-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathtest.py
340 lines (276 loc) · 11.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import sys
sys.path.insert(0, './pylayer')
sys.path.insert(0, './caffe/python')
from tool import is_image, load_dict, vec2word, build_voc, write2txt_icdar15_e2e, contain_num, contain_symbol, \
non_max_suppression
import matplotlib.pyplot as plt
import argparse
import os
import caffe
import numpy as np
import cv2
import cfg
import editdistance
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='test textspotter')
parser.add_argument(
'--weight',
dest='weight',
default='./models/textspotter.caffemodel',
help='the weight file (caffemodel)',
type=str)
parser.add_argument(
'--prototxt-iou',
dest='prototxt_iou',
default='./models/test_iou.pt',
help='prototxt file for detection',
type=str)
parser.add_argument(
'--prototxt-lstm',
dest='prototxt_lstm',
default='./models/test_lstm.pt',
help='prototxt file for recognition',
type=str)
parser.add_argument(
'--img',
dest='img',
default='./imgs/img_105.jpg',
help='img file or folder',
type=str
)
parser.add_argument(
'--thresholds-ms',
dest='thresholds',
default='0.95, 0.95, 0.95, 0.95',
help='multiscale thresholds for text region prediction',
type=str
)
parser.add_argument(
'--scales-ms',
dest='scales',
default='2240, 1920, 1792, 2080',
help='multiscales for testing',
type=str
)
parser.add_argument(
'--nms',
dest='nms',
default=0.2,
help='nms threshold',
type=float
)
parser.add_argument(
'--save-dir',
dest='save_dir',
default='./results',
type=str
)
args = parser.parse_args()
return args
def predict_single(net, input_fea, previous_word):
cont = 0 if previous_word == 0 else 1
cont_input = np.array([[cont]])
word_input = np.array([[previous_word]])
net.blobs['sample_gt_cont'].reshape(*cont_input.shape)
net.blobs['sample_gt_cont'].data[...] = cont_input
net.blobs['sample_gt_label_input'].reshape(*word_input.shape)
net.blobs['sample_gt_label_input'].data[...] = word_input
net.blobs['decoder'].reshape(*input_fea.shape)
net.blobs['decoder'].data[...] = input_fea
net.forward()
#net.forward(cont_sel=cont_input, input_sel=word_input, sel_features=input_fea)
output_preds = net.blobs['probs'].data[0, 0, :]
return output_preds
def predict_single_from_all_previous(net_lstm, descriptor, previous_words):
for index, word in enumerate([0] + previous_words):
res_prob = predict_single(net_lstm, descriptor[[index]], word)
return res_prob
def forward_iou(im, net_iou, resize_length, mask_th):
h, w, c = im.shape
scale = max(h, w) / float(resize_length)
image_resize_height = int(round(h / scale / 32) * 32)
image_resize_width = int(round(w / scale / 32) * 32)
scale_h = float(h) / image_resize_height
scale_w = float(w) / image_resize_width
im = cv2.resize(im, (image_resize_width, image_resize_height))
im = np.asarray(im, dtype=np.float32)
im = im - cfg.mean_val
im = np.transpose(im, (2, 0, 1))
im = im[np.newaxis, :]
net_iou.blobs['data'].reshape(*im.shape)
net_iou.blobs['data'].data[...] = im
fcn_th_blob = np.zeros((1, 1), dtype=np.float32)
fcn_th_blob[0, 0] = mask_th
net_iou.blobs['fcn_th'].reshape(*fcn_th_blob.shape)
net_iou.blobs['fcn_th'].data[...] = fcn_th_blob
net_iou.forward()
det_bboxes = net_iou.blobs['rois'].data[:, 1:].copy()
det_bboxes[:, :8:2] = det_bboxes[:, :8:2] * scale_w
det_bboxes[:, 1:8:2] = det_bboxes[:, 1:8:2] * scale_h
decoder_reg = net_iou.blobs['decoder'].data
return det_bboxes, decoder_reg
def forward_reg(decoder_rec, net_rec, det_bboxes, recog_th=0.85):
boxes = list()
words = list()
words_score = list()
det_num = det_bboxes.shape[0]
if not (det_bboxes > 0).any():
det_num = 0
for i in range(det_num):
previous_words = []
score = []
if not (det_bboxes[i] > 0).any():
continue
for t in range(cfg.max_len):
input_fea = decoder_rec[:t + 1, i, :]
input_fea = np.reshape(input_fea, (t + 1, 1, -1))
net_rec.blobs['sample_gt_cont'].reshape(1, 1)
net_rec.blobs['sample_gt_label_input'].reshape(1, 1)
net_rec.blobs['decoder'].reshape(*input_fea.shape)
res_probs = predict_single_from_all_previous(net_rec, input_fea, previous_words)
ind = np.argmax(res_probs)
if ind == 0:
break
else:
previous_words.append(ind)
score.append(res_probs[ind])
if len(score) > 0:
print float(sum(score)) / len(score), vec2word(previous_words, dicts)
if float(sum(score)) / len(score) < recog_th:
continue
tmp = det_bboxes[i].copy().tolist()
# tmp[-1]+=float(sum(score)) / len(score) * 2
boxes.append(tmp)
words.append(vec2word(previous_words, dicts))
words_score.append(float(sum(score)) / len(score))
return boxes, words, words_score
if __name__ == '__main__':
args = parse_args()
print 'Called with args:'
print args
print args.weight
if not os.path.exists(args.prototxt_iou) or \
not os.path.exists(args.prototxt_lstm) or \
not os.path.exists(args.weight):
assert False, 'please put model and prototxts in ./model/'
imgs_files = []
if os.path.isdir(args.img):
imgs = os.listdir(args.img)
imgs_files = [_ for _ in imgs if is_image(_)]
elif os.path.isfile(args.img):
imgs = [args.img]
imgs_files = [_ for _ in imgs if is_image(_)]
else:
assert False, 'invalid input image (folder)'
if len(imgs_files) == 0:
assert False, 'invalid input image (folder)'
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
caffe.set_mode_gpu()
caffe.set_device(0)
net_iou = caffe.Net(args.prototxt_iou, args.weight, caffe.TEST)
net_rec = caffe.Net(args.prototxt_lstm, args.weight, caffe.TEST)
thresholds = [float(_) for _ in args.thresholds.strip().split(',')]
scales = [int(_) for _ in args.scales.strip().split(',')]
assert len(thresholds) == len(scales), \
'the length of thresholds and scales should be equal'
### get vocabulary
generic_voc_file = './dicts/generic_lex.txt'
generic_vocs = load_dict(generic_voc_file)
dicts = build_voc('./dicts/dict.txt')
### forward single image
for ind, image_name in enumerate(imgs_files):
new_boxes = np.zeros((0, 9))
words = np.zeros(0)
words_score = np.zeros(0)
image_id = image_name.split('/')[-1].split('.')[0]
print '%d / %d: ' % (ind+1, len(imgs_files)), image_name
im = cv2.imread(image_name)
h, w, c = im.shape
### forward every scale
for k in range(len(scales)):
image_resize_length = scales[k]
mask_threshold = thresholds[k]
det_bboxes, decoder_rec = forward_iou(im, net_iou, image_resize_length, mask_threshold)
det_num = det_bboxes.shape[0]
#new_boxes, words, words_score = forward_reg(decoder_rec, net_rec, det_bboxes, cfg.recog_th)
boxes_k, words_k, words_score_k = forward_reg(decoder_rec, net_rec, det_bboxes, cfg.recog_th)
if len(boxes_k) > 0:
new_boxes = np.concatenate([new_boxes, np.array(boxes_k)], axis=0)
words = np.concatenate([words, np.array(words_k)])
words_score = np.concatenate([words_score, np.array(words_score_k)])
if len(new_boxes) == 0:
out_name = os.path.join(args.save_dir, 'res_' + image_id + '.txt')
new_boxes = np.zeros((0, 8))
words = np.zeros((0, 8))
write2txt_icdar15_e2e(out_name, new_boxes, words)
else:
new_boxes = np.array(new_boxes)
new_boxes = np.reshape(new_boxes, [-1,9])
words = np.array(words)
words_score = np.array(words_score)
assert new_boxes.shape[1] == 9
assert len(new_boxes) == len(words)
assert len(new_boxes) == len(words_score)
final_box = list()
final_words = list()
final_words_score = list()
for n in range(new_boxes.shape[0]):
word = words[n]
if len(word) < 3:
continue
if (contain_num(word) or contain_symbol(word)) and words_score[n] > cfg.word_score:
final_box.append(new_boxes[n])
final_words.append(words[n])
final_words_score.append(words_score[n])
# symbol_or_num = 1
continue
distance = list()
score = words_score[n]
for cell in generic_vocs:
# dist = levenshteinDistance(word.upper(), cell.upper())
dist = editdistance.eval(word.upper(), cell.upper())
distance.append(dist)
if dist == 0 and words_score[n] > 0.85:
score = 1.1
# break
ind = int(np.argmin(np.array(distance)))
if (distance[ind] > 1 or score < 0.9):
continue
# if (distance[ind] > 3 or score < 0.9) and has_symbol==1:
# continue
final_box.append(new_boxes[n])
final_words.append(generic_vocs[ind])
final_words_score.append(score)
final_box = np.array(final_box).reshape(-1, 9)
final_words = np.array(final_words)
final_words_score = np.array(final_words_score)
final_box[:, -1] = 2 * final_box[:, -1] + final_words_score
keep_indices, temp_boxes = non_max_suppression(final_box, args.nms)
keep_indices = np.int32(keep_indices)
temp_boxes = final_box[keep_indices]
temp_words = final_words[keep_indices]
for index in range(len(keep_indices)):
for i in range(4):
temp_boxes[index][2 * i] = int(round(temp_boxes[index][2 * i]))
temp_boxes[index][2 * i] = max(0, temp_boxes[index][2 * i])
temp_boxes[index][2 * i] = min(w - 1, temp_boxes[index][2 * i])
temp_boxes[index][2 * i + 1] = int(round(temp_boxes[index][2 * i + 1]))
temp_boxes[index][2 * i + 1] = max(0, temp_boxes[index][2 * i + 1])
temp_boxes[index][2 * i + 1] = min(h - 1, temp_boxes[index][2 * i + 1])
out_name = os.path.join(args.save_dir, 'res_' + image_id + '.txt')
write2txt_icdar15_e2e(out_name, temp_boxes, temp_words)
### show results
plt.imshow(im)
# print image_resize_width, image_resize_height
currentAxis = plt.gca()
colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
for n in range(len(temp_boxes)):
coords = np.reshape(temp_boxes[n, 0:8], (-1, 2))
currentAxis.add_patch(plt.Polygon(coords, fill=False, edgecolor=colors[0], linewidth=2))
currentAxis.text(coords[0][0], coords[0][1], temp_words[n],
bbox={'facecolor': (1, 0, 0), 'alpha': 0.5})
plt.show()