-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathcpp-benches.cpp
658 lines (545 loc) · 17.1 KB
/
cpp-benches.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
* cpp-benches.cpp
*
* Benchmarks written in C++.
*
*/
#include "cpp-benches.hpp"
#include "hedley.h"
#include "opt-control.hpp"
#include "util.hpp"
#include "boost/preprocessor/repetition/repeat.hpp"
#include <cassert>
#include <cinttypes>
#include <cstddef>
#include <cstring>
#include <limits>
#include <cmath>
#include <random>
#include <vector>
#include <sys/time.h>
using std::size_t;
using std::uint64_t;
typedef uint64_t (div_func)(uint64_t);
template <div_func F>
HEDLEY_NEVER_INLINE
uint64_t no_inline(uint64_t a) {
return F(a);
}
static inline uint64_t div32_64(uint64_t a) {
return 0x12345678u / a;
}
static inline uint64_t div64_64(uint64_t a) {
return 0x1234567812345678ull / a;
}
static inline uint64_t div128_64(uint64_t a) {
#if !UARCH_BENCH_PORTABLE
uint64_t high = 123, low = 2;
a |= 0xF234567890123456ull;
asm ("div %2" : "+d"(high), "+a"(low) : "r"(a) : );
return low;
#else
return 1;
#endif
}
template <div_func F, bool forcedep>
long div64_templ(uint64_t iters, void *arg) {
uint64_t sum = 0, zero = always_zero();
for (uint64_t k = 1; k <= iters; k++) {
uint64_t d = k;
if (forcedep) {
d += (sum & zero);
}
sum += F(d);
}
return (long)sum;
}
#define MAKE_DIV_BENCHES(suffix) \
long div_lat_inline ## suffix (uint64_t iters, void *arg) { \
return div64_templ<div ## suffix, true>(iters, arg); \
} \
\
long div_tput_inline ## suffix(uint64_t iters, void *arg) { \
return div64_templ<div ## suffix, false>(iters, arg); \
} \
\
long div_lat_noinline ## suffix(uint64_t iters, void *arg) { \
return div64_templ<no_inline<div ## suffix>, true>(iters, arg); \
} \
\
long div_tput_noinline ## suffix(uint64_t iters, void *arg) { \
return div64_templ<no_inline<div ## suffix>, false>(iters, arg); \
} \
DIV_SPEC_X(MAKE_DIV_BENCHES)
struct list_node {
int value;
list_node* next;
};
static_assert(offsetof(list_node, next) == 8, "double_load tests expect next to be a multiple of 8 offset");
struct list_head {
int size;
list_node *first;
};
list_head makeList(int size) {
list_head head = { size, nullptr };
if (size != 0) {
list_node* all_nodes = new list_node[size]();
head.first = new list_node{ 1, nullptr };
list_node* cur = head.first;
while (--size > 0) {
list_node* next = all_nodes++;
cur->next = next;
cur = next;
}
}
return head;
}
constexpr int NODE_COUNT = 5;
std::vector<list_head> makeLists() {
std::mt19937_64 engine;
std::uniform_int_distribution<int> dist(0, NODE_COUNT * 2);
std::vector<list_head> lists;
for (int i = 0; i < LIST_COUNT; i++) {
lists.push_back(makeList(NODE_COUNT));
}
return lists;
}
std::vector<list_head> listOfLists = makeLists();
typedef long (list_sum)(list_head head);
template <list_sum SUM_IMPL>
long linkedlist_sum(uint64_t iters) {
int sum = 0;
while (iters-- > 0) {
for (size_t list_index = 0; list_index < LIST_COUNT; list_index++) {
sum += SUM_IMPL(listOfLists[list_index]);
}
}
return sum;
}
long sum_counter(list_head list) {
int sum = 0;
list_node* cur = list.first;
for (int i = 0; i < list.size; cur = cur->next, i++) {
sum += cur->value;
}
return sum;
}
long sum_sentinel(list_head list) {
int sum = 0;
for (list_node* cur = list.first; cur; cur = cur->next) {
sum += cur->value;
}
return sum;
}
long linkedlist_counter(uint64_t iters, void *arg) {
return linkedlist_sum<sum_counter>(iters);
}
long linkedlist_sentinel(uint64_t iters, void *arg) {
return linkedlist_sum<sum_sentinel>(iters);
}
long sumlist(list_node *first) {
long sum = 0;
list_node *p = first;
do {
sum += p->value;
p = p->next;
} while (p != first);
return sum;
}
long shuffled_list_sum(uint64_t iters, void *arg) {
int sum = 0;
region* r = (region*)arg;
while (iters-- > 0) {
sum += sumlist((list_node*)r->start);
}
return sum;
}
long gettimeofday_bench(uint64_t iters, void *arg) {
struct timeval tv;
for (uint64_t i = 0; i < iters; i++) {
gettimeofday(&tv, nullptr);
}
return (long)tv.tv_usec;
}
static inline void sink_ptr(void *p) {
__asm__ volatile ("" :: "r"(p) : "memory");
}
template <typename T>
long strided_stores(uint64_t iters, void *arg) {
mem_args args = *(mem_args *)arg;
char* region = args.region;
size_t mask = args.mask;
for (uint64_t i = 0; i < iters; i += 4) {
uint64_t offset = i * args.stride & mask;
char *base = region + offset;
*(T *)base = 0;
base += args.stride;
*(T *)base = 0;
base += args.stride;
*(T *)base = 0;
base += args.stride;
*(T *)base = 0;
}
sink_ptr(args.region);
return (long)args.region[0];
}
long strided_stores_1byte(uint64_t iters, void* arg) {
return strided_stores<uint8_t>(iters, arg);
}
long strided_stores_4byte(uint64_t iters, void *arg) {
return strided_stores<uint32_t>(iters, arg);
}
long strided_stores_8byte(uint64_t iters, void *arg) {
return strided_stores<uint64_t>(iters, arg);
}
template <typename T, size_t S, size_t A>
struct aligned_buf {
static constexpr size_t BUF_SIZE = sizeof(T) * S + A;
unsigned char buf[BUF_SIZE];
T* get() {
void *p = buf;
auto sz = BUF_SIZE;
auto ret = std::align(A, S, p, sz);
assert(ret);
return (T*)ret;
}
};
#define VS_STUDY_UNROLL 10
/**
* Specific study for 64-bit writes on Graviton 2
*/
long volatile_stores_study(uint64_t iters, void* arg) {
// constexpr size_t gap = 1;
using type = uint64_t;
aligned_buf<type, 1024 * 128, 64> buf;
volatile type * vptr = buf.get();
for (uint64_t i = 0; i < iters; i += 4 * VS_STUDY_UNROLL) {
#define BODY(z, n, data) \
vptr[0] = 1; \
vptr[8] = 1; \
vptr[0] = 1; \
vptr[8] = 1;
BOOST_PP_REPEAT(VS_STUDY_UNROLL, BODY, _);
#undef BODY
}
return 0;
}
template <typename T>
HEDLEY_ALWAYS_INLINE
void write_at_offsets(volatile T *p) {
}
template <typename T, size_t O, size_t... Os>
HEDLEY_ALWAYS_INLINE
void write_at_offsets(volatile T *p) {
p[O] = 1;
write_at_offsets<T, Os...>(p);
}
/**
* Specific study for 64-bit writes on Graviton 2
*/
template <typename type, size_t... Os>
HEDLEY_ALWAYS_INLINE
long volatile_stores_arb_offsets(uint64_t iters, void* arg) {
aligned_buf<type, 1024 * 16, 64> buf;
volatile type * vptr = buf.get();
for (uint64_t i = 0; i < iters; i += 2 * sizeof...(Os)) {
write_at_offsets<type, Os...>(vptr);
write_at_offsets<type, Os...>(vptr);
}
return 0;
}
#define DEFINE_ARB_OFFSET(type, name, ...) \
long arb_offset_##type##_##name(uint64_t iters, void* arg) { \
return volatile_stores_arb_offsets<type, __VA_ARGS__>(iters, arg); \
}
ARB_OFFSET_X(DEFINE_ARB_OFFSET)
/**
* When writing portable benchmarks, we don't get to specify exactly the assembly
* we want. Instead, we have to rely on various tricks to produce code that might
* otherwise be unnatural to the compiler.
*
* Here, we want a series of stores with as few additional instructions in the loop
* as possible. Redundant stores will be happily eliminated by the compiler, and
* not-provably redundant stores often require some addressing which might add
* overhead. So we use volatile stores instead.
*/
template <size_t dist, typename type>
HEDLEY_ALWAYS_INLINE
long volatile_stores_bytes(uint64_t iters, void* arg) {
constexpr size_t UNROLL = 8;
static_assert(dist % sizeof(type) == 0, "must be able to convert dist (bytes) to an element gap");
constexpr auto gap = dist / sizeof(type);
aligned_buf<type, 1 + UNROLL * dist, 64> buf;
volatile type * vptr = buf.get();
for (uint64_t i = 0; i < iters; i += UNROLL) {
for (size_t i = 0; i < UNROLL / 2; i++) {
vptr[0 * gap] = 1;
vptr[1 * gap] = 2;
}
}
return 0;
}
/**
* Allows you to specify dist in type-sized elements instead of bytes.
*/
template <size_t dist, typename type>
HEDLEY_ALWAYS_INLINE
long volatile_stores_elems(uint64_t iters, void* arg) {
return volatile_stores_bytes<dist * sizeof(type), type>(iters, arg);
}
#define DEFINE_GAP(gap, gaptype, bits, ...) long GAP_FN(gap, gaptype, bits)(uint64_t iters, void* arg) \
{ return volatile_stores_ ## gaptype<gap, uint ## bits ## _t>(iters, arg); }
VS_GAP_GAP_X(DEFINE_GAP)
//////////////////////////////
// Portable alignment tests //
//////////////////////////////
/**
* Repeatedly do a store to the same location at the given alignment
* within a 64-bit cache line.
*/
template <size_t roll>
HEDLEY_ALWAYS_INLINE
long aligned_stores_helper(uint64_t iters, void* arg) {
using type = uint64_t;
aligned_buf<type, 1024, 128> buf;
volatile type * vptr = (type *)((char *)buf.get() + (size_t)arg);
#define ALIGNED_STORES_UNROLL 16
for (uint64_t i = 0; i < iters; i += ALIGNED_STORES_UNROLL) {
#define BODY(z, n, data) vptr[n * roll] = 1;
BOOST_PP_REPEAT(ALIGNED_STORES_UNROLL, BODY, _);
#undef BODY
}
return 0;
}
long misaligned_stores_sameloc(uint64_t iters, void* arg) {
return aligned_stores_helper<0>(iters, arg);
}
long misaligned_stores_rolling(uint64_t iters, void* arg) {
return aligned_stores_helper<1>(iters, arg);
}
/*
* Alternating stores to two misaligned locations: offset and
* 64 - offset.
*
* Tests whether non-consecutive stores can coalesce (while
* aligned_stores_sameloc tests if consecutive stores can).
*/
long misaligned_stores_twoloc(uint64_t iters, void* arg) {
using type = uint64_t;
aligned_buf<type, 1024, 128> buf;
auto offset = (size_t)arg;
volatile type * vptr0 = (type *)((char *)buf.get() + offset);
volatile type * vptr1 = (type *)((char *)buf.get() + 61 - offset);
#define TWOLOC_STORES_UNROLL 8
for (uint64_t i = 0; i < iters; i += TWOLOC_STORES_UNROLL * 2) {
#define BODY(z, n, data) \
*vptr0 = 1; \
*vptr1 = 1;
BOOST_PP_REPEAT(TWOLOC_STORES_UNROLL, BODY, _);
#undef BODY
}
return 0;
}
long portable_add_chain(uint64_t itersu, void *arg) {
using opt_control::modify;
int64_t iters = itersu;
// we use the modify call to force the compiler to emit the separate
// decrements, otherwise it will simply combine consecutive subtractions
do {
modify(iters);
--iters;
modify(iters);
--iters;
modify(iters);
--iters;
modify(iters);
--iters;
// it is key that the last decrement before the check doesn't have a modify call
// after since this lets the compiler use the result of the flags set by the last
// decrement in the check (which will be fused)
} while (iters != 0);
return iters;
}
// off course the table is not supposed to be full of zeros but for our purposes this is fine
uint8_t crc8_table[256] = {};
// from https://stackoverflow.com/a/15171925
uint32_t crc8(uint32_t crc, uint8_t *data, size_t len)
{
crc &= 0xff;
unsigned char const *end = data + len;
while (data < end)
crc = crc8_table[crc ^ *data++];
return crc;
}
long crc8_bench(uint64_t iters, void *arg) {
uint8_t buf[4096];
opt_control::sink_ptr(buf);
uint32_t crc = 0;
do {
crc = crc8(crc, buf, sizeof(buf));
} while (--iters != 0);
return crc;
}
struct top_bottom {
uint32_t top, bottom;
};
// HEDLEY_NEVER_INLINE
top_bottom sum_halves(const uint32_t *data, size_t len) {
uint32_t top = 0, bottom = 0;
for (size_t i = 0; i < len; i += 2) {
uint32_t elem;
elem = data[i];
top += elem >> 16;
bottom += elem & 0xFFFF;
elem = data[i+1];
top += elem >> 16;
bottom += elem & 0xFFFF;
}
return {top, bottom};
}
long sum_halves_bench(uint64_t iters, void *arg) {
uint32_t buf[4096];
opt_control::sink_ptr(buf);
do {
auto ret = sum_halves(buf, sizeof(buf) / sizeof(buf[0]));
opt_control::sink(ret.top + ret.bottom);
} while (--iters != 0);
return 0;
}
HEDLEY_NEVER_INLINE
uint32_t mul_by(const uint32_t *data, size_t len, uint32_t m) {
uint32_t sum = 0;
for (size_t i = 0; i < len - 1; i++) {
uint32_t x = data[i], y = data[i + 1];
sum += x * y * m * i * i;
}
opt_control::sink(sum);
return sum;
}
HEDLEY_NEVER_INLINE
uint32_t mul_chain(const uint32_t *data, size_t len, uint32_t m) {
uint32_t product = 1;
for (size_t i = 0; i < len; i++) {
uint32_t x = data[i];
product *= x;
}
opt_control::sink(product);
return product;
}
HEDLEY_NEVER_INLINE
uint32_t mul_chain4(const uint32_t *data, size_t len, uint32_t m) {
uint32_t p1 = 1, p2 = 1, p3 = 1, p4 = 1;
for (size_t i = 0; i < len; i += 4) {
p1 *= data[i + 0];
p2 *= data[i + 1];
p3 *= data[i + 2];
p4 *= data[i + 3];
}
uint32_t product = p1 * p2 * p3 * p4;
opt_control::sink(product);
return product;
}
template <typename F>
long mul_by_bench_f(uint64_t iters, void *arg, F f) {
uint32_t buf[4096];
opt_control::sink_ptr(buf);
uint32_t x = 123;
opt_control::modify(x);
do {
opt_control::sink(f(buf, sizeof(buf) / sizeof(buf[0]), x));
} while (--iters != 0);
return 0;
}
long mul_by_bench(uint64_t iters, void *arg) {
return mul_by_bench_f(iters, arg, mul_by);
}
long mul_chain_bench(uint64_t iters, void *arg) {
return mul_by_bench_f(iters, arg, mul_chain);
}
long mul_chain4_bench(uint64_t iters, void *arg) {
return mul_by_bench_f(iters, arg, mul_chain4);
}
HEDLEY_NEVER_INLINE
uint32_t add_indirect_inner(const uint32_t *data, const uint32_t *offsets, size_t len)
{
assert(len >= 2 && len % 2 == 0);
uint32_t sum1 = 0, sum2 = 0;
size_t i = len;
do {
sum1 += data[offsets[i - 1]];
sum2 += data[offsets[i - 2]];
i -= 2;
} while (i);
opt_control::sink(sum1 + sum2);
return sum1 + sum2;
}
HEDLEY_NEVER_INLINE
uint32_t add_indirect_shift_inner(const uint32_t *data, const uint32_t *offsets, size_t len) {
uint32_t sum1 = 0, sum2 = 0;
size_t i = len;
do {
uint64_t twooffsets;
std::memcpy(&twooffsets, offsets + i - 2, sizeof(uint64_t));
sum1 += data[twooffsets >> 32];
sum2 += data[twooffsets & 0xFFFFFFFF];
i -= 2;
} while (i);
opt_control::sink(sum1 + sum2);
return sum1 + sum2;
}
template <typename F>
long add_indirect_f(uint64_t iters, void *arg, F f) {
uint32_t buf[4096], offsets[4096] = {};
opt_control::sink_ptr(buf);
opt_control::sink_ptr(offsets);
uint32_t x = 123;
opt_control::modify(x);
do {
opt_control::sink(f(buf, offsets, sizeof(buf) / sizeof(buf[0])));
} while (--iters != 0);
return 0;
}
long add_indirect(uint64_t iters, void *arg) {
return add_indirect_f(iters, arg, add_indirect_inner);
}
long add_indirect_shift(uint64_t iters, void *arg) {
return add_indirect_f(iters, arg, add_indirect_shift_inner);
}
HEDLEY_ALWAYS_INLINE double log_helper(double x, double y) { return std::log(x); }
HEDLEY_ALWAYS_INLINE double exp_helper(double x, double y) { return std::exp(x); }
HEDLEY_ALWAYS_INLINE double pow_helper(double x, double y) { return std::pow(x, y); }
template <typename F>
long do_transcendental(uint64_t iters, void *arg, F helper) {
double x0 = 0.123;
double y0 = 0.456;
while (iters--) {
double x = x0, y = y0;
opt_control::modify(x);
// opt_control::modify(y);
double r = helper(x, y);
// double r = std::log(x);
opt_control::sink(r);
}
return 0;
}
template <typename F>
long do_transcendental_lat(uint64_t iters, void *arg, F helper) {
double x = 0.123;
double y = 0.456;
double z = 0.;
opt_control::modify(z);
while (iters--) {
double t = helper(x, y);
x += t * z; // no change to x, but makes x dependent on t, completing the chain
opt_control::sink(x);
}
return 0;
}
#define MAKE_TRAN(name) \
long transcendental_##name(uint64_t iters, void *arg) { \
return do_transcendental(iters, arg, name##_helper); \
} \
long transcendental_lat_##name(uint64_t iters, void *arg) { \
return do_transcendental_lat(iters, arg, name##_helper); \
}
TRANSCENDENTAL_X(MAKE_TRAN)