgE/HCMQWImqC1qszqoE3AR/0a3tNbaSo1Sq3ArhIKrBw4tYaPrWPtlGbd1LF2HOiKXmsIQBBCFqY8B7sQ0Ty28JCzQA07tBESChLQFnDtNi2Q68/wiInWap9Mpwte167JYX3l066tLcRZqlYdM0/xaaJrLy+v5/HqqVYb2dYxufVn7bV3WYf/61czv7hD75cMATr0QIAYAI3gM4Vx3VtOD3tF2SYE2XH7EaZr++Ic/EKKOwcz6xL6D9LQSkVIqYTBzrZqc8v1ggonMMjRyFi8iUiakwtLCHFKVCgKCABx8EDpYAInpzXwgBjFMc3OXfc3yNLfNJsahEpEPzqHAgQQA5kGqyMyuFICMrogElu37FVbGwDAMDVMdfVmWt9syLJDE1cewSx9jbNlXIs9yzhGRUrkAp2jy+Xw+n0+n0zxNlYlirEEIhMDkEMOUQ5IHUGtVtyRzx8h4XTjNo0LdAiEUHPxu9JE6DFuaDRgR6MB7dSxJRw5brJX9XEdwBA03dwokBCDQYWEeCZxpGELMqAhDYXEb7upu7mDm0Zl5nuecmVMaQUQ8VMcw90JEVcQrMgtiikudXl7a/DLCuml2zykCCbTfR16KbfiOckfHoxzz4XHOs8vxmSnKPvBQpMIdXAA2xrZC/eok/0GE93HwO4vvxqCOQ5h7HwBAatKmXApTQuYY20NtdJ3OZxIm5zAlEWRal7VEnE6ntbs7rqu21ojA3dd1Wdc6n88B0A1cdZg7RCFhKXWa5tO5j9GHrn3UKQAJMAIJCHof6TwWkZdcl2X98uUNAqvc1tsCgEVqa3NAcjGQmU3Nw4lIioAHHGKScfzzCxs/aE7mcnMsd1uokW8jJiKPXYf5cVpGejT/0X6/L+Zmcb8RaA9vixUec6QHzafDTS0PG+U7clDPzeEt50ldW3LhZ4rMY+8C/TFegscshu6cbn9MVAAy3sBvdggARnaHmz+UAgOA8MFuBB/yxYc2FEA2HY8dR8CDny9uQKxt5/Cw7dzI/Y309Nr3bnnAUyH+IdSNeOo1yfGsHpHK/VNbVhthuYxgBET2rhOOuh9cXhoiigBTQ/DSGmxV8IgIpECg7pZ8AlMDfNLQ+MCOekpjnslC8L2XPkKoni7jwWcKgBTnT6hLXnlKjxCAPwv+8VT/+fP8T6/1lbyhh/efl/Uv79efwJylSOMylzbXemKuwgW4DvBKyExCLBiCSPswImZhabWeiAKqh5hbuCJvmtnxUPJHIs8KetagECE1c4XRSaQwZ/cH9xfxkVmdppnunhy4jfoMsZXEtqKuJ9Zb0kkAwsyPniIiMsskbZ6meZ5rq2uMvOBMhLQBq6qQBaqFWmSIAgGE0IoIwRgDXIi1Fgx3C5imCSho5Z/+8jUT41XHbV3SKSwA3H2eXo5AOcu0uUSpar/dAEBE0tE2K9lJ/n55eTlOP70UjnvfpiY7GfQIE0spIiz7hBARtIPNUtbk0DzJpMAfkiLcjSMgIlc23wWIvs2670e1V+MOJ6JjnUO8e5xuQfY+8nNty5B7N9TJhNMRyc3dti89UgtChABhnIVmwYIjbJhrxDDE1WIYrepLt2GBKXdGlCzoo90UD+0UyHZ2uBJlicXM+uhcRIgSPqluZpYnVllYBAJoFo3oY6x9Xfpq4cCERIjUuO5TWOz1wm1WX2MAsgBzoIC3QqfXen49vXw6hZksQwOhachtNQBugeyR1LlMOQkRATfoIwRQLYAohESA7gAuhIWJmXVZ0uNPhFk4m/XuDgED2MLdQ9pEgIHkARLgEfQ4swfgjlQUCqmFS0EmMEQmKkJFSEAAXO4dlbzCWTCOiERCBpNjjIjotrqrhhlqiFKNYlynYpGaJIhIEYBaEJmp1FLrpijt7qYOtQmVDPL66AmYZGaprc7nNr9M09TaJEXMjJzIgAP9coOUUuqrXi8hNOH5U+Nprsi8rP269Pd1vSzLtesydBl9mAOeNg9KB/fsum0lN7Vt9AaEB/quoI2BpQjvY+wYZrkZeJgRcrj+8Pnz6XwGVURkQrV9hsw8BZLsXogYqIQDgEQAcx1jMQ1iYipGJcxdARf1RlIEiMKRC5ZWwuE+IoAAAP3FSURBVCzAEDczK0BzM3d2ALUMUnGa6l5KJ2Y6TaW1uimATVOmuBmgcCCm0sWGt9gq7iSifUUP3j0iCcMdagmr3KsURkawsV7e32/dkAsC9dWcKWe5bD7nmJmmqdYiJZBwatOnT6/zPNdaE9bqEV27mqn72vt1XccYQdTdjgWFdmUJgM08IRCoFe9gZrRLhuynLMl+cndMgOi2YiYWBSEtoVPjIiVwgTAo3C0cIoQYEEa4uWo4o3uVEp6CRgNQERUg3YTGUOZ7lQQAkkCIqUCVXcIEEEBAcSEupQAGtZlbARDyEkQe5qoQnvW+cB+qY11772oaHoTIwEcBWETK1FLMt5TiHoCb/HRWaI/rJlxiLx6nKvSxk2yeR0QpJaEQsC/rj/9ml4MPu+EAcwwUdVuvnYXzvsSqM3EpxWxzkT/Whb722zraspS6CVUHBjI7hJo1madpUo0ipTZL7L2pmTrPc2kG10U9AimANAIBpLbp5eW2jqGhDuqRaixM5OsYY8GUAwpkrszal9vlcgGgNk1mQcRAbCLaCcBvqmMZU0GHcCGgkvoh95kzvb+PR/kx/GbeQhtMh709eQigjb4IABCIFhFBEQg7MO++7j4EflJ3zQA3U7tX6APiSXqI8Og2BNB4kOTWhzkKIfQuWrhl8Y8Hf98hJCfTNxj/L8fi+dVHpIrPwS3WB2l4gO2xA4CEsdzPmDaKRdI9Kh9fQE+lTULQ47sIEe/9CrRHcJfZA1gR7S5XlEobR+aTl2w7NQ9/aIAgPokaf4zS8YiP3I6jDUAQuiPDwZ86Ko/9mkfHaIQ9k/IADPT8bUtl/KFHdeQAGZipDgirKZ4LME/TNBXwGGpvfQRSPn74bFLxK4nKU+70If94Pv9nfNJDVPEcRzptZkYUHraQQa2llnZi/L/P9Q9z+eO5vjKR2zp0tf7zsvzc1y61tVObz8RCZaY6IQtIRS5GcNPObp/OZRIqaLw3oRwACYWlkgDPEGyru1sEEbI7+I4FBgBidgjfepq4DycnJCRqrYoIOwsKiRNLgCEa7qVpIgrfgMQQkJbUQQjwlKiEqu+KVRSpawIBDHtskYq3thkCDDNLwjogbQyQwkE0HIbqUNcCCM5AU6FSOKKbDuwrcCcQro13B99Pnz6p2dJXcCURDF9HT3zC169fH+++7YbxWX6OiEesRY4fYpbWaK/LZgJzZDh9XQZsLx0qjUms5/Adk+LHAqCqRQptHiW0JYJPMoh4PCG467TuVeHHIYpwfxC3RMXMPgxQBECkBH7n9fFj5O8yZbkxk8iGawLffd3vTtuwhUTMEt4E50JNnGH4WFL1wBCuwxe1rtAtgFiKUNKKCfHh6/zZgVQgldngSCAvtxsQtdYoIjD0oZrOzKc2MYuU2SDW3t+vV6rVEakwihAxPdA8PvTiO2oEcRAFFKSp0Hku86fTy6ezmpIshiRzQLndugOVkIKQvh2ZBJHbg2Do3lFHAAxnipQCYcI0McK9MIyIAUFbgg+IGGMgYy0ciOaQHkYB4D6OGx2HFSwRY9RWpRYW9Oi7eR6hMEAQ03G/bPc7E5G+roBkDqipPp4gG4gQIITSqE0NKDISsbHJBYKDGxViktamWksplYVT8MeARASR1Y0IIKKPIZLvbKXU0+mcT1PCsWLTQNEIB7d1uSBqKTGWul4kfLx/fevBGjAiBrIij+ABk9N+TQDTBxb3SSYiHCkitg4LMpFEOITnpIzHlP5Mb3V3YbZhhfj19TU2pSOOMCKCoLyIABS2Afzy+TBTCHIDpgIxAFi4ERNL0xgRoUCFpLazhzusLIKgTsPdRbgwAkSYhocHGBix63AAZyEIJKJ5nqepNcFSS9u3DKM3MI9l0LghFu5ZAYQ5YC44SESODopRhbBxr9Iqn6eptSZ8Ne9uyNyGWebe284RSymn0+l8PrfWAm9EeDpNL6+nWot7DO1DVwDs6zr6eL9df377erlcMvm+XK/vt6uPkYrJWQTZahMAQUi1uFCEK0Sk+28EERWAriO7lIWZUZLLmTcXGIAQCH3HSiAGBgGTGtgmyE+IYQQKoaaE4QrGVNAhwAIiYf8BZg5j5DBIMCHsYYCZDVfMRAUo3BEC2ZEZE786TVwbEwSCh699iaERmkoyGm596Dp0R8QxMzImc4CZSTjl2XeK/DYdElHJdtlevQKgPQK6i8vFDlfOC0sbqeMeBx9wr2zv5zuJyCwc2SBYBM2X2zv0IaWE+xjDMU6n07F+HfDUPsb1dmN5c4Raq4UDAApTYQMHhNZa71brULUxVndXM3VTMwA0jz4MGYIw+kj8DnKhWte1D/fb2om41jrUb2sf4x7EIjBTARiuuHZVUoDNWEIBoVQAMAAzM+xZcQ8EE4zHqnlYLn6wTf5H/gGe/TkiQAyke7QX4AEPUfBTOPfYzNqT8H2XgRu4bkAwPOGA4im9eQQ3EdI9KToAZvnrA53FwR61lR/v+HaC+3ntoKT9dB7Z+fEYSe9ZFkJA2MNyA0QPeR0C8ENfBoEQPCBz47neeeBEfqf7PwkIRC58G9IBUHjLgxCyh3R8yvkpbjmYX4FQ2nzke8/8hGfVaQR4mOcDAWlbgj90Ix/xfY9OZfDrPipHd8gBADPovqd/3/0Uc5ir6ss8//jDp3/6xz//6Q9/cLMvX778f//y9V9/+jmjw3jOTP4jtwAIBI7gcPBeET4J/3iiz1P577+vZ4aKFEMvXS9D39XeV714fCqvczlNZQYpVFqIOIsxAaFxYtgDAxmAIhNMd9PeXbtHBBO2IkBNWaH7aqbuEOhqWwsTwPGZWgUAAITkEQyRGFYhEXQSR8pH6Jebzlkbz0XzMer9N65MhKmt0a83bxeIHlcLMyVmYn5EkBGLhS5juGPyxomxVZlrm1tcFde1L+OrNCuzYeVwFxHken37erld1R2ZBItiUAgz8xPRYyOiJP67MAPAkagcwxcR256o4C4Z7DsQ2Wxjjm56x1k5K4UI/W63cscuZ4fh1y/Oh3tzL5M/Pw3fw+o9TqOewgj3JfBh/kVIINNxYLQ3cMDBXFPwJNOHjfAJRIhVapUQ9oLGsQYMAx+hGjAcluGrObEUkVKqMBMjET7WLY5yZvbUTc3NfaglPDoC1kVq4SIMGOHDdOhIsZoq5eV8bnWSegrArtpOt5t2R0BmqkIktUyPBaT71QBY0RL1S04FuDKeJnx5nafzBBFSbhbM6iZzUzAkJwYgXTvtl5EZ5GEatY0LCATOBEyAe1ekSKU9U4pd6jerowOyTubEEoGxUfQIMMzuT+eRexARYSTYBgiAKcKz7osUiE+wy8fkNldDBx8G5AFCjQkpzRahApwCtfSN3N+7jx5D3axWcUcRmectXD4A/YCELB7Q14EAqSdNW6fRU4C1CEV4OK6hOpa+LhDmPiA8wAy6w0Cy3i+lNjn93oiDxKmANGQGJIYsfN4jtselKCIg0PGezgMAAH0zsf3Cdjqd3n7++vLyMp9O7o7u6B7hRAWB84on9nuDMJkSMVEgGhGn+6VIFUm3n4KE4Y4ozK3UKUs1LNJttQAHAyRiFiF0wz0u+f8x9689kmRJliB2ROReVTNzj4iszKyqru3u2Vnszs6DnAX4/4HlPxh+I7lYEEuABHt7u7sqM8LdzVTvFTn8IFfV1Dwzo7NqepZUJJDu4WZqaqr3IY/z6L1HrN0dRCJ3L5fL5fJk0mstWXfP6FM2y9ehfDJmdjJ0YnwFqCBrtAFBKTLVErOZ8OkyP18uzx9un24ffryuL43XNbl8KtiUKzYPjYQpns4TgFL1fD7byIFjm528Xm9vb29/+tOf/vTjD+u6qioFP375DJGPdSKw9Laua49O05TfCRH3TkGokOEeDOrmott7Z4SZpSRDkirHg1ZBhESUhAVsBEsKfGirhjOE6IyOTMOju4uHqAvVg0zQmAMBuvfNmn0rAG2ftSEOxExooSKMlOM7f/h4nuZaKyQ8+toWVaiK7YGdR3T31vraemsA6CFV9whx2yS3NeAQwe5POYdxWzu3ZT+zqd1ndmkNgKrmxWPbWQCYley+7qvNKAaJWikUqbVSRK7X2+229p4PPV5TzkTyhOfzeYw3BgVLb7bcsjSd5UWrNeEviQlcF1+WdV2ZxJK3t7e5FIiEqJO99WCnCJhgVAE0iNvSgmJm3aP3fr0tPLQXxhIpRqB3b7f1Xg6PA4RJ0PcdVrZIeks5xMqAJPERA7N1VywznNSO4Xj6PJSoeUwD8FCSVn2Q02WkxaWQCttTIwCQI8H90L0h4XbUE37YyrnR0QlA9L0ywPYuK7bjx5SItT36chy+cT9uvh5b/UtUpOjDm47vk/LQhwECOZkDr1ceNqmHBoAeQqzHZE/Lz2PgCfCoYvDY8+n2cv9LrVrq/Y0PMKiHiEhTPlJEEqi/t1AEGncGC7sfT/LVRGUzRwfAYOTIEeARTfj+XSIJZvzuu2//9d/+zd/89V/94a9+r4Ivn1/s//V312V9e3t7/03+dzwoCKim9SL704RP5/rdc/3+w/TpXL59aka01V9avK54XfVza0tH0M7T06Ve5vnCYlEKa3FVqrlwaevHqUy1Mnp0VwNSz9X7uvTWB1aIgmryoZyt8Nrj1qaENERvwBh4CfN9B2HL1sc8zWbGzgARoRJfuYcchK6g/FkcFRFVMlc3NT0xpaZF71k2AMCsevS19e7KMCiKymmans7zNEcD3eERb29vXFaZilVFkb6uBKxWhIup0FJjv5itr3fe2y7+mDxF2Yxssx8y0Cyl1FoLuAtMjfU9IgnTz89PyUPJbAe/4Na0JyrZosEv39Lwe21JN3uWkRc9shfelXwe7/CO1iUoe6Xt+CgJ1Fp9Q1vt3yvSTi1ioDJIpK+FIkHy81yr9mpRJAqjwxtbd19ClybX1loPmac6nUqtqfgljyyaOBx7ouJ9tE1a784oU51Os6h199W7tvXcGoip1k/PH56fP9j0BNXm/tSWa1u7QqppKao22V2GhVttEkAAN3WhCE2oRXQSTAXTuU7zZKrQ6lC0WFHZukCDQqKI7SaMD7U0weqeSYaARcUUCE8s8qRqB48d3TisDqweUtJluwAQ53BbQYjcE5W8RVuiEunEKgbJjdEIVWgcanPAVmVXHWYVWg0AmAh+ySmhIio41yI0nts8nyazfrut1+sSLwm5zUL+HrwmgYGMYgrq2j3crUGEKZvZW+vrLVqlnySMEdEWRNdwZaAWonuESICxtuvrm3jcTOzTcxObpM46XWQOqRAVN6FqSr7s8YNsP5OQUAVj88fK55zMoa8wEzMoLGbffffdNE1sKyMkAgxnZ/RUkGO4yZDear3d2WmbJUquEq010aLK1PwTKYCJKNAppUn4mDWCkL6GDWNzzCezLiJSa22tk8gRBqBu8hv5KHcxg6wgjJ6oEFnezETlHg+lGj4jOtBVaYa5lnmq59N0OZ8vT0/zW3tbrp1BwH1jsW9EhWmaeu8RZT6VaRqkhZxB6erYe//8+cvLy8vnz5/bFjfnrXj58oVW1TQEEbmBRCYqFOlOVRXTvjbvPfmaRbL6I9wYHCSj34HCLFmWD0TsdlYhIOCkMxiRFkTJzs+6Z+8wc0WAZCc7pVMc6HDxANZ1vd1ueFyuxUZjodQCESk6doE6zedLqZMVBZ2d6jm9oIpwiY2qPvQe1jW3ldY8eUUQMRTd9M34k6KebP4NEWmqPtb8POGyLPlDpP2iWS4LsslFRMTl6bQXpPYeEUkrQ8clx1KuQj4s521tq63DZiCLETtGF2RmL7ktHr5Uu91up/k5Ec4ZOTD67XotRRMtuTa/Lm0d7HZN4ax81hFxvV4j4nQ6jTSsdV+Xe89j230iwluTB+aY6HFub1K9AxmomhJTQlRT4UYmfLftCbLmM7KYeycHB0YJxk69f9SBAsRHRr7q5m26oZf3E25Y1UyXBBtKXIGo9+pvVhDHz8ROZZHshfDnw+Bcne9XePiaIo/kjgN/no6IyKKwmMSha/IIxxAt8yFvA0FE5H91sn3LOTJbCOghUdnw5kBWFvx40+QAoX9ohm3VvP3mHEoJvjrv9d/3cdRhbDiHzMAgk+wnFOCQ6siBHYR/NlE5qhoccwsZPfztAw6BGhmmNk3Td99++6/+1V//zR9++7vffjfVsrb+D9fb//L/rNcbkER7HE7wL39kPXVsoxgqiiPLBahkjf7pPP3Vh/O3l/LtRT6cNPwWgbdWXhpuMS2Q1tURZmUqp1JmKyfU4kW7GQUuJDDNc1+XtXc7T5OZoAN0Ro9ozd0VaqJCdkY7naZaZW7xBbIqhCJUd+0U4db5G/czZdaEdIC1FlNt3YmudGW/R07CFFveVKnTyAqMUfcCNnBx5p8Pt2nr/yUcrVQLIyIC52nqPUld758RrXpbeoe7kgrQVGrRqVpVrYZeAJig3jyWt7cWjcq1R6kTVD1CBaWUbCuUWtBHEpx4j3BPzFuInC8XVX1+fv7w4cPlfG6t3ZYlItq6vl3ftr7E+HJZTzrNM3rHtktl6zznGPeKSH6RbTKn39tXEpV7R0WyH4JIBtljq+Ur2aMcD4z0b9+9jtNSVYlB4jomDwgPCxWoSS7lIiMoLMJqmARVYNvEDbKTa0SjpnZwUa21mBXbRYnviaxkRTl9A9LtvkV00j26s0dgjd68B00ZZN/sLUCWUk7n89PTU5k/Ui0QZV2q9yaQolqKFhPavrgnDXXcNAGlAapRhFpEJkDFpZTQUkoRCxMxxjzTplMjPBBB2SzqRmHpsIwmWU5AIYuJKemSnCpIirEoshWoRRnhGWV1zY6K6maRlTBixd1IhRg3f2uQYDxR0bz3IQNEKDtkYahzCopIETpwmiuz7K6eZYA9kZlLCe8StYiIR1Oh+3ozQrq7yS4FOQSpzZSBWicHEA4Mg87WOyWgpd1ufZpiXVjMe+/LTfpahVIlxEQK+rgrokKw9ebROn+wMpXTU8oDmagXhMJhVEOkjP+9xQmRGBhUbPHAmCKpHEm8W3y234lpqq2tdSofP30QkU1cjgys3sJ79x69KcPqSBjSGl0k5ZgCFIjlTs+1Uy2EVFLNIWuAwRawAbkJCBxbw2msIxCLotUKkYZ3nSI6T7VWe/5w1k2ddo874w7dZYrGkAEEIsCAhzKypkSiex9CxRESoUARVNVqNtcyFRNyOMgmliEiNu0mVZ2mSQ3zaU7WT3P3pffut9vteru21q/X5fp2bb0nrSWp/2bmEVdf6lQlZ8Lm3AoyiB5RTUUkeQ4mI+M2kVIqU0nPjBEtfFdJ1RjpfcJh98ZZJOOLJFKCIsHmIQFVoUd4RLbcHDICLB/KYkRmFV7KXhpnFkYlPTMszStExHJJMYMJBA4GCMWmHzHafpmspOxaBrUOtOZQVVMxm0TqQa14l6ClAIy92xrbt4pITr5vxu7NvYtZKVZqyfZyBkUpKpZ2H9n1B+DeW3OAhtq6B6GWFhcmWugU0VLq2lNVMYDozXt305Jw9ZeXtyBqLcuyXi6X3h2Ck+iyNjMr5iKWdQGSHt5aX5aV8Xq+nNe13a635p4+B4QSqvMMKqi++tVvvcc0TWtr69u1HEPAQXQyAHAvx8Ifj1VzqlqKRVEYIoBEDIsRKZbA0xj7DrnpSmU3gWnnxXc24Pc66cZuGePQj1fox6KslElMhjuZB7FVDXL53qIijixrC7t4lKzZntpYbRs3+ATxWNZ8SFlU7/GtICa7L3NHesm7eF4FYiwFpYppPKpq4Rh9lzJuSHaBGVl4R0h7qCg/xG0h5Z7dPDZbRO+M+TjcKBnb1pbSxEGjDDhmqgp9lBSK/Su+q9v6mrRnCoh3pYF2r1Zvy8w4Sl9XiOioGj18Md+cFil5h2njyaKEj7mYHgECJBxfhUTvDtoffvfbf/vf/vVvvztdnjHNRpn/3cvv/u//N/zTP77M8xwiDFFCSUgsfpfwe+xzwb5i8G2yF0JGwLDfKF2FqjSLIlK7sImjitRS3nAK+c2kv//N5Q8fyvdP5dOlPFUzwdvbp9fr+npdliCLo1q1qdq51Kl8/KTzGXUKYZBwscwiBO2tnYs9Tzajoa/UiIrmvPb48iVuLVrhJKhP5XLCPF1nYZR4O59fbvj8xX/oNJpE8ebBFOTmBgQL92aC8P7h+RIedX7mGm1t1Sho4T3osLBJ2HpEOGLtVkpl1LYEBHTXWtVUCPGoouJsrYmpRwhnsgfXICKUQNHz6VSeL7NZ5XLta0PQVM2qiLG7SnE7w7VxXprflvX5wqlwXfnpdPpQrtG6nU5vtJfm9TSfp+frsnx5/fzHP/0RW1A+neZ5mrPnfnuDiSFAz32LQpqImJ2k9NtiZtMnW6/Xty8v9wSZmKzAQyFznWWjalQx9JjqPTvXTW0pJYw55KAhaZasNpcqQMlijWgRtSwyCbJZn8SuQcEHBJHgdStFRfr1PnoJy0EdfWCgAdGtA0lyQ8QS5GTFNwxNSs0kNz2379xnW+tZJ359ff3ywz/91d/+Bt56G3Bedq8a1WQu8dunJr1JW6P1oKyc3jx+bP219y8LsqlfoAYUoTEAoTBXX2dulhpE99Q05o9r86B37wEnoLWHv97ah5C3pc2lzucLgE5xEUJ74Nb9m9+cpMxQqHuJ6KIukgNaD5tKLjaxBQiGUAhoAlVC6bXEdLH5NEd31NlEJwuHKmGD3CXZXliWpVhJec295mlCQHX4qQMSWQnQ4FwKt7WGzF6JsjAobCyiUSJ8xF/EQDWo1b22SpiYEnACESV8CppUKD2CEGGrGpMwasnaMrpL+LlOH56fiogjgO7RmrfeGoFiVuoIvtZbM9C9U2Q6n6BYI8Q7RLQ7QJZCPWk506wFAoTqirKs7e3q19Wvzte1/fjyqmYfVJcrX4XKdn1JjQv3tkZb4e32tqhKUVOIiqqLXzusmMoVt0qHWdWiae8NQpw6L31iMkFVk++SqzAZmdmpDfWkIJV0FyG9N4ioFmKHkozJXCe0pX37zafu6/XWsPZUqyTklT2ElBCTSQuL6Xx6uV0/ffyw3npbYnWvp1MnuaFrtFRFUCU8tJhNU53n19fXejoRtKCWaeB11bQUUUlnhmuE96bhU1Ez1sLTVC7TNFUD024VRUUE7l1IiY2kG056DwdD6AiXcER4u+Z+HBFEIIiWcCi6ryZxKfakcvL+wWSd7ce3Ze3U6cKgt2jLuqiayvlUwxdEiaiv17eMJpZ1fbtdr8tyXa5tae3WoocAc6nFSrViolWtWgnFmlaEghXRwy2KmprqSY0OAHOdTaz3TqIDPaJYkSJmydeKTiR7sNRyvd6macqhMUmxUk7GZVlu7UqdReDoSphATcQBoUrMdlKohvfuCilFIgLRAK9S1EQjlrcX9DZNNSGSIrrcrufLZTaDdKhOIlqneZrqNLGQRhTVMNEK9bfrS7r3KEq4I3wy4zQpKRG9d7hL0L3TdZq1qM6lpr6gFjMJYEjRJBOR4YlPMK1WKhlvb299XaKvQr+c5lKfFl9rLRn8EKGiapxUSZFwKzCx7mu4K3yuGhFteQs9qRmjT7V8/PDE6L2aqt5uN9WyLB1Ab+2H+NLaEA4WlLmXz1++vPUen7w9NULE5O3lBpEvn2+fPnGeT0tbmq89vDVf1vbyulwuH/THGwC6Lq/XkdXUaqovn78wwlpLlaO+rK6qqrNIa/4QZo6QTFiKHxFSERCpdYIg3AN6VLXNNF4IQNYs3ovuUmBb0UXQVqq4b8WnOgT3BrJnzx4lHVRGeXGqRo4mlagc8Nsi0HACKFbBB+xASTFGd0aYmhyxT0d/RtUjw1mt7NzHURpjpFbFUUDZj+kHASvZ6xkaLIcMXOWUgauYQpLmNbCQqlP0hiDSPOBwyrlmR0UAjsbdYPHEA34muxZbNy81TrarigcWtx06Fg/p50P9VIDsYPfu0VbUrUqYqPuf56UM6TFuXaHpMu8D5yiFDGCIQSViWeQok/C1jgp/OkI3PNjIh7YU9B1kUKyq1qfz84enD+dZT5OWakD98Hz+8HQSQWsto6IsuOmjo8KvP/ZS9M+5Vcqo+0A1u4nR0R30D1I/zPb7p+kPH+v3T/Zh4gni63rr8cdXWztDVOeqtSIJhlClOsQhCmzibVuoQwioFMVWAmREoLuv7i24OFfAW4/ei4s4TMIYFw2axKQemsokN4kenZ7ND2VK1YsEvU6TiKZYJKBCCIfil+rw7+GWZXMUqlIXdjx6T7KwYitxbs0AKEcjIQhhIITeo3VPA1RVzYF2TGKJRLtKC/XRWQCEojBkQnBzmUQKNlPSovZ8ed67D9H9tt42iUFqqSTpQY8iKsG+rsXK6XSi4Hw+u/u6rAkA2y9C6eTgGmaPPnViv46/GpUIubcJbbP8M3xtHL5bebeCL3hclf8lDtOUDaUZEmbw8vLSWpum6SjeLiJFBURRTEqJNSOkhGl259qxOpoziCwFFzMbHYBM8jl83dJSMtyJHtE9egZWRCedg2i+e/1UHTgHISHiweY9GKoGEbEUipRKqJonH0MkDiWTvICUDsiOnFKRUGJSCd1kpKvWoKqqdF96SHcZhbAx/X966FgcONaFvGkiW1GGuR5TBJDc9cI9thamEAejiPsl7x93HA17DUuYhcUs6lpRm4xvbVWRIlLmarS5lEsRJRvo7Qbv7qv0JgCoDAu3FMW0iCSru4qZWrFSa5km9lsE1+7auqxtltAOEUL0ta+31q/Xa+rjvby+vS6rmYleJ9V1vb188auQ4eGd3uk9GLXMWf8FNbpTgsEw0rTZgMmHLCpGCNVkqsUMoTzuaaOFB6iQdy2Xe3t4k4v4pYlyu92mUs7ncykV3bNHHPtSK2Ob6e6XeZ7nyQVtbREYklZ6rwVsuWqkgrZQnRGgFlMzdze9b4Fmlt5sabQHNQgJiRSkTrwAKQxVTQFepPP4aBuEjLU0w1lHBOjMmejO8IHDzetKd9o+SvQJkbPRV9FiagIV9N5SFxsKMS1Tua3L2+0NytAGQe6fq/dlbWvrvdOT1ZJIkK3Nm4tqF/ftZoaAhzJnRMimm8OtIbwvMY9FbUFCvUDfcI9bR1j2TksWO3Oj3EuxKoBIMeEWQigQ4QBydRlAlQEJFoZ7F80wUTWckV2R7DmWlOZQRriHmmsIvZPp/rGLZfeAUwJKMYhSlJAYKiYMg4nQTGq1WrSUo1YqAe7qF6mDJTqsSyLcLHXnhjib2FA3kanEplVDSsRo6oJBdwXMSmePcASnKQXN1USq2Xmee5aMyd5HDOruy7KKaO8eEettDZI91tvyRb4091IrkpshYMibvfW13263tqze+tBoDvny45cEVCdkLUioIx8kwfRkzO8dm6nbLzojbDfoMM1l+zVybX//ctnf9ZNjO8tocSen5b3B4VFadwOe7HX37awPfYIHZNm7Y+x5MtxQvkJEeA8/eX9Hxu82T/t3PkKkKLBax8fFiOjuJ7TBr4UqVfbsgQLLjo2EmOER67EZJRND9m2j36gedZYHpUQ1b6zadEwsj3z3I3vn/Y16BHqIWWY+AeYmm78iAkd20MHPnps6VG6c5F1qmrz71KcGKnKlyHru4aq+lqh85XjAbKjg/mEQLVWKhsw6fTx/PE8xVzGrwfJ8ef7w/MFEyUhxs9gabsfkKR5lK79yvAP3Hw+hgeKiNFGlgEqv4Bn467N+e5l+/83pt0/T88QqDvdU4fyyIKB1mufLqVjVFsIeFGHZvKEiW8whx4nKzZgFAIPoPfut7dr9rcfisKvFNNU6nUqhQiMK5AyJophV4J1rI7l4i2BMuWiEQMSax3T+CJ3pDYcRIJt5bg7FOCwCQbbec2h4ZHd6g0omrstdBRFhD5Y4jKCzry3WFWhVILUU+ck4FmXOx968d3hyw03UZK4FvHZvsAJEW5ZYlqW13vzbj98xEB4Rnn66Ec6gEwvdh9wpM1FZ22qi0zSZ8Lvvvvv06dOu0rg94lGlz50r94YEPKiqHWT1RmL2c0eG2kOlvrvZr5oRxxPqL2dEf/HBx0/pvb++vgI4Tw+Xp4LJNMQmQy0q3hCR3Y/mce391vuy9rV50Got8zwnkHoXTc7slUQ4nEjm/OrRPXoKBO70mMejWKmlwMf21rzf2uoMrUYTUdGplqAQXVUlC0LSfvIU7mGlciQqlFS4MouSFmYwHzgrK9b6oa3OTTxUN0GF/bR1i7iEAbgkTsgKEKYDopyishEp7kr3OC4p78bM8aEf/6TcN7AhI1lEa9G5mijBUNXJtCiMrCYnA5vTF7RX6S2Wlb0RlGTfq1CU9UQIU6oiXEiFmOpcypUpMcSI6N7erooNfPP55mvvy7IkIznd4nPDO9XS3W+m9G4qxUSFBhEtu1nEfVUf3y7IykCLYOuQRm3Sus4Ohuld05OP0cFf5h3U156yGe6OcBHEZlCUNRujSIgS52ku0KK1rW3TFpP9wW2hZPTeYjMgyj0lmS3LshwD0n38bNUNCVf2Hh58pJjqZjc0NgJ3bIlrbwsj6AG6jCyl0wOg9z7EGA9v3Nxnck3Opk6ZplKKqYl4+rAHHOu6mEld9e0NqlzX24+vIipmBhUHkwHS3AfSiKGE57QWOKOFS2fzUecNQer8UsUZEnJUZPnKzisbgGnUdA70oH/m0XLQMIpZe+AwP9zGXGTykeUT3KlHzZnKXCSTnWWbS5W07krLQoO3tq7RO33T6M9ul+mw3jMFDYSKmkrqQKbYdFKb1PSwwY7VSXYOCYdxkJkd9SdLKS1Kfp3kVR6y5WxVD1mwkdWIlFI0OJ/P2ADAuzZmbmetxbqu1+u1tRYR+e8ko0dv0cJb7+vLy9LbNM/QjXEHba2lu3yuA7vQmWrJFaz3Hh4ID5Fwh0jq+EfssnV7v/lffmv72jESlV8xon7heLf4vFuXjq/MB4chK/y4ZP1FX9p73+OvBIiOzwWKlchewTuMN4EJks0lSXrCXZhHt4eyF2GPF//u00VEN1/sd38ak0ilHNoy7v7QKfrlB/0QcW1LZUTiOO+CeDt5b5w/Dv2lcHDcExGJ6HfHz9QN2e6G91UAydAtU9btT39honLfsN+X2jGVUqKsb7d2XTXEUCwEbhFSxc7zXEqpHqS1HlmfDb6/HX9BovIYjIqEcmsRBnthfy7xm1P9zWT/6ql891S/+zA9VSgd9M7IGtRsStVa7VyLlAnoCfoRlbS6E0YKCpH3ptIGChy9yUxmeou19av3V/dbiJUua5xO1ry4mIK+dgYNOBlwVthEMYEsXa6LB4zZLRfx8Hm6UEqAwKEvOXYO6sioH1jR7nAVEQ46dHgwNCfDxh0M0o4PjwzSw3vz1ihtgtVEN/FB2iog7vAe7MHudGJolBgvl2n+YtfFpSi1gLZ6FDMVXZeeEiy996nWOk0MRLrpWQGCIhB20qyc5rn3/nq9ncrIQ3KHOA6AYgbhPgdyid8Q5O+jzJ8dQseOSo/2y0am79/FXcbyv8Bq3trqm0hABp357713cs4noUivBRH3qpgUEkH3LO2u0W/ua+Pa2JpTMxKaDgHZaJc7QSLLsc1j6d5866hAj6THfZJmf6yowQo2D4Gk2ospVVBMihUR7zE+QN7XI2QzbpJNt/WhowKYDocU9nEBTLyd6MZzeUhUdHO2yQekTgxdWM3eoA0zCBVuGjWJewdkmxGqd4u3d/ntcV162M4hFDgKt1qXqBSVWooYP57nwbsMR2tGVEdbr7x9sf6mrUVvbGvEKHITDEgvt4CMegAZrUdrcKePLa/33r3fliUYHT08SDRo697a2sbRSYpwbf3t7dan6TTV1NxXLaaaDTbd8I1ZYrS7g6pYLaJFYEMbWcyJ1rpjlcvTfTxsKq4YscJfMubnaW5L+/zjF1BOpVa1UZUHALFAhCi1qp2n83pbJyul1HW5vRucGSCmHFP+ewaU2FQ6RO5QTGyZxjFRyXpwDGHSAwh5VKII9/AePojbotL6kHhm+MhV3NPt1HvjwUTVh+e3994ZnYwUHyhVa80aC0RRirGD4VA4+229QpziS6stXIuZmdYipkhDa4FAgok8hDOy00uyhwtjTUCKgIKiUmrJv6akwOE5/DOJCrZgqBTbb91XItps7OTtLaW09UFj8Kjwuy+qsvHNxieK9Bjk9cw2Seadar1L9zB4ykb05mvzPlLE0bYwAIIisE0XA1JPtYpM03R+SkrjlElsOqXuV6ibRH4+r+4jwD2fzwDWdd0TlRq2rmt3z62k9cbIvhu7ryPjSTJ+91LKPE1m1ea676uiaoLuXVVN5bZ0ktfr1Q8S8ABEdFlakFqsM9q6ttYgoqYiSsh6u1kp+2CL1pBy5CZCgojuIEcRPQjQ3z3zbWsTkffCs/9FD90JRoKv5sy/dPy0tPRLf0Ik6y5zgJ1T8dMz/oRT9wuHPEYmx6ggyU3ZQX2YLAJIyehNbGxB498JLYWEqqgVAMdhGX78XhDBUOhXwUOeBoDQhPRKP6DCku51uBtf6SgdvkhEykh67+jdBc7Q+JnEsj9cRgACFTE11ej3D2M8iI6yp6RJyprc22MZbxz7NY8CrI+fLod+8BHqIrjv36aKYBWYyuvnz31ZS8wa6K0LjD3mMpmIWWEbb/FtA+AWZMSmyoqhsHm4hkdv7qPnA94VAIjEvAFRlU/G3xT84an87jL99ZN8c5bn2ZWttVvvQYqAk8m3YtCitVhRmmAuHVxb797Rm01zD0+J0/QFyEzF0uZtE5wm0Xtf1742b93XHkuotCgdr01UESEnEXVpvTtZil6qaSkRs6HfFo/mnegRLRIqy9PpXGzSCr+9yTbgErZSknbQ97U+wpOxfBeYytQkC6+5kWfVO+iMiA3FxEByjjy4rk1aUzEVKbWW0hKSTjIEq7dU7mg9mkd3cQCKMlutmCpqR9AVmKxAwlRJadGUWkzF1EqBqTMc4RHe2gBwppjRVE2ttQby4+U8zzNS9WXTuhGRolY0S+823CESP12KmbW2HAbDUP0jUwNzDBTJERXEYz0p412O+/Ywro4pygi10zJonxy/nLbkNewn3y3DEg+CQSZMlO2wBkvtywjfpkaDiGlRrPmAla7KqjC6hINBQUPcPN5af1t7cwas1imjz5JujRvmLXslEfRgD67de8RIPp2h3MOFY2g+ujAemcFm4AWgg51ENVYT0wDENsY+Sdxbr+NWysg0CAi6RsYRaZbBjaI+yrHpe5CJhgQScJJXtbfa9OC/qZI28bmuW9o6pZSIQmJLVDA4cTK6cHLPdt5Vp+JoKU3uHjsqBlVYESvKiHAFq8lpKoA8FZHo0TvpVEfvaB23q65vXF7oXXvT1hUEJNILhvB6isR/QjrRuvuy+rL2dfhaBCM6e/jqPW03PUi1BBh5oDmcEFUXlcDaXdRNbSqGIXqoFOXGTDyK46Wot5lZnVTMbBKrKBNLhRpRCMnncLg59xU409FtTRkzYjzKfSA9Zhe5kgX49rYyXq61nuf5lBrExNa1MgprnUUsgo3B8DS1TE+VHJ1bDjBm2ZZFt3Vd05hCTa0MfE6qY22yafdLylhTAkWM1DFS0vRggKtGNuIi4kjJHoYzOiIjZM+qwbG+Hlv1If1MPDrEzaQWm6YyzWWaa61l6d1BLZokOCtCZUOXtnR2aKET4taj1CJFd0EJNc0oJ4Aebu6eaF+RpiGb5ZCDCA8gGO4xTwcQ9VY7yKutG3Fuf1J7OpoyzRnf57KciQQgO2IKkiqze5LDbREewffB2fY+y/aLyadJQKxkorLXoVIiBSIR7i3YXcjoveeG5E6heyMEcJEwSwSNm6GWwkYr9Xy+nC7n03ma5zLNOtXkzArIvQu3ZynuHry7mlix9CPeZg2U4upZWEQwJFRUglICwR5hGTsGQVYt0zRBk+0fzNJM1RSml2kSKb37IfnftjYtN+1aTVG0d7ozAineKAIom3cZwsFBwnNf8+5rVvSZTzPdMLc97b5JYYMMZblH5T5hj/sg8ICXkgf7r/dC/scj3yWyPeXtF5GEhMj2p4erUiExIOaUd9vIftyxVZIoIz5+7FjqRRI7jy0oOmhPATgWOWN4zY7vrg/Y8ENPJjsi0MSSPbqv+D3JvFd28mhJg1L8lLwQAjEBFSqBA14qb2/WVPQuSxUg+ZAvJVhJ8spEjsHzYz6XXPiHfxg6G49HLn+RLERTIsDhmPTO9oTtiCsTyX6mSoig1LsWAgfJnSSCKDUrh6rKh/YSfoLqOT6GB4DgYdAQ+x5FAVN8KrMLU7br0/PlY33qy+v15Qf/8I2pRqeUkxBPp/OpTlfvEKZ4c2LNFdIjcrPsm7TiPvzuXzniCKc7RhLvijoOB1lUKvxDkW8rvp/1b57l9x/Kp9ovtU/SESvZKEHoXLSa1jXMIgqJvqpQ9caA9+ah3ufMDkPE1A9hmyJkaB0mRJiteVvdm4cHezgEIW+NfFuva1wKZ8WHqkARo2iEL3B/KlYul7WyiN9af7ldX5cWQVO9zHNVVdGIrodtXkVK0VKkJRR1YJKdoZsP5H19yam+54EpSbQJmaTak2gQkCywujs8IJZ7UQ8VKDJG8lVJJ1ugObqzu6NoqWLGWlCU174ua3TtLpZ6C7UaBaBBahqTu5t7SXWqCBeRaZpDkO4cVuzTpw+fnp5yYOgB4mVmU61zKXLIHEZBMlv2D81cyRIxmca490RFTSWpGdv2LBtWRA7Kznues+9eGJH2qCXv8+NrxcVD4XD/+R34gWSujfnvGYe9X+DMABFQxZVRBQWuDHGnSJCrx7X3txaLM1jMNMV/tjNoJq4RkfoFHuzuzekD1g0P+qEhrqrZwM3v23oznBSwUtqmDZ0dkBCgFpqGSQTFrJrFqCkgjuUT3BNIABEy0oZU7kk6WOYhaqWklSdGDXswVMZt2SNj3Z4yABUpaibiZALBgbQ3jvt7RUiRvXQq8OCxM/MuV7mHUIdlSRBqVbSIVQHRQwTVLGXdZl+EjWxkJxtj7ctNl2vx1pa3JM6pe+YL3T16R4SGE+bBTji1ebS192X13qN3RpDo4Wv3NblwWas9Vt0gIaZQQh0g1IPNQ1XVDKljkjsFuMsS5deyTTMKaqqTWoFVqEFNSi110mkelPn7nbnfpZyt7/AJx0TFNxjScbKEI52/r7fl7e32Ym+n09lMEXG5XIb+pkdcr/zH+PTxuZp66xnAnU4nVb3dbjveBiLloBDa1pbCWWa2rmvqbKQpU9+cK7brZGKo+tqoNJgpZ1VXo3KPwHKLjUiSV9JUBu4rwukd9HC/l4Ae05UM04EAolSd5jJNZZrq6TzN13LttpBWap1KrWYKMYoIlR0x17l3DxABgRo2MWzASjUGe7rUN5LDYwDEXBRazBLx1VvTYqlCq0OJ+GEARERrTQ9QWDn0zeIAss0pnItV7ji9ddmInJHtxMw6IgD9yU3Yz3/HbWZUPJZHsohmi+x0OuVkz6RIVQMSHmQo6K17a957dE8FMQEMkjKJbtrUqJynSmOZ5/N5Pp2naS6lailmJRVoZRecis0Ad29o7AKSBenKpVlvqtColWZB9g6xXF2DQonS6Q4odNqa/ZI0PJUgNZh3aa9kSZWlPWigA9gMi0tdGlQ0Ar1zm3tDBRKMn7VWy6LQYHsJiCzPZSy7Y0LGY36Et2Cv0TxO2IfI7DFRecwkHvOWiBE0H4pEWWk6Ll94t5OOvONn8p/7frrFRcCwC3z3+uNnxZYwj9ccoko9eqDH0EbRJIrIwxn3fANA9yYiVBub2CHK50H8N0hx3wnuJEfdf7u/eftAOCPvzlhEjmGFDfKJiO7fmplx6MOz22tJIVA9WKIwDmKfsIdbPcZScGjhHz53v0sGs5xf211T/PwrgcT8pBClQOuUlIlcIDKoQgqNlMyplI8m2njHUXmn+vXVTtfPH0J+eJqez/bxNJ0q+vJ6exPF7KEGrYIPl6dPHz5+WX6YpuJITmsIQuECZFd3x6dGhKg+tKUeo8B3QeFDAi0xmV1MPtr0bYnfnuT3T/rX39RvLgpGUZi6aUxFg9IhnYWeIp294dYj4O5SpmiFawlSGDJA6Mm+im1QIXtbWxkgGZKpToke4oQptCyO27WVgpNxEr2d6vlc5wnoi/cbIkpAKLOqPtWl+9PZruu8tk7Hh1ORvsL78ZlodgwdxcQKjqiwbVOUbDz+uc/xp4dq6hlxsjLoUJpwaLpr6zHmlfJyqtNkdmto3lusJGwSKyZ2LnLIeF0SwzDPqtqua2twd+VKEaAv3kzrVPR0mkVkh20Mv4VSSim327XocJ3fl1TfTIL/yx3HyEZF8Mu2QsfDj1KX25b/09c4Y7ndmvcsZD7sDYB7bL0FqaZGGFtBWPSsRrYet9au7mtEp4oVMyulJp0Jh5U9YtDlA8j8pKd6COFJFX74ztgyPb9db/XTb0ruoMMfXDVpK3OlKW1ba5iVsO3q/7MPGd4OI9P8pVKFJNAr21MydgAZTUbZqkxjQ1MgjXJz8efWa3p3848/64FlKBCoiRlUhVLMarEeDoeKzOGC5n1lb97WWFdpV2tXttbDJV0WM3vOZryImTZvZPOesq5CB5v7uniPta0R4uFBtuDq7D6KBXy/jdqwnhQJSg9qD6CTBI0kg0VTUXkcGRVloqJmKgYxaIGZaKEUFaOq6K+DSP45h94JfyC4rG3pPfES9fUFkbzorozneb629TxPQhq9mH78+BEH0yEZPcAHlNH1euVmYtjDzeybb77ZWVv7K5dl7d3T4ZTeF6hKTCJKq1b3QOVes4iR7yO1WEnFXS70q4OeIjBTE9TJprnMrZzm6XyZGxEdOtVaS61mRQBmmTfpKVkahJmoUW3Y+AjIDgyZkNZ7dzeIiVJQpRBo4aoIhxZjqlmBa2ubs49ia0vG5pz7M9dNZmaS3aq87UmHMLM+gr+9zvsQU3hPnbxxPAyAjWZ2LzZtl9F759Yry1VUtuaPJs3YIxi9tXVZemvRXQQWgRESawBSq55PEaFm9XzSqZ5Op/k0ay1phk5GEK054n6FX7kJPJQLLV1RRDTdEw8uW0vrQ/H5ENfCg+EZcG53IUPtFIfH69vbXqXK9ubIDK2oFSUzZcrK4yZx9K7Z8HC8o7cf18qvjNHY2sj4ag3uKwd/IcH4s47cerIg/jXQwl92ckmbLQCQIS9xP3b0Cn4ymfl+h7xvdMc/vAvAuBdSR/VTSIgpCVGh7CH84T3y7iENDIBsdYL9Dw+Rj9wf87iw+69HE5TH3ti76/8qROQXn+tRRY1EOFU3wNq4YG5nGN0kUUgnhEm5xkNX6jFRObBR8ZgI/tpD+P1vn23lPPFysrmgKBHNe3igNz/N89PTU/9f/1HLnPJZsbfM9i/xuGg+4LkeR8YvUfAptFnP1X47X35f7Pez/NUFv3vGN89SS7BcGF6oc0URBMMpzZUUwiNo0W9ZcmY/91j7Go6eaas8lAu2Bx8bziqQFOQYAjDaQgKmSi1dS9PaUBq1AMutnRmXHpOss3AWRUAbPeJkMc36wZ7c7O26rLf2fJqkr9L9cfRKseKAFS/2fs4Ec8Yx/rOXCYx6P0GWuURESCqQIwsQ3d1DCwDh+VzPkxXVvC2mVqa51lMtJnG9P680vWIYQ1kW8WoMFa02nebV24+fV9Feled5do8sX/FwRHCeZyFIttZk4yPm+PH+FyHlf93BnaACQORXMlveneH4615cFBFTu96uvnVa3h3JRhCBqYiZAhaq3nRzZE2b5Ovab4GAVi2lTqUkBmvPpWOrBtMhqW44pKGTNRQISsRDvpc3trWWvmAQGSrBHDShUmuZZpjABEXFCf8aCuAvOGQzmcnf3pFejq9UUVMtopD0+YFmYzjbMRuZPrKjktaZGPvqL51zP45tLqWKGqRAi7AroxQrXkTFgNlJhrD3ftO+Rlu0XdEWtEbflKC2Bs6OYBZf1UlxJ9HpHW3tfV1b87b2gMRArwnUUkIJVKW/20x1K905E4reg0IGwRripq5qgXIgRt9xX8WglthiUYWamrkWaBH9C8mNv/JQM6g271DRUhcf+rASvQgq+Hq7XZebr8vFdKrl22+/JbksS06ibfs41vs0g+lcOqyWNEncTVH2V7p7pim9NxOGZe0j3NG77gaOx/YIGMIOYHOGzJIkstr5lVxFVNSkmk5TnaZpPsW58al1l9pb11JrtWkqapmEpNoFRFWMGPA71cxF8zVD4SmjT8IDZioQUya0htFbiGkCIRz0CPi6N1Wya71/wf4T7P7ee0lq+AiXgVRuKKV4uIfLcNLZldP229s9HvrSx2e0X8N9YkQEWYvugQG22TdWYO/ujRHRe1tvy/XW1wVBMy3Z5dUUFORU5HSy7j1IO590w62J2U5c9mBra5aS90wD9+b5/Wr3TFVVKVJMsb1FDvoNJDHkyu7/GJuZb17McSxtX3kQYJK1v0/M/H+pxUGrbuHhIYz0Q8HQgPrn59evP/Zi2a6/8mefgsQjuuEvuIy9T/4vUHP9yUHcRXJ//cU9xABffaeW96slRz2bjDTAAwExPS4V7yK9hzUKd2bmr77eh4HxPtT/5WDpHSv44YSHU76fy4evzAhu9bIUttoTwT1zpwBKdMsNflhNHE5YHq8em+ab4GAMuGdzmwznVt4ZPx/OQFSVp8v0209Pk3Xjcpk/QHlb1+70lUVlUu3rCpQAXQCEZodti8yy3cQNAoItNcj7snfBMuYYF7HfutQhI+dqH+b67aX+7lT+q5P84YN8c/HZ1og2Pz/11pS4TNWU3XtEVApDliW801uoo0YAUwu/9EaXa7ixk4WwzK+G8SpHi2WASLJQmVxGJutjxBNaq5UZanlvvyzX1/V2KvHpbGHsjhPqPE0n0UnXLvQ0nzc5nU9PpbA3DPWB/KoiKmpWgGI0U4AySMsp9SakZZNvu0eEhCAgnnUcIZVO0BjBQN74BC1uxXBDGL2Ia6yAVI0IryEaMFJSdtGDPuA7tVopUjQK/aTQSetczudprqU6d5ui1P7CVkDtszpUi02nUwd+fFnmovV0+vTpU52KLy0bKVlkigiQCsmupQ0UmSeIOUuk3g8+qY+HbGP1OG72wcxNz42PczvGOBwzJPJ9v2rh3uaRpvbeqHUfI5gMDtI7uXlf17YXot61sD1LbqClTxAgjKRNMe1QyMQC9QBFSyprmuXnUiQixQ8QAy+9C63uY3fk21tLefsaowLEdV29ewOF2ryPXr6almq1QAyqAk3cyV4ighxP9nDkspIqzwkd3gx85V2gJ6qQgGLoSm7pAh9OBQAjMRMRlaw0cjwJ3Ys6+UNCIO+gscee/vHr/+zP21nURNM20NRMgxEmSN9IgQs7vCEavaO38JaYS3AItu5wNhGoziLdKR6xovfefJT52bpzWDNCtRRFeAQcB14iR8UXVA1VEwkISPexMum+1pNdRFSMI3C2UkQtFZFFZdQaZfheyiaGrmA6421t/P2/f/Y4FPrur5dN4iuLLOjdew+rpU6n2/U1QEEIKRAHu6CIhKiDBKd5TqHLY537+JGDe91aLoa11nVdX15eUhXtCBKzUj2YnB81ioolqlcV/SC6SIKUSDPHcHdVoeoA1uzjYtyTX4hiJCnUxSxKqbX6NMU8zWfKVUTKoKyk3kFQPUSDQRVB8qJETMSGpKsgRFJbGwBF1aBWtBQ1HStbRAAq0CBkxNroQVBVQplY2s3vFVtvhMKBd1cVECbq7qbCKIm8aq1l6sKIbV0UDJi5bhQH6RvD6icIeNn5A7nM7DIeDJZadgvLe8yaLKN1ce+9tei997W13nsMLVJQEAaaEqQVmdR659q75BhO4UgZ1q9pkOitgxJbe257Thu+avuPzHBRIDCgiIIRoiEwk5BwZZoxyekU3VXNtLTeWlshEqQFfG1DHCOY8hjcGt2JUE2kgJke7oyJqpn5yFEf+u2/ZCmB94Hvw0zdB+jPzF6ShwLKvhMNN/D99vzkbYdi/uMuKSLv5oMgfuou8e4rbC2d9wvvr1txxkuBwy5wf/ux40HAgL0S5pue6+Z9dm9M8bj7Z/1a8P6rAQDqwdJNNgD5GF/dEUAG1EIxia2d8pPI/Lj7bLdCJIJxgMx9/W7caebycMePLSTZgp8RMuovPBji6PD4rsC3i64SEFWO7ENFdKXeI6+ch+NiAjpUibn1VPcTlhSXynPG6FmPcyQKWUDADaLKQTQTWeuZe4/IG8MtFeAjJi9/9c3HJy6/UcWXvzv5ObRMc6zL64nF3l7O0b6p9r/+8McVQDE1IcRsKqUw1bwN3Tu8q5pOGl0ZSAMmVZVy5y2v3iBKGEWLVVWTvp5Mngy/E/lX3/zmjPbb8/I3v8P3H9ZvnktF5apzffPKsKLTRBHtjfBTOMhZZ2++XG/z0tbeln4ljIUGO/tLf3E/Pffz04LSVESkmBrDlqiMCXEWFAS8qVA0Pi+vr5hvVpYizlt0Da5Kq66kdopqXbr86QvfTE4qhTC4yvr9JykGC1lWN+fl/HSqJyn68uOPdci6AGrQUqa5AMGrL+tJ2ZXusXkUpVAPQWvroqLnM6QSdQG+cA2Z5ioyJXBfSEGP5vBqCrGl8dI7+2e0/jFuZv03z2K11rImmNcKhatiNQkGlrfVMJ/m+hLr81k/nSBrfBKv5e3Th+n5qZTqoiVV4XtvORCzxqlqEizzJLOuuN1cmnrTcqqflKfr4mrVIdXq6VTog9IqwqmMOjS21H9AP8FayrECRpK9w72Ihsc+75PoJmqOWL1d5vnWGlqf57mUuslLerIRs4VEESlTASK8eTC8aBcgU6m9qzmWgKybxBBwDkZrKwgzE1/HVqpIIuhyu769vS1rU9UdVpK1w0TSV0vEUVQsZ76EL8KAZAdjflnfXp0/LO3zypdOmk1TnU5qNpjpEMlUtYs2sa4WdPUmHlx6uCcUTAglCyXMdqieyij91HkC+Pcvf/qr3/0BEaZzu63BWs+f5PRhlflTeSYli2giUCGVg78fR67bYeVFbvdDjUJNNLtUUgI1wDToUQViZR+ltdhQE7kS7YuvmilZk2zdG+nFrEyTqrj3dWlzPSdkpXvnqFHrZFM1rAGP8N5JT9jYobB6wDEfMc1pKOnNW6/iJkHlXAVNwvtbGEPC6d2rWSnmpjade3P3q4A119ZgAU91FlUn38zYunNp3rqqC2/tdl1bd+k6NffubqVQERlsKVRYSzLIIogQDUqQ4X0lGrQIkgHvQkqfUEJkEmlarc44nbpKqAaKw5xaHCd091g16RauBnWp1EIrtAC6wgUdkQlm1ZFpkUwn0ywgp4ege0itoCTueksr6O5CFtM9xHd3RUxFiVhvb8lNYqdS6DFNF7AwRMAfX3/Qbz5hmpa3Ny0T2UukWZy1aFmEKmWoY1ktEkGytT5NM4DePYK9u4d7dyfflkUVVVAlqqaBjdH99rqcTmVQepl9pkzaABGbLGv6ffGELm9RgY7QdmDokT2+ilwzik18XbuaT7VOq58qT1Zv6J8uJ6u1FIsIb23kS6Frc4gXVVUTU6d7D8tqhJjVE0kZKEAC8NSCDKi7pLmRqai6R7QeDAlaaMLWIscLndJDBGattdzlFQHSIAUSPbyt3338qBD29bqut2Vtawek3xoSV7CXg0QjC3hO0lu0iO6ZhYoVq9mqE9FpGlZa3jqGqoZkXa9aqdM01wnB6+vVTM/ns1SkjtZyu2WJCpo6o2LFrBSJVQAtaoYiiNZ7u1X401w4GUxpkpEY3a+tr97D4W9XYQJR1IM9QrRkrkDpYEhQEDXbkBvNuS1dxMRUtVAhNuKpCFJ7GGFFa8WyUBURjdE8yluP4SND92geHtGz00oRiWmylE7OLaz33ntULd27t4CLaQ1l9B5p+l4GuBWZDKXMNQOk/FJlnKNgfF+WN6+uIZmYVUV/yBM4Vuzxi6mKDNc/klL0kMOQmai6g2JRRSBgKFIfEtUaAqmOkEC7nbu/Ib2z5K8YtsjHy/ekahUDhl8RgKGCU8u9RrYlvuEBQuOOBH7XG/E7GC/RmQKgM0DMUpo7mZLBGvSsUmy075/XDmunsFKSzjRaGSPXjTpX7Bnmlu1w32Ji3I0I3ikghFkJYaTOlAoP3mpHpkhWHLP1AhF/EAx4QCq9hyYlLK2kpOehN/KQcDL8vpubFTnQfii25/iRE8FZVOfp1Fu/5xhC5O6pCmiZB7kx6AziwCkq8pBe/vQYnxZCyMhbQlLLI/eVEAkIha6kuPzww+v3T88fnif3+OGHH758/vzh+9+cZr2tfltu0RdhRzRGBxRdIiREOaB1BBhsZIKpghIqhSoqyJDsgIujpK4FXILB1Rhn82/m+ZvJ/tVJfl/7x6fy3/z1p7/9w/zx0p7ORQPt2mR5a86mJtOJqh5zRIOvCIeLm4CmIOE9opicqoha+MqojKbRxYYgsJGFMReppgYyPEUR12jdg8Hem4NiIuEFnqrJFaKIVVTIEqKI3vo1ohSZS6lKDyRNShlFoogLG0NFInpjdLUseg7aRrVabTETujAg7wYUVNUUKnCEa3SlK9zoIMohdReJYlSlCUwkvENgiCo4FSFUi5hRhBXF6BARZLVu6KCFe87uIpgUpdrlMn1zqU+XWqoFrLtWZWtj2U0XFzNTotTCqkKsPegdEMkq/emsmm2TLDiMIaBgrTVtCRI8c1ccD8YBrPmuEvPzJQIBgR6e1oBOStZo74Xi+3Jw/EQt5SuOj6ORxY2rEQnQAiPGys5UFU6L8ujOHnTJlIFBRqoYkbXWOlkppsoe3dcFvqhqWoUHcAOv4Ql/MVWIVpGCqBoGZwhJl+HTlz1LcHRHuQHqQ/bv+7UCeXP3cCUgYlamaZ6mU51PdTq9b7M+9LMfCmL7OGUmniA3Y6WkAMc93PmZq8nK+f0DHsk8+Q+q2XvL7ypEepVoCrmGKA+ev8wxp/CtXoXD4HlXzDs8YkqaBWbhlQJIEBHRHBYCFkoRLYg2HIFFoGY24JECZWRtveZuLVIQGhqB8OjJSCHBpFh4dAQdJtkFQSFAVDUGHepBT2fCSJmTXaVQIOw9BoQpu0AyLEBza6AIRTwo4OIdorQIY1I/qpqWYlpEp/0xb5tr1pd5xPrkjVNVH/C2dyzJrc75k5G29dKHFQ42FL6kHrCoQCBqdcowLvL6ZGMCqCh0pwVkYrk/ypBjDTVAdO/du0e83d6mUnQqp2IEWm+tqxWxgHffiCISwBGo4UH38ECPbKLr/fSjs54tmAQ5QCxhX/SgUcT6UG8kADUrwZ4QvcRkImgGd4QHlFTmKncAHQD7PNlWnfvUyKkWpDJbQCKSdDQJsju26b93QXd14xzhBBFBFaWl92brKyS6tyGKLkwLOADR+/7JW9dzFNJLcuKyV69Si2o2hUSmUhkRymOFO79CzXmBO7mXB32CPZoZLT8BxDDkg0RVi6IoRWqRMIaZrTpoHSTTBUw8JEI8LCeKR4ikuqHQERIitFTeAYlsDSkHX1l0qNdki4OjzSCiKDqJBVTEUwjR7rjbFurpWZr2mAJRAcwQ4EBgmunBl8N9LVYE0ntf1iUiEENuWIphKqPMz7Gop6fuzyxbXz1+jX+xHKA/5ChFbZ2nh75D5ukZ3IkMLIP8cgvop8cxonmXqHztXbhv9nIwYVMglvbQ+HzsV9x//snHpWb6+Ap7cMCH1eDhGgT0ROYRkeU65OSVrQuRnGeMP/zkRNvtugv2/BTs9LNHzkzVGIaP9mvudi6XozVNHvfHn77wl07ycOdVmfgiiJNHh7v3Z+AvItAKaHtHZUO1bCdBE+7BmYZkj2X81UhIpGyBJbnSg5AvS3vtkPlZzvpy8x8/v54/PRedJonzpV6eyjxb0BluZSJKBEHx7F4JwYBSREAIwyDR3yR1RXcb3P0ikEQdhPdJ9anIp1l++2zfX+Y/YPn+tP7NH779P/yH//pv/+a3z5c6FbR1ub2+/H/+l//JuncKTLUUJcPDAYJPz5dYfTVrdVVtkEa1AB1kc3iXcHgzVaiJsEIq+VzrycQQwRaM5n5bl3XtoGhzM62MKWJSs1o1rJgItUtqxbiGq9IC8MbbtUWLy4kspsWEUqQWj/4GinBp7SbSrLKkouVURKytXqe5FKO7uwBxWEJUyCLVxMUbQFGqRYmwCBJmsY92NZJUpUgXQWueQuOlllOp0LKJddhJi8IAF6hwhfQI9B667W0D7F6m8/l8Op3P57NVbV0gjaQAt2VJtEDuMR+eP0C1SUjPinYnS7FSa01j5ywtKMXknqi4NxteaUNgdAMLZPt8fK+v4CzfHTvwOrG5v/TGvddhZqqC90L0P39wwyJvU0gjI36P1vq6rMva1x7dGZpMp8FemKYpdYoX9tfXdb19EMY0FTaPcA+6c5V4Y3zx9rquEXoqpZR6ruUy1bmYZ2juIREBA5HezKSHeChDgjoaBwRCkqH5iytRslpFFAIzm+pUa61TrVP9pbfgL/V1/ZUn3GE/41dQ/pxHn4eqYpMN4LbvYkRIP383lFmqVlVoBtSiQWmB1p2RNUBVLUhzmszvFVIMKFvjWtRmnc+imgAnECEtRD3YunfPPGVkAxoj7DZI0ZKyKpNhJOnBtcXS3SMQDA/Ve3/fGQIUG7G7mu5zJ18wQDWCWBcRoxm1RllsbWeIlWJa6/x034pETFUIEwjQD9MhL5JkphC/8nkfpx5lEz/OPyX7yEwDpMzTdLlcsuu4czbGgSPRUY6PEkewBBkRA3XZuxYl2Nry1tEFcipVJCFRt9VNsNk0HctBRDBXrV08/fhtjrHHfklkIdw7KSPyCfDa1iU6ROgPKmH5dBICaJu8TGb2vzRFH+vEiSx8eChjLQqGRwadAZhs3bF8ZSK0soXJSKiRCFTFfRUJEevNIyhigKQuPmI9mhkk8FlFTXTS4pBu3hBWimw4Q4icT6f7qse7zBGBeZ5T7SIORklZvtmdTPZ9B1uwVWQyQTEthqrI8VkFU63iRoinrWbvLi4e+Z9mKdoZQYGYjDkNlQBCxUMEWCOENJFiprBpM/IS1aw9BCEBkKa2S5mnreSeqDS20JDWsJOZVLKGbYhki+14ATNLVWvu+s7rCklpZLNpOs1zFBtIMo+gg9kLe6dW9S9/7A9Cho7FL0acI/Hdfs22hhMPkKyfHO/omsd1/ivh8vE4JntCxEF56N1Gfzzfv8gmxW3TT8h6bGRUEYnuwAB6CfmoyPufzwMkuCkv/2o2i+xkKndEpPFEHjsCMI9fubfmbjdU9cMhx1v9EM9/xYGryJ2y8pidCZRMZD4TnkwNuTMUR5CSUJRs8gNO+fJ2+7t//ONvLvOn86cQXZtfv7yeok2MbvjwPH3/3afffv/NzXVx7WHp47AOzD8FUURKUdVQlSK4lKJyd4za8cQkIOYe3YOtTcIni48Tfvsk31/kO5S//f2H//Af//V/+D/+u0+/+yubngDtb3+avvzDP/zD32vr4RGllqmKMJr1NaJpkUuv3RTFVK1oneJ1fVsWbw1REZ3RNJqFKMwgE1kZz+dysSji0t3pnXFb29o7QyaTooCq1XKudTpNoFn2pLQjIjzzPzEgukRPZuYNUgTVgGKlaAOvDJi0m19NPUHXpWrCHzc9e40uIiQCsG0RABCmJU0TwqlGIyxYIgiY3Am4OtigWUeK1nvd5LbMqlrl2J51KiVVKhQSPRhOSnh0GWoS+bAYsu+1ElhX796HF13v2GivSWoMgOGpmNl7J01USilaa0YS0d1KnaZpT1RaW7hB0vcR7+5EmNmh1P5rS0q994QFZ8/kl6aiqqUzoLt7j2K/GJ1naVJTyQWRWTWQ5RHLYCKVN5d1zS8+FmUOBRihYeySEDA6GE3oWf+nKIMrsQZfgS+93boD8jzVD/PpMpXzbFMtC9EZvUmLAYjJci2QBi7ZPxplseyQPhTGf+ZGuburAmrABtflP7OqP1QZ/vw639dP+P6zOdbcn34QH/87HqrCePCN2QOjeCz03q8BYopBFxy7oDu1BW4dM8WoqiZqhGZpSVSKaqAw2ykiFEM5cT6FWirf0gW6dpFGrhk4CQiWqWa13UrJ7SdZFCIyVWPQGYVId1DPqp2nJui4WsqI9Uspdaq7Cw05bPX2r3Z7exVRaKEWm6a5u1m5TGfYjPnxMYyy+aGYf3hAe0/jVwpcPDwyef8n2aRuRLWU+Xw+jxA2d0Q9AvrvmcvxUeIQEDCie299Xdbb2pvUMrxllAjelpiLFVMImvcwEDQpD+QA4OA275LtnMPBnKcY2vo2NNP4tlwbY3W/NV+6v63ty/X2elsc4hlhDCPayE6DR3gP6ABoiwCPl7E1DRHE0O8bd42IwL60p25eClMGo7ft3VkBv3s2JHQ4t3+EC6CUIhoCNWpG4vSxVjA7hJhtb+wQafVmWmqpos82M3wp0Ty6CsxohaYCOZeKABmdQYy2S15VnWr+vM/BzKXzhu/R/7snbipF1FKOe7TcxNSKlhOH0kcqs4P0COshEabwCLqr0yGqBkJIhLoVZH8FoDMYxYwiVSC2c4VFVAKUQZOhb0LMxwhVRKCwWti7hCZ9jAKY5lwO7/M8pw5qa23XWLvdbrfrmlT74VBhprWcz+fz+byGs7u7O/pWe1Bg0JF+3eT7S4597R3ivwdytqSd4NZU2eWI7kxjQPnPsOS/0lH5lfvIcQGXTaf5Z8/xbr35NSf/Z47sniHgMVTLsu6uOpqHeU+yhfqLPeY//1CDYRd+/PVFovETHxSfx7/88g7+S3t/jvZd8HTXpkeCtA8h1ldyqRKtTfOcyToTUgzUUry3LCwAFM0d0YoKVBj0HlBjehogBEERzX4u/OXzn/63f7DvLvXj6cPb6/XtpHP5IHB2VPOPz/X3335sDS9vfl29LauTSjeVYihmU9GpqimLoih+W8UAVTMdQh0QJNTiSkRIJn81+kn6c4mPVZ5k+XSe/uv/5q//zb/777/523+lz79D/QYoOv0TZNKn7329SbDUqdRiyvCbLdVvV42ixSZDzPXSOb+tnXy5LmVxFQ828UWiTBQFp6JntbPoR8Mkrt6Dq/e2tKW5r2sEoYypTNNpnufpNNsQQkz1tbSjdESIOAFKNaVRYo2XgihCKWKm1Sh+BaGIWgFQtKtNOQJrncK1r346T95WKxKxC9IjIrwT1BRrHdtQBKIrq5kg2rHAsTkJSaJ6cq1T0V0+IX+2olUganTp0bLVlk0VTKOCmW15d1+WpRQtYevq3T2bA4llEpFpmrIl0rx789vt9vLyuq5NpxPJcK+1Zp2yExGxLEui2apprTWFw1MgRXYDQf7M+rUrxsQucSgPSi4i0ofbtGC4ofm+wL0jBHIjdIJ08YwXRDXVtXLXVFHQxSkRwnDv4V0lRhUbLgz2tt6uy3LrrUW4ShSF2ObAoHRfImJSqbXOVc9TrNerxep9jXASq8ey8ka+hr+23np/nufnOj3P9Wm286Rm1BCnhkmwLN2X1ktna2iC7iFCUWyG78qsZz6qxckBWefeVSUirE45djLqTcxBDiDsQxDAJhrzLk7d42OkbSYGiCUDRYxodJwuMbuyiZep5gh9eMr7VqQbxXgvHu/P0cw6t97Ro4Ls6LCLJGf3nmNv1Jef+aS8N0MZqwi6QqjR2NdQF1s9Jq2iLSRtOEYWVMvUKUGhiNiMMkmdMZ2p5k5hROcq2gkXcSCjt1ILoGK7owUBlFqScy0m7ll39wzJo/XoHaQ7rKTjpxVBKZKTbqqpMn13IL3XayPWdSVEtWiplbRSua7Smnn33limdH18N9P2BG/vcGKPzwYWLOdsKp/CzBSKg6QhD618jjYXtYiSmnM3B4yaIJ6enkYTQ2Bqsnk/7nHhfj35BXt4R9/37ebtti5rX1Zfuzulm6qYFSiBnp62RisSOoBrwR3LMo602yQMogMzuo2NNA8YiwEJ2bRWI0Jbi35d29u6vi7L6219W9a3tVHUizCyHCEBddCDHgyY7tHCVkvIZycRdWAcU+pgFA8isxbmHBdN7I2MGiSICN+jIzhEWEbiObhlICVchBO1AlPu+xZUhBPKzTJYACBQLBSZNo7HXatOtUxqn5xg6cTN+0J20bAEP1oVSaZByngl+B4CqtRSt+EgCQPGQTn3XgNmZqlWa51K1egRSe0vqfyXm1hEojMDnhEPwwNOC6iiCBSe/nCDokcilGLKVK6ghCFXlMy9VXkLGzgzS5K+FoMJAntzjIdqeo4BnUpmNQrW3C0iCEZE+mnugVnuRMuytLbebrfUa5ZarFSdapnrdDqXeeLatbD3fgtGd+595lFJ3hcsHOVp39mwHqPzo8Z3pmHHaf7TyNTddWB495eNfo4kY1aVQ7cAspVRhizRvX0hOS4hEvw5vFJu8PtGsHeDH8Ws4uEd3F28hNBSZEwN4tBtzOeNcUKmbs3x20WkSHLsAI7cpBC/2PMBgO5MsCVH74zJCNtEijOuBrItLGPV4qZPmS5zWaXJD8YGNZY7pwgAe8f27xmNjO+TC8L+KCP4Cz2WfOu4/sfXjLmw396dt5Qr8njHEJJ+d04dEuCPKI3H/FmHbosMvOD4lABQnp9OVixbnMuy0Hsp1SSsaodGdCbTUawWmWdRlQj82COj7bQAVEHRUs2K8IM16Wvc3q5ffrye9KXw40mXIjDelh63OEl89zT1by5vJ7++LW/X6Mu6ImqxeSpzwVy1FFZDLTojfmsoQ70GZt2MKqpGit7UQhQooKg3i/UsPqPV8N/85um/+ts/fPv7P+jTb1A/onyCTH2SmGP6zX8tfbGATlWLKjvb6/L2mfK5Rjf49Hw2Ah5fvtw8+Ha7ra1/Xh2+SrfKuaBW5VOR58kuhid1cfe4RfS135a+tmDvZIgaT1WeztPT5TTVopbAqtxrAySNMdDke21MK06mYiUhqkUEER4RRRhKwhNEZkVVdZpmsHiLp6fL7e1V2wjHGYxU1XTeenTSIZ2BCA+33lm6WKEHN8T26BWLqipF6lQTbC064Lxjooiq0sxUEZBQBQ0kI0EM3KaMh7O1tiQ/NcqyMqP/Xa7x6G3cw3vvt+v17e3NXSczEO7e3t5y5mdazCCD6V9PumzdNjkQCSTFZx4RF/fK8U+m6DbZxpYPwMwYbHFoEB9eH5skVr4vPHJeSYaPZEIURIneN5WKkHBjYMB6WtXy9vbjy+fP3nsRKUUAAwwIfQA0FYBWrJRaVE9xXa6vGusg51DW1m8t3pwvvrbOYvXj+fLpcnk+l6dZTTvhEzTIfNImUs26SyvaovRbt4hMVfq2u4mjj3jrHiBk+J4s9Cxnmhl7AFJLnWqVbXwcE5WRuIjgUeV9363vAcchUcnaLrYUhVsjYlADCf5kAzs2TxKV8Q7wMALWYq0HhS6kDmPc8YJsRG6hj28G2+NZHwdAroPbwBjxusgmYxId2mEh0hBFgDKhVVip00SV6F3FxMUJh+l0ttNF5jPqqRPhEWtrelugHcpSy1R1LUbWuTKw2yOXpKmpmaqoaCkNPXqnD9vO6E4PIN2vs3tZ9kQl37qJQAg2G6K2NT0pxnA1mbQIKRHmXsLN49aaWhVV2WJZPFbfRoro7gct2uMk1WGrOh76todvT0L282C4m6soRQUqGqTJeOKn0zDH8LVlncBT3cxHvrBnm9mYbd4a1v2zlrbc1pu7d/YOLzZRwoG1u6iV0BbspMNQjIjQQY0/Jmjr0C/UzQbzHqc5+0aXSCi6iKp7b+4w65Rb81vrr0t7vd1u3VukTWNJRb7R0UrMCJWaFNlMC9Q4QnYAcDe54791jHlwWHox63uaFeUUI2eAYUpsSkcFNLIMugWcEkyAVExFT7VOZnNy4K1FCoOpuecKhwhAWEVEkGOSERBWYBJMgkmlqjpQnNXD1aCJLSwTtFiFyKou3jsoKjCFiplya5Xc5/iG2NlV6fOfd+HHIYfH/D6qVhWqQ3LMPYemR/LAwkPFihqiK6kSZuko5URG+enTHkIVOlM+tXuEQrVRzMxKERoBqBSdALh7sXLflQ6zAIAHrBvMUKyAHrH2trY1Iuap5gQ5lg/S0jRPYsUIs6nW82y1ylSoOs2TESLS1rUf+tzv8urR1NiHymaQBTwym979OJiW+JmX5a621SUk+qGAv63so7Uom1wqJWkb9JxLdzvgwwzKheOhRbmt17rpWe+JXC7ch6s6XMTe7gUgsGokxf29eUNyobc0ODOC/Y87Ao2Mbd36mZLoQ5aSaoYR3Bon+Yrxomx1mwlHUJE1ADXte4CR/VAfUPME93LzT3mXWTKCaU95qAOGp5rCIaoYa9HPHOPiMxU0e9fnOH61vkVxW3J4L0gdcqKxluclUfAgbS8PA/F+Iw//np9YPn26fPz48cOHD2b25cuXv/u7v/vxxx/ByC0tO5ymvFT9+FQu51JNGDgrvEWEq8IEpjif7TzPl2qT/yjdJvP2+uUH9Q/1+7cX69cvT8+ndWkMnRHfnEw+TusT/Dfzeq3tdrv+qFWtFpkKJ+VkqMapYBJ+P1mRPQoh0GWw5ATVXEhIwOgSK7V7odQif/3X337/u+/rp+9x+k3IKQY3erLpN7//b/5PAWdGGyD92q4/vv7pH6/lH0v7p9n8bHayIj3O8+vS1j/96cc/SRfvomYSFTGbnKs+Ff1YcFGtsQbWGxu5engPpqdFBObTNM31MpWnyaYqsKT5URTsRHjPHmhuIBs3dS6XxGZkZBakSKiAyu5XNZZS08y4TmWaqqD0c1wup5e5Lsvae/TeVVQkpfZk6X7zWEEmuMUklIHwcBMR7mi6ICPLhgI1Kxy4WzOrTIiJKkRL4WYyZtENoSkoKQJlDBuZiHXt7hmJevUSYbnHikitNd3WsqMSEb17IqAiwqyWUqyYma17dEtUVRNNFtM+JPYJeVwyjj+/K2/sNZifIlC35gn3hfv4QT87sb9+MDyVmBiRov7u3ntjhPab+e1SWM+nUsrh0gNyu1+t7Rh7URG/LuhrW9a+LAE6ytpjWfot4rouEniaLx8vz988P38812nuUOkRs9fefW19aa4RyWkwQzV1Oa3BRdta/LauV1+TGiiQJkfa3sMxnNce993/nx/3IAb4yvOi7IWtn0F//aoPwn1ZfddSCEiIhpgLu3jRCikK2tQq3Iqwr9F7eFiz1dmoKBPrjHpimVtgpb/19ebsQFixOk+XeBZhhBaRjVMmQLVSzIalJRCQRtAjWvfWESEpF6PWudvNaSk6T2VQdcf01pySO0Zl5BcqAdnkTaVACmE99NHQ6S870ofUvaf8mh5iqYcRJVt8ECAxWbFiyvyV82nAAcZ++QvPMr/USMC83XjbqalrW1OugAgoKYGEPkJ6REeygzb27NBK2FR6tsMP5eokKmy/0eqUaxQBD49wJde1La2t0a6tXVu/tX5d12vrq3snzGwj62ZaIRuki8xsPxelUCkPXrOCAw16sMUH0CWxaiZqslUH8j9ENUPaARBmWkwVUkREtJEcAhuc1c6lTKZTtVpMSgDD3jCcWWvOKpJaNp8gkmiXMLhGBx3igJraFJKISTWzMtFKsFqpNNXekTpBw8BnbP976w97jfbww76SjwGMDqft7AOKWUmkrIDhy5AN2G7TXZfeuzByB1eIiERiBRFGg1BBIT1LHDu2VycK0hJaEhyiw25cLCHVcl/Ht59va/dSUEzn2npfe3NFEYh0Eck1NhOVzFIS8VVrHWKSKnaarFathaZhcrbqS9urQ2l9pqqS+LyHkfIwO/It/Oli/jATf+2kj34XhDomD9xNHfLXvc5/7+iNQx/djaL9Czs4cyhBZZfgGOk/vOxfZGv7Cuhq1PWCHCT9FGYhk1B1vA4VgUSEQOJOp9e9sDeOR/rcX3D9997aSALl3V8PH3U3Pro3tX7yuX/ZHXx35eXTN5d//+//u3/zb/77Uuzt7fo//8//03/6T//phx9+vN1WtRPJqZbLpN9c6rfP04dzORUV0e9O09vb23pbi2k1LSbnk1xOcpqkNDU9gTV6W1+/fP6TTtrOM5ZX0zqL1RPjQxG9WCnVqvS1rK+2zFphxaJqFPFZvRaZTIvoZc6VykSk9+Y+EhUVRVsC5qghRescWpZXoodNmOparAMKV5gz3iSs0sr0HN//a1YTtR4e3jVu7e1HsacyX+JP10nXolJUKSjVTlO1gvBGXylmjKI8FXme7Knah6oXEy7eQKOv0R3uDN9UAWUSLaIGU5gQcCJy0FUTqhmRpu6bZIoCrGUswRg6ICQHRqVW5WClhqpMtc7zqRgYsj49nc7z6+tbhPfugkg+qYjouZrqVArI5Dyn14maWkyHETFatHl/i5UNMmu0kiqNue6YejFVRYiGGaMgnHSGw2Vngfbe3Wmm66qBsDIngihpgtM0ZYO7lPL6+cugatxuEVHmYlaKlVLruZSduGKl1FJy8VVNAYmfyTcA2GEHf0fFewd0eZfS7PXXnHv77vIXTbdsZz8giLiBdrTfvns+Td99VBkGz9scDbLfG9cCkB49PCLokfdihQDU1n1ZM8rx1lqxWtSUPNX66dPT6QKde7Cvnzudaw/3aN2X3pfOta3d2aWW7qWiiGpQie7RNHrwNQ7+6493YPCGkxjw/x/HHrIAEKZY0v8en/VYwVOBbmElQowaMBqmwpOhldYz6nFxsYreQfRSOtFaa643j9vqy+qrM6CwUkRKtXmeojXSDak8P4RkVKSaTaWq6I/XNx1oT/fewyNjU1G1UqdaTqfTPNXTVOZqcwLGyhAC2H0PVTUL0r37CguyqE4pOKeqhIajt18Lef5nDurW77ehNbX94VC7TQMiRUbSVkqBpxIJz5dLKaX3bqqu+ksmxTm/tk5RW2LZw4edL8fdv2szFoiI1smaf/nlcU45OrEcx0b+vq9RGXGm1+RtWV7a24+v1x9fv/z48vLydr3elrVlldLwyxu8bPHBO37K14/ECf801iejKGVT9ymqkxYbcnACtsg7JVoAI5UopEVUimU7W8wRLUCVCIaGlhyGuSyHCpUh0SFgWtMkbcWdwSqoEIG9QITQgI/gVtMnDpsBd178BvG6j9gkqNyfRvLsRS2QmATSeydkaJQIPJShdI3QYOo3I5A4dk8NYhhBSfWWfAFMugzRsxBTmHq2q4hrQukApHJAKWraI6L36/W66zvltxjJ0ygbpPifiSpVEgUlKuqy9rYsg4TZWrvdbtlROdXL5s0Eq5PNE5OIo9ms82VZWmvhHuEJJDL9xbo4gN0l/aeujvpnipGMd8l9W9hLfsBjF/LxTwCk/CpZqv89j3dz2X+Z7f2XHUWNaVuUzA0BQwZxxR7WEFHbFJaDokO4UKCPbtNqlqlG+FBC+nMvicNIjaMqfdjf3gVax1n57s68E7n5c68BP7nz5T/++//2b/7m999/82SlPJ/rp+f/oSj/x//x/6zCdWkmMs/lw7l+cy6fTvrNWS6VJvx+0h/BK70apxm1yFTbXFhMq/R5ulDq21trvb99+eGlxPSbDz++vJRa5/OH01S/ez7NV8BwOVWf+02E/VQI1V4ERWJWqZZlAoE5BklS17Wvy5IlK4OWpPiBLjS1FnHrC6MjZHn5Y3/5AW9fUM5SZwXAAjlrfeo6l3kWLb2tIk04lZPOH0IF1y//i7JH7wtXX5bb2jrdGd1zBQ5FVHI2nItdDCezuWhfU2YrYwRyLNIDFulkGvGlzzdFRRSUWjT9paEU0b1ot0lMxgapVxMLEYiE8DxNzi5gdAfFrNY6q2LqnE6T1QoVZ3R3VfcsWYiez09ap957AmlM1UzMrIjKei+OpjXgqE1qel5noqJiKlZka74nhU9NsvmW4J4NYsANmzA2qm18U1RK0VJqAreyRV9rMTMmkqnH2jxCipqaalExuHcBplrnUk3SV3xsXWYW4ccSwhjleIis303XfV7loixDuxYAgqFiwRBq+pLtXftHLbWHyguFctAFHR867BO6hiOBx91JqKmpWdFvP31Ybm/e3so0lapxmNpHMzRVBaT3aAhnXNe1rUuE11oY6G3twcV5awyHqIbHsqz/+Md/ui1fnr6p8wc1w/dPn4QiOvR5W/fX6/Ly+rIsffnhRojDC2M2M9Hm0TVa8HpbkH2+h0BNAHHvEXeu7v6V/+Jj3D9iyF5uQI677yMOQLTtUx+KhId88qvLsxAMGeW0u+bdn3P9D7krJYQUyXpqVsWI5E+DojRQQlHo5k1TaxeQMk1dDE6xunq8LEvTeG1xW9cCtnAHRVHMiiiqdEPzxH3lB6BYSUliengMvb8B+cwUORFCIvNprrWcTvM81bloLVL2uS40haVTxzzPU11bn6Zp7T4wT2rTVEupWWFxhGM0aIAjl+SfvWvHH0l3Qky1FlMpFndVj+7dN7V9CiZVQDIFLGaaepcSQZmmSUwpgzN6TFQo92qgRzTvzVvrrUVb+3LXQAt3ugjSv8wAyJCQ8Qil9LTtVQsIkNQnHBpphMCmaV8cHgI9hFqJCIoEwyktyMDaufT4/Lr8+Hb78nr7/HZ7vS1L9xZOLduQ30VQZe+OACjlLjClqltuNTTSBQN8O8qidCDIKKKqA1qqZlRN+h1JRUvtACGLqikKYAIReIbwyRhKywiR6E5QNKAwETUwBZMzwIpUcIjRZAEsTSLDKWA+LBOD9N6jO8XEqQr3riKAuvdEQnPcZt3ayQNWypG9mqbDpg72Ty7jkdQCAgFMKlo84L42uiKMAQk5WbK/ugSFruJEiCoSZorBaNA0pkhSj0xMq1kCWq3YVDqjuzt18RBQSSW89bZ2MVm9r6356oKEUIuK2KjAFbWSgacQKqKmheYskbPAmTkttg0ruZ0ApqoWajRRWDErFmmZJmB4W9c0lqH31EVQsYf1ahulx1+wJcDv/7S9jdvLfs0aWQ4StEl3O5zw4SKO75Lj2YNHSqO8u9ikOvxnbDdjxz/uadu/Qwayc4C1fl2sz69uOu92ll1IQEWS8pLdJagM3Pjjh8qY5UKPoY6s2eQbOmH76TVr2PsJ//yD2xvlXtSQfbN94PQ+qJY8XvAvDLajpPVPj9huzngKh5OUf/27y4eTy/qnj8/fX7777k+fX/6H//gf/v7v/+7/+j/9P9qfcJlPE5dnyl+dyge9fVT/w7cfJo3K6Xo5v75Ya9d68vOZqovKSVFrWPit++15kqYMCF7jpd9KLf1282X99M0336icrIngrCbztMYJtxerqrWoYgYqCTadqHN9a57LlZBS1WC99Xa9rt2NT3WSOvlU3Gw5Fc7f9nXtCJ7J6//2/14//F/04yc/f2inb9bTb8rzH6ZzqXIRKaCc5sn70teQ6TQ9fby+/TjrpX35AmlA69Ff1/Xv/vjlH1/Z7SPYT9U+nMrTJBf4BW2W2vqyLn0S9pDexBflAr96u67eukAszkolSkhBma3WMtV5mqwWA9bbsiyLKBV3sH4w1bNGzSwkfHhpOKNVX6rwPD89TR+fTr+p00fXqTG8VBcr81nqVOaTTSezudZpqpPZ1ENQ5jFSjtCmYBi3vFgEUorO86yqwSjn87FPzTtIWFQ02+a1ThIh9PAGaIC9QTCZVdE30U5q74t7mWSiOIpNl3o+n6ep1jqZaUT0tip0eb19+fEKr6XOOl/K+cQJLt1CTIdjjG2L6TRNp2lqyzVdb3YKu4fXomY1gUnZysh5MggSIlYsMVmdTI0jK0YGTRdlxCpNZk7VzFQCbN6994/zaag+RqTLxFhahSu6BDUawN6sqimUkOhR11dF8lVEFN19mqYPHy6Ar+s/nZ+QbssiMvZ6BiEs59ZaBIsWoXh3KNd1vS235XbTotTyY78tzjfyn9b+ecHiZqWE6ueI6/X6j9GntZUvVmqpFt+WP364nD59+vTh0/P5NF0+TJffnD4s8/Xt7elcr2/rHz+3z/22QroUI0KLm4hpCy6trd3TQj1U3JmQ1z99/vE0nT5ePojAw4vaqcy+tpj9mNAdKXypInqUKMAmcpA+H/ec2SppS/M6TcknNIgLLKVpmUgn+EGhiKBve1sG8fd1LoZL9GBDBgQoYhDEVhEAAIEfeIBabCrm7mzYm2w5orBJimW/sVfnaZJ5gncPoKKeUEIbGwwrXEGUaT59ENHAi/fee6yBxtpClxUvS/t886vf3lrv0dvyo2kUyDSJRqsap6J6nqJruuFtoB5xwrSubf2Hf/rjKvb59vbDly/XZbk1dwfMVNVFimlR1KIfny/Pl1M1NWHKM1RZC6SIFS0eWN2XOdbwNVBYBWYOA4vZ6XSSp0u7PPF0aqWKFbXiaTOR9hIKIYoO568MudQsctMhBVTRqapleR5hGRNDnubT/XElm3+siPSny7r2t+vb9bYG1IMtKGbTaZo+nFe2Fo1CGEwtWifDe7/6LYYoJntP9eG2rmt3v2E9WkBkhT6lFxg0swi8rQuCBunXz5zNzvVZzt6bO2sx06Iitrkqk7KPLtuK/Xlcb59NJBBLW7v76nx5efvx5cvbbf37l/5y4w8v+HKTH1/b67LkO8FWtKpKKSmVji4Sgci4oVQIipoKatVisqFp6M2BdAElw42hgqRIqPnulwMYsspuRUTfbk0AhmiShzW1fc2gkO5CF2mQjhQhZIGRqjIhwsnewz28J78ZZqXTA8rM2Mnlti7rWku5nE9utiy+tpXQoLBUKRXzpMXCe6BJ0JQnka7WoV0QVEOpZVpa80CpU+5JbuaWjGiurb8ut9bWUkq1IiLR4nl+ugauSwcYrqRYSUixtOWNzNU8M34JJRm3iBPOwmTZe0k3yNYUKMWqiEkpplpEJLR7wrZdbSXcO9ZGp5kVKx1QRAHflmVwSq1A4XTvbemikHN9vi5r711rCUYOTncPD19brjC99+v1uqyLqs7zTNK5qsVc1Gqtl1OZJx+GKbj94xdfbxLdGK45tRjwoNtBFjbBnfcI0SqQFKOsP9yVwY9rY+6e9wX20EUcq+J2rNGwWYvCCh3wkFLqVCP7EgwxE9lkr/Ljej9qUh8PZUbwPsAUVkDAnUCkKiYEqbjNweWASOC+EwU7HBBRM4GMlmz3+TT37tva7oy0VSZ87F0Z9Lu7kPQ7Z5Wqj1zzdxjM4zfYasGP91CBNmISiCpwl38hye6Jf/PwcBcRmIqpAFw7MvOnU9LdV7IJ2m9rVsrzGYerqhZVUfW0jvDU6VEcFZkP1vSa3Rs1EL21XRVYku02SF2BAKYJo1h8ZyHm0W7L/eSyf3NQQPPxFEZ6c++cuyglye9gRD+MjfJ8eX46n0sp3pt7N8Hlcv63//bfvL7dvP1w+/HHjxf7/uPTxxM+VHx70eepTyVqX+qJEzzI81lOl4xli3IqjnC05qvj7bYua6i5IZQBUXHnuqhZZRQT85XkqUj9iPNTnZ5ORWl9kfXWG5sEq3w6nyUptcRyW65vYSICdi3XlxvVp9PpfJ6mWUj0zrZqb/H3f//3pRqM5ZsPOH+qv/3Xl7/6znRaV9bLPKzNgkHpDvd+XW9vt5u+vrWXq8kNbK9vb//wx5d/+uPnH16ub9coxSbDpJgNk4ax6yb+O4zHU08xMjpL3XodGg6qaqWeTvP5bFMp06RmpfVwdg/ZeBEAItLxYJSQMqNNt1XnJtiYE6olEZDhDMIj3Pv1tlxvNwpVayZ3OfSn+rCm9O65ChHcZciyQlenUqeiqh5RzHaYwT7m8tvsiXEOQtl0JkSlqEWRhHX1Fu7Y2/RPT091rufz+XQ6JUReRHrvAlmXpa3pE41A6oMMPKu7X06XaZqu12s6EJNsrYlAf7mOkS/baYjH1uSQNOJmpLTNEyJvo4/vRCZUNqvS3ZNQmXC8h2qFhSgIhiLmKrUKfaV3ei+lC0g6wfPlaZ4vZuV8mcNbPX8SRYrYJEyut7a26N5fX669d5C1lKkUAXrvb+vyertBJcjOWIO3HteONeiQEE1VH1Gl6eKxXJcU3zfB6/L5VF/m04/zPD09nT98vDw9PZ1Ok5XLx+/n+e0ms9azvb61ZfHqaGtbO0sMqWkrdCIkRKFwhrdgtL6ua6utVs2l3MO/qv3+tQLPzyn9y9ZR4f47toLqfr6fbYPI1wtch7/ekRgAgHXth1cNqMKxB30sIN1/pGx9DmAz/9TE/RcRagAe7KkDDQsU17iufQ1ZWtyCL0t7Wf3W/dZb8+jLa1WwmhpmQ1GplvinMg1YkAQ0iNVzb4aZ3K6327KsbW1rCwJq0LECZJGrFJum+vR0eTqfqmkpxcTRXw2oMIECWoPGMHcloolQUgBLKbtgdsio5ElWvkDsjpxbMXIv9AkGuyIAehcRNTXoZDoNMz4zwanenemzsTGYFMR1iUJKLxJk8uVTeSseeqlJ+06vibW35r3TE23l7qOd4r311jV2VRmO/gNIFcDX1VUR7Mva1wb3uU5qVoo+PT/Dw4RQle4qoEpJiR5VSm7yyXtHag+Ixm11CHvz63VZW19a//L29uX19nZb//T59rquL9fl7br0YJYoVUBBAYQs2QBJvgEYQIjGoSqpIsU0R1WGpMiKHqgqAi0KFYjKdCoZOwLqgewoB5JZDh2NCDBpJsFQEaGKjvoB05FLg7L2oKNaln1VRJzsvAcra1L1R6IZ6+qthZNW+EO71lJKRakFpULExZbuQ+UDgFAYgEiISmhYhssDnZBlMlOIiALkrTX8f4n7sy3JlSxLDNxnEIGqmvlwp4jIyMxKFpvF1f//E+wHvvCtu1Y1u8gaMjOGe93dTBWAyBn4IABMze6QNyKTqyVu+HI3NQUEgODIGfbZG7AYJn3nZM5M5OJGe0UcLLSVDjWIpF7czbIfYuGDSJ/SOWnkDQccQQZLIzON6j0iIshFqDAf8MSYEpEbpi59eHPpSAdVFWIWFmGMCtCu6U7X56fubuHoRDKefPDW3xq8/6cM6FBfQST61j5AWvVUKxdtvXtrZkYjhzQ6UYe12a4jOe886b8i176/y3fHuEuuv5YiMS4HZDpirMoXcZ7taD9nt39q8G5bsGVoXnaA+2n8GGV0HPClUT9BBO/962++eXp6ykjZwZAHRcAW+r85WL7EGOOaf3quPzVeygh3yIT7PepffB4/9wtbGeqgNR41MdohCbmPGJJAW9WC3zzKXzrv/dwBIgbFscn9W4+XG3JcAgBAy3Qppwdi6S2u17nUqdBNiX/33beC83/9/801bpxSiL9+V377UR8e8qQ0IfrJ26qAiKZIjKYGgsLDe0iCMlBIh89JPcPAD95aX9YsXAqfT9Pa5nVdP7y7/O3v/+bdx8v54yNFxPzUnp9uT0/XfrMM9o3OjpJQlXDq3UTENJUbKElWKVTq0PaY1tXWW7t9sufb06dPf5wws9uH9795p8r6YHGC5wgKw4OyI5vbui7P8+3z7Y9/bJ//SLFGtOen5z9/un3//TzfmjlN9Xz0VPBrxOfWvZfbnzboD4VB0qxf+OH0+PDhm6/O7x5pKqxCA75wXaQb7b0Qh0udmW8oLmIfiPDRHuexNluWleucyBa5LvO6tp37YsNr7fgoFnlxIO91EjAEWfZCiapO0zRN04b6LfVIG498yfGbB7sXIYoWqtOI3SM8hMFyOp0u59ZWc+vH1b1//16KHKcYh+29u9vzbX5e1m7h8fYdenx4yMxlWcYMjxtuZvXnjcUBxb7P9IwxulN+/HPs73lEuFnPDRTPzGBa3SlHZfXuxabkRBn5OjjBsdxs9aLQwlqoqpQh/1P0fD6zsIdLgTcKnLvZclvX9TbP87osa2vruvRuz8sSbkI5Fa1FVVCFI8zCiAqI3bkblua3JZqHgw9kxPGMxuUMTKvhfO15c+C64PuZ+YfpVM7n03Qq3317EUqcyvvTh3dJ6dl7//Lly9PT0j6DkHCLNAJYmCTMnNmIOcK8rXnqVEqGt76a22nDX/wFRvz/vyP20HQfbxnhDhz8eLmOnx+vBlMOktKD2nIgTDhS0sMR6T2Mwq01XjqapWc4XW/LYn5d2m3tz92u3VeLuXcL9+XLVPUyVTqJTBqlJCtzgrzK2Io4QRaItS1rg3XJWJZlwNM9HCRMQ/OQ91S3TNN0Pl8eHh4+vn88TxMzpzdbiCM4GYFMikzNCI7I1EiANCDD8z5iRUDTKZxDkv1uo8SBqXszRslFgcKoQpVxKToVrcrKUpl3OgkCcismb+4pfXle1qpFoCrdoiBGVW9X9tjD2Qx3a27rura+rtF9C1u2puSjmd4kjmj3iDyZWYjTehCneVtXt01ho16fVVisU3ohPk/lLKKESWRiZZUocbxxA4g3lgrlhszoFt386Xob/315vt6W9YcfbrP7PM/LsvjA0A64xabJsQ3cpV08t66RN7CwwUI6CAloqyiyCglDedNoQIS55wD1jujCPZJGFocBCXTiDVuLyAQJg+DDzyM4sKRHj5bpUNkYUCnHobZ9EEu3obk7QpXem7tPk7BgpSygKlpTCZKQAMMIFA9SZbtpyEhKx2HUaOjTRuaWIhq7YWLbF8ZTftkogci4LouM+TGXUkQVREcARmByJmFmYeFwjz6InAPhgwRFEmyJ9AIKQrq9FHAB0cNu0Bm5cfSDLDmDD4kbKUIIHj2mqi+dRQlmriIaYeE+ZFT2WIvvRIdob9oBkAlzN0YZvWTMZIG12222tVHqsVPjcB6Gct895uZXByq/ALC6N5vyuve9cMHuJP91AKRfGPmjppf7E9yDjn4JHRYxUqV/WdvJX9Wx83MjX9vJDYr2mm/gLx28swNv2ZfBTY4hK/GvnTwRaBcx+Dd/rHgNDCOie5oyvbacQpXV3WPt4fn9n/5cBX/7229/8803v3vk5z/+l6+q/+7by//0dx//5rvTJOupcMzP87Xfrqt77OZUGBOReMydh4FyZKiQe3j2CGYKM+vLjVGaBXKNtFPR3//Nd//hP/z7x6/fT49TW2/L5z/PP/yZJ2pPEX3V5aC6Y2LaAP5iXqyoe/TpxO/el4fHqdaqWubr+vw0k1spCVlFtPAs8RTzZ65PypSxhod3S+/u87J8nufvv3z+px/++T9//ud/Wj//Kfoa1pa1XRdfVyfWqZaJpKpU1amoMHHmyKfEkXvZCIHDMwyZRFB+9/7jw7v3p3cP+nCWy0RFQ3joWyHy2D6Ht3TEJKIvGxV2vzy3U1Ak2KJZX5YlmKp1i1zmeVmWWuuHDx/meXbLo3WSiEZ7DLYFNpbx+DNV9QB3HQ3uIhKZKS8f5U65u/3TD+p9LrVU5fA+iGsXN2KY2el0fnzMaXKV8vj4eLpcpqmybmq749IG9HZelqdlmVsbHlYmJxhgSgZIRJCbcOQhC70d4efflk0X6G7revPR5kncJegBlFq3Ig9xZroZ70nbZsEcsnX2AojRdsuZNRaJBDngpdJUa1UqVVVFp4dRL4vMp3md57n1lonrvDx162bruvbWu/XhTY3tPknhLBxB3LwrxWliZRpIg5FU68Zrw7zm2tOArXrHL17X/rjTkZAyYLHjubv781OvC9XJ/unTH0vhyzSdpvJ4Pr9/fLg8nh8eTx+vc320Zbbn5+enm5n7EGEwTmbWqS5rH6B2FQbCbPXo/zclWn5u/NzZ/m3ipNx8hJEsfFPdvoN+5Sim8JbwS4mQdE2XNFvWFp3d3VasC7UbekNf4X5dl3lpX27z022+dVvMZ4u1u4f19fkyFY6z0lmJOksXJxUOHrn7UU4QyrDe1ltrNjqXjomB9iLpFqiQiNRaz+dTrVVEp2kCYGksShRpSKR7NLM1s0W0iAjwJgUKJATMSM6kTA3nCKRnDkgQaCtSvNRCjxfr8KQvlYrIqehJ9VRkUp2KTFqK6kBrj98fZM+bq5uZXqpC0wW5tF7IDWaenDwIckamcHgw3fra2tpbR+8xIF+jsTha67237h1KR0Xl3sSBQomHo+zmwybP89xbv16fv7y7SOSk8m46vSv1pHIROZcqKnGuA33BO5N7RHgEIsx6hC/L+uX5+uXp+ek6P1/nz0/P12V9vi0torXmESDcByrMG9vfSDUREJlMRAnbSr6gRJj3cH6hABjqfiCEsNQiyqPlHUnkSRRhufV+eMToM4vdq8kRAg9QIUJARXk0+SbvDeEeZkERtzYKtqoqLIwki3QL97wttnGIZEZE7x7uTkDBuw+PxpIkPTk6koJVtRZmdjDIhxgTR2RAtjgsMiyDEaNDpiPM9miwtUbMsYsq8s55HRFL6zL4u1WFC4pkIgiZsN4ZIC2l1I2sBgjzoFiP3Hpmdk83wE8lO/BIKDl6dgy8cVqMMsjEoyLFDhIqzC9SUGtfgU3fm1WZdfPGkplVRYgELeFGkYHgTMmhKrm10UWYex8vgyXmXTKvDMLi1vvafFmtdymbkhju6drzEAa5s2y/YtAbEu7XdvWe2PdNEmezlhH5U9nAf+X48Ylez+8FZvXjXYCO/1S/fPnSWlPVIZbwa059/2uj/vivHEesktjLHD+V5fn14yU/C6T7EasgiUSOktT2ih/T+HUHJyJmDFuOH4ml/CvH2C5eZvWauVj/l//1f/v97//m26++Eka4WV+X2/Xhcp4uk3B+Jd9dH9p3J/p//v23/+Hvvv7NNyfEAp/zev30/ffpP7RmhDJq+MKFmJw6a4AEnMwwS89ovaeTr5U8sofBIlu4nM763Tcf/8P/499/8/v/ubx7wIm1PWk5i9Zrb77cuEjYrMQECs9ECnGmmWe9TDNmyXz/8fT1N4+P7y6lCJGcL7VWWa7P0E68VC2Uz3b74/zDf55MST+mIi289zBb5ufn5z8/Pf3hh+//6dOf/+nTn/5g8xxtCYsBfA4nJInqSeup6CSso9zPiTQAe5EdyCSiAByppzqdz+fL42+++e78cHn88F6mSipciwhbuPV++/TJ1rau68b0uuP8Brjo2D6xJ33dPd1Hy65HzMuSRMU63wTIiBSmy+UyoCy32zqK9/urFbuxSiKUwplj+6MRNhxMXEMNl3lwFvELuuWO/4oAZmFsWukCYuGUURryWNduUUo5n0+qlUlLqefzuZ5OtU4kdAQboyoyz/P1Ol+X5db6msllylISNJgnKNm6T9NUa12WJXNY91EFIs6M3MQuhm++AzlyRCO4M2RvHM3jfQg/oHd5kGAiMjIHIeDWzDPYKIkySRkMD+8EKKHQUjRFVaQ8XB7Ol/M4XAAdk3nOy/z8/Pz09HS7PneziFh6f1pbDIxmbvCOiEGrk95DwCTiwaVIKcmUREHEDvJEd557PC2xdHRIcqG7p32UsI7L78itCZgIyLHazKwhr2tnhtKqlJdT/erD47cf371/fDi///D7iy9r+/SJ9M92e177aDiFqvIKkUqFKN3Tza2bdbPevRfk0cWcrxWdYqsev1R7Xp7DfSZsD4xp9AwU9sjx98OkjWulSGEBISMAOrKVlANl8XLmMaVt9QrvW/dGH/dSIb+zvrkT9Ryx3/CEjkkec1ZixYDCBKVLurixNbEGtzD3Nltbc5mj3bK16Iubf36+Lmu7zvO8rLfWFvMW2d0iwpalI7pqEx3tskQ9CglSxYVAxBZhkbELLLTeemtxKI0y56bOOXTfcGQHdi8iiDYiwvSIHmHRzZZuS0TPDKLhaVCSsjARI5CW3pQuUwa8hUWo+mBi3XfaLYnKTJQ0OvqRzKIsZ45J8FD1XMuplio8/lMGy0utf2xaGYhIT+Akk2TJopynwgGEpAwkVA5mrvF0MRRoFmvX+dapd++99SHsHUhkDq3PML8PVIb1G69MlZLmvfdx61pry7I8Xa/lWT/dTqdSHqfTsqxzrY+qi+i5VlWBTyybHhQYOWC5EYic57mbPV/n6/X2dJuvt+V6W57ndV5bHzmqsaiYIDxIEYm5igiGRhoihtbjwMVmeBIjQUkIJEXSUGEOG9GNMClzUa4qUy1FRtxDHujhPbJntgCTU3o6WOTItRlyvCwRLsIR5EQGGPFO6A1GZqBbH30iasLCRORD2cnzaekbo8zW2UUBLqyoJ354HxkdFEmOBFhIJ66liCGHgaDMIfwOMJODyNO9t3APBFFCePTFjIfqFiPfd/joALpbJLtnECpkBO1HOziXOri1trB0uHSaROxarEWC3LMtLcNU2BAGIyZyKxoXPjFoyMswIJxKRgBYCqlTCm3JKQLM2iCX8URYES3JA6SLzJ4IZLr1jCBCoRShZAkDMjmC3BA9rblvHBMOThaH997bvNiyUiQ8lZhFa904l/bFFeONf7Xp0c+imN6y292XkIh2qznoazdeD/yoBT/N736NsDcexNHkvRtP2kHUmaDc9Hxj32tfZnGIt2IrFBzTfUFkvRAtYMTFuN8CtrAi0x0gJprnGZm+qzMf1j7vpNPfDLkTOMNraNW9gOYb5HHcCx2/jm823lKABr3WrrI3uCuGGcnjBu2jqMaeJccOYMjdXXlJwg4H8sBQRVKmgAbrRnrs6l8U96C8+xoYvUIY5EZmG+M5kgp+aisHkEPD6m6LfLk3L30CG3PA8U8Z+/f+/43SIhOZ+v/6X/+3d+/+v7/99pvffP3h8VxPVd5dzuhNFRfBx4/T9P4f/v1vv/qf/vY3v/v28cP7KXy9Xn/Alz9a+PNyEysZmqHMyrwpcTErZ0gKi0jDmh29paV7Y+K09GzEAbdzrX//+99895tv9eE3KBMk6TRNVClVv1z5edEKxyKgMLP5Zr4OnvKpysPD+XLOyPbh48Pju2k6DRyjTZP0i9aLAM4EBbKv7cufPtt/oj9/sjyZdzfvq3uzcOvt9vnzHz//8Ifr9Xm+3mCRncNgHRYcTtZtqjkVKcoiYISwMGFokW6ZrUF0KzJdznK5TA8PH7/95sPHrzLpdDk/XB5YhYjSw3p/vl3X59vTH/9I8dLtfe/PEW8S4HxoGO/EWR5gpmber9dlXUUEguk8nU/n9+/fR6DWyiyZX5a5Hatko7aLAIJZjja4TJQ6yZ4ZG2Nzy4iI5WXFMt8zUTAT5UFxFEzMUsYhO4jFx6ubySKlaK21SilcJQmjNWWwKF6v16enp0+fn26tLR6B0ROmEXDL9CTdWCyYuZRybH4jk01E8N2hBI7WrsNNx+4B5w4YuN/MNsNxaF3dqbF7hIDokNwCzlOhTIZxJlsiOkevKpdaPl5OQsRcRArryaFr93Xtq/mfnr9fzefb7TbP1nsOIqYIT7SUO/MA5AYYjxhcOiwqg3OSwpHgIDA3ZHMs3a9L3NZsQcEKkaD97X69Z2yxLiI3KAFtvRfEAawWFmdYrumI/vQ8//B5/dP388f3784X/fixivD7Dw+11ucv19u1r4v1tsEUtGhB2roAWNfZrGd6bpQ8Px0cvsHb/EKgchTQMjcS74jAFhtvv0vApGVErd3sVZBBYHp18CM6IkBYEunux7ZxF9q9GOZjTzlC9PtY5WXCkczCGH1KQKSkc3T2lXtj79bXWGZf5z7Pvt68LdZWM7vOSzNbrfW0CMswyhBKZiJVIvLuy7zuFqZkcBWdzYoKEbpHN28WzTC3WCzW1gfr1YhaQbRtK4nWWu8yGMDNTpnZex8X0s2jmzWzZq3ZrbXZzcGknAMUD5ZSWYSSw82tC3xCZJg7scrWf0KBEWbTCBS3/ZbCCVDRU+EL2qXKw6SXqZxUlEkJhYIRm4by/rwyM3lzV0lJwewskF6odQ+jNQLI7NaWxcxYJSPNbGltbe35dl2zebpttUofAUkSBdLcQa+W4lhpYQ6Im8WOFlvXde3NI1pv1/X2eHlwiybrrHLTchE5laKitJyGJFQpZeCshuIuIsx8Xden59vzvHx+mr88Xedlvd3mtffYNw4RIZXgQQmlxFyPdRiZHmk+3OLMoXROERhS9yTMxKCMTEpnUBUpRWrR01QfHk6nUgEQs3m28BaxesAjzJwxiN22fiBKAgWRMSBpFA5BwplseDOZTHAm0uzpTGzEPcExCmAZSUncCEfPpogwFwb4fJHLJWtBjKbKDBCLopaoNUQWawVs8LrLiuWwzhjlrZ45wj8jYc+BtQZKHU/K3YE026x9772eHjOCE4LB9mIjIcdEtdbMHQTh7kgnhSLB0Gprj0AzrN0HeI9ji3GjWymZBVKFIrx3YZogSRAQEynzUOhzZA2nRCWPzXOjTEfKANcRkad5H6WSIBpqiMkZkXmu2imRQpB0TibEqLgEoYy+x+4r+ab+V4qAyJmUdJipAwHhzIh4paz3Jh75+XoC3evZD1MZmYOgTwkg3InDHL8ZB/ne1iW7LeYYTdh0oHpedgCiLV+3pY1el2Lud/O3pYyILRC678oAMOhUXyb/0o4aAGhTIDn4P1/O9QtVoLv7dI80iV174Cd+D6C7A76ZPA+x1VF/HoJY+9aWP4VaH0NEeWM8j126cVv2x1fojst0izwi9vuwBZyUPEp/zK+IFo5iSQIvpecN3fvKZ9lKgz/O/w6o6I8WxtbJuf98C6R3AAjfHZL2sJMyI1Ofbvbl8x/+/Kcfvvzu27/77Te//eZ9Fg32tpjQ/Pjh4d///m//5//hH/72t9++//BIlzNg0/Ll+o//7zpf9fq5zSvzpHSORKAzjFKpgyIlOVVYyQKYF8tE+C5XFkwZrV2mj3//t9/pWVEEdUIFgkAsLU+Pz1//ZsrC5Xccra3X59un7+cv38d8rYUul3cPl5NM79z7wzstdXRR9pFTjXBizSBbaHmGZ7f4ofPV8v8wSBJZj754Wzws3drt+fn6/P08L1JO4UhLN3JjT/LYQ22AkeO/NxjCkbEDwCK1cC3T5eOHd199PD++o1pUNYltMM7clvl2e/78Zb7e0I1envGrpynx8nRHAeFYDdHXjJF07bfbjQXny+lymaapPD4+mgURmbnKDWjH2ssE0RBk5yFkfaSJS50OMPQIIfgOLvKywH6xG0T5qFhmrVU0RWSqJ2Bk90RESMQpx+Y6btrIVs7zfLvdZjNLGIg8YE4C27grcN+x8wtjz4i/ilL+NWOL1kbGBeDonC4EgQtSS5xKuZzqVOr5MplnN587+tqWtrbm89Kb2/M6Pz9f53kZ/ZzD04jMDMTdS3/oo48wSsVFoigVkcJQYs3kSAS1tFvzp1ufV3iUAAcNBs8Efu6qR3VnPEFKIDeWDwaGQjsiEEnpOXd7Xm9/+Lyq5tfv6fHx8vXHr99/+Pj4/qs+9/l2e/r8/Pw8a2jvBo+wvmTMt2u3RpSqfJ9Pemun/g0ey6vRW0ck7fvNK/r2V1minz3x/Qx/tD++GvzzXU+DVhURaUbWYYbe0Bvb0p+/ZO+x3GxdbF2ir249eguPeEE7JQtVUk4bC0HLw/Cb55tZ72Z26qc4k5ds0UsJouzmS+vz2q5zuzVf+lj2A6g2ZCR2gt7MeZ6L4na7nad6qlpVEE5ESL/OS/Tuq1mz27I+3+bZ3YmgXBKc4SR8OqFUESLnsB5m6h3MjMIER7ZBTzLoebabCRxrDqTMleXDaboonaucqhRGQTKyEAmxZ38h/AV2ilnPpCpKESEZnEwgz4ZIdAv0dSWQmbHLsiy3Zbkt87wu87IsWGOD6O9FV/DOF3+/ie9MbgAyrRslRr68tba0dW7rkXMlp+xxJZyEn1WryCSsIqfHdyoyApVBiHikNtdlXdd2m5frvD5dr9fbvPTeupsF3UklHNZmFIe34uO+ulQkeUg6U8s27jWN11rAI3kqKkKqW5RynurDw+nxfJoGTRaJBVpYi6BubhbCIQSJMCCSBlXxiNmAIOJRVAeMEUNLk9NBkhSUyOrDw2AmEWIaRgSZJUGx0dKPbYVF6vlERQIERiaRkDKTFhEl4RCejRrRFBSZlVh0gMczBj/l7pl1a4N027fMPI9WmHEXx+Y1fHQl3m5UpC1rtH46n2up01RddKyMcDi8R1iEeWSkB8Vgv0iOZAZ5cA9K0NoDqSdIMUIPpXAjRXTFiUSIS7JvDMxeEsGuAJI82QmWSJEkdmKAM9Pccq+8DZCAm4eZm5fLaSzNUaZUkdZaEekebY50ZLqlbTUiHvUuTvOtOSgzd7UxZg76KxFFr3mBt9Q+beW1X/javefA9/989cXMjDjwyv7rpkgvlOh4KensFbNXya94dcCXneivhVfdH/wAjL1Nff54wq8LVi9cMLTpNb04lK88y9fHvDt1bNnOQTVCYMqX8OQeRvCa2+2+vLStjzEV0lrub8h9387LJSdAxCyJ3VSaYVAN/fjyRY922VcHeXPnR9fL3lDg3YGX3I2qIodSbSrLBFFi+vT5aeK8KL2bNHUib1X7h2n6h9//3d/97b97uDxQOYEnCAW/O3/V6rXx5xn4ouWxlAfr3eLJnbwv5hwiThnAAMI6M2hIsBGQBIe7MN6dp4dzBVvyU0iABZGUWIylfPXt735DU6ETe1/WLz9Mj3/Ufy7zn//xRP7+Mk1FZKpJ0+VSQG1Z3T3crbf186frbQ6fI1ebn5aM9LSR3OBJl/DWYrnZeqPoFI62LH2xbpHk4ZSG6NQbDEPSgn95IQJbo2opQtOpPjxePn6YHh+4Fj5NEbkuy/p0Wz4/rV+e7bp4axIZukWcB5jkGC9ljR2UdfxadDXryzr37r13SWRUZZpUujXrua7rsszdXnXMZybtpQy5G4OM7Eg2890AEfiVas/PeXvDvaMdCcZEQyayFiISIhlvUQAitBXB94acAa4YCLieFMRhnuSlDD0I/ILj+OMR+/gXbcevGUTEIhvBafhynU+Fz1M9V7mc9GHSqsQR7v37z9wMS7PWbWm2dvNIT3jmdXnq0YI7EVnCY0Nvj132uKHHnJkZFKVYZVSlKpigGsweEuHIjv689KdbWxosJIa8A9GdiPxPXAqnAkDSBv82Osq6FOtotI0MkCbrAk8LNL9e+7n273+wrz7cPr5/eLyc3n91vjzi3U0/f+L11td1jczVu/cW1kcienp9D++DB7d/40hFi6roS4/B3fiVXZL3L+CbwuabcQQq+NHrQEmjYSBaz7Ys89zmud+e27z60w/e1rbMfV0zDJQcBji2ztgNpizCopCEZyJSoNbdc1DB9dZsrv1aFxE5F2gRZm7d125rs7n1tXWzrYjOzMTkg3VsDxrSe2vt6ekJ4daWtsynWpgZ6fN6i27e3Jqvrc/rejMzYlY6MwuSpJgWYTdzdGOV6N1ypjr6fwEtlJQ8Ym8K0Ng6N24jQIiLalG+FJ0EVaiST8SFoBuHU7a4Q5ls0osjoZ6TgIJCCEoeCYFydgRntmVForuT8bIst/k2z/PzfLsu8+pL7mzsAFT1sA9+p9nyktgDEOEeRZSZtzx9RERYODMXSHj01nr4SrgxMWMACd6ti4oOLd3BvLkZosjb89xauy1tbb2b90yQSGESNTtySdsC2/ZsJryWun+B3RIHaSDhQwfeOKHMQswUqqLKUym1yFT0VOpU6jQeNFiDyBkZLmrW0zRcqAdHwe73YE/NbMubJAYuhbZFT4ADFJlUt7nyRtiCIaQVeSmKHSwwtrBSylSrVM2M5GRVAgdxIgIO7w6nUjPNhcoISiKQA0pGYekRA7Zn4ZZBRGBKZu9bxyHutjAAQjyqRhEJC1EppaIOigvqmT2j+6YjfNRkwj0D4QgbBLUb+2P06IyWWlRddaVCBo5Ic6aogZBJiApQgQnJTMpOFA4COFJ6whJBxVgp2ffSAo2uprExeghIRIto85cdYZBk1loHF8TgyO5mLWzph0Yog+jx8mE0Ox/llLFyIIK/XNv9bQfgwItuS5F/YWe+b4N+4+GY381jYImINpBF/Lq+9nuLDdw/+IjA61ji+Dvzv+zF/Yvjx3sKvXS4/ey3fk79cLPNOx8a/fy33uRej+6vHIULDNAEAKp3tEl+h+KiH03+pUg1AGM/NUMACN8xcwN2GemRe2oTRJus+GtxSVU51t79XpmA3an6vvI5Qcm7RMdw5c0O8IJeHh/Xeba+dJYfPl0L6FyLZKqv7787fTifvvn4/vFyIZ2gJ8jkouAz6m/1YX73G754F54yubdl7Z/Dvvzwz//ZA82zZ1rrbbZuG6Qn3IkHg1eY9dOpnqeabUFfIj6HG9EUzr7G7WZG568+fsuX81I8vUm5iBS05renGrdTLZSt95TKzFOkEDRDl3m+Pi/f//n5+YnbzdutVyVlSthi16ymE1vVtfnt2dcbWWe4uIX3jKCHmuHpThGwSE+OpEHKyjvb3yB/xL7IAMh4LACmUh4fz+8/1ocHqmoRyPDe5+v1+unz7c+f2tNVLc+lni+XazTw1rDhEREbMpL2QOW+0PHyNGtp69y9c6Nwt25VeL0tS5m7ofd4fnr68vnLuqy4pyPEMHmbYRwpMFVm0VLKsUDvqrhEW6/gzyzf+5UcaS9MP+FbYXnQdyvAgdHLGlJK7vme1trtdnu+Xp+uz1+enlcvwTWJuwdFaAIb3XMCyVsh4J4nI99Q0Obr8QtW6T6l8bY6tlu+BMCEUR4IJ++V+0OZvno8fXj/MCkTHL09z9fPT/NzfttCuod5eMKI12jLsjZrT1/+VGshotZaIkUkMPQwgyC7ldnyvCACCVMW9iJUOCpDkTJ6Y4Ic1IPW5kuzZuyksaeXaDN8tG2uWycHNjD7thgYySPrOW4qKDM8EZkbsacDnmRISjnr47ws1/n5hx+e3z3qN18//uY3Hx/P+lAu0VnRgOzm5sEMj+jd1rU9PG47XB517PtE+b963Hdpp++p4F2v+n49vHxnrzfdZfmPT17GL5/3iOfpR/ADApCjkcm9rf12tdut3a5tnmO5eW99ubW2ClNVzsEQB6IW494wgggswkkSFszRRxsOJ7G5r8t6bW08168+XESVmbp7a949zH3t7jGUwLb3PJM9kg60m0pE3G43683a2tt6miozZzjg1s2aebMI9IjeezAHJNQZgAoQCA/vniwhGbYuN44gQRZJMIvSpgo60oxHT/0QOIEClUkRipAgODMXZhEKIWaC5Y6UJuzYhMz0AClTCozTOAkojELesmek99aZm5motN5aa2tf17auvS3eht0bub3Y+h6GJi1eLcUI7B3Y4ZGyx72jwkAUxEw86VRURNgzu3ez2JK5RJ+/PB8VlQEu2hOeEZ2sb4A0zy2QiwFC37Ga2BneB25oRCpHAXR8tLflMVhGmSHcrDvBiWJQvBVlFSnKRWSjsx7I70QygXJwiwpTVR1lDwZVnWLHww+6e9pa05PHN8YbvJvggXEkOggbiLWwCmWSe2Yw61HdBqGollpFy8BJE2Ek3jK3ZrlRAnl498CpEkbBsB69B6VT2JCvwl6lGkEmMxODYe7I7YnSDgQYsGDrzZtFRJhNp6mWMnLMZmYQ85ECaC/hqzs8Nlu4Vd0IhIwMAhKpSmWiWkN4hadneirBAEbRDfYanFQJIBYKJgqwgzhTgoyIaL/vGUUFGcHIgHeLyCJaS1XR2VYPcZUIHSw1vaNRFGY/UTNneCYZU+TW3UTEoozMsZzNDuPGhL8k4beP0XhxmMXh+FKmbHI8v1Smvv/7j03rUcJG5tiyWBi/LlC5P2De/2izzPcXcJdLelVQ+BW0Wvmjv9KbnyYSyaNH7NV5f3S1dGyAd3sXCLjTL3kbq7y6h683zrtu5rFp88vmJnRMgO4QXQS49xey5o04IwfYPc3ybpN+xSOd+0432vI9th6hA3G31TIJwnvfziaTMoxDxh1QYWtJokMaYiu4EYGkFHJ3SlhmtJ7enIVEiEh7uxZi0TOcPt9sjTXLc1/Lb87lzPrd48ODJmGlDYOdmRVc1tM7//ofTpfflVpVC4cL7PrlT//8X/5T0T9+/uN/Dcu+9uW2Umzs4yJ5qhSZnagFugev/Xq7ffnTH76i4OkDVgQsaVrXTJ4uH0+hNZj8dG6Np/dVoTn30ls8/fewL5MmlNd1+dO8aDktc/7wQ//yaf306Xq7tWWNaTolY/amKiIS/BCrL6tBeW203DDfcm3RrHdzoiwKmdcM9FCP0oKXtYX5pIXXDAWKePLSnQJSi9YiRUVkOp9rhIUnSwoHBylUwIzH8C9fPvU//ql9/kK9XyaUy2ANswetx2pgVuaXTDTxfaAiQ4pYRIjSbJEqiIms2W1eF19t/tS/Xz+vdDp1iwGm8sip1sokTJnOWgdbmqpoKboH6xFDVf0lETWWv6dv3iwdyeaXt54yKHzsMlvO7I5hbMsTg5BwBCHAICKF0KZ7Qs2smy1r+/Tly5en62KxpniQpwSxoFhwDVYpp9NZybyv3huQp9NpmqbIIQeXkTlaFEaJppRykH2R8FG6YWZWMbNAephFHw50UBp5jz5w4DliIpKg1mBuq9uten9Qfnfi310up1qmqRQp17l9ut6aZ7PaURvECA5yYo+c5zavi7vfbrNBoruwkFZk9tiwGgB1d+wd3h4ZbrUWESoiJ70Ucg1kdicnLpDaBUvPz09+W9MTKQ4OLkZCEBmveiYMhBgtebxbP/LNnDgoIMhxb0b+qWp6RNogqxjrQCHEaNaICaiLx/Iln5blh9vtq6++en+5/M23D8vpaap0W5eYl2TnIsQFVJB7ee0wi7ulZ7zsEIO87WXNx5st5mW01gByJDGDY5Q5DZmZJ+XAaMod+KuXel3eyZYhR5cOfOM+zQSBlQDPMNvJ5WlIKW7Dend3ESnj7QvbDLIQJzu2lE9Rlkyf5+SI69VvT9IWmq90ffJ5flpab4ubqbAIkdCkhZDm/sH1HNEk1kIRIJIgamu7tT7X6ebztZmZDVWG7UEmlu87M6uqiiQwVJ9FiLUkJgd8yJaBRAF3BFEMwkRYuK3ezL7MyzTV03SqRSl8aDUFqLtlRJmKiDLzqWoVOWndMmQgARFjma+qJJ7cmWZRMKFIcicGcQmj5CSiZKGoRc6Sj5onrBduo1RYtBTFoCR2ZAATYUuhj/XCAEEUBFqWa0YK8lzIPDgjJ7Jrm29XPr3vET1s+bJc2/q83r7MX57nm5MpiZtF+OClkhSBjh3983IlSiEWhgpnercGgBAh5Xle17X1ZhQpTsVFUxhs4by1PjEFj8WEhCFvhAindqNMwsY9IMOZJm2tr92IOIGIpE1HnMp0OtruWbgU2VsBg8/BCQJJpBIpqCCEwIyzblKYkUHnIjLJkBhkaberchagABPRlJAeKtCpxInhkY50ym5kOU3ybnoI5LW3JAIGwHjjhM6IdLSbewSNNh8CjasXTgFDx7sy6oGn+rJ/zX3eI3AQkYpIUSlFRbl7qVVVI9OXm5tp5VIKSdGtisYtSouw1nw1ZZlOU1tvozciIykhxBnkkWR+lvPq1pnqpTrSMgoQ6/r89BwqZZp67wRjLapB3Amre3rL3trG/ZXpvXsfzCisTFL1dmvpnTIZUmt1t9bb6RRTzfNJRNgNK6gHC9PEky8ZvSnh4+OZTydwuM0CKSzvqmTGJmAq3oGrJxtWz1wHI0Q4MpWH3eyw9EB0GZUJYaPoCSlSeYrMh8c6z+uX51YWTKbdNZJZi9YKbjlMGcRN11Uxc+/ISKQNL4L3xtcXY3vXMp/3RYl8DXMlkBJGEZXA4Byp/OHcHtEHMNbS8bW8Cwt42HyPGL2GtYDg4Z4uLBQ5lCqZZRj/wXOQeleUeCWwscUPkR7uzCxFjh/bshwKcbTT8Y1eJtwdEPfd+QCVgpeYIX2LAYbDvskSgflIeOYm6LgfIfe0wzGNvYg0yrsAsCseJvNL1DQi5CHdOBrNx+WPkOAuNvNtMiPM23UnIxCIuscBCR4SEpE5NsT03M8rwjl0GmyFOe0gQWIezXCj3TeZeCo4AotMEHm3jMgxMREUJSYWQEZiKjOzUxCRjGZ+pb24jgQGc3eyYMv3JYhSJIgaJQVBSUyIyJeGzFwbErpmkxAJAcgpl7b4P/8jrOHjxds34UZuBAcnNuJ1dk+jItPHU0GZplIKfOVolLp+dW3/dC4sLU0GDDM6Y8vEqCJAgw+ASUn486cv/8d/+W+3ZTnZlPLI03uu71AfpJ55OtFpoqlImSREYKEn1kqqKRSZLm6dyGm59T9fv//hh+cvX5Z1jXnpvUOrEg+O2ewenj5SC0JT6z2MorNb9O5rc/NOTICsiyeRERnYipDUSeQy1Uut7y6XqdYB5ksGV5FTPV/OtU4y1cj0DHMPJEl6u3nP8OhLzE/PfZ4JWVWUuKgOzsRRVb8bd9H/q/Hql0Z2UJlV9OFyqay9tfm2rHNrLH10fkeUWqZaiUiYEyjTNJybHfH1NvF8OIX354rwOzL3N9WLeMl5ukcQczInEdG9CXj58jhLEDZMRWttWdfWvTs8yZISkkREmzxWrbWoCpGw7FaAIry1NffW53tx3IMhcbPFdyd/81Ff9/zByJmNhEQ6EmufA8jgE9VYZ4n14yP/zdfT1+/ORNUMn7uvP3yaeyzde1Dz9ABruof5ptgw3MuR5cdW0qDdb3+5i6MPbtxOIoiwEIqQCpiZM2jwLAGZaelLz2uPuUe39MgEiLay01Y6frGcx4Pa0iSv0kOjqIkc4Aag3H/nfpZ3wSkjsbS076+fv6xV6fnjw7dfvf/wzVd1mXleyuUDBaK7gF8v2FdH+3Gy6deMZIKP7Hp6+Oji2BKFP/eV+6vHj1JSv24aR1kfQOarHNz9+8nMNHRUkIN9aeNA8z7aI2KksjlZRQvXIows4Ut0dSixqkUSkXqCEpb40qOZ94jB+X1U7SkjU2QT64i3eAYajEm5FwtHZZNAsIjxyuJO8DRB5v441e1eUYhKJh/IUNHBOSYiG3zIMzjQ3VfxiqzMWkqIxu4f3WXgjpsehGAkwSRdEpLC6Qw/WHn2VbfVOF+/KUmjNICkwFBWFUZRnqryRmxm3dZuS++rWR9crkqUlINZd1QSeWTw3ciTOMfnSD+IyoBog2DedwnB3SgS8bmUUrSIhrsTw4MABiWhpVtmmIUHAUScIILk3mSO8EHCNtLHTCy8c3cxkkhVatGx4JgHh1BKgpMmkklURvwD6uyxReMKgEeUIqoiq3UZMIwR7mR6Rg8PI+80NL4isqiolmbWuo9A7uiIiZErTQoQcaoOYl0hQAkpvJlMwm3puRf8SSnpZTcr03Q8Pd5JGkWENqortNZb7wOz9JILj0OecNBdC5Uy0kkY4poB3tWRgaEKwYOhJInc0gkE9G5ugaS1rSRMhFpLKSrCYzGzkNvoxnciGnrbCM/MYB6NKhsQf6itDErBcbEH5S8SxDy0WUCtu/fuzIvZySw40lKZiLJkUoQiA54AM/VIo0wmJ/jGH+tBo/+YKdkRiBf4gIBINCiSM5HQcVkhtN6WjjQPoiRJcC17zMDrgAblWLwyWMV+cqM/XsDtfXtTHfjLq+D3ghhvznV8NFJ0R/v4X7UzvB1vgbsjIbsZ8NfhzY/qF/cz/NnBewn1dZYNhLDXd+31QX7ykMM5eFvbOUobmTvI4j7weZls7j9/SQgSrPUdRgEG7ZQFb2eQ99zSzLmY86iIUzAN9aTNZYkXyeUBMcfoYWMe/UXMsvvZlkxj08mXEs/r8+71nk2TK1+uAkSOGL0DxETCxJyx0XTooO8OCoBlqsS0+rp4g5x7X9uyLMvSr88aEXpqMrnAqaSc6kmrllJPyGiLeDCkT+d37y+Pn6R4rMgsNCBHlAoISbAHLFx8A6z88OkLshv4vXzP1aYL80XK41QrHM5wAqMn9YQ7vCe6s3eYpYW7PXsEX5/mP/3p8/efr/NsiRJJxHw618EW6W7uHukEDFhra7a2bM37Gm313t0TqhRJz4udLg+PX393/vDd+ePX54eHZCJ3Dj+1pbIkqFnr4VJ0upTzw1RP55DKwhk+z3PvS9ralp4ISlqv3uYtL6vKhVh35vnIO+mnN4aDXqRC3kQq4+eqWmuJbi62MSOxrMu6jiillJG3GBkUENVSaA9U7qMUAHFHWHFvwkayNu/OezeJ5IOmbv967DpTv2RwNixEWLPbbXm+DvIbN0vPDIbQloisRc/n6XKqKqx3tCH7hrcFcPfilbkrvYxbZHd15FF8OT5yu7NSQZyUWzCRnm7rSs0K8HGSv/ntV3//m3dT9ev8/H8+rYtx6967ExfWKYmCQcTuMUKvgXhelmVMzN3pp6K2cXvDN6b8sRGrcFFWliJQJDPLINAEGVGzfFrb89JvS1+7t/QXEz/uzMHJuD+vV4/sR31Qf+k4DpiZ3fO///D9ra/ffPPh/bt3H85nrY/nUiv4BKYfG99/9bmD0s2H0kx4gFhAW//u/23j4NH+CejCq4auDaA8nFAPb6333lvva2trW80dHlRoAouolFIE6flI1Z16uHlYwJPW1pt16tbWeeBSXnGMApQpdwHY67mNWH+PL4mISHWkQHHbkmrp7odcUq21qm4o+bsDHoai1lKYq9aqZXDcQhgQJw2poZpFQzWJnWk4VrGJ2xEwmus9yJMiKEH+U2Ds7cJ+4UHwiwb4ljgZPYEnS0dGeLZ1XW5tWfq62trCPCO41mHrDis64D1DwJsih11JC0unXRbJiSLQ3cLz6NImYRE5a6msKtqJgwUAq2zsiJHdvS2t94YIJpaBuSKWWJOGi4PhRIqKqgoJiwED252qWkoZLOtETClDb54TJ9GqRYmFmGgLVHZg1RAWExURljMImbGlgeHIOaw7MwUAz43Dw0dTITFrqSgW/tNWO7IWcRFxZ7NkYhXsClzuNG7LCFb8zsAccGLsDTaZaWYEcA9zi4h1XSGsp8q7KvFok6MtUkowFa0YYYMoIgEjYCA9KQFKyowwEYGob4r0uaZld0/03us0DSrLN1JIB9yLdpb8bSthie4j2Ud7L8RQrxfhUjZWzHEoumMP697DHcjuvvTeERRelIiouiuCEcIAZ0g4KDIE1Ig7YBHI7pkABRHASczuR+hHBAHp3n6QDJmEgq1TW4Mi0hLkDlqy7+VIdttY4oaNgmzszL9eNgT4a6KUtwd4Xb253w9pdIEec4l/g5Pdh1l8x0L0S4Po1+6PA1u4w09eHCd60YLcnPt/8aT/0gj3gb2nO4dnOwUGHc8WhL76WrctAACGEDv2HphXjzKTBmyMmCgTg3I0AaAo7kg+BlnzCFqIhsZSIiG0q7YlUaCbeTgxQ2XgZ/6K60/zcTnMQpIoEeYRAaQykxBkqEMIlVrPXL96d368nDKst+Xp6ZNocjnndKLzO7kQV9Z6Sp7AGgNxyhPSSU51evd4fpxE50jKke1hSowEUW+Au/a08EiLkFtDXcH1gz58S3qh6cJSzLpdv2iUCNUuQTXW1aL1p+9t/uRtbq3b2jqyPVtf/XZrIHp8fDxdKLElh2oJVSViczazAUztfXWHGVtHb9b6UEjb0kKi5f3H9+++/vbr3/+7j7/7/emrb+rlzMrdW6wL/vkfNbJZxwIyE2EplOQW3VkLDaLPZV2u6S36ogwtU9FTlrG2ttLeUcGIyJ9xODYC7J90kka0qaql1KgODyHOTGGZI1ezERSNsxz9LffewdvGLHoVC91/dN/3NrBdxy/t3VxbY8DRRUP0ix5HJMLDrLc+z/P1uixrb5aeZAHawloWlqp6Pk1TLQQWJdxBbO+jkftjH2IIm/LXXWFHWEho/ygzZQ/tg4IoWEbmKaEOCXus9t07/e3X56/fn0Xo6an94an/n18W50Jghkgwe1AKYXg4m3DnUMVZ19XdByDtJ8tLx63OUarIJKaiXIWKZGUWQtnNQILcafW4NX9a2q21ZhFIKjvt+F0O5ufO9a8PHMZmM+4hMaLm7dOnz/P1u2++/ur9V9+cP358ePxwOVfivyoH90sjCUNYoQ01oUhiYhEG5V+Fvf6V423h8TXe4FjwI7WWtDlwFr56X3tbe1utP18XD2dEhhYmT0lkQohxOdVI9ggDlm5LsxYRgIX3Q0a99wOWCYCRNNS07364zSghiJGRjq3LnUdNlYjydPKI3jtt1mMfqnzXb3PkQUZFpRQprEWLalUpXBQqKJoq+vguVTtxdyeJV2BrAraYBclBaYQk6oxBME1DvP7YQMeXfmHV3Acq+07GpZTTKecIioi+2LK0ebbWfO1hFpk8ERNAkCEhlIGksB69swVzMoGDEB7RsWsmdkQEeUYk3AcrdgoTMatDGBzJCVaVojT+FKk8td7n622Zl/QQImEWsFCyhcI7bUUL2nV1VZhCiLGLpx8aTsTM3l9UaQpzYS7btkAgTkKARocTEwuJsipzPV88YrXe0w3ZMwCy6DzIPYgACpAnRSLgg5DYX916GpANEIEhldhjUKuMsCS2R0ynyyUyfdjU7YljJ5l7OZ67D1ZMM3PzGtBSmDkyGTjifSIKj52CORIhQiKaEdYtRZIzA+RG44uZlJmIIjQ0ytbM1Xoz6zYUViBSGITIcLfeB42vsbx0u0QQ0R278dCX2Eppo4oyEDLEW5TCd/3B402JiB6dmVOYGBBpkWnGcCdhxjkzEMLJDGWAkWHJsSYnU3hyDu4vH21pjCRKibsuuIFLZh7NIfPaSBQBb9bX7s1790zi7r0OgaCB7uVwAgY4aPCV5gEueO34/uz4t7Dkb7z2+/OO9fxvdjZ6bRIV9+oOb136u6+99rJ+qaLy4pjtKLLtGy8SXv/CIX7tGMWEI0q5nyHfqTq+HbJJvmJ/xG/s7DbDHMwN47coVcf7gNdsBDje5QQANw/33d+gQoNDHNEtwoEYpJ8Q/uuuPyJG3oeYkEKhlAkjELT2rkGFyMPVqLC8O+kl84xUUF+WP/3hn+fblWopD+8fvqVLOdfzQ0aSMBE3dyYqWjKKuUx1mhOX03mtN2efVGWQNRJx8hOWDCQzSfYo3bwbTu++uXz1e373O9IzpAYhzPr6ZJ9udcLjuwkkFL7Ot/n50/r8yeYbpWac59YggupTqRXw4O5uHiBy95OOghTc2Tq3nhvmPLybRnBmhkcmDcK4aZoe3j28//rDV7/57Xe///3jd7+L6cSnOl1qyW43ieeKtalKhebqxGBJkCMdaWZpbVmXm/fG4WmWTKCgu5TSVu8aZm5LH+0rjw6n521Y8npApVDGiEZqLZzozGaG3PyqI1FEOw8S74rleUe39XIK0cPjeVMTpvSDCHCrOxwLnbEJJWeKaCn6knG/v4L9qnJoFGSmu7W+3ubrdXm+LfPq3RGpyZIgISmllFpERQBGytZH/4JMGJvEkfEiImTSZuGTdwr50adG9PLn+Fa3AEajKdIj3BCuQLpbX8vty4dH+dtv3v3mq9NUsLT5D59v3z/ntU8uEgOhHpye2R3RlbSIOm1RyrIsIxs3ohR3l0gwIoJe3eRMgEQQngEhKowqVIVOSlVIEEKsQ+0tqSdm86fWv6y9IV0wqoOROUq0G4z17Y5zF46+8kS2RXjsuLizffc/vNe3In5ZUYGRJSZq9oc//eAd795/xcwMVuK9j3eDGI2i+1E9vo+RX5nE1x8cn3m4JcVQ0Q7PHK3GNJoB7i95vGK5a0H+2FbSLpeBeLGkRLQB4TIzU1Xv0RF01zd/3z4/qOC3NC1AKsk0uPClFBYJpiQ067dl6WacEVMRCmXo6BZj5qChacQRDlq6W7ghunu3/kKqezcYECYRHnniUsqWqx76A2YAeOOHSOGsU1FRIqFSPGJd13mej9YyZk5k0bJ3NSeQw3ccD7FoKaIqhVWlVCmVyoSqUSQvl2QNkg2ER+yAZWQmKwViFASUs2RyruzBkt67hiYzCSMst2YqYnBm5shUbP0NL7bnyJOOM4nq5u57hFF6MIzM0rqtq69LRggLpysAJsoUBIEsPLylmxKFh4eBgLAMYwaPtvMBTwr4aNOIcIAyk9K6FRVmlgRESq1ctnAlU2upVVSJvXVlKaoMUDjjliSux3KDqJYivEle0ADjYssFDOpPTwYRM2gUXHgQkjolyF6WK1SlyFYxEOYqYmY+BPcQKQSmEEohig3YPpTzksg9ejeLMGy9iLRxQvIguoxM0Y15pRSJiEQMsVEimi6XHtF6N7fuQ8ZoTIoAHVMceY2+kVU5JZiURTLBvAELR3YpPRAkRBYRZoRUlWDqHik0UEuDYGy0Ggglj66yIlqJRWo4W6abu5lHZlbmNHe4gwzME0EzzAdtyIGoHF1CY+UTMyQFElmSh25JqlRhKSqjnOJ7cRIYOYEkInMjhpRCLE5wIDycGJQnohHIVSQkKU2QEyVxoDDILUIiGHAkZTqCRkddbG/lyDswc4oQs3uEW2uDtzzMvA/CIk+IxI67GfbSbIBP6bCr6b512u3Dze/yiy8pAxrInMPo7Q7JZiik3MEzXyx2DpzmS2b0MMpERJz0ghrPoby0jb3Ddf8okMCwB2+M+b1hNOtbISUTInRHe3VvxvepYRi9V4474d7MereXL2KHVu2OxLEJ5qF+M/abnRx5d1bubsc9GOU1RobvMOrEwL4ZIZP4RQbmCI3GRY2aGL9h/h1YqlFaG4gp1UEfHON5bPKoW+kRkTtv9DC6mUPIhwb1xpZB6G4j9YXMtID7qKkQYGM+438EMFMMh2W76txVlu+f3U6qsfu6x83cFgCNt5EAEoYKQsDQ350uTz98UmTvru7VRV0SwMTLI335jOjr+fGs5/O7r708vC+Xx1MYqAs6b9I8zhTEEWlJwSLvPrxvvVtbR8PNwQtw4lJCvIdF9J4/PN2YTx+++dv6/rf99IHKlCD0hojbpx/+23/5j5S3b756ZM4iMt+uva8Tq4qKvLtcPuYZ7796YKEMa22+Xp8+ffozLVcm6q1fzucMiohI6ppgS0iksFBCWCSTu2W0DA9CauGHd+cPX3319bfffv3dt6ePH0w1i9Rz6d2hoJMsFkgHh8dKBoZpeJS8zWtkLvM8Pz3BXZjCvTC8957LTv0anNiSr9tzf3l4gcAWPwvtRYl9Qb8OVFTCkkY7lEhKUK1EFJGqPk0TEU3TdD6fB6fhcGdY9SV1+aOI+VVf3d2nAmAvP/M9QAS4Zy4ecsj3r+L98ccb5e4RBjNb2+12e3q6Xq/zMvfWw0OClbgGD2Hd6Xw+n09TKTKplqJL7y+lpwNns1urFwM51vo+3lzUUesHdvIAZLegdMDCDH1lm//hu/rN+/O7h3O6/+F5/Tzbc9cvJosT6UkiEUGW5JRDOQUpFWsu61DA7gfMT0diLnLAvQl3ELuR4BGtYZkRKqiFq9AkNHEqp3qOpGyzsMjV8nm1a7ebhe9l2dhtBCX4iEjx0+OQcLpfUdjCku3fBx/iEdCyvi2Ij28xiREzCxHM47ast6Uta2utJYGFSHRbV1s+ZkPJ5l1dIl9Xo+8XXtwRTLu7O9nWchygDQ5HgY005eWAeWAV6Ud8kS/X+zoRRQNBsqfHRqBy+CKvXpY3uyVh3yqCRYYTzSL1NJWpMjOImtltbW1tlBHpo1VjKlq0kDIsRDOVMUJnInOz8NXamMAoEo5pjEUrm2YAy67Qin0/FpF0o8xB1QBARS7TVGsFaDSWZGZrbexzm7oroEUJgjtTMA7OzJfTSVgqV1UVqVxOmE48TTlpr6fBQEVURDR5tBFlZMgoWSYEWRAFJraSGwtSPeDplI5kJIKYaOtMHV2oo0pA94GK+8u7wyIF8K0tmIqkcyilINDNW7N1TTAXpnDZTJbT4L4zgzmnR5KZpZkThEiYVKSWqkoJ9Mi1N5hHOsbaIDjgCGLWohkxdnJVrXVSLb15LRrC6rZSFpZaKgGwBgerbNaUNuXcoRh8KkqDy32TqaU9/Ut5L2kVER4eMZgTFt/yRxtXEnMyQ5iIgymEwpG8878xE8tRCdmCCTCIkglChLDe98pkZmIv9A8fJolDGDSgRB48EiiEmqFAVelCzalZN4Rv9HvpvqHsBia2tTYWeZVB3GyiKrlxxvTekeBUEelmbn0qCuWeuYapim+wxkSmCHNKoVACE2kNlQD3aXB4UBAlKFoEpXrrzAwJRApIQZwIc48cVZSxdQIg4hH5B3MEpzC5uFlmiopqYYaI3O0kkTkyAwBgbloUqg4AHCwWHoF0TIQ6zBGHhxEHESmraokIl+xCmlBgJ9nigcrJTMtNBYgInEwZxBzE3bN7OChAzWN1Dwcl7Obb5oaBatsMGBPAnFsmfbRO5p77ILcXLfZDTnc3m69MKB0BD+4ly3fb/lNm8uhAGG3cHMAutrtBM47NHZQbTcS+cezfupdYGfCNoyaGw989IpxjvJaYP5IdeJtR3baGrbJ3QNlzL3FhC9iOWzOyKsd1gTZjFTFY4+KVWMCr9hJ6SVnu5m6M+0JNIuluO86d0HJctfcupRxbw/01csI94I4tobLzHgKwwe4Z6Ucwi01lV3i7G8MUe+RIXOaendsoif1AteXO47INFahgYEzHoV8qMa8SqHIH9juW07bfsYyiHzKFiGRUTxXB+jcfP8z/9IeTcgX5Oqehi6xtvXE8nXkSC1tbXx4yzu+bte7doq+FV1gSemUNBLwLVlbLEvj6I+PWw69PX3qbwwLYnMuJxZ1dTB3IPE3n6eGbd1/9dnr8+naqpEqBDOKgp09f/vf/z39cn//87lLfv39XqyTj3bt308evU85UHj9++M2Hj99++Juvk8zWa7t9+vz9P0Lp6VNStKIyVR2ggMxgTqLCnKpkFixpRkRYGwURLCySOYiDlaVwLXo5FdSJlEHWEIXhhY3TvK/z8/XTJ2tNhZWFuDSqmVjXfrte3WIknE71PJ3Q7Xroc8qevc2RDP659oV/aWwuiyiVZFCYi4ibn0CkGhGq+vDwcD6fN9yziN8tlQMYtr8tL/0wr9d93ru9TC9d0mP2d6vtZ6eascmrmZmZY23rvFyfnp8+f5lvS/eMoAAP/mcSZS1aaq211NH9uLvU95mb++PfX8ibU/8oQ7+HK7llFDIQHWlpN29tqvz47vzvf1sz8jrb90/+ww1zFBPtgixElhQJzxwQMh/M/uvScoX5wEQdRuHXjpHCRBUunEIhSAE4wYEId/dmeWvxtKzX1tc3Owe/6CUxfum8b8wZ7sK8QQGGHdz149/8yWlzDK5rAGQRzWyN3mBGqTHeuE0FCIcH/KuO/BPDkZsQ9XCy6A7t9tcd8efHfYyEX3s3kMghqixFsiirJJFn9N7Xta9ry+gZJhlFcFuqqrr5iQtGdneLZ7O7t9aX1oh4ZJp5p+jZAq3xJt5Bv0bIERGE1LstgZirylnLVCuxZqS4u/uyLONQw1GrRQfycARFxwFFRIUvl0mIlKpAuZy4nLIWqlPUqZcSzMzKLKNhf+CFBMq+MKUQK+UElHC1JmgUSapIHhyxoxg6EClEQXgbFf/kGOtqPCNhdnfJlAxOQ/RsHRZEwkqceagqb4po4RmD+tKt94hQYWYCE+toBBEAZG7h4qEqo2k+hcFERakqlyIZEcGJifWhTtM0eTEiCjM91xXBQFUhgERiCAAmQGBh0Q3oxeDKMfLNGUGUEAqmCIrkTor9+Vrk4IEa0uTN/cUgupF3ZSAIQoEIypDBaTzEnocxIbDE4DfIJJbEwJtjK1Js5jF7uO8vL1Ea+cHgx0SlKA3mt4R0V6JgmkQ7c1Mx955ukXMz8xiJm9eBilBu0jTDX9Gp8ugaEiiXUX4BbbLKg4QhCCmCgIchwAAzFFwoBTiRK69MaoBI1CpPHNRBgCdiCybrVKuOJODoU8oXhpURcI4E05asiZ2fkLcMjqoKEQtnYNTMD7TYGKIyHFYfviZRak2ilvTcUQgWYRxVvHAmE8ORPTqQIOTEHJwWHGBAOUGIQSCfDB89M0i4IxlSDeiEEHFhYxjQM+DoSwOrliIyyKO2Hi1QMpc8oEpDd3h4vVul+3i/Xqxq0qu2+DcjXu+wr+zhvRuBLcTZgB6BOJzn13ulm+MeffSLfSO0q/0MjPfPGOqftd73RCy0RyY/uUtuxSLmv3r/+pUj94IJM7+hfr7zXnZw7/73N3OuWijhxFyUhDct+rsjbaUnH00pW71H3rgPGWnWBxJKZAs69lzjC0647OlvAqlABLwxZf/CnYrXE773l46lN5KJDMTorWLS508/wE00VItF9N7c1jXkWrOvD72VdWURWufp9nw9Pz/T+blMJ2uWICpTnc6ioojCDu2YMH37dSnW05J9uVGmMYIygfz85cYYVEN5mgpP7y4ff/v44RvoxLyCegSl97asP3z68sc/Pd0+P/2jtXN9qufy+OHhf/wP370rH+X07uGr33/123/37pvf0uVEFLU/6+V7rmezTmHRnqJz0ZLDAYjQQlqoTtp7d0+S3o0SfW2WHOhEnqJO5BYdGQMcR3Bb5tbmNn/x9Xb7/On506d5nm9fnq6fP/fWKJIyI+n07quEWA+b27yaORJFFHUKt6syRmXjpAVaYvcs9RfaF35+jHUpA6BPnKLezd1Dw0s9jxwJc611VFdG/uCOUPvt2IGxPOoeL4smIXcJ9cMx2qZB8qv6Hu6KQcwUGW7W1zbflmVe3dI8A5ykyUqsoqpTFVXOwVnTA2NL20527C7HP9+c7ec+Ot7zyIw0JFFmYPWYhez8qI+X0+Ol/uHP/9yMnpo8tzJjClXooOlDb8tehw8Ls+iOWNrSlhV7wpv/IlWpfZushUrhIlnIGUGRDOGEZVi31eJ5sS/X23WNTkV0e50ZLw+OB7XTzzcjvnqy+yIZfyJ+VsfwFwalSCZRgtI85t6ae4N3ZPEgyfu7cQAYfu2deT0sYotVIhhCW9YRwIt8z7/VOKJNEfmVkpEYBpwAFTaVUgbVanfvZoMq0boJcmYoo6oy86TCHFoyjdewJXJZ1m42OI4GIGqIcmBf9pmJiF0NiQ+4QillCC3oXUmNmadSz9N0Pl9YJAJiZma11nle1nUdcSnliSPKrs+1N9irqgpzlWBiTiUIiIIoiWkIXdeJhImUiJGIZAarMIOUtDArYRIq0bSRMp0iazpjK7UdHb3HtRQuP8Iu/sQ4ApWNVCMTCM6QwZFFVFggWku9Zyw8dvrxpyF9hA1FQEQCLiq1aBEOELi7d3YhKoIwT6ZkoqnSufKpqjslTqWeSj1zmUh5gruZuxRMKZKoKkSUPlLqfjwUESHeGlE1Ld17t9EFwcKUQRmU6VzsSKDG6IsezRtoYSPBmwQ3ZKdKg4qHE7HdCzANXH5CEhzIIiPzzDlwnMxIYhC2YHj432PN76RvRNS3nn6ARVl4KDkiooaoKrGyKoQ7opkt3rvHao0ijwc9assACGhm4AEYFu3VzEh45NdPE3q33rvqkOnY/BVnEDQpM4wiMyHMkqEEQZ7FCqlQOqEWqiLgCBgIs9FRJxlbMBGNWMhAY1YHu8y+KW+/M57XwSox2lNodMjtC+l+Wb4Q1dCAxLCoRkRzj54nTpd08vcnVmUPa715rN4VJEqkSgWSwQwGlBIpkYZkpCGFMtw3I5rIcCIXSS1yOtcU4zW6Ibn3QJCtZpyHmcAGquE7WMH+Urgj8XNJrl+mRYl72ZPXGbpDFA4A8ZZzGQsCsYV/zPLm4EQ0yj6/TJHiZj4qq6UQ0drbsaO9naH9gnrvKwdm2IetqH7vLI1btNvcX5jVv37kHRuQEPsrEMQL/QM2v3aPVV5nAIMkfVADM4kMKzHus9dCHsSRnESO7kTg/FE0x/ySls4cEgeRQIJIRljIiSTkVMbGl0AOni4Z6kb0C+Ki92tDXstEvrobo51ReOTL9fb8+TQVZCy3J6mFKSKtGVaz67w+3JSJCGFmlsZFLSzb+uH9o0eiTPH47nS+6CDFE6AUev/xDDvdFr4uDCZKyiA4I09ObJalZw/PYvxwfv+uTjW8izUKpLG1/vT58x/++Ofn53ab48unW1Gt5/iOHv4Oj1k+8OXj5bvfn7/7PT181aAq4HLhUk6Ehy+fn374wTKZK0lBBkdkuFgkWERVKDwup1PrdCoLE/HT4leLHChrMPXWnr/88M/z8sQqmT4/P623L9GWfnu+PT211ubrLb2dlMKGVl7Mnz8nSve8Lnad/bbGagQqovxwjkl4mmqtymfSrWyOyHxFNf6rRx4VWGEm2l4hY5conrJ7Nltn+b4/3wM332T9w32rhQ4OnDhqlveaiTt2cT9G3uHACG/M2SsI5kC7gzgzQziHXJqFGdwzYqPuJSKhwbevU63n83k6TXWqTLIc5d3XoQh+lEe5//THOZ6tYhARGQwCOnKZarw7nc/TBOTa7POzNsM1cqFwdRDBIUaM9ERu2svZ4B0eiGdf5/asIUW0ahnm7753jbfy0x1CaSPO2B6lcCpTISoUgmSAI4ly050O6kZr83m1tSdGyne0ww3TQZu3yvSzgln5o7uBPXOzAaliR9/+ktufx7OlBG++EkDkkd2jjbcB6RmyI4Npr+2OA9Arcso7G5kUP78j5rFB58scjg8PccntX7Rf8i9WmH7OJz6SrG9ek18c474xEVhl9KAkU4ab941LnjIyu9vaee29to4IpdTIZF7CZ495Wc0cpKoT06JMmVDhkfQePl/yrgtIJABlCpEKW8aaPkh4x5yU6MQ4CZ2FuGhPIqJFB5Ys1tatO7MoK9wyiohGRCnlcjqLsmphpvSZ9hgzYKOliiI9QkTAQoOb0nO0DQilIi8qhTGpVKYawSHsXIwqkyApA26JXfKLCMkZQkXpMCX7G3T80ts7PoJJZkFKxmC0YOZS1DyplmmaOq534gaUuXHIZwYzQ4WItOhUy1TL+TQ9PFymUjSytS5zkVLnbujmGQ4QY7TqiLIShPgylUlIEWTrNFEPTzciFGFmmnQ0iIuHvikWjddVmNjSI8Kt9ybCmjVyNExQl7BIG+IbEUm5VUsSLfa+4KH+NFADSDA5AYnkIQ3gyKQcqoMsJJnB+ztLRIkQoiRmFvcAODPchxdOA9pjlJxB2LLgQwgm3MkTtRBzQSoTFa2UIqAWgjxtOobsBMeIyoa7zJGWe8Z9o9h2d/eBecrwcMsNxY6BfU8Qi0Q6CJ4DpzW4jJIQhWjiVJDBVUSEeuYqYRENLqDKPAnXbRuiiPAY+3bk4JwgYpYRtMjeqpeZLLJ1EKmoqpJk7Ld+Txcez1RESHigLjNzkByAyNKXAQEOkBC3iCG1KyLMbVnBQSKFS4zeesiwr8kgFUIyBOPdGgjAzB5DfQUhVM7TQ51SC7UWQW7p5tEb1j7cx2CGDHYETnc3Tzdi3koEA8zMP+uL/JIVjVfwpjd+//F33rOVOWBRA3G0SXMO9v3tREX1qBW8qcDflXkw+vtGaI1MmCVTiuCO3w/YwEc/N326g2kcT3zEAHgdqIw/6V8kCnp19AP6NCZyd657eMgdLAV3uA9mJibzVx+9zDAPvUXeCvJ3u7ZZDw8weeZWH6fNnJZaKYBwsnQaYMutkuZ3HouIUJH9Qd3NgSAiI1E6ApWmo3tnwwsSE4Rz9yjejLuGw7uj3v31R09qwyaO5aMPgSzs5uVEzGg9n59mfXi8Yvq+SX5pvxV5nKD9Rj987v5l/fP77+X0Z8p333793f/w7x4e/171Y9BliYvkmflifFunyt+8f6x/fw5nTqCv63NfnuD/qX/+voR/eH8ul4eoD/IwMX/C6hM/Xm9zerSlff9f/9t/+9//o6+3tM6qN53W4EeXb77926/ef1cf3z08ftTLBaWwlogOA3M1ueDhd9NvIOtVhejsfb1SrOvTn+P6ha89lvbVw7sqXNKXtc/T+ZQ9W1iD97w9r93+TLix/2n59B+nSd49Xk7TVJyw9nW1agAZYk04IdyCB7+w6m0Jiz6v9nRtX672tOTco4ew6LnicqrvLjhP0ZZsp3456ePpXGoJP4orW2c/MWVmMgKdiDL9QHcQkTszk3lssGbmYIoIaOFQAA93WLJNGTQi3DMR0UfoMlAiowg7mIuFx0/coycll7GxMBOX6UQ//abTBpRnZpHXyXJyUqJBZDO2towIieTzZVXMa3/2vK1kXQFKclNGocI5FTlPpTCrlnp6iJQv17VOZ08XFSIaiOe84xkbMDa/o14dFfnMVN4EH2PPRmSmBRLMKWgz4/pQ+rtLqVWeb+3zLW4r3fqUNNi8eHBfDgbcJOoRMZDN4ZloHk/Pz/Pt5o4l8qGK1OqZESHIgDuMFYqCjI1FlTIpkmIAGzjjVPhB80HigfM01KRG0XeSufnzGtcFP9zsh2f3rFMBhCnvnnIyxWCMSE8vKi/GMV+bgXvjS7Sx2WxK9MDww/jI/JKoAlDliHTf6OpGDWa78cNWgZKUpDxd176YQNIsAsvaxbY1xswsPEkBENbDw9zdDRsL0bBi9JwbwoQ2KlciIG0ovXAE4CxUBLLxgxIoMVUd9HMWCEjy1iaboEgbFYlt2ztiXWCUxPcbNdDGWyKt7Um42Ls1Xu7bXSyVwJHwogRRlXriiTxbR5DQuZaz8jcPp3VezlK7kXUjyub+/Zfn2fzhdLJS1TxIFs9b97nFsuq8OOL0WJ3LmYm7mwfd5nVeVwBra6J0Ti3ERfjMfFJMFQ1+NUtVoPDu3U+R58R70VOt6v7F8rbBYeHBkURzpK+nEz8kn85S6qmITkXP50lFgLgtSUJhtize7GZ0jelU/X2hR1lNqxYubsnhE/NF86J54vw4kaRzmsBgjaaVleCV0ol1mA0mzoD3YGZwMofFMppeIIyUCPKEZURCkimSg9yDQRFpa88ekjQFuWeNPFc9n0vjjEnnbp/WL6dHzeTh8QyMYiQnlCymhJQyHFCARKfz48eHx8dSisCxLJ25E6esxFSFtOip1kvhKnERP53rqYhQRL9F+2weuVy4R0FqUarqER7d3SOjMLMDg9IKCCaXAJFlUnISm0wxlSBuxJFpSE9YuXhSSESGu1vvzRoAFn0m7A0CiSBteRa04Ck099IzJxKe4Z7sIWwMD1FRJrMOCZIsiImsS/bkZtGsZ8QmEx2Z5u7U41RGxNXb2lwpiVIgjHhu7V2pUykgcusBl4yJoxZOo5Y6l1gi56Br93QGs7LyQxFl1UlVLw+nohzWq0pRpb74cmXvaGGcYUrMVSqYPD1gSUkiDcxKEEnRoR4S5mZDIRGSvdjyiH468SQBAdck6QHu4atldwSCLUbnQXRv3VW1lkIgm1cnJ0AJGxJZdXC90pBVGKrE4eHRvXtCi9apqBYAcIQZZWakpQEowIJwpq6VpDZfr7M/nioHsrepZmaP7NlMgjTZqQQkiYkhBOKiXNdubp2oSGEhZrgHtEa5XLpj7Sanorfb2pzyFM2WBbbm6IrMiGwWnp3p0APftOtphBEvTdv4kW96L4uV9+53QPaGwxx1utjdbgL8xcB6OPr9MWVboqOrdGcUIqBnO0KBgY8cRDHj9r8kTdMOKPvIKo3ThAepyiGtRsCrttpXl9ZbO/4+yCgGGcHQ7MJA4kbyuN9jFpQRL6UC2mtx95DpUSNOIBHDkcrBS37kXyLSN5xwEuO+bJIJwDOQ9OO83Z7sGykh9bk7VqhuWL0t8YdAQhilOPNQTDvaRLIUBDwYnBBGLeFbQSbdN6FJJlKBMO0J6GyGxMhhe2RgF68kkJ4igHB4QDhJYMOjICkVIIHkoBNn0lL3xRDHU4mwtKG8MrbRJIB3BDJe+J9CW+uD7KJQ6e7L2rtHcyzdr9c8gdYTrVN/96F+uJQpm92+Xw2llDwT1o9izxonl5KclCxU6PI7qS6n/vBhcCJGoq3tuS9fsMydmZ8/T0VL1TyJlCjUa/b29EO7Xvtq19vy+c9/6OvN+sos00mcCwi/+5vfffjwoU71fJrOU6FSUHjoVIIJUK50eV/K6XfCNJ11jR+W+YdYv9xO52f67/PayoTHy3QpRdNOtdSS8+KfntrTHEBYz0ibr8/nKSiUgq14khGEMxUOqU6Au7XmvY/O7QH6Jci+Tkazmpln9wEERFiEp7VKBk5QgHLpFlIZe6ASGeFxwDmCdiKwPUNwAHyIne6oUXNvicPrysbeG3J0x2oCxLx1px1HHgW7jctw12rYe/pLOdP+Bgzv4nhthvDVQJUdZxnfdtY90mEA8VJUDe7PXJS0kOggsgEpCZhVtNRSqo56Lg+wgNlQEPFKGOV7uqcyo9fR+c+MQWQ5fpURQJ6V+mrC+fDwSEJfbv220rKiGZxkqKsOC0LjXg4bNFJQRJkwi97dLQbmK0Bm0cSHaT2S+vsEDp2jzWyMVlhlUoYSKkMRjI1eBJTmvrqv3eeO1WDJubH1vMpcbbRXfzn46f6+/ULdgPbG7K3NeZRuxi1AjnLROFBEmnmY0etUyhssmRARU/hh1I90WlIijjTqq/wKRYzGxUEHdf/J1j4/Yo19Fx4TH4mnDdaSmb9wmf8GY2SghwQzMQtrkamW83R6OFUzaUQd5OFp7oA169y7MA1MkZAkK+hEnMzVikglkYiY17a0jqVhqwpmOkw8c3SrozIVBimb8tDlHUZfiVWIM2TgUswK8ySiRJlpbpk0OjsAUUJrrffau7Z1FUaWQmlMnJFtWW9Pc3OkTojkolxKu80lRmMwVZHHSR44L4qz4ETGI5k7wEVCAIM5fbSEDoK02GQwkjIoiEQG9MtB8IAh+lD8CCSU8mXEziVl3ciHKAgJS63TmTU9yK1ETKeSkSNaGE1lhBQCUeokzFpUWUWkXC6Xh4f3l4fHIuL9uRZpylMRRpmUI4qIFpVH5UnlXKQWrkoCCmSAAtAMo6HXldgEZJMIAqhWpiCKPW8ySAM4QBAOYoP1yAHRcmBI3rvUSAQNaiHxpM3Eijq/xk7UinrKMoVq7i9kMjIZyb5JTyJ7LwBRmvXswbIRihUWtRSkIEEIzkAmZ3KCKYicRJgh6Y5MQyTSCQEp4ka9VwjJRs7EASROqry1t0h07kKoEklEVKfKsjVEDS7gjYY1gRjUO7l1YdHGL5bD5jA5aHAAJLMTGREjjRVCnC4ERnJkFQmCC2udAsVBxrBwC6SHe3gkj9b8YSyIGJuUaCD0DvCswrKTl1DiNs9utvbWzBIJZqIUEdkrEiMSyCFSsQvlaS2U4YE1TDKJsViqgPeytGRkpg7aqkwfj1pqEhIcW59/Nffu6RHd+1B/iASIhLlOBXyZej71wf8QhIhuiBwex33nCQ7r+lLP/lVG7r5eQUB2P5xg4PUu9At7yqiujH3hpYns1XxwVFH3Ygvhp3e5tz9/vd38ynEYlq3+T8fTo3gD5f6VmwhtupBDGjLjbj8bRyBO+ktKNG8OvzFwEhGxavJeqBmhKDPrRuV63I3hgRzMrcxCLAMMuAUqwACD7KnD/WQ84q6RlKSXgHGkSzhHsDsUZu5xIxv44vXME68Us+6fMt6kBe9jP0BbKDMrKURan9dmCU6CRfS5m6g3hgNpBGYFU2FCFZnEz5yVnGJFE3BhVRB7nlJketDTg0RGwjLX2m5t/SF+/w+LSCfVXEsVViZyjkUMdp3XT1+er/OnL9c///OfrK9rW1kmKRXWp1q//foDyDNdFEKGXBGgPm4Tg056UpF3U4AZJCz8ndy+9/V7JPV59etN+Xaa6lQ4u4FBKsxCJJmE4DR4UjrSiZKVNCzWea2lIIRBlhZpsSnA2FCVGDS9u/MUtClrBtLDOMlnozXbsli/mHdvra8nW9o0FdezDQwHMycyEjubPuVuFEZAIjsDDBF46zznn/iFu8f8BgV+/OaBaRl/BxGK5M70QXeDmbOcjoX20mg4/lnKsZLeOKMJpS1QoTGTkfNGxGk5T9NJy4m0BFs6QaAsrHU6TdN0Op1Op9N0Pp/P5zNArTUtZV1a5pZGF2bfBT3wi072/SCMVHsSQiKKXx8vpZwenPLTvFyXtJ7d053APIrPo7eSmTfITSZLOag2W2tD1TF3kt+hF1aLviHKip+qSY2Sa608UU5KRXiXmOAgBPhmfelxW9t1jqVtjj0zszL9tRwMLw/oNc+b6s/X/V8jHOigfMkcLCGRW7Tk5uu6Wu8Zcb957DHqfi7Z4OBv5rAdHy/F6IPiEEDEJmHOLG9M+wBcb7hr4nvDGBEjof7jE/3bDwra8oqbjl6ZTqeH993oY3PrfVmWZV3Xde1msEjxNA9YiuokQiRJNdkcj5GjSuqBdV35+Ro5Cy9EtAs8ZIge4bqI1qoi7AgL2TcrCLOIDuhwrbWGP6jerE3Xws/IcOujstIyhPM0TdNUy2XapPqGGxHdrdl8nZ8/P3VLlMrnDmYiRb0Q8SSioicpl6oPHI+aE6NgZ/1KgmKDHTmIJehl+3zpDR1DHCJDpohKJa20YwraulK+uDiHZlFvjcx6BEi41EupQjJFrpEeEB30AWbm67q2tjJlSmaJMkiFdevEqLWWUoSYCdOpKCJ7hVsVApOIEEgy30sWpkm5CpSTAE8KIQfDPdMRg/GWxw48qJaOeB+DF3SHjAeTc/FAozAPz6GcRkSSRMZ6lILBmVSSSmYSs04v6VZRqXXSqUpRVrHcqi2b22+wHGrmSRFpTjRSz8aeoqyqhDwlj6jGKEcuh4RTOIkDMZYQWNDdnBEWmxCmt7Y2xgNNF6kCBnKgjX1d3Lq3FmujsLPSJMU8PaPUsoNVKSJGkz0RpYbHAbzcOqawb1K07fKcFGPLHDCwnvkcXpDKKMQa4RtGj5Sk6mTEkdSSOpLT08N7T4tgPqwSi2Azv0hE4Re1yjf7C6uAoBme6RmOJGYS1lpGIikA3qiVBtEcQGBIDv2+NCI3YF57LTwRwELpHMrJup/OiYLyyzIPtZwk9sQQ6DxVTSI2SggIIH6e13XtW9lwdLUlRURGWiDTk4Etlf+vNYODsm77e8Lxsy188toVeZWr2rl8/jLdyV833mw3f9G3DrfngCf9+H6R/LrNd2DytzX8WpWYdt5GZiJ604jyK8dYdRk4TkGDFYTJRlB/p/azXePriI52mgWM8tovn2ur1WC/P/sBR0ltL4DcJ7L/unF/hDdepUp9QKZloA9x1ixKtZCQT8wn4Usp56qnwlPBVEkLAyyelZz7DbcvATh1qkSFoJn1Y7ImCliRgexIQlrG6eHr32G+xfNTrkYgQsBmeHou3G4x/7A+3Z6/f7o9fS5E1oPcCHqu+tvffPjq42Pvq3uz9drnzzIxRIFTcgFXUHVRTA/JIx2RkAumWrg+vFv7l89++iG9pfceKSo0WqmY3cJXD0umUqSs860vbqpRwpqBnUFKTES329XMQFmKZqZZbGlU0MjVEYIyVHMqsvRgzUwKo6VZ764iBO7dWs/VaKrB60yE0VcpA127OfhbzLB9JKJbDWQArmLrLGCWwUSvGJyXfB8HE3aEBTMzkre2JCYW3eUZeXTsEjMxjd7J7azMYLJSXsoC+8TGGi3TNMzxqN7ewUmJIcQyYq7IQVSSCKLAaTrVepZBKsDNI0FgKaqlTtMgAJimqZSiKrETZtZSDwDPoQMzzN/pdPq5Rf8yoa1knQJHusAf1KuqEW4rvqy8WB3wIi4xWjiHRzjevON03WKozq/rehDaYHO7o3fLTBHSH/EWbDWHMZm7gO7EmJgmpsIh2PToEpJEi8XN/Nr9uvbV4cmOHDv0z4Dx/oLxxgT88q++RLfMGEwCI8k7XKKjgd+9r81a/zE1ypvqDe3N0PfToP3OHPdny6UksAWlJIMELvCqd/AIVLZiFF59NMAPe8PMr71B/6rBICaZpJ7r5fHisKX1tSlIQJJYQYmsLIzUQvVE01lJa5AkOJgTDEizaD2IaF4by3r0cUaEw81f6oqbzLlwINeeAA2ageGDD3p7nfRCp5OIMX54fj49PS9zT+tD2+56DaE4n8/reZpnVaYIU1XOaOscFn1u3qwtzbkVDy3FtNb3JumV6VT4LDmlTxk1Y0JOPPQcwQPbHYIh75eRQXtXRZpb+oA2BTIsV7CQSjJLPfHkPREZnkSWR/X5CFRaa+u6SqLnpr1XtZYyTcQtM5Ip2cxbb713xiKYjiIeC4S46DCFVKtepul8qkKo7BLmVcO0WxBzrQVAdjuTFyaBS+QonbJZuJFnEifcoiWIB4chMYSZsq+OTHjAMzGEGjmJjKjrZEEd3jkskLvVBqsHR2ZSBAVASRYhAFL49MhbGnIExSpSKpUC0fEejN6BAByjMSAyclINESakD6BIeIStjZKqXBzYqMQIIZSDTpkQnkkBVQIzF3JxoyTyiGvE3FojZNH/q7077ZEkSQ4zbIdHZFZVz+wuuUuKAqT//6sESaAASdydo7uOjHA3M33wyKysnunRiIIgfngfNOZAV+WdEeHmdrRVT2J2JAalapmUVrhkk3RXc+8jtn5sot0ewfxiNvfKo6mfHk2VTe8u9bQ0Rd2sjrQCrVnCJ/ljH0vJqrqWLJk1IiK1xFz6tps18+bNT+pbiUVo5Sb5ZYxbzaVp2tEtQUOixfvlUl67C4jM7jJNVDXCpSJ6RampNbfmeU12SpFZXniLFvdtM5XFVc1FdI9hNURaW9eZNSVVVtJm1FOylaSpHeNOrI75BiLmx6xbmUs1VffHk2aI7nv2EZH3IaJ5Nr9tiv/fL1SysuL9AP0bx9P7g+1XiQ92Tcn+f3FYnnHT/+Pfuv7KdTiEyvvb9+Hm7HcGRvW9G6eohny9ULmdVCP+VW+Kmsw+i7OkKo5B2fOG6+4Ur3cbIPdPZHY7l1/U4v/aXdlMvNOjmfL7K1BScr0w/ep9/Nf1zfmNRWZbzMcYzTV66NjPrR5O7bsH+26VPzws3z+278/+3YN//9iezs1aZu1z9XF5sc9/az2HPv5BH/54+iTrp6bS7KmlrqJttkEusShROS36mONTtdOYHekzbEge822sv33J/tK3576/qGTE7m6jZDX7uz9/9x//wz9+9/15XdUsRn/dXn9UeUuRlJOfP9nDH2r5lPqo7bysJ1WtlL13scd17bp+vyyP7qcQvWxbSEVpD3l5GT/9+PnL82vvo1lzW8x8XOLL5xeJYbXWsHVxF5+7JqPve+9jhLmdz2tEVcrc45VM7bVZLk2W0CXqvHqp9JAttFRHxOtlF9WUNfcI7VukbLuburm5mZu7z3+6moheS9BmHN0PZsuqTc3KYtSwCNGmWlquetuklut6N+csW7M8NpDclmbuOofGzZPispq6m6up3foBz0/kuuZ7aVrdV1qXeZWIulrOyUfXC3JTOQrK56CPum28HBuVi68naW2oDr3t1Jipzy2VZVn0+Miaqu77vj6cjvmM18QPqbJjZlncjnpzefe+ySMzrjw7W2QfPfetuT89LOfc3i6XLy/9TR9GnkeFVYh01RpjZB09CGIMuUs1KbG3t7eXl5djQMrdXJTW2tgjImZfquYu1z2fvNu2njc2X/hF/dHtpLlouIrO6323FB0plyGvY7xs421EL6+5PTXzHO19g7Wup/brkeJ+SSBVXx07Su4OvLc9tK8WErctYy1ppq7WrM0PxlylhKiILm41O2+pyVz7luQYJlpZ2o4j11fhtNvR83Yvx/ozs6lXHc1a50Obb8NtyO5c4xwTsd69P+u7F3kWTR3de44Txoff0Q83cOf2wG4v7G1N9dVZ6lbEUjHmYy4R86brSUYsp6fTY5d02cabPatIZUUfaZGZTW1dVnVPU3VdVldf1Fy8yfwsvOWIcXtaZlpV+76PMaJiuETE3Eo9jhnq6mr3TX5VzOx0Pi8PJ3N/elzeel+bP5zXh3V5aTbmBykqqsYY27a9PL9YZY2+XZbWZkF0ZlTsQ0tdbcS4vL609bQ+nGXsGt1znG15tDpLP8lYYyyVy2oqoTPTUlOP/nR+bHCNSpGQtMqskXO5ElnlpVFDU1X6qMsWMyGodFFvx9PU267mESxQi5RQFXdvi64nNV9mx/PwGLHotsnu1c4tjhRyKdWcF8Buurie1/aw+Ml0DkCPCqvRNEpTVVyOPsyLSNNSGZIWIZHRY+QYIyqt9j726KOnhntzdTfxua2sMr/io8SsuS4mS/PWXnUdzbIddeUjak4RFjV1y8gRNaJExX31h6WqMqKtbseaQmbz1CGipaatdIh5icSIqAqdA1VMVM/LknMojJbO4oXR56DPrG5VTU0kUzW1yvXYF3dvbqKpot5aWg6pkRkhl4xmGnu3S19aRJMWR2mvt2W25TNvyzLH56VVSOo2Rs3rvVnu5q4qEhV7zxJVba2pWmZaqrc2uxhXzCOVZFZq5UwgFA3VIb7FsBxn9aWylTZdvbJGZe3W0tVcpFRMyl2s6aq6p42UqDkPZ256zf2uWXD+Pmv1drxSESvNylIJKZ0zPZe2nFZrbY77m8XN6qY155Uchz91E/XWvOooY9zLddRpZtyJzSxBqyoNrYyy09KGzvvUuQXbZ1PWzFRTmwXxTdTO60lEY4wc/f26VNVMq6wyrgferw6bv37N/dVF58fEqo/X7ffR+jk6exa0/GpK9rUQ/P6M8NWPHaH9627b3Xntt+hccNYxYbTuR7p99RC+cQtfPZ45nfNayVkic6hNSpavp69CbFXXuSIfs9D0Wl8xG+zdxXF/80npO/lwZpesYwrkzD/XNMmsiDomoJapLcdzr1s9i+o153m+KcfyVSokY9yGokjVcd9m5i5mqdcxjtfX9fhGXPMvTI710jfepqPCZCbcz6/SrPG9H8Bzf4YVkX3b3s/0PjvgHSvb1mL3irO3qHx40IfT46fH9unTw6fF//EP57/75H/6fvnu0R9Wd5sjXDVLJery9hJ/zc8vb7n+4J/+/Md/Wr5fPi3tyaWpnEx85qhU7Rk9w6oWVc+svffYd5PoQ1Pcqmnal7fnt3G59G1UmFvv3dy017q0v/zp6e/++LQu0hYp6THGy89vLz/1GPE2lj/9u//4x3//pOZpi/qitpho1Yj9TeN15KVf3rbtdfSxb2Psl1VtT4vUnz+//fjTy3bZTeW0epWKZFTrl9h97Ku6umYt1tWrSk+nZeZcuS+qHpExcoysSA2V6ovrutgatYeeV48KEdmt1CVELmOzruqWXdL0kmG6N9fm7q1ZmHm5W2vSTO7XrarqkUuTZbVSadrKvdRGjBpzAzpnb5d2dzCaY4hNSqSiUs3TtJqJm7jVjFc1N2/aVpkhwHnq1mMEUKocUbVf/5r73eo6qq5hp9vU9/kw8r0lqGZmzyqT5uU+zNKktdVnC3r3dV3P57N7m0sU91ZVe/XbxbSZVeYRPXBX1W3b6q6YXu66+LV1kZmGlFk5NGMxeTj503m9fM7XPd66dp+nbD9+uSSutT3zZuflYGaOMfrI19fXy+VyS7e7y4myOUU4YoS5Lcs8b5mZusvsliNzbWOttfOyLiYPruucZpSlNUStVCNri3od+bLHW4+9qsTETLzU56RgvW2czaWj3rZ685tdAW/ZVrelwu23xrgrELwecea/FnOfy+TWVLSq0o69rNZMykQlVdWat8XNKlJFqupo9vCLtKuZIDcvR+ourjZ/JaVkxuyOXGGJzKpa3fTrE+jtAcs1EHx8Ro/FT5WZzgaac3bhh0dyv06pD8sW9yPgd3tB5DZc5cMpUOcX3MzGKDnelzJ3Xc+xDz89nB6yqq0VKlVSW9/14uI219nmXmrzwqZUfYbGm0dKj1S9y9CrWYYts5NEVWVkVep1aKO7t+aLLi5HNvSss2rL8vTp0/nhwVozlXzrFaPNtlQyO+X4iDHz8fZ9f3mVZuJavW+ttWZa5pUpo9RnEm6NioiuGV5po3uMtcbZ7EHyHPsqe9PRvF3Toec+V9nMcFAxkdlSQitUwiqtcs7IiaoUi1GjKq1LW0KtVKpsG7VeB5zFdRrMvu9772U+BzHVDDHO+Y3Wmrm3JSxMzM3P6+nuU1OmwypNS2uo1qK5jDeT3d3EevYt94uM3qRMynIsvrTFmrY5jyVFI3PP2npctj76CIuR2UeMHDrMl0VbtixXO9vSZnLfvJhrizbXpemyuK6iXqJNTPvIvWfp7ENsc5/aVMrmsXFZlszsfc+aG1bzAmUOdSqtmRLaTL1EQjLEbkWxIpJuc9bbbBBoIuqlqqIVfaiWt/cDytFcbo5HkDkjXOdFiZRkaI/qIWIeo9oeyzZ6D6u0o+Vhioj62nzx0WOM3jcTcdMcIXbszy/mSzvyrHKEylEeKSqZace5scmc+jq7suScfFa3Q4L40qOqKkU8a0l5tJYVOfrcdzEZVi5Vi0hZPDZZzPay1xEjUufnxWT25auKPiKO7XGfp55lWeYBPyNLtUy9NZXS5m1d2rKom1qr2dVEy7SJaMqYUS5v8w4sRUVMdKnmQ6SG/Nz3RcV9fkTm3o7Mhsxu7VrrqDoD/XOko8llH9cyv5HqJa5zynjNop4jYJ/X+YkRIfGhOfzHyPgvkoLuDnT3uUm3i/Lb/99+/bqVoXJXX3471ur1Klk+pmbdX/GLiETMT8Dxkbi1/PnNJIJ57f6+M/DV87x/jt+K818fxHw0+V6qoccSxETLZGb6/SK77Ljru6wwvbvVzDJrt2cwM1Zud/thTahz/X6Ylzq3JK65xhDVuTMtzbVXzvQ5s4hoY5R7XUdPikhVxrXyua7t1ebXuvRYEx7lS6q3dcrd6zGTu+agURGpOuKk89HOx/L+TO+fi16XT3XEPGVeROUY7qf7H7s/w1aGXEsY5u777cfaJ4vzyc8nNWmn9t2nJ388+6en08Nif3rw7x/9u7M9tHQtndHOObfedB/97cuIz2+5PJ7/5Ov3L09/zlNrWj4vh6XmhMPsqdkreu8vX/rlpe+X7eXL/tZzTs/NVcvfZDzv8TLyLXKLCpXMGEMeTsvf/fHpu6fVm/S+r6tVjS8vX/a3n/fLRde//9Of/2FZF1nWKJ/ZhTK6ju3BXrP/LP3L9va3188/ff75x+3Hn2W7uNoYp9fL9uNPzz/++DxGNF9KtCRKLHfTkorKLuEjVSuOiOC6tLY2nT3cS8eIvkfvI0ZIbFm2jlxCT6cWqll9H9Ej1UXnjFnTvUb2tyZLt2xpTXpzba155rIszayufez8LgdGRfw4tDf3prP1pGimjBFxbKOPVnXp74v661JV5m1qWWTOZuZa5bfw89FQ/Nhn14/VXTOh4fiAy3vEXkWavhc2mOptfJKWaMb7rZSqWFRIVo3ct/72drnsfahIW1TFl/W0rktbHh8ezufzbMIz68LmcWpdV/l97kMdZtZaG2PENmJs1S+r6+PTU3MZY/+py6jTUM8orTiqUiTl+DoeB/d5tDWzfd977z9/ft73/RbpuT+aZx5ntcgcQ7Ky6Ww+oObHnHAtdVeztjY/r6fFah3bIrmIukapzrznrY+Xni97fxuxV6W2+4aG+XFn6/1adh4mvr3hav4+LOV+/aAfo191HQijqibajoVKa34U592S7sxFajbOsbJZFS4iUt9uXS8il8tlXnXdsr/m4AIvH2nHMTazdJYpH/tR85WsqqyjXv1bH4DZ//K6UPmNB/K73BZRZlbffm1FPsbSzK0ttp7sFEvJqcnIMSR9u7Tz2rRi28rmID2rajErBERnI/rZqLne2+TXiKPZnfuc06fudpwkrlPql2URFYuZjyqpYs2X0+n8+LCcVl9a7ptmitTcSG2uc7us3MWv/exLeu9vb+ImM9FOTidXW+aUwmaLq5ucn87L2h4WP7udrFbJJXev4bU3uTQdnssM4tV1ofL+4swajXmpXSWVxz+l+rb30pHRM1O9vPWZRZO6Wht9mVP55glv27bL5bL1ka2pNmlNfDW1OiL1Tc1X93JfFs9c531PVmJy0QyNLuIydondq3xsFRWWOS4Vu1S3WaIym3Opd5n7ZlYqo2yTfIl62cd22dOrSkZGVEqUlTbRprX4LIIUMS33vF6JzAlE5/WcatdyZ8uSkaU9I7PnburL0s7nVWYg1rK5up8vY5drd91SV7WqTLUQXc3NPKXKmruo2a2nUmTMtk8q5Ud/USlRldRFKtNKpWw2p5iF/5qlHvNclLPQr6pSKqRyBi1UU0bqlhU139acYfyZWeemmdVnmyY1vTbttbs/758NvUZhU8xnY6RrX8c6Sj6uXw2RYwiMSqhYS9dNssZomWmyROYYj6vO7ikiQ8SkskmKpak95mqucwhlucnRIHNWys+uz3N9oiJ6HKNaG/teKuaeswahuZhdQ9rHoFi1ubQwk6Yy5+XlNSguUiI6exCLqOzqZbrOb7OWlLiGylAxrTQ1qUpNn92s5xK8pI/K1Ijocza91bwY/OWWb8SIiBxDRui3axF/r6y6dcCv9+vU+ebNI7UeVRnvf3NcM9iH3mL/lpV8HFqvcs1n8f72Jt8aB1x1Kw65/6vfftIfYm9fnWKutbh53RI5bnweqWU2FVYRPbaqRoSP8vfdmzpqyURkdtK8/66937eKqLscBfrHdNE5V1hU2qmpHqu3UnlPLqzfXj/eP60avcvsJf0x3Ph16PGuQ1Jm3l9itX/6w+kP3316PNl5yYeTrG08nvTp7Mtizep0qnUZplmhpSY55+ZqyPwO5D40F6mHbe9HMGH0F9Vu2lQXa1rVY3++vP3Qt88//PN/fv3r/3z78nM8P4vsaRrapIbW8rbmy55fRr2MehtjTjY5rfYPf/n7P//pu+8/ndamI7YIVenPX364fP6Xsb39+T88qb7W+JzLWjmiuoX6vmd/rvihv/20vfztx//xn3/463/78sMPL3/7Md82E9u20+cvby9vlxRxX0S15oCaWmI3Ta0hMTJ6hkuNRVupaErNMgoVE7GI6n1c3vboYxFdW6h1aeW7WKtR8rqHap8nGPNU09QImenGKraI5AyaZalU6gy4VVaK1PtCZR6p55X3ckyc1XkRcx8LzwrxW/6V3GJRMk9ymbcI99dpMEc9v319NVYq4z2D8vYNPP5yjNuPZkTdxRj6vt/uYK58cozRe47x/Pn5559//vnz82UfoaLN27qup4fTsj4+Pc28r7hebM1y9qUtl779b74K1/u6FlOYqG77yIx5TluW5dTENMe2v162HzYzW1xdRunorlU1RDKuo2NmBe5ck8yrolmXMu/ll1WAVcelXt/HNvrqVouPMUylQktyLqEX16bWzF3m4BRZRJqKmUaVVPUYl31/3eLl0l/37CVz53gem2a0PCLed1Q+LlTqG3NURI5rj9umyt1hVO/jQ7dwzrxOnVP/Zsx+hhVv+2OmNbOfjz52ai46E0l++z2Su6GK8/2an/Dcc95kiVy7yRyxOne/zo8L+3aHmhI51ihz4+j/eqVSdxO4zKy+nUF7i77JUTewtkWWs5jYaa3z9thjPI0+KtM0JEt0lLxtI8rEuoiPHruP+VL0iMsm27bPD96+73Htyr2YW+kcdSgiGTliVDURUZXz6TSbhJaKr0tb12VZ1C0rI0bWbMYl57U9PZy11LUND1m9ua3ruqxNVcYYITnvYFSuy/q0+rK0xdtqaks7f/d0/vR4Wttp8dW0qViFZbfaTHaXoaPuu2terzBFRFy/8abUjP9JH30bo6cM0S0zMkfUdw9PvR07KvfDzntE98Xaupq7ax0Xwc29NWumpYu2ZVFd7tP/rLKFWIwMldhTZindLqNH5WY59kuNTSJKKoZIa+qj3Dc9ikxEfM982/tbHy8je8n+ts/OgilSlhbSyk7a1qrzUi5lZuImVXPg+ky9WY4rOk1VNdOl7SN61KjqMcqyNEtni/AhIq21ZV19WSKz4kj/UxGJo4XL4s3d5/I6Kmci44wQL8uqlRVDs+kYGnF8bkVlrqbm4XKIpkpkSUUNbUeza1MTa1mqQzRK4qh1yZIoCZG0IyJjJR6WIpVqVSKLtmpqaWGZI+yWo/9VgxbVI9szMypkRLQIvY5eet/ZP1r9yRBRU88wb2XWxz6kwtVVw3Qu0m7R8ZqVM6aLmYk9xqxfN2mWpiE1svatj8tWoTMOLdeyflXNzNk6ZcYT3K+Jg2bz6i0ydO582NF+dx5GpSr7kRRwPTbOl1RCq86PYiIm1kRyz9hFhtcx61JrRr5VZ1dvtxSp0hE6Rl1qkxgRQ0w+lFW8v57zlZ5jJH8zzvI7qbwfVD+mkqlI6XtNUf5i9PB1b0T+dUUZ/7/cQv7XyFHo8cb6V1nNcn2O9nFPqeQ35jB/6Drw1TBrW5a6zqG/ZXEdESXJOU/gSO+eA4lSwkYs7yMK5riVY39TPjRbOhIvZwR6tt9Q0RkpjJSM2atRrue+WQxTH8tI/Nvjd756WUSqIsTdl8XlV1p73V6Na8pA6MfL0fYP3z/95e//9HCSpwf99KCL9YdTPay6LLZnXz3Pazys5TpmEGUOzu45ZmFClvYer69vzy+vX56f8/R8/rSKrmbN1HOPbX/98vzD589/295+/tt//+fx41/j9Vm2N7UIsyE6m2S8Sb72uvTao/YRkdHc1vPDP/7lL999enw4L6mS0V/fMveX5x/+Zfv8LzW2h7//ww8//Ff7/g9ns/Qu8aJSub/V9vLjT//l8uWn58//81/++T89//W/j7cvLy8v/WWzWl5e+peXyxjj6btPy7rEzLqXLIm5JZMZGRIhGcdlnVk+PDw8PH16fHyS0jFy34fZXqlddVVvLdL29CiXXtG22alWzUQspVLN1Eqs1EXMxEXEZ3hU1Ess5uZDirh+PKqoq5W5eNPWZA51qwqZW8slEWXWVKT32/pmUTHxIzpQonMMn1TOGOYR2JynTC+144982Ir9qiOFvqd0Sd/e10gzGeP2S2Pbrk3wJDL63vfe930bfbw+vzx/eX55fn7btyy1trgvS1vX1mYNvbvn7LmoR3S/tUV+30JlRluPMjW3y3YxraZq3s7Lsmr0y+vr85e3Pl7iaV2XB/XKi+ZwrajZ//OIoNfHrKRZvHtLQtj3/RdHqGMmeGZG3y6uUkvv3V2HzqZyopJabbEjw0BSTMpnpHX2EFfJzB5j3/s2Yg/pd72nU2X2D62862V/XXXcHuo3X5zx3oRArplgv/yteTU8/9tsFk/ZNQb/PoSnqjQjdY61VSlNeT+a/8Z7NF/DzNy2bS68b0/Q9x56xF3zfvf5muJxfbLfDFLNLZc86onLf/WH/k/cXlv73dO+jklvPptgrLpW7W+6tPXx4SHGpe+X0WX3WWi1X3qkijaRmcmyLd4yR8/ccpkLlctcqOSRNC9qUnV0QhIZMfpuvXtrbqIPbak6FirqbtdaqSFVWTMm7arr0h7OZyk1XYZHLd5m56vmJqkVR8BeautDrJ3F1Fs7n9Z1XR7W89Pj+vDQvK3e3MS1LFNrWA2TUBl662wlIvq+SimZ1Q6/+qdmUv38wT7GZcQW2WOMUfvrZb0uVERkhg/2fR+ZvVVT8yy/9uHVayQ++zYH9tlMq7slalYu6iKjUq6teCNjROwRPc1y9MqjhdcMCFVr2nyXmtMJSuLS423b95G7yPD28vw6qzLmVZqWLBa1VElFkwyZ4UmVytnAas4KilDJVFMxV1nNSnNW99kMX48xevmcMF1l6sviKZ7XzBA5knxkbtG4taZeIuM6IPQ4yIucPp0lU2NIROqWeQx5PTqoVoqKpjTX2fo6I2yukubQ2qqS1LJZmj+LjzQ15ZoW6T7PICmyuEnEHkMiFpd1OVVrXiFZ2evX42LX1JcjFBKhvffWqqqk1mpHSVwddY8zJ9JKMrW5l2mq5BzpqCalklk6rld5847mZrioylpWLipZc1VTNXLWHO2mp9s6al3X+ambp4DFVjlidnIM8FbVuf07d0WvMW+RmWGnIiJxVInMcZHX47mp1Da2vDabWDTmZNDZav02YuPIiDOftaYi9ni2yx6ROXKGhm6TFz8cGM1c29GZq0R/+8j8e+hdUreKVP8Q4bqVK9zlXsy7lltGk5nFb0TT/m24D4XNpgWRGfsuVZJH7+zbaevu145D0/xg/9ZWyZ2vthfuvxEz1fM44c7tCBERmd93mUnplkezuqqs1AjJu5SD6yKn7rIwjvuS9y0VFXH34+JnbrKqzVD33DPMCDE7epf9dmbBrzGzUgkRb209nWr/mEz4i1cjZyrdx3IjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDv978ADGHiGcZgassAAAAASUVORK5CYII=", + "text/plain": [ + "" ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Vv-yJqKDfchv", - "outputId": "59451dc4-166f-4a1c-c178-a14764d572b3" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 'Happiness', 1: 'Surprise', 2: 'Happiness', 3: 'Disgust'}" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 2.56 ms (started: 2023-12-14 18:00:35 +00:00)\n" - ] - } - ], - "source": [ - "{face.indx: face.preds[\"fer\"].label for face in response.faces}\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 232 ms (started: 2023-12-14 18:00:34 +00:00)\n" + ] + } + ], + "source": [ + "pil_image = torchvision.transforms.functional.to_pil_image(response.img)\n", + "pil_image" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0COQib8gfaeU" + }, + "source": [ + "## Facial Expressions" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "Vv-yJqKDfchv", + "outputId": "59451dc4-166f-4a1c-c178-a14764d572b3" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "XXTblUzCXUL1" - }, - "source": [ - "## Facial Action Unit Detection" + "data": { + "text/plain": [ + "{0: 'Happiness', 1: 'Surprise', 2: 'Happiness', 3: 'Disgust'}" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "c0mtxq-0XbC8", - "outputId": "cbb8a654-bbee-447a-9016-f6669badc62c" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: ['lid_tightener',\n", - " 'nose_wrinkler',\n", - " 'upper_lip_raiser',\n", - " 'lip_corner_puller',\n", - " 'chin_raiser',\n", - " 'lips_part'],\n", - " 1: ['inner_brow_raiser',\n", - " 'outer_brow_raiser',\n", - " 'upper_lip_raiser',\n", - " 'lip_pucker'],\n", - " 2: ['lid_tightener',\n", - " 'nose_wrinkler',\n", - " 'upper_lip_raiser',\n", - " 'lip_corner_puller'],\n", - " 3: ['upper_lip_raiser', 'lip_pucker']}" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 4.04 ms (started: 2023-12-14 18:00:35 +00:00)\n" - ] - } - ], - "source": [ - "{face.indx: face.preds[\"au\"].other[\"multi\"] for face in response.faces}\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 2.56 ms (started: 2023-12-14 18:00:35 +00:00)\n" + ] + } + ], + "source": [ + "{face.indx: face.preds[\"fer\"].label for face in response.faces}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XXTblUzCXUL1" + }, + "source": [ + "## Facial Action Unit Detection" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "c0mtxq-0XbC8", + "outputId": "cbb8a654-bbee-447a-9016-f6669badc62c" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "ihJ8q4iHXcmg" - }, - "source": [ - "## Facial Valence Arousal" + "data": { + "text/plain": [ + "{0: ['lid_tightener',\n", + " 'nose_wrinkler',\n", + " 'upper_lip_raiser',\n", + " 'lip_corner_puller',\n", + " 'chin_raiser',\n", + " 'lips_part'],\n", + " 1: ['inner_brow_raiser',\n", + " 'outer_brow_raiser',\n", + " 'upper_lip_raiser',\n", + " 'lip_pucker'],\n", + " 2: ['lid_tightener',\n", + " 'nose_wrinkler',\n", + " 'upper_lip_raiser',\n", + " 'lip_corner_puller'],\n", + " 3: ['upper_lip_raiser', 'lip_pucker']}" ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nrGlw7AuXct8", - "outputId": "ca4f5bb6-0d8b-4754-d078-6034a923dace" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: {'valence': 0.9772148728370667, 'arousal': 0.2926322102546692},\n", - " 1: {'valence': 0.22364261001348495, 'arousal': 0.0030725032091140775},\n", - " 2: {'valence': 0.9579311013221741, 'arousal': 0.31147159934043883},\n", - " 3: {'valence': 0.8746367692947388, 'arousal': 0.0072126269340515164}}" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 4.14 ms (started: 2023-12-14 18:00:37 +00:00)\n" - ] - } - ], - "source": [ - "{face.indx: face.preds[\"va\"].other for face in response.faces}" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 4.04 ms (started: 2023-12-14 18:00:35 +00:00)\n" + ] + } + ], + "source": [ + "{face.indx: face.preds[\"au\"].other[\"multi\"] for face in response.faces}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ihJ8q4iHXcmg" + }, + "source": [ + "## Facial Valence Arousal" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "nrGlw7AuXct8", + "outputId": "ca4f5bb6-0d8b-4754-d078-6034a923dace" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "5spi_HKkgSNA" - }, - "source": [ - "## Embedding cosine similarity" + "data": { + "text/plain": [ + "{0: {'valence': 0.9772148728370667, 'arousal': 0.2926322102546692},\n", + " 1: {'valence': 0.22364261001348495, 'arousal': 0.0030725032091140775},\n", + " 2: {'valence': 0.9579311013221741, 'arousal': 0.31147159934043883},\n", + " 3: {'valence': 0.8746367692947388, 'arousal': 0.0072126269340515164}}" ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "oaFz5qErg3_i", - "outputId": "067bcb37-6d4b-495b-d336-65d5fbbd46fe" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 821 µs (started: 2023-12-14 18:00:37 +00:00)\n" - ] - } - ], - "source": [ - "def compute_embed_similarity(predictor_name: str = \"verify\", base_face_id: int = 0) -> Dict:\n", - " base_emb = response.faces[base_face_id].preds[predictor_name].logits\n", - " sim_dict = {face.indx: cosine_similarity(base_emb, face.preds[predictor_name].logits, dim=0).item() for face in response.faces}\n", - " sim_dict_sorted = dict(sorted(sim_dict.items(), key=operator.itemgetter(1),reverse=True))\n", - " return sim_dict_sorted" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 4.14 ms (started: 2023-12-14 18:00:37 +00:00)\n" + ] + } + ], + "source": [ + "{face.indx: face.preds[\"va\"].other for face in response.faces}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5spi_HKkgSNA" + }, + "source": [ + "## Embedding cosine similarity" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "oaFz5qErg3_i", + "outputId": "067bcb37-6d4b-495b-d336-65d5fbbd46fe" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "ly0jV5_5gcgg" - }, - "source": [ - "### Face representation learning" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 821 µs (started: 2023-12-14 18:00:37 +00:00)\n" + ] + } + ], + "source": [ + "def compute_embed_similarity(predictor_name: str = \"verify\", base_face_id: int = 0) -> Dict:\n", + " base_emb = response.faces[base_face_id].preds[predictor_name].logits\n", + " sim_dict = {face.indx: cosine_similarity(base_emb, face.preds[predictor_name].logits, dim=0).item() for face in response.faces}\n", + " sim_dict_sorted = dict(sorted(sim_dict.items(), key=operator.itemgetter(1),reverse=True))\n", + " return sim_dict_sorted" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ly0jV5_5gcgg" + }, + "source": [ + "### Face representation learning" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "n00dHVnIgSiT", + "outputId": "cb8bdb5f-2903-44df-f0b4-18c8485dae94" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "n00dHVnIgSiT", - "outputId": "cb8bdb5f-2903-44df-f0b4-18c8485dae94" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 1.0,\n", - " 3: 0.013703957200050354,\n", - " 1: -0.016045819967985153,\n", - " 2: -0.017361726611852646}" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 5.36 ms (started: 2023-12-14 18:00:37 +00:00)\n" - ] - } - ], - "source": [ - "compute_embed_similarity(predictor_name=\"embed\")" + "data": { + "text/plain": [ + "{0: 1.0,\n", + " 3: 0.013703957200050354,\n", + " 1: -0.016045819967985153,\n", + " 2: -0.017361726611852646}" ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "metadata": { - "id": "t3nw7tYGgG2E" - }, - "source": [ - "### Face verification" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 5.36 ms (started: 2023-12-14 18:00:37 +00:00)\n" + ] + } + ], + "source": [ + "compute_embed_similarity(predictor_name=\"embed\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t3nw7tYGgG2E" + }, + "source": [ + "### Face verification" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "MsNMR1FAf28F", + "outputId": "0f458d21-5ddb-4ef4-bb12-f108eb93aab2" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MsNMR1FAf28F", - "outputId": "0f458d21-5ddb-4ef4-bb12-f108eb93aab2" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 1.0,\n", - " 1: 0.1039777472615242,\n", - " 3: 0.06411682814359665,\n", - " 2: -0.09044305980205536}" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 3.93 ms (started: 2023-12-14 18:00:38 +00:00)\n" - ] - } - ], - "source": [ - "compute_embed_similarity(predictor_name=\"verify\")" + "data": { + "text/plain": [ + "{0: 1.0,\n", + " 1: 0.1039777472615242,\n", + " 3: 0.06411682814359665,\n", + " 2: -0.09044305980205536}" ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "markdown", - "metadata": { - "id": "6FLLN8WDeEOS" - }, - "source": [ - "## Full response" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 3.93 ms (started: 2023-12-14 18:00:38 +00:00)\n" + ] + } + ], + "source": [ + "compute_embed_similarity(predictor_name=\"verify\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6FLLN8WDeEOS" + }, + "source": [ + "## Full response" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "dVRQIUL3aXhQ", + "outputId": "102180aa-59f1-4199-d916-5dc5d7203823" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dVRQIUL3aXhQ", - "outputId": "102180aa-59f1-4199-d916-5dc5d7203823" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "ImageData(path_input='./test.jpg', path_output='/test_output.jpg', img=tensor([[[0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " ...,\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0]],\n", - "\n", - " [[0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " ...,\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0]],\n", - "\n", - " [[0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " ...,\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0],\n", - " [0, 0, 0, ..., 0, 0, 0]]], dtype=torch.uint8), tensor=tensor([[[[-104., -104., -104., ..., -104., -104., -104.],\n", - " [-104., -104., -104., ..., -104., -104., -104.],\n", - " [-104., -104., -104., ..., -104., -104., -104.],\n", - " ...,\n", - " [-104., -104., -104., ..., -104., -104., -104.],\n", - " [-104., -104., -104., ..., -104., -104., -104.],\n", - " [-104., -104., -104., ..., -104., -104., -104.]],\n", - "\n", - " [[-117., -117., -117., ..., -117., -117., -117.],\n", - " [-117., -117., -117., ..., -117., -117., -117.],\n", - " [-117., -117., -117., ..., -117., -117., -117.],\n", - " ...,\n", - " [-117., -117., -117., ..., -117., -117., -117.],\n", - " [-117., -117., -117., ..., -117., -117., -117.],\n", - " [-117., -117., -117., ..., -117., -117., -117.]],\n", - "\n", - " [[-123., -123., -123., ..., -123., -123., -123.],\n", - " [-123., -123., -123., ..., -123., -123., -123.],\n", - " [-123., -123., -123., ..., -123., -123., -123.],\n", - " ...,\n", - " [-123., -123., -123., ..., -123., -123., -123.],\n", - " [-123., -123., -123., ..., -123., -123., -123.],\n", - " [-123., -123., -123., ..., -123., -123., -123.]]]], device='cuda:0'), dims=Dimensions(height=1080, width=1080), det=Detection(loc=tensor([[[ 1.1387, 2.4318, -1.4506, 0.5093],\n", - " [ 1.9043, 3.1361, -1.2619, 0.8575],\n", - " [-0.9103, 2.7127, 0.2439, 0.7335],\n", - " ...,\n", - " [ 0.0353, -0.6025, -0.8369, -1.1794],\n", - " [-0.0940, -0.4539, -1.2256, -0.8496],\n", - " [ 0.0977, -0.2411, -1.8571, -1.6777]]], device='cuda:0'), conf=tensor([[[9.9981e-01, 1.9212e-04],\n", - " [9.9994e-01, 6.2932e-05],\n", - " [9.9977e-01, 2.3444e-04],\n", - " ...,\n", - " [9.9971e-01, 2.9232e-04],\n", - " [9.9987e-01, 1.3458e-04],\n", - " [9.9997e-01, 3.1498e-05]]], device='cuda:0'), landmarks=tensor([[[-0.9817, 0.0959, 2.6015, ..., 6.7391, 1.8493, 7.0245],\n", - " [ 0.0630, 0.6699, 2.9025, ..., 6.2545, 2.6066, 6.0389],\n", - " [-3.5584, 0.1048, 0.8877, ..., 6.5882, -0.5649, 7.0346],\n", - " ...,\n", - " [-0.2883, -0.7966, 0.3860, ..., 0.1696, 0.4108, 0.0711],\n", - " [-0.6582, -0.8402, 0.6708, ..., 0.2488, 0.4349, -0.0721],\n", - " [-0.2075, -0.7674, 0.6490, ..., 0.4788, 0.6124, 0.3344]]],\n", - " device='cuda:0'), boxes=tensor([[-1.6350e-01, -9.6705e-01, 1.1807e+01, 1.6749e+01],\n", - " [-2.3375e+00, -4.9578e+00, 2.2525e+01, 3.3029e+01],\n", - " [ 2.1436e+00, -9.2360e-01, 1.8944e+01, 1.7604e+01],\n", - " ...,\n", - " [ 8.2526e+02, 8.3894e+02, 1.2584e+03, 1.2434e+03],\n", - " [ 9.6942e+02, 9.5238e+02, 1.1698e+03, 1.1684e+03],\n", - " [ 9.0043e+02, 8.7663e+02, 1.2536e+03, 1.2427e+03]], device='cuda:0'), dets=tensor([[541.2016, 334.8736, 625.8832, 447.1175, 0.9991],\n", - " [407.0163, 440.3088, 474.5414, 532.0094, 0.9980],\n", - " [322.2906, 325.4094, 398.0146, 438.1702, 0.9953],\n", - " [718.3305, 389.5779, 795.5046, 487.1662, 0.9950]], device='cuda:0')), faces=[Face(indx=0, loc=Location(x1=528, x2=639, y1=335, y2=447), dims=Dimensions(height=112, width=111), tensor=tensor([[[ 0.8902, 0.8902, 0.8938, ..., 0.7792, 0.7765, 0.7765],\n", - " [ 0.8902, 0.8902, 0.8938, ..., 0.7792, 0.7765, 0.7765],\n", - " [ 0.8865, 0.8865, 0.8903, ..., 0.7792, 0.7765, 0.7765],\n", - " ...,\n", - " [ 0.7335, 0.7335, 0.7271, ..., 0.1882, 0.1882, 0.1882],\n", - " [ 0.7373, 0.7373, 0.7291, ..., 0.1882, 0.1882, 0.1882],\n", - " [ 0.7373, 0.7373, 0.7291, ..., 0.1882, 0.1882, 0.1882]],\n", - "\n", - " [[ 0.7686, 0.7686, 0.7722, ..., 0.6694, 0.6667, 0.6667],\n", - " [ 0.7686, 0.7686, 0.7722, ..., 0.6694, 0.6667, 0.6667],\n", - " [ 0.7649, 0.7649, 0.7690, ..., 0.6694, 0.6667, 0.6667],\n", - " ...,\n", - " [ 0.6533, 0.6533, 0.6459, ..., 0.0549, 0.0549, 0.0549],\n", - " [ 0.6588, 0.6588, 0.6498, ..., 0.0549, 0.0549, 0.0549],\n", - " [ 0.6588, 0.6588, 0.6498, ..., 0.0549, 0.0549, 0.0549]],\n", - "\n", - " [[ 0.7098, 0.7098, 0.7134, ..., 0.6145, 0.6118, 0.6118],\n", - " [ 0.7098, 0.7098, 0.7134, ..., 0.6145, 0.6118, 0.6118],\n", - " [ 0.7061, 0.7061, 0.7101, ..., 0.6145, 0.6118, 0.6118],\n", - " ...,\n", - " [ 0.6297, 0.6297, 0.6226, ..., -0.0078, -0.0078, -0.0078],\n", - " [ 0.6353, 0.6353, 0.6263, ..., -0.0078, -0.0078, -0.0078],\n", - " [ 0.6353, 0.6353, 0.6263, ..., -0.0078, -0.0078, -0.0078]]],\n", - " device='cuda:0'), ratio=0.010658436213991769, preds={'embed': Prediction(label='abstract', logits=tensor([-4.6533e-02, 5.3588e-02, -2.4755e-02, -7.8616e-02, 1.2103e-01,\n", - " -5.9453e-02, -7.6975e-02, 4.6723e-02, 8.5076e-03, -4.3471e-02,\n", - " 5.2749e-02, 6.3168e-02, -5.8967e-02, 1.5402e-01, -5.4731e-02,\n", - " 6.3179e-02, 8.2565e-02, -6.4397e-03, -1.7833e-01, 5.7603e-02,\n", - " 1.0651e-01, -1.0804e-01, 3.7815e-02, 2.8610e-02, -2.0176e-02,\n", - " -1.3877e-02, -1.1300e-01, -1.9724e-01, 1.1800e-01, -1.1211e-01,\n", - " 1.3263e-01, -8.2799e-03, 1.4889e-01, -4.0802e-02, -3.6970e-02,\n", - " 1.2777e-01, -6.7573e-02, 3.2040e-02, -8.4728e-02, -8.8653e-02,\n", - " -1.5372e-01, 2.2786e-02, 2.9156e-02, -1.1256e-01, 2.8036e-03,\n", - " 1.0653e-01, 5.2120e-02, -1.9426e-01, -2.7868e-04, 7.2371e-02,\n", - " -4.5995e-02, -6.8567e-02, -3.1597e-02, 4.3082e-02, 1.6920e-01,\n", - " -1.0685e-02, -1.2215e-01, -8.2336e-02, 8.2809e-02, 3.5149e-02,\n", - " -3.7275e-02, 5.5974e-03, -2.4990e-02, 7.1473e-03, -1.3397e-02,\n", - " -2.4529e-02, -1.9968e-01, 4.9395e-02, -1.1648e-01, 2.8934e-02,\n", - " -7.9794e-02, 1.1284e-01, 7.7364e-02, 2.6842e-01, -2.3278e-02,\n", - " -4.2797e-02, 2.0053e-01, -9.6295e-03, -5.3308e-02, 1.0973e-02,\n", - " -1.2243e-01, 1.1370e-01, -6.3296e-02, -9.0882e-02, 9.8522e-02,\n", - " 1.2760e-01, -8.4864e-02, -4.8018e-02, 3.7744e-02, 4.7234e-03,\n", - " 7.9726e-02, 7.0888e-02, 7.7177e-02, 9.8928e-02, 3.4530e-02,\n", - " 6.4716e-02, -5.6115e-02, 1.7020e-01, 3.6940e-02, -8.4731e-02,\n", - " 3.8408e-02, 7.2437e-02, 5.2898e-02, -2.7070e-02, -6.2154e-04,\n", - " -3.1288e-03, -1.4151e-01, -7.6653e-02, 1.2858e-01, -6.7588e-04,\n", - " 8.4066e-03, -1.0063e-01, 1.0168e-01, -7.1161e-02, -6.7470e-02,\n", - " 2.5535e-05, -6.5238e-02, -8.1831e-02, 7.8842e-02, 4.1058e-02,\n", - " 3.1814e-02, 7.2898e-02, 1.2914e-02, 7.2188e-02, 1.2259e-02,\n", - " -4.6126e-02, 1.8978e-01, -1.6078e-01], device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([-9.9709e-02, 3.5849e-02, 6.8186e-02, 1.0176e-01, -8.0765e-02,\n", - " 7.2402e-03, 1.1793e-02, -3.0156e-02, 4.3678e-02, 4.2361e-02,\n", - " -4.3229e-02, 3.5763e-02, 4.0323e-02, 1.4577e-02, 5.3526e-02,\n", - " 1.5721e-02, -3.8783e-02, -7.2129e-02, 5.8065e-02, 9.7868e-03,\n", - " 2.8708e-02, -6.9082e-03, 5.7384e-02, 8.9630e-02, -2.4127e-03,\n", - " -6.8622e-03, 1.3874e-02, 1.8275e-02, 4.2322e-02, -2.3574e-02,\n", - " -5.3746e-03, 6.0498e-02, -6.5492e-04, -5.8711e-02, 2.4335e-02,\n", - " -6.0965e-02, -3.4439e-02, -1.7858e-02, 3.2407e-02, 9.6606e-03,\n", - " 3.6913e-02, -2.4995e-02, 4.6686e-02, 4.4622e-02, -2.6745e-02,\n", - " -1.2986e-02, 1.9273e-02, -6.0227e-02, -1.5702e-02, -3.1965e-02,\n", - " 1.2523e-02, -2.2435e-02, -1.0231e-02, -4.0502e-02, -3.5617e-03,\n", - " 8.2921e-02, 8.1194e-03, 6.4543e-03, -2.9299e-02, -1.5151e-03,\n", - " 4.2446e-02, 2.0715e-02, 4.5609e-02, 1.6863e-02, -5.2035e-02,\n", - " 8.3910e-02, 2.4208e-02, 5.6129e-03, -3.3789e-02, -4.0824e-02,\n", - " 6.2478e-03, -3.9623e-02, -3.3841e-02, -5.0119e-02, 2.4470e-02,\n", - " 7.8825e-02, -1.1778e-02, 5.3937e-02, -5.0737e-03, -7.8529e-02,\n", - " -4.2240e-02, 5.7989e-02, 1.8960e-02, -9.5119e-02, 3.9091e-02,\n", - " 1.3672e-02, -2.0848e-02, -1.1164e-02, 3.7884e-02, -2.8324e-02,\n", - " 7.2345e-02, 1.1385e-02, 4.5292e-02, 9.5516e-03, -4.4801e-02,\n", - " 1.7170e-02, -6.2065e-02, 3.5419e-04, -2.5924e-02, -4.8186e-02,\n", - " -1.4630e-01, 7.3848e-03, -4.4705e-02, -7.3440e-02, -9.0920e-04,\n", - " -8.4433e-02, -3.6168e-02, -7.2048e-02, -7.9701e-02, -6.3092e-02,\n", - " -1.8176e-02, -7.1731e-03, -5.4474e-03, 2.0798e-02, 1.3563e-04,\n", - " -1.2152e-02, -2.5522e-02, -2.3754e-02, -6.3545e-02, 3.7159e-03,\n", - " 5.6279e-02, -9.6936e-02, -8.5600e-03, 7.8319e-02, -3.8904e-02,\n", - " 3.9999e-02, -3.2349e-02, 2.4293e-02, -1.0650e-03, -1.0239e-02,\n", - " -1.0191e-03, -1.0416e-02, -6.7146e-02, -1.3491e-02, -3.0999e-02,\n", - " -2.8824e-02, 6.5888e-03, 1.7626e-02, -5.5039e-02, 5.4941e-02,\n", - " -8.6368e-02, -5.5739e-02, 7.3216e-02, -3.9630e-02, -7.1478e-02,\n", - " -4.8321e-02, 5.3878e-02, 4.4313e-02, -7.8896e-03, -1.8046e-02,\n", - " 2.7845e-02, -4.6467e-02, -3.3735e-02, 4.0640e-02, 4.7118e-02,\n", - " -6.2865e-02, -2.9892e-02, -1.0017e-02, -2.5754e-02, -5.4211e-03,\n", - " -2.5798e-02, -8.5065e-03, 2.2504e-02, 1.3634e-02, 2.4653e-02,\n", - " -3.2973e-04, -5.9600e-02, 7.9564e-02, -1.3156e-02, 1.5717e-02,\n", - " 3.7558e-02, 1.2724e-02, 3.3729e-02, -1.2738e-02, 6.1420e-03,\n", - " 8.5418e-02, -3.3032e-03, 5.5278e-02, -3.4548e-02, -4.5400e-03,\n", - " -1.2247e-03, 1.0168e-01, -3.8014e-02, 2.0296e-02, -3.8102e-02,\n", - " 5.9302e-02, 3.6608e-02, 3.6085e-02, 2.5122e-02, 6.5671e-02,\n", - " 1.8139e-02, -6.0046e-02, 3.9453e-02, 3.7376e-04, 3.8212e-02,\n", - " -1.1187e-01, 3.6162e-02, -4.8310e-03, 3.6086e-02, -9.0211e-03,\n", - " -2.3681e-02, -2.0801e-03, 6.5730e-02, 8.4556e-02, -2.9632e-02,\n", - " 3.2529e-02, -6.4099e-02, -4.5768e-02, 6.5394e-02, -1.1198e-02,\n", - " -5.6266e-02, -7.9423e-03, -3.1498e-02, -1.0677e-02, 2.8715e-02,\n", - " -2.4643e-02, -1.0333e-01, 5.1336e-02, 6.0299e-03, 5.2227e-03,\n", - " -5.1412e-02, -1.5836e-02, 1.5985e-02, -2.4834e-02, 2.9083e-02,\n", - " 4.4913e-03, -6.2139e-02, 7.8704e-02, -6.8124e-02, -4.8079e-02,\n", - " 8.5768e-02, 2.8548e-02, -4.3899e-02, -7.8785e-02, 4.5441e-02,\n", - " -5.3304e-02, 2.8543e-02, -3.9420e-02, -1.4347e-02, -8.1592e-03,\n", - " -1.4892e-03, -5.7665e-02, 1.3950e-04, -4.3965e-02, -2.6643e-02,\n", - " 1.6329e-02, 1.6751e-02, 7.3626e-02, -2.3216e-02, 6.4482e-02,\n", - " 3.0628e-02, -4.3190e-04, -1.3772e-02, -2.3291e-03, 3.5256e-02,\n", - " 7.7253e-03, 2.0509e-02, -7.7098e-02, 2.0374e-02, -6.4073e-02,\n", - " -7.8387e-03, -5.6768e-02, -5.5046e-02, -3.7490e-02, -1.7619e-02,\n", - " 6.3434e-02, 5.3055e-02, 2.8544e-02, 5.4640e-03, -8.2670e-02,\n", - " 2.6365e-02, -2.9417e-02, -1.2636e-02, 4.6648e-03, 6.1215e-04,\n", - " 9.2770e-02, 4.8292e-02, -5.2257e-02, -9.5857e-02, 3.5968e-02,\n", - " 3.2832e-02, 7.1759e-02, -2.0675e-02, 2.5622e-02, -1.9408e-02,\n", - " -1.9341e-02, 2.0307e-02, 5.6690e-02, -1.0909e-02, -4.8402e-02,\n", - " 1.1550e-02, -1.7324e-03, -3.8316e-02, -7.9948e-02, -5.9086e-02,\n", - " -8.7113e-03, 1.7088e-03, -1.7137e-03, 3.6837e-02, 3.9969e-02,\n", - " 1.0159e-03, -2.0556e-02, 1.3928e-02, 1.5244e-02, 1.5060e-02,\n", - " -3.1773e-02, 2.4421e-02, -3.2927e-02, 2.7500e-02, 6.2374e-02,\n", - " 5.0217e-02, 5.6631e-02, 2.9492e-02, -4.6152e-02, -3.4127e-02,\n", - " -1.3851e-02, -8.8722e-02, -2.9110e-02, -3.0616e-02, -2.8539e-02,\n", - " -2.9055e-02, 4.8617e-02, 1.8578e-02, -7.8684e-02, 1.0375e-01,\n", - " -6.3333e-02, -3.1398e-02, -4.1519e-02, 8.1364e-03, 1.1080e-03,\n", - " 4.1848e-02, 1.1036e-02, 2.9939e-02, 2.9997e-02, -2.2983e-03,\n", - " 1.9105e-02, -4.2914e-02, -1.1842e-01, 6.3478e-02, -9.4698e-02,\n", - " -6.9375e-02, 6.0907e-02, 5.2306e-02, 1.5235e-02, 2.2306e-02,\n", - " -3.8761e-03, 3.2280e-02, -1.4714e-02, 5.2281e-02, -5.4278e-02,\n", - " -2.0122e-02, -2.5781e-02, -3.7049e-02, 4.7650e-02, 8.6804e-02,\n", - " -8.7017e-03, 2.7132e-02, 3.7116e-02, -1.5473e-02, -1.9762e-02,\n", - " 5.3086e-03, -3.6004e-02, -8.0462e-02, 3.3155e-04, 1.3561e-02,\n", - " -1.0824e-02, 8.2715e-03, -2.4323e-02, 3.2127e-02, 1.1446e-02,\n", - " 3.3564e-02, 7.4934e-03, 4.9192e-02, -4.5707e-02, 5.4161e-02,\n", - " -8.6517e-02, 3.3631e-02, -6.0129e-02, -3.1397e-02, 4.7477e-02,\n", - " -7.3110e-02, 9.2553e-03, -1.5034e-03, 1.1344e-02, 7.7183e-02,\n", - " 5.9663e-02, -7.6595e-02, -1.7591e-02, 8.1232e-02, 3.8896e-02,\n", - " 1.0368e-03, -1.9262e-02, -3.5298e-02, -4.2972e-02, -4.4557e-02,\n", - " -2.1504e-02, 1.9526e-02, 1.5563e-02, -5.1445e-02, -1.5178e-02,\n", - " 3.0687e-02, 5.1042e-02, -1.9250e-02, 2.3821e-02, -9.1301e-02,\n", - " 1.7938e-03, -1.6571e-02, 8.4082e-03, 7.6159e-03, 4.2657e-02,\n", - " 3.8184e-05, 3.8344e-02, 3.7797e-02, 4.1287e-02, 2.8115e-02,\n", - " 2.6092e-02, 2.6328e-02, 2.2119e-02, -7.4556e-02, 2.6539e-03,\n", - " 2.7550e-02, 5.0088e-02, 3.9890e-03, -4.2536e-02, -6.2462e-03,\n", - " 1.8465e-02, -8.9602e-02, -4.2978e-03, 1.5423e-02, 2.9090e-03,\n", - " -4.2427e-02, -6.7315e-02, 4.5346e-03, 2.4943e-02, 1.6452e-02,\n", - " 1.7753e-02, 5.3811e-02, 6.7798e-02, 1.8093e-02, 2.9107e-02,\n", - " 1.1850e-02, 4.7129e-02, 5.8636e-03, -1.5730e-02, 4.2799e-02,\n", - " 1.1921e-02, 8.4054e-02, -4.7201e-02, 5.9466e-04, 2.5315e-02,\n", - " -2.1824e-02, 5.3037e-02, -8.1173e-02, 5.2681e-02, -3.5198e-02,\n", - " -4.1766e-02, -2.1844e-03, 3.5254e-02, -1.8280e-02, -2.8210e-02,\n", - " -4.6979e-02, -1.2673e-02, 3.4120e-02, -6.5317e-02, 7.4591e-02,\n", - " -2.2831e-02, -1.3830e-02, 7.8286e-02, 5.7209e-02, -7.7736e-02,\n", - " 4.9260e-02, -4.1704e-02, 3.5564e-02, -3.8985e-02, 7.7557e-04,\n", - " -1.2389e-01, -4.4560e-02, -2.7898e-02, 6.8121e-02, -6.4978e-03,\n", - " 1.8532e-02, -5.2883e-02, 7.8517e-02, -1.1631e-02, 2.9074e-02,\n", - " 4.2660e-02, 5.4932e-02, -7.6693e-02, 8.3453e-02, -5.6050e-02,\n", - " -1.1389e-02, -3.6820e-02, -3.6445e-02, 4.9974e-02, -1.7595e-03,\n", - " 7.7574e-02, -3.5501e-02, 2.6281e-02, 7.9471e-03, 3.5236e-02,\n", - " -4.2531e-02, 6.8039e-03, 4.7962e-02, 1.4445e-02, -1.1644e-03,\n", - " 7.5160e-03, 2.3152e-02, 1.9259e-02, 5.8002e-02, -6.4338e-02,\n", - " -9.2871e-03, 6.1422e-02], device='cuda:0'), other={}), 'fer': Prediction(label='Happiness', logits=tensor([-0.7012, 0.9974, 0.9535, 0.1006, 1.4421, -2.2756, -0.7362, -0.6023],\n", - " device='cuda:0'), other={}), 'au': Prediction(label='lid_tightener', logits=tensor([0.4852, 0.4120, 0.4331, 0.0462, 0.4701, 0.7195, 0.5467, 0.7048, 0.3752,\n", - " 0.5406, 0.0258, 0.3930, 0.1706, 0.0671, 0.5789, 0.2200, 0.0103, 0.0978,\n", - " 0.0235, 0.2086, 0.1102, 0.5363, 0.2904, 0.0577, 0.0101, 0.0067, 0.0078,\n", - " 0.0075, 0.0042, 0.0299, 0.0061, 0.0512, 0.0103, 0.0066, 0.0040, 0.1162,\n", - " 0.1108, 0.1903, 0.0239, 0.1075, 0.0089], device='cuda:0'), other={'multi': ['lid_tightener', 'nose_wrinkler', 'upper_lip_raiser', 'lip_corner_puller', 'chin_raiser', 'lips_part']}), 'va': Prediction(label='other', logits=tensor([0.7272, 0.2426], device='cuda:0'), other={'valence': 0.9772148728370667, 'arousal': 0.2926322102546692}), 'deepfake': Prediction(label='Real', logits=tensor(0.0781, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6291e+00, -1.5880e-01, -4.5101e-01, 1.9897e-01, 8.0188e-02,\n", - " 7.0005e-01, -7.3093e-01, 5.0253e-01, 3.3758e-01, 1.2239e+00,\n", - " 1.3215e+00, -4.7801e-01, 3.7948e-01, -2.5204e-02, 4.0023e-01,\n", - " 1.2520e-02, 9.0387e-02, 2.1908e-01, -3.7571e-01, 1.5939e-01,\n", - " -2.2109e-01, 1.5487e-03, 1.4567e-02, 6.9259e-02, -2.9845e-02,\n", - " -4.5879e-02, -1.8491e-01, 7.0592e-02, 7.1363e-02, -1.6920e-02,\n", - " -7.5111e-02, -1.8467e-02, 9.2778e-03, 2.5078e-02, 8.2850e-02,\n", - " -7.2314e-02, 4.9954e-02, -4.6078e-02, -1.2720e-02, 4.4774e-02,\n", - " 1.1983e-02, 2.7489e-02, -3.5336e-03, 3.8619e-02, -3.0828e-02,\n", - " 9.5173e-02, -3.1197e-02, -5.3295e-03, -2.8937e-02, 7.3298e-02,\n", - " 1.5494e-02, -4.5704e-02, -8.0980e-01, -2.5949e-01, -5.2528e-02,\n", - " 2.8264e-01, 7.8088e-02, -1.3355e-01, -2.8489e-01, -2.1684e-01,\n", - " -3.6542e-02, -1.7405e-01], device='cuda:0'), other={'lmk3d': tensor([[542.9333, 544.5874, 547.5427, 550.0698, 552.8116, 556.7585, 561.0212,\n", - " 567.6860, 579.7345, 593.0699, 603.2763, 611.6685, 618.3826, 621.6498,\n", - " 623.4402, 625.0604, 625.6321, 542.2299, 544.9963, 549.7009, 554.7478,\n", - " 559.6961, 581.6105, 587.0631, 593.4749, 600.8018, 607.4361, 571.3020,\n", - " 570.6352, 569.9481, 570.1238, 566.3522, 568.7809, 572.6551, 576.9512,\n", - " 580.4296, 549.5615, 551.8495, 557.0619, 562.4405, 557.8042, 552.7058,\n", - " 584.5940, 588.9328, 594.3590, 599.4766, 594.8365, 588.9500, 560.9120,\n", - " 564.0060, 569.6031, 573.1120, 576.7658, 584.7205, 591.9389, 585.8081,\n", - " 580.5999, 575.1304, 569.9812, 565.8029, 562.1975, 569.3987, 573.7014,\n", - " 578.7090, 590.9459, 579.5476, 574.6894, 570.2381],\n", - " [371.7968, 382.5165, 392.2119, 401.2846, 412.0270, 422.0081, 430.0238,\n", - " 437.6693, 441.1647, 436.5235, 428.4754, 419.9621, 409.6181, 398.6112,\n", - " 389.2856, 379.4633, 368.6871, 369.7832, 367.7616, 367.7695, 368.7087,\n", - " 370.0877, 369.2081, 367.2741, 365.8188, 365.3783, 367.2041, 381.4352,\n", - " 389.5755, 397.4740, 403.2331, 404.6718, 405.7044, 406.4895, 405.4278,\n", - " 404.1397, 378.4211, 377.3296, 377.2338, 379.2043, 380.8703, 380.8490,\n", - " 378.3484, 375.9453, 375.7418, 376.6197, 379.2037, 379.6377, 415.5748,\n", - " 414.0387, 412.5942, 413.1100, 412.3784, 413.3840, 414.9877, 421.8041,\n", - " 425.3992, 426.3599, 425.7049, 422.2630, 415.6169, 415.3652, 415.3221,\n", - " 415.1045, 415.0468, 421.1322, 421.9084, 421.0955],\n", - " [-74.9666, -76.5580, -78.1195, -78.6453, -76.6466, -69.7375, -59.9046,\n", - " -50.8282, -45.5633, -45.8160, -51.4997, -58.6523, -63.4628, -64.1828,\n", - " -62.6861, -60.3222, -58.2096, -34.8580, -26.1522, -19.8705, -15.9218,\n", - " -13.8813, -9.4541, -9.3844, -11.0064, -14.7870, -21.6216, -13.2675,\n", - " -10.0969, -6.9486, -7.5632, -23.0827, -20.1941, -18.4144, -18.5270,\n", - " -20.1986, -31.7275, -25.5711, -24.3319, -25.4803, -25.5542, -28.0752,\n", - " -21.1123, -18.0314, -17.0443, -21.6489, -19.5261, -19.2820, -37.7856,\n", - " -27.7187, -21.4371, -20.4202, -19.9343, -23.4340, -31.6288, -29.3109,\n", - " -28.4950, -29.0924, -30.4653, -33.2674, -37.2990, -25.7492, -23.4220,\n", - " -23.7484, -31.5642, -27.5307, -28.0307, -29.6615]], device='cuda:0',\n", - " dtype=torch.float64), 'mesh': tensor([[542.4374, 542.4705, 542.5058, ..., 623.8512, 623.8591, 623.8579],\n", - " [372.6334, 372.7801, 372.9264, ..., 389.9910, 389.7103, 389.4345],\n", - " [-35.2361, -35.2594, -35.2832, ..., -85.3152, -85.6626, -85.9983]],\n", - " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [14.089035296471161, -18.298921126003037, -4.62220512777496], 'translation': tensor([587.7845, 406.6217, -85.3952], device='cuda:0', dtype=torch.float64)}})}), Face(indx=1, loc=Location(x1=395, x2=487, y1=440, y2=532), dims=Dimensions(height=92, width=92), tensor=tensor([[[ 1.5686e-01, 1.5686e-01, 1.5356e-01, ..., 1.6326e-01,\n", - " 1.6863e-01, 1.6863e-01],\n", - " [ 1.5686e-01, 1.5686e-01, 1.5356e-01, ..., 1.6326e-01,\n", - " 1.6863e-01, 1.6863e-01],\n", - " [ 1.5604e-01, 1.5604e-01, 1.5291e-01, ..., 1.5942e-01,\n", - " 1.6409e-01, 1.6409e-01],\n", - " ...,\n", - " [ 1.0196e-01, 1.0196e-01, 1.0246e-01, ..., 3.3347e-01,\n", - " 3.3437e-01, 3.3437e-01],\n", - " [ 1.0196e-01, 1.0196e-01, 1.0237e-01, ..., 3.2900e-01,\n", - " 3.2941e-01, 3.2941e-01],\n", - " [ 1.0196e-01, 1.0196e-01, 1.0237e-01, ..., 3.2900e-01,\n", - " 3.2941e-01, 3.2941e-01]],\n", - "\n", - " [[ 7.4510e-02, 7.4510e-02, 7.0795e-02, ..., 5.2838e-02,\n", - " 5.4902e-02, 5.4902e-02],\n", - " [ 7.4510e-02, 7.4510e-02, 7.0795e-02, ..., 5.2838e-02,\n", - " 5.4902e-02, 5.4902e-02],\n", - " [ 7.2446e-02, 7.2446e-02, 6.8904e-02, ..., 4.8906e-02,\n", - " 5.0361e-02, 5.0361e-02],\n", - " ...,\n", - " [ 1.8369e-02, 1.8369e-02, 1.7761e-02, ..., 1.3555e-01,\n", - " 1.3622e-01, 1.3622e-01],\n", - " [ 1.9608e-02, 1.9608e-02, 1.8782e-02, ..., 1.3292e-01,\n", - " 1.3333e-01, 1.3333e-01],\n", - " [ 1.9608e-02, 1.9608e-02, 1.8782e-02, ..., 1.3292e-01,\n", - " 1.3333e-01, 1.3333e-01]],\n", - "\n", - " [[ 1.9608e-02, 1.9608e-02, 1.5067e-02, ..., 3.3024e-03,\n", - " 7.8431e-03, 7.8431e-03],\n", - " [ 1.9608e-02, 1.9608e-02, 1.5067e-02, ..., 3.3024e-03,\n", - " 7.8431e-03, 7.8431e-03],\n", - " [ 1.7957e-02, 1.7957e-02, 1.3546e-02, ..., -1.3034e-04,\n", - " 3.7152e-03, 3.7152e-03],\n", - " ...,\n", - " [-3.6120e-02, -3.6120e-02, -3.7184e-02, ..., 7.5900e-02,\n", - " 7.6161e-02, 7.6161e-02],\n", - " [-3.5294e-02, -3.5294e-02, -3.6533e-02, ..., 7.4510e-02,\n", - " 7.4510e-02, 7.4510e-02],\n", - " [-3.5294e-02, -3.5294e-02, -3.6533e-02, ..., 7.4510e-02,\n", - " 7.4510e-02, 7.4510e-02]]], device='cuda:0'), ratio=0.0072565157750342935, preds={'embed': Prediction(label='abstract', logits=tensor([ 0.0821, -0.0436, 0.0627, -0.1071, 0.1461, -0.2069, 0.0332, -0.0361,\n", - " 0.0982, 0.1757, 0.0705, 0.0640, 0.0726, 0.0393, -0.1423, -0.0185,\n", - " 0.0183, -0.0626, 0.0867, -0.0314, -0.0339, -0.0778, -0.0331, -0.0614,\n", - " 0.0340, -0.0109, 0.1923, -0.0060, 0.0744, 0.1173, -0.0320, 0.0592,\n", - " 0.0579, -0.0031, -0.0456, -0.1215, -0.0605, -0.0339, -0.1522, 0.0217,\n", - " 0.0442, -0.0503, 0.1671, -0.0074, 0.0363, 0.0664, 0.0190, 0.0213,\n", - " 0.0156, -0.0664, 0.0949, 0.0505, -0.0787, -0.1116, -0.0779, 0.1556,\n", - " 0.1202, 0.1736, -0.0460, 0.1282, -0.0679, -0.0822, 0.1281, -0.1029,\n", - " -0.0529, 0.0253, -0.1448, -0.0377, 0.1968, -0.0293, 0.1088, -0.1434,\n", - " -0.0541, 0.0294, -0.0341, 0.0060, 0.1359, -0.1375, 0.1102, -0.1177,\n", - " 0.0348, 0.1162, -0.0503, -0.2060, -0.1090, -0.0099, 0.0324, 0.0451,\n", - " -0.0338, 0.0338, 0.0696, 0.2181, 0.0372, -0.0196, 0.0067, 0.0317,\n", - " -0.1036, 0.0190, -0.0130, 0.1225, 0.0104, 0.0512, -0.0707, -0.0486,\n", - " -0.0368, -0.0679, -0.0308, 0.0502, 0.0323, -0.0781, -0.0570, -0.0395,\n", - " 0.0856, 0.1052, 0.1503, -0.2152, -0.0828, 0.0311, -0.0215, 0.1363,\n", - " 0.0219, -0.0008, 0.0591, 0.0971, 0.0266, -0.0448, -0.0585, 0.0364],\n", - " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([ 1.6294e-02, 3.5104e-02, 8.8285e-02, 1.9283e-02, 1.1746e-04,\n", - " -3.3381e-02, 1.4265e-02, -4.1918e-02, -5.2606e-02, -5.7124e-03,\n", - " -6.8071e-02, 4.9070e-02, 6.1910e-02, 5.3812e-02, -7.9419e-03,\n", - " 6.6946e-03, -1.7859e-03, 1.0243e-02, -1.1307e-01, 2.8550e-02,\n", - " -1.5286e-02, 4.1545e-02, -5.9603e-02, 1.3106e-02, 1.1374e-03,\n", - " -6.4891e-02, 8.8557e-02, -5.3609e-02, -3.7407e-03, 7.8335e-02,\n", - " 5.7520e-02, -1.9107e-03, 1.2461e-02, -1.9664e-02, -6.8205e-03,\n", - " 2.1693e-02, 2.8966e-02, -3.3499e-02, 2.3425e-02, 6.5229e-02,\n", - " 5.1056e-03, 1.9870e-02, 6.0788e-02, 7.1520e-02, 3.5276e-02,\n", - " -8.6936e-02, 3.0859e-02, -4.3389e-02, -4.9203e-02, 7.9234e-02,\n", - " -1.2499e-02, -5.9900e-02, 6.1636e-02, -4.5172e-02, 5.6193e-02,\n", - " -3.4996e-02, -3.4523e-02, 4.2609e-02, -4.5977e-03, -3.3112e-02,\n", - " 6.0725e-02, -1.8134e-02, 2.3655e-02, 2.3811e-02, -5.0541e-02,\n", - " -4.0948e-02, 7.1188e-02, -4.8375e-02, -2.7495e-03, 3.1842e-03,\n", - " -2.1187e-02, -1.7551e-02, 9.9340e-03, -4.9057e-02, -1.5824e-02,\n", - " -2.3981e-03, 5.4251e-02, 5.8953e-03, -3.0580e-03, -1.0933e-02,\n", - " 5.3183e-03, 1.5704e-02, 7.9159e-03, 4.4183e-02, -7.7004e-02,\n", - " -2.2443e-02, 3.4963e-04, 3.1825e-02, -1.4844e-02, 4.4916e-02,\n", - " 4.6896e-02, 2.9759e-02, -4.9377e-03, -5.5803e-03, -3.1175e-02,\n", - " 1.1908e-02, -2.5802e-02, 4.1970e-02, 8.5289e-02, -7.6835e-02,\n", - " -2.0919e-02, -4.9702e-02, -3.8063e-02, -3.1000e-03, -4.2691e-03,\n", - " -8.2268e-02, -3.2442e-02, -1.9338e-03, 3.9047e-02, 5.4204e-03,\n", - " 5.0297e-02, 6.2880e-03, 1.2038e-01, 5.9175e-02, -5.7138e-02,\n", - " 1.8258e-02, 1.0194e-03, -6.1564e-02, 1.1086e-03, 3.9295e-02,\n", - " 3.4141e-02, 6.1673e-03, -1.0839e-02, -2.7199e-02, -4.1221e-02,\n", - " 2.9401e-02, 4.5364e-02, -8.9506e-04, 1.4322e-02, 9.3027e-02,\n", - " -5.5735e-03, -3.5031e-02, -1.4530e-03, -4.6644e-02, -6.4336e-02,\n", - " -7.3656e-02, 3.4256e-02, -1.1838e-02, 2.6034e-02, 2.3965e-02,\n", - " -4.2367e-02, -3.3466e-03, 6.5770e-02, 2.9696e-02, 7.8309e-03,\n", - " 7.5270e-02, -2.0828e-02, 6.3242e-02, 1.2034e-02, -6.7156e-02,\n", - " 3.7081e-02, -1.0812e-02, 7.5783e-02, -1.2643e-02, -2.4847e-02,\n", - " 2.6689e-02, -1.1837e-03, 1.6611e-02, -2.4661e-03, 3.0569e-02,\n", - " -3.2093e-02, -3.2613e-02, 4.2870e-02, 1.5426e-02, 5.4044e-02,\n", - " 2.1757e-02, 2.9227e-02, -2.0325e-02, -1.3473e-02, 5.1675e-02,\n", - " -6.9036e-02, -3.4316e-02, 5.1619e-02, -3.9259e-03, -7.9806e-02,\n", - " -2.1529e-03, 1.7700e-02, 2.2118e-02, -7.1372e-03, 4.3207e-02,\n", - " 3.2906e-02, -7.7893e-02, -2.4917e-03, 9.3491e-02, 4.2571e-02,\n", - " 1.0403e-02, 3.9414e-03, 1.6867e-02, -6.4337e-02, 4.2213e-02,\n", - " 5.1792e-02, 2.7438e-02, 3.6118e-03, 8.9399e-02, 3.8194e-02,\n", - " -1.8037e-02, 5.7126e-02, -3.1161e-02, 4.8018e-03, 5.5090e-02,\n", - " 5.6928e-03, -2.9651e-02, 4.2569e-02, 4.9638e-02, -1.0771e-02,\n", - " 2.4061e-02, 3.5735e-02, -7.8554e-02, 1.7169e-02, -1.1337e-02,\n", - " -2.6939e-03, -8.7058e-02, -4.5150e-02, 6.0468e-02, -5.6439e-02,\n", - " -1.2541e-01, -1.5513e-02, 5.4264e-03, -5.2229e-02, -2.4255e-02,\n", - " 6.5295e-02, 6.9749e-02, 5.3975e-02, 3.6844e-02, 6.7165e-02,\n", - " 3.0984e-02, -2.8481e-02, 5.2453e-03, 6.4794e-02, -3.7068e-02,\n", - " 1.1636e-02, 1.2859e-02, 2.3275e-02, -1.0226e-01, 8.8517e-03,\n", - " -2.5990e-02, 3.7051e-02, -3.9030e-02, 7.8132e-02, -2.3239e-02,\n", - " 2.6116e-02, 2.0380e-03, 1.9437e-02, 1.2723e-01, -3.6960e-02,\n", - " 5.3992e-02, 2.9311e-02, 3.1097e-02, -5.3928e-02, -1.5912e-03,\n", - " -3.9878e-02, 7.3965e-02, 4.6305e-02, -2.4571e-02, 1.8530e-02,\n", - " 6.6634e-02, 6.7482e-05, 3.4900e-02, 2.9386e-02, 3.7983e-05,\n", - " -1.3013e-02, 1.3087e-02, -6.8172e-03, -1.4998e-02, -6.0925e-02,\n", - " -7.8518e-02, -2.6662e-02, 7.8910e-03, -4.0486e-02, 3.4683e-02,\n", - " -2.7434e-02, 1.0410e-02, 5.3459e-02, 6.4758e-02, -4.3097e-03,\n", - " 6.9132e-02, 2.0507e-02, -4.1302e-02, 4.3763e-02, -5.5110e-03,\n", - " 1.7268e-02, 5.5887e-02, -7.6241e-02, 8.3635e-02, -1.3494e-02,\n", - " 1.8611e-02, -3.2393e-02, 2.1630e-02, 5.4823e-02, -2.1447e-02,\n", - " -6.4997e-03, 5.7149e-02, -1.8163e-02, 4.7814e-02, -1.4039e-02,\n", - " -1.8818e-02, 6.0146e-02, 1.6409e-03, -3.8181e-02, -3.6528e-02,\n", - " -6.9033e-04, -3.6568e-02, -8.2963e-02, 1.5984e-02, 4.6505e-02,\n", - " 2.4259e-02, -4.4351e-02, -7.0898e-02, -4.1313e-02, 1.1995e-02,\n", - " 2.2620e-02, 2.7375e-02, -6.3518e-02, -2.9986e-02, -9.3190e-03,\n", - " 3.5655e-02, -1.7371e-02, 1.6162e-02, 1.0765e-02, 2.8943e-02,\n", - " 7.2108e-03, -3.0755e-02, 7.6410e-02, -3.5330e-02, 8.3063e-02,\n", - " 3.4157e-02, -3.5254e-02, -2.0137e-02, -3.7670e-02, -2.2105e-02,\n", - " -4.2145e-02, 2.6032e-02, -4.9228e-02, 1.8600e-02, -5.2929e-03,\n", - " -6.8469e-03, 3.8270e-02, -4.4089e-03, 1.2302e-01, 3.6210e-02,\n", - " 2.0111e-02, 6.6240e-03, 2.6431e-02, -8.6239e-02, 2.4668e-02,\n", - " -6.8396e-03, -1.0604e-03, -1.9902e-02, 4.1081e-02, -6.2355e-02,\n", - " -3.9122e-04, -4.2193e-03, 1.7773e-02, 3.8902e-03, -3.9351e-02,\n", - " 1.7386e-02, -2.5375e-02, -9.5583e-03, -2.5299e-02, -1.8440e-02,\n", - " 3.8568e-02, -4.9315e-02, -1.0841e-01, 9.4122e-02, 2.1551e-02,\n", - " 1.3560e-03, -5.4843e-03, -6.8499e-02, 1.7158e-02, 4.2539e-02,\n", - " -8.3571e-02, 5.5627e-02, -2.8733e-02, -2.5800e-02, 1.8911e-02,\n", - " -4.4327e-02, -1.4113e-02, 1.5883e-02, 8.3300e-03, -1.4654e-02,\n", - " -8.3648e-02, -7.3067e-03, -7.1523e-02, 1.6634e-02, -6.0027e-03,\n", - " -5.2775e-02, -9.6872e-02, 1.6755e-02, 2.5591e-02, 7.3083e-03,\n", - " 3.6870e-03, 2.6368e-02, 9.5046e-02, 6.4262e-02, 5.5866e-02,\n", - " -1.6474e-02, 4.5092e-02, -6.9268e-02, -6.9903e-03, 2.8344e-02,\n", - " 8.1560e-03, 1.0642e-01, 4.2183e-02, -1.7975e-02, 8.4998e-03,\n", - " -5.4030e-02, -5.7471e-02, -3.0199e-02, 2.6477e-02, 3.9801e-02,\n", - " -1.7668e-02, 6.6100e-02, -5.6078e-03, -2.7327e-02, -1.1938e-02,\n", - " 7.4421e-02, 8.7329e-02, -3.2215e-02, 3.7593e-02, 1.2573e-02,\n", - " -5.2376e-02, -2.9022e-02, 2.9173e-02, -7.2454e-02, 3.4751e-02,\n", - " -1.6762e-02, -5.3458e-03, -3.0784e-02, -5.6995e-03, 4.3013e-02,\n", - " 4.4322e-03, -4.3450e-02, 3.5999e-02, -3.4975e-02, 2.5083e-02,\n", - " -5.1857e-02, 2.8099e-02, 1.0841e-02, -6.7955e-02, -1.9535e-02,\n", - " -4.7523e-02, 4.5902e-02, -1.6092e-02, 3.9139e-02, -8.3538e-02,\n", - " -9.1244e-02, -2.0666e-02, -7.5314e-03, -4.9942e-02, -1.2797e-02,\n", - " 4.7755e-02, 3.0098e-02, 9.0217e-02, 2.3529e-02, 3.6380e-02,\n", - " 6.8979e-02, 5.3718e-02, -3.7569e-02, 6.2550e-02, 3.8094e-02,\n", - " -2.5052e-02, 5.1870e-02, 8.0852e-02, -1.6790e-02, 7.0835e-03,\n", - " 4.8010e-02, -5.7551e-02, -6.4642e-02, -3.2517e-02, 4.2451e-03,\n", - " 7.3334e-02, 3.0093e-02, 1.1886e-01, 4.8538e-02, -1.3318e-01,\n", - " 2.6341e-02, 2.3522e-02, -1.4678e-02, 6.5753e-02, -3.6067e-02,\n", - " 1.4474e-02, -3.1390e-02, 5.8607e-02, -7.3437e-03, -2.4383e-02,\n", - " -3.8720e-02, 1.1570e-02, -8.0316e-03, -3.4532e-03, 1.1781e-03,\n", - " -3.2048e-02, -1.4341e-02, -7.5269e-02, 1.9431e-02, -5.1778e-02,\n", - " 1.4097e-02, -2.9246e-03, 6.0627e-02, -1.3714e-02, 4.8454e-02,\n", - " 6.2255e-04, -5.1223e-02, 3.4848e-02, 7.8207e-02, 3.2250e-02,\n", - " -3.6745e-03, -6.7451e-03, -5.1932e-02, 9.6714e-02, 8.0431e-03,\n", - " 1.3104e-02, 5.6854e-02], device='cuda:0'), other={}), 'fer': Prediction(label='Surprise', logits=tensor([ 0.3468, -0.2790, 0.4901, -0.4610, -2.3501, 0.5280, -0.8666, 1.3180],\n", - " device='cuda:0'), other={}), 'au': Prediction(label='lip_pucker', logits=tensor([0.5469, 0.5315, 0.2635, 0.0673, 0.2948, 0.3963, 0.4807, 0.5898, 0.2990,\n", - " 0.3996, 0.1834, 0.1084, 0.2283, 0.1509, 0.3718, 0.6836, 0.0967, 0.0717,\n", - " 0.0965, 0.2249, 0.0965, 0.4171, 0.3806, 0.2895, 0.0793, 0.1127, 0.0930,\n", - " 0.0456, 0.0551, 0.0936, 0.0856, 0.2960, 0.1136, 0.1679, 0.0210, 0.2525,\n", - " 0.2714, 0.3123, 0.0459, 0.1481, 0.0250], device='cuda:0'), other={'multi': ['inner_brow_raiser', 'outer_brow_raiser', 'upper_lip_raiser', 'lip_pucker']}), 'va': Prediction(label='other', logits=tensor([-0.0264, -0.0469], device='cuda:0'), other={'valence': 0.22364261001348495, 'arousal': 0.0030725032091140775}), 'deepfake': Prediction(label='Real', logits=tensor(0.0075, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6859, -0.3829, -0.0520, 0.1104, 0.3915, 0.7755, 0.1669, -0.7778,\n", - " 0.0208, -0.2817, 1.4856, -0.5584, 0.4354, 0.2665, 0.6039, -0.0072,\n", - " 0.3357, 0.2587, -0.4029, 0.2695, 0.2591, 0.2103, 0.0958, -0.0058,\n", - " 0.0396, -0.0103, -0.3295, 0.1146, 0.0612, 0.1023, -0.1248, 0.0827,\n", - " 0.1020, 0.1188, -0.0399, -0.0075, -0.1029, 0.0316, -0.0087, -0.0839,\n", - " 0.0036, -0.0503, -0.0102, -0.0379, -0.0037, -0.0776, 0.1206, -0.0085,\n", - " -0.0256, -0.0403, -0.0167, 0.0261, 1.0538, -1.6984, 0.2500, -0.6419,\n", - " -0.0501, 0.0336, -0.2535, 0.7852, 0.0592, 0.2573], device='cuda:0'), other={'lmk3d': tensor([[406.2574, 408.9569, 412.5613, 415.8812, 419.8691, 425.4640, 431.2886,\n", - " 438.6856, 449.4534, 459.6204, 466.2425, 471.2617, 474.9014, 476.0859,\n", - " 476.5639, 476.7974, 476.0235, 410.6193, 413.7764, 418.5113, 423.3328,\n", - " 427.8924, 446.3574, 450.5857, 455.4457, 460.9304, 465.7838, 439.1430,\n", - " 440.1713, 441.1512, 442.0310, 437.4620, 439.8128, 443.1280, 446.2616,\n", - " 448.5317, 418.3632, 420.9196, 425.3572, 429.8842, 426.3329, 421.8131,\n", - " 448.6467, 452.3104, 456.8683, 460.5427, 457.3400, 452.6282, 434.2208,\n", - " 437.5998, 441.5991, 444.1690, 446.6229, 451.5543, 455.8321, 452.3303,\n", - " 449.2659, 445.6780, 442.0587, 438.6013, 435.4943, 441.7019, 444.6506,\n", - " 447.7666, 454.8411, 447.8150, 444.7721, 441.7522],\n", - " [486.2319, 494.8192, 502.5384, 509.3825, 516.5247, 521.8410, 524.7597,\n", - " 526.9668, 527.3494, 523.4688, 519.1319, 514.4612, 507.6551, 499.5986,\n", - " 492.0970, 483.8327, 474.9355, 474.6722, 470.7132, 468.8808, 468.3613,\n", - " 468.6606, 465.5971, 463.7659, 462.6571, 462.8356, 465.6607, 476.6386,\n", - " 482.1461, 487.5995, 492.2655, 497.6701, 497.6063, 497.5979, 496.6416,\n", - " 495.9396, 480.2073, 477.8031, 477.1176, 478.5130, 480.0835, 480.9967,\n", - " 475.4855, 472.7310, 472.0175, 473.4615, 475.1968, 475.7975, 509.6336,\n", - " 506.3334, 503.5451, 503.5436, 502.7971, 504.2321, 506.3610, 508.8277,\n", - " 510.9581, 511.8274, 512.0238, 510.9261, 509.2263, 507.0017, 506.2838,\n", - " 506.1194, 506.2843, 507.1980, 507.8662, 508.0878],\n", - " [-58.5145, -57.5465, -56.9607, -55.4277, -51.2775, -43.8156, -34.3998,\n", - " -26.0921, -22.8697, -25.7387, -33.7108, -42.8716, -50.3762, -54.4612,\n", - " -55.9676, -56.5573, -57.4177, -28.4096, -22.6735, -18.5395, -15.9986,\n", - " -14.7740, -14.5050, -15.6275, -18.0375, -21.9770, -27.5754, -13.4394,\n", - " -9.1969, -4.9525, -4.1775, -14.0537, -12.0004, -10.9809, -11.8004,\n", - " -13.7235, -25.0594, -20.9853, -20.7746, -21.8629, -20.9527, -22.1837,\n", - " -21.6592, -20.4887, -20.4945, -24.4189, -21.6476, -20.5924, -17.8496,\n", - " -12.4632, -9.8531, -9.4458, -9.6900, -11.9687, -17.0550, -13.0921,\n", - " -11.7107, -11.4356, -11.7692, -13.4194, -17.2167, -12.0756, -11.1458,\n", - " -11.8815, -16.5972, -11.7293, -11.5992, -12.0050]], device='cuda:0',\n", - " dtype=torch.float64), 'mesh': tensor([[411.1458, 411.1906, 411.2369, ..., 473.8996, 473.8188, 473.7325],\n", - " [476.9688, 477.0877, 477.2065, ..., 498.0568, 497.9245, 497.7936],\n", - " [-28.0965, -28.0858, -28.0759, ..., -73.1040, -73.4302, -73.7453]],\n", - " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [1.6331758603673863, 0.00479942403408295, -10.627768598091517], 'translation': tensor([443.2034, 484.4234, -86.8661], device='cuda:0', dtype=torch.float64)}})}), Face(indx=2, loc=Location(x1=304, x2=416, y1=325, y2=438), dims=Dimensions(height=113, width=112), tensor=tensor([[[ 0.1765, 0.1765, 0.1644, ..., 0.8041, 0.8078, 0.8078],\n", - " [ 0.1765, 0.1765, 0.1644, ..., 0.8041, 0.8078, 0.8078],\n", - " [ 0.1707, 0.1707, 0.1600, ..., 0.8024, 0.8059, 0.8059],\n", - " ...,\n", - " [ 0.3115, 0.3115, 0.3115, ..., 0.0980, 0.0980, 0.0980],\n", - " [ 0.3373, 0.3373, 0.3373, ..., 0.0980, 0.0980, 0.0980],\n", - " [ 0.3373, 0.3373, 0.3373, ..., 0.0980, 0.0980, 0.0980]],\n", - "\n", - " [[ 0.0667, 0.0667, 0.0574, ..., 0.6051, 0.6078, 0.6078],\n", - " [ 0.0667, 0.0667, 0.0574, ..., 0.6051, 0.6078, 0.6078],\n", - " [ 0.0609, 0.0609, 0.0532, ..., 0.6031, 0.6059, 0.6059],\n", - " ...,\n", - " [ 0.1318, 0.1318, 0.1318, ..., 0.0157, 0.0157, 0.0157],\n", - " [ 0.1490, 0.1490, 0.1490, ..., 0.0157, 0.0157, 0.0157],\n", - " [ 0.1490, 0.1490, 0.1490, ..., 0.0157, 0.0157, 0.0157]],\n", - "\n", - " [[ 0.0039, 0.0039, -0.0072, ..., 0.5335, 0.5373, 0.5373],\n", - " [ 0.0039, 0.0039, -0.0072, ..., 0.5335, 0.5373, 0.5373],\n", - " [-0.0018, -0.0018, -0.0114, ..., 0.5319, 0.5353, 0.5353],\n", - " ...,\n", - " [ 0.0327, 0.0327, 0.0337, ..., -0.0471, -0.0471, -0.0471],\n", - " [ 0.0471, 0.0471, 0.0480, ..., -0.0471, -0.0471, -0.0471],\n", - " [ 0.0471, 0.0471, 0.0480, ..., -0.0471, -0.0471, -0.0471]]],\n", - " device='cuda:0'), ratio=0.01085048010973937, preds={'embed': Prediction(label='abstract', logits=tensor([-0.1082, -0.0285, 0.1277, -0.0622, 0.0594, 0.0432, 0.0691, -0.0739,\n", - " 0.1594, -0.0780, 0.1411, 0.0504, 0.0804, 0.0345, 0.0473, 0.0097,\n", - " 0.1650, 0.0771, -0.0739, 0.0424, 0.0898, -0.0929, 0.1129, 0.1323,\n", - " 0.1149, 0.0681, -0.0549, 0.0365, -0.0870, 0.0555, -0.0800, 0.0585,\n", - " -0.0919, -0.0474, -0.0087, 0.1194, -0.0921, 0.0174, 0.2783, -0.0811,\n", - " 0.0914, 0.0585, -0.0105, 0.1011, -0.0162, 0.1334, 0.0145, 0.0105,\n", - " -0.0260, 0.0798, 0.1207, 0.0176, 0.1253, 0.0639, -0.0255, 0.0573,\n", - " -0.2182, -0.0955, -0.0543, -0.1026, -0.0181, -0.1430, -0.0337, 0.0416,\n", - " 0.1377, 0.0940, 0.0039, -0.0746, 0.1421, 0.1803, -0.0296, -0.0442,\n", - " -0.1039, -0.0076, -0.0023, 0.0327, 0.0198, 0.0378, -0.1709, -0.0539,\n", - " 0.0755, 0.1615, -0.1109, 0.0489, 0.0739, 0.0772, 0.0299, -0.0928,\n", - " -0.0598, 0.0545, 0.0336, -0.0705, -0.0040, -0.0365, 0.0822, -0.1637,\n", - " -0.1692, -0.0947, -0.0546, -0.1109, -0.0756, -0.0205, 0.0147, 0.0253,\n", - " -0.1175, -0.1318, 0.0908, 0.1920, -0.0702, 0.0213, 0.0349, 0.0229,\n", - " -0.0356, -0.0246, 0.0825, 0.0213, -0.0250, 0.1168, -0.0209, 0.0768,\n", - " 0.0866, 0.0666, -0.0044, 0.0664, 0.0837, -0.1002, -0.0450, 0.0420],\n", - " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([ 0.0265, -0.0136, -0.0285, -0.0368, -0.0450, -0.0311, 0.0775, 0.0359,\n", - " -0.0696, -0.0542, -0.0501, -0.0625, 0.0183, -0.0424, -0.0002, -0.0290,\n", - " 0.0157, 0.0110, -0.0619, -0.0067, 0.0028, 0.0008, -0.0215, -0.0148,\n", - " -0.0257, -0.0212, -0.0412, -0.0337, 0.0564, -0.0106, -0.0720, 0.0358,\n", - " -0.0995, 0.0045, 0.0357, 0.0295, 0.0149, -0.0043, -0.0513, -0.0177,\n", - " 0.0279, -0.0211, 0.0039, -0.0471, -0.0245, -0.0826, 0.0712, 0.0021,\n", - " -0.0187, -0.0376, -0.0584, -0.0130, -0.0249, 0.0241, -0.0073, 0.0485,\n", - " 0.0445, 0.0416, -0.0447, -0.0145, -0.0670, -0.0087, 0.0406, 0.0408,\n", - " 0.0055, -0.0191, 0.0136, 0.0040, 0.0884, 0.0153, -0.0359, 0.0560,\n", - " -0.0276, 0.0009, -0.0239, -0.0279, 0.0185, 0.0283, -0.0246, -0.0300,\n", - " 0.0181, 0.0204, 0.0414, -0.0265, -0.0639, 0.0081, 0.0110, 0.0302,\n", - " -0.0652, -0.0283, -0.0203, -0.0101, 0.0171, 0.0034, 0.0062, -0.0134,\n", - " 0.0353, 0.0025, -0.0050, -0.0127, 0.0623, -0.0527, -0.0553, -0.0461,\n", - " 0.0203, -0.0250, -0.0284, -0.0245, 0.0317, 0.0385, -0.0208, -0.0154,\n", - " 0.0212, -0.0427, 0.0745, 0.0258, -0.0897, -0.0126, 0.0240, -0.0802,\n", - " 0.0165, 0.0569, -0.0813, -0.0373, -0.0799, 0.0534, -0.0048, 0.0309,\n", - " -0.0618, -0.0553, 0.0230, 0.0314, -0.0191, 0.0035, -0.0218, -0.0235,\n", - " 0.1259, -0.0385, -0.0653, 0.0618, -0.0022, -0.0295, -0.0263, -0.0272,\n", - " 0.0302, 0.0310, -0.0131, 0.0304, -0.0551, 0.0439, -0.0009, 0.0056,\n", - " 0.0247, 0.0541, 0.0459, 0.1097, -0.0242, -0.0104, -0.0276, -0.0716,\n", - " -0.0049, 0.0194, -0.0446, 0.0142, -0.0144, 0.0060, 0.0288, -0.0708,\n", - " -0.0495, 0.0481, 0.0323, 0.0169, -0.0294, 0.0356, 0.0397, 0.0126,\n", - " 0.0221, -0.0247, 0.0098, 0.0863, -0.0334, -0.0201, 0.0268, 0.0323,\n", - " 0.0420, -0.0119, 0.0086, 0.0306, -0.0062, 0.0638, 0.0085, 0.0384,\n", - " 0.0945, -0.0363, 0.0219, -0.0993, -0.0483, -0.0300, 0.0501, 0.0242,\n", - " -0.0609, -0.0394, 0.0301, -0.0407, -0.0062, -0.0506, -0.0184, 0.0214,\n", - " -0.0087, -0.0099, 0.0440, 0.0265, 0.0305, -0.0318, -0.0334, -0.0074,\n", - " -0.0606, -0.0043, -0.0304, 0.0450, 0.0457, -0.0268, 0.0096, 0.0085,\n", - " 0.0779, 0.0257, -0.0126, 0.0209, 0.0414, 0.0566, 0.0875, -0.0139,\n", - " -0.0697, 0.1027, -0.0248, -0.0792, -0.0050, -0.0076, -0.0405, 0.0376,\n", - " -0.0029, -0.0205, 0.0407, -0.0422, 0.0123, -0.0206, -0.0821, 0.0061,\n", - " -0.0760, -0.1010, -0.0294, -0.0612, -0.0682, -0.0969, -0.0577, -0.0005,\n", - " -0.0335, -0.0128, -0.0332, 0.0089, 0.0189, 0.0597, 0.1112, 0.0569,\n", - " 0.0432, -0.0216, -0.0776, -0.0804, -0.0330, -0.0135, -0.0400, 0.0115,\n", - " 0.0055, 0.0362, 0.1420, -0.0009, -0.0364, 0.0065, -0.0328, 0.0336,\n", - " 0.0204, 0.0062, -0.0188, -0.0297, -0.0648, -0.0328, -0.0175, -0.1000,\n", - " -0.0127, -0.0152, 0.0869, -0.0820, 0.0526, 0.0508, 0.1104, -0.0490,\n", - " 0.0532, 0.0048, 0.0348, -0.0382, 0.0160, 0.0110, 0.0470, 0.0899,\n", - " 0.0675, -0.0286, 0.0123, -0.0482, -0.0183, -0.0283, -0.0454, -0.0276,\n", - " 0.0135, 0.0688, -0.0099, -0.0341, -0.0303, 0.0296, -0.0775, 0.0558,\n", - " -0.0535, 0.0358, -0.0264, -0.0271, -0.0737, 0.0267, 0.0379, 0.0111,\n", - " 0.0215, 0.0242, -0.0761, -0.0284, 0.0516, -0.0392, 0.0143, 0.0343,\n", - " -0.0184, 0.0061, 0.0059, 0.0220, 0.0742, -0.0176, -0.0475, 0.0339,\n", - " 0.0545, 0.0170, -0.0147, 0.0227, 0.0674, -0.0072, -0.0620, 0.0076,\n", - " -0.0373, -0.0149, -0.0376, 0.0603, 0.0568, -0.0229, -0.0570, -0.0477,\n", - " 0.0471, 0.0601, -0.0371, -0.1001, 0.0071, -0.0231, -0.0284, -0.0136,\n", - " -0.0232, 0.0479, -0.0339, 0.0314, -0.0408, 0.0033, -0.0056, 0.0117,\n", - " 0.0104, -0.0751, -0.0059, -0.0226, 0.0227, -0.0617, -0.0420, 0.0153,\n", - " -0.0441, -0.0145, 0.0777, -0.0379, 0.0135, -0.0006, 0.0526, 0.0322,\n", - " 0.0458, -0.0364, -0.0341, 0.0295, -0.0183, -0.0243, 0.0563, 0.0171,\n", - " -0.1092, -0.0673, -0.0229, 0.0060, -0.0302, -0.0420, 0.0365, -0.0182,\n", - " -0.0018, -0.0487, 0.0143, -0.0305, 0.0040, -0.0446, -0.0170, -0.0009,\n", - " 0.0121, -0.0686, 0.0187, 0.0813, -0.0021, -0.0516, -0.0483, -0.0893,\n", - " -0.0151, 0.0428, -0.0364, -0.0351, 0.0305, 0.0294, -0.0444, 0.0026,\n", - " 0.0213, -0.0220, 0.0021, 0.0188, 0.0733, -0.0150, -0.0481, -0.0647,\n", - " 0.0726, 0.0499, 0.0712, -0.0029, -0.1222, -0.0827, -0.0350, 0.0276,\n", - " -0.0502, 0.0283, 0.0456, 0.0319, 0.0521, -0.0520, -0.0070, -0.0409,\n", - " 0.0383, 0.0626, 0.0018, -0.0516, 0.0087, -0.1213, -0.0174, 0.0016,\n", - " 0.0122, 0.0216, 0.0353, -0.0347, 0.0149, -0.0711, -0.0983, -0.0938,\n", - " -0.0326, 0.0065, -0.0372, 0.0105, -0.0954, -0.0058, -0.0128, 0.0552,\n", - " 0.0075, 0.0498, 0.0772, -0.0454, -0.0436, -0.0335, 0.0633, 0.0189,\n", - " -0.1074, 0.0214, 0.0060, -0.0094, -0.0101, 0.0585, 0.0290, -0.0467,\n", - " 0.0039, 0.0047, -0.0118, -0.0196, -0.0421, 0.0980, -0.0181, -0.0655,\n", - " 0.0123, -0.0206, 0.0568, 0.0418, 0.0261, 0.0293, 0.0022, -0.0740],\n", - " device='cuda:0'), other={}), 'fer': Prediction(label='Happiness', logits=tensor([-0.8319, 0.5829, 0.8000, 0.2118, 1.3525, -2.2695, -0.2542, -0.4857],\n", - " device='cuda:0'), other={}), 'au': Prediction(label='upper_lip_raiser', logits=tensor([0.3834, 0.4124, 0.2915, 0.0488, 0.4047, 0.5271, 0.5809, 0.6022, 0.2451,\n", - " 0.5122, 0.0804, 0.2262, 0.2505, 0.1567, 0.3297, 0.4826, 0.0842, 0.0686,\n", - " 0.0606, 0.2115, 0.0989, 0.4633, 0.3180, 0.2119, 0.0201, 0.0506, 0.0587,\n", - " 0.0282, 0.0310, 0.0381, 0.0381, 0.1780, 0.0566, 0.0690, 0.0088, 0.2488,\n", - " 0.2212, 0.2272, 0.0416, 0.1052, 0.0169], device='cuda:0'), other={'multi': ['lid_tightener', 'nose_wrinkler', 'upper_lip_raiser', 'lip_corner_puller']}), 'va': Prediction(label='other', logits=tensor([0.7079, 0.2615], device='cuda:0'), other={'valence': 0.9579311013221741, 'arousal': 0.31147159934043883}), 'deepfake': Prediction(label='Real', logits=tensor(0.0079, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 0.9151, 0.7179, 0.5859, -0.4492, -0.7440, 0.5096, -0.4099, 0.1807,\n", - " -0.6808, -0.0705, 0.7457, -0.6290, 0.4481, -0.2686, -0.0138, 0.1428,\n", - " -0.2458, -0.0413, -0.0495, -0.0278, -0.4417, -0.2207, -0.0183, 0.1026,\n", - " -0.0257, -0.0672, 0.0089, 0.0605, 0.0185, -0.0178, 0.0455, -0.0332,\n", - " -0.0692, -0.1258, 0.0844, -0.1021, 0.1496, -0.0783, 0.0212, 0.1193,\n", - " -0.0132, 0.0822, -0.0044, 0.0452, -0.0119, 0.1098, -0.0598, 0.0467,\n", - " 0.0230, 0.1077, -0.0312, -0.0198, -1.1026, 1.0199, -0.1736, 0.8155,\n", - " 0.0728, -0.0068, -0.1060, -0.9437, -0.0786, -0.3778], device='cuda:0'), other={'lmk3d': tensor([[325.9496, 323.2606, 321.7278, 320.6073, 320.6018, 324.5638, 331.0073,\n", - " 338.9406, 349.4346, 359.3748, 365.1216, 368.9915, 373.4830, 378.1089,\n", - " 382.4319, 387.3008, 391.6353, 348.4583, 355.6591, 362.2960, 367.6229,\n", - " 371.6902, 388.9258, 393.1255, 396.8989, 399.8072, 400.0108, 376.9104,\n", - " 376.1422, 375.5029, 373.8757, 361.9241, 365.0229, 368.5455, 371.8167,\n", - " 373.7274, 352.8893, 358.1556, 362.3395, 364.7466, 361.1791, 356.3780,\n", - " 382.1250, 387.3910, 391.5962, 392.2389, 389.6725, 385.7396, 345.3940,\n", - " 354.0380, 362.6646, 365.7507, 369.0251, 372.9528, 373.2491, 367.9565,\n", - " 363.7895, 359.1929, 354.6160, 350.2925, 346.3436, 359.2110, 363.9967,\n", - " 367.9014, 372.6104, 364.6025, 360.4374, 356.1348],\n", - " [351.6276, 361.9891, 371.8369, 381.0313, 391.9385, 402.5040, 411.2894,\n", - " 420.6132, 427.8299, 428.2663, 424.4204, 419.5766, 412.3653, 403.2433,\n", - " 395.1673, 386.6733, 376.9641, 350.0087, 349.2924, 350.9149, 353.5134,\n", - " 356.4769, 363.1097, 363.1810, 364.0024, 366.0531, 369.7483, 370.4395,\n", - " 377.5560, 384.3583, 389.5835, 388.9828, 390.9186, 393.0527, 393.4657,\n", - " 393.3965, 360.2910, 360.0827, 361.7449, 365.3649, 365.3000, 363.5488,\n", - " 372.0727, 371.3344, 373.0011, 375.5262, 376.3211, 374.7316, 395.2401,\n", - " 395.4092, 396.8146, 398.6683, 399.2571, 402.6591, 406.4026, 410.8424,\n", - " 412.1897, 411.0896, 408.6212, 403.8473, 395.6412, 398.7527, 400.5798,\n", - " 402.1142, 406.1663, 408.1911, 407.1255, 404.6331],\n", - " [-56.4699, -56.4355, -57.1755, -57.0587, -55.1206, -50.5544, -44.7040,\n", - " -40.4069, -42.3815, -50.9624, -62.2841, -73.2464, -81.9793, -86.1536,\n", - " -87.8684, -88.9659, -89.8016, -29.4807, -25.4118, -23.6707, -23.5128,\n", - " -24.5183, -33.3114, -36.5016, -41.2640, -47.7705, -55.6070, -28.0453,\n", - " -23.9706, -19.9398, -19.3018, -28.1390, -27.3039, -28.0749, -30.8122,\n", - " -34.2277, -29.6494, -26.8993, -28.8359, -32.1533, -29.3883, -28.3824,\n", - " -41.1111, -41.7181, -43.9530, -49.6333, -45.2578, -41.9032, -34.5442,\n", - " -29.5019, -28.4485, -29.7492, -31.6754, -39.2336, -49.1855, -41.8874,\n", - " -36.8908, -33.8157, -32.0819, -32.7257, -35.0856, -30.7447, -31.7671,\n", - " -35.1052, -48.8208, -36.9304, -34.0121, -32.8160]], device='cuda:0',\n", - " dtype=torch.float64), 'mesh': tensor([[ 347.6599, 347.6322, 347.6058, ..., 369.7503, 369.6336,\n", - " 369.5160],\n", - " [ 352.6554, 352.7989, 352.9428, ..., 396.1997, 395.9443,\n", - " 395.6904],\n", - " [ -29.3039, -29.3098, -29.3172, ..., -103.1651, -103.4589,\n", - " -103.7392]], device='cuda:0', dtype=torch.float64), 'pose': {'angles': [-22.621972976156982, -12.48670030695662, 23.981291427286767], 'translation': tensor([352.3114, 392.8130, -88.1578], device='cuda:0', dtype=torch.float64)}})}), Face(indx=3, loc=Location(x1=709, x2=805, y1=390, y2=487), dims=Dimensions(height=97, width=96), tensor=tensor([[[ 0.6824, 0.6824, 0.6911, ..., 0.1412, 0.1412, 0.1412],\n", - " [ 0.6824, 0.6824, 0.6911, ..., 0.1412, 0.1412, 0.1412],\n", - " [ 0.6845, 0.6845, 0.6931, ..., 0.1407, 0.1406, 0.1406],\n", - " ...,\n", - " [ 0.6281, 0.6281, 0.6276, ..., 0.5091, 0.5091, 0.5091],\n", - " [ 0.6314, 0.6314, 0.6309, ..., 0.5059, 0.5059, 0.5059],\n", - " [ 0.6314, 0.6314, 0.6309, ..., 0.5059, 0.5059, 0.5059]],\n", - "\n", - " [[ 0.4392, 0.4392, 0.4464, ..., 0.0431, 0.0431, 0.0431],\n", - " [ 0.4392, 0.4392, 0.4464, ..., 0.0431, 0.0431, 0.0431],\n", - " [ 0.4398, 0.4398, 0.4468, ..., 0.0427, 0.0426, 0.0426],\n", - " ...,\n", - " [ 0.2920, 0.2920, 0.2923, ..., 0.2127, 0.2127, 0.2127],\n", - " [ 0.2941, 0.2941, 0.2946, ..., 0.2078, 0.2078, 0.2078],\n", - " [ 0.2941, 0.2941, 0.2946, ..., 0.2078, 0.2078, 0.2078]],\n", - "\n", - " [[ 0.3686, 0.3686, 0.3759, ..., -0.0157, -0.0157, -0.0157],\n", - " [ 0.3686, 0.3686, 0.3759, ..., -0.0157, -0.0157, -0.0157],\n", - " [ 0.3697, 0.3697, 0.3768, ..., -0.0162, -0.0162, -0.0162],\n", - " ...,\n", - " [ 0.1440, 0.1440, 0.1448, ..., 0.0929, 0.0929, 0.0929],\n", - " [ 0.1451, 0.1451, 0.1461, ..., 0.0902, 0.0902, 0.0902],\n", - " [ 0.1451, 0.1451, 0.1461, ..., 0.0902, 0.0902, 0.0902]]],\n", - " device='cuda:0'), ratio=0.007983539094650206, preds={'embed': Prediction(label='abstract', logits=tensor([ 0.1123, 0.0388, -0.0597, 0.0146, -0.0652, -0.0706, -0.0195, 0.0521,\n", - " 0.0861, 0.0183, 0.0881, -0.0781, 0.1171, 0.1533, -0.0191, -0.0839,\n", - " 0.1500, 0.0202, 0.1268, -0.0433, 0.1147, 0.0401, -0.0247, -0.0360,\n", - " -0.0215, 0.1177, 0.0425, 0.0944, -0.0995, -0.0966, 0.0536, -0.1263,\n", - " 0.1725, 0.0243, -0.1391, 0.0081, -0.0747, 0.0790, 0.0028, 0.0179,\n", - " 0.1737, 0.1264, 0.0429, -0.0397, 0.0892, -0.0787, -0.0101, 0.0518,\n", - " -0.0288, -0.0795, 0.0379, 0.0527, -0.0470, -0.0845, -0.0788, 0.1630,\n", - " 0.1168, 0.0165, -0.0811, 0.1830, -0.1082, -0.0538, 0.1457, -0.0949,\n", - " -0.1334, -0.0066, -0.0324, -0.0647, 0.0171, 0.0983, -0.0207, -0.0773,\n", - " -0.0648, -0.0795, -0.1511, 0.0205, 0.1224, 0.0230, 0.0003, 0.0386,\n", - " -0.1127, 0.0439, -0.0370, -0.0414, -0.0727, 0.2022, -0.0591, -0.0992,\n", - " 0.1312, -0.0765, -0.0018, 0.1270, 0.1242, -0.0312, 0.1282, -0.0291,\n", - " 0.0135, 0.1674, -0.0183, 0.1173, -0.1888, -0.1347, -0.0718, 0.0575,\n", - " 0.0276, -0.0829, -0.0981, 0.0923, -0.0541, -0.0962, -0.0795, -0.1467,\n", - " -0.0157, 0.0157, -0.0587, -0.0322, -0.0693, -0.0566, 0.0491, -0.0089,\n", - " 0.0186, -0.0568, -0.0085, -0.1491, -0.0214, -0.0391, 0.1004, 0.1952],\n", - " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([-2.1140e-02, -9.4311e-02, -2.8810e-02, -4.6512e-02, -3.4438e-02,\n", - " 4.5177e-03, -7.4685e-02, -1.2953e-02, -2.6747e-02, 1.7848e-02,\n", - " -4.0256e-02, 2.9478e-02, 7.2878e-02, 5.4362e-02, 1.4793e-02,\n", - " 2.8869e-02, -2.3587e-02, -1.8154e-03, -2.9428e-02, -7.1922e-02,\n", - " -6.4076e-02, 7.8159e-03, -2.7936e-02, 4.9204e-02, -8.0633e-02,\n", - " -3.8566e-02, 1.8985e-02, 7.4753e-03, -1.5321e-02, -1.6437e-02,\n", - " -1.7215e-02, -4.7261e-02, 3.6692e-02, -4.4184e-02, 7.7633e-02,\n", - " -3.9204e-02, 7.2337e-02, -3.5909e-03, 2.4318e-03, -3.6321e-02,\n", - " 2.7026e-02, 4.4843e-02, 4.2198e-02, 5.7313e-02, -1.5605e-02,\n", - " 1.3321e-02, -1.9707e-03, 5.8157e-03, 3.8072e-02, 2.5240e-02,\n", - " 2.1627e-02, -1.3719e-02, -4.5093e-02, 1.3505e-02, 5.6432e-02,\n", - " 1.8376e-02, -8.0240e-02, 7.7326e-03, -5.6222e-02, 5.1158e-02,\n", - " 2.0520e-02, 3.2381e-02, 1.1209e-02, -4.3550e-02, -4.8388e-02,\n", - " 3.7059e-02, -2.7751e-02, 5.9774e-02, -3.1689e-03, -2.6937e-02,\n", - " -7.1772e-02, -7.0010e-02, -8.7105e-02, 4.1829e-03, 1.9414e-02,\n", - " -7.8101e-02, 2.0161e-02, 2.5377e-02, 6.6513e-02, 6.4928e-02,\n", - " 1.0026e-01, 1.1135e-02, 2.6583e-03, 4.8496e-02, -6.3903e-02,\n", - " -5.4311e-03, -1.4080e-02, -1.5546e-02, -1.9014e-02, -2.7194e-02,\n", - " 6.5179e-02, 2.3266e-02, -7.9378e-02, 5.9065e-03, -1.3092e-01,\n", - " 3.2425e-02, -3.7285e-02, 3.7663e-02, -5.6152e-02, -8.7038e-03,\n", - " -1.9569e-02, -5.9281e-02, 5.0664e-03, -5.6120e-02, 5.3518e-02,\n", - " -6.2814e-03, -6.3275e-02, 2.3994e-02, -2.1086e-02, -1.1307e-02,\n", - " -2.6155e-02, -5.3931e-02, 1.8247e-02, 1.6497e-02, -6.0798e-02,\n", - " -4.5024e-03, -3.4567e-02, -1.2599e-02, -2.2346e-02, -4.7043e-02,\n", - " -2.7716e-02, -2.5533e-03, -2.8865e-02, -1.5918e-02, -9.1293e-02,\n", - " -4.6791e-02, -2.3005e-02, -8.6917e-02, 2.7470e-02, 6.6486e-02,\n", - " 1.7323e-02, -3.5106e-02, 3.7512e-02, 8.1063e-03, -5.5226e-03,\n", - " -3.5011e-02, -9.3214e-03, 3.1248e-02, 5.3281e-02, 7.6175e-02,\n", - " -6.4165e-02, -2.1502e-03, -6.7093e-02, -4.7711e-02, -3.6775e-02,\n", - " 8.8552e-02, 1.9196e-02, 4.1092e-02, -4.5856e-03, 4.1686e-02,\n", - " -4.1660e-02, 5.1485e-02, -6.1445e-02, -5.5135e-02, -1.0994e-02,\n", - " -1.1552e-02, -9.1616e-03, -3.0428e-02, 8.4153e-03, 9.8883e-03,\n", - " -8.3193e-03, 6.1501e-02, -2.0352e-02, 9.3854e-04, -3.3650e-02,\n", - " -2.7236e-03, 3.5869e-02, -3.7840e-02, -6.6470e-02, 7.4084e-02,\n", - " 5.7792e-02, -4.8464e-02, 2.3810e-02, -1.6576e-02, 7.2458e-03,\n", - " 3.6008e-02, 3.4512e-02, 4.3528e-02, 8.0564e-03, -2.4592e-02,\n", - " 4.3826e-02, -1.0114e-01, -1.4481e-02, -2.3150e-02, -2.2293e-02,\n", - " -1.1326e-02, 4.1734e-02, -3.6126e-02, 4.8126e-02, -3.6174e-02,\n", - " 2.7231e-02, -6.0583e-02, 2.1395e-02, 1.0219e-02, 8.9267e-02,\n", - " -3.8147e-02, -3.2592e-02, 2.9219e-02, 6.6782e-02, 3.6617e-02,\n", - " 4.6832e-02, 6.2448e-02, -4.1712e-02, 2.9782e-02, -1.5890e-02,\n", - " 2.8829e-02, -1.5348e-02, 4.5930e-02, 2.9251e-02, -3.7206e-02,\n", - " 7.1631e-02, 2.2485e-02, -5.8603e-02, -5.5079e-02, -6.1745e-03,\n", - " -6.0390e-02, 4.3832e-02, 7.6336e-03, -8.0045e-03, -1.8342e-02,\n", - " 5.8779e-02, 5.2754e-02, 4.7853e-02, 2.5693e-02, 4.4338e-02,\n", - " 1.8824e-02, -7.7679e-03, -3.0650e-02, 1.4611e-02, -4.0533e-02,\n", - " 8.8743e-03, 3.9422e-02, 1.9700e-02, -3.8069e-02, -3.1066e-02,\n", - " -6.2268e-02, 2.4354e-02, 2.6202e-02, 1.3880e-02, -4.4134e-02,\n", - " -8.2488e-03, 7.5456e-02, -7.4873e-03, 4.2710e-02, -1.3150e-02,\n", - " 1.3885e-03, 3.1739e-02, 4.9686e-02, -5.0465e-02, 7.1555e-03,\n", - " -1.7789e-02, 7.3926e-03, -4.7345e-03, -1.0240e-02, -9.0001e-02,\n", - " 4.4208e-02, 2.9978e-02, -1.1203e-02, -4.4992e-02, 6.3099e-02,\n", - " 1.1741e-02, 1.2406e-02, -8.5411e-02, -5.1944e-02, 1.7323e-02,\n", - " -2.0331e-03, -9.7630e-02, 4.2242e-02, 6.1197e-02, 2.6012e-02,\n", - " 1.9730e-02, 4.2435e-02, 3.3953e-02, 3.8048e-02, 4.3902e-02,\n", - " 1.8221e-02, 6.6977e-02, -1.9643e-02, -2.5007e-02, 2.0340e-02,\n", - " 7.1547e-02, -4.7440e-02, 2.9273e-02, -1.4846e-02, 5.0993e-02,\n", - " -3.8095e-02, -2.7230e-02, -1.4417e-02, 1.0233e-02, -8.4571e-02,\n", - " -6.7366e-03, 1.7986e-02, 4.7188e-02, 3.2894e-03, -3.6049e-02,\n", - " 1.7832e-02, 5.3268e-02, -4.5941e-02, 4.2866e-03, -1.5666e-02,\n", - " 5.0361e-02, -6.0816e-02, 1.3273e-02, 6.1248e-02, -3.6546e-02,\n", - " -6.8209e-04, 5.4843e-02, -7.4096e-02, 6.3652e-02, 1.3000e-02,\n", - " -1.4100e-02, 7.7745e-02, -5.0790e-02, -3.3783e-02, 7.3319e-03,\n", - " -6.9168e-02, -2.9989e-02, 1.8873e-02, -1.6830e-02, 9.5141e-03,\n", - " -2.7530e-02, -1.7906e-02, 8.6768e-03, 8.7173e-03, 5.0130e-05,\n", - " 3.4998e-02, 1.2410e-02, -3.2852e-02, -9.8997e-02, -1.8370e-02,\n", - " 3.4074e-02, 5.3788e-02, -9.6784e-02, 4.3145e-02, 1.5619e-02,\n", - " -2.9918e-02, 5.6675e-02, -5.3269e-02, 2.1768e-02, 5.7486e-02,\n", - " -4.5834e-02, 1.5840e-02, 1.9625e-02, -5.6148e-02, -1.8807e-03,\n", - " -7.0847e-02, -2.2764e-02, 2.0672e-02, 2.0534e-02, -1.8901e-02,\n", - " 4.5866e-02, 5.2986e-03, -1.1978e-01, -1.3630e-02, -5.9728e-02,\n", - " -4.1038e-02, 8.3208e-02, 1.4508e-02, -5.9358e-02, 3.3653e-02,\n", - " 4.8009e-02, 4.1343e-03, -3.3894e-02, 2.0771e-02, -1.6661e-02,\n", - " 6.7792e-02, -1.0998e-03, -3.1857e-02, -2.7954e-02, -3.2659e-02,\n", - " -7.4949e-02, 5.9029e-02, 4.9978e-02, -6.5975e-02, 1.9564e-02,\n", - " -5.1579e-02, 4.5959e-02, -4.7279e-02, -1.5454e-02, 3.7084e-03,\n", - " -2.4829e-02, 3.1967e-02, -1.0832e-01, -4.2311e-04, -3.6064e-02,\n", - " -7.0696e-02, -3.1683e-02, 4.5933e-03, -2.3077e-02, 5.9740e-03,\n", - " -8.0083e-03, 4.1260e-02, -5.1117e-02, 7.1721e-02, -2.1609e-02,\n", - " 4.6676e-02, -8.9895e-03, -4.0859e-02, 2.6671e-02, 1.5540e-02,\n", - " 4.3643e-02, 7.8479e-02, -9.8508e-03, -7.0387e-02, -4.2340e-03,\n", - " -1.6058e-02, 1.0321e-02, -3.6506e-03, -4.4291e-02, 5.4162e-02,\n", - " 1.3925e-02, 6.1427e-02, -4.6598e-02, -5.9422e-02, -1.3529e-01,\n", - " 5.2213e-02, 1.8817e-02, -2.6722e-02, -1.7153e-02, -2.7089e-02,\n", - " -3.3739e-02, -5.0745e-02, -1.0284e-02, -6.5881e-02, -5.0717e-02,\n", - " -4.3156e-02, 1.7743e-02, -7.7002e-02, -5.1442e-02, 1.2048e-01,\n", - " 1.3700e-02, -5.2653e-02, -4.8434e-03, 5.1945e-02, 3.6872e-02,\n", - " 1.1785e-02, 8.2269e-03, -5.1138e-02, -2.0783e-02, 9.6090e-03,\n", - " -7.8431e-02, -4.9915e-02, 5.2206e-02, -3.4631e-02, 4.1130e-02,\n", - " 6.7951e-03, 1.0091e-02, -3.7111e-02, -1.7473e-02, -7.8750e-02,\n", - " -1.9864e-02, 2.4413e-02, -7.2539e-03, -3.6784e-02, -5.2204e-02,\n", - " 4.8456e-02, -4.3423e-02, -3.5151e-02, 6.7425e-02, -4.0768e-02,\n", - " -6.9522e-02, 3.7984e-02, -1.9808e-02, -3.7061e-02, -5.4562e-02,\n", - " 6.3676e-02, 9.9637e-02, -5.6318e-03, -1.0433e-01, 1.5634e-02,\n", - " 9.3659e-03, 7.1628e-02, 1.4849e-02, -3.7589e-02, -9.9173e-02,\n", - " -1.0295e-02, 5.2714e-02, 5.8066e-02, 1.2363e-02, 8.4429e-03,\n", - " 2.4809e-02, -4.2649e-02, 6.5593e-02, 1.8392e-02, -3.7714e-02,\n", - " 6.5329e-03, -3.2973e-02, -5.2380e-02, 5.3788e-02, 2.5539e-02,\n", - " -2.0015e-02, -1.3764e-03, -3.2173e-03, -3.2077e-02, -1.9128e-02,\n", - " 1.1764e-01, -5.2270e-02, 2.2504e-04, -3.9197e-02, -6.0963e-03,\n", - " -4.7369e-03, -4.5541e-02, 1.0510e-02, 2.6493e-02, 3.7000e-03,\n", - " 2.7603e-02, 5.0652e-02, -1.3435e-01, 1.6560e-02, 3.8185e-02,\n", - " -7.1929e-02, 6.3874e-03], device='cuda:0'), other={}), 'fer': Prediction(label='Disgust', logits=tensor([ 1.2176, 0.1427, 2.1705, -1.2319, -1.6257, -1.0599, -0.5744, -1.5970],\n", - " device='cuda:0'), other={}), 'au': Prediction(label='lip_pucker', logits=tensor([0.4478, 0.4480, 0.2269, 0.0735, 0.3180, 0.4012, 0.3224, 0.5207, 0.1575,\n", - " 0.4557, 0.0944, 0.1127, 0.1722, 0.1128, 0.3515, 0.6048, 0.0565, 0.0821,\n", - " 0.0457, 0.2171, 0.1323, 0.2896, 0.2692, 0.2315, 0.0159, 0.0483, 0.0422,\n", - " 0.0109, 0.0059, 0.0342, 0.0191, 0.1538, 0.0479, 0.0336, 0.0055, 0.1605,\n", - " 0.2136, 0.0924, 0.0050, 0.1260, 0.0064], device='cuda:0'), other={'multi': ['upper_lip_raiser', 'lip_pucker']}), 'va': Prediction(label='other', logits=tensor([ 0.6246, -0.0428], device='cuda:0'), other={'valence': 0.8746367692947388, 'arousal': 0.0072126269340515164}), 'deepfake': Prediction(label='Real', logits=tensor(0.0110, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6267e+00, 7.6556e-01, -4.3406e-01, 1.1146e-01, -1.0850e+00,\n", - " 3.1289e-01, -8.3629e-01, 3.0733e-01, 7.6584e-02, 1.8366e+00,\n", - " 1.3888e+00, -6.8021e-02, 2.9394e-01, 1.1446e-01, 6.3400e-01,\n", - " 1.1441e-01, 3.1877e-01, 2.1769e-01, -4.9096e-01, 3.6329e-01,\n", - " 2.9285e-01, 2.4570e-01, 7.2985e-02, -3.7588e-02, 2.3857e-04,\n", - " 6.3214e-02, -3.2213e-01, 1.0667e-01, 1.4056e-01, 5.1679e-02,\n", - " -2.4466e-01, -2.5440e-02, 2.4242e-02, 1.2516e-01, 5.3467e-02,\n", - " 7.5459e-03, -6.2810e-02, 5.6591e-02, -2.5951e-02, -5.6242e-02,\n", - " 4.9393e-02, -2.6380e-02, 2.8267e-02, -2.0036e-02, -4.5537e-02,\n", - " 6.9071e-03, 9.4421e-02, -6.4126e-02, -1.9762e-02, -7.7348e-03,\n", - " 4.8094e-02, -5.9681e-02, 1.3770e+00, -7.6744e-01, 7.0273e-02,\n", - " -7.5844e-01, -2.4242e-02, -2.0432e-01, -3.1755e-01, 8.8249e-01,\n", - " 4.9737e-02, 8.4163e-02], device='cuda:0'), other={'lmk3d': tensor([[ 7.2452e+02, 7.2161e+02, 7.2016e+02, 7.1876e+02, 7.1734e+02,\n", - " 7.1774e+02, 7.1948e+02, 7.2340e+02, 7.3250e+02, 7.4478e+02,\n", - " 7.5531e+02, 7.6466e+02, 7.7359e+02, 7.8033e+02, 7.8560e+02,\n", - " 7.9102e+02, 7.9594e+02, 7.2931e+02, 7.3347e+02, 7.3813e+02,\n", - " 7.4240e+02, 7.4619e+02, 7.6517e+02, 7.7044e+02, 7.7612e+02,\n", - " 7.8192e+02, 7.8587e+02, 7.5146e+02, 7.4816e+02, 7.4490e+02,\n", - " 7.4274e+02, 7.3730e+02, 7.3913e+02, 7.4204e+02, 7.4578e+02,\n", - " 7.4882e+02, 7.3244e+02, 7.3543e+02, 7.3991e+02, 7.4348e+02,\n", - " 7.3904e+02, 7.3455e+02, 7.6271e+02, 7.6757e+02, 7.7225e+02,\n", - " 7.7559e+02, 7.7098e+02, 7.6601e+02, 7.2765e+02, 7.3174e+02,\n", - " 7.3689e+02, 7.3927e+02, 7.4215e+02, 7.4712e+02, 7.5179e+02,\n", - " 7.4564e+02, 7.4094e+02, 7.3691e+02, 7.3334e+02, 7.3069e+02,\n", - " 7.2894e+02, 7.3529e+02, 7.3853e+02, 7.4203e+02, 7.5091e+02,\n", - " 7.4203e+02, 7.3851e+02, 7.3536e+02],\n", - " [ 4.0826e+02, 4.1695e+02, 4.2535e+02, 4.3314e+02, 4.4237e+02,\n", - " 4.5229e+02, 4.6110e+02, 4.6989e+02, 4.7735e+02, 4.7928e+02,\n", - " 4.7707e+02, 4.7320e+02, 4.6736e+02, 4.6041e+02, 4.5429e+02,\n", - " 4.4772e+02, 4.3997e+02, 4.1246e+02, 4.1322e+02, 4.1597e+02,\n", - " 4.1924e+02, 4.2253e+02, 4.3087e+02, 4.3145e+02, 4.3253e+02,\n", - " 4.3443e+02, 4.3746e+02, 4.3592e+02, 4.4244e+02, 4.4879e+02,\n", - " 4.5322e+02, 4.5102e+02, 4.5315e+02, 4.5546e+02, 4.5618e+02,\n", - " 4.5620e+02, 4.2250e+02, 4.2352e+02, 4.2563e+02, 4.2897e+02,\n", - " 4.2849e+02, 4.2615e+02, 4.3749e+02, 4.3783e+02, 4.3987e+02,\n", - " 4.4174e+02, 4.4226e+02, 4.4040e+02, 4.5536e+02, 4.5764e+02,\n", - " 4.5941e+02, 4.6109e+02, 4.6183e+02, 4.6462e+02, 4.6618e+02,\n", - " 4.6694e+02, 4.6699e+02, 4.6563e+02, 4.6362e+02, 4.6031e+02,\n", - " 4.5590e+02, 4.6098e+02, 4.6269e+02, 4.6408e+02, 4.6570e+02,\n", - " 4.6329e+02, 4.6203e+02, 4.6030e+02],\n", - " [-5.2251e+01, -5.4851e+01, -5.7509e+01, -5.8771e+01, -5.7468e+01,\n", - " -5.1991e+01, -4.3539e+01, -3.5468e+01, -3.2246e+01, -3.4303e+01,\n", - " -4.1599e+01, -4.9475e+01, -5.4591e+01, -5.5651e+01, -5.4273e+01,\n", - " -5.1511e+01, -4.8724e+01, -1.6916e+01, -9.5502e+00, -4.7495e+00,\n", - " -2.1079e+00, -1.1410e+00, -2.0305e-01, -7.1169e-01, -2.8626e+00,\n", - " -7.1169e+00, -1.4130e+01, -3.4114e+00, -1.3580e+00, 7.2939e-01,\n", - " -4.4006e-01, -1.2845e+01, -1.0861e+01, -9.9865e+00, -1.0507e+01,\n", - " -1.2215e+01, -1.6008e+01, -1.0942e+01, -1.0587e+01, -1.2412e+01,\n", - " -1.2006e+01, -1.3487e+01, -1.1561e+01, -9.3551e+00, -9.2169e+00,\n", - " -1.3929e+01, -1.1694e+01, -1.0714e+01, -2.2119e+01, -1.5732e+01,\n", - " -1.2132e+01, -1.1900e+01, -1.1855e+01, -1.4905e+01, -2.0670e+01,\n", - " -1.6624e+01, -1.5405e+01, -1.5253e+01, -1.5774e+01, -1.7447e+01,\n", - " -2.1405e+01, -1.5787e+01, -1.4781e+01, -1.5469e+01, -2.0190e+01,\n", - " -1.4167e+01, -1.4051e+01, -1.4612e+01]], device='cuda:0',\n", - " dtype=torch.float64), 'mesh': tensor([[728.3384, 728.3050, 728.2734, ..., 783.0242, 783.0969, 783.1615],\n", - " [414.6837, 414.8071, 414.9311, ..., 451.2200, 450.9518, 450.6857],\n", - " [-17.5566, -17.5958, -17.6357, ..., -74.1812, -74.4591, -74.7260]],\n", - " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [3.2554997236227483, -20.48145663884485, 20.458524590848235], 'translation': tensor([759.3155, 449.7133, -77.8932], device='cuda:0', dtype=torch.float64)}})})], version='0.4.0')" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 127 ms (started: 2023-12-14 18:00:39 +00:00)\n" - ] - } - ], - "source": [ - "response" + "data": { + "text/plain": [ + "ImageData(path_input='./test.jpg', path_output='/test_output.jpg', img=tensor([[[0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " ...,\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0]],\n", + "\n", + " [[0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " ...,\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0]],\n", + "\n", + " [[0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " ...,\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0],\n", + " [0, 0, 0, ..., 0, 0, 0]]], dtype=torch.uint8), tensor=tensor([[[[-104., -104., -104., ..., -104., -104., -104.],\n", + " [-104., -104., -104., ..., -104., -104., -104.],\n", + " [-104., -104., -104., ..., -104., -104., -104.],\n", + " ...,\n", + " [-104., -104., -104., ..., -104., -104., -104.],\n", + " [-104., -104., -104., ..., -104., -104., -104.],\n", + " [-104., -104., -104., ..., -104., -104., -104.]],\n", + "\n", + " [[-117., -117., -117., ..., -117., -117., -117.],\n", + " [-117., -117., -117., ..., -117., -117., -117.],\n", + " [-117., -117., -117., ..., -117., -117., -117.],\n", + " ...,\n", + " [-117., -117., -117., ..., -117., -117., -117.],\n", + " [-117., -117., -117., ..., -117., -117., -117.],\n", + " [-117., -117., -117., ..., -117., -117., -117.]],\n", + "\n", + " [[-123., -123., -123., ..., -123., -123., -123.],\n", + " [-123., -123., -123., ..., -123., -123., -123.],\n", + " [-123., -123., -123., ..., -123., -123., -123.],\n", + " ...,\n", + " [-123., -123., -123., ..., -123., -123., -123.],\n", + " [-123., -123., -123., ..., -123., -123., -123.],\n", + " [-123., -123., -123., ..., -123., -123., -123.]]]], device='cuda:0'), dims=Dimensions(height=1080, width=1080), det=Detection(loc=tensor([[[ 1.1387, 2.4318, -1.4506, 0.5093],\n", + " [ 1.9043, 3.1361, -1.2619, 0.8575],\n", + " [-0.9103, 2.7127, 0.2439, 0.7335],\n", + " ...,\n", + " [ 0.0353, -0.6025, -0.8369, -1.1794],\n", + " [-0.0940, -0.4539, -1.2256, -0.8496],\n", + " [ 0.0977, -0.2411, -1.8571, -1.6777]]], device='cuda:0'), conf=tensor([[[9.9981e-01, 1.9212e-04],\n", + " [9.9994e-01, 6.2932e-05],\n", + " [9.9977e-01, 2.3444e-04],\n", + " ...,\n", + " [9.9971e-01, 2.9232e-04],\n", + " [9.9987e-01, 1.3458e-04],\n", + " [9.9997e-01, 3.1498e-05]]], device='cuda:0'), landmarks=tensor([[[-0.9817, 0.0959, 2.6015, ..., 6.7391, 1.8493, 7.0245],\n", + " [ 0.0630, 0.6699, 2.9025, ..., 6.2545, 2.6066, 6.0389],\n", + " [-3.5584, 0.1048, 0.8877, ..., 6.5882, -0.5649, 7.0346],\n", + " ...,\n", + " [-0.2883, -0.7966, 0.3860, ..., 0.1696, 0.4108, 0.0711],\n", + " [-0.6582, -0.8402, 0.6708, ..., 0.2488, 0.4349, -0.0721],\n", + " [-0.2075, -0.7674, 0.6490, ..., 0.4788, 0.6124, 0.3344]]],\n", + " device='cuda:0'), boxes=tensor([[-1.6350e-01, -9.6705e-01, 1.1807e+01, 1.6749e+01],\n", + " [-2.3375e+00, -4.9578e+00, 2.2525e+01, 3.3029e+01],\n", + " [ 2.1436e+00, -9.2360e-01, 1.8944e+01, 1.7604e+01],\n", + " ...,\n", + " [ 8.2526e+02, 8.3894e+02, 1.2584e+03, 1.2434e+03],\n", + " [ 9.6942e+02, 9.5238e+02, 1.1698e+03, 1.1684e+03],\n", + " [ 9.0043e+02, 8.7663e+02, 1.2536e+03, 1.2427e+03]], device='cuda:0'), dets=tensor([[541.2016, 334.8736, 625.8832, 447.1175, 0.9991],\n", + " [407.0163, 440.3088, 474.5414, 532.0094, 0.9980],\n", + " [322.2906, 325.4094, 398.0146, 438.1702, 0.9953],\n", + " [718.3305, 389.5779, 795.5046, 487.1662, 0.9950]], device='cuda:0')), faces=[Face(indx=0, loc=Location(x1=528, x2=639, y1=335, y2=447), dims=Dimensions(height=112, width=111), tensor=tensor([[[ 0.8902, 0.8902, 0.8938, ..., 0.7792, 0.7765, 0.7765],\n", + " [ 0.8902, 0.8902, 0.8938, ..., 0.7792, 0.7765, 0.7765],\n", + " [ 0.8865, 0.8865, 0.8903, ..., 0.7792, 0.7765, 0.7765],\n", + " ...,\n", + " [ 0.7335, 0.7335, 0.7271, ..., 0.1882, 0.1882, 0.1882],\n", + " [ 0.7373, 0.7373, 0.7291, ..., 0.1882, 0.1882, 0.1882],\n", + " [ 0.7373, 0.7373, 0.7291, ..., 0.1882, 0.1882, 0.1882]],\n", + "\n", + " [[ 0.7686, 0.7686, 0.7722, ..., 0.6694, 0.6667, 0.6667],\n", + " [ 0.7686, 0.7686, 0.7722, ..., 0.6694, 0.6667, 0.6667],\n", + " [ 0.7649, 0.7649, 0.7690, ..., 0.6694, 0.6667, 0.6667],\n", + " ...,\n", + " [ 0.6533, 0.6533, 0.6459, ..., 0.0549, 0.0549, 0.0549],\n", + " [ 0.6588, 0.6588, 0.6498, ..., 0.0549, 0.0549, 0.0549],\n", + " [ 0.6588, 0.6588, 0.6498, ..., 0.0549, 0.0549, 0.0549]],\n", + "\n", + " [[ 0.7098, 0.7098, 0.7134, ..., 0.6145, 0.6118, 0.6118],\n", + " [ 0.7098, 0.7098, 0.7134, ..., 0.6145, 0.6118, 0.6118],\n", + " [ 0.7061, 0.7061, 0.7101, ..., 0.6145, 0.6118, 0.6118],\n", + " ...,\n", + " [ 0.6297, 0.6297, 0.6226, ..., -0.0078, -0.0078, -0.0078],\n", + " [ 0.6353, 0.6353, 0.6263, ..., -0.0078, -0.0078, -0.0078],\n", + " [ 0.6353, 0.6353, 0.6263, ..., -0.0078, -0.0078, -0.0078]]],\n", + " device='cuda:0'), ratio=0.010658436213991769, preds={'embed': Prediction(label='abstract', logits=tensor([-4.6533e-02, 5.3588e-02, -2.4755e-02, -7.8616e-02, 1.2103e-01,\n", + " -5.9453e-02, -7.6975e-02, 4.6723e-02, 8.5076e-03, -4.3471e-02,\n", + " 5.2749e-02, 6.3168e-02, -5.8967e-02, 1.5402e-01, -5.4731e-02,\n", + " 6.3179e-02, 8.2565e-02, -6.4397e-03, -1.7833e-01, 5.7603e-02,\n", + " 1.0651e-01, -1.0804e-01, 3.7815e-02, 2.8610e-02, -2.0176e-02,\n", + " -1.3877e-02, -1.1300e-01, -1.9724e-01, 1.1800e-01, -1.1211e-01,\n", + " 1.3263e-01, -8.2799e-03, 1.4889e-01, -4.0802e-02, -3.6970e-02,\n", + " 1.2777e-01, -6.7573e-02, 3.2040e-02, -8.4728e-02, -8.8653e-02,\n", + " -1.5372e-01, 2.2786e-02, 2.9156e-02, -1.1256e-01, 2.8036e-03,\n", + " 1.0653e-01, 5.2120e-02, -1.9426e-01, -2.7868e-04, 7.2371e-02,\n", + " -4.5995e-02, -6.8567e-02, -3.1597e-02, 4.3082e-02, 1.6920e-01,\n", + " -1.0685e-02, -1.2215e-01, -8.2336e-02, 8.2809e-02, 3.5149e-02,\n", + " -3.7275e-02, 5.5974e-03, -2.4990e-02, 7.1473e-03, -1.3397e-02,\n", + " -2.4529e-02, -1.9968e-01, 4.9395e-02, -1.1648e-01, 2.8934e-02,\n", + " -7.9794e-02, 1.1284e-01, 7.7364e-02, 2.6842e-01, -2.3278e-02,\n", + " -4.2797e-02, 2.0053e-01, -9.6295e-03, -5.3308e-02, 1.0973e-02,\n", + " -1.2243e-01, 1.1370e-01, -6.3296e-02, -9.0882e-02, 9.8522e-02,\n", + " 1.2760e-01, -8.4864e-02, -4.8018e-02, 3.7744e-02, 4.7234e-03,\n", + " 7.9726e-02, 7.0888e-02, 7.7177e-02, 9.8928e-02, 3.4530e-02,\n", + " 6.4716e-02, -5.6115e-02, 1.7020e-01, 3.6940e-02, -8.4731e-02,\n", + " 3.8408e-02, 7.2437e-02, 5.2898e-02, -2.7070e-02, -6.2154e-04,\n", + " -3.1288e-03, -1.4151e-01, -7.6653e-02, 1.2858e-01, -6.7588e-04,\n", + " 8.4066e-03, -1.0063e-01, 1.0168e-01, -7.1161e-02, -6.7470e-02,\n", + " 2.5535e-05, -6.5238e-02, -8.1831e-02, 7.8842e-02, 4.1058e-02,\n", + " 3.1814e-02, 7.2898e-02, 1.2914e-02, 7.2188e-02, 1.2259e-02,\n", + " -4.6126e-02, 1.8978e-01, -1.6078e-01], device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([-9.9709e-02, 3.5849e-02, 6.8186e-02, 1.0176e-01, -8.0765e-02,\n", + " 7.2402e-03, 1.1793e-02, -3.0156e-02, 4.3678e-02, 4.2361e-02,\n", + " -4.3229e-02, 3.5763e-02, 4.0323e-02, 1.4577e-02, 5.3526e-02,\n", + " 1.5721e-02, -3.8783e-02, -7.2129e-02, 5.8065e-02, 9.7868e-03,\n", + " 2.8708e-02, -6.9082e-03, 5.7384e-02, 8.9630e-02, -2.4127e-03,\n", + " -6.8622e-03, 1.3874e-02, 1.8275e-02, 4.2322e-02, -2.3574e-02,\n", + " -5.3746e-03, 6.0498e-02, -6.5492e-04, -5.8711e-02, 2.4335e-02,\n", + " -6.0965e-02, -3.4439e-02, -1.7858e-02, 3.2407e-02, 9.6606e-03,\n", + " 3.6913e-02, -2.4995e-02, 4.6686e-02, 4.4622e-02, -2.6745e-02,\n", + " -1.2986e-02, 1.9273e-02, -6.0227e-02, -1.5702e-02, -3.1965e-02,\n", + " 1.2523e-02, -2.2435e-02, -1.0231e-02, -4.0502e-02, -3.5617e-03,\n", + " 8.2921e-02, 8.1194e-03, 6.4543e-03, -2.9299e-02, -1.5151e-03,\n", + " 4.2446e-02, 2.0715e-02, 4.5609e-02, 1.6863e-02, -5.2035e-02,\n", + " 8.3910e-02, 2.4208e-02, 5.6129e-03, -3.3789e-02, -4.0824e-02,\n", + " 6.2478e-03, -3.9623e-02, -3.3841e-02, -5.0119e-02, 2.4470e-02,\n", + " 7.8825e-02, -1.1778e-02, 5.3937e-02, -5.0737e-03, -7.8529e-02,\n", + " -4.2240e-02, 5.7989e-02, 1.8960e-02, -9.5119e-02, 3.9091e-02,\n", + " 1.3672e-02, -2.0848e-02, -1.1164e-02, 3.7884e-02, -2.8324e-02,\n", + " 7.2345e-02, 1.1385e-02, 4.5292e-02, 9.5516e-03, -4.4801e-02,\n", + " 1.7170e-02, -6.2065e-02, 3.5419e-04, -2.5924e-02, -4.8186e-02,\n", + " -1.4630e-01, 7.3848e-03, -4.4705e-02, -7.3440e-02, -9.0920e-04,\n", + " -8.4433e-02, -3.6168e-02, -7.2048e-02, -7.9701e-02, -6.3092e-02,\n", + " -1.8176e-02, -7.1731e-03, -5.4474e-03, 2.0798e-02, 1.3563e-04,\n", + " -1.2152e-02, -2.5522e-02, -2.3754e-02, -6.3545e-02, 3.7159e-03,\n", + " 5.6279e-02, -9.6936e-02, -8.5600e-03, 7.8319e-02, -3.8904e-02,\n", + " 3.9999e-02, -3.2349e-02, 2.4293e-02, -1.0650e-03, -1.0239e-02,\n", + " -1.0191e-03, -1.0416e-02, -6.7146e-02, -1.3491e-02, -3.0999e-02,\n", + " -2.8824e-02, 6.5888e-03, 1.7626e-02, -5.5039e-02, 5.4941e-02,\n", + " -8.6368e-02, -5.5739e-02, 7.3216e-02, -3.9630e-02, -7.1478e-02,\n", + " -4.8321e-02, 5.3878e-02, 4.4313e-02, -7.8896e-03, -1.8046e-02,\n", + " 2.7845e-02, -4.6467e-02, -3.3735e-02, 4.0640e-02, 4.7118e-02,\n", + " -6.2865e-02, -2.9892e-02, -1.0017e-02, -2.5754e-02, -5.4211e-03,\n", + " -2.5798e-02, -8.5065e-03, 2.2504e-02, 1.3634e-02, 2.4653e-02,\n", + " -3.2973e-04, -5.9600e-02, 7.9564e-02, -1.3156e-02, 1.5717e-02,\n", + " 3.7558e-02, 1.2724e-02, 3.3729e-02, -1.2738e-02, 6.1420e-03,\n", + " 8.5418e-02, -3.3032e-03, 5.5278e-02, -3.4548e-02, -4.5400e-03,\n", + " -1.2247e-03, 1.0168e-01, -3.8014e-02, 2.0296e-02, -3.8102e-02,\n", + " 5.9302e-02, 3.6608e-02, 3.6085e-02, 2.5122e-02, 6.5671e-02,\n", + " 1.8139e-02, -6.0046e-02, 3.9453e-02, 3.7376e-04, 3.8212e-02,\n", + " -1.1187e-01, 3.6162e-02, -4.8310e-03, 3.6086e-02, -9.0211e-03,\n", + " -2.3681e-02, -2.0801e-03, 6.5730e-02, 8.4556e-02, -2.9632e-02,\n", + " 3.2529e-02, -6.4099e-02, -4.5768e-02, 6.5394e-02, -1.1198e-02,\n", + " -5.6266e-02, -7.9423e-03, -3.1498e-02, -1.0677e-02, 2.8715e-02,\n", + " -2.4643e-02, -1.0333e-01, 5.1336e-02, 6.0299e-03, 5.2227e-03,\n", + " -5.1412e-02, -1.5836e-02, 1.5985e-02, -2.4834e-02, 2.9083e-02,\n", + " 4.4913e-03, -6.2139e-02, 7.8704e-02, -6.8124e-02, -4.8079e-02,\n", + " 8.5768e-02, 2.8548e-02, -4.3899e-02, -7.8785e-02, 4.5441e-02,\n", + " -5.3304e-02, 2.8543e-02, -3.9420e-02, -1.4347e-02, -8.1592e-03,\n", + " -1.4892e-03, -5.7665e-02, 1.3950e-04, -4.3965e-02, -2.6643e-02,\n", + " 1.6329e-02, 1.6751e-02, 7.3626e-02, -2.3216e-02, 6.4482e-02,\n", + " 3.0628e-02, -4.3190e-04, -1.3772e-02, -2.3291e-03, 3.5256e-02,\n", + " 7.7253e-03, 2.0509e-02, -7.7098e-02, 2.0374e-02, -6.4073e-02,\n", + " -7.8387e-03, -5.6768e-02, -5.5046e-02, -3.7490e-02, -1.7619e-02,\n", + " 6.3434e-02, 5.3055e-02, 2.8544e-02, 5.4640e-03, -8.2670e-02,\n", + " 2.6365e-02, -2.9417e-02, -1.2636e-02, 4.6648e-03, 6.1215e-04,\n", + " 9.2770e-02, 4.8292e-02, -5.2257e-02, -9.5857e-02, 3.5968e-02,\n", + " 3.2832e-02, 7.1759e-02, -2.0675e-02, 2.5622e-02, -1.9408e-02,\n", + " -1.9341e-02, 2.0307e-02, 5.6690e-02, -1.0909e-02, -4.8402e-02,\n", + " 1.1550e-02, -1.7324e-03, -3.8316e-02, -7.9948e-02, -5.9086e-02,\n", + " -8.7113e-03, 1.7088e-03, -1.7137e-03, 3.6837e-02, 3.9969e-02,\n", + " 1.0159e-03, -2.0556e-02, 1.3928e-02, 1.5244e-02, 1.5060e-02,\n", + " -3.1773e-02, 2.4421e-02, -3.2927e-02, 2.7500e-02, 6.2374e-02,\n", + " 5.0217e-02, 5.6631e-02, 2.9492e-02, -4.6152e-02, -3.4127e-02,\n", + " -1.3851e-02, -8.8722e-02, -2.9110e-02, -3.0616e-02, -2.8539e-02,\n", + " -2.9055e-02, 4.8617e-02, 1.8578e-02, -7.8684e-02, 1.0375e-01,\n", + " -6.3333e-02, -3.1398e-02, -4.1519e-02, 8.1364e-03, 1.1080e-03,\n", + " 4.1848e-02, 1.1036e-02, 2.9939e-02, 2.9997e-02, -2.2983e-03,\n", + " 1.9105e-02, -4.2914e-02, -1.1842e-01, 6.3478e-02, -9.4698e-02,\n", + " -6.9375e-02, 6.0907e-02, 5.2306e-02, 1.5235e-02, 2.2306e-02,\n", + " -3.8761e-03, 3.2280e-02, -1.4714e-02, 5.2281e-02, -5.4278e-02,\n", + " -2.0122e-02, -2.5781e-02, -3.7049e-02, 4.7650e-02, 8.6804e-02,\n", + " -8.7017e-03, 2.7132e-02, 3.7116e-02, -1.5473e-02, -1.9762e-02,\n", + " 5.3086e-03, -3.6004e-02, -8.0462e-02, 3.3155e-04, 1.3561e-02,\n", + " -1.0824e-02, 8.2715e-03, -2.4323e-02, 3.2127e-02, 1.1446e-02,\n", + " 3.3564e-02, 7.4934e-03, 4.9192e-02, -4.5707e-02, 5.4161e-02,\n", + " -8.6517e-02, 3.3631e-02, -6.0129e-02, -3.1397e-02, 4.7477e-02,\n", + " -7.3110e-02, 9.2553e-03, -1.5034e-03, 1.1344e-02, 7.7183e-02,\n", + " 5.9663e-02, -7.6595e-02, -1.7591e-02, 8.1232e-02, 3.8896e-02,\n", + " 1.0368e-03, -1.9262e-02, -3.5298e-02, -4.2972e-02, -4.4557e-02,\n", + " -2.1504e-02, 1.9526e-02, 1.5563e-02, -5.1445e-02, -1.5178e-02,\n", + " 3.0687e-02, 5.1042e-02, -1.9250e-02, 2.3821e-02, -9.1301e-02,\n", + " 1.7938e-03, -1.6571e-02, 8.4082e-03, 7.6159e-03, 4.2657e-02,\n", + " 3.8184e-05, 3.8344e-02, 3.7797e-02, 4.1287e-02, 2.8115e-02,\n", + " 2.6092e-02, 2.6328e-02, 2.2119e-02, -7.4556e-02, 2.6539e-03,\n", + " 2.7550e-02, 5.0088e-02, 3.9890e-03, -4.2536e-02, -6.2462e-03,\n", + " 1.8465e-02, -8.9602e-02, -4.2978e-03, 1.5423e-02, 2.9090e-03,\n", + " -4.2427e-02, -6.7315e-02, 4.5346e-03, 2.4943e-02, 1.6452e-02,\n", + " 1.7753e-02, 5.3811e-02, 6.7798e-02, 1.8093e-02, 2.9107e-02,\n", + " 1.1850e-02, 4.7129e-02, 5.8636e-03, -1.5730e-02, 4.2799e-02,\n", + " 1.1921e-02, 8.4054e-02, -4.7201e-02, 5.9466e-04, 2.5315e-02,\n", + " -2.1824e-02, 5.3037e-02, -8.1173e-02, 5.2681e-02, -3.5198e-02,\n", + " -4.1766e-02, -2.1844e-03, 3.5254e-02, -1.8280e-02, -2.8210e-02,\n", + " -4.6979e-02, -1.2673e-02, 3.4120e-02, -6.5317e-02, 7.4591e-02,\n", + " -2.2831e-02, -1.3830e-02, 7.8286e-02, 5.7209e-02, -7.7736e-02,\n", + " 4.9260e-02, -4.1704e-02, 3.5564e-02, -3.8985e-02, 7.7557e-04,\n", + " -1.2389e-01, -4.4560e-02, -2.7898e-02, 6.8121e-02, -6.4978e-03,\n", + " 1.8532e-02, -5.2883e-02, 7.8517e-02, -1.1631e-02, 2.9074e-02,\n", + " 4.2660e-02, 5.4932e-02, -7.6693e-02, 8.3453e-02, -5.6050e-02,\n", + " -1.1389e-02, -3.6820e-02, -3.6445e-02, 4.9974e-02, -1.7595e-03,\n", + " 7.7574e-02, -3.5501e-02, 2.6281e-02, 7.9471e-03, 3.5236e-02,\n", + " -4.2531e-02, 6.8039e-03, 4.7962e-02, 1.4445e-02, -1.1644e-03,\n", + " 7.5160e-03, 2.3152e-02, 1.9259e-02, 5.8002e-02, -6.4338e-02,\n", + " -9.2871e-03, 6.1422e-02], device='cuda:0'), other={}), 'fer': Prediction(label='Happiness', logits=tensor([-0.7012, 0.9974, 0.9535, 0.1006, 1.4421, -2.2756, -0.7362, -0.6023],\n", + " device='cuda:0'), other={}), 'au': Prediction(label='lid_tightener', logits=tensor([0.4852, 0.4120, 0.4331, 0.0462, 0.4701, 0.7195, 0.5467, 0.7048, 0.3752,\n", + " 0.5406, 0.0258, 0.3930, 0.1706, 0.0671, 0.5789, 0.2200, 0.0103, 0.0978,\n", + " 0.0235, 0.2086, 0.1102, 0.5363, 0.2904, 0.0577, 0.0101, 0.0067, 0.0078,\n", + " 0.0075, 0.0042, 0.0299, 0.0061, 0.0512, 0.0103, 0.0066, 0.0040, 0.1162,\n", + " 0.1108, 0.1903, 0.0239, 0.1075, 0.0089], device='cuda:0'), other={'multi': ['lid_tightener', 'nose_wrinkler', 'upper_lip_raiser', 'lip_corner_puller', 'chin_raiser', 'lips_part']}), 'va': Prediction(label='other', logits=tensor([0.7272, 0.2426], device='cuda:0'), other={'valence': 0.9772148728370667, 'arousal': 0.2926322102546692}), 'deepfake': Prediction(label='Real', logits=tensor(0.0781, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6291e+00, -1.5880e-01, -4.5101e-01, 1.9897e-01, 8.0188e-02,\n", + " 7.0005e-01, -7.3093e-01, 5.0253e-01, 3.3758e-01, 1.2239e+00,\n", + " 1.3215e+00, -4.7801e-01, 3.7948e-01, -2.5204e-02, 4.0023e-01,\n", + " 1.2520e-02, 9.0387e-02, 2.1908e-01, -3.7571e-01, 1.5939e-01,\n", + " -2.2109e-01, 1.5487e-03, 1.4567e-02, 6.9259e-02, -2.9845e-02,\n", + " -4.5879e-02, -1.8491e-01, 7.0592e-02, 7.1363e-02, -1.6920e-02,\n", + " -7.5111e-02, -1.8467e-02, 9.2778e-03, 2.5078e-02, 8.2850e-02,\n", + " -7.2314e-02, 4.9954e-02, -4.6078e-02, -1.2720e-02, 4.4774e-02,\n", + " 1.1983e-02, 2.7489e-02, -3.5336e-03, 3.8619e-02, -3.0828e-02,\n", + " 9.5173e-02, -3.1197e-02, -5.3295e-03, -2.8937e-02, 7.3298e-02,\n", + " 1.5494e-02, -4.5704e-02, -8.0980e-01, -2.5949e-01, -5.2528e-02,\n", + " 2.8264e-01, 7.8088e-02, -1.3355e-01, -2.8489e-01, -2.1684e-01,\n", + " -3.6542e-02, -1.7405e-01], device='cuda:0'), other={'lmk3d': tensor([[542.9333, 544.5874, 547.5427, 550.0698, 552.8116, 556.7585, 561.0212,\n", + " 567.6860, 579.7345, 593.0699, 603.2763, 611.6685, 618.3826, 621.6498,\n", + " 623.4402, 625.0604, 625.6321, 542.2299, 544.9963, 549.7009, 554.7478,\n", + " 559.6961, 581.6105, 587.0631, 593.4749, 600.8018, 607.4361, 571.3020,\n", + " 570.6352, 569.9481, 570.1238, 566.3522, 568.7809, 572.6551, 576.9512,\n", + " 580.4296, 549.5615, 551.8495, 557.0619, 562.4405, 557.8042, 552.7058,\n", + " 584.5940, 588.9328, 594.3590, 599.4766, 594.8365, 588.9500, 560.9120,\n", + " 564.0060, 569.6031, 573.1120, 576.7658, 584.7205, 591.9389, 585.8081,\n", + " 580.5999, 575.1304, 569.9812, 565.8029, 562.1975, 569.3987, 573.7014,\n", + " 578.7090, 590.9459, 579.5476, 574.6894, 570.2381],\n", + " [371.7968, 382.5165, 392.2119, 401.2846, 412.0270, 422.0081, 430.0238,\n", + " 437.6693, 441.1647, 436.5235, 428.4754, 419.9621, 409.6181, 398.6112,\n", + " 389.2856, 379.4633, 368.6871, 369.7832, 367.7616, 367.7695, 368.7087,\n", + " 370.0877, 369.2081, 367.2741, 365.8188, 365.3783, 367.2041, 381.4352,\n", + " 389.5755, 397.4740, 403.2331, 404.6718, 405.7044, 406.4895, 405.4278,\n", + " 404.1397, 378.4211, 377.3296, 377.2338, 379.2043, 380.8703, 380.8490,\n", + " 378.3484, 375.9453, 375.7418, 376.6197, 379.2037, 379.6377, 415.5748,\n", + " 414.0387, 412.5942, 413.1100, 412.3784, 413.3840, 414.9877, 421.8041,\n", + " 425.3992, 426.3599, 425.7049, 422.2630, 415.6169, 415.3652, 415.3221,\n", + " 415.1045, 415.0468, 421.1322, 421.9084, 421.0955],\n", + " [-74.9666, -76.5580, -78.1195, -78.6453, -76.6466, -69.7375, -59.9046,\n", + " -50.8282, -45.5633, -45.8160, -51.4997, -58.6523, -63.4628, -64.1828,\n", + " -62.6861, -60.3222, -58.2096, -34.8580, -26.1522, -19.8705, -15.9218,\n", + " -13.8813, -9.4541, -9.3844, -11.0064, -14.7870, -21.6216, -13.2675,\n", + " -10.0969, -6.9486, -7.5632, -23.0827, -20.1941, -18.4144, -18.5270,\n", + " -20.1986, -31.7275, -25.5711, -24.3319, -25.4803, -25.5542, -28.0752,\n", + " -21.1123, -18.0314, -17.0443, -21.6489, -19.5261, -19.2820, -37.7856,\n", + " -27.7187, -21.4371, -20.4202, -19.9343, -23.4340, -31.6288, -29.3109,\n", + " -28.4950, -29.0924, -30.4653, -33.2674, -37.2990, -25.7492, -23.4220,\n", + " -23.7484, -31.5642, -27.5307, -28.0307, -29.6615]], device='cuda:0',\n", + " dtype=torch.float64), 'mesh': tensor([[542.4374, 542.4705, 542.5058, ..., 623.8512, 623.8591, 623.8579],\n", + " [372.6334, 372.7801, 372.9264, ..., 389.9910, 389.7103, 389.4345],\n", + " [-35.2361, -35.2594, -35.2832, ..., -85.3152, -85.6626, -85.9983]],\n", + " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [14.089035296471161, -18.298921126003037, -4.62220512777496], 'translation': tensor([587.7845, 406.6217, -85.3952], device='cuda:0', dtype=torch.float64)}})}), Face(indx=1, loc=Location(x1=395, x2=487, y1=440, y2=532), dims=Dimensions(height=92, width=92), tensor=tensor([[[ 1.5686e-01, 1.5686e-01, 1.5356e-01, ..., 1.6326e-01,\n", + " 1.6863e-01, 1.6863e-01],\n", + " [ 1.5686e-01, 1.5686e-01, 1.5356e-01, ..., 1.6326e-01,\n", + " 1.6863e-01, 1.6863e-01],\n", + " [ 1.5604e-01, 1.5604e-01, 1.5291e-01, ..., 1.5942e-01,\n", + " 1.6409e-01, 1.6409e-01],\n", + " ...,\n", + " [ 1.0196e-01, 1.0196e-01, 1.0246e-01, ..., 3.3347e-01,\n", + " 3.3437e-01, 3.3437e-01],\n", + " [ 1.0196e-01, 1.0196e-01, 1.0237e-01, ..., 3.2900e-01,\n", + " 3.2941e-01, 3.2941e-01],\n", + " [ 1.0196e-01, 1.0196e-01, 1.0237e-01, ..., 3.2900e-01,\n", + " 3.2941e-01, 3.2941e-01]],\n", + "\n", + " [[ 7.4510e-02, 7.4510e-02, 7.0795e-02, ..., 5.2838e-02,\n", + " 5.4902e-02, 5.4902e-02],\n", + " [ 7.4510e-02, 7.4510e-02, 7.0795e-02, ..., 5.2838e-02,\n", + " 5.4902e-02, 5.4902e-02],\n", + " [ 7.2446e-02, 7.2446e-02, 6.8904e-02, ..., 4.8906e-02,\n", + " 5.0361e-02, 5.0361e-02],\n", + " ...,\n", + " [ 1.8369e-02, 1.8369e-02, 1.7761e-02, ..., 1.3555e-01,\n", + " 1.3622e-01, 1.3622e-01],\n", + " [ 1.9608e-02, 1.9608e-02, 1.8782e-02, ..., 1.3292e-01,\n", + " 1.3333e-01, 1.3333e-01],\n", + " [ 1.9608e-02, 1.9608e-02, 1.8782e-02, ..., 1.3292e-01,\n", + " 1.3333e-01, 1.3333e-01]],\n", + "\n", + " [[ 1.9608e-02, 1.9608e-02, 1.5067e-02, ..., 3.3024e-03,\n", + " 7.8431e-03, 7.8431e-03],\n", + " [ 1.9608e-02, 1.9608e-02, 1.5067e-02, ..., 3.3024e-03,\n", + " 7.8431e-03, 7.8431e-03],\n", + " [ 1.7957e-02, 1.7957e-02, 1.3546e-02, ..., -1.3034e-04,\n", + " 3.7152e-03, 3.7152e-03],\n", + " ...,\n", + " [-3.6120e-02, -3.6120e-02, -3.7184e-02, ..., 7.5900e-02,\n", + " 7.6161e-02, 7.6161e-02],\n", + " [-3.5294e-02, -3.5294e-02, -3.6533e-02, ..., 7.4510e-02,\n", + " 7.4510e-02, 7.4510e-02],\n", + " [-3.5294e-02, -3.5294e-02, -3.6533e-02, ..., 7.4510e-02,\n", + " 7.4510e-02, 7.4510e-02]]], device='cuda:0'), ratio=0.0072565157750342935, preds={'embed': Prediction(label='abstract', logits=tensor([ 0.0821, -0.0436, 0.0627, -0.1071, 0.1461, -0.2069, 0.0332, -0.0361,\n", + " 0.0982, 0.1757, 0.0705, 0.0640, 0.0726, 0.0393, -0.1423, -0.0185,\n", + " 0.0183, -0.0626, 0.0867, -0.0314, -0.0339, -0.0778, -0.0331, -0.0614,\n", + " 0.0340, -0.0109, 0.1923, -0.0060, 0.0744, 0.1173, -0.0320, 0.0592,\n", + " 0.0579, -0.0031, -0.0456, -0.1215, -0.0605, -0.0339, -0.1522, 0.0217,\n", + " 0.0442, -0.0503, 0.1671, -0.0074, 0.0363, 0.0664, 0.0190, 0.0213,\n", + " 0.0156, -0.0664, 0.0949, 0.0505, -0.0787, -0.1116, -0.0779, 0.1556,\n", + " 0.1202, 0.1736, -0.0460, 0.1282, -0.0679, -0.0822, 0.1281, -0.1029,\n", + " -0.0529, 0.0253, -0.1448, -0.0377, 0.1968, -0.0293, 0.1088, -0.1434,\n", + " -0.0541, 0.0294, -0.0341, 0.0060, 0.1359, -0.1375, 0.1102, -0.1177,\n", + " 0.0348, 0.1162, -0.0503, -0.2060, -0.1090, -0.0099, 0.0324, 0.0451,\n", + " -0.0338, 0.0338, 0.0696, 0.2181, 0.0372, -0.0196, 0.0067, 0.0317,\n", + " -0.1036, 0.0190, -0.0130, 0.1225, 0.0104, 0.0512, -0.0707, -0.0486,\n", + " -0.0368, -0.0679, -0.0308, 0.0502, 0.0323, -0.0781, -0.0570, -0.0395,\n", + " 0.0856, 0.1052, 0.1503, -0.2152, -0.0828, 0.0311, -0.0215, 0.1363,\n", + " 0.0219, -0.0008, 0.0591, 0.0971, 0.0266, -0.0448, -0.0585, 0.0364],\n", + " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([ 1.6294e-02, 3.5104e-02, 8.8285e-02, 1.9283e-02, 1.1746e-04,\n", + " -3.3381e-02, 1.4265e-02, -4.1918e-02, -5.2606e-02, -5.7124e-03,\n", + " -6.8071e-02, 4.9070e-02, 6.1910e-02, 5.3812e-02, -7.9419e-03,\n", + " 6.6946e-03, -1.7859e-03, 1.0243e-02, -1.1307e-01, 2.8550e-02,\n", + " -1.5286e-02, 4.1545e-02, -5.9603e-02, 1.3106e-02, 1.1374e-03,\n", + " -6.4891e-02, 8.8557e-02, -5.3609e-02, -3.7407e-03, 7.8335e-02,\n", + " 5.7520e-02, -1.9107e-03, 1.2461e-02, -1.9664e-02, -6.8205e-03,\n", + " 2.1693e-02, 2.8966e-02, -3.3499e-02, 2.3425e-02, 6.5229e-02,\n", + " 5.1056e-03, 1.9870e-02, 6.0788e-02, 7.1520e-02, 3.5276e-02,\n", + " -8.6936e-02, 3.0859e-02, -4.3389e-02, -4.9203e-02, 7.9234e-02,\n", + " -1.2499e-02, -5.9900e-02, 6.1636e-02, -4.5172e-02, 5.6193e-02,\n", + " -3.4996e-02, -3.4523e-02, 4.2609e-02, -4.5977e-03, -3.3112e-02,\n", + " 6.0725e-02, -1.8134e-02, 2.3655e-02, 2.3811e-02, -5.0541e-02,\n", + " -4.0948e-02, 7.1188e-02, -4.8375e-02, -2.7495e-03, 3.1842e-03,\n", + " -2.1187e-02, -1.7551e-02, 9.9340e-03, -4.9057e-02, -1.5824e-02,\n", + " -2.3981e-03, 5.4251e-02, 5.8953e-03, -3.0580e-03, -1.0933e-02,\n", + " 5.3183e-03, 1.5704e-02, 7.9159e-03, 4.4183e-02, -7.7004e-02,\n", + " -2.2443e-02, 3.4963e-04, 3.1825e-02, -1.4844e-02, 4.4916e-02,\n", + " 4.6896e-02, 2.9759e-02, -4.9377e-03, -5.5803e-03, -3.1175e-02,\n", + " 1.1908e-02, -2.5802e-02, 4.1970e-02, 8.5289e-02, -7.6835e-02,\n", + " -2.0919e-02, -4.9702e-02, -3.8063e-02, -3.1000e-03, -4.2691e-03,\n", + " -8.2268e-02, -3.2442e-02, -1.9338e-03, 3.9047e-02, 5.4204e-03,\n", + " 5.0297e-02, 6.2880e-03, 1.2038e-01, 5.9175e-02, -5.7138e-02,\n", + " 1.8258e-02, 1.0194e-03, -6.1564e-02, 1.1086e-03, 3.9295e-02,\n", + " 3.4141e-02, 6.1673e-03, -1.0839e-02, -2.7199e-02, -4.1221e-02,\n", + " 2.9401e-02, 4.5364e-02, -8.9506e-04, 1.4322e-02, 9.3027e-02,\n", + " -5.5735e-03, -3.5031e-02, -1.4530e-03, -4.6644e-02, -6.4336e-02,\n", + " -7.3656e-02, 3.4256e-02, -1.1838e-02, 2.6034e-02, 2.3965e-02,\n", + " -4.2367e-02, -3.3466e-03, 6.5770e-02, 2.9696e-02, 7.8309e-03,\n", + " 7.5270e-02, -2.0828e-02, 6.3242e-02, 1.2034e-02, -6.7156e-02,\n", + " 3.7081e-02, -1.0812e-02, 7.5783e-02, -1.2643e-02, -2.4847e-02,\n", + " 2.6689e-02, -1.1837e-03, 1.6611e-02, -2.4661e-03, 3.0569e-02,\n", + " -3.2093e-02, -3.2613e-02, 4.2870e-02, 1.5426e-02, 5.4044e-02,\n", + " 2.1757e-02, 2.9227e-02, -2.0325e-02, -1.3473e-02, 5.1675e-02,\n", + " -6.9036e-02, -3.4316e-02, 5.1619e-02, -3.9259e-03, -7.9806e-02,\n", + " -2.1529e-03, 1.7700e-02, 2.2118e-02, -7.1372e-03, 4.3207e-02,\n", + " 3.2906e-02, -7.7893e-02, -2.4917e-03, 9.3491e-02, 4.2571e-02,\n", + " 1.0403e-02, 3.9414e-03, 1.6867e-02, -6.4337e-02, 4.2213e-02,\n", + " 5.1792e-02, 2.7438e-02, 3.6118e-03, 8.9399e-02, 3.8194e-02,\n", + " -1.8037e-02, 5.7126e-02, -3.1161e-02, 4.8018e-03, 5.5090e-02,\n", + " 5.6928e-03, -2.9651e-02, 4.2569e-02, 4.9638e-02, -1.0771e-02,\n", + " 2.4061e-02, 3.5735e-02, -7.8554e-02, 1.7169e-02, -1.1337e-02,\n", + " -2.6939e-03, -8.7058e-02, -4.5150e-02, 6.0468e-02, -5.6439e-02,\n", + " -1.2541e-01, -1.5513e-02, 5.4264e-03, -5.2229e-02, -2.4255e-02,\n", + " 6.5295e-02, 6.9749e-02, 5.3975e-02, 3.6844e-02, 6.7165e-02,\n", + " 3.0984e-02, -2.8481e-02, 5.2453e-03, 6.4794e-02, -3.7068e-02,\n", + " 1.1636e-02, 1.2859e-02, 2.3275e-02, -1.0226e-01, 8.8517e-03,\n", + " -2.5990e-02, 3.7051e-02, -3.9030e-02, 7.8132e-02, -2.3239e-02,\n", + " 2.6116e-02, 2.0380e-03, 1.9437e-02, 1.2723e-01, -3.6960e-02,\n", + " 5.3992e-02, 2.9311e-02, 3.1097e-02, -5.3928e-02, -1.5912e-03,\n", + " -3.9878e-02, 7.3965e-02, 4.6305e-02, -2.4571e-02, 1.8530e-02,\n", + " 6.6634e-02, 6.7482e-05, 3.4900e-02, 2.9386e-02, 3.7983e-05,\n", + " -1.3013e-02, 1.3087e-02, -6.8172e-03, -1.4998e-02, -6.0925e-02,\n", + " -7.8518e-02, -2.6662e-02, 7.8910e-03, -4.0486e-02, 3.4683e-02,\n", + " -2.7434e-02, 1.0410e-02, 5.3459e-02, 6.4758e-02, -4.3097e-03,\n", + " 6.9132e-02, 2.0507e-02, -4.1302e-02, 4.3763e-02, -5.5110e-03,\n", + " 1.7268e-02, 5.5887e-02, -7.6241e-02, 8.3635e-02, -1.3494e-02,\n", + " 1.8611e-02, -3.2393e-02, 2.1630e-02, 5.4823e-02, -2.1447e-02,\n", + " -6.4997e-03, 5.7149e-02, -1.8163e-02, 4.7814e-02, -1.4039e-02,\n", + " -1.8818e-02, 6.0146e-02, 1.6409e-03, -3.8181e-02, -3.6528e-02,\n", + " -6.9033e-04, -3.6568e-02, -8.2963e-02, 1.5984e-02, 4.6505e-02,\n", + " 2.4259e-02, -4.4351e-02, -7.0898e-02, -4.1313e-02, 1.1995e-02,\n", + " 2.2620e-02, 2.7375e-02, -6.3518e-02, -2.9986e-02, -9.3190e-03,\n", + " 3.5655e-02, -1.7371e-02, 1.6162e-02, 1.0765e-02, 2.8943e-02,\n", + " 7.2108e-03, -3.0755e-02, 7.6410e-02, -3.5330e-02, 8.3063e-02,\n", + " 3.4157e-02, -3.5254e-02, -2.0137e-02, -3.7670e-02, -2.2105e-02,\n", + " -4.2145e-02, 2.6032e-02, -4.9228e-02, 1.8600e-02, -5.2929e-03,\n", + " -6.8469e-03, 3.8270e-02, -4.4089e-03, 1.2302e-01, 3.6210e-02,\n", + " 2.0111e-02, 6.6240e-03, 2.6431e-02, -8.6239e-02, 2.4668e-02,\n", + " -6.8396e-03, -1.0604e-03, -1.9902e-02, 4.1081e-02, -6.2355e-02,\n", + " -3.9122e-04, -4.2193e-03, 1.7773e-02, 3.8902e-03, -3.9351e-02,\n", + " 1.7386e-02, -2.5375e-02, -9.5583e-03, -2.5299e-02, -1.8440e-02,\n", + " 3.8568e-02, -4.9315e-02, -1.0841e-01, 9.4122e-02, 2.1551e-02,\n", + " 1.3560e-03, -5.4843e-03, -6.8499e-02, 1.7158e-02, 4.2539e-02,\n", + " -8.3571e-02, 5.5627e-02, -2.8733e-02, -2.5800e-02, 1.8911e-02,\n", + " -4.4327e-02, -1.4113e-02, 1.5883e-02, 8.3300e-03, -1.4654e-02,\n", + " -8.3648e-02, -7.3067e-03, -7.1523e-02, 1.6634e-02, -6.0027e-03,\n", + " -5.2775e-02, -9.6872e-02, 1.6755e-02, 2.5591e-02, 7.3083e-03,\n", + " 3.6870e-03, 2.6368e-02, 9.5046e-02, 6.4262e-02, 5.5866e-02,\n", + " -1.6474e-02, 4.5092e-02, -6.9268e-02, -6.9903e-03, 2.8344e-02,\n", + " 8.1560e-03, 1.0642e-01, 4.2183e-02, -1.7975e-02, 8.4998e-03,\n", + " -5.4030e-02, -5.7471e-02, -3.0199e-02, 2.6477e-02, 3.9801e-02,\n", + " -1.7668e-02, 6.6100e-02, -5.6078e-03, -2.7327e-02, -1.1938e-02,\n", + " 7.4421e-02, 8.7329e-02, -3.2215e-02, 3.7593e-02, 1.2573e-02,\n", + " -5.2376e-02, -2.9022e-02, 2.9173e-02, -7.2454e-02, 3.4751e-02,\n", + " -1.6762e-02, -5.3458e-03, -3.0784e-02, -5.6995e-03, 4.3013e-02,\n", + " 4.4322e-03, -4.3450e-02, 3.5999e-02, -3.4975e-02, 2.5083e-02,\n", + " -5.1857e-02, 2.8099e-02, 1.0841e-02, -6.7955e-02, -1.9535e-02,\n", + " -4.7523e-02, 4.5902e-02, -1.6092e-02, 3.9139e-02, -8.3538e-02,\n", + " -9.1244e-02, -2.0666e-02, -7.5314e-03, -4.9942e-02, -1.2797e-02,\n", + " 4.7755e-02, 3.0098e-02, 9.0217e-02, 2.3529e-02, 3.6380e-02,\n", + " 6.8979e-02, 5.3718e-02, -3.7569e-02, 6.2550e-02, 3.8094e-02,\n", + " -2.5052e-02, 5.1870e-02, 8.0852e-02, -1.6790e-02, 7.0835e-03,\n", + " 4.8010e-02, -5.7551e-02, -6.4642e-02, -3.2517e-02, 4.2451e-03,\n", + " 7.3334e-02, 3.0093e-02, 1.1886e-01, 4.8538e-02, -1.3318e-01,\n", + " 2.6341e-02, 2.3522e-02, -1.4678e-02, 6.5753e-02, -3.6067e-02,\n", + " 1.4474e-02, -3.1390e-02, 5.8607e-02, -7.3437e-03, -2.4383e-02,\n", + " -3.8720e-02, 1.1570e-02, -8.0316e-03, -3.4532e-03, 1.1781e-03,\n", + " -3.2048e-02, -1.4341e-02, -7.5269e-02, 1.9431e-02, -5.1778e-02,\n", + " 1.4097e-02, -2.9246e-03, 6.0627e-02, -1.3714e-02, 4.8454e-02,\n", + " 6.2255e-04, -5.1223e-02, 3.4848e-02, 7.8207e-02, 3.2250e-02,\n", + " -3.6745e-03, -6.7451e-03, -5.1932e-02, 9.6714e-02, 8.0431e-03,\n", + " 1.3104e-02, 5.6854e-02], device='cuda:0'), other={}), 'fer': Prediction(label='Surprise', logits=tensor([ 0.3468, -0.2790, 0.4901, -0.4610, -2.3501, 0.5280, -0.8666, 1.3180],\n", + " device='cuda:0'), other={}), 'au': Prediction(label='lip_pucker', logits=tensor([0.5469, 0.5315, 0.2635, 0.0673, 0.2948, 0.3963, 0.4807, 0.5898, 0.2990,\n", + " 0.3996, 0.1834, 0.1084, 0.2283, 0.1509, 0.3718, 0.6836, 0.0967, 0.0717,\n", + " 0.0965, 0.2249, 0.0965, 0.4171, 0.3806, 0.2895, 0.0793, 0.1127, 0.0930,\n", + " 0.0456, 0.0551, 0.0936, 0.0856, 0.2960, 0.1136, 0.1679, 0.0210, 0.2525,\n", + " 0.2714, 0.3123, 0.0459, 0.1481, 0.0250], device='cuda:0'), other={'multi': ['inner_brow_raiser', 'outer_brow_raiser', 'upper_lip_raiser', 'lip_pucker']}), 'va': Prediction(label='other', logits=tensor([-0.0264, -0.0469], device='cuda:0'), other={'valence': 0.22364261001348495, 'arousal': 0.0030725032091140775}), 'deepfake': Prediction(label='Real', logits=tensor(0.0075, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6859, -0.3829, -0.0520, 0.1104, 0.3915, 0.7755, 0.1669, -0.7778,\n", + " 0.0208, -0.2817, 1.4856, -0.5584, 0.4354, 0.2665, 0.6039, -0.0072,\n", + " 0.3357, 0.2587, -0.4029, 0.2695, 0.2591, 0.2103, 0.0958, -0.0058,\n", + " 0.0396, -0.0103, -0.3295, 0.1146, 0.0612, 0.1023, -0.1248, 0.0827,\n", + " 0.1020, 0.1188, -0.0399, -0.0075, -0.1029, 0.0316, -0.0087, -0.0839,\n", + " 0.0036, -0.0503, -0.0102, -0.0379, -0.0037, -0.0776, 0.1206, -0.0085,\n", + " -0.0256, -0.0403, -0.0167, 0.0261, 1.0538, -1.6984, 0.2500, -0.6419,\n", + " -0.0501, 0.0336, -0.2535, 0.7852, 0.0592, 0.2573], device='cuda:0'), other={'lmk3d': tensor([[406.2574, 408.9569, 412.5613, 415.8812, 419.8691, 425.4640, 431.2886,\n", + " 438.6856, 449.4534, 459.6204, 466.2425, 471.2617, 474.9014, 476.0859,\n", + " 476.5639, 476.7974, 476.0235, 410.6193, 413.7764, 418.5113, 423.3328,\n", + " 427.8924, 446.3574, 450.5857, 455.4457, 460.9304, 465.7838, 439.1430,\n", + " 440.1713, 441.1512, 442.0310, 437.4620, 439.8128, 443.1280, 446.2616,\n", + " 448.5317, 418.3632, 420.9196, 425.3572, 429.8842, 426.3329, 421.8131,\n", + " 448.6467, 452.3104, 456.8683, 460.5427, 457.3400, 452.6282, 434.2208,\n", + " 437.5998, 441.5991, 444.1690, 446.6229, 451.5543, 455.8321, 452.3303,\n", + " 449.2659, 445.6780, 442.0587, 438.6013, 435.4943, 441.7019, 444.6506,\n", + " 447.7666, 454.8411, 447.8150, 444.7721, 441.7522],\n", + " [486.2319, 494.8192, 502.5384, 509.3825, 516.5247, 521.8410, 524.7597,\n", + " 526.9668, 527.3494, 523.4688, 519.1319, 514.4612, 507.6551, 499.5986,\n", + " 492.0970, 483.8327, 474.9355, 474.6722, 470.7132, 468.8808, 468.3613,\n", + " 468.6606, 465.5971, 463.7659, 462.6571, 462.8356, 465.6607, 476.6386,\n", + " 482.1461, 487.5995, 492.2655, 497.6701, 497.6063, 497.5979, 496.6416,\n", + " 495.9396, 480.2073, 477.8031, 477.1176, 478.5130, 480.0835, 480.9967,\n", + " 475.4855, 472.7310, 472.0175, 473.4615, 475.1968, 475.7975, 509.6336,\n", + " 506.3334, 503.5451, 503.5436, 502.7971, 504.2321, 506.3610, 508.8277,\n", + " 510.9581, 511.8274, 512.0238, 510.9261, 509.2263, 507.0017, 506.2838,\n", + " 506.1194, 506.2843, 507.1980, 507.8662, 508.0878],\n", + " [-58.5145, -57.5465, -56.9607, -55.4277, -51.2775, -43.8156, -34.3998,\n", + " -26.0921, -22.8697, -25.7387, -33.7108, -42.8716, -50.3762, -54.4612,\n", + " -55.9676, -56.5573, -57.4177, -28.4096, -22.6735, -18.5395, -15.9986,\n", + " -14.7740, -14.5050, -15.6275, -18.0375, -21.9770, -27.5754, -13.4394,\n", + " -9.1969, -4.9525, -4.1775, -14.0537, -12.0004, -10.9809, -11.8004,\n", + " -13.7235, -25.0594, -20.9853, -20.7746, -21.8629, -20.9527, -22.1837,\n", + " -21.6592, -20.4887, -20.4945, -24.4189, -21.6476, -20.5924, -17.8496,\n", + " -12.4632, -9.8531, -9.4458, -9.6900, -11.9687, -17.0550, -13.0921,\n", + " -11.7107, -11.4356, -11.7692, -13.4194, -17.2167, -12.0756, -11.1458,\n", + " -11.8815, -16.5972, -11.7293, -11.5992, -12.0050]], device='cuda:0',\n", + " dtype=torch.float64), 'mesh': tensor([[411.1458, 411.1906, 411.2369, ..., 473.8996, 473.8188, 473.7325],\n", + " [476.9688, 477.0877, 477.2065, ..., 498.0568, 497.9245, 497.7936],\n", + " [-28.0965, -28.0858, -28.0759, ..., -73.1040, -73.4302, -73.7453]],\n", + " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [1.6331758603673863, 0.00479942403408295, -10.627768598091517], 'translation': tensor([443.2034, 484.4234, -86.8661], device='cuda:0', dtype=torch.float64)}})}), Face(indx=2, loc=Location(x1=304, x2=416, y1=325, y2=438), dims=Dimensions(height=113, width=112), tensor=tensor([[[ 0.1765, 0.1765, 0.1644, ..., 0.8041, 0.8078, 0.8078],\n", + " [ 0.1765, 0.1765, 0.1644, ..., 0.8041, 0.8078, 0.8078],\n", + " [ 0.1707, 0.1707, 0.1600, ..., 0.8024, 0.8059, 0.8059],\n", + " ...,\n", + " [ 0.3115, 0.3115, 0.3115, ..., 0.0980, 0.0980, 0.0980],\n", + " [ 0.3373, 0.3373, 0.3373, ..., 0.0980, 0.0980, 0.0980],\n", + " [ 0.3373, 0.3373, 0.3373, ..., 0.0980, 0.0980, 0.0980]],\n", + "\n", + " [[ 0.0667, 0.0667, 0.0574, ..., 0.6051, 0.6078, 0.6078],\n", + " [ 0.0667, 0.0667, 0.0574, ..., 0.6051, 0.6078, 0.6078],\n", + " [ 0.0609, 0.0609, 0.0532, ..., 0.6031, 0.6059, 0.6059],\n", + " ...,\n", + " [ 0.1318, 0.1318, 0.1318, ..., 0.0157, 0.0157, 0.0157],\n", + " [ 0.1490, 0.1490, 0.1490, ..., 0.0157, 0.0157, 0.0157],\n", + " [ 0.1490, 0.1490, 0.1490, ..., 0.0157, 0.0157, 0.0157]],\n", + "\n", + " [[ 0.0039, 0.0039, -0.0072, ..., 0.5335, 0.5373, 0.5373],\n", + " [ 0.0039, 0.0039, -0.0072, ..., 0.5335, 0.5373, 0.5373],\n", + " [-0.0018, -0.0018, -0.0114, ..., 0.5319, 0.5353, 0.5353],\n", + " ...,\n", + " [ 0.0327, 0.0327, 0.0337, ..., -0.0471, -0.0471, -0.0471],\n", + " [ 0.0471, 0.0471, 0.0480, ..., -0.0471, -0.0471, -0.0471],\n", + " [ 0.0471, 0.0471, 0.0480, ..., -0.0471, -0.0471, -0.0471]]],\n", + " device='cuda:0'), ratio=0.01085048010973937, preds={'embed': Prediction(label='abstract', logits=tensor([-0.1082, -0.0285, 0.1277, -0.0622, 0.0594, 0.0432, 0.0691, -0.0739,\n", + " 0.1594, -0.0780, 0.1411, 0.0504, 0.0804, 0.0345, 0.0473, 0.0097,\n", + " 0.1650, 0.0771, -0.0739, 0.0424, 0.0898, -0.0929, 0.1129, 0.1323,\n", + " 0.1149, 0.0681, -0.0549, 0.0365, -0.0870, 0.0555, -0.0800, 0.0585,\n", + " -0.0919, -0.0474, -0.0087, 0.1194, -0.0921, 0.0174, 0.2783, -0.0811,\n", + " 0.0914, 0.0585, -0.0105, 0.1011, -0.0162, 0.1334, 0.0145, 0.0105,\n", + " -0.0260, 0.0798, 0.1207, 0.0176, 0.1253, 0.0639, -0.0255, 0.0573,\n", + " -0.2182, -0.0955, -0.0543, -0.1026, -0.0181, -0.1430, -0.0337, 0.0416,\n", + " 0.1377, 0.0940, 0.0039, -0.0746, 0.1421, 0.1803, -0.0296, -0.0442,\n", + " -0.1039, -0.0076, -0.0023, 0.0327, 0.0198, 0.0378, -0.1709, -0.0539,\n", + " 0.0755, 0.1615, -0.1109, 0.0489, 0.0739, 0.0772, 0.0299, -0.0928,\n", + " -0.0598, 0.0545, 0.0336, -0.0705, -0.0040, -0.0365, 0.0822, -0.1637,\n", + " -0.1692, -0.0947, -0.0546, -0.1109, -0.0756, -0.0205, 0.0147, 0.0253,\n", + " -0.1175, -0.1318, 0.0908, 0.1920, -0.0702, 0.0213, 0.0349, 0.0229,\n", + " -0.0356, -0.0246, 0.0825, 0.0213, -0.0250, 0.1168, -0.0209, 0.0768,\n", + " 0.0866, 0.0666, -0.0044, 0.0664, 0.0837, -0.1002, -0.0450, 0.0420],\n", + " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([ 0.0265, -0.0136, -0.0285, -0.0368, -0.0450, -0.0311, 0.0775, 0.0359,\n", + " -0.0696, -0.0542, -0.0501, -0.0625, 0.0183, -0.0424, -0.0002, -0.0290,\n", + " 0.0157, 0.0110, -0.0619, -0.0067, 0.0028, 0.0008, -0.0215, -0.0148,\n", + " -0.0257, -0.0212, -0.0412, -0.0337, 0.0564, -0.0106, -0.0720, 0.0358,\n", + " -0.0995, 0.0045, 0.0357, 0.0295, 0.0149, -0.0043, -0.0513, -0.0177,\n", + " 0.0279, -0.0211, 0.0039, -0.0471, -0.0245, -0.0826, 0.0712, 0.0021,\n", + " -0.0187, -0.0376, -0.0584, -0.0130, -0.0249, 0.0241, -0.0073, 0.0485,\n", + " 0.0445, 0.0416, -0.0447, -0.0145, -0.0670, -0.0087, 0.0406, 0.0408,\n", + " 0.0055, -0.0191, 0.0136, 0.0040, 0.0884, 0.0153, -0.0359, 0.0560,\n", + " -0.0276, 0.0009, -0.0239, -0.0279, 0.0185, 0.0283, -0.0246, -0.0300,\n", + " 0.0181, 0.0204, 0.0414, -0.0265, -0.0639, 0.0081, 0.0110, 0.0302,\n", + " -0.0652, -0.0283, -0.0203, -0.0101, 0.0171, 0.0034, 0.0062, -0.0134,\n", + " 0.0353, 0.0025, -0.0050, -0.0127, 0.0623, -0.0527, -0.0553, -0.0461,\n", + " 0.0203, -0.0250, -0.0284, -0.0245, 0.0317, 0.0385, -0.0208, -0.0154,\n", + " 0.0212, -0.0427, 0.0745, 0.0258, -0.0897, -0.0126, 0.0240, -0.0802,\n", + " 0.0165, 0.0569, -0.0813, -0.0373, -0.0799, 0.0534, -0.0048, 0.0309,\n", + " -0.0618, -0.0553, 0.0230, 0.0314, -0.0191, 0.0035, -0.0218, -0.0235,\n", + " 0.1259, -0.0385, -0.0653, 0.0618, -0.0022, -0.0295, -0.0263, -0.0272,\n", + " 0.0302, 0.0310, -0.0131, 0.0304, -0.0551, 0.0439, -0.0009, 0.0056,\n", + " 0.0247, 0.0541, 0.0459, 0.1097, -0.0242, -0.0104, -0.0276, -0.0716,\n", + " -0.0049, 0.0194, -0.0446, 0.0142, -0.0144, 0.0060, 0.0288, -0.0708,\n", + " -0.0495, 0.0481, 0.0323, 0.0169, -0.0294, 0.0356, 0.0397, 0.0126,\n", + " 0.0221, -0.0247, 0.0098, 0.0863, -0.0334, -0.0201, 0.0268, 0.0323,\n", + " 0.0420, -0.0119, 0.0086, 0.0306, -0.0062, 0.0638, 0.0085, 0.0384,\n", + " 0.0945, -0.0363, 0.0219, -0.0993, -0.0483, -0.0300, 0.0501, 0.0242,\n", + " -0.0609, -0.0394, 0.0301, -0.0407, -0.0062, -0.0506, -0.0184, 0.0214,\n", + " -0.0087, -0.0099, 0.0440, 0.0265, 0.0305, -0.0318, -0.0334, -0.0074,\n", + " -0.0606, -0.0043, -0.0304, 0.0450, 0.0457, -0.0268, 0.0096, 0.0085,\n", + " 0.0779, 0.0257, -0.0126, 0.0209, 0.0414, 0.0566, 0.0875, -0.0139,\n", + " -0.0697, 0.1027, -0.0248, -0.0792, -0.0050, -0.0076, -0.0405, 0.0376,\n", + " -0.0029, -0.0205, 0.0407, -0.0422, 0.0123, -0.0206, -0.0821, 0.0061,\n", + " -0.0760, -0.1010, -0.0294, -0.0612, -0.0682, -0.0969, -0.0577, -0.0005,\n", + " -0.0335, -0.0128, -0.0332, 0.0089, 0.0189, 0.0597, 0.1112, 0.0569,\n", + " 0.0432, -0.0216, -0.0776, -0.0804, -0.0330, -0.0135, -0.0400, 0.0115,\n", + " 0.0055, 0.0362, 0.1420, -0.0009, -0.0364, 0.0065, -0.0328, 0.0336,\n", + " 0.0204, 0.0062, -0.0188, -0.0297, -0.0648, -0.0328, -0.0175, -0.1000,\n", + " -0.0127, -0.0152, 0.0869, -0.0820, 0.0526, 0.0508, 0.1104, -0.0490,\n", + " 0.0532, 0.0048, 0.0348, -0.0382, 0.0160, 0.0110, 0.0470, 0.0899,\n", + " 0.0675, -0.0286, 0.0123, -0.0482, -0.0183, -0.0283, -0.0454, -0.0276,\n", + " 0.0135, 0.0688, -0.0099, -0.0341, -0.0303, 0.0296, -0.0775, 0.0558,\n", + " -0.0535, 0.0358, -0.0264, -0.0271, -0.0737, 0.0267, 0.0379, 0.0111,\n", + " 0.0215, 0.0242, -0.0761, -0.0284, 0.0516, -0.0392, 0.0143, 0.0343,\n", + " -0.0184, 0.0061, 0.0059, 0.0220, 0.0742, -0.0176, -0.0475, 0.0339,\n", + " 0.0545, 0.0170, -0.0147, 0.0227, 0.0674, -0.0072, -0.0620, 0.0076,\n", + " -0.0373, -0.0149, -0.0376, 0.0603, 0.0568, -0.0229, -0.0570, -0.0477,\n", + " 0.0471, 0.0601, -0.0371, -0.1001, 0.0071, -0.0231, -0.0284, -0.0136,\n", + " -0.0232, 0.0479, -0.0339, 0.0314, -0.0408, 0.0033, -0.0056, 0.0117,\n", + " 0.0104, -0.0751, -0.0059, -0.0226, 0.0227, -0.0617, -0.0420, 0.0153,\n", + " -0.0441, -0.0145, 0.0777, -0.0379, 0.0135, -0.0006, 0.0526, 0.0322,\n", + " 0.0458, -0.0364, -0.0341, 0.0295, -0.0183, -0.0243, 0.0563, 0.0171,\n", + " -0.1092, -0.0673, -0.0229, 0.0060, -0.0302, -0.0420, 0.0365, -0.0182,\n", + " -0.0018, -0.0487, 0.0143, -0.0305, 0.0040, -0.0446, -0.0170, -0.0009,\n", + " 0.0121, -0.0686, 0.0187, 0.0813, -0.0021, -0.0516, -0.0483, -0.0893,\n", + " -0.0151, 0.0428, -0.0364, -0.0351, 0.0305, 0.0294, -0.0444, 0.0026,\n", + " 0.0213, -0.0220, 0.0021, 0.0188, 0.0733, -0.0150, -0.0481, -0.0647,\n", + " 0.0726, 0.0499, 0.0712, -0.0029, -0.1222, -0.0827, -0.0350, 0.0276,\n", + " -0.0502, 0.0283, 0.0456, 0.0319, 0.0521, -0.0520, -0.0070, -0.0409,\n", + " 0.0383, 0.0626, 0.0018, -0.0516, 0.0087, -0.1213, -0.0174, 0.0016,\n", + " 0.0122, 0.0216, 0.0353, -0.0347, 0.0149, -0.0711, -0.0983, -0.0938,\n", + " -0.0326, 0.0065, -0.0372, 0.0105, -0.0954, -0.0058, -0.0128, 0.0552,\n", + " 0.0075, 0.0498, 0.0772, -0.0454, -0.0436, -0.0335, 0.0633, 0.0189,\n", + " -0.1074, 0.0214, 0.0060, -0.0094, -0.0101, 0.0585, 0.0290, -0.0467,\n", + " 0.0039, 0.0047, -0.0118, -0.0196, -0.0421, 0.0980, -0.0181, -0.0655,\n", + " 0.0123, -0.0206, 0.0568, 0.0418, 0.0261, 0.0293, 0.0022, -0.0740],\n", + " device='cuda:0'), other={}), 'fer': Prediction(label='Happiness', logits=tensor([-0.8319, 0.5829, 0.8000, 0.2118, 1.3525, -2.2695, -0.2542, -0.4857],\n", + " device='cuda:0'), other={}), 'au': Prediction(label='upper_lip_raiser', logits=tensor([0.3834, 0.4124, 0.2915, 0.0488, 0.4047, 0.5271, 0.5809, 0.6022, 0.2451,\n", + " 0.5122, 0.0804, 0.2262, 0.2505, 0.1567, 0.3297, 0.4826, 0.0842, 0.0686,\n", + " 0.0606, 0.2115, 0.0989, 0.4633, 0.3180, 0.2119, 0.0201, 0.0506, 0.0587,\n", + " 0.0282, 0.0310, 0.0381, 0.0381, 0.1780, 0.0566, 0.0690, 0.0088, 0.2488,\n", + " 0.2212, 0.2272, 0.0416, 0.1052, 0.0169], device='cuda:0'), other={'multi': ['lid_tightener', 'nose_wrinkler', 'upper_lip_raiser', 'lip_corner_puller']}), 'va': Prediction(label='other', logits=tensor([0.7079, 0.2615], device='cuda:0'), other={'valence': 0.9579311013221741, 'arousal': 0.31147159934043883}), 'deepfake': Prediction(label='Real', logits=tensor(0.0079, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 0.9151, 0.7179, 0.5859, -0.4492, -0.7440, 0.5096, -0.4099, 0.1807,\n", + " -0.6808, -0.0705, 0.7457, -0.6290, 0.4481, -0.2686, -0.0138, 0.1428,\n", + " -0.2458, -0.0413, -0.0495, -0.0278, -0.4417, -0.2207, -0.0183, 0.1026,\n", + " -0.0257, -0.0672, 0.0089, 0.0605, 0.0185, -0.0178, 0.0455, -0.0332,\n", + " -0.0692, -0.1258, 0.0844, -0.1021, 0.1496, -0.0783, 0.0212, 0.1193,\n", + " -0.0132, 0.0822, -0.0044, 0.0452, -0.0119, 0.1098, -0.0598, 0.0467,\n", + " 0.0230, 0.1077, -0.0312, -0.0198, -1.1026, 1.0199, -0.1736, 0.8155,\n", + " 0.0728, -0.0068, -0.1060, -0.9437, -0.0786, -0.3778], device='cuda:0'), other={'lmk3d': tensor([[325.9496, 323.2606, 321.7278, 320.6073, 320.6018, 324.5638, 331.0073,\n", + " 338.9406, 349.4346, 359.3748, 365.1216, 368.9915, 373.4830, 378.1089,\n", + " 382.4319, 387.3008, 391.6353, 348.4583, 355.6591, 362.2960, 367.6229,\n", + " 371.6902, 388.9258, 393.1255, 396.8989, 399.8072, 400.0108, 376.9104,\n", + " 376.1422, 375.5029, 373.8757, 361.9241, 365.0229, 368.5455, 371.8167,\n", + " 373.7274, 352.8893, 358.1556, 362.3395, 364.7466, 361.1791, 356.3780,\n", + " 382.1250, 387.3910, 391.5962, 392.2389, 389.6725, 385.7396, 345.3940,\n", + " 354.0380, 362.6646, 365.7507, 369.0251, 372.9528, 373.2491, 367.9565,\n", + " 363.7895, 359.1929, 354.6160, 350.2925, 346.3436, 359.2110, 363.9967,\n", + " 367.9014, 372.6104, 364.6025, 360.4374, 356.1348],\n", + " [351.6276, 361.9891, 371.8369, 381.0313, 391.9385, 402.5040, 411.2894,\n", + " 420.6132, 427.8299, 428.2663, 424.4204, 419.5766, 412.3653, 403.2433,\n", + " 395.1673, 386.6733, 376.9641, 350.0087, 349.2924, 350.9149, 353.5134,\n", + " 356.4769, 363.1097, 363.1810, 364.0024, 366.0531, 369.7483, 370.4395,\n", + " 377.5560, 384.3583, 389.5835, 388.9828, 390.9186, 393.0527, 393.4657,\n", + " 393.3965, 360.2910, 360.0827, 361.7449, 365.3649, 365.3000, 363.5488,\n", + " 372.0727, 371.3344, 373.0011, 375.5262, 376.3211, 374.7316, 395.2401,\n", + " 395.4092, 396.8146, 398.6683, 399.2571, 402.6591, 406.4026, 410.8424,\n", + " 412.1897, 411.0896, 408.6212, 403.8473, 395.6412, 398.7527, 400.5798,\n", + " 402.1142, 406.1663, 408.1911, 407.1255, 404.6331],\n", + " [-56.4699, -56.4355, -57.1755, -57.0587, -55.1206, -50.5544, -44.7040,\n", + " -40.4069, -42.3815, -50.9624, -62.2841, -73.2464, -81.9793, -86.1536,\n", + " -87.8684, -88.9659, -89.8016, -29.4807, -25.4118, -23.6707, -23.5128,\n", + " -24.5183, -33.3114, -36.5016, -41.2640, -47.7705, -55.6070, -28.0453,\n", + " -23.9706, -19.9398, -19.3018, -28.1390, -27.3039, -28.0749, -30.8122,\n", + " -34.2277, -29.6494, -26.8993, -28.8359, -32.1533, -29.3883, -28.3824,\n", + " -41.1111, -41.7181, -43.9530, -49.6333, -45.2578, -41.9032, -34.5442,\n", + " -29.5019, -28.4485, -29.7492, -31.6754, -39.2336, -49.1855, -41.8874,\n", + " -36.8908, -33.8157, -32.0819, -32.7257, -35.0856, -30.7447, -31.7671,\n", + " -35.1052, -48.8208, -36.9304, -34.0121, -32.8160]], device='cuda:0',\n", + " dtype=torch.float64), 'mesh': tensor([[ 347.6599, 347.6322, 347.6058, ..., 369.7503, 369.6336,\n", + " 369.5160],\n", + " [ 352.6554, 352.7989, 352.9428, ..., 396.1997, 395.9443,\n", + " 395.6904],\n", + " [ -29.3039, -29.3098, -29.3172, ..., -103.1651, -103.4589,\n", + " -103.7392]], device='cuda:0', dtype=torch.float64), 'pose': {'angles': [-22.621972976156982, -12.48670030695662, 23.981291427286767], 'translation': tensor([352.3114, 392.8130, -88.1578], device='cuda:0', dtype=torch.float64)}})}), Face(indx=3, loc=Location(x1=709, x2=805, y1=390, y2=487), dims=Dimensions(height=97, width=96), tensor=tensor([[[ 0.6824, 0.6824, 0.6911, ..., 0.1412, 0.1412, 0.1412],\n", + " [ 0.6824, 0.6824, 0.6911, ..., 0.1412, 0.1412, 0.1412],\n", + " [ 0.6845, 0.6845, 0.6931, ..., 0.1407, 0.1406, 0.1406],\n", + " ...,\n", + " [ 0.6281, 0.6281, 0.6276, ..., 0.5091, 0.5091, 0.5091],\n", + " [ 0.6314, 0.6314, 0.6309, ..., 0.5059, 0.5059, 0.5059],\n", + " [ 0.6314, 0.6314, 0.6309, ..., 0.5059, 0.5059, 0.5059]],\n", + "\n", + " [[ 0.4392, 0.4392, 0.4464, ..., 0.0431, 0.0431, 0.0431],\n", + " [ 0.4392, 0.4392, 0.4464, ..., 0.0431, 0.0431, 0.0431],\n", + " [ 0.4398, 0.4398, 0.4468, ..., 0.0427, 0.0426, 0.0426],\n", + " ...,\n", + " [ 0.2920, 0.2920, 0.2923, ..., 0.2127, 0.2127, 0.2127],\n", + " [ 0.2941, 0.2941, 0.2946, ..., 0.2078, 0.2078, 0.2078],\n", + " [ 0.2941, 0.2941, 0.2946, ..., 0.2078, 0.2078, 0.2078]],\n", + "\n", + " [[ 0.3686, 0.3686, 0.3759, ..., -0.0157, -0.0157, -0.0157],\n", + " [ 0.3686, 0.3686, 0.3759, ..., -0.0157, -0.0157, -0.0157],\n", + " [ 0.3697, 0.3697, 0.3768, ..., -0.0162, -0.0162, -0.0162],\n", + " ...,\n", + " [ 0.1440, 0.1440, 0.1448, ..., 0.0929, 0.0929, 0.0929],\n", + " [ 0.1451, 0.1451, 0.1461, ..., 0.0902, 0.0902, 0.0902],\n", + " [ 0.1451, 0.1451, 0.1461, ..., 0.0902, 0.0902, 0.0902]]],\n", + " device='cuda:0'), ratio=0.007983539094650206, preds={'embed': Prediction(label='abstract', logits=tensor([ 0.1123, 0.0388, -0.0597, 0.0146, -0.0652, -0.0706, -0.0195, 0.0521,\n", + " 0.0861, 0.0183, 0.0881, -0.0781, 0.1171, 0.1533, -0.0191, -0.0839,\n", + " 0.1500, 0.0202, 0.1268, -0.0433, 0.1147, 0.0401, -0.0247, -0.0360,\n", + " -0.0215, 0.1177, 0.0425, 0.0944, -0.0995, -0.0966, 0.0536, -0.1263,\n", + " 0.1725, 0.0243, -0.1391, 0.0081, -0.0747, 0.0790, 0.0028, 0.0179,\n", + " 0.1737, 0.1264, 0.0429, -0.0397, 0.0892, -0.0787, -0.0101, 0.0518,\n", + " -0.0288, -0.0795, 0.0379, 0.0527, -0.0470, -0.0845, -0.0788, 0.1630,\n", + " 0.1168, 0.0165, -0.0811, 0.1830, -0.1082, -0.0538, 0.1457, -0.0949,\n", + " -0.1334, -0.0066, -0.0324, -0.0647, 0.0171, 0.0983, -0.0207, -0.0773,\n", + " -0.0648, -0.0795, -0.1511, 0.0205, 0.1224, 0.0230, 0.0003, 0.0386,\n", + " -0.1127, 0.0439, -0.0370, -0.0414, -0.0727, 0.2022, -0.0591, -0.0992,\n", + " 0.1312, -0.0765, -0.0018, 0.1270, 0.1242, -0.0312, 0.1282, -0.0291,\n", + " 0.0135, 0.1674, -0.0183, 0.1173, -0.1888, -0.1347, -0.0718, 0.0575,\n", + " 0.0276, -0.0829, -0.0981, 0.0923, -0.0541, -0.0962, -0.0795, -0.1467,\n", + " -0.0157, 0.0157, -0.0587, -0.0322, -0.0693, -0.0566, 0.0491, -0.0089,\n", + " 0.0186, -0.0568, -0.0085, -0.1491, -0.0214, -0.0391, 0.1004, 0.1952],\n", + " device='cuda:0'), other={}), 'verify': Prediction(label='abstract', logits=tensor([-2.1140e-02, -9.4311e-02, -2.8810e-02, -4.6512e-02, -3.4438e-02,\n", + " 4.5177e-03, -7.4685e-02, -1.2953e-02, -2.6747e-02, 1.7848e-02,\n", + " -4.0256e-02, 2.9478e-02, 7.2878e-02, 5.4362e-02, 1.4793e-02,\n", + " 2.8869e-02, -2.3587e-02, -1.8154e-03, -2.9428e-02, -7.1922e-02,\n", + " -6.4076e-02, 7.8159e-03, -2.7936e-02, 4.9204e-02, -8.0633e-02,\n", + " -3.8566e-02, 1.8985e-02, 7.4753e-03, -1.5321e-02, -1.6437e-02,\n", + " -1.7215e-02, -4.7261e-02, 3.6692e-02, -4.4184e-02, 7.7633e-02,\n", + " -3.9204e-02, 7.2337e-02, -3.5909e-03, 2.4318e-03, -3.6321e-02,\n", + " 2.7026e-02, 4.4843e-02, 4.2198e-02, 5.7313e-02, -1.5605e-02,\n", + " 1.3321e-02, -1.9707e-03, 5.8157e-03, 3.8072e-02, 2.5240e-02,\n", + " 2.1627e-02, -1.3719e-02, -4.5093e-02, 1.3505e-02, 5.6432e-02,\n", + " 1.8376e-02, -8.0240e-02, 7.7326e-03, -5.6222e-02, 5.1158e-02,\n", + " 2.0520e-02, 3.2381e-02, 1.1209e-02, -4.3550e-02, -4.8388e-02,\n", + " 3.7059e-02, -2.7751e-02, 5.9774e-02, -3.1689e-03, -2.6937e-02,\n", + " -7.1772e-02, -7.0010e-02, -8.7105e-02, 4.1829e-03, 1.9414e-02,\n", + " -7.8101e-02, 2.0161e-02, 2.5377e-02, 6.6513e-02, 6.4928e-02,\n", + " 1.0026e-01, 1.1135e-02, 2.6583e-03, 4.8496e-02, -6.3903e-02,\n", + " -5.4311e-03, -1.4080e-02, -1.5546e-02, -1.9014e-02, -2.7194e-02,\n", + " 6.5179e-02, 2.3266e-02, -7.9378e-02, 5.9065e-03, -1.3092e-01,\n", + " 3.2425e-02, -3.7285e-02, 3.7663e-02, -5.6152e-02, -8.7038e-03,\n", + " -1.9569e-02, -5.9281e-02, 5.0664e-03, -5.6120e-02, 5.3518e-02,\n", + " -6.2814e-03, -6.3275e-02, 2.3994e-02, -2.1086e-02, -1.1307e-02,\n", + " -2.6155e-02, -5.3931e-02, 1.8247e-02, 1.6497e-02, -6.0798e-02,\n", + " -4.5024e-03, -3.4567e-02, -1.2599e-02, -2.2346e-02, -4.7043e-02,\n", + " -2.7716e-02, -2.5533e-03, -2.8865e-02, -1.5918e-02, -9.1293e-02,\n", + " -4.6791e-02, -2.3005e-02, -8.6917e-02, 2.7470e-02, 6.6486e-02,\n", + " 1.7323e-02, -3.5106e-02, 3.7512e-02, 8.1063e-03, -5.5226e-03,\n", + " -3.5011e-02, -9.3214e-03, 3.1248e-02, 5.3281e-02, 7.6175e-02,\n", + " -6.4165e-02, -2.1502e-03, -6.7093e-02, -4.7711e-02, -3.6775e-02,\n", + " 8.8552e-02, 1.9196e-02, 4.1092e-02, -4.5856e-03, 4.1686e-02,\n", + " -4.1660e-02, 5.1485e-02, -6.1445e-02, -5.5135e-02, -1.0994e-02,\n", + " -1.1552e-02, -9.1616e-03, -3.0428e-02, 8.4153e-03, 9.8883e-03,\n", + " -8.3193e-03, 6.1501e-02, -2.0352e-02, 9.3854e-04, -3.3650e-02,\n", + " -2.7236e-03, 3.5869e-02, -3.7840e-02, -6.6470e-02, 7.4084e-02,\n", + " 5.7792e-02, -4.8464e-02, 2.3810e-02, -1.6576e-02, 7.2458e-03,\n", + " 3.6008e-02, 3.4512e-02, 4.3528e-02, 8.0564e-03, -2.4592e-02,\n", + " 4.3826e-02, -1.0114e-01, -1.4481e-02, -2.3150e-02, -2.2293e-02,\n", + " -1.1326e-02, 4.1734e-02, -3.6126e-02, 4.8126e-02, -3.6174e-02,\n", + " 2.7231e-02, -6.0583e-02, 2.1395e-02, 1.0219e-02, 8.9267e-02,\n", + " -3.8147e-02, -3.2592e-02, 2.9219e-02, 6.6782e-02, 3.6617e-02,\n", + " 4.6832e-02, 6.2448e-02, -4.1712e-02, 2.9782e-02, -1.5890e-02,\n", + " 2.8829e-02, -1.5348e-02, 4.5930e-02, 2.9251e-02, -3.7206e-02,\n", + " 7.1631e-02, 2.2485e-02, -5.8603e-02, -5.5079e-02, -6.1745e-03,\n", + " -6.0390e-02, 4.3832e-02, 7.6336e-03, -8.0045e-03, -1.8342e-02,\n", + " 5.8779e-02, 5.2754e-02, 4.7853e-02, 2.5693e-02, 4.4338e-02,\n", + " 1.8824e-02, -7.7679e-03, -3.0650e-02, 1.4611e-02, -4.0533e-02,\n", + " 8.8743e-03, 3.9422e-02, 1.9700e-02, -3.8069e-02, -3.1066e-02,\n", + " -6.2268e-02, 2.4354e-02, 2.6202e-02, 1.3880e-02, -4.4134e-02,\n", + " -8.2488e-03, 7.5456e-02, -7.4873e-03, 4.2710e-02, -1.3150e-02,\n", + " 1.3885e-03, 3.1739e-02, 4.9686e-02, -5.0465e-02, 7.1555e-03,\n", + " -1.7789e-02, 7.3926e-03, -4.7345e-03, -1.0240e-02, -9.0001e-02,\n", + " 4.4208e-02, 2.9978e-02, -1.1203e-02, -4.4992e-02, 6.3099e-02,\n", + " 1.1741e-02, 1.2406e-02, -8.5411e-02, -5.1944e-02, 1.7323e-02,\n", + " -2.0331e-03, -9.7630e-02, 4.2242e-02, 6.1197e-02, 2.6012e-02,\n", + " 1.9730e-02, 4.2435e-02, 3.3953e-02, 3.8048e-02, 4.3902e-02,\n", + " 1.8221e-02, 6.6977e-02, -1.9643e-02, -2.5007e-02, 2.0340e-02,\n", + " 7.1547e-02, -4.7440e-02, 2.9273e-02, -1.4846e-02, 5.0993e-02,\n", + " -3.8095e-02, -2.7230e-02, -1.4417e-02, 1.0233e-02, -8.4571e-02,\n", + " -6.7366e-03, 1.7986e-02, 4.7188e-02, 3.2894e-03, -3.6049e-02,\n", + " 1.7832e-02, 5.3268e-02, -4.5941e-02, 4.2866e-03, -1.5666e-02,\n", + " 5.0361e-02, -6.0816e-02, 1.3273e-02, 6.1248e-02, -3.6546e-02,\n", + " -6.8209e-04, 5.4843e-02, -7.4096e-02, 6.3652e-02, 1.3000e-02,\n", + " -1.4100e-02, 7.7745e-02, -5.0790e-02, -3.3783e-02, 7.3319e-03,\n", + " -6.9168e-02, -2.9989e-02, 1.8873e-02, -1.6830e-02, 9.5141e-03,\n", + " -2.7530e-02, -1.7906e-02, 8.6768e-03, 8.7173e-03, 5.0130e-05,\n", + " 3.4998e-02, 1.2410e-02, -3.2852e-02, -9.8997e-02, -1.8370e-02,\n", + " 3.4074e-02, 5.3788e-02, -9.6784e-02, 4.3145e-02, 1.5619e-02,\n", + " -2.9918e-02, 5.6675e-02, -5.3269e-02, 2.1768e-02, 5.7486e-02,\n", + " -4.5834e-02, 1.5840e-02, 1.9625e-02, -5.6148e-02, -1.8807e-03,\n", + " -7.0847e-02, -2.2764e-02, 2.0672e-02, 2.0534e-02, -1.8901e-02,\n", + " 4.5866e-02, 5.2986e-03, -1.1978e-01, -1.3630e-02, -5.9728e-02,\n", + " -4.1038e-02, 8.3208e-02, 1.4508e-02, -5.9358e-02, 3.3653e-02,\n", + " 4.8009e-02, 4.1343e-03, -3.3894e-02, 2.0771e-02, -1.6661e-02,\n", + " 6.7792e-02, -1.0998e-03, -3.1857e-02, -2.7954e-02, -3.2659e-02,\n", + " -7.4949e-02, 5.9029e-02, 4.9978e-02, -6.5975e-02, 1.9564e-02,\n", + " -5.1579e-02, 4.5959e-02, -4.7279e-02, -1.5454e-02, 3.7084e-03,\n", + " -2.4829e-02, 3.1967e-02, -1.0832e-01, -4.2311e-04, -3.6064e-02,\n", + " -7.0696e-02, -3.1683e-02, 4.5933e-03, -2.3077e-02, 5.9740e-03,\n", + " -8.0083e-03, 4.1260e-02, -5.1117e-02, 7.1721e-02, -2.1609e-02,\n", + " 4.6676e-02, -8.9895e-03, -4.0859e-02, 2.6671e-02, 1.5540e-02,\n", + " 4.3643e-02, 7.8479e-02, -9.8508e-03, -7.0387e-02, -4.2340e-03,\n", + " -1.6058e-02, 1.0321e-02, -3.6506e-03, -4.4291e-02, 5.4162e-02,\n", + " 1.3925e-02, 6.1427e-02, -4.6598e-02, -5.9422e-02, -1.3529e-01,\n", + " 5.2213e-02, 1.8817e-02, -2.6722e-02, -1.7153e-02, -2.7089e-02,\n", + " -3.3739e-02, -5.0745e-02, -1.0284e-02, -6.5881e-02, -5.0717e-02,\n", + " -4.3156e-02, 1.7743e-02, -7.7002e-02, -5.1442e-02, 1.2048e-01,\n", + " 1.3700e-02, -5.2653e-02, -4.8434e-03, 5.1945e-02, 3.6872e-02,\n", + " 1.1785e-02, 8.2269e-03, -5.1138e-02, -2.0783e-02, 9.6090e-03,\n", + " -7.8431e-02, -4.9915e-02, 5.2206e-02, -3.4631e-02, 4.1130e-02,\n", + " 6.7951e-03, 1.0091e-02, -3.7111e-02, -1.7473e-02, -7.8750e-02,\n", + " -1.9864e-02, 2.4413e-02, -7.2539e-03, -3.6784e-02, -5.2204e-02,\n", + " 4.8456e-02, -4.3423e-02, -3.5151e-02, 6.7425e-02, -4.0768e-02,\n", + " -6.9522e-02, 3.7984e-02, -1.9808e-02, -3.7061e-02, -5.4562e-02,\n", + " 6.3676e-02, 9.9637e-02, -5.6318e-03, -1.0433e-01, 1.5634e-02,\n", + " 9.3659e-03, 7.1628e-02, 1.4849e-02, -3.7589e-02, -9.9173e-02,\n", + " -1.0295e-02, 5.2714e-02, 5.8066e-02, 1.2363e-02, 8.4429e-03,\n", + " 2.4809e-02, -4.2649e-02, 6.5593e-02, 1.8392e-02, -3.7714e-02,\n", + " 6.5329e-03, -3.2973e-02, -5.2380e-02, 5.3788e-02, 2.5539e-02,\n", + " -2.0015e-02, -1.3764e-03, -3.2173e-03, -3.2077e-02, -1.9128e-02,\n", + " 1.1764e-01, -5.2270e-02, 2.2504e-04, -3.9197e-02, -6.0963e-03,\n", + " -4.7369e-03, -4.5541e-02, 1.0510e-02, 2.6493e-02, 3.7000e-03,\n", + " 2.7603e-02, 5.0652e-02, -1.3435e-01, 1.6560e-02, 3.8185e-02,\n", + " -7.1929e-02, 6.3874e-03], device='cuda:0'), other={}), 'fer': Prediction(label='Disgust', logits=tensor([ 1.2176, 0.1427, 2.1705, -1.2319, -1.6257, -1.0599, -0.5744, -1.5970],\n", + " device='cuda:0'), other={}), 'au': Prediction(label='lip_pucker', logits=tensor([0.4478, 0.4480, 0.2269, 0.0735, 0.3180, 0.4012, 0.3224, 0.5207, 0.1575,\n", + " 0.4557, 0.0944, 0.1127, 0.1722, 0.1128, 0.3515, 0.6048, 0.0565, 0.0821,\n", + " 0.0457, 0.2171, 0.1323, 0.2896, 0.2692, 0.2315, 0.0159, 0.0483, 0.0422,\n", + " 0.0109, 0.0059, 0.0342, 0.0191, 0.1538, 0.0479, 0.0336, 0.0055, 0.1605,\n", + " 0.2136, 0.0924, 0.0050, 0.1260, 0.0064], device='cuda:0'), other={'multi': ['upper_lip_raiser', 'lip_pucker']}), 'va': Prediction(label='other', logits=tensor([ 0.6246, -0.0428], device='cuda:0'), other={'valence': 0.8746367692947388, 'arousal': 0.0072126269340515164}), 'deepfake': Prediction(label='Real', logits=tensor(0.0110, device='cuda:0'), other={}), 'align': Prediction(label='abstract', logits=tensor([ 1.6267e+00, 7.6556e-01, -4.3406e-01, 1.1146e-01, -1.0850e+00,\n", + " 3.1289e-01, -8.3629e-01, 3.0733e-01, 7.6584e-02, 1.8366e+00,\n", + " 1.3888e+00, -6.8021e-02, 2.9394e-01, 1.1446e-01, 6.3400e-01,\n", + " 1.1441e-01, 3.1877e-01, 2.1769e-01, -4.9096e-01, 3.6329e-01,\n", + " 2.9285e-01, 2.4570e-01, 7.2985e-02, -3.7588e-02, 2.3857e-04,\n", + " 6.3214e-02, -3.2213e-01, 1.0667e-01, 1.4056e-01, 5.1679e-02,\n", + " -2.4466e-01, -2.5440e-02, 2.4242e-02, 1.2516e-01, 5.3467e-02,\n", + " 7.5459e-03, -6.2810e-02, 5.6591e-02, -2.5951e-02, -5.6242e-02,\n", + " 4.9393e-02, -2.6380e-02, 2.8267e-02, -2.0036e-02, -4.5537e-02,\n", + " 6.9071e-03, 9.4421e-02, -6.4126e-02, -1.9762e-02, -7.7348e-03,\n", + " 4.8094e-02, -5.9681e-02, 1.3770e+00, -7.6744e-01, 7.0273e-02,\n", + " -7.5844e-01, -2.4242e-02, -2.0432e-01, -3.1755e-01, 8.8249e-01,\n", + " 4.9737e-02, 8.4163e-02], device='cuda:0'), other={'lmk3d': tensor([[ 7.2452e+02, 7.2161e+02, 7.2016e+02, 7.1876e+02, 7.1734e+02,\n", + " 7.1774e+02, 7.1948e+02, 7.2340e+02, 7.3250e+02, 7.4478e+02,\n", + " 7.5531e+02, 7.6466e+02, 7.7359e+02, 7.8033e+02, 7.8560e+02,\n", + " 7.9102e+02, 7.9594e+02, 7.2931e+02, 7.3347e+02, 7.3813e+02,\n", + " 7.4240e+02, 7.4619e+02, 7.6517e+02, 7.7044e+02, 7.7612e+02,\n", + " 7.8192e+02, 7.8587e+02, 7.5146e+02, 7.4816e+02, 7.4490e+02,\n", + " 7.4274e+02, 7.3730e+02, 7.3913e+02, 7.4204e+02, 7.4578e+02,\n", + " 7.4882e+02, 7.3244e+02, 7.3543e+02, 7.3991e+02, 7.4348e+02,\n", + " 7.3904e+02, 7.3455e+02, 7.6271e+02, 7.6757e+02, 7.7225e+02,\n", + " 7.7559e+02, 7.7098e+02, 7.6601e+02, 7.2765e+02, 7.3174e+02,\n", + " 7.3689e+02, 7.3927e+02, 7.4215e+02, 7.4712e+02, 7.5179e+02,\n", + " 7.4564e+02, 7.4094e+02, 7.3691e+02, 7.3334e+02, 7.3069e+02,\n", + " 7.2894e+02, 7.3529e+02, 7.3853e+02, 7.4203e+02, 7.5091e+02,\n", + " 7.4203e+02, 7.3851e+02, 7.3536e+02],\n", + " [ 4.0826e+02, 4.1695e+02, 4.2535e+02, 4.3314e+02, 4.4237e+02,\n", + " 4.5229e+02, 4.6110e+02, 4.6989e+02, 4.7735e+02, 4.7928e+02,\n", + " 4.7707e+02, 4.7320e+02, 4.6736e+02, 4.6041e+02, 4.5429e+02,\n", + " 4.4772e+02, 4.3997e+02, 4.1246e+02, 4.1322e+02, 4.1597e+02,\n", + " 4.1924e+02, 4.2253e+02, 4.3087e+02, 4.3145e+02, 4.3253e+02,\n", + " 4.3443e+02, 4.3746e+02, 4.3592e+02, 4.4244e+02, 4.4879e+02,\n", + " 4.5322e+02, 4.5102e+02, 4.5315e+02, 4.5546e+02, 4.5618e+02,\n", + " 4.5620e+02, 4.2250e+02, 4.2352e+02, 4.2563e+02, 4.2897e+02,\n", + " 4.2849e+02, 4.2615e+02, 4.3749e+02, 4.3783e+02, 4.3987e+02,\n", + " 4.4174e+02, 4.4226e+02, 4.4040e+02, 4.5536e+02, 4.5764e+02,\n", + " 4.5941e+02, 4.6109e+02, 4.6183e+02, 4.6462e+02, 4.6618e+02,\n", + " 4.6694e+02, 4.6699e+02, 4.6563e+02, 4.6362e+02, 4.6031e+02,\n", + " 4.5590e+02, 4.6098e+02, 4.6269e+02, 4.6408e+02, 4.6570e+02,\n", + " 4.6329e+02, 4.6203e+02, 4.6030e+02],\n", + " [-5.2251e+01, -5.4851e+01, -5.7509e+01, -5.8771e+01, -5.7468e+01,\n", + " -5.1991e+01, -4.3539e+01, -3.5468e+01, -3.2246e+01, -3.4303e+01,\n", + " -4.1599e+01, -4.9475e+01, -5.4591e+01, -5.5651e+01, -5.4273e+01,\n", + " -5.1511e+01, -4.8724e+01, -1.6916e+01, -9.5502e+00, -4.7495e+00,\n", + " -2.1079e+00, -1.1410e+00, -2.0305e-01, -7.1169e-01, -2.8626e+00,\n", + " -7.1169e+00, -1.4130e+01, -3.4114e+00, -1.3580e+00, 7.2939e-01,\n", + " -4.4006e-01, -1.2845e+01, -1.0861e+01, -9.9865e+00, -1.0507e+01,\n", + " -1.2215e+01, -1.6008e+01, -1.0942e+01, -1.0587e+01, -1.2412e+01,\n", + " -1.2006e+01, -1.3487e+01, -1.1561e+01, -9.3551e+00, -9.2169e+00,\n", + " -1.3929e+01, -1.1694e+01, -1.0714e+01, -2.2119e+01, -1.5732e+01,\n", + " -1.2132e+01, -1.1900e+01, -1.1855e+01, -1.4905e+01, -2.0670e+01,\n", + " -1.6624e+01, -1.5405e+01, -1.5253e+01, -1.5774e+01, -1.7447e+01,\n", + " -2.1405e+01, -1.5787e+01, -1.4781e+01, -1.5469e+01, -2.0190e+01,\n", + " -1.4167e+01, -1.4051e+01, -1.4612e+01]], device='cuda:0',\n", + " dtype=torch.float64), 'mesh': tensor([[728.3384, 728.3050, 728.2734, ..., 783.0242, 783.0969, 783.1615],\n", + " [414.6837, 414.8071, 414.9311, ..., 451.2200, 450.9518, 450.6857],\n", + " [-17.5566, -17.5958, -17.6357, ..., -74.1812, -74.4591, -74.7260]],\n", + " device='cuda:0', dtype=torch.float64), 'pose': {'angles': [3.2554997236227483, -20.48145663884485, 20.458524590848235], 'translation': tensor([759.3155, 449.7133, -77.8932], device='cuda:0', dtype=torch.float64)}})})], version='0.4.0')" ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" }, { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "TemfggNydBhe", - "outputId": "2cc7a2f4-e2c7-4ed6-871d-a1560af0ec22" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "time: 224 ms (started: 2023-12-14 17:57:59 +00:00)\n" - ] - } - ], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 127 ms (started: 2023-12-14 18:00:39 +00:00)\n" + ] } - ], - "metadata": { - "accelerator": "GPU", + ], + "source": [ + "response" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { "colab": { - "provenance": [] + "base_uri": "https://localhost:8080/" }, - "gpuClass": "standard", - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.12" + "id": "TemfggNydBhe", + "outputId": "2cc7a2f4-e2c7-4ed6-871d-a1560af0ec22" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time: 224 ms (started: 2023-12-14 17:57:59 +00:00)\n" + ] } + ], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "name": "python", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/setup.py b/setup.py index 0378255..421dec1 100644 --- a/setup.py +++ b/setup.py @@ -72,6 +72,8 @@ def get_requirements(filename: str) -> List[str]: "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development :: Libraries :: Python Modules", ], diff --git a/tests/conftest.py b/tests/conftest.py index 1f05857..5cd2ad5 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -125,7 +125,9 @@ def response(cfg, analyzer) -> ImageData: @pytest.fixture(scope="session") def tensor(cfg) -> torch.Tensor: if hasattr(cfg, "path_tensor"): - tensor = torch.load(cfg.path_tensor).to(cfg.analyzer.device) + tensor = torch.load( + cfg.path_tensor, + ).to(cfg.analyzer.device) else: pytest.skip("No tensor path provided in config.") return tensor diff --git a/tests/test_analyzer.py b/tests/test_analyzer.py index 90034ae..58226ad 100644 --- a/tests/test_analyzer.py +++ b/tests/test_analyzer.py @@ -46,7 +46,10 @@ def test_analyzer_path_image(cfg, analyzer): def test_analyzer_tensor(cfg, analyzer): if not hasattr(cfg, "path_tensor"): pytest.skip("No tensor path provided in config.") - tensor = torch.load(cfg.path_tensor, map_location=torch.device(cfg.analyzer.device)) + tensor = torch.load( + cfg.path_tensor, + map_location=torch.device(cfg.analyzer.device) + ) response = analyzer.run( tensor=tensor, batch_size=cfg.batch_size, diff --git a/tests/test_detector.py b/tests/test_detector.py index 786f318..2545e49 100644 --- a/tests/test_detector.py +++ b/tests/test_detector.py @@ -69,6 +69,23 @@ def test_postprocessor_base_2_type(analyzer): ) +@pytest.mark.integration +@pytest.mark.detector +def test_preprocessor_normalization_order(analyzer): + dummy_image = torch.ones(1, 3, 224, 224) * 255 + + preprocessed_image = analyzer.detector.preprocessor.transform(dummy_image) + + if getattr(analyzer.detector.preprocessor, "reverse_colors", False): + dummy_image = dummy_image[:, [2, 1, 0], :, :] + + mean = torch.tensor([123.0, 117.0, 104.0]).view(1, 3, 1, 1) + std = torch.tensor([1.0, 1.0, 1.0]).view(1, 3, 1, 1) + expected_image = (dummy_image - mean) / std + + assert torch.allclose(preprocessed_image, expected_image, atol=1e-5) + + @pytest.mark.endtoend @pytest.mark.detector def test_face_locations_larger_or_equal_zero(response): diff --git a/tests/test_reader.py b/tests/test_reader.py index 0f48746..f190474 100644 --- a/tests/test_reader.py +++ b/tests/test_reader.py @@ -131,3 +131,81 @@ def test_unsupported_data_type(analyzer): pytest.skip("Only UniversalReader is used for this test.") with pytest.raises(ValueError): analyzer.reader.run(123) # Passing an integer to trigger the error + + +def test_read_grayscale_pil_image(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + pil_image = Image.new("L", (60, 30)) + result = analyzer.reader.run(pil_image) + assert isinstance(result, facetorch.datastruct.ImageData) + assert result.tensor is not None + assert result.tensor.size(1) == 3 + + +def test_read_grayscale_image_from_bytes(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + pil_image = Image.new("L", (60, 30)) + img_byte_arr = io.BytesIO() + pil_image.save(img_byte_arr, format="JPEG") + bytes_input = img_byte_arr.getvalue() + result = analyzer.reader.run(bytes_input) + assert isinstance(result, facetorch.datastruct.ImageData) + assert result.tensor is not None + assert result.tensor.size(1) == 3 + + +def test_read_rgba_pil_image(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + pil_image = Image.new("RGBA", (60, 30), color=(255, 0, 0, 128)) + result = analyzer.reader.run(pil_image) + assert isinstance(result, facetorch.datastruct.ImageData) + assert result.tensor is not None + assert result.tensor.size(1) == 3 + + +def test_read_rgba_image_from_bytes(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + pil_image = Image.new("RGBA", (60, 30), color=(255, 0, 0, 128)) + img_byte_arr = io.BytesIO() + pil_image.save(img_byte_arr, format="PNG") + bytes_input = img_byte_arr.getvalue() + result = analyzer.reader.run(bytes_input) + assert isinstance(result, facetorch.datastruct.ImageData) + assert result.tensor is not None + assert result.tensor.size(1) == 3 + + +def test_read_numpy_array_with_real_image(cfg, analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + if cfg.path_image is None: + pytest.skip("No image path provided in config.") + image = Image.open(cfg.path_image).convert("RGB") + image_rgb = np.array(image) + result = analyzer.reader.run(image_rgb) + assert isinstance(result, facetorch.datastruct.ImageData) + assert result.tensor is not None + assert result.img is not None + assert result.tensor.size(1) == 3 + + +@pytest.mark.reader +def test_read_numpy_array_2d(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + array_input = np.random.rand(224, 224).astype(np.float32) + with pytest.raises(ValueError): + analyzer.reader.run(array_input) + + +@pytest.mark.reader +def test_read_numpy_array_unsupported_channels(analyzer): + if not isinstance(analyzer.reader, UniversalReader): + pytest.skip("Only UniversalReader is used for this test.") + array_input = np.random.rand(224, 224, 4).astype(np.float32) + with pytest.raises(ValueError): + analyzer.reader.run(array_input) diff --git a/tests/test_unifier.py b/tests/test_unifier.py index e7982be..da5c66f 100644 --- a/tests/test_unifier.py +++ b/tests/test_unifier.py @@ -6,3 +6,19 @@ @pytest.mark.unifier def test_base_type(analyzer): assert isinstance(analyzer.unifier, facetorch.base.BaseProcessor) + + +@pytest.mark.endtoend +@pytest.mark.unifier +def test_face_crops_in_range(response): + for face in response.faces: + face_crop = face.tensor + if face_crop.nelement() == 0: + continue + assert face_crop.dim() == 3, "face_crop should be a 3D tensor [C, H, W]" + assert face_crop.size(0) == 3, "Channel dimension should be 3 (RGB)" + assert ( + face_crop.size(1) > 0 and face_crop.size(2) > 0 + ), "Height and width must be positive" + assert face_crop.min() >= 0.0 + assert face_crop.max() <= 1.0 diff --git a/version b/version index 79a2734..5d4294b 100644 --- a/version +++ b/version @@ -1 +1 @@ -0.5.0 \ No newline at end of file +0.5.1 \ No newline at end of file