-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
504 lines (444 loc) · 22.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# %%
from __future__ import unicode_literals, print_function, division
import time
import torch
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
import warnings
warnings.filterwarnings("ignore")
import time
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import numpy as np
import sys
from torch.utils.data import DataLoader, RandomSampler
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
data_path = "data/"
#From StackOverflow : https://stackoverflow.com/questions/71998978/early-stopping-in-pytorch
class EarlyStopper:
def __init__(self, patience=1, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = np.inf
def early_stop(self, validation_loss, model, criterion, voice_type):
if validation_loss < self.min_validation_loss:
torch.save(model.state_dict(), f"pytorch models/{voice_type}/{model.__class__.__name__}_{criterion.__class__.__name__}_{voice_type}.pth")
self.min_validation_loss = validation_loss
self.counter = 0
elif validation_loss > (self.min_validation_loss + self.min_delta):
self.counter += 1
if self.counter >= self.patience:
return True
return False
class GRUNet(nn.Module):
def __init__(self, input_size=17, hidden_size=128, output_size=61, dropout_p=0.1):
super(GRUNet, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout = nn.Dropout(dropout_p)
self.gru = nn.GRU(input_size, self.hidden_size)
self.linear = nn.Linear(hidden_size, output_size, device=device)
self.relu = nn.ReLU()
def forward(self, input_tensor):
output, _ = self.gru(input_tensor)
output = self.linear(output)
output = self.dropout(output)
output = self.relu(output)
return output
def train_epoch(self, dataloader, optimizer, criterion):
total_loss = 0
self.train()
for batch in dataloader:
input_tensor, target_tensor, l = batch
optimizer.zero_grad()
outputs = self.forward(input_tensor)
loss = self.loss_comp(outputs, target_tensor, criterion, l)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def loss_comp(self, out, target, criterion, l=None):
return criterion(out.view(-1), target.view(-1))
def evaluate_epoch(self, valid_dataloader, criterion):
loss = 0
self.eval()
with torch.no_grad():
for batch in valid_dataloader:
inp, tgt, l = batch
out = self.forward(inp)
loss += self.loss_comp(out, tgt, criterion).item()
return loss / len(valid_dataloader)
def train_(self, train_dataloader, valid_dataloader, n_epochs, criterion, optimizer, voice_type):
train_loss = []
valid_loss = []
last_epoch = 0
best_loss = np.inf
early_stopper = EarlyStopper(patience=10)
for epoch in range(1, n_epochs + 1):
tloss = self.train_epoch(train_dataloader, optimizer, criterion)
vloss = self.evaluate_epoch(valid_dataloader, criterion)
if vloss < best_loss:
best_loss = vloss
train_loss.append(tloss)
valid_loss.append(vloss)
last_epoch = epoch
if early_stopper.early_stop(vloss, self, criterion, voice_type=voice_type):
break
print(f"epoch: {epoch}\n train loss: {tloss}\t valid loss: {vloss}")
print(f"best vloss: {best_loss}")
plt.plot(train_loss, label="train loss")
plt.plot(valid_loss, label="valid loss")
plt.legend(loc="upper right")
plt.xlabel(f"epochs: ({last_epoch})")
plt.ylabel("loss amplitude")
plt.title(f"train {criterion.__class__.__name__} | {self.__class__.__name__}")
class GRUNetNeg(GRUNet):
def __init__(self, input_size=17, hidden_size=128, output_size=61, dropout_p=0.1):
super().__init__(input_size, hidden_size, output_size, dropout_p)
def forward(self, input_tensor):
output, _ = self.gru(input_tensor)
output = self.linear(output)
output = self.dropout(output)
return output
def loss_comp(self, out, target, criterion, l=None):
return criterion(out.view(-1), target.view(-1)) + torch.mean(NegRELU(out.view(-1)))
class GRUNetPack(GRUNet):
def __init__(self, input_size=17, hidden_size=128, output_size=61, dropout_p=0.1):
super().__init__(input_size, hidden_size, output_size, dropout_p)
def forward(self, input_tensor):
gru_output, _ = self.gru(input_tensor)
pad_output, _ = torch.nn.utils.rnn.pad_packed_sequence(gru_output)
linear_out = self.linear(pad_output)
output = self.dropout(linear_out)
output = self.relu(output)
return output
def loss_comp(self, output, target, criterion, l):
loss = 0
pred_list = torch.nn.utils.rnn.unpad_sequence(output.clone(), l)
target_list = torch.nn.utils.rnn.unpad_sequence(target, l)
for pred, tgt in zip(pred_list, target_list):
loss += criterion(pred.view(-1), tgt.view(-1))
return loss
def train_epoch(self, dataloader, optimizer, criterion):
total_loss = 0
self.train()
for batch in dataloader:
input_tensor, target_tensor, sequence_lengths = batch
loss = 0
input_gru = torch.nn.utils.rnn.pack_padded_sequence(input=input_tensor, lengths=sequence_lengths)
optimizer.zero_grad()
outputs = self.forward(input_gru)
loss = self.loss_comp(outputs, target_tensor, criterion, sequence_lengths)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate_epoch(self, valid_dataloader, criterion):
loss = 0
self.eval()
with torch.no_grad():
for batch in valid_dataloader:
inp, tgt, l = batch
input_gru = torch.nn.utils.rnn.pack_padded_sequence(input=inp, lengths=l)
out = self.forward(input_gru)
loss += self.loss_comp(out, tgt, criterion, l).item()
return loss / len(valid_dataloader)
class GRUNetSeq(GRUNetPack):
def __init__(self, input_size=17, hidden_size=128, output_size=61, dropout_p=0.1):
super().__init__(input_size, hidden_size, output_size, dropout_p=dropout_p)
self.encoder = nn.GRU(input_size, hidden_size)
self.decoder = nn.GRU(input_size+hidden_size, hidden_size) #concat input and context vector
self.linear = nn.Linear(input_size + hidden_size*2, output_size) #concat input, hidden and context vectors
self.tgr_len = 0
self.batch_size = 0
def _init(self, input_pack_tensor):
#input = [sequence_length, batch_size, input_size]
#target = [sequence_length, batch_size, output_size]
input_pad, _ = torch.nn.utils.rnn.pad_packed_sequence(input_pack_tensor)
self.batch_size = input_pad.shape[1]
self.trg_len = input_pad.shape[0]
enc_outputs, enc_hid = self.encoder(input_pack_tensor)
return input_pad, enc_outputs, enc_hid
def forward(self, input_pack_tensor):
input_pad, enc_outputs, enc_hid = self._init(input_pack_tensor)
hidden = torch.zeros(1, self.batch_size, self.hidden_size).to(device) #hidden = [1, batch_size, hidden_size]
outputs = torch.zeros(self.trg_len, self.batch_size, self.output_size).to(device)
for t in range(0, self.trg_len):
inp = input_pad[t] #inp [4, input_size]
inp = inp.unsqueeze(0) #inp [1, 4, input_size], gru accepts 3D batched tensors, this adds a new dimension at position 0
input_context = torch.cat((inp, enc_hid), dim = 2) #input_contex = [1, 4, input_size+hidden_size]
output, hidden = self.forward_step(input_context, hidden, enc_hid, inp)
#output = [batch_size, output_size]
outputs[t] = output
return outputs # outputs = [batch_size, sequence lengths, output size]
def forward_step(self, input_context, hidden, enc_hid, inp):
output, hidden = self.decoder(input_context, hidden)
#hidden = [1, 4, hidden_size]
fc_input = torch.cat((inp.squeeze(0), hidden.squeeze(0), enc_hid.squeeze(0)), dim=1)
output = self.linear(fc_input)
return output, hidden
class BahdanauAttention(nn.Module):
def __init__(self, hidden_size):
super(BahdanauAttention, self).__init__()
self.Wa = nn.Linear(hidden_size, hidden_size)
self.Ua = nn.Linear(hidden_size, hidden_size)
self.Va = nn.Linear(hidden_size, 1)
def forward(self, hidden, enc_output):
hidden = hidden.unsqueeze(1).repeat(1, enc_output.shape[0], 1)
# hidden = [seq_len, batch_size, hidden]
enc_output = enc_output.permute(1, 0, 2)
#encoder output = [seq_len, batch_size, hidden]
energy = torch.tanh(self.Wa(hidden) + self.Ua(enc_output)) # Calculate energy for each sequence element
scores = self.Va(energy).squeeze(2) # Linear transformation and squeeze
weights = F.softmax(scores, dim=1) # Apply softmax to get attention weights
context = torch.bmm(weights.unsqueeze(1), enc_output).squeeze(1) # Calculate context vector
return context, weights
class GRUNetAtt(GRUNetSeq):
def __init__(self, input_size, hidden_size, output_size, dropout_p=0.1): #17
super().__init__(input_size, hidden_size, output_size, dropout_p)
self.attention = BahdanauAttention(hidden_size)
self.decoder = nn.GRU(input_size+hidden_size, hidden_size)
self.linear = nn.Linear(input_size+hidden_size*2, output_size)
def forward(self, input_pack_tensor):
input_pad, enc_outputs, enc_hid = self._init(input_pack_tensor)
hidden = enc_hid #hidden = encoder hidden
outputs = torch.zeros(self.trg_len, self.batch_size, self.output_size).to(device)
enc_outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(enc_outputs, batch_first=False) #enc_outputs = [seq_len, batch_size, hidden_size]
for t in range(0, self.trg_len):
inp = input_pad[t] #inp [4, input_size]
inp = inp.unsqueeze(0) #inp [1, 4, input_size]
output, hidden = self.forward_step(enc_outputs, hidden, inp)
#output = [batch_size, output_size]
outputs[t] = output
return outputs # outputs = [batch_size, sequence lengths, output size]
def forward_step(self, enc_outputs, hidden, inp):
context, _ = self.attention(hidden.squeeze(0), enc_outputs)
context = context.unsqueeze(0) #context = [1, batch_size, hid]
input_gru = torch.cat((inp, context), dim=2) #input gru = [1, batch_size, input_size + hidden_size]
output, hidden = self.decoder(input_gru, hidden) #output = hidden = [1, batch_size, hidden_size]
fc_input = torch.cat((output.squeeze(0), context.squeeze(0), inp.squeeze(0)), dim=1) #fc_input = [1, batch_size, input_size+hidden*3]
output = self.linear(fc_input) #output = [1, batch_size, output_size]
return output, hidden
class GRUNetSig(GRUNet):
def __init__(self, input_size, hidden_size, output_size, dropout_p=0.1):
super().__init__(input_size, hidden_size, output_size, dropout_p)
self.hidden_size = hidden_size
self.dropout = nn.Dropout(dropout_p)
self.gru = nn.GRU(input_size, self.hidden_size)
self.linear = nn.Linear(hidden_size, output_size, device=device)
self.linear2 = nn.Linear(input_size, output_size, device=device)
self.sig = nn.Sigmoid()
self.bce = nn.BCELoss()
def forward(self, input_packed):
gru_output, _ = self.gru(input_packed)
pad_output, _ = torch.nn.utils.rnn.pad_packed_sequence(gru_output)
input2, _ = torch.nn.utils.rnn.pad_packed_sequence(input_packed)
linear_out = self.linear(pad_output)
activation_probability = self.linear2(input2)
activation_probability = self.sig(activation_probability)
return linear_out, activation_probability
def loss_comp(self, output, target, prob, criterion, l):
loss = 0
bce_loss = 0
out_list = torch.nn.utils.rnn.unpad_sequence(output.clone(), l)
target_list = torch.nn.utils.rnn.unpad_sequence(target.clone(), l)
prob_list = torch.nn.utils.rnn.unpad_sequence(prob.clone(), l)
for p, t, prob in zip(out_list, target_list, prob_list):
tr = nn.Threshold(0.5, 0)
prob_threshold = (tr(prob) != 0).float()
new_p = prob_threshold*p
loss += criterion(new_p.view(-1), t.view(-1))
bce_loss += my_bce_loss(prob, t, self.bce)
return (loss)+(bce_loss*0.1)
def train_epoch(self, dataloader, optimizer, criterion):
total_loss=0
self.train()
for batch in dataloader:
optimizer.zero_grad()
input_tensor, target_tensor, lengths = batch
input_gru = torch.nn.utils.rnn.pack_padded_sequence(input=input_tensor, lengths=lengths)
out, out_pred = self.forward(input_gru)
loss = self.loss_comp(out, target_tensor, out_pred, criterion, lengths)
loss.backward()
#scheduler.step()
optimizer.step()
total_loss+=loss.item()
return total_loss / len(dataloader)
def evaluate_epoch(self, valid_dataloader, criterion):
loss = 0
self.eval()
with torch.no_grad():
for batch in valid_dataloader:
inp, tgt, l = batch
input_gru = torch.nn.utils.rnn.pack_padded_sequence(input=inp, lengths=l)
out, prob = self.forward(input_gru)
loss += self.loss_comp(out, tgt, prob, criterion, l).item()
return loss / len(valid_dataloader)
class FCNet(GRUNet):
def __init__(self, input_size, hidden_size, output_size):
super().__init__(input_size, hidden_size, output_size)
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
def forward(self, input_tensor):
out = self.linear1(input_tensor)
out = self.linear2(out)
out = self.out(out)
out = self.relu(out)
return out
def loss_comp(self, output, target, criterion, l):
loss = 0
pred_list = torch.nn.utils.rnn.unpad_sequence(output.clone(), l)
target_list = torch.nn.utils.rnn.unpad_sequence(target, l)
for pred, tgt in zip(pred_list, target_list):
loss += criterion(pred.view(-1), tgt.view(-1))
return loss
def evaluate_epoch(self, valid_dataloader, criterion):
loss = 0
self.eval()
with torch.no_grad():
for batch in valid_dataloader:
inp, tgt, l = batch
out = self.forward(inp)
loss += self.loss_comp(out, tgt, criterion, l).item()
return loss / len(valid_dataloader)
def NegRELU(tensor): ##Custom loss function to penalize negative values
relu = nn.ReLU()
return relu(torch.neg(tensor))
class RMSELoss(nn.Module):
def __init__(self, reduction="mean"):
super(RMSELoss, self).__init__()
self.reduction = reduction
def forward(self, inp, target):
if self.reduction == "mean":
mse = torch.mean((inp - target) ** 2)
rmse = torch.sqrt(mse + 1e-7)
return rmse
elif self.reduction == "none":
mse = (inp - target) ** 2
rmse = torch.sqrt(mse+1e-7)
elif self.reduction == "sum":
mse = torch.sum((inp - target) ** 2)
rmse = torch.sqrt(mse + 1e-7)
def init_weights(m):
for name, param in m.named_parameters():
nn.init.normal_(param.data, mean=0, std=0.01)
def my_bce_loss(x, y, bce): ###Custom BCE
activated = (y != 0).float().clamp(min=1e-10)
unactivated = (y == 0).float().clamp(min=1e-10)
Tr = nn.Threshold(0.5, 1e-10)
act_x = Tr(x)
unact_x = (x - act_x).clamp(min=1e-10)
term1 = (torch.log(act_x)*activated).clamp(1e-10)
term2 = (torch.log(unact_x)*unactivated).clamp(1e-10)
column_losses = -1.0 * (torch.mean(term1, dim=1) + torch.mean(term2, dim=1)) # Calculate mean along the row dimension
#loss = bce(x, activated)
return column_losses.mean()
def evaluate(criterion, model, test_data, loss_by_bs=False, use_pack=True, with_prob=False):
model.eval()
plot_loss = []
predictions = []
activation_precision = []
activation_recall = []
loss_arr = []
if loss_by_bs:
criterion = criterion.__class__(reduction="none")
with torch.no_grad():
prob=None
for inp, tgt, sequence_lengths in test_data:
loss_by_batch = []
if use_pack:
inp = torch.nn.utils.rnn.pack_padded_sequence(input=inp, lengths=sequence_lengths)
if with_prob:
output, prob = model(inp)
else:
output = model(inp)
compute_loss_function(criterion, output, tgt, sequence_lengths, activation_precision, activation_recall, plot_loss, loss_by_batch, loss_arr, prob, loss_by_bs)
#Predictions is a list of tuples, output has the shape L*Batch*blendshape counts, sequence lengths will be useful to cut script values
predictions.append((inp, output, sequence_lengths))
print(f'mean {criterion.__class__.__name__}: {np.mean(plot_loss)}')
print(f"mean activation precision: {np.mean(activation_precision)}")
print(f"mean activation recall: {np.mean(activation_recall)}")
plt.plot(plot_loss)
plt.xlabel(f"scripts ({len(plot_loss)})")
plt.ylabel("loss amplitude")
plt.title(f"test {criterion.__class__.__name__} | {model.__class__.__name__}")
return predictions, loss_arr
def loss_unpad(criterion, pred_list, target_list, plot_loss, loss_by_batch, activation_precision, activation_recall, loss_arr, loss_by_bs):
for p, t in zip(pred_list, target_list):
act_p, act_r = (evaluate_true_positive(p, t))
activation_precision.append(act_p)
activation_recall.append(act_r)
if loss_by_bs:
val_loss = torch.mean(criterion(p, t), dim=0)
loss_arr.append(val_loss)
val_loss = val_loss.mean()
else:
val_loss = criterion(p.view(-1), t.view(-1))
plot_loss.append(val_loss.item())
loss_by_batch.append(val_loss.item())
def loss_with_prob(criterion, pred_list, target_list, prob_list, plot_loss, loss_by_batch, activation_precision, activation_recall, loss_arr, loss_by_bs):
for p, t, prob in zip(pred_list, target_list, prob_list):
tr = nn.Threshold(0.5, 0)
prob_threshold = (tr(prob) > 1e-5).float()
new_pred = prob_threshold*p
act_p, act_r = evaluate_true_positive(new_pred, t)
activation_precision.append(act_p)
activation_recall.append(act_r)
if loss_by_bs:
val_loss = torch.mean(criterion(p, t), dim=0)
loss_arr.append(val_loss)
val_loss = val_loss.mean()
else:
val_loss = criterion(p.view(-1), t.view(-1))
plot_loss.append(val_loss.item())
loss_by_batch.append(val_loss.item())
def compute_loss_bs_wise(criterion, output, tgt, plot_loss, activation_precision, activation_recall):
###Permute dimension and flatten the tensors to have a shape [52, sequence_length*batch_size], allow to compute loss for each 52 blendshapes
array = criterion(torch.flatten(output.permute(2, 0, 1), start_dim=1), torch.flatten(tgt.permute(2, 0, 1), start_dim=1))
loss_arr = torch.mean(array, dim=1)
loss = torch.sum(loss_arr)
plot_loss.append(loss.item())
act_p, act_r = (evaluate_true_positive(output, tgt))
activation_precision.append(act_p)
activation_recall.append(act_r)
def compute_loss_function(criterion, output, tgt, seq_length, activation_precision, activation_recall, plot_loss, loss_by_batch, loss_arr, prob, loss_by_bs):
pred_list = torch.nn.utils.rnn.unpad_sequence(output.clone(), seq_length)
target_list = torch.nn.utils.rnn.unpad_sequence(tgt, seq_length)
if prob!=None:
prob_list = torch.nn.utils.rnn.unpad_sequence(prob, seq_length)
loss_with_prob(criterion, pred_list, target_list, prob_list, plot_loss, loss_by_batch, activation_precision, activation_recall, loss_arr, loss_by_bs)
else:
loss_unpad(criterion, pred_list, target_list, plot_loss, loss_by_batch, activation_precision, activation_recall, loss_arr, loss_by_bs)
def evaluate_true_positive(prediction, target):
pred_activated = (prediction > 1e-10)
activated = (prediction > 1e-10)
true_positive = torch.count_nonzero(torch.logical_and(prediction, target))
non_zero_count_predictions = torch.count_nonzero(pred_activated).item()
non_zero_count_target = torch.count_nonzero(activated).item()
activation_precision = true_positive.item()
if non_zero_count_predictions != 0:
activation_precision/=non_zero_count_predictions
activation_recall = true_positive.item()
if non_zero_count_target != 0:
activation_recall/=non_zero_count_target
return activation_precision, activation_recall
def save_results(dataframe, inp_and_out, dic, folder, bs_only=True):
for au, pred in inp_and_out:
au_np = au.cpu().data.numpy()
keys = [k for k, v in dic.items() if v.to_numpy().shape == au_np.shape and np.allclose(v.to_numpy(), au_np, atol=0.00001)]
columns = dataframe.columns[-61:]
if bs_only:
columns = columns[:-9] #remove 9 last columns
df = pd.DataFrame(columns=columns, data=pred.cpu().data.numpy())
path_to_folder = "predictions/" + folder
if not os.path.exists(path_to_folder):
os.makedirs(path_to_folder)
print(path_to_folder)
df.to_csv(path_to_folder +"_pred_"+keys[0]+'.csv', index=False)