-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nmist.py
38 lines (30 loc) · 958 Bytes
/
train_nmist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
from tensorflow import keras
data = tf.keras.datasets.mnist.load_data()
(x_train, y_train), (x_test, y_test) = data
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = y_train / 255.0
y_test = y_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
x_train,
y_train,
validation_data=(x_test, y_test),
epochs=20
)
# model.save("models/mnist.model")
# mnist_model = keras.models.load_model("models/mnist.model", compile=False)
sample = x_test[0]
reshaped_sample = x_test[0].reshape(-1, 28, 28)
autoencoder_prediction = model.predict(reshaped_sample)
print(y_test)