-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
40 lines (31 loc) · 938 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
from matplotlib import pyplot as plt
from train import Models
data = tf.keras.datasets.mnist.load_data()
a = Models.load_or_train(data=data)
sample = a.x_test[0]
reshaped_sample = a.x_test[0].reshape(-1, 28, 28)
autoencoder_prediction = a.encoder.predict(reshaped_sample)
ae_out = a.autoencoder.predict(reshaped_sample)
e_out = a.encoder.predict(reshaped_sample)
d_out = a.decoder.predict(e_out)
plt.ioff()
fig = plt.figure(figsize=(10, 7))
rows = 2
columns = 2
fig.add_subplot(rows, columns, 1)
plt.imshow(a.x_test[1], cmap="gray")
plt.axis("off")
plt.title("Original")
fig.add_subplot(rows, columns, 2)
plt.imshow(e_out[0].reshape(8, 8), cmap="gray")
plt.axis("off")
plt.title("Encoded")
fig.add_subplot(rows, columns, 3)
plt.imshow(d_out[0], cmap="gray")
plt.axis("off")
plt.title("Decoded")
fig.add_subplot(rows, columns, 4)
plt.imshow(ae_out[0], cmap="gray")
plt.axis("off")
plt.title("AutoEncoded")