-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummarize_agelayers.py
132 lines (109 loc) · 4.58 KB
/
summarize_agelayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
##!/usr/bin/env python2.4
import os
import sys
import numpy
def printMOEADLayer(state, layer_i, max_inds_per_weight=1):
N = state.ss.num_inds_per_age_layer
cands = state.R_per_age_layer[layer_i]
print "Displaying MOEA/D layer %d..." % layer_i
# find min and max values in this R for each metric
print " Estimating metric bounds..."
metric_bounds = EngineUtils.minMaxMetrics(state.ps, cands)
dbg = " metric bounds: \n"
for obj in state.ps.metricsWithObjectives():
dbg += " %20s: %10s -> %10s\n" % (obj.name, metric_bounds[obj.name][0], metric_bounds[obj.name][1])
print dbg
topos_seen = {}
topo_costs = {}
inds_for_wi = {}
weight_topo_strings = []
# find best ind for each weight
for w_i in range(N):
neighbor_I = state.indices_of_neighbors[w_i]
costs = [ind.scalarCost(1, state.W[w_i,:], state.ss.metric_weights, metric_bounds)
for ind in cands]
max_cost = max(costs)
min_cost = min(costs)
best_I = numpy.argsort(costs)
inds_for_wi[w_i] = []
topos_seen[w_i] = []
topo_costs[w_i] = []
for idx in best_I:
topo = cands[idx].topoSummary()
if topo not in topos_seen[w_i]:
# normalized cost: 0 = best ind for this weight, 1 = worst ind for this weight
normalized_cost = (costs[idx] - min_cost) / (max_cost - min_cost + 1e-20)
if normalized_cost > 0.5: # ind is not in top 50% for this weight vector
break # don't add it
inds_for_wi[w_i].append(cands[idx])
topos_seen[w_i].append(topo)
topo_costs[w_i].append(normalized_cost)
if len(inds_for_wi[w_i]) == max_inds_per_weight:
break
# check uniqueness
assert len(set(topos_seen[w_i])) == len(topos_seen[w_i])
s = ""
for (idx, topo) in enumerate(topos_seen[w_i]):
s += "[%20s %3.5f] " % (topo, topo_costs[w_i][idx])
weight_topo_strings.append(s)
for w_i in range(N):
s = " w_i: %03d (%02d)" % (w_i, len(topos_seen[w_i]))
print s + weight_topo_strings[w_i]
neighbor_I = state.indices_of_neighbors[w_i]
for idx in neighbor_I:
print " w_i: %03d %s" % (idx, weight_topo_strings[idx])
if __name__== '__main__':
#set up logging
import logging
logging.basicConfig()
logging.getLogger('engine_utils').setLevel(logging.DEBUG)
logging.getLogger('analysis').setLevel(logging.DEBUG)
logging.getLogger('master').setLevel(logging.INFO)
#set help message
help = """
Usage: summarize_agelayers DB_FILE [MAX_INDS_PER_WEIGHT]
Prints a summary of db age layer contents:
Details:
DB_FILE -- string -- e.g. ~/synth_results/state_genXXXX.db or pooled_db.db
MAX_INDS_PER_WEIGHT -- int -- nb of inds to select per weight (default: loaded from db)
"""
#got the right number of args? If not, output help
num_args = len(sys.argv)
if num_args not in [2, 3]:
print help
sys.exit(0)
#yank out the args into usable values
db_file = sys.argv[1]
#do the work
import engine.EngineUtils as EngineUtils
from util import mathutil
from engine.Channel import ChannelStrategy
import engine.EngineUtils
import engine.Evaluator
# -load data
if not os.path.exists(db_file):
print "Cannot find file with name %s" % db_file
sys.exit(0)
state = EngineUtils.loadSynthState(db_file, None)
ps = state.ps
#if num_args > 2:
#max_inds_per_weight = eval(sys.argv[2])
#else:
#max_inds_per_weight = state.ss.topology_layers_per_weight
#for i in range(len(state.R_per_age_layer)):
#printMOEADLayer(state, i, max_inds_per_weight)
inds = list(set(state.R_per_age_layer[0]))
(layer, kicked_inds, layer_cost) = EngineUtils.prepareMOEADLayer(ps, inds, state.W, state.ss.metric_weights, state.ss.topology_layers_per_weight)
clusters = EngineUtils.clusterPerTopology(layer, layer_cost, state.W, state.indices_of_neighbors)
for cluster in clusters:
(ind, weight_vector) = cluster.getBestIndAndWeight()
print "cluster %3d gives ind %15s for weight %s" % (cluster.ID, ind.shortID(), weight_vector)
#inds = state.R_per_age_layer[6]
#state.R_per_age_layer = EngineUtils.AgeLayeredPop()
#state.R_per_age_layer.append(inds)
#state.nominal_nondom_inds = EngineUtils.nondominatedFilter(inds)
#state.nominal_nondom_inds_current = inds
#state.save('test.db')
#done!
print "Done summarize_agelayers.py"