-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhashtree.cpp
655 lines (560 loc) · 20.2 KB
/
hashtree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*
* hashtree.cpp
* serp++
*
* Created by Victor Grishchenko on 3/6/09.
* Copyright 2009-2012 TECHNISCHE UNIVERSITEIT DELFT. All rights reserved.
*
*/
#include "hashtree.h"
#include "bin_utils.h"
//#include <openssl/sha.h>
#include "sha1.h"
#include <cassert>
#include <cstring>
#include <cstdlib>
#include <fcntl.h>
#include "compat.h"
#include "swift.h"
#include <iostream>
using namespace swift;
const Sha1Hash Sha1Hash::ZERO = Sha1Hash();
void SHA1 (const void *data, size_t length, unsigned char *hash) {
blk_SHA_CTX ctx;
blk_SHA1_Init(&ctx);
blk_SHA1_Update(&ctx, data, length);
blk_SHA1_Final(hash, &ctx);
}
Sha1Hash::Sha1Hash(const Sha1Hash& left, const Sha1Hash& right) {
blk_SHA_CTX ctx;
blk_SHA1_Init(&ctx);
blk_SHA1_Update(&ctx, left.bits,SIZE);
blk_SHA1_Update(&ctx, right.bits,SIZE);
blk_SHA1_Final(bits, &ctx);
}
Sha1Hash::Sha1Hash(const char* data, size_t length) {
if (length==-1)
length = strlen(data);
SHA1((unsigned char*)data,length,bits);
}
Sha1Hash::Sha1Hash(const uint8_t* data, size_t length) {
SHA1(data,length,bits);
}
Sha1Hash::Sha1Hash(bool hex, const char* hash) {
if (hex) {
int val;
for(int i=0; i<SIZE; i++) {
if (sscanf(hash+i*2, "%2x", &val)!=1) {
memset(bits,0,20);
return;
}
bits[i] = val;
}
assert(this->hex()==std::string(hash));
} else
memcpy(bits,hash,SIZE);
}
std::string Sha1Hash::hex() const {
char hex[HASHSZ*2+1];
for(int i=0; i<HASHSZ; i++)
sprintf(hex+i*2, "%02x", (int)(unsigned char)bits[i]);
return std::string(hex,HASHSZ*2);
}
/** H a s h t r e e */
MmapHashTree::MmapHashTree (Storage *storage, const Sha1Hash& root_hash, uint32_t chunk_size, std::string hash_filename, bool force_check_diskvshash, bool check_netwvshash, std::string binmap_filename) :
HashTree(), root_hash_(root_hash), hashes_(NULL),
peak_count_(0), hash_fd_(-1), hash_filename_(hash_filename), size_(0), sizec_(0), complete_(0), completec_(0),
chunk_size_(chunk_size), storage_(storage), check_netwvshash_(check_netwvshash)
{
// MULTIFILE
storage_->SetHashTree(this);
// If multi-file spec we know the exact size even before getting peaks+last chunk
int64_t sizefromspec = storage_->GetSizeFromSpec();
if (sizefromspec != -1)
{
set_size(sizefromspec);
// Resize all files
(void)storage_->ResizeReserved(sizefromspec);
}
// Arno: if user doesn't want to check hashes but no .mhash, check hashes anyway
bool actually_force_check_diskvshash = force_check_diskvshash;
bool mhash_exists=true;
int64_t mhash_size = file_size_by_path_utf8( hash_filename.c_str());
if (mhash_size < 0)
mhash_exists = false;
// Arno, 2012-07-26: Quick fix against partial downloads without .mhash.
// Previously they would be Submit()ed and the root_hash_ would change.
// Now if the root_hash_ is set, we don't recompute the tree. More permanent
// solution is to hashcheck the content, and if it doesn't match the root
// hash, revert to a clean state.
//
if (root_hash_==Sha1Hash::ZERO && !mhash_exists)
actually_force_check_diskvshash = true;
// Arno: if the remainder of the hashtree state is on disk we can
// hashcheck very quickly
bool binmap_exists=true;
int res = file_exists_utf8( binmap_filename.c_str() );
if( res <= 0)
binmap_exists = false;
if (root_hash_==Sha1Hash::ZERO && !binmap_exists)
actually_force_check_diskvshash = true;
//fprintf(stderr,"hashtree: hashchecking %s file %s want %s do %s mhash-on-disk %s binmap-on-disk %s\n", root_hash.hex().c_str(), storage_->GetOSPathName().c_str(), (force_check_diskvshash ? "yes" : "no"), (actually_force_check_diskvshash? "yes" : "no"), (mhash_exists? "yes" : "no"), (binmap_exists? "yes" : "no") );
// Arno, 2012-07-27: Sanity check
if ((mhash_exists || binmap_exists) && storage_->GetReservedSize() == -1)
{
print_error("meta files present but not content");
SetBroken();
return;
}
// Arno, 2012-09-19: Hash file created only when msgs incoming
if (mhash_exists) {
hash_fd_ = OpenHashFile();
if (hash_fd_ < 0)
return;
}
// Arno: if user wants to or no .mhash, and if root hash unknown (new file) and no checkpoint, (re)calc root hash
if (storage_->GetReservedSize() > storage_->GetMinimalReservedSize() && actually_force_check_diskvshash) {
// fresh submit, hash it
dprintf("%s hashtree full compute\n",tintstr());
//assert(storage_->GetReservedSize());
Submit();
} else if (mhash_exists && binmap_exists && mhash_size > 0) {
// Arno: recreate hash tree without rereading content
dprintf("%s hashtree read from checkpoint\n",tintstr());
FILE *fp = fopen_utf8(binmap_filename.c_str(),"rb");
if (!fp) {
print_error("hashtree: cannot open .mbinmap file");
SetBroken();
return;
}
if (deserialize(fp) < 0) {
// Try to rebuild hashtree data
Submit();
}
fclose(fp);
} else {
// Arno: no data on disk, or mhash on disk, but no binmap. In latter
// case recreate binmap by reading content again. Historic optimization
// of Submit.
dprintf("%s hashtree empty or partial recompute\n",tintstr());
RecoverProgress();
}
}
MmapHashTree::MmapHashTree(bool dummy, std::string binmap_filename) :
HashTree(), root_hash_(Sha1Hash::ZERO), hashes_(NULL), peak_count_(0), hash_fd_(0),
hash_filename_(""), filename_(""), size_(0), sizec_(0), complete_(0), completec_(0),
chunk_size_(0), check_netwvshash_(false)
{
FILE *fp = fopen_utf8(binmap_filename.c_str(),"rb");
if (!fp) {
SetBroken();
return;
}
if (partial_deserialize(fp) < 0) {
}
fclose(fp);
}
int MmapHashTree::OpenHashFile() {
hash_fd_ = open_utf8(hash_filename_.c_str(),OPENFLAGS,S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
if (hash_fd_<0) {
hash_fd_ = -1;
print_error("cannot create/open hash file");
SetBroken();
}
return hash_fd_;
}
// Reads complete file and constructs hash tree
void MmapHashTree::Submit () {
size_ = storage_->GetReservedSize();
sizec_ = (size_ + chunk_size_-1) / chunk_size_;
//fprintf(stderr,"hashtree: submit: cs %i\n", chunk_size_);
peak_count_ = gen_peaks(sizec_,peaks_);
int hashes_size = Sha1Hash::SIZE*sizec_*2;
dprintf("%s hashtree submit resizing hash file to %d\n",tintstr(), hashes_size );
if (hashes_size == 0) {
SetBroken();
return;
}
// Arno, 2012-09-19: Hash file created only when msgs incoming
if (hash_fd_ == -1) {
hash_fd_ = OpenHashFile();
if (hash_fd_ < 0)
return;
}
file_resize(hash_fd_,hashes_size);
hashes_ = (Sha1Hash*) memory_map(hash_fd_,hashes_size);
if (!hashes_) {
size_ = sizec_ = complete_ = completec_ = 0;
print_error("mmap failed");
SetBroken();
return;
}
size_t last_piece_size = (sizec_ - 1) % (chunk_size_) + 1;
char *chunk = new char[chunk_size_];
for (uint64_t i=0; i<sizec_; i++) {
ssize_t rd = storage_->Read(chunk,chunk_size_,i*chunk_size_);
if (rd<(chunk_size_) && i!=sizec_-1) {
free(hashes_);
hashes_=NULL;
SetBroken();
return;
}
bin_t pos(0,i);
hashes_[pos.toUInt()] = Sha1Hash(chunk,rd);
ack_out_.set(pos);
while (pos.is_right()){
pos = pos.parent();
hashes_[pos.toUInt()] = Sha1Hash(hashes_[pos.left().toUInt()],hashes_[pos.right().toUInt()]);
}
complete_+=rd;
completec_++;
}
delete chunk;
for (int p=0; p<peak_count_; p++) {
peak_hashes_[p] = hashes_[peaks_[p].toUInt()];
}
Sha1Hash calcroothash = DeriveRoot();
if (root_hash_ != Sha1Hash::ZERO && calcroothash != root_hash_)
{
print_error("hash tree calculation error");
SetBroken();
return;
}
root_hash_ = DeriveRoot();
}
/** Basically, simulated receiving every single chunk, except
for some optimizations.
Precondition: root hash known */
void MmapHashTree::RecoverProgress () {
//fprintf(stderr,"hashtree: recover: cs %i\n", chunk_size_);
if (!RecoverPeakHashes())
return; // Not fatal
// at this point, we may use mmapd hashes already
// so, lets verify hashes and the data we've got
char *zero_chunk = new char[chunk_size_];
memset(zero_chunk, 0, chunk_size_);
Sha1Hash zero_hash(zero_chunk,chunk_size_);
// Arno: loop over all pieces, read each from file
// ARNOSMPTODO: problem is that we may have the complete hashtree, but
// not have all pieces. So hash file gives too little information to
// determine whether file is complete on disk.
//
char *buf = new char[chunk_size_];
for(int p=0; p<size_in_chunks(); p++) {
bin_t pos(0,p);
if (hashes_[pos.toUInt()]==Sha1Hash::ZERO)
continue;
ssize_t rd = storage_->Read(buf,chunk_size_,p*chunk_size_);
if (rd!=(chunk_size_) && p!=size_in_chunks()-1)
break;
if (rd==(chunk_size_) && !memcmp(buf, zero_chunk, rd) &&
hashes_[pos.toUInt()]!=zero_hash) // FIXME // Arno == don't have piece yet?
continue;
if (!OfferHash(pos, Sha1Hash(buf,rd)) )
continue;
ack_out_.set(pos);
completec_++;
complete_+=rd;
if (rd!=(chunk_size_) && p==size_in_chunks()-1) // set the exact file size
size_ = ((sizec_-1)*chunk_size_) + rd;
}
delete[] buf;
delete[] zero_chunk;
}
/** Precondition: root hash known */
bool MmapHashTree::RecoverPeakHashes()
{
int64_t ret = storage_->GetReservedSize();
if (ret < 0)
return false;
uint64_t size = ret;
uint64_t sizek = (size + chunk_size_-1) / chunk_size_;
// Arno: Calc location of peak hashes, read them from hash file and check if
// they match to root hash. If so, load hashes into memory.
bin_t peaks[64];
int peak_count = gen_peaks(sizek,peaks);
for(int i=0; i<peak_count; i++) {
Sha1Hash peak_hash;
file_seek(hash_fd_,peaks[i].toUInt()*sizeof(Sha1Hash));
if (read(hash_fd_,&peak_hash,sizeof(Sha1Hash))!=sizeof(Sha1Hash))
return false;
OfferPeakHash(peaks[i], peak_hash);
}
if (!this->size())
return false; // if no valid peak hashes found
return true;
}
int MmapHashTree::serialize(FILE *fp)
{
fprintf_retiffail(fp,"version %i\n", 1 );
fprintf_retiffail(fp,"root hash %s\n", root_hash_.hex().c_str() );
fprintf_retiffail(fp,"chunk size %lu\n", chunk_size_ );
fprintf_retiffail(fp,"complete %llu\n", complete_ );
fprintf_retiffail(fp,"completec %llu\n", completec_ );
return ack_out_.serialize(fp);
}
/** Arno: recreate hash tree from .mbinmap file without rereading content.
* Precondition: root hash known
*/
int MmapHashTree::deserialize(FILE *fp) {
return internal_deserialize(fp,true);
}
int MmapHashTree::partial_deserialize(FILE *fp) {
return internal_deserialize(fp,false);
}
int MmapHashTree::internal_deserialize(FILE *fp,bool contentavail) {
char hexhashstr[256];
uint64_t c,cc;
size_t cs;
int version;
fscanf_retiffail(fp,"version %i\n", &version );
fscanf_retiffail(fp,"root hash %s\n", hexhashstr);
fscanf_retiffail(fp,"chunk size %lu\n", &cs);
fscanf_retiffail(fp,"complete %llu\n", &c );
fscanf_retiffail(fp,"completec %llu\n", &cc );
if (ack_out_.deserialize(fp) < 0)
return -1;
root_hash_ = Sha1Hash(true, hexhashstr);
chunk_size_ = cs;
// Arno, 2012-01-03: Hack to just get root hash
if (!contentavail)
return 2;
if (!RecoverPeakHashes()) {
root_hash_ = Sha1Hash::ZERO;
ack_out_.clear();
return -1;
}
// Are reset by RecoverPeakHashes() for some reason.
complete_ = c;
completec_ = cc;
size_ = storage_->GetReservedSize();
sizec_ = (size_ + chunk_size_-1) / chunk_size_;
return 0;
}
bool MmapHashTree::OfferPeakHash (bin_t pos, const Sha1Hash& hash) {
char bin_name_buf[32];
dprintf("%s hashtree offer peak %s\n",tintstr(),pos.str(bin_name_buf));
//assert(!size_);
if (peak_count_) {
bin_t last_peak = peaks_[peak_count_-1];
if ( pos.layer()>=last_peak.layer() ||
pos.base_offset()!=last_peak.base_offset()+last_peak.base_length() )
peak_count_ = 0;
}
peaks_[peak_count_] = pos;
peak_hashes_[peak_count_] = hash;
peak_count_++;
// check whether peak hash candidates add up to the root hash
Sha1Hash mustbe_root = DeriveRoot();
if (mustbe_root!=root_hash_)
return false;
for(int i=0; i<peak_count_; i++)
sizec_ += peaks_[i].base_length();
// bingo, we now know the file size (rounded up to a chunk_size() unit)
if (!size_) // MULTIFILE: not known from spec
size_ = sizec_ * chunk_size_;
completec_ = complete_ = 0;
sizec_ = (size_ + chunk_size_-1) / chunk_size_;
// ARNOTODO: win32: this is pretty slow for ~200 MB already. Perhaps do
// on-demand sizing for Win32?
uint64_t cur_size = storage_->GetReservedSize();
if ( cur_size<=(sizec_-1)*chunk_size_ || cur_size>sizec_*chunk_size_ ) {
dprintf("%s hashtree offerpeak resizing file\n",tintstr() );
if (storage_->ResizeReserved(size_)) {
print_error("cannot set file size\n");
size_=0; // remain in the 0-state
return false;
}
}
// Arno, 2012-09-19: Hash file created only when msgs incoming
if (hash_fd_ == -1) {
hash_fd_ = OpenHashFile();
if (hash_fd_ < 0)
return false;
}
// mmap the hash file into memory
uint64_t expected_size = sizeof(Sha1Hash)*sizec_*2;
// Arno, 2011-10-18: on Windows we could optimize this away,
//CreateFileMapping, see compat.cpp will resize the file for us with
// the right params.
//
if ( file_size(hash_fd_) != expected_size ) {
dprintf("%s hashtree offerpeak resizing hash file\n",tintstr() );
file_resize (hash_fd_, expected_size);
}
hashes_ = (Sha1Hash*) memory_map(hash_fd_,expected_size);
if (!hashes_) {
size_ = sizec_ = complete_ = completec_ = 0;
print_error("mmap failed");
return false;
}
for(int i=0; i<peak_count_; i++)
hashes_[peaks_[i].toUInt()] = peak_hashes_[i];
dprintf("%s hashtree memory mapped\n",tintstr() );
return true;
}
Sha1Hash MmapHashTree::DeriveRoot () {
dprintf("%s hashtree deriving root\n",tintstr() );
int c = peak_count_-1;
bin_t p = peaks_[c];
Sha1Hash hash = peak_hashes_[c];
c--;
// Arno, 2011-10-14: Root hash = top of smallest tree covering content IMHO.
//while (!p.is_all()) {
while (c >= 0) {
if (p.is_left()) {
p = p.parent();
hash = Sha1Hash(hash,Sha1Hash::ZERO);
} else {
if (c<0 || peaks_[c]!=p.sibling())
return Sha1Hash::ZERO;
hash = Sha1Hash(peak_hashes_[c],hash);
p = p.parent();
c--;
}
}
//fprintf(stderr,"hashtree: derive: root hash is %s\n", hash.hex().c_str() );
//fprintf(stderr,"root bin is %lli covers %lli\n", p.toUInt(), p.base_length() );
return hash;
}
/** For live streaming: appends the data, adjusts the tree.
@ return the number of fresh (tail) peak hashes */
int MmapHashTree::AppendData (char* data, int length) {
return 0;
}
bin_t MmapHashTree::peak_for (bin_t pos) const {
int pi=0;
while (pi<peak_count_ && !peaks_[pi].contains(pos))
pi++;
return pi==peak_count_ ? bin_t(bin_t::NONE) : peaks_[pi];
}
bool MmapHashTree::OfferHash (bin_t pos, const Sha1Hash& hash) {
if (!size_) // only peak hashes are accepted at this point
return OfferPeakHash(pos,hash);
if (hashes_ == NULL)
{
dprintf("%s hashtree never loaded correctly from disk\n",tintstr() );
return false;
}
//NETWVSHASH
if (!check_netwvshash_)
return true;
bin_t peak = peak_for(pos);
if (peak.is_none())
return false;
if (peak==pos)
return hash == hashes_[pos.toUInt()];
if (!ack_out_.is_empty(pos.parent()))
return hash==hashes_[pos.toUInt()]; // have this hash already, even accptd data
// LESSHASH
// Arno: if we already verified this hash against the root, don't replace
if (!is_hash_verified_.is_empty(bin_t(0,pos.toUInt())))
return hash == hashes_[pos.toUInt()];
hashes_[pos.toUInt()] = hash;
if (!pos.is_base())
return false; // who cares?
bin_t p = pos;
Sha1Hash uphash = hash;
// Arno: Note well: bin_t(0,p.toUInt()) is to abuse binmap as bitmap.
while ( p!=peak && ack_out_.is_empty(p) && is_hash_verified_.is_empty(bin_t(0,p.toUInt())) ) {
hashes_[p.toUInt()] = uphash;
p = p.parent();
// Arno: Prevent poisoning the tree with bad values:
// Left hand hashes should never be zero, and right
// hand hash is only zero for the last packet, i.e.,
// layer 0. Higher layers will never have 0 hashes
// as SHA1(zero+zero) != zero (but b80de5...)
//
if (hashes_[p.left().toUInt()] == Sha1Hash::ZERO || hashes_[p.right().toUInt()] == Sha1Hash::ZERO)
break;
uphash = Sha1Hash(hashes_[p.left().toUInt()],hashes_[p.right().toUInt()]);
}// walk to the nearest proven hash
bool success = (uphash==hashes_[p.toUInt()]);
// LESSHASH
if (success) {
// Arno: The hash checks out. Mark all hashes on the uncle path as
// being verified, so we don't have to go higher than them on a next
// check.
p = pos;
// Arno: Note well: bin_t(0,p.toUInt()) is to abuse binmap as bitmap.
is_hash_verified_.set(bin_t(0,p.toUInt()));
while (p.layer() != peak.layer()) {
p = p.parent().sibling();
is_hash_verified_.set(bin_t(0,p.toUInt()));
}
// Also mark hashes on direct path to root as verified. Doesn't decrease
// #checks, but does increase the number of verified hashes faster.
p = pos;
while (p != peak) {
p = p.parent();
is_hash_verified_.set(bin_t(0,p.toUInt()));
}
}
return success;
}
bool MmapHashTree::OfferData (bin_t pos, const char* data, size_t length) {
if (!size())
return false;
if (!pos.is_base())
return false;
if (length<chunk_size_ && pos!=bin_t(0,sizec_-1))
return false;
if (ack_out_.is_filled(pos))
return true; // to set data_in_
bin_t peak = peak_for(pos);
if (peak.is_none())
return false;
Sha1Hash data_hash(data,length);
if (!OfferHash(pos, data_hash)) {
char bin_name_buf[32];
// printf("invalid hash for %s: %s\n",pos.str(bin_name_buf),data_hash.hex().c_str()); // paranoid
//fprintf(stderr,"INVALID HASH FOR %lli layer %d\n", pos.toUInt(), pos.layer() );
dprintf("%s hashtree check failed (bug TODO) %s\n",tintstr(),pos.str(bin_name_buf));
return false;
}
//printf("g %lli %s\n",(uint64_t)pos,hash.hex().c_str());
ack_out_.set(pos);
// Arno,2011-10-03: appease g++
if (storage_->Write(data,length,pos.base_offset()*chunk_size_) < 0)
print_error("pwrite failed");
complete_ += length;
completec_++;
if (pos.base_offset()==sizec_-1) {
size_ = ((sizec_-1)*chunk_size_) + length;
if (storage_->GetReservedSize()!=size_)
storage_->ResizeReserved(size_);
}
return true;
}
uint64_t MmapHashTree::seq_complete (int64_t offset) {
uint64_t seqc = 0;
if (offset == 0)
{
uint64_t seqc = ack_out_.find_empty().base_offset();
if (seqc==sizec_)
return size_;
else
return seqc*chunk_size_;
}
else
{
// SEEK: Calc sequentially complete bytes from an offset
bin_t binoff = bin_t(0,(offset - (offset % chunk_size_)) / chunk_size_);
bin_t nextempty = ack_out_.find_empty(binoff);
if (nextempty == bin_t::NONE || nextempty.base_offset() * chunk_size_ > size_)
return size_-offset; // All filled from offset
bin_t::uint_t diffc = nextempty.layer_offset() - binoff.layer_offset();
uint64_t diffb = diffc * chunk_size_;
if (diffb > 0)
diffb -= (offset % chunk_size_);
return diffb;
}
}
MmapHashTree::~MmapHashTree () {
if (hashes_)
memory_unmap(hash_fd_, hashes_, sizec_*2*sizeof(Sha1Hash));
if (hash_fd_ >= 0)
{
close(hash_fd_);
}
}