forked from NicMaq/Reinforcement-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGYM_ACROBOT.py
912 lines (672 loc) · 33.2 KB
/
GYM_ACROBOT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
from __future__ import absolute_import, division, print_function, unicode_literals
#import os
#os.environ["CUDA_VISIBLE_DEVICES"]="-1"
import time
from datetime import datetime
import gym
import tensorflow as tf
#import tensorflow_probability as tfp
from tensorflow.keras.mixed_precision import experimental as mixed_precision
import numpy as np
#import random
import math
import matplotlib.pyplot as plt
import argparse
import sys
import pickle
#import copy
#import cv2
from skimage.transform import rescale, resize, downscale_local_mean
import imageio
# Global constants
MAX_STEPS = 5000000
EVAL_STEPS = 250000 # Evaluate the model every EVAL_STEPS frames
EVAL_GAMES = 100 # For EVAL_GAMES games
MINI_BATCH_SIZE = 32
MAX_SAMPLES = 1000000
# Policy
# qlearning e-greedy = 0 ; expected sarsa e-greedy = 1 ; expected sarsa softmax = 2
POLICY = 0
# NUM_STATES = len([cos(theta1), sin(theta1), cos(theta2), sin(theta2), thetaDot1, thetaDot2])
NUM_STATES = 6
# NUM_ACTIONS
# NUM_ACTIONS = len([torque = 1, torque = 0, torque = -1])
NUM_ACTIONS = 3
# Epsilon = Greedy Policy
MIN_EPSILON = 0.05
MAX_EPSILON = 1
EXPLORE_STEPS = 100000
ANNEALING_STEPS = 200000
NO_OP_STEPS = 5
# Tau = Softmax Policy
TAU = 0.00001
# Network update
MODELUPDATE_TRAIN_STEPS = 10000
START_LEARNING = 5000
UPDATE_FREQ = 4
REPEAT_ACTION = 2
# Save model
SAVEMODEL_STEPS = 1000000
# Learning rate (alpha) and Discount factor (gamma)
ALPHA = 0.00001
GAMMA = 0.99
# Epochs for training the DNN - How many mini batches will be sent at each steps for training. 2 = 2 gradient descents at each step
EPOCHS = 1
# Directories
SAVE_DIR = 'models/GymAcrobot/ExpectedSarsa'
ROOT_TF_LOG = 'tf_logs'
#GPU CPU - Use Argparse to modify this
USE_DEVICE = '/GPU:0'
USE_CPU = '/CPU:0'
RENDER = False
class Agent:
def __init__(self, env, model, target_model, optimizer, exp_buffer):
self.env = env
self.exp_buffer = exp_buffer
self.model = model
self.target_model = target_model
self.optimizer = optimizer
with tf.device(USE_DEVICE):
self.decay = (MAX_EPSILON-MIN_EPSILON) / ANNEALING_STEPS
self.epsilon = tf.constant(MAX_EPSILON)
self.epsilon = tf.cast(self.epsilon, dtype=tf.float32)
self.min_epsilon = tf.constant(MIN_EPSILON, dtype=tf.float16)
self.min_epsilon = tf.cast(self.min_epsilon, dtype=tf.float32)
self.epsilon_evaluation = tf.constant(0.05, dtype=tf.float16)
self.epsilon_evaluation = tf.cast(self.epsilon_evaluation, dtype=tf.float32)
assert self.epsilon.device[-5:].lower() == USE_DEVICE[-5:].lower(), "epsilon not on : %s" % USE_DEVICE
assert self.min_epsilon.device[-5:].lower() == USE_DEVICE[-5:].lower(), "min_epsilon not on : %s" % USE_DEVICE
assert self.epsilon_evaluation.device[-5:].lower() == USE_DEVICE[-5:].lower(), "epsilon_evaluation not on : %s" % USE_DEVICE
self._reset()
def _reset(self):
self.states = self.env.reset()
self.states = np.reshape(self.states,(NUM_STATES,1))
#print('self.states shape is:', self.states.shape)
def eval_game(self):
steps = 0
game_reward = 0
raw_images = []
self._reset()
history = np.repeat(self.states, 4, axis=1)
init_history = history
while True:
# Play next step
if RENDER: raw = self.env.render(mode='rgb_array')
if steps < NO_OP_STEPS:
action = np.random.randint(0, high=3, size=1, dtype=int)
action = action[0]
elif steps % REPEAT_ACTION == 0:
history_foraction = np.reshape(history, (1, NUM_STATES,4))
with tf.device(USE_DEVICE):
tf_history = tf.constant(history_foraction)
tf_history = tf.cast(tf_history, dtype=tf.float32)
assert tf_history.device[-5:].lower() == USE_DEVICE[-5:].lower(), "tf_history not on : %s" % USE_DEVICE
if POLICY == 2:
action_probs = self.choose_action(tf_history, False)
probs = action_probs.numpy()
action = np.random.choice(NUM_ACTIONS, p=probs.squeeze())
else:
action = self.choose_action(tf_history, False)
action = action.numpy()
action = action - 1
next_state, step_reward, done, info = self.env.step(action)
action = action + 1
if RENDER: raw_images.append(raw)
game_reward += step_reward
next_state = np.reshape(next_state,(NUM_STATES,1))
next_history = np.append(history[:,-3:], next_state, axis=1)
# if the game is done, break the loop
if done:
return game_reward, raw_images
# move the agent to the next state
history = next_history
steps += 1
def play_game(self, global_steps):
loss = np.zeros((1,), dtype=np.float32)
steps = 0
game_reward = 0
train_time = 0
data_states = []
data_actions = []
data_rewards = []
data_dones = []
self._reset()
history = np.repeat(self.states, 4, axis=1)
while True:
# Play next step
#if RENDER: self.env.render()
if steps % REPEAT_ACTION == 0:
history_foraction = np.reshape(history, (1, NUM_STATES, 4))
with tf.device(USE_DEVICE):
tf_history = tf.constant(history_foraction)
tf_history = tf.cast(tf_history, dtype=tf.float32)
assert tf_history.device[-5:].lower() == USE_DEVICE[-5:].lower(), "tf_history not on : %s" % USE_DEVICE
if POLICY == 2:
action_probs = self.choose_action(tf_history, True)
probs = action_probs.numpy()
action = np.random.choice(NUM_ACTIONS, p=probs.squeeze())
else:
action = self.choose_action(tf_history, True)
action = action.numpy()
#action is -1, 0 or 1
action = action - 1
next_state, step_reward, done, info = self.env.step(action)
action = action + 1
game_reward += step_reward
next_state = np.reshape(next_state,(NUM_STATES,1))
'''
if step_reward > 0:
step_reward = 1
elif step_reward == 0:
step_reward = 0
else:
step_reward = -1
'''
next_history = np.append(history[:,-3:], next_state, axis=1)
next_state = np.reshape(next_state,(NUM_STATES,))
# Decay epsilon
with tf.device(USE_DEVICE):
if self.epsilon > self.min_epsilon and global_steps > EXPLORE_STEPS:
self.epsilon -= self.decay
if self.epsilon < self.min_epsilon:
self.epsilon = tf.constant(self.min_epsilon)
assert self.epsilon.device[-5:].lower() == USE_DEVICE[-5:].lower(), "self.epsilon not updated on : %s" % USE_DEVICE
if done:
step_reward = -1
data_actions.append(action)
data_states.append(next_state)
data_rewards.append(step_reward)
data_dones.append(int(done))
if steps % UPDATE_FREQ == 0:
if global_steps > START_LEARNING:
lap_time = time.time()
with tf.device(USE_DEVICE):
# Calculate target
lossBatch = self.calculate_target_and_train()
lossMean = tf.reduce_mean(lossBatch)
loss += lossMean.numpy()
train_time += time.time() - lap_time
# if the game is done, break the loop
if done:
np_data_states = np.asarray(data_states, dtype=np.float32)
np_data_rewards = np.asarray(data_rewards, dtype=np.int16)
np_data_actions = np.asarray(data_actions, dtype=np.int16)
np_data_dones = np.asarray(data_dones, dtype=np.int16)
data = (np_data_states, np_data_actions, np_data_rewards, np_data_dones)
return data, steps, game_reward, loss, train_time
# move the agent to the next state
history = next_history
steps += 1
#@tf.function
def calculate_target_and_train(self):
loss = tf.constant(0)
loss = tf.cast(loss, dtype=tf.float32)
#yield history, next_history, action_one_hot, terminals, rewards
for batch_history, batch_next_history, batch_action_one_hot, batch_terminal, batch_reward in self.exp_buffer.dataset.take(EPOCHS):
batch_action_all_ones = tf.ones_like(batch_action_one_hot)
# predict Q(s',a') for the Bellman equation
next_qsa = self.target_model((batch_next_history, batch_action_all_ones), training=True)
if POLICY == 1:
# e-greedy policy - Expected Sarsa
sum_piq = egreedy_policy(next_qsa, self.epsilon)
v_next_vect = batch_terminal * sum_piq
elif POLICY == 2:
# Softmax policy - Expected Sarsa
action_probs = softmax_policy(next_qsa)
expectation = tf.multiply(action_probs, next_qsa)
sum_expectation = tf.reduce_sum(expectation, axis=1, keepdims=True)
v_next_vect = batch_terminal * sum_expectation
else:
# e-greedy policy - Q-Learning
max_q = tf.math.reduce_max(next_qsa, axis=1, keepdims=True)
v_next_vect = batch_terminal * max_q
target_vec = batch_reward + GAMMA * v_next_vect
target_mat = tf.multiply(target_vec, batch_action_one_hot)
# Predict Q(s,a)
with tf.GradientTape() as tape:
qsa = self.model((batch_history, batch_action_one_hot), training=True)
qsa_mat = tf.multiply(qsa, batch_action_one_hot)
delta_mat = target_mat - qsa_mat
# Huber loss
squared_loss = 0.5 * tf.square(delta_mat)
linear_loss = tf.abs(delta_mat) -0.5
ones = tf.ones_like(delta_mat)
loss_mat = tf.where(tf.greater(linear_loss, ones), x = linear_loss, y = squared_loss)
loss_train = tf.reduce_mean(loss_mat, axis=1, keepdims=True)
grads = tape.gradient(loss_train, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
loss = tf.add(loss_train,loss)
return loss
#@tf.function
def choose_action(self, states, isTraining):
actions_all_ones = tf.ones((1,NUM_ACTIONS))
if POLICY == 2:
# softmax
qsa = self.model((states, actions_all_ones), training=isTraining)
action_probs = softmax_policy(qsa)
return action_probs
else:
# e-greedy
randomNum = tf.random.uniform((), minval=0, maxval=1, dtype=tf.float32, seed=1)
if randomNum < self.epsilon:
random_action = tf.random.uniform((), minval=0, maxval=NUM_ACTIONS, dtype=tf.int32)
best_action = random_action
else:
qsa = self.model((states, actions_all_ones), training=isTraining)
best_action = tf.math.argmax(qsa, axis=1, output_type=tf.dtypes.int32)
#best_action = argmax_ties(qsa)
best_action = best_action[0]
return best_action
class ExperienceBuffer:
def __init__(self):
self.states = np.empty(shape=(1,NUM_STATES), dtype=np.float32)
self.actions = np.empty(shape=(1,), dtype=np.int16)
self.rewards = np.empty(shape=(1,), dtype=np.int16)
self.dones = np.empty(shape=(1,), dtype=np.int16)
with tf.device(USE_DEVICE):
types = tf.float32, tf.float32, tf.float32, tf.float32,tf.float32
shapes = (MINI_BATCH_SIZE,NUM_STATES,4), \
(MINI_BATCH_SIZE,NUM_STATES,4), \
(MINI_BATCH_SIZE,NUM_ACTIONS), \
(MINI_BATCH_SIZE,1), \
(MINI_BATCH_SIZE,1)
fn_generate = lambda: self.generate_data()
self.dataset = tf.data.Dataset.from_generator(fn_generate, \
output_types= types, \
output_shapes = shapes)
self.dataset = self.dataset.prefetch(buffer_size=2*EPOCHS)
def count(self):
return self.states.shape[0]
def pop(self):
self.states = self.states[1:,:]
self.actions = self.actions[1:]
self.rewards = self.rewards[1:]
self.dones = self.dones[1:]
def append(self, experiences):
self.states = np.append(self.states, experiences[0], axis=0)
self.actions= np.append(self.actions, experiences[1], axis=0)
self.rewards = np.append(self.rewards, experiences[2], axis=0)
self.dones = np.append(self.dones, experiences[3], axis=0)
if self.states.shape[0] > MAX_SAMPLES:
self.states = self.states[-MAX_SAMPLES:,:]
self.actions = self.actions[-MAX_SAMPLES:]
self.rewards = self.rewards[-MAX_SAMPLES:]
self.dones = self.dones[-MAX_SAMPLES:]
def generate_data(self):
mini_batch_size = MINI_BATCH_SIZE
mini_batch_size = float(mini_batch_size)
num_samples = mini_batch_size * 1.7 # We don't know how many samples we'll remove
num_samples = int(num_samples)
while True:
replay_states = self.states
replay_actions = self.actions
replay_rewards = self.rewards
replay_dones = self.dones
indices4 = np.random.randint(low=0, high=self.count()-4, size=num_samples)
indices4 = indices4 + 4
indices3 = indices4 -1
indices2 = indices3 -1
indices1 = indices2 -1
indices0 = indices1 -1
indices = np.stack((indices0,indices1,indices2,indices3,indices4), axis=0)
indices = np.reshape(np.transpose(indices),(num_samples*5,))
reshaped_indices= np.reshape(indices,(-1,5))
reshaped_indices4 = np.reshape(indices4,(-1,1))
gathered_states = np.take(replay_states, reshaped_indices, axis=0)
gathered_actions = np.take(replay_actions, reshaped_indices4, axis=0)
gathered_rewards = np.take(replay_rewards, reshaped_indices4, axis=0)
gathered_dones = np.take(replay_dones, reshaped_indices4, axis=0)
first5_dones = np.take(replay_dones, reshaped_indices, axis=0)
# Remove bad samples
first4_dones = first5_dones[:,:-1]
any_bad_samples = np.any(first4_dones, axis=1)
indices_ok = np.logical_not(any_bad_samples)
rewards_filtered = gathered_rewards[indices_ok,:]
states_filtered = gathered_states[indices_ok,:]
actions_filtered = gathered_actions[indices_ok,:]
dones_filtered = gathered_dones[indices_ok,:]
rewards = rewards_filtered[0:MINI_BATCH_SIZE,:]
states = states_filtered[0:MINI_BATCH_SIZE:,:,:]
actions = actions_filtered[0:MINI_BATCH_SIZE,:]
dones = dones_filtered[0:MINI_BATCH_SIZE,:]
raw_history = states[:,0:4,:]
history = np.transpose(raw_history,(0,2,1))
raw_next_history = states[:,1:5,:]
next_history = np.transpose(raw_next_history,(0,2,1))
actions = actions.astype(int)
actions = np.reshape(actions,(-1,))
action_one_hot = np.eye(NUM_ACTIONS)[actions]
action_one_hot = action_one_hot.astype(float)
action_one_hot
terminals = 1 - dones
history = history.astype(np.float32)
next_history = next_history.astype(np.float32)
action_one_hot = action_one_hot.astype(np.float32)
terminals = terminals.astype(np.float32)
rewards = rewards.astype(np.float32)
yield history, next_history, action_one_hot, terminals, rewards
@tf.function
def argmax_ties(qsa):
print('Tracing argmax_ties')
best_action = tf.math.argmax(qsa, axis=1, output_type=tf.dtypes.int32)
all_ones = tf.ones_like(qsa)
max_q = tf.math.reduce_max(qsa, axis=1, keepdims=True)
qsa_max_m = max_q * all_ones
losers = tf.zeros_like(qsa)
qsa_maximums = tf.where(tf.equal(qsa_max_m, qsa), x=all_ones, y=losers)
nb_maximums = tf.math.reduce_sum(qsa_maximums, axis=1, keepdims=True)
only_one_max = tf.ones_like(nb_maximums)
isMaxMany = tf.greater(nb_maximums, only_one_max)
if tf.reduce_any(isMaxMany):
qsa_maximums_ind = tf.where(tf.equal(qsa_max_m, qsa))
nbr_maximum_int = tf.reshape(nb_maximums,[-1])
nbr_maximum_int = tf.dtypes.cast(nbr_maximum_int, tf.int32)
for idx in tf.range(best_action.shape[0]):
if isMaxMany[idx]:
selected_idx = tf.random.uniform((), minval=0, maxval=nbr_maximum_int[idx], dtype=tf.int32)
rows_index = tf.slice(qsa_maximums_ind,[0,0],[-1,1])
all_actions = tf.slice(qsa_maximums_ind,[0,1],[-1,-1])
current_index = tf.ones_like(rows_index)
current_index = current_index * tf.cast(idx, dtype=tf.int64)
selected_rows = tf.where(tf.equal(rows_index,current_index))
select_action = tf.slice(selected_rows,[0,0],[-1,1])
select_action = tf.squeeze(select_action)
new_action = all_actions[select_action[selected_idx]]
new_action = tf.cast(new_action, dtype=tf.int32)
tf.print('***************************************************************************************** \n')
tf.print('egreedy tie management new_action is: ', new_action)
tf.print('***************************************************************************************** \n')
indice = tf.reshape(idx,(1,1))
tf.tensor_scatter_nd_update(best_action, indice, new_action)
return best_action
@tf.function
def softmax_policy(qsa):
print('Tracing softmax_policy')
preferences = qsa / TAU
max_preference = tf.math.reduce_max(qsa, axis=1, keepdims=True) / TAU
pref_minus_max = preferences - max_preference
exp_preferences = tf.math.exp(pref_minus_max)
sum_exp_preferences = tf.reduce_sum(exp_preferences, axis=1, keepdims=True)
action_probs = exp_preferences / sum_exp_preferences
return action_probs
@tf.function
def egreedy_policy(qsa, epsilon):
print('Tracing egreedy_policy')
all_ones = tf.ones_like(qsa)
max_q = tf.math.reduce_max(qsa, axis=1, keepdims=True)
qsa_max_m = max_q * all_ones
losers = tf.zeros_like(qsa)
qsa_maximums = tf.where(tf.equal(qsa_max_m, qsa), x=all_ones, y=losers)
nb_maximums = tf.math.reduce_sum(qsa_maximums, axis=1, keepdims=True)
num_actions_float = tf.dtypes.cast(NUM_ACTIONS, tf.float32)
pi_s = tf.dtypes.cast(all_ones, tf.float32)
pi_s = pi_s * epsilon / num_actions_float
pi_max = (1 - epsilon)/nb_maximums
pi = qsa_maximums * pi_max + pi_s
pi_qsa = tf.multiply(pi, qsa)
sum_piq = tf.math.reduce_sum(pi_qsa, axis=1, keepdims=True)
return sum_piq
def build_keras_Seq():
actions = tf.keras.Input(shape=(NUM_ACTIONS,), name='actions')
states = tf.keras.Input(shape=(NUM_STATES,4),name='states')
init = tf.keras.initializers.VarianceScaling(scale=2.0, mode='fan_in', distribution='untruncated_normal', seed=None)
init0 = tf.keras.initializers.Zeros()
init1 = tf.keras.initializers.Ones()
init2 = tf.keras.initializers.GlorotUniform(seed=1) #[-limit, limit], where limit = sqrt(6 / (fan_in + fan_out))
x = tf.keras.layers.Dense(64, kernel_initializer=init2)(states)
x = tf.keras.activations.relu(x)#, max_value=6)
x = tf.keras.layers.Dense(256, kernel_initializer=init2)(x)
x = tf.keras.activations.relu(x)#, max_value=6)
x = tf.keras.layers.Dense(128, kernel_initializer=init2)(x)
x = tf.keras.activations.relu(x)#, max_value=6)
#x = tf.keras.layers.Dense(64, kernel_initializer=init)(x)
#x = tf.keras.activations.relu(x)#, max_value=6)
x = tf.keras.layers.Flatten()(x)
q_values = tf.keras.layers.Dense(NUM_ACTIONS, name='q_values', kernel_initializer=init2)(x)
output = tf.keras.layers.Multiply(name='Qs')([q_values, actions])
model = tf.keras.Model(inputs=[states,actions], outputs=output)
return model
def run_training(agent, now, modelPath, modelId):
logdir = "{}/run/{}/".format(ROOT_TF_LOG, now)
with tf.device(USE_DEVICE):
file_writer = tf.summary.create_file_writer(logdir)
# Memory replay - Load if any
if modelId is not None:
samples = unpickle(SAVE_DIR + '/' + modelId)
agent.exp_buffer.buffer = np.array(samples)
else:
modelId = now
with tf.device(USE_DEVICE):
agent.target_model.set_weights(agent.model.get_weights())
# Metrics - Should be a collections deque with max capacity set to more than last summary scalar successFrame.
successMemory = np.empty((1,0))
successFrame = np.empty((1,0))
previous_global_steps_tn = 0
previous_global_steps_eval = 0
game_count = 1
global_steps = 0
loss = np.zeros((1,),dtype=np.float32)
best_score = -500
lap_time = time.time()
try:
while global_steps <= MAX_STEPS:
print('\nGame {} - Run {}'.format(game_count, now))
#if global_steps % SAVEMODEL_STEPS > previous_global_steps % SAVEMODEL_STEPS:
# samples = [agent.exp_buffer.images, agent.exp_buffer.actions, agent.exp_buffer.rewards, agent.exp_buffer.dones]
# save_theModel(model, modelId, game_count, samples)
# return steps, game_reward, loss, epsilon
data_game, steps, game_reward, loss, train_time = agent.play_game(global_steps)
loss /= steps + 1 # steps starts at 0
buffer_previous_size = agent.exp_buffer.count()
agent.exp_buffer.append(data_game)
global_steps += steps + 1
print('Global_steps is: %s' % global_steps)
if buffer_previous_size == 1 :
print("Experience Replay buffer pop")
agent.exp_buffer.pop()
# Update the target network
train_steps = (global_steps - previous_global_steps_tn)*EPOCHS*MINI_BATCH_SIZE/UPDATE_FREQ
if train_steps > MODELUPDATE_TRAIN_STEPS:
with tf.device(USE_DEVICE):
agent.target_model.set_weights(agent.model.get_weights())
print('Updating target model **************************** Updating target model ****************')
previous_global_steps_tn = global_steps
if POLICY == 0 or POLICY == 1: print('Epsilon is: %s' % agent.epsilon)
# Evaluate every EVAL_STEPS frames the performance
if (agent.epsilon == agent.min_epsilon and global_steps > previous_global_steps_eval + EVAL_STEPS) or global_steps > MAX_STEPS:
successEval = np.empty((1,0))
agent.epsilon = agent.epsilon_evaluation
remaining_eval_games = EVAL_GAMES
previous_global_steps_eval = global_steps
while remaining_eval_games > 0:
print('Evaluation game %s' % remaining_eval_games)
remaining_eval_games -= 1
game_reward, raw_frames = agent.eval_game()
print('game_reward is: ', game_reward)
successEval = np.append(successEval, game_reward)
if game_reward > best_score and RENDER:
generate_gif(raw_frames, modelId, game_count, game_reward)
best_score = game_reward
print('Generating GIF **************************** Generating Gif ****************')
if remaining_eval_games == 0:
agent.epsilon = agent.min_epsilon
assert agent.epsilon.device[-5:].lower() == USE_DEVICE[-5:].lower(), "agent.epsilon not on : %s" % USE_DEVICE
with file_writer.as_default():
with tf.device(USE_DEVICE):
tf.summary.scalar('eval', np.mean(successEval), step=global_steps)
tf.summary.scalar('eval-var', np.var(successEval), step=global_steps)
tf.summary.histogram('scores', successEval, step=global_steps)
successMemory = np.append(successMemory,game_reward)
successFrame = np.append(successFrame,np.mean(successMemory[-10:successMemory.size]))
actions_distrib = np.histogram(agent.exp_buffer.actions[-steps:], bins=[0,1,2,3,4,5,6], density=True)
print('Memory contains %s samples' % agent.exp_buffer.count())
print('Reward over 10 games is: %s and loss is: %s' % (successFrame[-1],loss[0]))
print('Actions distribution (last game, %) is: ', (100 * actions_distrib[0]).astype(int))
print('Steps survived: %s' % (steps+1))
# Add user custom data to TensorBoard
with file_writer.as_default():
with tf.device(USE_DEVICE):
tf.summary.scalar('loss', loss[0], step=global_steps)
tf.summary.scalar('epsilon', agent.epsilon, step=global_steps)
tf.summary.scalar('score', game_reward, step=global_steps)
tf.summary.scalar('steps', steps, step=global_steps)
tf.summary.histogram('actions', agent.exp_buffer.actions[-steps:], step=global_steps)
previous_time = lap_time
lap_time = time.time()
print("Train time for the last game: ", train_time)
print("Elapsed time for the last game: ", lap_time - previous_time)
#if game_count == 4:
# break
game_count += 1
except KeyboardInterrupt:
print('Save the model')
save_theModel(agent.model, modelId, game_count, agent.exp_buffer)
file_writer.close()
raise
print('Save the model ', modelId)
samples = [agent.exp_buffer.states, agent.exp_buffer.actions, agent.exp_buffer.rewards, agent.exp_buffer.dones]
save_theModel(agent.model, modelId, game_count, samples)
file_writer.close()
def generate_gif(frames, pathName, game_count, game_reward):
for idx, frame_idx in enumerate(frames):
frames[idx] = resize(frame_idx, (420, 320, 3), preserve_range=True, order=0).astype(np.uint8)
imageio.mimsave(f'{SAVE_DIR}{"/GymBreakout-{}-{}-{}.gif".format(pathName, game_count, -game_reward)}', frames, duration=1/30)
def save_theModel(model, pathName, game_count, samples):
# pickle the replay memory
print('\nPickle the replay memory')
now_save = pathName + '_' + str(game_count)
#with open(SAVE_DIR +'/'+ now_save, 'wb') as f:
# Pickle the 'data' dictionary using the highest protocol available.
#pickle.dump(samples, f, pickle.HIGHEST_PROTOCOL)
modelPath = "{}/GymBreakout-{}.h5".format(SAVE_DIR, now_save)
model.save(modelPath)
print('Saved model: ', modelPath)
print(datetime.utcnow().strftime("%a, %d %b %Y %H:%M:%S +0000"))
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--new', help='Create new model.', action='store_true')
parser.add_argument(
'--render', help='render the env', action='store_true')
parser.add_argument(
'--debug', help='create report on model.', action='store_true')
parser.add_argument(
'--name', help='Name of the model to load')
parser.add_argument(
'--target', help='GPU to use')
parser.add_argument(
'--policy', help='Select policy')
args = parser.parse_args()
# Set globals
global USE_DEVICE
global RENDER
global POLICY
if args.target is not None:
if args.target == '-1':
USE_DEVICE = USE_CPU
else:
USE_DEVICE = 'gpu:{}'.format(args.target)
if args.render:
RENDER = True
# e-greedy = 0 ; softmax = 1
if args.policy is not None:
if args.policy.lower() == 'sarsa': # Expected Sarsa with egreedy
POLICY = 1
elif args.policy.lower() == 'softmax': # Expected Sarsa with softmax
POLICY = 2
else:
POLICY = 0 # 'QLearning
gpus = tf.config.list_physical_devices('GPU')
print('GPUS are: ', gpus)
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu,True)
if args.debug:
tf.debugging.set_log_device_placement(True)
#policy = mixed_precision.Policy('mixed_float16')
#mixed_precision.set_policy(policy)
#print('Compute dtype: %s' % policy.compute_dtype)
#print('Variable dtype: %s' % policy.variable_dtype)
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
with open(SAVE_DIR + '/' + now + '.txt', 'w+') as f:
f.write("now is: %s\n" % now)
f.write("BreakoutDeterministic-v4 \n")
f.write("Policy is %s \n" % POLICY)
f.write("Target is %s \n" % USE_DEVICE)
f.write("alpha = %s \n" % ALPHA)
f.write("gamma = %s \n" % GAMMA)
f.write("Tau = %s \n" % TAU)
f.write("annealing steps = %s \n" % ANNEALING_STEPS)
f.write("explore steps = %s \n" % EXPLORE_STEPS)
f.write("start learning = %s \n" % START_LEARNING)
f.write("Epochs is = %s \n" % EPOCHS)
f.write("repeat_action = %s \n" % REPEAT_ACTION)
f.write("update network = %s \n" % UPDATE_FREQ)
f.write("model update train steps = %s \n" % MODELUPDATE_TRAIN_STEPS)
f.write("max steps = %s \n" % MAX_STEPS)
f.write("max samples = %s \n" % MAX_SAMPLES)
f.write("mini batch size = %s \n" % MINI_BATCH_SIZE)
f.write("adaptative learning rate = %s \n" % False)
f.write("min epsilon %s \n" % MIN_EPSILON)
f.write("max epsilon %s \n" % MAX_EPSILON)
f.write("comment: Expected SARSA. \n")
f.write("comment: Changed TN update rule. \n")
f.write("comment: init2 on the dense layers \n")
f.write("comment: three dense layers\n")
f.close()
# Seeding the random
# Don't forget to seed the network activation function if needed
np.random.seed(seed=42)
#random.seed(43)
tf.random.set_seed(44)
# Create env
env = gym.make('Acrobot-v1')
env.seed = 45
#env.reset()
print("obs shape is: ", env.observation_space.shape)
print("actions space is: ", env.action_space.n)
#actions = env.unwrapped.get_action_meanings()
#print('actions are: ', actions)
if args.new:
modelPath = None
modelId = None
# Build Model
with tf.device(USE_DEVICE):
model = build_keras_Seq()
target_model = build_keras_Seq()
# learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False, name='Adam', **kwargs
optimizer = tf.keras.optimizers.Adam(ALPHA, epsilon=1e-8)
#optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.00001, rho=0.9)
with open(SAVE_DIR + '/' + now + '.txt', 'a') as f:
f.write("\n\nModel Summary \n\n")
model.summary(print_fn=lambda x: f.write(x + '\n'))
f.close()
else:
if args.name is not None:
print('Loading existing model %s' % args.name)
modelPath = "{}/{}".format(SAVE_DIR, args.name)
modelId = args.name[len(args.name)-17:len(args.name)-3]
with tf.device(USE_DEVICE):
model = tf.keras.models.load_model(modelPath)
target_model = tf.keras.models.clone_model(model)
optimizer = tf.keras.optimizers.Adam(ALPHA, epsilon=1e-8)
#optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.00001, rho=0.9)
else:
print("A model name is required")
sys.exit()
memory = ExperienceBuffer()
agent = Agent(env, model, target_model, optimizer, memory)
print(model.summary())
#Training
try:
run_training(agent, now, modelPath, modelId)
except KeyboardInterrupt:
# Close env
env.close()
print('Exit on keyboard interrupt')
env.close()
if __name__ == '__main__':
main()