forked from giorgiacantisani/ugosa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdependencies.txt
24 lines (17 loc) · 1.75 KB
/
dependencies.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
This code was developed in python using standard libraries for signal processing and machine learning.
Below you can find a list of the main libraries and code snippets I used with the corresponding licenses.
## Libraries
- pytorch: https://github.com/pytorch/pytorch (View license)
- pytorch_lightning: https://github.com/PyTorchLightning/pytorch-lightning (Apache-2.0 License)
- numpy: https://github.com/numpy/numpy (BSD-3-Clause License)
- scipy: https://github.com/scipy/scipy (BSD-3-Clause License)
- librosa: https://github.com/librosa/librosa (ISC License)
- museval: https://github.com/sigsep/sigsep-mus-eval (MIT License)
- musdb: https://github.com/sigsep/sigsep-mus-db (MIT License)
- ranger: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer (Apache-2.0 License)
## Code snippets
- utils.activations: contains a function that generate activation confidence annotations taken from MedleyDB code https://github.com/marl/medleydb (MIT License) and based on the paper MedleyDB: A Multitrack Dataset for Annotation-Intensive MIR Research" by R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam and J. P. Bello.
- utils.silent_frames_evaluation: contains a function that evaluate silence frames taken from https://github.com/schufo/wiass (MIT License) and based on the paper "Weakly Informed Audio Source Separation" by Kilian Schulze-Forster, Clement Doire, Gaël Richard, Roland Badeau.
- demucs folder: contains code taken from https://github.com/facebookresearch/demucs (MIT License) and based on the paper "Music Source Separation in the Waveform Domain" by A. Defossez, N. Usunier, L. Bottou, and F. Bach.
## Pretrained model
The pretrained model used during the experiments (tasnet.th) was taken from https://github.com/facebookresearch/demucs (MIT License)