-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeltest.py
executable file
·352 lines (288 loc) · 13.1 KB
/
modeltest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python2.4
##!/usr/bin/env python
import logging
import os
import random
import sys
import numpy
from adts import *
from regressor import RegressorUtils
from regressor.Caff import CaffBuildStrategy, CaffFactory
from regressor.Lut import LutStrategy, LutFactory
from regressor.Luc import LucStrategy, LucFactory
#from regressor.Probe import ProbeBuildStrategy, ProbeFactory
from regressor.Sgb import SgbBuildStrategy, SgbFactory
from util import mathutil
from util.ascii import *
#set up logging
logging.basicConfig()
logging.getLogger("ascii").setLevel(logging.INFO)
logging.getLogger("caff").setLevel(logging.INFO)
logging.getLogger("lin").setLevel(logging.WARNING)
#logging.getLogger("lin").setLevel(logging.DEBUG)
logging.getLogger("luc").setLevel(logging.DEBUG)
logging.getLogger("lut").setLevel(logging.DEBUG)
logging.getLogger("sgb").setLevel(logging.DEBUG)
logging.getLogger("var_infl").setLevel(logging.DEBUG)
#logging.getLogger("probe").setLevel(logging.INFO)
#set help message
help = """
Usage: modeltest REGR_TYPE FILEBASE_OR_NUM [INPUT_VAR_TYPE TARGET_VARNAME]
REGR_TYPE -- luc, lut, caff, sgb, ..
INPUT_VAR_TYPE -- one of:
'metrics' (map metrics => target topovar, or all-but-target-metrics => target metric)
'topovars' (topovars => target metric),
'allvars' (allvars => target metric)
FILEBASE_OR_NUM -- Examples:
-0 - sin(x)
-1 - walter fu
-2 - walter lfgain
-3 - walter offsetn
-4 - walter pm
-5 - walter srn
-6 - walter srp
-/users/micas/tmcconag/novelty_results/results_three_objs
- ..
"""
#===========================================================
#===========================================================
#set magic numbers : begin
target_nmse = 0.01 #0.0 #0.05
num_scrambles = 50 #20
sgb_max_carts = 500 #500
sgb_learn_rate = 0.02 #0.02
perc_test = 0.25
caffeine_do_mobj = True
caffeine_max_num_nonlinear_bases = 4 #15
caffeine_popsize = 100
caffeine_pop_mult = 5
caffeine_max_numgen = 200
probe_rank = 1
#set magic numbers : done
def twoDimArray(vec):
X = numpy.zeros((1,len(vec)), dtype=float)
X[0,:] = vec
return X
if __name__== "__main__":
#got the right number of args? If not, output help
num_args = len(sys.argv)
if num_args not in [3, 5]:
print help
sys.exit(0)
#yank out the args
regr_type = sys.argv[1]
assert regr_type in ["luc", "lut", "caff", "sgb"]
#(currently) hardcoded
filebase_or_num = sys.argv[2]
# Report what we're working with
print "Regressor_type = %s, filebase_or_num = %s" % \
(regr_type, filebase_or_num)
#set train_X, train_y, test_X, test_y, input_varnames
if filebase_or_num == "0":
assert num_args == 3
print "Training data is function #0: sin(x)"
x = numpy.arange(0.0, 2*3.1415, 0.01)
y = numpy.sin(x)
X = numpy.reshape(x, (1, len(x)))
input_varnames = ["x0"]
(train_X, train_y, test_X, test_y) = \
RegressorUtils.generateTrainTestData(X, y, perc_test)
elif filebase_or_num in ["1","2","3","4","5","6"]:
assert num_args == 3
num = int(filebase_or_num)
perf_metrics = ["fu", "lfgain", "offsetn", "pm", "srn", "srp"]
perf_metric = perf_metrics[num - 1]
print "Training data is function #%d: walter %s" % (num, perf_metric)
filebase = "/users/micas/tmcconag/regressor_data/walterdata/"
train_X = asciiTo2dArray(filebase + "train_X.txt")
train_y = asciiTo2dArray(filebase + "train_" + perf_metric + ".txt")[0,:]
test_X = asciiTo2dArray(filebase + "test_X.txt")
test_y = asciiTo2dArray(filebase + "test_" + perf_metric + ".txt")[0,:]
input_varnames = asciiRowToStrings(filebase + "varnames.txt")
#
assert train_X.shape[0] == test_X.shape[0]
assert train_X.shape[1] == len(train_y) == train_y.shape[0]
assert test_X.shape[1] == len(test_y) == test_y.shape[0]
#maybe logscale
if perf_metric == "fu":
print "Warning: setting y to log(fu), not fu"
train_y = numpy.log10(train_y)
test_y = numpy.log10(test_y)
else:
#this section builds a mapping of topology_vars => metric
# metrics => topology var
assert num_args == 5
input_var_type = sys.argv[3]
target_varname = sys.argv[4]
assert input_var_type in ['metrics', 'topovars', 'allvars']
filebase = filebase_or_num
metrics_filebase = filebase + "_points.unscaled"
print "Training data filebase is: %s" % filebase
#load data
print "Load training data..."
all_metric_vars = asciiRowToStrings(filebase + '_metrics.hdr')
all_metric_X = numpy.transpose(asciiTo2dArray(filebase + '_metrics.val')) #[metric][sample]
all_topo_vars = asciiRowToStrings(filebase + '_topos.hdr')
all_topo_X = numpy.transpose(asciiTo2dArray(filebase + '_topos.val')) #[topovar][sample]
all_unscaled_vars = asciiRowToStrings(filebase + '_points.unscaled.hdr')
all_unscaled_X = numpy.transpose(asciiTo2dArray(filebase + '_points.unscaled.val'))
objective_vars = asciiRowToStrings(filebase + '_objectives.hdr')
objective_I = [i for (i, metname) in enumerate(all_metric_vars) if metname in objective_vars]
objective_X = numpy.take(all_metric_X, objective_I, 0)
#remove 'indID' from data before worrying about it each time. It's 0th entry / row
all_topo_vars = all_topo_vars[1:]
all_unscaled_vars = all_unscaled_vars[1:]
all_topo_X = numpy.take(all_topo_X, range(1, all_topo_X.shape[0]), 0)
all_unscaled_X = numpy.take(all_unscaled_X, range(1, all_unscaled_X.shape[0]), 0)
#build X, y, input_varnames
if (input_var_type == 'metrics') and (target_varname in all_topo_vars): #metrics => topo_var
y = all_topo_X[all_topo_vars.index(target_varname),:]
input_varnames = objective_vars
X = objective_X
if (input_var_type == 'metrics') and (target_varname in objective_vars): #metrics => metric
target_i = objective_vars.index(target_varname)
input_I = [i for (i, var) in enumerate(objective_vars) if var != target_varname]
y = objective_X[target_i,:]
input_varnames = [var for var in objective_vars if var != target_varname]
X = numpy.take(objective_X, input_I, 0)
elif input_var_type == 'topovars': #topovars => metric
assert target_varname in all_metric_vars
y = all_metric_X[all_metric_vars.index(target_varname), :]
input_varnames = all_topo_vars
X = all_topo_X
elif input_var_type == 'allvars': #topovars => metric
assert target_varname in all_metric_vars
y = all_metric_X[all_metric_vars.index(target_varname), :]
input_varnames = all_unscaled_vars
X = all_unscaled_X
else:
raise AssertionError(input_var_type)
train_X, train_y = X, y
test_X, test_y = X, y
#
min_y = min(train_y) #don"t include test_y so that same results as evo.
max_y = max(train_y) # ""
min_x = min(mathutil.minPerRow(train_X), mathutil.minPerRow(test_X))
max_x = max(mathutil.maxPerRow(train_X), mathutil.maxPerRow(test_X))
#build regressor...
print "Have %d training samples and %d test samples" % (len(train_y), len(test_y))
print "Build regressor..."
regressor = None #fill this in
nondom_regressors = None #maybe fill this in
if regr_type == "lut":
ss = LutStrategy()
ss.bandwidth = 0.001
regressor = LutFactory().build(train_X, train_y, ss)
elif regr_type == "luc":
ss = LucStrategy()
regressor = LucFactory().build(train_X, train_y, ss)
elif regr_type == "caff":
ss = CaffBuildStrategy(caffeine_do_mobj,
caffeine_max_num_nonlinear_bases,
caffeine_popsize,
caffeine_pop_mult,
caffeine_max_numgen,
target_nmse)
regressor, nondom_regressors = \
CaffFactory().build(train_X, train_y, input_varnames, ss)
elif regr_type == "probe":
ss = ProbeBuildStrategy(probe_rank)
regressor = ProbeFactory().build(train_X, train_y, ss)
elif regr_type == "sgb":
ss = SgbBuildStrategy(max_carts=sgb_max_carts, learning_rate=sgb_learn_rate,
target_trn_nmse=target_nmse)
regressor = SgbFactory().build(train_X, train_y, ss)
#regressor = SgbFactory().build(X, y, ss, test_cols)
#regressor = SgbFactory().build(X, y, ss)
else:
raise AssertionError("Unknown regressor type: %s" % regr_type)
print "Regressor is built"
print "Regressor: %s" % regressor
print "Now test regressor"
#simulate
#yhat = regressor.simulate(X)
train_yhat = regressor.simulate(train_X)
test_yhat = regressor.simulate(test_X)
#calc nmse
train_nmse = mathutil.nmse(train_yhat, train_y, min_y, max_y)
test_nmse = mathutil.nmse(test_yhat, test_y, min_y, max_y)
print "Train nmse=%.10f" % train_nmse
print "Test nmse=%.10f" % test_nmse
#plot output
from util.octavecall import plotAndPause
#plotAndPause(X[0,:], y, X[0,:], yhat)
#plotAndPause(test_X[0,:], test_y, test_X[0,:], test_yhat)
if regr_type == 'sgb':
#print relative influence of variables on the output
from regressor.VarInfluenceUtils import meanStderrs, influenceStr
mean_stderr_tuples = meanStderrs(regressor, train_X, train_y, num_scrambles=num_scrambles,
force_scramble=True)
infls = [mean for (mean, stderr) in mean_stderr_tuples]
s = influenceStr(infls, input_varnames, print_xi=True, print_zero_infl_vars=True)
print ""
print "Relative influence on '%s':" % target_varname
print s
#dump impacts to a .csv file
# -first column is var names
# -second column is relative impact per var
I = numpy.argsort(infls) #sort in ascending order
sorted_infls = [infls[i] for i in I]
sorted_input_varnames = [input_varnames[i] for i in I]
s = ""
for (i, (var, infl)) in enumerate(zip(sorted_input_varnames, sorted_infls)):
s += "%s, %.6f\n" % (var, infl)
filename = "%s_impacts_on_%s.csv" % (input_var_type, target_varname)
stringToAscii(filename, s)
files_created = [filename]
#if applicable, print relative influence of topo. vars vs. sizing & biasing vars
if (num_args > 3) and (input_var_type == 'allvars'):
infl_topo, infl_other = 0.0, 0.0
for (i, var) in enumerate(all_unscaled_vars):
if var in all_topo_vars:
infl_topo += infls[i]
else:
infl_other += infls[i]
s = influenceStr(
[infl_topo, infl_other],
['all %d topology variables' % len(all_topo_vars),
'all %d sizing & biasing variables' % (len(all_unscaled_vars) - len(all_topo_vars))],
print_xi=False, print_zero_infl_vars=True)
print s
#dump these to a .csv file too
s = ""
s += "topology variables, %.6f\n" % infl_topo
s += "sizing variables, %.6f\n" % infl_other
filename = "%s_impacts_on_%s__summary.csv" % (input_var_type, target_varname)
stringToAscii(filename, s)
files_created.append(filename)
print "Created files:"
for filename in files_created:
print " " + filename
if nondom_regressors:
print 'Have %d nondom_regressors' % len(nondom_regressors)
#build data
#train_nmses = twoDimArray([r.nmse for r in nondom_regressors])
train_nmses = twoDimArray([
mathutil.nmse(r.simulate(train_X), train_y, min_y, max_y)
for r in nondom_regressors])
caffbase = 'caff_%s_mapping_to_%s' % (input_var_type, target_varname)
train_nmses_file = '%s_train_nmses.txt' % caffbase
test_nmses = twoDimArray([
mathutil.nmse(r.simulate(test_X), test_y, min_y, max_y)
for r in nondom_regressors])
test_nmses_file = '%s_test_nmses.txt' % caffbase
complexities = twoDimArray([r.complexity for r in nondom_regressors])
complexities_file = '%s_complexities.txt' % caffbase
expressions = ['%d: %s\n\n' % (i,r)
for (i, r) in enumerate(nondom_regressors)]
expressions_file = '%s_expressions.txt' % caffbase
#save to disk
arrayToAscii(train_nmses_file, train_nmses)
arrayToAscii(test_nmses_file, test_nmses)
arrayToAscii(complexities_file, complexities)
stringsToAscii(expressions_file, expressions)
print "Created files:"
print train_nmses_file
print test_nmses_file
print complexities_file
print expressions_file